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Preface 

The journey to land humans and large payloads on Mars is one of the most formidable 

challenges in modern aerospace engineering. The thin Martian atmosphere, combined with 

the need for pinpoint landing accuracy, presents a complex problem under physical 

constraints that far surpasses those encountered in previous robotic missions. This thesis, 

conducted as the final step toward obtaining my MSc degree in Aerospace Engineering at 

Delft University of Technology, is the culmination of my passion for planetary exploration and 

my humble effort to contribute to the common body of knowledge in GNC systems for 

interplanetary vehicles. 

The research presented here focuses on the development and validation of a convex 

program framework for optimizing the hypersonic entry trajectory of a Starship-like vehicle 

during atmospheric glide on Mars. Motivated by the limitations of traditional reference-

tracking guidance algorithms – methods that have served well for Apollo and Shuttle missions 

but struggle with the nonlinearities and uncertainties inherent to Mars entry, I sought to offer 

an algorithm who can deliver the Starship spacecraft through the upper Martian atmosphere 

from an elliptical parking orbit around the Red planet. My approach leverages successive 

convexification to decompose the inherently non-convex trajectory optimization problem 

into a sequence of tractable convex sub-problems, enabling the computation of feasible 

trajectories even in the presence of atmospheric dispersions and modeling uncertainties. 

This work would not have been possible without the support and inspiration of many 

individuals. I am grateful to my thesis supervisor prof. Marc Naeije, whose guidance and 

encouragement (and jokes) were invaluable throughout the stages of this project. I also wish 

to thank my academic mentors and colleagues at TUDelft, whose insightful discussions and 

critical feedback helped refine my ideas and challenge my assumptions. Completing this thesis 

has been both a technical and personal journey. It has deepened my appreciation for the 

interdisciplinary nature of space exploration, where mathematics, physics, engineering, and 

human ingenuity converge to solve problems at the edge of what is possible.  
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Abstract 

Mars entry guidance faces a critical challenge: navigating hypersonic velocities within 

the thin atmospheric layers (120 –  45 𝑘𝑚 altitude) while balancing conflicting objectives of 

precision targeting, thermal survival, and structural integrity. This study addresses a core 

research question on a successive convexification algorithm that enables precise trajectory 

optimization for Starship’s hypersonic glide through the upper atmosphere of Mars while 

enforcing hard physical constraints such as heat flux, g-load, equilibrium glide and dynamic 

pressure. By formulating such successive convexification - based framework, the inherently 

non-convex entry problem is decomposed into iteratively refined convex sub-problems, 

enabling computational tractability under Mars’ variable CO₂-rich atmosphere. The guidance 

architecture integrates bank angle modulation for lift vectoring and angle-of-attack 

adjustments for thermal management, optimizing energy dissipation while mitigating heating 

spikes and aerodynamic stress. 

Simulations demonstrate that the collocation discretization strategy used ensures 

trajectory adherence within the entry corridor, achieving terminal positioning errors below 

3 𝑘𝑚 at 45 𝑘𝑚 altitude. The algorithm’s robustness is validated under ±10% dispersions in 

initial velocity (4.3 𝑘𝑚/𝑠) and flight-path angle (−15°) from a parking orbit around the 

planet, with heat flux, dynamic pressure, and g-load profiles remaining within mission-critical 

limits. Sensitivity analyses reveal that atmospheric density uncertainties induce predictable 

deviations compensated by rapid convex optimizations. These results align and improve on 

previous NASA mission data. 

The study bridges theoretical convex optimization with operational reality, 

demonstrating that modern computational guidance outperforms legacy predictor-corrector 

methods in handling nonlinear dynamics and path constraints. By extending the convex 

framework with adaptive trust regions and sequential convex programming, the proposed 

method reduces terminal errors by 40% compared to state-of-the-art approaches (Mars 

2020). This advancement not only enhances Starship’s capability to deliver crewed and cargo 
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payloads to predefined Martian coordinates but also establishes a foundation for integrating 

the hypersonic glide phase with the subsequent powered descent phases. As humanity strides 

toward sustained Mars exploration, this work underscores the viability of successive 

convexification as a paradigm for achieving precise atmospheric glide through the Martian 

atmosphere. 
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1 
Introduction 

 

 

 

 

 

1.1 Background Information – Narrowing Down Landing Ellipses 

 Mars has been an interesting objective for humanity even 2400 years ago when the 

Babylonians discovered a bright orange dot on the night sky. They named detailed 

observations of the planet and developed arithmetic techniques to predict its future position 

in the sky. They named their great hero, the king of conflict, Mars Nergal. The first scientific 

observations of the Red planet were conducted by Galileo Galilei in late 16𝑡ℎ and early 17𝑡ℎ 

century. He was the first person to view Mars through his telescope, but he saw nothing more 

than a bright disk. The real exploration of the intriguing red dot in (JPL, NASA, 2023) the sky 

started in the 20𝑡ℎ century in the 60𝑠 with the first successful Mariner 4 flyby  (Mariner 4 

Spacecraft, 2023), and Mariner 9’s first orbit insertion around the planet. Then, in 1976, NASA 

landed successfully the first on-the-surface static (Vikings 1&2 Spacecraft, 2023) spacecraft – 

the Vikings. In 1997, Mars Global Surveyor  (Mars Global Surveyor Spacecraft, 2023) mapped 

the Red planet in great detail with its Mars Orbiter Laser Altimeter (MOLA) instrument, based 

on which scientists on Earth created the first Martian topographic map. This initiated the 

advent of serious scientific Mars exploration with the first rover – the Sojourner – that roamed 

the planet on its tiny wheels in 1997, and Spirit and Opportunity (MERs) in 2004. In the last 
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decade NASA has been successfully increasing the landing accuracy of spacecraft on the 

Martian surface, leading to the achievements of the Mars Science Laboratory and its landing 

ellipse of 20 𝑥 7 𝑘𝑚 (shown in Figure 1). 

 As of today (May, 2025), spacecraft landing accuracy on the surface of Mars is on the 

order of several kilometers. For reference, the landing ellipse of the latest 1-ton vehicle that 

landed on Mars (the Perseverance rover)  (JPL, 2023) is 7.7 𝑥 6.6 𝑘𝑚. The next NASA mission 

to the Red planet will be Mars Sample Return which will have to increase landing accuracy 

further since it would need to land near where the Perseverance rover has left cache samples 

on the surface but even further into the near future, astronauts will step for a first time on 

the surface of Mars and these near-future missions will require a landing accuracy on the 

order of several hundred of meters at most. 

 

Figure 1: Landing ellipses of different spacecraft on Mars: 1976 Viking – 280 𝑥 100 𝑘𝑚, 

1997 Pathfinder – 201 𝑥 71 𝑘𝑚, 2004 Spirit & Opportunity – 150 𝑥 19 𝑘𝑚, 2008 Phoenix – 

100 𝑥 19 𝑘𝑚, 2018 Insight – 130 𝑥 27 𝑘𝑚, 2012 Curiosity – 19 𝑥 6.5 𝑘𝑚, 2020 

Perseverance – 7.7 𝑥 6.6 𝑘𝑚 (Pajola, 2019) 
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1.2 The Problem of Landing on Mars and the Prospects of Starship’s Legacy 

Differences between Mars Landing compared to Earth and Moon Landings 

Landing on Mars is so much harder than landing on the Moon or on Earth. Landing 

humans on the Red planet is even harder due to the additional amount of reliability and 

landing precision needed. To land on the Moon, the astronauts entered lunar orbit and fired 

retrorockets aimed opposite to their direction of travel. As their spacecraft slowed, it 

descended toward the surface. The landing was not trivial, but it was reasonably 

straightforward. To bring a lander back to Earth, retrorockets are not needed, because Earth 

has a thick atmosphere. Most Earth landers can eliminate more than 99% of the orbital speed 

simply by slowing down with a heat shield. For the last one percent, parachutes are used (e.g., 

Soyuz and Dragon capsules) or wings (e.g., the Space Shuttles). Mars is like neither the Moon 

nor the Earth but is annoyingly in between. It has too much atmosphere to land as we do on 

the Moon and not enough to land as we do on Earth. The thickness of the Martian atmosphere 

on the surface is like what a mountaineer on Earth would feel if standing on top of a mountain 

40 𝑘𝑚 high — four and a half times higher than Mount Everest. At that altitude, the Space 

Shuttle is still screaming along at over 6500 𝑘𝑚/ℎ𝑟. 

 Decreasing the enormous amount of leftover velocity (i.e., kinetic energy) from 

interplanetary flight, and being subjected to a hypersonic glide through the Martian 

atmosphere, are the two reasons why human spacecraft look like Rube Goldberg-esque  

(Wikipedia, 2023) contraptions and why the seven minutes of entry, descent, and landing 

through the Martian atmosphere are so terrifying. Engineers must combine ingenious tricks 

used to land spacecraft on Earth (e.g., heat shields and parachutes) with techniques used to 

land on the Moon (e.g., retrorockets and airbags), among many others. For the Mars Science 

Laboratory (landed on Mars on Aug 5th, 2012) and the Perseverance rover (landed on Mars 

on Feb 18th, 2021), a combination of two systems has been engineered - a precision-

controlled propulsion system that had been pioneered on Viking, and the system designed 

for Mars Pathfinder. 

 On Pathfinder, instead of falling away from the entry capsule and landing on legs, the 

lander was lowered on a rope, and hung under the parachute while falling through the thin 

Martian atmosphere at more than 240 𝑘𝑚/ℎ𝑟. The lander is kept suspended under the 
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parachute until the last possible second. At about 170 𝑚 above the ground, airbags were 

inflated and three big solid rockets fired for a couple of seconds. The lander came to almost 

a dead stop some 20 𝑚 up. From there it fell freely and bounced over the terrain for the next 

minute or so until coming to rest  (NASA JPL, 2023). 

Starship: Synthesizing Earth and Moon Landings to Conquer Mars 

Starship’s design for Mars epitomizes the synthesis of Earth and lunar landing 

philosophies, refined through great engineering. Unlike robotic predecessors constrained by 

payload limits, Starship must deliver not just instruments but human lives, demanding 

unprecedented precision and reliability. Its hypersonic glide through Mars’ wispy atmosphere 

– thinner than Earth’s but thicker than the Moon’s vacuum – uses aerodynamic forces to shed 

velocity, starting from parking orbit speeds. The vehicle’s stainless-steel airframe, angled in a 

“belly-flop” orientation, maximizes drag while four actuated fins stabilize its descent, 

mirroring the Space Shuttle’s atmospheric braking but scaled for Martian extremes. Yet here, 

the atmosphere alone cannot suffice; like Perseverance’s sky crane, Starship must transition 

from passive deceleration to active propulsion – a maneuver as perilous as it is poetic. 

At ~ 500 meters altitude, Starship executes its signature 90 − degree flip, reorienting 

from horizontal freefall to vertical thrust. This pivot, perfected in Earth’s denser skies during 

high-altitude tests like SN8’s explosive flight, leverages Raptor engines’ deep throttling to 

arrest momentum. The engines ignite in a synchronized burst, their methane-oxygen plumes 

cutting through the thin 𝐶𝑂2 atmosphere – a hybrid of Viking’s retro-rockets and Apollo’s 

powered descent, yet magnitudes more powerful. Unlike Pathfinder’s airbags or Curiosity’s 

sky crane, Starship’s architecture eliminates disposable components, instead using its own 

engines and structure as both shield and savior. This self-contained approach minimizes mass 

while maximizing control, critical for landing multi-hundred-ton payloads within meters of 

pre-deployed infrastructure. 

The implications for human exploration are profound. Where rovers required days to 

unfold instruments, Starship delivers entire habitats, labs, and return vehicles in a single 

mission. Its ability to land precisely – guided in the future by Terrain Relative Navigation (TRN) 

akin to Perseverance’s “Terrain-Relative Navigation” but enhanced with SpaceX’s Starlink-

derived autonomy – ensures crews touch down near cached supplies or ice deposits vital for 
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fuel synthesis. Moreover, its reusability transforms Mars from a one-way odyssey to a 

sustainable frontier; the same ship that descends through hypersonic plasma can ascend on 

Martian-made methane, ferrying explorers between the surface and orbit. 

In this vision, Starship transcends the Rube Goldberg legacy of past landers. It merges 

the Moon’s propulsive methods with Earth’s aerodynamics, wrapped in its reusable 

architecture that turns Mars’ “annoying” atmosphere into an ally. The seven minutes of terror 

become a rehearsed optimized trajectory – a testament to engineering ingenuity’s power to 

bend hostile worlds into habitable shores. 

1.3 Why is Precision Landing on the Red Planet Crucial for Human Exploration? 

 While engineers at NASA made a significant progress in the art of landing spacecraft 

on the Mars in the last two decades with a great accuracy (in the order of tens of kilometers), 

there is a pressing need for landers to touch down on the planet precisely with an accuracy 

on the order of tens of meters. There are several reasons for requirement: 

1. Scientific Objectives - In the next decades, spacecraft will need to land in areas on 

Mars that represent a great scientific interest, but these areas are usually surrounded by 

regions that represent a hazard to the landers. The selection of landing sites for space 

missions is determined by a set of engineering constraints related to the mission's 

architecture. Scientists must adhere to this framework of acceptable landing sites based on 

the vehicle's engineering capabilities and select the most suitable location. These proposed 

landing sites are currently considered safe because of their large dimensions. However, 

selecting a landing region becomes more challenging if the proposed landing ellipse is larger, 

such as areas with little elevation difference. Such sites are not the most scientifically 

interesting, and to obtain higher quality scientific output, spacecraft must land in an 

environment with highly varying elevation, which requires pinpoint precision landing. If this 

can be achieved, new opportunities for exploration, such as caves and valleys, can be 

explored. Permanent outposts can be established on bodies throughout the Solar System, and 

planetary samples can be returned to Earth for further investigation. However, the 

advancement of current systems is necessary to achieve these goals beyond the current 

boundaries. 
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2. Hazards - even in safe areas, the surface of Mars is hazardous, with rocks, boulders, 

and steep cliffs that could damage or destroy a spacecraft on impact. 

3. The cost of the mission can be significantly increased if the spacecraft lands far from 

its target, as it may require additional fuel to travel to the desired location. 

4. Human Exploration - when humanity lands humans on the Martian surface, it is an 

obligatory requirement for their safety to land in proximity (tens to hundreds of meters) to 

the base. Failing to do so may require the crew to walk a considerable distance, spend a lot 

of consumables, being subjected to the Martian elements, and ultimately may lead to a loss 

of the crew. To successfully land on the Martian surface, it is necessary to rendezvous after 

assets for the human colony are pre-positioned. The importance of landing near these assets 

is twofold. Firstly, these assets contain crucial elements required for supporting human life, 

such as power systems, oxygen generators, and water supplies. Secondly, these assets may 

be situated near special exploration zones and regions of resources that are utilized for 

carrying out important scientific observations in-situ. 

Although a manned mission to Mars is likely decades away, it is necessary to conduct 

several test flights to have confidence in the systems developed. To successfully send humans 

to explore the Red Planet, it is essential to find a way to land 40 − 80 tons of equipment on 

the Martian surface, within a proximity of pre-positioned assets, with a possible vertical 

surface elevation of ±10 𝑚 of where the pre-positioned assets are. Despite the challenge, 

current engineers are struggling to land a 1-ton rover with an accuracy of 10 𝑘𝑚. To make 

landing humans on Mars a realistic possibility, landing capabilities must be increased by a 

factor of two, while landing accuracy needs to be improved by a factor of four. To achieve 

this, advanced systems are required, and relying solely on existing systems is not an option. 

 There are several challenges to achieving precise landing on Mars. One of the main 

challenges is the Martian atmosphere, which is much thinner than Earth's atmosphere, 

making it difficult to slow down a spacecraft as it approaches the surface. This means that a 

spacecraft must use precise calculations (a robust autonomous guidance) and control systems 

to navigate through the atmosphere and land safely. 

 Another challenge is the communication delay between Earth and Mars, which can 

take anywhere from 4 to 24 minutes depending on the relative positions of the two planets. 
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This delay means that any commands sent from Earth must be programmed in advance and 

cannot be adjusted in real-time, requiring highly accurate predictions of the spacecraft's 

trajectory and landing location. 

 Finally, the complex terrain of Mars presents a challenge for landing, as it can make it 

difficult to find a flat, clear landing site. This requires careful analysis of the topography and 

geology of potential landing sites, as well as advanced imaging and mapping technologies to 

accurately determine the location and orientation of the spacecraft during descent and 

landing. 

1.4 Challenges to High-Performance Autonomous Navigation and Guidance 

for Mars Entry 

 As Mars exploration evolves from prioritizing mission safety to achieving ambitious 

scientific objectives and enabling human exploration, the demand for precise landings at 

predetermined points of interest has become paramount. NASA, in collaboration with private 

entities such as SpaceX, emphasizes the necessity of foundational research into reentry 

landing accuracy, aiming for precision within kilometers or even hundreds of meters  (NASA, 

2023). Achieving such pinpoint landings requires high-performance guidance and control 

systems throughout the entry, descent, and landing (EDL) phases, with accurate navigation 

serving as the cornerstone of the autonomous EDL (AEDL) framework. Traditional navigation 

methods reliant on the Deep Space Network are insufficient due to the significant time delays 

inherent in interplanetary distances. Autonomous navigation and guidance systems face 

formidable challenges arising from Mars's complex and unpredictable dynamic environment, 

limited navigation data, nonlinearities and uncertainties in the spacecraft's dynamic model, 

and constrained control capabilities  (Phys.Org, 2023). 

The uncertainties encountered during reentry are primarily rooted in two critical factors: 

1. Limited Navigation Information During Entry 

The phrase "limited navigation information" encompasses two key aspects. First, it refers 

to the restricted measurement methods available during entry. For instance, multiple 

navigation sensors are rendered inoperative due to the heat shield’s protective enclosure 
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during atmospheric entry, leaving inertial navigation via the IMU as the sole viable method. 

Second, it highlights the incomplete state information provided by navigation 

measurements—certain spacecraft states cannot be fully determined. For example, during 

the Mars Science Laboratory (MSL) mission, horizontal position estimates were unavailable 

due to limitations in TDS measurements. While radiometric measurements have been 

proposed for autonomous navigation on Mars missions, their effectiveness is constrained by 

the limited number of beacons available for global coverage. This results in weak observability 

or even total unobservability of the navigation system. Consequently, navigation system 

designs must account for multiple constraints and requirements to overcome these 

limitations  (NASA, 2023). 

2. Nonlinearity and Uncertainty of Dynamic Models 

Upon entering Mars' atmosphere at hypersonic speeds, spacecraft encounter highly 

nonlinear aerodynamic forces compounded by uncertainties in atmospheric density and 

aerodynamic coefficients. These factors make trajectory prediction exceedingly challenging. 

Atmospheric density is particularly difficult to model accurately despite advancements in 

Mars atmospheric models  (Wong, 2023). Additionally, hypersonic velocities lead to 

atmospheric ionization that introduces measurement noise and diminishes navigational 

accuracy. To address these challenges, navigation filters capable of handling uncertainties and 

noise must be developed alongside algorithms designed to account for high nonlinearity and 

variability in guidance systems. 

Given these challenges, real-time commands cannot be transmitted during atmospheric entry 

due to communication delays, necessitating an autonomous guidance system capable of 

navigating through Mars's atmosphere with precision to land at a predetermined surface 

location. The accuracy of this guidance system is intrinsically tied to its starting conditions at 

approximately 120 𝑘𝑚 altitude above Mars's surface. A tightly constrained initial state at this 

altitude significantly influences landing accuracy on the planet’s surface by minimizing 

dispersions that accumulate during hypersonic entry due to atmospheric uncertainties. 
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1.5 Navigation 

 A navigation scheme with reliability and high performance is the foundation of an 

accurate state estimation. Therefore, the question of how to design the navigation scheme in 

the presence of limited navigation information should be answered first. This section 

summarizes the development of the navigation scheme for a Mars landing which may inspire 

the requirements for an accurate navigation system design. This closed-loop navigation 

system would ensure proper guidance and control of the spacecraft. 

1.5.1 Precision Navigation during Approach for Martian Entry: Technologies 

and Challenges 

 The precise determination of entry conditions, particularly the flight-path angle (FPA), 

stands as a cornerstone for successful aerocapture and pinpoint landing during Mars 

missions, underscoring the necessity of real-time navigation during the final approach phase 

to meet the demands of future exploration  (Yu, 2023). 

NASA's Deep Space Network (DSN), spanning Goldstone (USA), Madrid (Spain), and 

Canberra (Australia), forms the backbone of interplanetary navigation, providing critical 

radiometric Doppler, range, and other measurements to track spacecraft velocity, distance, 

and angular position  (NASA, 2023). During missions like the Mars Science Laboratory (MSL), 

these data types synergized to refine trajectory assessments. While ground-based 

observations suffice during cruise phases, the final approach — constrained by 

communication delays—demands autonomous onboard navigation once Earth-based data 

ceases approximately six hours before entry. 

Optical navigation, which calculates spacecraft position via planetary centroids or star-

relative angles, faces limitations as Mars dominates the field of view during approach, 

obscuring precise center extraction. Complementary solutions have emerged in the form of 

the Mars Network—a constellation of orbiters equipped with UHF transceivers. This network 

enables real-time spacecraft-to-spacecraft Doppler and range measurements, enhancing 

trajectory accuracy. For instance, MSL combined with Mars Reconnaissance Orbiter (MRO) 

data reduced entry point uncertainty to 300 𝑚. However, intermittent line – of – sight 

obstructions by Mars itself restrict continuous coverage, necessitating hybrid solutions. 
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Figure 2: X-ray pulsar-based navigation scheme for Mars final approach phase  (Yu, 2023). A 

very useful mechanism to tighten navigation boundaries when the spacecraft is far from the 

target planet but becomes limited (and essentially only a complementary tool) when the 

spacecraft reaches the target planet and has a limited horizon visibility. 

Innovative approaches leveraging X-ray pulsars — celestial lighthouses with 

predictable emissions — offer autonomous navigation independent of Earth infrastructure. 

As demonstrated by  (Cui, 2013), pulsar-based systems achieve positional accuracy within 

1,000 𝑚, velocity within 1 𝑚/𝑠, and FPA precision of 0.02 𝑑𝑒𝑔 (3𝜎). Yet, nonlinear dynamics 

near Mars degrade standalone pulsar navigation, particularly in velocity and FPA estimation. 

To mitigate this, Cui proposed integrating pulsar data with Mars Network inputs during later 

approach phases, capitalizing on improved observability. 

These advancements collectively highlight the evolving paradigm of Mars navigation: 

a fusion of ground-based infrastructure, orbital relays, and celestial references. While each 

method excels in specific regimes, their integration promises the precision required for 

humanity’s next leaps in Martian exploration — balancing autonomy, accuracy, and 

adaptability in the face of cosmic complexity. 
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1.5.2 Pioneering Navigation Entry Systems: From Viking to Modern Mars 

Exploration 

 The groundbreaking Viking 1 and 2 missions, NASA’s inaugural triumphs in achieving 

soft landings on Mars, laid the technological groundwork for subsequent missions, 

particularly in advancing the critical Entry, Descent, and Landing (EDL) phase. Central to their 

legacy is the inertial navigation system (INS) reliant on IMU (Inertial Measurement Unit) 

technology, which remains the cornerstone of navigation during Mars entry. The Litton 

Corporation’s LN-200 IMU (now Northrop Grumman), first deployed in Viking, has since been 

integral to missions such as the Spirit, Opportunity, and Curiosity rovers, as well as ESA’s 

Schiaparelli lander  (Northrop Grumman, n.d.). However, Schiaparelli’s unfortunate crash 

underscored the vulnerabilities of relying solely on inertial systems, revealing the cascading 

risks of drift, sensor bias, and measurement noise. These limitations highlight the necessity of 

augmenting INS with supplementary navigation data to mitigate initial entry condition errors 

and enhance robustness. 

While IMU-based schemes leveraging atmospheric density models have been 

proposed for autonomous navigation, their efficacy is inherently tied to the precision of these 

models. Studies demonstrate that accelerometer-derived navigation remains acutely 

sensitive to atmospheric density uncertainties, even when refined through advanced filtering 

techniques. Though such methods partially improve accuracy, they remain constrained by the 

scarcity of real-time navigation data and the prerequisite for highly accurate atmospheric 

databases. 

A paradigm shift emerges with novel concepts such as autonomous formation-flying 

sensors, which harness high-frequency radio signals capable of penetrating the plasma sheath 

during entry (Figure 3). By integrating radiometric measurements from Mars orbiters or pre-

positioned ground beacons, this approach could exponentially expand navigational data 

streams, potentially reducing landing uncertainty to under 1 𝑘𝑚. Collaborative research into 

hybrid systems — combining IMU, radio, and instruments like the Mars Entry Atmospheric 

Data System (MEADS) — has already yielded promising results. For instance, MEADS-

equipped missions (e.g., Mars 2020) utilized heat shield pressure sensors and triaxial 
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accelerometers to reconstruct atmospheric density profiles and refine trajectory estimates in 

real time. 

Post-hypersonic glide, trajectory deviations induced by atmospheric perturbations – 

winds, density fluctuations, and unforeseen terrain complexities – demand precise navigation 

capable of simultaneous position, velocity, and attitude determination. The synergistic 

integration of legacy systems like IMU with emerging technologies, such as radiometric 

networks and adaptive filtering, represents the next frontier in Mars exploration. These 

advancements aim not only to honor Viking’s pioneering ingenuity but to transcend its 

limitations, ensuring future missions achieve the precision required for humanity’s ambitious 

endeavors on the Red Planet. 

 

Figure 3: Mars network-based navigation scheme for Mars entry  (Yu, 2023). The two-was 

Doppler effect of orbiters, as well as the ground-based beacons, could increase navigation 

accuracy. 

1.6 Flight Performance on Guidance Algorithms 

 The entry guidance system determines steering commands to guide the hypersonic 

gliding spacecraft from its current location at the top of the atmosphere to a pre-specified 

target landing location. Its main purpose is to control the dissipation of energy and to satisfy 

range requirements, given specific constraints (entry corridor). 
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 The development of trajectory-tracking guidance for planetary entry can be divided 

into three generations, presented in Figure 4) entry guidance for low-lifting capsule vehicles, 

2) Space Shuttle guidance and 3) the newly emerged computational entry guidance  

(Simplicio, 2018). 

 

Figure 4: Evolution of the guidance systems, starting with the early Apollo guidance during 

the 60s and 70s, then the Shuttle guidance (during the 80s) oriented specifically to vehicles 

with higher hypersonic 𝐿/𝐷 ratios, and employing reference-tracking technologies. Predictor-

corrector (and its inefficiencies) was presented at the beginning of the 21st century, and online 

trajectory generation based on numerical optimization (such as convex optimization + proper 

discretization methods) is the current state-of-the-art guidance algorithm, employed in 

modern spacecraft reaching the Red planet. (produced in Google Slides by the author of this 

research) 

 The first-generation entry guidance was developed for low lift-to-drag (𝐿/𝐷) ratio 

capsules such as the Apollo Command Module (CM) spacecraft  (Ingo Gerth, 2014), the Mars 

MSL and Perseverance capsules and SpaceX’s Dragon spacecraft capsule.  The entry guidance 

utilized in the Apollo program marked the initial implementation of this technology. In this 

program, the spacecraft followed a predetermined angle-of-attack profile, and the guidance 
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system generated commands to adjust the bank angle to minimize the predicted downrange 

error. To determine the appropriate bank angle, a bank reversal logic was employed based 

on the cross-range requirement. Due to the limited computational capacity of the onboard 

guidance computer, the Apollo guidance approach relied on closed-form analytical equations 

and approximate relationships. It aimed to converge towards a predefined trajectory stored 

as a reference table. 

 The primary advantage of this entry guidance method for vehicles with low lift-to-drag 

ratios (𝐿/𝐷) lies in its simplicity and quick solution time, which are advantageous for 

hypersonic entry flights. However, a major drawback is its reliance on simplified assumptions, 

which reduces the robustness of the guidance algorithm and restricts its suitability for a 

broader range of missions. Consequently, the entry guidance algorithms developed for low 

𝐿/𝐷 vehicles are primarily employed for short-range flights with moderate payloads. 

 For reference, another descent guidance algorithm of the Lunar Excursion Module 

(𝐿𝐸𝑀) was used to guide the spacecraft during its descent to the surface of the Moon. One 

of the key features of the Apollo descent guidance algorithm was its ability to handle the last 

stages of the descent, where the 𝐿𝐸𝑀 transitioned from a powered descent to a free fall and 

then to a landing. The algorithm was able to guide the spacecraft to a safe landing spot, even 

if the navigation system was not providing accurate information. It was a major achievement 

in the guidance field and played a critical role in the success of the Apollo manned lunar 

landing missions. 

 The second-generation entry guidance algorithm was specifically developed to cater 

to vehicles with higher lift-to-drag ratios (𝐿/𝐷) such as X-33, X-37B and the Space Shuttle, as 

shown in Figure 4  (NASA Lyndon JSC, 1979). Unlike the Apollo entry approach, the Shuttle 

maintained a relatively low flight-path angle for most of the entry phase. A predetermined 

nominal angle-of-attack profile was established, considering for the Thermal Protection 

System (TPS) and cross-range requirements. However, the angle of attack profile was 

adjusted within a small range during the flight to obey path constraints (40 degrees at the top 

of the atmosphere to dissipate as much energy as possible before hitting the thick layers of 

the atmosphere, and 20 degrees later in the thick layers of the atmosphere, after the 

structure of the entry vehicle has cooled down)  (Mooij, Re-entry Systems, 2020). 
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 The Shuttle employed a reference-tracking methodology, where a reference 

trajectory in the longitudinal direction was devised as a profile of drag acceleration versus 

velocity or drag acceleration versus energy. This approach aimed to align the actual trajectory 

with the reference trajectory, allowing for precise control and guidance throughout the entry 

phase. The magnitude of the bank angle command was determined using a linearized, gain-

scheduled guidance law that aimed to track the reference drag profile. Similar to the Apollo 

entry guidance algorithm, a bank reversal logic was employed to determine the direction of 

the bank angle. Extensive efforts have been made to enhance the performance of the drag-

acceleration-based entry guidance method. These efforts include improving the accuracy of 

the drag profile design, simplifying the process of designing the reference trajectory, and 

developing robust feedback control laws for trajectory tracking. 

 The Shuttle's entry guidance method is straightforward to implement onboard, and 

the guidance algorithms designed for vehicles with high lift-to-drag (𝐿/𝐷) ratios can handle 

longer ranges, enable runway landings, and accommodate large payloads. However, the 

development of the guidance algorithm heavily relies on certain assumptions, namely a small 

flight-path angle and a quasi-equilibrium glide condition. Despite its advantages, the 

applicability of the guidance algorithm may be limited by these underlying assumptions. 

 Unlike the Apollo or Shuttle entry guidance algorithm, the third-generation entry 

guidance algorithms rely heavily on numerical computation, taking advantage of modern 

computing capabilities, to generate real-time trajectories. One particularly promising 

algorithm in this category is the predictor-corrector method (Figure 4), which has 

demonstrated significant potential in addressing large trajectory dispersions. 

 In one study  (Lu, 2007), a three-degree-of-freedom (3𝐷𝑜𝐹) predictor-corrector 

guidance algorithm was developed specifically for evaluating high-energy aero-braking 

maneuvers. Another study  (Sippel, 2019) designed an online entry guidance algorithm using 

the predictor-corrector method for a reusable launch vehicle (RLV). Utilizing the Quasi-

Equilibrium glide condition, yet another study  (Thilbault, 2019) proposed a methodology for 

rapidly designing feasible 3𝐷𝑜𝐹 entry trajectories that satisfy various inequality and equality 

constraints. This methodology decomposed the highly constrained trajectory planning 

problem into two sequential one-parameter search problems, allowing for the generation of 

viable entry trajectories in approximately 2 − 3 seconds. 
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 To tackle the challenges posed by terminal and path constraints in entry flight, a 

numerical predictor-corrector approach was adopted in a study  (Lu, 2007), presenting an 

algorithm for real-time trajectory planning. This algorithm aimed to generate a feasible 

trajectory in each guidance cycle. In the context of adaptive and accurate entry guidance for 

low-lifting entry vehicles, a numerical predictor-corrector method was investigated in another 

study  (Lu, 2007). The performance of this algorithm was further improved and demonstrated 

for different types of vehicles and missions in subsequent research.  

The predictor-corrector guidance algorithms offer several primary advantages: 

1. They have the capability to update reference trajectories during the flight. 

2. They can integrate reference trajectory planning with tracking guidance. 

 However, one longstanding challenge of the predictor-corrector guidance algorithm is 

the substantial computational requirement necessary for repeated numerical integration of 

the equations of motion. As the most reliable algorithms today typically iterate on a single 

guidance parameter, achieving convergence with more general numerical approaches 

remains a concern. Another challenge encountered with these algorithms is the absence of 

an effective method to accommodate inequality path constraints related to factors such as 

heat rate, normal load, and dynamic pressure. Furthermore, existing predictor-corrector 

guidance algorithms face limitations in generating only feasible trajectories, which restricts 

their ability to handle a broader range of trajectory requirements. 

 An ideal algorithm for onboard entry guidance should be fast, reliable, readily 

implementable, and able to enforce common constraints while ensuring accuracy for various 

types of vehicles and missions. If the mission is modified during flight to address emergent 

situations, the entry guidance system should re-generate a new trajectory to the target in 

shortest possible amount of time. 

 With the development of computing technologies, optimization theories, and 

algorithms, online trajectory optimization (latest stage, shown in Figure 4) is becoming an 

effective approach for solving aerospace guidance problems. In addition, convex optimization 

methods enable solving convex, nonlinear programming (NLP) problems as easily as solving 

linear programming (LP) problems, and a globally optimal solution can be computed for a 

convex problem. In each guidance cycle of the algorithm, a reference trajectory is generated 
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from the current location to the target by solving Second-order cone programming (SOCP) 

problems  (Wikipedia, 2023). Path constraints such as the heat rate, normal load and the 

dynamic pressure are considered in both the reference trajectory generation and the optimal 

tracking guidance design. The novelty of this approach is its capability to generate accurate 

reference trajectories in several guidance cycles before an exact convergence is achieved. 

Such high precision online trajectory optimization methods, combining convex optimization 

and pseudospectral optimization to achieve precision landing, have several major benefits: 

1. Convergence certainty of the convex optimization scheme 

2. High discretization precision of the pseudospectral method 

3. The algorithm can converge without good initial guesses 

4. Interior point methods (IPM) can solve convex problems in polynomial time without 

initial guesses as a user input 

  



18 
 

2 
Research Gap, Problem Statement 

and Research Objective 
 

 

 

 

 

2.1 Research Gap 

The Unexplored Domain: Elliptical Orbit Entry Paradigm for Martian Hypersonic Descent 

After decades of spacecraft re-entering Mars’ atmosphere, there are still considerable 

research gaps when it comes to the methodological approach to re-entry — a critical juncture 

where theoretical calculations meet the harsh realities of Martian environmental constraints. 

The predominant body of scholarly work has focused almost exclusively on direct entry 

scenarios, where spacecraft dives into the atmosphere of Mars at velocities approaching 

7.5 𝑘𝑚 𝑠⁄ , having arrived from interplanetary trajectories without orbital insertion around 

the planet. This approach, while technically feasible, imposes severe thermal and structural 

demands on the vehicle, requiring robust heat shields, availability of refurbishment 

capabilities and offering minimal margin for trajectory refinement. This established paradigm 

has remained largely unchallenged in literature, creating a notable absence of research into 

alternative entry methods that may offer advantages for future missions, particularly those 

involving human payloads or precision landing requirements. 
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This research into Starship's Mars entry profile introduces a fundamentally different 

approach – an entry from an established elliptical orbit with eccentricity of 𝑒 ≅ 0.5, at a 

considerably reduced velocity of 4.3 𝑘𝑚 𝑠⁄  (exhibited in Figure 5). 

 

Figure 5:  Starship’s elliptical orbit around Mars, a starting point periapsis re-entry into the 

atmosphere (produced in MATLAB by the author of this research) 

The spacecraft essentially aerobrakes into the Martian atmosphere through several 

orbits, dissipating its interplanetary trajectory energy. This methodology, while maintaining 

the standard entry interface altitude of 120 𝑘𝑚, represents a departure from conventional 

wisdom. The implementation of sequential convex programming as an algorithm for non-

convex hypersonic guidance further distinguishes this work from traditional approaches. This 

mathematical framework transforms the inherently non-convex trajectory optimization 

problem into a sequence of convex sub-problems, enabling computational efficiency critical 

for autonomous guidance during the upper atmospheric descent phase. 

The advantages of using elliptical orbit entry approach are manifold and significant. 

Most prominently, the reduced entry velocity 𝑉0 translates directly to decreased peak heating 
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rates 𝑞𝑚𝑎𝑥 – potentially by a factor of three to four  (Lu, 2007) compared to direct entry – 

thereby  alleviating thermal protection system requirements (and as a consequence, mass 

and complexity requirements), and expanding the envelope of material selections. The lower 

velocity regime also affords greater aerodynamic control authority during the hypersonic 

phase, enhancing precision landing capabilities crucial for infrastructure development 

scenarios. Furthermore, the elliptical orbit provides a stable platform for comprehensive 

systems verification before committing to the irreversible entry sequence, allowing for timing 

flexibility to avoid dust storms or other adverse atmospheric conditions that might 

compromise mission success. 

Perhaps most significantly, this approach introduces a critical abort capability absent 

in direct entry scenarios. Should anomalies be detected prior to deorbit burn initiation, the 

vehicle can remain safely in its elliptical orbit while engineers develop contingency plans — 

an option that is not available during the unalterable trajectory of direct atmospheric entry. 

Additionally, the more gradual energy dissipation profile enables more precise trajectory 

modulation, with the sequential convex programming framework continuously recalculating 

optimal control parameters throughout descent. 

This research contributes to the re-entry field by challenging the entrenched 

assumption that direct entry represents the optimal or sole viable approach for Mars entry. 

It bridges theoretical optimization techniques, such as convex optimization, with practical 

engineering constraints, offering another perspective that balances computational efficiency 

with trajectory optimality. While direct entry may remain appropriate for certain mission 

profiles, particularly where payload mass is severely constrained, this work demonstrates that 

for vehicles with substantial propulsive capabilities such as Starship, the elliptical orbit entry 

approach offers compelling advantages that have remained largely unexplored in literature. 

By illuminating this alternative methodology and quantifying its benefits through simulations, 

this research expands the design space available to mission architects and potentially enables 

more ambitious and precise Mars landing operations than previously considered feasible 

under the direct entry paradigm. 
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2.2 Problem Statement and Research Objective 

 In the previous chapter, in Section 1.4, several key challenges regarding precision 

landing on Mars were presented. To summarize the problem statement, Mars entry guidance 

faces a critical challenge: navigating hypersonic velocities within thin atmospheric layers while 

balancing conflicting objectives of precision targeting, thermal protection system survival, 

and vehicle structural integrity. Current trajectory optimization methods for interplanetary 

re-entry, such as Apollo-derived predictor-corrector algorithms, struggle with the nonlinear 

dynamics and path constraints inherent to Mars’ variable CO₂-rich atmosphere. These 

methods often rely on pre-computed profiles ill-suited for real-time adaptation to 

atmospheric dispersions, risking corridor breaches that could lead to catastrophic heating or 

undershoot errors. The above problem statement demands the Starship vehicle’s hypersonic 

glide phase – governed by bank angle and angle-of-attack modulation – to implement a 

guidance framework capable of resolving convex-compatible sub-problems rapidly under 

tight computational margins, a capability absent in legacy systems. 

This thesis addresses these limitations by formulating a successive convexification – 

based algorithm that decomposes the nonconvex entry problem into iteratively refined 

convex sub-problems. Accordingly, the main purpose of this research is to develop a capable 

guidance algorithm for the hypersonic portion of the entry glide on Mars, that can guide the 

vehicle to a pre-defined location on a 45 𝑘𝑚 altitude, thereby following an optimal trajectory 

to achieve maximum precision (less than 3 𝑘𝑚). After an altitude of 45 𝑘𝑚, atmospheric 

density on Mars increases considerably and other methods, such as Terrain Relative 

Navigation (𝑇𝑅𝑁) (from 45 to 20 𝑘𝑚) and retro – propulsive methods (20 𝑘𝑚 and below) 

are needed to satisfy the accuracy requirement. The terminal accuracy at 45 𝑘𝑚 is a good 

prerequisite to achieve a subsequent precision-landing in the order of hundreds of meters, 

using the aforementioned methods. The primary challenge associated with GNC systems for 

achieving precise trajectory optimization lies in the limited robustness and the presence of 

uncertainties and errors in navigation sensors themselves, also atmospheric properties, wind 

conditions, and modeling inaccuracies. These factors collectively restrict the achievable 

accuracy of the landings. Therefore, this research focuses on two aspects: 

1. Develop a closed-loop guidance algorithm, based on convex optimization, successive 

convexification and collocation discretization, to increase robustness. 
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2. Enforcement of entry corridor physical constraints – heat flux, g-load, equilibrium 

glide and dynamic pressure – to ensure a feasible landing process. 

 Based on the discussed challenges, the defined problem statement above and the 

established focus aspects of the research, the core research question is: 

 

Narrowing down this research question into partial sub-questions breaks down the 

complexity of the problem and gives rise to a clear research overview. Each research sub-

question is identified with a unique RSQ – x. 

RSQ – 1: What is the optimal balance between bank angle modulation and angle-of-attack 

adjustments to achieve maximum precision? 

RSQ – 2: Are the enforced path constraints (heat flux, g-load, equilibrium glide and dynamic 

pressure) that form the re-entry corridor satisfied, without compromising terminal 

positioning accuracy? 

RSQ – 3: How sensitive is the guidance architecture to uncertainties in initial flight-path angle 

and velocity, as well as atmospheric gradients and is it robust enough?  

What accuracy can successive convexification achieve when applied to precision 

trajectory optimization for Starship’s hypersonic glide in the upper atmosphere while 

enforcing hard physical constraints on heat flux (≤ 100 𝑘𝑊/𝑚2), g-load (≤ 3𝑔), and 

dynamic pressure (≤ 800 𝑃𝑎), considering also theoretically perfect navigation and 

controls? 



23 
 

3 
Spacecraft Re-entry 

Guidance on Mars 

 

 

 

 

 

3.1 From Apollo to Numerical Closed-Loop Guidance – Mission Overview 

 For many decades, researchers have devoted attention to studying the reentry 

guidance problem. Initially, during the 1970s, the focus was mainly on utilizing the classical 

guidance law that relied on the drag acceleration profile. However, in the 1990s, the 

introduction of a new generation of reusable launch vehicles (RLVs) led to the development 

of new methods. As a result, an Evolved Acceleration Guidance Logic and a guidance law that 

utilized the Quasi-Equilibrium Glide Condition were proposed  (Cui, 2017). In more recent 

years, computational guidance has been extensively researched for designing re-entry 

guidance laws. 

 Predictor-corrector guidance, which was initially developed to explore Mars and has 

demonstrated high levels of performance in terms of both robustness and flexibility, 

represents an important direction for designing reentry guidance laws  (Lu, 2007). Some 

researchers have proposed various predictor and corrector guidance laws, such as Newton -

Raphson iterations and Neural network, for this purpose.  (Wang, 2020) further extended the 

predictor-corrector guidance approach by incorporating no-fly zone (NFZ) constraints into the 

trajectory design process. In this extension, a fuzzy logic-based corrector was used to reverse 

the bank angle and avoid the NFZ, but this approach was not optimal  (Zhao, 2017). 
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 With the significant increase in computational power of embedded computers, the 

requirements for reentry guidance law design have become more demanding. Now, in 

addition to satisfying terminal and path constraints such as maximum heat flux, maximum 

dynamic pressure, maximum normal load, NFZ constraints, and hard constraints on terminal 

states, the guidance law design also aims to minimize the terminal velocity, heating load, or 

reentry time. In other words, the reentry guidance law design problem has evolved into a 

trajectory optimization problem. 

 The problem of optimizing the reentry trajectory has been widely studied, and existing 

methods can be categorized as indirect or direct  (Wan, 2022). Indirect methods involve 

explicitly solving the optimality conditions using adjoint differential equations, the maximum 

principle, and associated boundary conditions. The necessary condition for optimal control 

can be derived by setting the first derivative of the Hamilton function to zero using the 

calculus of variations. Although these methods can guarantee optimality, they require initial 

guesses for the adjoint variables and the sequence of sub-arcs, which must be constrained 

and unconstrained, before iteration can begin. 

 In contrast, direct methods do not require an analytical expression for the necessary 

condition and do not need initial guesses for the adjoint variables. Instead, the original 

problem is transformed into a nonlinear programming (NLP) problem by introducing 

parametric representations for the control variables. Although this approach can handle the 

reentry trajectory optimization problem with no-fly zone constraints and transform it into a 

large-scale NLP problem that can be solved using an NLP solver, the solution process is time-

consuming and unpredictable. A good initial guess is also necessary for the NLP algorithm  

(Boyd, 2004). 

 To quickly solve trajectory optimization problems, convex optimization has been 

introduced as a method of handling the problem  (Boyd, 2004). Convex optimization is 

becoming increasingly popular in aerospace guidance, control, and trajectory optimization, 

and has been applied in various situations, such as path planning and collision avoidance for 

unmanned aerial vehicles, the Mars landing problem, rendezvous and proximity operations, 

and constrained guidance law design, as well as the trajectory optimization problem. 

 The superior performance of convex optimization has been demonstrated, and 

Second-order Cone Programming (SOCP), which is a sub-class of convex optimization with 
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constraints that must be either linear equality or Second-order cone inequality, can be solved 

in polynomial time using state-of-the-art interior-point methods. Primal-dual IPM does not 

require initial guesses. 

  (Liu, 2019) et al. proposed an SOCP method to address the reentry trajectory 

optimization problem, where the equations of motion were reformulated with respect to 

energy, the velocity was approximated as a function of energy, and the non-convex path and 

control constraints were transformed into linear and Second-order cone constraints, 

respectively. A regularization term was required in the objective function to activate the 

Second-order cone constraints, and the problem was finally solved using SOCP via successive 

linearization and relaxation. 

 The same techniques have been utilized to solve other reentry problems, such as the 

maximum cross range problem and smooth reentry trajectory planning. However, these 

methods have limitations as the bank angle profiles are restricted to positive values to reduce 

the nonlinearity of the optimization problem for a feasible solution, which is not realistic. To 

address these limitations,  (Wang, 2020) proposed a Second-order cone programming (SOCP) 

approach to minimize the terminal velocity and heat load. They introduced a new control 

variable, bank angle rate, to separate the states and control variables and employed a First-

order Taylor series expansion to convexify the path constraint. However, the validity of their 

approach has not been accurately demonstrated, indicating that the original inequality path 

constraints may not hold. Another drawback of this method is that infeasible problems may 

arise during the successive solving process due to the high nonlinearity of the reentry 

optimization problem. 

 In this research, a sequential convex programming method for reentry trajectory 

optimization is proposed, capable of potentially handling also problems with no-fly zones 

(NFZs) if further improved by future efforts. To handle the non-convex path constraints such 

as the nonconvex heat rate, dynamic pressure, and normal load path constraints, a 

linearization approach is implemented. In order to preserve the feasibility of the sub-

problems in the SCP solving process and to keep the optimality of the final solution, a penalty 

term is added to the objective function. 
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3.2 Optimal Control Problem (OCP) and the Bolza Problem 

 There are different methods to generate optimal trajectories. Some of them exploit 

the structure of the problem and require simplifications to transform the problem to a 

mathematically tractable thing. Therefore, the generated solutions are valid under given 

hypotheses. However, nowadays aerospace engineers employ a standardized contemporary 

approach, which benefits from the development of the computational capabilities of modern 

CPUs. This method represents the trajectory generation problem as an optimal control 

problem (OCP)  (Wikipedia, n.d.). This means that the goal is to minimize a given criterion, 

while at the same time satisfying several constraints, which can be differential (i.e., the EoMs 

of the vehicle) and/or algebraic (e.g., the maximum heat-flux that the vehicle can tolerate 

during re-entry). 

The standard form for representing OCPs is the so-called Bolza problem  (Mooij, 2018). 

Given a state vector 𝒙(𝑡) ∈ 𝑅𝑛, a control vector 𝒖(𝑡) ∈ 𝑅𝑛, the scalar functions Φ(𝑡, 𝒙, 𝒖) 

and Ψ(𝑡, 𝒙, 𝒖) and the vector g(𝑡, 𝒙, 𝒖) ∈ 𝑅𝑛, the problem can be formulated as follows: 

 𝐽 = Φ[𝑡𝑓, 𝐱(𝑡𝑓), 𝐮(𝑡𝑓)] + ∫ Ψ[𝐱(𝑡), 𝐮(𝑡)]
𝑡𝑓

𝑡0

𝑑𝑡 (1) 

where 𝐽 is the objective to be minimizes. The above is subject to the differential equations 

 �̇� = 𝑓(𝑡, 𝐱, 𝐮) (2) 
 

and to the path constraints 𝒈𝑙 ≤ 𝒈(𝐱, 𝐮) ≤ 𝒈𝑢. 

The first term in the cost function of Equation (1) is called Mayer term and represents 

punctual constraints (e.g., minimization of a distance according to a given metric) while the 

integral argument is called the Lagrange term, used to minimize variables over the entire 

mission (e.g., the heat load obtained by integrating the heat flux over time). As already seen 

in the example above, the problem had bounded states and controls, 𝐱𝐿 ≤ 𝐱(𝑡) ≤ 𝐱𝑈 and 

𝐮𝐿 ≤ 𝐮(𝑡) ≤ 𝐮𝑈. In addition, initial and final conditions’ constraints are applied such that the 

system dynamics and other constraints in the OCP serve as the constraints in the Bolza 

problem framework.  
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3.3 Convex Optimization – An Overview 

 Convex optimization, a branch of mathematical optimization, focuses on minimizing 

convex functions within convex domains  (Boyd, 2004). Unlike general optimization tasks 

which are typically NP-hard (computationally intensive), many convex problems can be solved 

efficiently using polynomial-time algorithms. Solving a problem in polynomial time means the 

algorithm’s running time grows proportionally to 𝑛𝑘, where 𝑛 is the input size and 𝑘 is a fixed 

constant  (Math Overflow, 2024). While verifying solutions is straightforward, solving complex 

non-convex problems becomes prohibitively time-consuming. Convex optimization methods 

circumvent this by enabling efficient resolution of such problems with guaranteed 

convergence  (Boyd, 2004). 

 In aerospace guidance, convex techniques reformulate nonlinear, constrained entry 

challenges into sequences of Second-order cone programming (SOCP) sub-problems through 

iterative linearization and convex approximation methods (also implemented in this research)  

(Boyd, 2004). As a specialized convex programming sub-class, SOCP benefits from solvers with 

predictable convergence characteristics. This efficiency makes SOCP-based guidance 

algorithms viable for real-time spacecraft applications  (Boyd, 2004). 

As the equations of motion (EoMs), presented in Chapter 4, for the entry guidance 

problem are highly nonlinear in general, sequential convex programming (SCP) with the 

successive linearization technique has been widely adopted in previous studies. In the generic 

SCP method, a nonlinear optimization problem is sequentially solved by converting it into a 

convex sub-problem at each iteration  (Boyd, 2004). Although a strict convergence property 

of the convex optimization is weakened in the SCP method, it still has been recognized as an 

efficient heuristic method for solving nonlinear optimization problems. Moreover, it has been 

successfully applied to a real-world guidance problem. However, there are still some issues 

to be improved in the generic SCP method in the entry trajectory optimization problem  (Pei, 

2021). Moreover, a change in the control variables (as proposed in this research) and a 

relaxation technique would potentially solve a high-frequency jittering issue of the trajectory-

optimized entry path  (Pei, 2021). 

 In the past three decades, numerous researchers have dedicated their efforts to the 

advancement of convex optimization theory  (Bae, 2022). They have proven that, for a 



28 
 

significant range of problems, the crucial characteristic is not the linearity of the system, but 

its convexity. When the problem is convex, it can be solved quickly, and the resulting solution 

is the global optimal, if it exists. In most cases, a convex optimization problem is described as 

follows: 

 min 𝐽 = 𝑓0(𝑥) (3) 
subject to 

 𝑓𝑖(𝑥) ≤ 𝑎𝑖,       𝑖 = 1,… ,𝑚 (4) 
 

where 𝑥 ∈ 𝑅𝑛 represents the vector of variables to be determined. The functions 𝑓𝑖  are 

convex which means that they satisfy Jensen’s inequality (Wikipedia, n.d.): 

 𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦),         𝑖 = 0,… ,𝑚,   𝛼 + 𝛽 = 1,   𝛼 ≥ 0,   𝛽 ≥ 0 (5) 
 

The above Equation (5) highlights a key feature of convex problems, which extends the 

concept of linearity to convexity, and includes equality as a special case instead of the original 

Jensen's inequality. More information about this can be found in Boyd's research. The 

following properties define convex optimization: 

- It is considered a matured technology because there are efficient methods, such as 

primal – dual interior point methods (PD-IPMs) that can solve convex problems 

- Many real-world problems can be reformulated in a convex form 

- This type of methods does not require an initial guess, contrary to non-linear programs 

(NLPs) 

- It is guaranteed that the solution to the problem is a global optimum 

In this work, we will focus on Second-order Cone Programming (SOCP), which, as already 

mentioned, is a specific sub-class of convex programs. 

3.4 Second – Order Cone Programming (SOCP) 

Second-order cone programming (SOCP), a sub-class of convex optimization, has 

emerged as a transformative tool for solving complex trajectory optimization problems in 

aerospace engineering, particularly in the high-stakes domain of planetary re-entry systems  

(Acikmese, 2022). By minimizing linear objectives over intersections of affine spaces and 

Lorentz (Second-order) cones, SOCP provides a computationally tractable framework for 
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handling nonlinear dynamics and non-convex constraints inherent to atmospheric entry. Its 

ability to model quadratic inequalities and Euclidean norms as convex constraints makes it 

uniquely suited to address the multifaceted challenges of guiding vehicles through extreme 

thermal and aerodynamic environments  (Acikmese, 2022).  

The SOCP Framework 

SOCP generalizes linear and quadratic programming by introducing constraints 

defined by Second-order cones (SOC) such in the one exhibited in Figure 6: 

 Κ = {(𝑥0, 𝐱) ∈ 𝑅 × 𝑅
𝑛−1 | 𝑥0 ≥ ‖𝑥‖2} (6) 

 

In Equation (6), 𝐾 refers to the coefficient matrices (3𝑥3) derived from least squares fit of 

the descent trajectory. They enable the guidance algorithm to compute optimal trajectories 

without introducing additional computational phases. This structure enables the efficient 

representation of diverse constraints, from trust regions to aerodynamic load limits, while 

guaranteeing convexity. For re-entry applications, SOCP’s strength lies in its compatibility with 

successive convexification – an iterative technique that linearizes non-convex dynamics and 

path constraints around a reference trajectory, transforming them into SOCP – compatible 

forms. It can be formulated as follows (also presented as Problem 2 in Chapter 5): 

 minimize 𝑐0
𝑇𝑥 (7) 

subject to 

 

𝐹𝑖𝑥 ≤ 𝐺𝑖  

𝐴0𝑥 = 𝑏0 

‖𝐴𝑖𝑥 + 𝑏𝑖‖2 ≤ 𝑐1
𝑇𝑥 + 𝑑𝑖 

(8) 

 

with 𝑥 ∈ 𝑅𝑛×1 representing the variables to determine, 𝑐0 ∈ 𝑅
𝑛×1 is the definition vector of 

the objective, 𝐹𝑖 ∈ 𝑅
𝑙×𝑛 and 𝐺𝑖 ∈ 𝑅

𝑙×1 are a set of component-wise inequalities, 𝐴0 ∈ 𝑅
𝑚×𝑛 

and 𝑏0 ∈ 𝑅
𝑚×1 describe the linear system of 𝑚 equations that the solution has to satisfy. The 

terms 𝐴𝑖 ∈ 𝑅
𝑚×𝑛, 𝑏𝑖 ∈ 𝑅

𝑚×1, 𝑐𝑖 ∈ 𝑅
𝑛×1 and 𝑑𝑖 ∈ 𝑅 describe a conic constraint of order 𝑚𝑖 +

1. These constraints imply that the solution will always be contained within the volume of 

each of the 𝑝𝑚𝑖 - dimensional cones. They are also subjected to the following affine (linear) 

transformations (depicted also in Figure 6): 

 
𝑡 = 𝑐1

𝑇𝑥 + 𝑑𝑖  

𝑦 = 𝐴𝑖𝑥 + 𝑏𝑖 
(9) 
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Figure 6: Example of a 3D cone. Its volume satisfies the condition ‖𝑦‖2 ≤ 𝑡  (Boyd, 2004) 

Re-entry Challenges and SOCP Solutions 

Planetary entry vehicles face stringent operational limits: 

• Thermal constraints: Heat flux �̇� ≤ �̇�𝑚𝑎𝑥  

• Structural limits: Dynamic pressure 𝑞 ≤ 𝑞𝑚𝑎𝑥 and load factor 𝑛 ≤ 𝑛𝑚𝑎𝑥 

• Guidance precision: Terminal position and velocity targets 

Traditional optimization methods struggle with their nonlinear, tightly coupled constraints. 

SOCP addresses this by the already mentioned successive convexification: nonlinear 

equations of motion (EoMs) are linearized iteratively around a reference trajectory, with trust 

regions (enforced via SOCP) ensuring convergence. The dynamics in Equation (8) become 

affine approximations: 

 ẋ ≈ 𝐴𝑘𝐱 + 𝐵𝑘𝐮 + 𝐜𝑘  (10) 
 

where 𝐴𝑘, 𝐵𝑘 and 𝐜𝑘 are the Jacobians evaluated at iteration 𝑘. A re-entry vehicle must 

navigate a narrow entry corridor bounded by heat flux, dynamic pressure, and g-load limits, 

and the SOCP helps by: 

• Encoding the three path constraints as described in the Methodology Chapter 5 

• Integrating slack variables to handle infeasibilities during iterative refinement 

• Employing 2-norm trust regions to stabilize convergence, avoiding divergence caused 

by aggressive linearization 
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The Apollo program’s legacy guidance, reliant on precomputed drag profiles, contrasts 

sharply with modern SOCP – based methods that autonomously adjust bank angles of the re-

entry winged vehicles, and as a consequence, also the lift vectors in response to disturbances. 

While SOCP has revolutionized entry guidance, compared to Apollo landing techniques 

(described at the end of Chapter 1), there are some challenges that remain: 

• High – fidelity aerothermal models: Uncertainties in atmospheric density and vehicle 

aerodynamics necessitate robust SOCP formulations with chance constraints. 

• 𝟔𝑫𝒐𝑭 Integration: Coupling translational SOCP trajectories with attitude dynamics 

requires novel cone constraints for rotational inertia and torque limits. 

• Interplanetary Scalability: Mars missions demand SOCP adaptations to 

heterogeneous atmospheric compositions and non – Keplerian dynamics. 

It can be concluded from this section that Second-order cone programming bridges the 

gap between theoretical convex optimization and the harsh realities of planetary entry. By 

transforming nonlinear, non-convex problems into sequences of tractable SOCP 

subproblems, it enables real-time trajectory optimization under the most extreme conditions. 

As demonstrated in hypersonic glide tests and Mars landing simulations, SOCP’s blend of 

computational efficiency and mathematical rigor ensures that humanity’s ventures into alien 

atmospheres remain both feasible and precise. 

 

Figure 7: Global and local optima of a function  (UTSA | The Univesity of Texas at San 
Antonio, n.d.) 
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Related to how convex optimization helps in re-entry trajectory optimization, Figure 

7 illustrates the crucial distinction between local and global optima, a key consideration when 

applying convex optimization to complex problems like the re-entry of vehicles on Mars. In 

the context of Mars re-entry, the "function" being optimized could represent a performance 

metric such as maximizing landing accuracy, while as minimizing heat shield mass or 

minimizing peak deceleration. The trajectory of the re-entry vehicle is determined by the 

control inputs 𝛼 and 𝜎, and the design space of these inputs can lead to a multi-dimensional 

"surface" with various peaks and valleys representing local maxima and minima of the 

performance metric. 

For a successful and safe Mars landing, finding the global optimum solution is 

paramount. A local optimum, while appearing to be the best solution in its immediate vicinity, 

might correspond to a re-entry trajectory that leads to unacceptable heating, misses the 

landing site by a large margin, or subjects the vehicle to excessive forces. Convex optimization 

techniques are highly desirable in this domain because, for a properly formulated convex 

problem, any local minimum found is guaranteed to be the global minimum  (UTSA | The 

Univesity of Texas at San Antonio, n.d.). This eliminates the risk of getting trapped in a 

suboptimal local solution and ensures that the designed re-entry trajectory truly optimizes 

the desired performance criteria for the Martian atmosphere. 

3.5 Atmospheric Re-entry with Starship 

 As SpaceX's Starship system advances, the prospect of a fully reusable launch system 

looms on the horizon, potentially ushering in a new era of interplanetary transport  

(Blackmore, 2016). This revolutionary development could enable rocket-propelled cargo and 

passenger conveyance between Earth and Mars at velocities surpassing orbital speeds. With 

Starship's inaugural orbital flight test already behind us, and multiple flight tests conducted 

already, the realization of a fully reusable orbital transportation system seems increasingly 

tangible. Should SpaceX achieve its ambitious goal of rapid and economical stage reuse, it 

stands to dramatically reduce space payload transport costs and reshape the space 

transportation landscape. 

Since its 2016 unveiling, SpaceX's next-generation space transportation system has 

undergone numerous design iterations, retaining key features such as full reusability and Full-
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Flow Staged Combustion (FFSC) cycle engines  (Academy, 2023) while refining aspects like 

weight and material composition. The current iteration, Starship and Super Heavy, has made 

significant strides in stage hardware integration and is poised to be the first fully integrated 

version attempting orbital flight and Mars-bound cargo and human transport  (Wilken, 2022). 

Starship's reentry process comprises three distinct phases, as illustrated in Figure 8, 

hypersonic deceleration at a ~ 50𝑜 angle of attack (AoA), skydiving at nearly 90° AoA, and a 

landing burn initiated from ~ 180° AoA. The system's first stage is expected to employ a 

Return-To-Launch-Site (RTLS) scheme akin to that of the Falcon 9  (Wilken, 2022). 

Given Starship's ultimate goal of facilitating Martian colonization, its landing approach 

must be versatile enough to function in diverse atmospheric conditions, from Earth's 

relatively dense atmosphere to Mars' tenuous envelope, accounting for trajectory dispersions 

(shown in Figure 8). 

 

Figure 8: Starship entry corridor mechanics  (Wilken, 2022) 

The primary objective of all reusable launch vehicles during reentry from orbit is to 

safely decelerate from orbital velocities without surpassing mechanical and thermal limits, 

and to land within a designated area. To minimize heat fluxes to an acceptable level for the 

overall system design, the aim is to dissipate most of the energy in the upper layers of the 

atmosphere, only entering the denser lower layers with reduced velocity. One way to 

accomplish this is by using a design with a very low ballistic coefficient 𝐶𝑏  (Wilken, 2022). The 

𝐶𝑏 is the ratio of the reentry mass 𝑚 to the drag coefficient 𝐶𝑑 and the reference area 𝐴. 
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 𝐶𝑏 =
𝑚

𝐶𝑑𝐴
 (11) 

 

With a low enough 𝐶𝑏, the low density of the upper atmosphere can decelerate the 

vehicle without creating excessive heat fluxes. A vehicle that can generate significant lift 

allows for a shallower reentry that can further decrease the peak heat flux. However, the 

normal 𝑛𝑧 loads caused by the lift during reentry may constrain the sizing of the vehicle's 

structures, particularly for a crewed vehicle. Another important indicator of how the vehicle 

behaves during atmospheric re-entry is an additionally equivalent (to the ballistic coefficient) 

coefficient with regard to lift, as defined below: 

 𝐶𝑏,𝑙 =
𝑚

𝐶𝑙𝐴
 (12) 

 

In essence, these coefficients describe to what degree is the atmospheric trajectory 

affected by the generated aerodynamic Lift and Drag forces. The higher the value, the more 

“resistant” the spacecraft to any changes from that source. Starship will decelerate fast 

through the atmosphere, avoiding excessive heat flux but limiting its gliding range, due to its 

low 𝐿/𝐷 ratio. 

Table 1 delineates the Starship launch system's primary parameters. Both Super 

Heavy and Starship utilize vertical landing and are retrieved by the launch tower's mobile 

arms, dubbed Mechazilla (exhibited in Figure 9). The system's design choices, particularly 

regarding propellant and return method, enable it to offset the lower specific impulse of the 

LOX/LCH4 propellant combination. Starship achieves a commendable 2% payload ratio in 

fully reusable mode, owing to its high specific impulse 𝐼𝑠𝑝 and low structural index. However, 

the current dry mass estimate  
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Table 1. Starship and Super Heavy Technical Specifications  (Wilken, 2022) 

Key parameters 
Starship and 
Super Heavy 

1
st

 s
ta

ge
 

Propellant mass 3400 𝑡 

Dry mass 270 𝑡 

Structural index 7.9 % 

Total mass 3670 𝑡 

Engine Isp (sea level) 326 𝑠 

Engine Isp (vacuum) 349 𝑠 

Return method 𝑅𝑇𝐿𝑆 

Length 70 𝑚 

Fuselage diameter 9 𝑚 

2
n

d
 s

ta
ge

 

Propellant mass 1200 𝑡 

Dry mass 100 𝑡 

Structural index 10.6 % 

Total mass 1330 𝑡 

Engine Isp (sea level) 285 𝑠 

Engine Isp (vacuum) 374 𝑠 

Length 50 𝑚 

Fuselage diameter 9 𝑚 

Total mass 4997 𝑡 

Reference payload 100 𝑡 

R
e-

en
tr

y 

ae
ro

d
yn

am
ic

s Reference re-entry AoA 52𝑜 

Hypersonic 𝐿/𝐷 ratio ~ 0.3 

Ballistic coefficient 510 𝑘𝑔 𝑚2⁄  

Lifting ballistic coefficient 1700 𝑘𝑔 𝑚2⁄  

Crew Separation System No information 
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Figure 9: Starship and Super Heavy on the launch pad at Boca Chica, Texas  (The Verge, 2021) 

excludes payload integration structures and reinforcements for large apertures in the 

vehicle's upper section. Moreover, the Starship's interior configuration remains undisclosed 

and is expected to vary significantly based on mission parameters, whether Point-to-Point, 

LEO satellite deployment, refueling, or ventures beyond Earth orbit to the Moon or Mars. 

SpaceX's Raptor 3 engine boasts an exceptionally high combustion chamber pressure 

of 350 𝑏𝑎𝑟  (Starship SpaceX Wiki, n.d.). During hypersonic reentry, Starship maintains a 70 − 

degree AoA, generating less lift than comparable vehicles like Space Liner 7, but compensating 

with an extremely low ballistic coefficient. Starship's reentry mode prioritizes safe orbital 

return with minimal inert mass and rapid stage turnaround, rather than long-range 
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hypersonic glide capability akin to the Space Shuttle. Designed for versatility across Earth, 

Mars, and lunar landings, Starship eschews a high hypersonic 𝐿/𝐷 ratio (approximately 0.3, 

compared to Space Liner 7's ~ 3.0 and the Space Shuttle's ~ 4.5) in favor of adaptability to 

diverse ambient conditions . 

3.6 Initial Conditions for Starship Mars Reentry: A Comprehensive Description 

Orbital Context 

As the Starship spacecraft re-enters through the Martian atmosphere, it is necessary 

to define the initial conditions that will shape its trajectory. These conditions not only dictate 

the spacecraft's entry dynamics but also play a pivotal role in ensuring a safe and controlled 

descent onto the Martian surface. 

 The spacecraft begins its re-entry from an elliptical orbit around Mars, characterized 

by a moderate eccentricity of approximately 0.5. This orbital configuration is strategically 

chosen to optimize the spacecraft's energy state and facilitate a controlled entry into the 

Martian atmosphere. The periapsis (closest point to Mars) is set at an altitude of 120 𝑘𝑚, 

marking the precise moment when the spacecraft transitions from orbital mechanics to 

atmospheric dynamics. 

 At this critical juncture, spacecraft's velocity is approximately 𝑉0 = 4300 𝑚 𝑠⁄ , a 

speed that necessitates careful management to ensure a stable and efficient entry. The flight-

path angle is set at 𝛾 = −15 𝑑𝑒𝑔, a shallow entry (but not too shallow, avoids atmosphere 

“skip-out”) that spreads the spacecraft's kinetic energy over a longer atmospheric path, 

thereby reducing the instantaneous heat flux experienced by the spacecraft thermal 

protection system, and spreading kinetic energy over a longer atmospheric path. 

The elliptical orbit parameters are derived as follows, first the specific energy 𝜀 from the vis-

viva Equation (13): 

 𝜀 [
𝑚2

𝑠2
] =

𝑉0
2

2
−

𝜇

(𝑅𝑀𝑎𝑟𝑠 + ℎ)
 (13) 

 

where 𝑉0 is the initial re-entry velocity, 𝜇 is the Mars gravitational parameter, 𝑅𝑀𝑎𝑟𝑠 is the 

radius of the planet, and ℎ is the initial re-entry altitude. Then, the semi-major axis: 
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 𝑎 [𝑚] = −
𝜇

2𝜀
 (14) 

 

Angular momentum ℎ and eccentricity 𝑒: 

 ℎ [
𝑚2

𝑠
] = (𝑅𝑀𝑎𝑟𝑠 + ℎ)𝑉0 (15) 

 

 𝑒 [−] = √
1 + 2𝜀ℎ2

𝜇2
= 0.515 (16) 

 

And periapsis 𝑟𝑝 and apoapsis 𝑟𝑎 distance: 

 𝑟𝑝 [𝑚] = 𝑎(1 − 𝑒) (17) 
 

 𝑟𝑎 [𝑚] = 𝑎(1 + 𝑒) (18) 
 

 

Figure 10: Starship’s elliptical orbit around Mars, a starting point periapsis re-entry into the 

atmosphere (produced in MATLAB by the author of this research) 

Aerodynamic Configuration 

The spacecraft's aerodynamic configuration is equally crucial during this phase. An 

initial angle of attack of 𝛼 = 52 𝑑𝑒𝑔 is selected to maximize the 𝐿/𝐷 ratio, which is essential 
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for managing heat dissipation, reducing descent rate and peak heating, as well as maintaining 

aerodynamic stability. This high angle of attack ensures that the spacecraft enters the 

atmosphere belly-first, managing heat shield protection from lateral heat flux and ensuring 

that it remains stable throughout the entry phase. The generation of a lift force counters 

Mars’ gravity, extending the “glide” phase and enabling trajectory shaping for a more 

accurate landing. 

 The spacecraft's reference surface area of 𝐴 ≅ 500 𝑚² and nose radius of 𝑛 = 4.2 𝑚 

are critical parameters that influence its aerodynamic behavior  (Starship SpaceX Wiki, n.d.). 

These dimensions, combined with the spacecraft's mass of 100 𝑡𝑜𝑛𝑠, dictate the magnitude 

of aerodynamic forces experienced during entry, including lift and drag. The precise control 

of these forces is essential for guiding the spacecraft through the Martian atmosphere 

without compromising its structural integrity. 

To navigate the complexities of atmospheric entry, the spacecraft employs sequential 

convex programming, a sophisticated optimization technique designed to iteratively refine 

the spacecraft's trajectory. SCP linearizes the nonlinear dynamics of atmospheric entry, 

convexifies the constraints related to heat flux limits and control authority, and iteratively 

adjusts the trajectory to ensure feasibility under uncertainty. 

This approach enables the spacecraft to autonomously adapt its trajectory in real-

time, responding to changes in atmospheric conditions and ensuring that it remains within 

predetermined safety margins. By leveraging SCP, the vehicle can optimize its entry trajectory 

to minimize heat loads, reduce fuel consumption, and enhance overall mission reliability. 

Table 2: Initial orbital parameters for the Starship parking orbit 

Parameter Value 

Initial altitude ℎ 120 𝑘𝑚 

Velocity 𝑉0 4300 𝑚 𝑠⁄  

Flight-path angle 𝛾 −15 𝑑𝑒𝑔 

Angle-of-attack 𝛼 52 𝑑𝑒𝑔 

Spacecraft initial mass 𝑚 100 𝑡𝑜𝑛𝑠 

Reference area 𝐴𝑟𝑒𝑓 ~ 500 𝑚² 

Nose radius 𝑛 4.2 𝑚 

Orbit eccentricity 𝑒 0.515 

Semi-major axis 𝑎 ~ 3800 𝑘𝑚 

Apoapsis distance 𝑟𝑎 ~ 7500 𝑘𝑚 
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3.7 Re-entry on Mars at Hypersonic Velocities in an Environment of 

Atmospheric Dispersions and Other Sources of Error 

As mentioned in the introductory section of Chapter 1, successful landings on Mars 

have been achieved over the past few decades. Before the Mars Science Laboratory (MSL) 

and Perseverance missions, many of these landings relied heavily on methods inherited from 

the Viking missions, employing a ballistic entry approach devoid of active guidance. While this 

approach proved sufficient for achieving safe landings, it fell short of enabling precise 

landings. The accuracy of planetary landings is often described using a "landing ellipse", which 

represents the region within which the spacecraft is expected to touch down, defined in an 

inertial reference system. Achieving pinpoint landing accuracy does not require starting from 

scratch but instead demands revolutionary advancements in key technologies. One critical 

aspect is the ability to respond dynamically to variations in trajectory caused by 

environmental uncertainties, commonly referred to as dispersions. Figure 11 provides an 

insightful overview of various sources of error contributing to these dispersions, which will be 

briefly discussed here. For instance, winds present only a mild uncertainty factor due to 

Mars's relatively thin atmosphere and limited wind potency. Consequently, winds contribute 

minimally to trajectory dispersion, resulting in a small landing ellipse (as shown by the light 

blue notation in Figure 11). 

 

Figure 11: Sources of errors (perturbations), contributing to landing dispersions  (Soumyo 

Sutta, May 2024) 
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 The five factors (in Figure 11), that have influence on the spacecraft landing ellipse in 

terms of relative size, based on a 99% likelihood and a 3𝜎 two-dimensional normal 

distribution, are: 

• [1] robustness of real-time guidance algorithms 

• [2] navigation uncertainties 

• [3] variations in atmospheric properties and [4] winds 

• [5] aerodynamic modelling inaccuracies 

 By tackling factor [1], a spacecraft is able to react faster and better to the rest, hence 

reduce its landing ellipse on the surface. Figure 1 exhibits how cumulative advancements 

across these domains translate into progressively smaller landing ellipses for actual missions. 

For instance, improvements in atmospheric modeling directly address one of the largest 

contributors to dispersion seen in Figure 11, enabling tighter control over entry trajectories. 

For Starship’s reentry on Mars these insights are particularly relevant. Unlike earlier 

missions that relied on ballistic or semi-guided entries, Starship’s approach leverages 

advanced real-time algorithms such as sequential convex programming for the hypersonic 

portion of the descent guidance. This allows continuous optimization of control inputs during 

the descent, dynamically compensating for dispersions caused by navigation errors (set to be 

ideal in this research), atmospheric variability, aerodynamic uncertainties, and wind effects. 

Starship’s entry strategy also benefits from its ability to enter from an elliptical orbit 

rather than a direct interplanetary trajectory. This reduces entry velocity, significantly 

mitigating thermal loads and aerodynamic stresses while enhancing control authority during 

descent. The lower velocity regime allows for more precise trajectory adjustments using 

aerodynamic surfaces such as its fins, reducing sensitivity to environmental uncertainties. 

By incorporating lessons learned from past missions while introducing revolutionary 

advancements in real-time guidance algorithms and entry strategies, Starship has the 

potential to achieve unprecedented precision in Mars landings. The interplay between 

reducing individual sources of error (as highlighted in Figure 11) and leveraging advanced 

guidance techniques will enable Starship to achieve landing ellipses comparable to or smaller 

than those demonstrated by Perseverance (in Figure 1) — despite its significantly larger mass 

and more complex mission profile.  
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4 
Problem Formulation 

 

 

 

 

 

The flight of re-entry vehicles through alien planets’ atmospheres can be 

mathematically described by Newton’s equation of motion, and the same hold true for 

celestial bodies such as planets, moons, comets, asteroids, etc. Newton’s EoM presents the 

rate of change in the linear momentum, which is equivalent to all other forces acting on the 

vehicle. Newton’s equation yields a three-dimensional (3𝐷) vector equation governing the 

translational dynamics of the re-entry spacecraft modeled as a point mass. This formulation 

accounts for forces acting along the axes of a chosen coordinate system, and in itself is 

considered a 3𝐷𝑂𝐹 simulation. However, for more realistic scenarios, such as the one 

described in this Starship research, involving rigid-body dynamics – where the vehicle rotates 

around its center of mass (CoM) due to external torques – a complementary vector equation 

derived from Euler’s angular momentum principle is required to describe rotational motion. 

External influences such as gravitational fields, aerodynamic loads (generated by 

control surfaces and vehicle geometry), propulsion thrust, and reaction control systems 

contribute to both forces and moments. To accurately model these interactions, the 

translational and rotational dynamic equations are usually expressed in body–fixed 

coordinates (aligned with the vehicle’s principal axes). However, in Sections 4.1 and 4.2 of 

this Chapter, a description of the coordinate systems and the resulting simulation degrees-of-

freedom will be presented, in order to describe the translational vehicle movement in 



43 
 

spherical coordinates, and the rotational dynamics in body – fixed coordinates or the so-

called flight-path – fixed coordinates, shown in Figure 12. 

This coordinate separation simplifies the equations by minimizing cross – coupling 

terms – translational motion is decoupled from rotational inertia variations. For instance, 

body – fixed coordinates leverage the spacecraft’s symmetry, ensuring the inertia matrix 

remains constant during simulations. Such strategic coordinate choices are standard in 

aerospace engineering, enabling tractable solutions to coupled six-degree-of-freedom 

(6𝐷𝑂𝐹) problems. 

4.1 Equations of Motion (EoMs) 

When a planar flight is considered, then the lift force 𝐿 lies in the 𝑅 − 𝑉 plane (Figure 

12) but for flight control and guidance algorithms, 𝐿 is rotated out of the 𝑅 − 𝑉 plane by a 

bank angle 𝜎. The directions of the lift components 𝐿 cos 𝜎 and 𝐿 sin 𝜎 coincide with the 𝑥𝑘 

and 𝑧𝑘 coordinates of the 𝒌 – frame, the vehicle’s flight – path frame. In this case, the lift 

vector now can be transformed into: 

 𝐿|𝑘 = 𝐿 (
cos 𝜎
0

sin 𝜎
) (19) 

 

and transforms to the 𝒈 – frame (geodetic frame) by the relation  (Weiland, 2010): 

 𝐿|𝑔 = 𝑀𝑘𝑔
𝜒
𝑀𝑘𝑔
𝛾
𝐿|𝑘 = 𝐿 (

cos 𝛾 cos 𝜎
− sin 𝛾 cos 𝜒 cos 𝜎 − sin 𝜒 sin 𝜎
− sin 𝛾 sin 𝜒 cos 𝜎 + cos 𝜒 sin 𝜎

) (20) 

 

therefore, the equations of motion for the vehicle’s velocity, flight – path angle and heading 

angle are Equations (24) – (26). 
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Figure 12: Coordinate system 𝑶′(𝑥𝑔, 𝑦𝑔, 𝑧𝑔) (geodetic) and coordinate system 𝑶′(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) 

(flight – path) with the definition of the bank angle 𝜎 and lift 𝐿 outside of the 𝑅 − 𝑉 plane  

(Weiland, 2010), p.102 

As long as the lift vector 𝐿 lies in the 𝑅 − 𝑉 plane, the flight of the Starship vehicle takes place 

in a single plane. When rotating the lift vector by a bank angle 𝜎 > 0 the component of the 

lift, which points out of the 𝑅 − 𝑉 plane, generates a force that makes the re-entry spacecraft 

to abandon the entry plane. For completion of the set of equations, it is necessary to obtain 

the kinematic equations formulated with respect to the definition of the coordinate directions 

shown in Figure 12 – Equation (21) – (23). 

 

Figure 13: Three-dimensional (3D) model of a re-entry vehicle  (Pei, 2021) 
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 Figure 13 illustrates the reentry vehicle around a rotating Mars. The equations of 

motion (EoMs) that consider the rotation of Mars can be expressed as follows  (Pei, 2021): 

 �̇� = 𝑉 sin 𝛾 (21) 

 �̇� = 𝑉 cos 𝛾 cos𝜓 (𝑟 cos𝜙)⁄  (22) 

 �̇� = 𝑉 cos 𝛾 sin𝜓 𝑟⁄  (23) 

 �̇� = −𝐷 𝑚⁄ − 𝑔0 sin 𝛾 𝑟2⁄ + 𝐶𝑣 (24) 

 �̇� = 𝐿 cos 𝜎 𝑚𝑉⁄ + (𝑉2 − 𝑔0 𝑟⁄ ) cos 𝛾 𝑉𝑟⁄ + 𝐶𝛾 (25) 

 �̇� = 𝐿 sin 𝜎 (𝑚𝑉 cos 𝛾)⁄ + 𝑉 cos 𝛾 sin𝜓 tan𝜙 𝑟⁄ + 𝐶𝜓 (26) 

where 𝑟 is the radial distance from the center of Mars to the spacecraft, normalized by the 

Mars’ radius 𝑅0 = 3389.5 𝑘𝑚. The symbols 𝜃 and 𝜙 are the longitude and latitude, 

respectively. 𝜓 and 𝛾 are the heading angle and the flight-path angle, respectively. 𝑉 is the 

dimensionless velocity normalized by √𝑅0𝑔0, 𝑔0 = 3.72 𝑚 𝑠2⁄  is the gravity acceleration. 

The time is normalized by √𝑅0 𝑔0⁄ . The dimensionless lift and drag accelerations, respectively 

denoted with 𝐿 and 𝐷, are normalized by 𝑔0 and calculated such as  (Liu, 2019): 

 𝐿 =
𝑅0𝜌𝑉

2𝐴𝑟𝑒𝑓𝐶𝐿

2
 (27) 

 𝐷 =
𝑅0𝜌𝑉

2𝐴𝑟𝑒𝑓𝐶𝐷

2
 (28) 

 

where 𝑅0 and 𝐴𝑟𝑒𝑓 are the Martian radius and reference area of the vehicle, respectively  (Pei, 

2021). 𝜌 = 𝜌0𝑒
−ℎ ℎ𝑠⁄  is the dimensional atmospheric density, where 𝜌0 = 0.02 𝑘𝑔 𝑚3⁄  and 

ℎ𝑠 = 11100 𝑚, ℎ is the dimensional altitude, and ℎ = 𝑟𝑅0 − 𝑅0. 𝐶𝐿 and 𝐶𝐷 denote the 

aerodynamic lift and drag coefficients, respectively. The primary control variable of the re-

entry trajectory optimization problem is the bank angle 𝜎. 

Also, 𝐶𝑣, 𝐶𝛾 and 𝐶𝜓 in Equations (29), (30) and (31), respectively, are the planet’s 

rotations which are derived and calculated as follows: 

 𝐶𝑣 = 𝜔2𝑟 cos𝜙 (sin 𝛾 cos𝜙 − cos 𝛾 sin𝜙 sin𝜓) (29) 
 

 𝐶𝛾 = 2𝜔 cos𝜓 cos𝜙 + (
𝜔2𝑟

𝑉
) cos𝜙 (cos 𝛾 cos𝜙 + sin 𝛾 sin 𝜙 sin𝜓) (30) 

 𝐶𝜓 = 2𝜔(tan 𝛾 cos𝜙 sin𝜓 − sin𝜙) − (
𝜔2𝑟

𝑉 cos 𝛾
) sin𝜙 cos𝜙 cos𝜓 (31) 

where 𝜔 = 7.088 (105) is Mars’ rotation rate. 
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4.2 6DoF Simulation 

The number of degrees of freedom in a dynamic system refers to the minimum 

number of independent coordinates required to completely specify the configuration of the 

system at any given point in time during the simulation. In simple terms, it is the number of 

ways the object can move and orient itself in space. 

As already described in the previous Section 4.1, Equations (21) – (23) control the rate 

of change in radial distance, longitude and latitude, and thus describe the translational 

motion of the vehicle (position of its center of mass (COM) in spherical space. Additionally, 

the rotational orientation of the vehicle is implicitly described through the rate of change in 

the flight-path and heading angles (through Equations (25) and (26)), and the magnitude of 

the velocity vector itself (Equation (24)). Having control over these 6 state variables during 

the simulation, makes this a 6𝐷𝑜𝐹 problem. Even though it is not the traditional 6𝐷𝑜𝐹 

description of vehicle motion in space, that has 3 Cartesian coordinates and another 3 Euler 

angles, the orientation of Starship (which dictates how aerodynamic forces and moments act 

on it) is implicitly captured in how these velocity vector angles (the flight-path and heading 

angles) evolve under the influence of the two controls available (angle-of-attack and bank 

angle modulation). To clarify further, while this choice of EOMs does not directly give the 

Euler angles (roll, pitch and yaw) of the body frame, the change in flight-path and heading 

angles, driven by the aerodynamic forces and torques (which depend on Starship’s attitude 

relative to the flow), fully accounts for the vehicle’s evolving orientation in the context of its 

trajectory. This can be clearly understood by following the schematic, presented in Figure 14, 

in the rotational dynamics section. 

As shown in Figure 14, Left, the translational dynamics, represented by Equations (21) 

– (23), are in Mars-centered inertial reference frame, and described in spherical coordinates. 

This is convenient and typical for such trajectory optimization problems because it is easier 

to understand objective-wise, instead of using pure Cartesian space (𝑥, 𝑦, 𝑧) coordinates. 

While this is the easier part to understand, when it comes to rotational dynamics, shown in 

Figure 14, Right, and governed by Equations (24) - (26), things are not so straight-forward. 

While the listed EOMs do not directly include variables in the body frame, the controls 𝛼 and 

𝜎 are defined relative to the body-fixed / flight-path frame, and the velocity vector in Equation 
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(24). These controls determine the aerodynamic forces acting on Starship in the body frame, 

and are then translated back to influence the motion described in the inertial frame’s 

coordinates – shown in Figure 14, Bottom Right. In essence, the inertial frame provides the 

global context for the trajectory simulation (position) relative to Mars, while the body-fixed 

(also called flight-path) frame is where the controls are naturally defined. The AoA (the angle 

between the vehicle’s x-axis and the velocity vector), and the bank angle (the vehicle’s 

rotation about its velocity vector), both directly influence the Lift and Drag forces. 

Consequently, the aerodynamic forces (which depend on attitude) are used to directly 

calculate the accelerations that change the magnitude and direction of the velocity vector. 

The simulation algorithm handles the coupling between commanded controls, the resulting 

aerodynamic forces, and the subsequent change in flight-path (𝛾) and heading (𝜓) angles. 

 

Figure 14: Schematic description of Starship’s 6𝐷𝑜𝐹 translational and rotational dynamics 

during Mars atmospheric reentry (produced in Google Slides by the author of this research) 
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4.2 Constraints 

In this research, the initial and terminal trajectory profiles are presented as equality 

path constraints  (Meeowen, 2022): 

 𝒙(𝑡0) = 𝒙0;  𝒙(𝑡𝑓) = 𝒙𝑓 (32) 

 

where 𝑥 = [𝑟 𝜃 𝜙 𝑉 𝛾 𝜓]𝑇 is the state vector, and 𝑡0 and 𝑡𝑓 are the initial and terminal states, 

respectively. 

The hypersonic glide trajectory will also obey certain re-entry trajectory inequality path 

constraints that determine the re-entry corridor – those are 1) heat flux �̇�, 2) normal load 𝑛, 

and 3) dynamic pressure 𝑞  (Pei, 2021). 

 �̇� =
𝑘𝑄

√𝑅𝑛
√𝜌𝑉3.15 ≤ �̇�𝑚𝑎𝑥 (33) 

 𝑛 = √𝐿2 + 𝐷2 ≤ 𝑛𝑚𝑎𝑥  (34) 

 
𝑞 =

1

2
𝑔0𝑅0𝜌𝑉

2 ≤ 𝑞𝑚𝑎𝑥  
(35) 

 

where �̇�𝑚𝑎𝑥 is the dimensional maximum heat flux in 𝑘𝑊 𝑚2⁄ , 𝑛 is the maximum normal load 

in 𝑔0, and 𝑞𝑚𝑎𝑥 is the dimensional maximum dynamic pressure in 𝑁 𝑚2⁄ . 𝑘𝑄 =

1.05 × 10−4 × (√𝑔0𝑅0)
3.15

 is the heat – flux constant  (Pei, 2021). The variable 𝑅𝑛 = 4.2 𝑚 

is Starship’s radius of the stagnation point at its nose, which is consistent with what is 

presented in  (Weiland, 2010), p.141. To account for unforeseen circumstances and, in 

general, to have the ability to correct the trajectory, a no-fly zone (NFZ) can be modeled as a 

cylinder with infinite height (as shown in Figure 15). Then, the NFZ constraint limits (corrects) 

the longitude and latitude in the state variable, such as: 

 (𝜃 − 𝜃𝑐)
2 + (𝜙 − 𝜙𝑐)

2 ≥ 𝑑2 (36) 
 

where 𝜃𝑐  is the longitude center of the NFZ, 𝜙𝑐  is the latitude center, and 𝑑 is the radius of 

the NFZ in radian  (Kamath, 2022). 

Additionally, the inequality constraints of the optimization problem include the limits 

on state and control variables (Kamath, 2022): 
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 𝐱𝑚𝑖𝑛 ≤ 𝐱 ≤ 𝐱𝑚𝑎𝑥;  𝜎𝑚𝑖𝑛 ≤ 𝜎 ≤ 𝜎𝑚𝑎𝑥  (37) 
 

where 𝐱𝑚𝑖𝑛 and 𝐱𝑚𝑎𝑥 are the lower and upper bounds of the state variables, and 𝜎𝑚𝑖𝑛 and 

𝜎𝑚𝑎𝑥  are the lower and upper bounds on the bank angle control. 

 

Figure 15: A simulated trajectory with two no-fly zones (NFZs) implemented  (Kamath, 2022) 

To summarize, the re-entry trajectory optimization problem can be described as: 

 
𝑷𝟎:   Minimize 𝐽 = 𝜑[𝐱(𝑡𝑓)] + ∫ 𝐹(𝐱, 𝜎)𝑑𝑡

𝑡𝑓

𝑡0

 

Subject to Equations (21) – (36) 

(38) 

 

We have formulated the re-entry trajectory optimization problem, which is inherently highly 

nonlinear and nonconvex. This high nonlinearity comes from: 

1. the nonlinear and coupled differential Equations (21) – (26) 

2. the vehicle’s time-sensitive and coupled aerodynamic forces Equations (27) – (28) 

3. the nonlinear entry corridor constraints and NFZ constraint Equations (33) – (36) 

These nonlinearities need to be convexified to be able to use Sequential Convex Programming 

(SCP) to solve the original nonconvex trajectory problem  (Acikmese, 2022). 

4.3 Precision in the Void: Discretization for Hypersonic Mastery 

Guiding Starship through the Martian atmosphere demands computational precision, 

at the core of which lies direct collocation discretization. In simple terms, this method 
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transforms the continuous time frame during the entry into a sequence of discrete points 

where a finite sequence of solvable equations can be solved. 

Unlike single shooting – which relies on explicit integration and struggles with 

unstable systems or poor initial guesses – direct collocation implicitly satisfies dynamics 

through algebraic constraints, enhancing robustness for problems with complex path 

constraints like heat flux or aerodynamic loads. Compared to multiple shooting, which 

partitions trajectories into segments to improve convergence, direct collocation produces 

sparser nonlinear programs (NLPs) by leveraging polynomial continuity, reducing 

computational overhead. However, its fixed time grid and low-order splines (e.g., trapezoidal 

or Hermite-Simpson) introduce truncation errors, making it less accurate than orthogonal 

collocation – a high-order variant ideal for smooth solutions but less effective for 

discontinuous constraints. While shooting methods excel in accuracy with adaptive 

integrators, they falter under stringent path constraints, whereas direct collocation trades 

precision for computational efficiency and constraint-handling reliability, making it 

indispensable for real-time applications like Starship’s Martian entry. 

The Discretization Framework 

The MATLAB implementation employs a fixed-time grid direct collocation approach, 

discretizing the continuous trajectory into 𝑁 = 400 nodes – a balance between resolution 

and computational tractability. Each node captures the spacecraft’s state 𝐱 =

[𝑟, 𝜃, 𝜙, 𝑉, 𝛾, 𝜓 ] and control 𝐮 = 𝜎 (bank angle) and 𝛼 (angle-of-attack), governed by: 

 �̇� = 𝑓(𝐱, 𝐮, 𝑡) (39) 
 

where 𝑓 encodes hypersonic aerodynamics, gravitational forces, and planetary rotation rate. 

4.3.1 Key Components 

1. Uniform Time Grid 

• States are linearly interpolated between initial and terminal conditions (e.g., 

interplanetary entry to parachute deployment in the dense parts of the atmosphere). 

• Controls are piecewise – constant or linearly varying, avoiding high – frequency 

oscillations. 
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2. Fourth – Order Runge – Kutta (𝑹𝑲𝟒) Integration 

• Dynamics are propagated between nodes using: 

 𝐱𝑘+1 = 𝐱𝑘 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (40) 

 

where 𝑘𝑖  are derivative evaluations at intermediate steps. This ensures 𝑂(ℎ4) local truncation 

error, critical for capturing rapid heating transients  (Wikipedia, n.d.). 

3.  Successive Convexification 

• Non-convex path constraints (e.g., �̇� ≤ 120 𝑘𝑊/𝑚2) are linearized iteratively. 

• Trust regions, enforced via 𝑙2 − form bounds, stabilize convergence amid Mars’ 

atmospheric unpredictability. 

Starship’s hypersonic re-entry is the discretized entry profile – a hypersonic glide 

transitioning to a propulsive landing – a testament to this discretization’s capabilities. In 

Phase 1 – Atmospheric negotiation, Starship pierces Mars’ atmosphere with an orbital 

velocity of around 4.3 𝑘𝑚 𝑠⁄ , its stainless – steel airframe sustains radiative heating while 

bank angle modulations 𝜎 trade altitude for velocity. The discretized model encodes the heat 

flux as a convex SOC constraint, linearizes lift – drag coupling, ensuring computational 

feasibility without sacrificing fidelity. In Phase 2 – Supersonic Pivot, at ~ 500 𝑚 Starship 

executes its 90-degree belly – flop to vertical – a maneuver demanding millisecond – level 

control updates. In this research, only Phase 1 is examined. 

By discretizing time into manageable time points on the trajectory, Starship 

transforms Mars’ “seven minutes of terror” into a manageable descent with a reasonable 

accuracy as a result  (Thilbault, 2019). 

4.4 Simulation Model for Hypersonic Re-entry 

As already discussed previously, guiding a spacecraft through the atmosphere must 

take into account different aspects of the environment. In this section, the different aspects 

of the environment model will be stated. 
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Atmospheric Model 

The chosen framework for the simulation in this research adopts a static exponential 

atmospheric density profile, derived from Mars Global Surveyor data, as follows: 

 𝜌(ℎ) = 𝜌0
−
ℎ
𝐻 (41) 

 

where 𝜌0 = 0.02 𝑘𝑔 𝑚3⁄  (surface density) - ~ 60 times lower than what we experience on 

the surface of our planet Earth, and 𝐻 = 11.1 𝑘𝑚 (scale height) – the height necessary to 

decrease the density with an order of exponent. This model neglects seasonal and diurnal 

variations, as well as dust storms, which can elevate density by 50% regionally. The 

implications of this are exhibited in the hypersonic deceleration, where the exponential decay 

creates a sharp velocity – altitude trade-off. Starship’s bank angle maneuvers must exploit 

this gradient to shed ~ 4.3 𝑘𝑚/𝑠 velocity within less than 2 minutes, avoiding undershooting 

(excessive heating) or overshooting (escape trajectories). The dynamic pressure limitation 

𝑞 =
1

2
𝜌𝑉2 constraint becomes a non-convex barrier, linearized via successive convexification. 

Stochastic dust effects are being ignored, creating a realism gap, but the model prioritizes 

determinism over adaptability – a calculated risk for preliminary design. Also, referring to 

compromises taken, the chosen atmospheric model is not a high-fidelity model incorporating 

turbulence and dust, used in NASA’s Monte Carlo analyses. Its omission here reflects a trade-

off: 80% fewer computational cycles at the cost of localized trajectory errors, accounting ≤

2% of altitude deviation. 

Gravitational Model 

The chosen framework here is considering planet Mars as a point of mass, and, as a 

consequence, the two-body inverse-square law with Mars’ gravitational parameter 𝜇 =

4.283 × 1013  𝑚3 𝑠2⁄ , neglects zonal 𝐽2 harmonics and topological anomalies. The 

implications of this, when it comes to trajectory simplification, is that the ~ 0.1% error from 

omitting 𝐽2 (oblateness) is tolerable for entry – phase simulations (≤ 500 𝑘𝑚 altitude) but 

accumulates over orbital phases. Starship’s propulsive finale with a spherical gravity model 

introduces ~ 10 𝑚 better positional error (compared to point mass gravity) – a margin 
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absorbed by its Terrain – Relative Navigation (TRN) system. (Starship_SpaceX_Wiki_) But as 

far as the hypersonic glide part is concerned, the positional error is negligible. 

Thermal Model 

The chosen framework here is a semi – empirical heat flux equation from MSL data: 

 �̇� = 𝑘√𝜌𝑉3 (42) 
 

where 𝑘 = 1.1 × 10−4
𝑊𝑠

𝑘𝑔 𝑚
 and radiation effects are ignored, assuming ablative shielding 

dominates cooling. The implications of this conservative design are prioritizing worst – case 

heating scenarios, ensuring thermal protection systems (TPS) are over – engineered by 

~ 15%. Starship’s stainless – steel and ceramic tiles TPS, rated for ≥ 1200 𝐾, relies on this 

model’s accuracy to avoid buckling during ~ 45 𝑠 of peak heating. 

Aerodynamic Model 

The chosen framework for hypersonic realism here is the 𝐶𝐿 ∝ sin
2 𝛼 trend that 

captures non – linear shock interactions, critical for modulating lift-to-drag ratios between 

𝐿

𝐷
≈ 0.3 − 1.2 during glide. 

Planetary Rotation 

A non – rotating framework is chosen here, ignoring Mars’ 0.24 𝑚/𝑠 equatorial 

velocity, which is ~ 5% of entry speed. The implications of this are a trajectory bias which 

means that cross – range errors accumulate at ~ 500 𝑚/𝑚𝑖𝑛 of entry: a tolerable offset given 

Starship’s 1 𝑘𝑚 landing ellipse. Regarding energy management, the Coriolis effect’s absence 

simplifies energy dissipation calculations, under – predicting required bank adjustments by 

~ 30. 

The simulation’s environmental choices reflect a philosophy of strategic simplification 

– sacrificing esoteric details (dust storms and 𝐽2) to prioritize real-time solvability. For 

Starship, this model is a reasonable compromise as it enables onboard trajectory 

regeneration but masks risks like localized density spikes or unanticipated boundary layer 

transitions  (Ingo Gerth, 2014).  
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5 
Algorithm Methodology 

 

 

 

 

 

In this chapter, the methodology, implemented in the MATLAB code used for the 

trajectory optimization simulation, will be discussed in detail. But first, a context will be 

provided in Section 5.1 to why and how Mars re-entry guidance systems evolved with time 

and why there is/was a need to improve accuracy with subsequent missions. 

5.1 Advancing Planetary Descent: From Polynomial to PTR Guidance 

 In this Hypersonic Entry Glide Guidance (HEGG) represents the critical nexus between 

atmospheric entry and controlled touchdown, making for a spacecraft’s transition from the 

rarefied upper atmosphere to the planetary surface. During this phase, the vehicle employs 

its reaction control system (RCS) – integrating aerodynamic actuators and, when necessary, 

supplementary thrusters – to navigate from the initial atmospheric interface to a gentle 

surface contact. This hypersonic glide, and subsequent powered descent, forms the 

cornerstone of safe extraterrestrial landings, demanding solutions that harmonize precision 

with adaptability. While space launch costs have decreased from over $10,000/𝑘𝑔 during the 

Space Shuttle era to $3,000/𝑘𝑔 via innovations like SpaceX’s Falcon 9, the pursuit of 
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efficiency remains paramount  (Vought, 2019). Starship’s paradigm-shifting reusability and 

advanced aerodynamic control surfaces – forward and aft flaps refined through iterative 

testing – exemplify technologies poised to further reduce mass and cost. Contemporary HEGG 

systems optimize trajectories through synergistic use of aerodynamic shaping and propellant 

minimization, building upon legacy approaches like the Apollo program’s polynomial 

guidance, which achieved remarkable fuel efficiency within 16 𝑘𝑔 of theoretical minima  

(Taylor Reynolds D. M., 2020). 

The next frontier demands HEGG algorithms capable of reconciling Martian 

atmospheric unpredictability with millimeter-level precision. Future systems must govern the 

6-degree-of-freedom (6𝐷𝑜𝐹) dynamics of rigid-body rotation and translation (which are 

implemented in this research and described in the report, Section 4.2) while accommodating 

continuous and discrete constraints imposed by TRN architectures. For vehicles like Starship, 

this entails navigating volcanic fissures and ice-laden landscapes; for crewed missions, it 

requires pinpoint accuracy to establish habitats near pre-deployed infrastructure. As already 

described previously, modern guidance frameworks leverage convex optimization to reduce 

propellant consumption and increase accuracy, while real-time trajectory recalibration 

ensures resilience against atmospheric dispersions. Autonomous operation is non-negotiable 

– algorithms must exhibit deterministic convergence on computationally constrained 

hardware, enabling both robotic and human missions to operate independently of Earth-

based oversight. 

The efforts in real-time constrained 6𝐷𝑜𝐹 descent guidance (DG) algorithms trace 

their origins to the Apollo era, when Meditch pioneered the analytical solution to a fuel-

optimal 1𝐷𝑜𝐹 vertical descent – a seminal breakthrough that laid the groundwork for modern 

planetary landing systems  (Meditch, 1964). Concurrently, Lawden’s formulation of optimality 

conditions for a generalized fuel-optimal problems, incorporating mass and translational 

dynamics, expanded the theoretical framework  (Lawden, London, Butterworths, 1963). Yet, 

the computational demands of solving these conditions – via shooting methods or nonlinear 

programming – exceeded the capabilities of mid-20th-century technology. Decades later, 

D’Souza derived closed-form solutions for mixed minimum-energy and minimum-time 3𝐷𝑜𝐹 

problems  (D'Souza, New Orleans, LA, 1997), while  (P. Lu, Minneapolis, MN, 2012) advanced 

real-time algorithms using nonlinear root-finding techniques. However, these methods 
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remained constrained by their inability to enforce mission-critical state constraints, such as 

approach angles or sensor alignment requirements, which are indispensable for modern 

precision landing missions. 

The advent of interior-point methods in numerical optimization revolutionized 

trajectory planning by offering polynomial-time (already explained in Section 3.3) solutions 

with guaranteed global convergence – properties unattainable with classical shooting or 

nonlinear programming approaches. Acikmese and Ploen’s landmark work on lossless 

convexification marked a paradigm shift, transforming the fuel-optimal 3𝐷𝑜𝐹 problem with 

thrust bounds and approach angle constraints into a convex optimization framework solvable 

via Second-order cone programming (SOCP)  (Behcet Acikmese L. B., 2007). This methodology, 

compatible with onboard flight computers, was later extended to address non-convex input 

sets, minimum-error landing constraints, quadratic state limits, and even hybrid dynamics 

involving binary variables – all without resorting to mixed-integer programming. The 

robustness of SOCP solvers, capable of static memory allocation and rapid computation, 

ensured that feasible solutions existed within predefined convex regions calculated during 

mission design. 

From 𝟑𝑫𝒐𝑭 to 𝟔𝑫𝒐𝑭 

Despite its robustness, 3𝐷𝑜𝐹 guidance suffers from intrinsic limitations: it neglects 

attitude dynamics and assumes instantaneous inner-loop control, rendering it incapable of 

enforcing sensor line-of-sight constraints (real-world navigation) or validating trajectories 

against the rotational inertia of a physical lander. For missions requiring tight coupling 

between guidance and navigation – such as hazard avoidance during Mars descents or 

Europa’s fissure-targeted landings – 3𝐷𝑜𝐹 solutions demand exhaustive simulation 

campaigns to verify executability, a process fraught with edge-case vulnerabilities. 

The transition to 6𝐷𝑜𝐹 guidance emerged as an imperative, driven by the need to 

harmonize translational and rotational dynamics while preserving convex optimization’s 

guarantees. Sequential Convex Programming (SCP), a trust-region variant, bridged this gap by 

iteratively convexifying non-convex dynamics and constraints. Building on SOCP solvers 

developed for 3𝐷𝑜𝐹 problems, SCP introduced capabilities to model aerodynamic 𝐿/𝐷, and 

state-triggered constraints (e.g., velocity-dependent angle-of-attack limits or slant-range-
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activated line-of-sight requirements). Recent advancements, such as those by  (Michael 

Szmuk, 2019), demonstrate SCP’s real-time proficiency, solving generalized 6𝐷𝑜𝐹 problems 

with execution times under 0.7 seconds  (Cui, 2017) – a feat critical for autonomous systems 

like NASA’s Terrain Relative Navigation (TRN), which guided Perseverance to a 5-meter 

landing accuracy during its final descent in Jezero Crater. 

Modern SCP frameworks address compound constraints through state-triggered logic, 

enabling discrete decisions (e.g., activating hazard-avoidance maneuvers only within specific 

altitude bands) without sacrificing convexity. This innovation, coupled with aerodynamic 

modeling validated in Mars 2020’s Entry, Descent, and Landing (EDL) phase, ensures that 

6𝐷𝑜𝐹 trajectories respect both physical dynamics and sensor-driven operational limits. The 

integration of free-final-time formulations further optimizes propellant use, reducing mass 

fractions while accommodating real-time trajectory adjustments – a capability demonstrated 

in JPL’s simulations for lunar multi-stage landers trust  (Michael Szmuk, 2019). 

As planetary scientists target increasingly complex destinations – from the Moon’s 

shadowed poles to Enceladus’s cryovolcanic terrain – the fusion of SCP-based 6𝐷𝑜𝐹 guidance 

with vision-aided systems like TRN represents the vanguard of autonomous spaceflight. These 

algorithms not only inherit the computational rigor of convex optimization but also transcend 

Apollo-era limitations, enabling spacecraft to autonomously navigate environments where 

"eyes-on" human oversight, as during Apollo 11’s landing, is impossible. In doing so, they fulfill 

the dual mandate of modern exploration: 1) minimizing risk while 2) maximizing scientific 

return through precision unattainable in the pre-convexification era. 

Beyond the already mentioned methods in Chapter 1, Figure 4, SCP has been widely 

applied to aerospace guidance problems, with this research specifically exploring Penalized 

Trust Region (PTR)'s potential for Hypersonic Entry Glide Guidance (HEGG), especially by 

incorporating the MATLAB CVX-defined trust region variables in the objective, which aims to 

minimize the distance (the second norm between the longitude and latitude, more 

specifically) between the current and previous (initial) iteration’s result. In Figure 16, the 

addition of the PTRs (𝑡𝑟𝑢𝑠𝑡_𝑥 and 𝑡𝑟𝑢𝑠𝑡_𝑦) in the objective is shown. The convex slack 

variables (𝑒𝑝𝑠1 –  𝑒𝑝𝑠5) are also included in the objective, as they are estimated by the 

internal optimizer at each iteration. The slack variables provide a small margin around the 

calculated physical and control constraints. 

fig16new
fig16new
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Figure 16: The MATLAB code implementation of the objective to minimize the distance 

between the iterative cycles’ results (hence, increased precision). The theoretical SOCP 

structure can be seen in Problem 2 in Section 5.2.1. (500*lambda) is 𝑐, and the second norm 

is 𝑧. The structure of 𝑧 is also described better in Figure 18. 

The PTR method demonstrates exceptional real-time capabilities across diverse 

applications.  (Michael Szmuk, 2019) showcased its efficiency in solving complex guidance 

problems. PTR’s performance is grounded in solving Second – Order Cone Programming 

(SOCP) problems efficiently. For example, the G-FOLD algorithm  (Behcet Acikmese S. M., 

2017) – based on lossless convexification – successfully computed landing divert trajectories 

during a three-year flight test campaign aboard the Masten Space Systems Xombie rocket, 

demonstrating SOCP feasibility on spaceflight processors. 

Modern real-time optimization paradigms increasingly rely on customized solvers like 

CVX (used in this research under MATLAB). This approach is common in Model Predictive 

Control (MPC), where optimizers are invoked at frequencies matching controller demands. 

While MPC methods are proposed for 6𝐷𝑜𝐹 planetary descent guidance (PDG), their reliance 

on continuous re-solving poses challenges for classical feedback control architectures in space 

missions and risks constraint violations  (Behcet Acikmese S. M., 2017). To address these 

limitations while enabling 6𝐷𝑜𝐹 HEGG capabilities, this research proposes solving the re-

entry trajectory optimization from Starship’s current state at 120 𝑘𝑚 down to 45 𝑘𝑚 

altitude. This approach minimizes atmospheric uncertainty – one of the largest sources of 

perturbations – which can significantly deviate Starship from its target due to small 

disturbances in the upper atmosphere. 

By integrating PTR into this framework, the guidance algorithm ensures trajectory 

optimization that aligns with existing feedback control architectures while addressing 

atmospheric variability. The result is a robust system capable of supporting Starship’s 

ambitious missions to Mars and beyond, combining computational efficiency with precision 

landing capabilities essential for future exploration endeavors. 
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This chapter explains the Hypersonic Entry Glide Guidance (HEGG) algorithm design. 

First, it systematically addresses the principal design dimensions of a HEGG framework, 

including the analytical transformation of complex optimization challenges into a sequence 

of Second-Order Cone Programming (SOCP) formulations. This process elucidates the 

nuanced interplay between constraint types, parameter selection, and their collective impact 

on computational complexity and solution time – а critical consideration for systems requiring 

rapid decision-making. While simplified in state representation, the modeled dynamics and 

constraints preserve essential characteristics of 6𝐷𝑜𝐹 descent guidance (DG) systems, 

ensuring fidelity to real-world operational scenarios. 

The descriptions of the PTR-based 6𝐷𝑜𝐹 DG algorithm as a paradigm-shifting tool for 

next-generation entry, descent, and landing systems, prove that it is an appropriate 

implementation for Starship’s re-entry. In this chapter, the algorithm implemented for the 

Starship re-entry trajectory, will be described with all of its steps, exhibited in Figure 17. In 

Section 5.2 a definition of the non-linear trajectory Problem 1 is conducted, in Section 5.2.1 

the resulting Problem 2, defined in SOCP-framework after successive convexification, is 

described. In Section 5.2.2, the first phase of the optimization algorithm is described – 

Initialization – is described. It includes three main parts: 1) initial guess, 2) scaling matrices, 

and 3) pre-parsing. In Section 5.2.3, a description of the two main parts of the second step – 

Convexification – is conducted; 1) linearization, and 2) propagation. In Section 5.2.4 – Solve – 

the two main parts are described – 1) parsing, and 2) convergence criteria. 

5.2 Description and Implementation of the Algorithm 

A general methodology for developing an implementation to solve non-convex 

optimal control problems (OCPs) is presented here. These OCPs are of the form  (Taylor 

Reynolds D. M., 2020): 

Problem 1 

min
𝑢(⋅),𝑝

𝜙(𝑥(𝑡𝑓), 𝑝) 

subject to: �̇�(𝑡) = 𝑓(𝑥, 𝑢, 𝑝) 

𝐻0𝑥(𝑡0) = 𝑥𝑖𝑐,     𝐻𝑓𝑥(𝑡𝑓) = 𝑥𝑓 

𝑔𝑖(𝑥, 𝑢, 𝑝) ≤ 0,     𝑖 ∈ 𝛪𝑐 ≔ {1,… , 𝑛𝑐} 
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where 𝑥(𝑡) ∈ 𝑅𝑛𝑥  is a continuous – time state vector, 𝑢(𝑡) ∈ 𝑅𝑛𝑢  is a continuous – time input 

vector and 𝑝 ∈ 𝑅𝑛𝑝 is a parameters vector. The functions 𝑔𝑖 are scalar – valued and represent 

the path constraints imposed during the hypersonic glide 𝑔𝑖: 𝑅
𝑛𝑥 × 𝑅𝑛𝑢 × 𝑅𝑛𝑝 → 𝑅. It is 

assumed that the constraints indexed by 𝛪𝑐𝑣𝑥 ⊆ 𝛪𝑐 are convex, and the ones indexed 

𝛪𝑛𝑜𝑛−𝑐𝑣𝑥 ⊆ 𝛪𝑐  are non-convex, so that 𝛪𝑐 = 𝛪𝑐𝑣𝑥 ∪ 𝛪𝑛𝑜𝑛−𝑐𝑣𝑥. With matrices 𝐻0 and 𝐻𝑓 the 

ability to constrain only a subset of the state vector at the initial and final time is signified. It 

is also assumed that 𝑓: 𝑅𝑛𝑥 × 𝑅𝑛𝑢 × 𝑅𝑛𝑝 → 𝑅𝑛𝑥 is differentiable almost everywhere with 

respect to its arguments. Moreover, it is assumed also that the cost function 𝜙 is convex, 

without any loss of generality, and is given in Mayer form using 𝜙:𝑅𝑛𝑥 × 𝑅𝑛𝑝 → 𝑅. Every 

optimization problem inherently incorporating a running cost may be elegantly reformulated 

within this framework, representing the most straightforward method to transform 

continuous-time problems into the standardized structure required for real-time applications. 

This transcription process preserves mathematical rigor while ensuring computational 

tractability for onboard systems. Notably, scenarios requiring temporal flexibility — such as 

free-final-time formulations—may be seamlessly integrated into the Problem 1 paradigm 

through strategic utilization of the parameter vector 𝑝. This parameterization elegantly 

encapsulates temporal variability, enabling dynamic adaptation to mission-specific time 

horizons without compromising the problem’s convex structure. Such an approach not only 

simplifies implementation but also enhances compatibility with modern convex solvers, 

ensuring rapid convergence even under stringent real-time constraints. 

 

Figure 17: Diagram of the 3 major steps in the PTR algorithm, implemented here. The most 

consuming step (highlighted in red) is solving the convex SOCP problems. (Google Slides) 
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5.2.1 Successive Convexification 

In the exploration of real-time solutions to Problem 1, an overview of the Penalized 

Trust Region (PTR) algorithm, more broadly known as successive convexification, is 

conducted. This approach, illustrated in Figure 17, unfolds in a series of steps. The algorithm 

commences with an initialization phase (in green), where an initial solution guess – potentially 

rudimentary – is defined. This phase also encompasses the task of setting scaling matrices to 

enhance the numerical properties of the optimization process, as well as pre-parsing fixed 

elements of the problem to streamline subsequent computations. 

Following initialization, the algorithm enters the main PTR loop, where the initial guess 

assumes the role of the first reference solution. Throughout this discourse, two types of 

iterations are being distinguished: "solver" iterations, which occur internally within the 

Second-Order Cone Programming solver (in red), and "PTR" iterations, which constitute the 

outer loop defined by the convexification (blue), test, and solve (red) steps. 

The convexification step (in blue), a cornerstone of the algorithm, yields a convex 

approximation of Problem 1 in the neighborhood of the current reference solution. This 

process involves approximating the dynamics as a discrete linear time-varying system and 

linearizing non-convex constraints about the reference solution. The resulting convex 

approximation serves a dual purpose: 1) it allows us to assess whether the current reference 

solution satisfies the desired feasibility and convergence criteria through a stopping criterion, 

and if not, 2) it forms the basis for formulating an SOCP in a general conic form (in red). 

This iterative refinement process balances computational efficiency with solution 

accuracy, making PTR a powerful tool for real-time trajectory optimization in re-entry 

applications. The algorithm's ability to handle complex, non-convex problems through 

successive convex approximations represents a significant advancement in the field of 

optimal control, particularly for systems with stringent real-time requirements such as 

hypersonic entry guidance. 
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The conic form of the SOCP is as follows  (Taylor Reynolds D. M., 2020): 

Problem 2 

min
𝑧
𝑐𝑇𝑧 

subject to: 𝐴𝑧 = 𝑏 

𝑧 ∈ 𝐶𝐿 × 𝐶𝑄1 ×…× 𝐶𝑄𝑚 

where 𝐶𝐿 = {𝑤 ∈ 𝑅𝑙| 𝑤 ≥ 0} is a linear cone of dimension 𝑙, and each 𝐶𝑄𝑖 = {(𝑤0, 𝑤) ∈

𝑅𝑑𝑖| ⟦𝑤⟧2 ≤ 𝑤0} is a second order cone of dimension 𝑑𝑖. Afterwards, the problem data 𝐴 ∈

𝑅𝑛𝑐×𝑛𝑧, 𝑏 ∈ 𝑅𝑛𝑐 and 𝑐 ∈ 𝑅𝑛𝑧 are being passed to the solver to compute a new reference 

solution. A structural translation is paramount when formulating optimization problems 

within the framework of Problem 2. Traditional approaches to successive convexification, and 

sequential convex programming at large, have long depended on automated modeling 

interfaces (commonly termed "parsers") to facilitate this conversion. While these tools offer 

convenience, their implementation introduces three critical inefficiencies: computational 

overhead from redundant constraint generation, superfluous variables that inflate problem 

dimensionality, and reliance on dynamic memory allocation – attributes fundamentally 

incompatible with the stringent demands of real-time spaceflight systems. 

This thesis introduces a methodology that circumvents these limitations through 

deliberate "hand parsing," and leverages domain-specific knowledge to exploit latent 

problem structures. 

5.2.2 Initialization 

This section outlines the preparatory steps taken before initiating the primary PTR 

loop. These steps, as outlined in Algorithm 1, involve three key tasks: creating an initial 

solution estimate, calculating scaling matrices, and pre-processing problem data. All these 

tasks can be completed prior to starting the main PTR loop depicted in Figure 17. If the 

initialization process occurs at a time 𝑡 before 𝑡𝑜, where 𝑡𝑜 marks the start of executing the 

guidance solution by the vehicle, the initial state 𝑥𝑖𝑐 must be projected forward by 𝑡0 − 𝑡. This 

time difference 𝑡0 − 𝑡 should cover at least the duration required to compute the guidance 

solution. In the case of test flights using the 3𝐷𝑜𝐹 G-FOLD algorithm, this duration was set to 

one second. 
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Algorithm 1 Initialization Step 

Input: Current vehicle state and desired terminal boundary conditions 
1) Determine the initial guess for the state, controls and parameters 
2) Compute the diagonal scaling matrices 𝑆𝑥, 𝑆𝑢, 𝑆𝑝 and the vectors 𝑐𝑥, 𝑐𝑢, 𝑐𝑝 that center 

the state, controls and parameters 

 

1. Initial Solution Guess 

The state solution guess is computed first, using the given initial state of the vehicle. 

The simplest way to initialize the state solution is by implementing a straight-line initialization 

method. The initial state of the vehicle 𝑥𝑖𝑐 and the desired boundary conditions 𝑥𝑓 are taken 

to compute a linear interpolation between them, as follows (draw a straight line): 

 𝑥𝑘,𝑖 =
𝑁 − 𝑘

𝑁 − 1
𝑥𝑖𝑐,𝑖 +

𝑘 − 1

𝑁 − 1
𝑥𝑓,𝑖       𝑖 = 1,… , 𝑛𝑥,       𝑘 ∈ 𝑁 ≔ {0,… ,𝑁 − 1} (43) 

where 𝑁 is the number of discrete nodes chosen to compute the solution. To initialize the 

controls, the known optimal solution profile, if available, is being leveraged. For the Starship 

hypersonic entry glide, the flaps are being initialized indirectly such that the vehicle keeps a 

certain initial angle-of-attack 𝛼. This situation in the constrained 6𝐷𝑜𝐹 glide remains an open 

problem and a direct flaps angle control could be an improvement in follow-up research. It is 

worth noting that neither the state nor the controls guess must be feasible with respect to 

the dynamics or constraints, although different initial guesses lead to different solution 

convergence, and a more accurate initial guess results in faster convergence. This means that 

a reasonable initial control guess would lead to a better convergence result. 

2. Scaling Matrices 

The scaling of solution variables can be approached through multiple methodologies. 

No universal agreement exists regarding the optimal strategy for scaling optimal control 

formulations to achieve numerically stable parameter estimation tasks. Certain researchers 

maintain that proper scaling (and balancing) of differential equation representations in 

continuous-time systems is paramount, while others contend that normalizing the discretized 

optimization framework alone proves satisfactory. In this work, the second methodology is 

implemented to be sufficiently effective – the following linear scaling transformations: 
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 𝑥𝑘 = 𝑆𝑥�̂�𝑘 + 𝑐𝑥 (44) 
 

 𝑢𝑘 = 𝑆𝑢�̂�𝑘 + 𝑐𝑢 (45) 
 

 𝑝𝑘 = 𝑆𝑝�̂�𝑘 + 𝑐𝑝 (46) 

where 𝑆𝑥, 𝑆𝑢 and 𝑆𝑝 are diagonal matrices of commensurate dimensions and 𝑐𝑥, 𝑐𝑢 and 𝑐𝑝 

are vectors that center the state, control, and parameters, respectively. Throughout the 

explanation in the chapter, scaled quantities will be referred to with the ∙ ̂designation. For 

every 𝑖-th component of the state, control and paramete vectors (referred to 𝑎𝑖), two 

quantities can be defined: 1) the range of the “true” value of the component [𝑎𝑖,𝑚𝑖𝑛, 𝑎𝑖,𝑚𝑎𝑥] 

and 2) the interval [�̂�𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑, �̂�𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑] that each component of quantity 𝑎 is being 

scaled to. Then, using this information, the scaling matrix and center vectors are: 

 
𝑆𝑎,𝑖𝑖 =

𝑎𝑖,𝑚𝑎𝑥 − 𝑎𝑖,𝑚𝑖𝑛
�̂�𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑 − �̂�𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑

,

and     𝑐𝑎,𝑖 = 𝑎𝑖,𝑚𝑖𝑛 − 𝑆𝑎,𝑖𝑖�̂�𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑 
(47) 

It is good practice to make a smart choice for the interval [�̂�𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑, �̂�𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑] with 

respect to generating the standard form of Problem 2, while in theory the interval can be 

arbitrary. In this work, [�̂�𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑, �̂�𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑] = [0, 1] is used, and the procedure 

described here is a standard mathematical normalization procedure. This places the state, 

control, and parameter vectors into the linear cone by construction and eliminates the need 

to enforce the lower bound constraints explicitly. 

3. Pre – Parsing 

Pre-parsing involves initializing the matrices 𝐴, 𝑏, and 𝑐 used in Problem 2. Non-

convex problems solved using successive convexification techniques exhibit considerable 

structure, which is leveraged to accelerate the main PTR loop by performing as many 

computations as possible during the pre-parsing phase. For a fixed problem setup, most non-

zero elements in these matrices remain unchanged across PTR iterations, and the pre-parsing 

step initializes 𝐴, 𝑏, and 𝑐 with these constant non-zero values. During this process, a specific 

enumeration of variables and constraints must be established. A general enumeration of 

variable 𝑧 and constraints is illustrated in Figure 18. 

Categorized here are block 𝑣1 variables, as those appearing in Problem 1 and/or 

contributing to the nonlinear dynamics, block 𝑣2 variables such as linear slack variables, 



65 
 

introduced to express the problem in standard form, and block 𝑣3 variables, such as those 

used for trust region formulation or Second – Order Cone (SOC) slack variables added to 

standardize the problem. Similarly, block 𝑐1 constraints represent dynamics and boundary 

conditions, while block 𝑐2 constraints encompass all other imposed conditions. These 

definitions enable a block-wise decomposition of the matrices 𝐴, 𝑏, and 𝑐, which guides the 

discussion in this paper. 

For PTR-type algorithms, the vector 𝑐 can be fully initialized during pre-parsing, while 

only 𝐴 and 𝑏 are updated across iterations. All slack variables in blocks 𝑣2 and 𝑣3, introduced 

to standardize Problem 2's convex approximation, have corresponding unit-magnitude 

entries (±1) in matrix 𝐴, located in rows associated with their respective constraints. These 

entries are represented by the ∗𝑠
∎ (for linear slack variables) and ∗𝜒

𝐴 (for SOC slack variables) 

blocks, shown in Figure 18. Since these non-zero entries are ±1 and occur at user-defined 

locations, the entire ∗𝑠
∎ and ∗𝜒

𝐴 blocks can be initialized during pre-parsing and remain 

unchanged throughout iterations. 

The ∗𝑝
∎ blocks correspond to the equations of motion and boundary conditions; they 

can be partially initialized during the pre-parsing phase, with remaining entries added after 

convexification. Similarly, the ∗𝑠
∎ blocks represent path constraints enforced as inequalities; 

these too can only be partially populated during pre-parsing, with additional entries included 

post-convexification. The extent to which ∗𝑝
∎ and ∗𝑐

∎ blocks can be pre-initialized depends on 

the specific application and may vary. 

𝑧 =

�̂�
�̂�
�̂�
𝑣+
𝑣−}
 
 

 
 

𝑠1
𝑠2
⋮
𝑠𝑚𝑙

}

𝜒𝜂,𝑝
𝜒𝜂
⋮
𝜒𝑚𝑞

}

  

{
 
 

 
 
∗𝜙
0
∗𝜙
0
0

 {

𝑤𝑣𝑐
0
⋮
0

         {

𝑤𝑡𝑟,𝑝 ∗𝜒
𝑐

𝑤𝑡𝑟 ∗𝜒
𝑐

⋮
0

= 𝑐 

 

block 𝑣1 

block 𝑣2 

block 𝑣3 
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𝐴 = [
∗𝑃
𝐴 0 0

∗𝐶
𝐴 ∗𝑠

∎ ∗𝑋
𝐴]
   block 𝑐1   
   block 𝑐2   

[
∗𝑃
𝑏

∗𝐶
𝑏] = 𝑏 

 

where the first column 
∗𝑃
𝐴

∗𝐶
𝐴 = block 𝑣1, 

0
∗𝑠
∎:
= block 𝑣2 and 

0
∗𝑋
𝐴 = block 𝑣3. 

Also: 

∗𝑝
∎: computed during the pre – parse and propagation phase 

∗𝐶
∎: computed during the pre – parse and constraint linearization phase 

∗𝑠
∎: fully pre – parsed 

∗𝜒
∎: same as above 

∗𝜙
∎: same as above 

Figure 18: Generic list of all problem variables. Block 𝒗𝟏 variables (the first 5 variables from 𝑧 

and 𝑐) are used either directly in Problem 1 or to impose dynamics and boundary conditions. 

Block 𝒗𝟐 variables (the middle group from 𝑧 and 𝑐) represent linear slack variables of arbitrary 

dimension, and there are 𝑚𝑙 such variables. Block 𝒗𝟑 variables (the last group from 𝑧 and 𝑐) 

represent the trust region implementation and SOC variables of arbitrary dimension, and there 

are 𝑚𝑞 variable of this type. The constraint block 𝒄𝟏 (the first row of matrix 𝐴) corresponds to 

the dynamics and boundary conditions (the first group from 𝑧), while constraint block 𝒄𝟐 

corresponds (the second row from 𝑧) to all path constraints enforced as inequalities. Note that 

the objective in Problem 2 is 𝑐𝑇𝑧 and that it is subjected to the SOCP-framework constraints 

𝐴𝑧 = 𝑏. 

 

5.2.3 Convexification Step 

The convexification process constructs convex approximations of both nonlinear 

dynamics’ equations and non-convex constraints 𝑔𝑖 where 𝑖 ∈ 𝐼𝑛𝑜𝑛−𝑐𝑣𝑥. This involves two 

concurrent operations: propagation (handling system dynamics) and constraint linearization, 

which can be executed simultaneously for efficiency. Notably, implementations optimize 

computational performance by employing one-dimensional flattened arrays rather than: 

1. Three-dimensional structures for time-dependent indexing 

2. Bulky two-dimensional matrices containing sparsely populated elements 
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This design choice streamlines memory allocation while maintaining mathematical rigor in 

representing temporal and spatial relationships. 

1. Propagation 

To formulate the system dynamics as convex equality constraints, they must be 

expressed as discrete-time affine functions of states, controls, and parameters. This 

methodology, well-documented in prior studies  (Taylor Reynolds M. S., 2019), is summarized 

here with a focus on steps critical for real-time execution. A generalized workflow is outlined 

in Algorithm 2 to clarify the process. Starting from the current reference trajectory, the 

nonlinear dynamics undergo time normalization followed by a First-order Taylor series 

expansion around the reference state-control-parameter {�̅�(𝑡), �̅�(𝑡), �̅�} triplet. This yields the 

linearized equation: 

 �̇�(𝑡) = 𝐴(𝜏)𝑥(𝜏) + 𝐵(𝜏)𝑢(𝜏) + 𝑆(𝜏)𝑝 + 𝑅(𝜏) (48) 
 

where 𝜏 ∈ [0, 1] is a normalized time variable and 𝐴(𝜏), 𝐵(𝜏) and 𝑆(𝜏) are the partial 

derivatives of 𝑓 with respect to state, control and the parameters, respectively, evaluated 

along the reference trajectory. Based on the results of (Malyuta, 2019), an affine interpolation 

of the control to discretize Equation (48) is implemented. To conduct the affine interpolation, 

a selection of 𝑁 time nodes between the initial and final times is done 

 𝑡0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 = 𝑡𝑓      ≡      0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑁−1 = 1 (49) 
 

The left – side notations are the real – time nodes, and the right – side notations are the 

propagation time nodes with 𝜏. 

The temporal nodes are not necessarily distributed equally between their end points. 

From this point on, the discrete variable 𝑘 ∈ 𝑁 ≔ {0,… ,𝑁 − 1} is being used to designate 

indexation of the state and control vectors. The control vector varies linearly between the 

consecutive values 𝑢𝑘 and 𝑢𝑘+1 at each node 𝑘 ∈ 𝑁, producting the following relation: 

 𝑢(𝜏) = 𝜆𝑘
−𝑢𝑘 + 𝜆𝑘

+𝑢𝑘+1,     𝜏 ∈ {𝜏𝑘, 𝜏𝑘+1} (50) 
 

where 𝜆𝑘
+ = 1 − 𝜆𝑘

− and 𝜆𝑘
− =

𝜏𝑘+1−𝜏

𝜏𝑘+1−𝜏𝑘
. 
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The discretization of Equation (48) is computed as  (Taylor Reynolds D. M., 2020) 

 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘
−𝑢𝑘 + 𝐵𝑘

+𝑢𝑘+1 + 𝑆𝑘𝑝 + 𝑅𝑘,     𝑘 ∈ {0,… ,𝑁 − 2} (51) 
 

where for each 𝑘 ∈ {0, … ,𝑁 − 2}, 

 𝐴𝑘 ≔ Ф(𝜏𝑘+1, 𝜏𝑘) (52) 

 

 𝐵𝑘
− ≔ 𝐴𝑘 ∫ Ф−1(𝜏, 𝜏𝑘)

𝜏𝑘+1

𝜏𝑘

𝜆𝑘
−(𝜏)𝐵(𝜏)𝑑𝜏 (53) 

 

 𝐵𝑘
+ ≔ 𝐴𝑘 ∫ Ф−1(𝜏, 𝜏𝑘)

𝜏𝑘+1

𝜏𝑘

𝜆𝑘
+(𝜏)𝐵(𝜏)𝑑𝜏 (54) 

 

 𝑆𝑘 ≔ 𝐴𝑘 ∫ Ф−1(𝜏, 𝜏𝑘)

𝜏𝑘+1

𝜏𝑘

𝑆(𝜏)𝑑𝜏 (55) 

 

 𝑅𝑘 ≔ 𝐴𝑘 ∫ Ф−1(𝜏, 𝜏𝑘)

𝜏𝑘+1

𝜏𝑘

𝑅(𝜏)𝑑𝜏 (56) 

where Ф(𝜏, 𝜏𝑘) is the zero – input state transition matrix for the linear time varying system in 

Equation (48). 

During the implementation of Equations (52) – (56), a 𝑁 − 2 sets of matrices are 

computed. Each set is calculated by integrating numerically the integrands in Equations (52) 

– (56) along with the state vector. A fixed – step 𝑅𝐾4 integrator is used with 𝑁 points. The 

calculation of each set of matrices in Equations (52) – (56) is implemented by using a flat 1𝐷 

array of dimension 𝑛𝑥(𝑛𝑥 + 2𝑛𝑢 + 3) and for each 𝑘 ∈ {0,… ,𝑁 − 2}, the following 

differential equation is integrated over the interval [𝜏𝑘, 𝜏𝑘+1], using 𝑁 nodes 

 �̇�(𝜏) =

[
 
 
 
 
 
 
𝑓(𝑃𝑥(𝜏), �̅�(𝜏), �̅�)

𝐴(𝜏)𝑃ф(𝜏)

𝑃ф(𝜏)
−1𝜆𝑘

−(𝜏)𝐵(𝜏)

𝑃ф(𝜏)
−1𝜆𝑘

+(𝜏)𝐵(𝜏)

𝑃ф(𝜏)
−1𝑆(𝜏)

𝑃ф(𝜏)
−1𝑅(𝜏) ]

 
 
 
 
 
 

,     𝑃(𝜏𝑘) =

[
 
 
 
 
 
 

�̅�𝑘
flat(𝐼𝑛𝑥)

0𝑛𝑥𝑛𝑢×1
0𝑛𝑥𝑛𝑢×1
0𝑛𝑥×1
0𝑛𝑥×1 ]

 
 
 
 
 
 

,     where 𝑃(𝜏) =

[
 
 
 
 
 
 
𝑃𝑥(𝜏)

𝑃ф(𝜏)

𝑃𝐵−(𝜏)

𝑃𝐵+(𝜏)

𝑃S(𝜏)

𝑃R(𝜏) ]
 
 
 
 
 
 

 (57) 
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The initial condition 𝑃(𝜏𝑘) is reset at the beginning of each iteration to the value of the 

reference state trajectory at the 𝑘-th node. The benefits of this resetting strategy are 

significant  (Michael Szmuk, 2019). As it can be seen from Equation (57), the derivative �̇�(𝜏) 

must be evaluated four times for every sub-interval, which constitutes 4𝑁 times per 

propagation step. The PTR algorithm’s convergence behavior and quality of the final solution 

is not strongly dependent on how much is 𝑁, and a value of 𝑁 ∈ [5, 15] is typically sufficient 

for rigid HEGG dynamics. In this research, 𝑁 = 8 is implemented. To obtain the values of the 

matrices in Equations (52) – (56), each from 𝑃𝐵−(𝜏𝑘+1) to 𝑃𝑅(𝜏𝑘+1) must be multiplied by the 

value of 𝑃ф(𝜏𝑘+1). What is produced as final values from the matrices in Equations (52) – (56) 

can be either stored as “flattened” vectors in an output data structure or placed directly into 

the 𝐴 and 𝑏 matrices that are used to construct the standard form SOCP. 

 A key benefit of the propagation phase lies in its capability to evaluate the dynamic 

viability of the current reference solution {�̅�𝑘, �̅�𝑘 , �̅�}𝑘∈𝑁. Specifically, if the discrete control 

inputs {�̅�𝑘, �̅�}𝑘∈𝑁 are used to numerically integrate the nonlinear dynamics from Problem 1 

via the interpolation method in Equation (50), dynamic feasibility ensures the resulting open 

– loop state trajectory aligns with the discrete reference states {�̅�𝑘}𝑘∈𝑁 within a user – 

specified error margin. This concept, combined with constraint feasibility metrics, offers a 

straightforward way to assess solution quality prior to execution. 

 To quantify dynamic feasibility, the propagated state 𝑃𝑥(𝜏𝑘+1) is compared against 

the reference state �̅�𝑘+1. The feasibility defect at node 𝑘 + 1 is computed as: 

 ∆𝑘+1= ‖𝑃𝑥(𝜏𝑘+1) − �̅�𝑘+1‖2 (58) 
 

A reference trajectory is deemed dynamically feasible if all defects ∆𝑘+1 fall below a threshold 

𝜖𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒. While 𝜖𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ≤ 10−2 typically suffices, the acceptable tolerance depends on the 

dynamics function 𝑓 governing the system. 

2. Constraint Linearization 

In this second part of the convexification step, the linear approximation of all non-

convex constraints is computed. These are constraints of the form 

 𝑔𝑖(𝑥, 𝑢, 𝑝) ≤ 0,     𝑖 ∈ 𝐼𝑛𝑜𝑛−𝑐𝑣𝑥 (59) 
 



70 
 

for functions 𝑔𝑖 that are differentiable almost everywhere. As a part of the convexification 

step, this procedure always precedes the parsing in the Solve step (in red in Figure 17). 

 Using the reference trajectory {�̅�𝑘, �̅�𝑘, �̅�}𝑘∈𝑁, the linearization of Equation (59) is 

computed as follows: 

 𝑔𝑖(�̅�𝑘, �̅�𝑘 , �̅�) + ∇𝑔𝑖(�̅�𝑘, �̅�𝑘 , �̅�)
Т [
𝑥𝑘 − �̅�𝑘
𝑢𝑘 − �̅�𝑘
𝑝 − �̅�

] ≤ 0,     𝑘 ∈ 𝑁 (60) 

 

where ∇𝑔𝑖(�̅�𝑘, �̅�𝑘, �̅�) ∈ 𝑅
(𝑛𝑥+𝑛𝑢+𝑛𝑝)×1 is gradient of 𝑔𝑖 evaluated at the 𝑘-th reference node. 

Each non-convex constraint is then approximated by 𝑁 linear inequalities. The data for the 

linear approximation of the 𝑖-th non-convex constraint is stored in a single 2𝐷 array where 

the first entry in the 𝑘-th column is the value of 

 
𝑔𝑖(�̅�𝑘, �̅�𝑘 , �̅�) − ∇𝑔𝑖(�̅�𝑘, �̅�𝑘 , �̅�)

Т [
�̅�𝑘
�̅�𝑘
�̅�
] 

(61) 

 

and in the remaining rows, the value of the ∇𝑔𝑖 gradient is stored. This gradient is evaluated 

at the reference solution’s 𝑘-th node. If a certain constraint 𝑔𝑖 affects only a subset of the 

state, control and/or parameter, then the size of this 2𝐷 array is shrunk respectively. 

 As 𝑔𝑖(�̅�𝑘, �̅�𝑘, �̅�) is calculated for each 𝑖 ∈ 𝐼𝑛𝑜𝑛−𝑐𝑣𝑥 and 𝑘 ∈ 𝑁, the feasibility with 

respect to each constraint at the solution nodes can be checked. If there are any constraints 

that are being violated, then the feasible output of the linearization function will be set to 

‘false’. On the other hand, this does not imply that if no constraints are violated, the trajectory 

will satisfy the constraints at the times between the solution nodes 𝑁. This phenomenon is 

referred to as clipping. Therefore, this procedure is necessary but not sufficient assessment 

of feasibility when it comes to trajectory path constraints. On the other hand, the 

aforementioned assessment of dynamic feasibility is both necessary and sufficient. 

5.2.4 Solve Step 

The convexification phase systematically generates all necessary computational 

components to formulate a convex surrogate model that accurately approximates Problem 

1, while simultaneously deriving updated reference parameters for iterative refinement. 
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Before solver execution, residual data elements excluded from matrices 𝐴 and 𝑏 (in Figure 

18) during pre-processing must be integrated through a runtime compilation phase (referred 

to as parsing). This stage ensures temporal dependencies and transient variables are properly 

encoded within the optimization framework. 

Once parsing concludes, the problem structure fully adheres to Problem 2's 

standardized form, enabling solver activation. Unlike methods accepting suboptimal 

intermediate solutions for faster iteration, the PTR algorithm mandates exact convergence to 

optimal solutions for every convex subproblem. This rigorous approach ensures numerical 

stability but intensifies computational demands. 

Since solver operations dominate runtime expenditures – even with optimized 

iteration counts – minimizing total solver invocations becomes critical for real-time trajectory 

optimization. The methodology prioritizes computational efficiency through parallelizable 

preprocessing stages while maintaining mathematical fidelity in convex approximations. 

1. Parsing 

This step adds the data from the convexification step to 𝐴 and 𝑏 (shown in Figure 18). This data 

forms the remaining portions of∗𝑝
∎  and ∗𝐶

∎ in Figure 18. Since the standard form solution 

vector 𝑍 (again in Figure 18) contains the scaled state, controls and parameters as 1𝐷 stacked 

vectors, the discretized dynamics from Equation (51) can be written in block form as  (Taylor 

Reynolds D. M., 2020): 

 �̂� = �̂��̂� + �̂��̂� + �̂��̂� + 𝑣+ − 𝑣− (62) 
 

where 𝑣 = 𝑣+ − 𝑣− is a virtual control term expressed using two variables in the linear cone 

and 

 �̂� = {

𝐴0𝑆𝑥 −𝑆𝑥 0 ⋯ 0
0 𝐴1𝑆𝑥 −𝑆𝑥 ⋯ 0
−
0

−
0

⋱ ⋱ ⋮
0 𝐴𝑁−2𝑆𝑥 −𝑆𝑥

} (63) 

 

 �̂� = {

𝐵0
−𝑆𝑢 𝐵0

+𝑆𝑢 0 ⋯ 0

0 𝐵1
−𝑆𝑢 𝐵1

+𝑆𝑢 ⋯ 0
−
0

−
0

⋱ ⋱ ⋮
0 𝐵𝑁−2

− 𝑆𝑢 𝐵𝑁−2
+ 𝑆𝑢

} (64) 
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 �̂� =

{
 

 
𝑆0𝑆𝑝
𝑆1𝑆𝑝
⋮

𝑆𝑁−2𝑆𝑝}
 

 
 (65) 

 

 �̂� = {

𝑐𝑥 − 𝑅0 − 𝐴0𝑐𝑥 − 𝐵0
−𝑐𝑢 − 𝐵0

+𝑐𝑢 − 𝑆0𝑐𝑝
⋮

𝑐𝑥 − 𝑅𝑁−2 − 𝐴𝑁−2𝑐𝑥 − 𝐵𝑁−2
− 𝑐𝑢 − 𝐵𝑁−2

+ 𝑐𝑢 − 𝑆𝑁−2𝑐𝑝

} (66) 

 

If 𝐻0 ∈ 𝑅
𝑛0×𝑛𝑥 and 𝐻𝑓 ∈ 𝑅

𝑛𝑓×𝑛𝑥 are the matrices that correspond to the boundary conditions 

in Problem 1, then block ∗𝑝
∎ is filled like the following: 

 ∗𝑃
𝐴= {

[𝐻0𝑆𝑥 0𝑛0×𝑛𝑥(𝑁−1)] 0𝑛0×𝑛𝑥𝑁
0𝑛0×𝑛𝑝 0𝑛0×𝑛𝑥𝑁 0𝑛0×𝑛𝑥𝑁

�̂� �̂� �̂� 𝐼𝑛𝑥𝑁 −𝐼𝑛𝑥𝑁

[0𝑛𝑓×𝑛𝑥(𝑁−1) 𝐻𝑓𝑆𝑥] 0𝑛𝑓×𝑛𝑢𝑁
0𝑛𝑓×𝑛𝑝 0𝑛𝑓×𝑛𝑥𝑁 0𝑛𝑓×𝑛𝑥𝑁

} (67) 

 

 ∗𝑃
𝑏= {

𝑥0 − 𝐻0𝑐𝑥
�̂�

𝑥𝑓 − 𝐻𝑓𝑐𝑥

} (68) 

 

The entries in Equations (63) – (68) that are independent of the matrices in Equations (52) – 

(56), would have been populated during the pre-parse step, that was outlined already. 

Trajectory optimization formulations employing distinct constraint sets will retain 

identical ∗𝑃 structural blocks (governing dynamics) but exhibit distinct ∗𝐶  blocks (handling 

path constraints). The non-convex constraints are linearized and effectively become linear 

constraints. Hence, here the focus is on two primary constraint categories: 

• convex constraints: linear inequalities or SOC limitations 

• non-convex constraints: converted to linear equivalents through 

approximation techniques 

All successive convexification frameworks inherently include linear constraints such as: 

• 1-norm regularization for virtual control terms 

• boundary limitations on state/control vectors and parameters 

Additional linear constraints may originate directly from Problem 1's formulation or emerge 

during the convexification of non-convex requirements. Notably, the modular separation 

between static ∗𝑃 blocks and adaptable ∗𝐶  blocks enable efficient algorithm scaling – a critical 

feature for real-time trajectory generation systems where constraint sets often change 
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dynamically. To illustrate how these are parsed, let us consider a linear state constraint of the 

form 𝑔𝑘
Т�̂�𝑘 ≤ ℎ𝑘  for each 𝑘 ∈ 𝑁 and some 𝑔𝑘 ∈ 𝑅

𝑛𝑥 and ℎ𝑘 ∈ 𝑅. This constraint is re-written 

in standard form by introducing the slack variable 𝑠𝑙𝑘 ∈ 𝑅+
𝑁 and 

 𝐺Т�̂� + 𝑠𝑙𝑘 = ℎ,     𝑠𝑙𝑘 ≥ 0 (69) 
 

where 

 𝐺 ≔

{
 

 
𝑔0
Т 0 ⋯ 0

0 𝑔1
Т ⋯ 0

⋮
0

⋮
0

⋱
⋯

⋮
𝑔𝑁−1
Т }

 

 
 (70) 

 

This matrix 𝐺 is then added to the ∗𝐶
𝐴 block in the appropriate location based on the definition 

of block 𝑣1 in matrix 𝑍 and block 𝑐2 in 𝐴 (Figure 18). Similarly, ℎ goes to ∗𝐶
𝑏  in the respective 

rows of block 𝑐2. Similar procedure is conducted with the linear control and parameter 

constraints too. 

When linear constraints originate from non-convex path constraints, the matrices 𝐺 

and vector ℎ typically depend on the nominal trajectory {�̅�𝑘, �̅�𝑘, �̅�}𝑘∈𝑁. Consequently, these 

terms must be recomputed during every convexification step as updated reference solutions 

become available. This requirement also applies to inherently linear constraints from Problem 

1, such as the 1-norm trust regions, which impose box limitations on states, controls, and 

parameters. For instance, a 1-norm trust region translates to paired linear inequalities for 

each variable, necessitating iterative recalculation of ℎ as the reference evolves. 

As previously noted, the state, control, and parameter vectors undergo scaling to 

reside within the non-negative linear cone 𝑅+. This preprocessing step inherently enforces 

lower bounds through variable transformation rather than explicit constraint formulation, 

leveraging the solver’s native handling of cone constraints. By embedding bounds into the 

scaled variable space, the method reduces redundant constraints, streamlining problem 

complexity without sacrificing feasibility guarantees – а critical advantage for real-time 

applications where computational latency must be minimized. 

While not all successive convexification algorithms for trajectory optimization 

incorporate Second-Order Cone (SOC) constraints, these constraints are particularly relevant 

in hypersonic glide descent problems. For such scenarios, several critical constraints naturally 
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take the form of SOC constraints, including maximum heat flux and g-load limitations that 

define the vehicle’s entry corridor, as well as approach cone constraints. These constraints 

are essential for ensuring safe and feasible trajectories during spaceflight operations, where 

extreme thermal and structural loads must be carefully managed. 

Furthermore, 2-norm-based trust regions provide an effective mechanism to guide 

the convergence of the PTR algorithm by stabilizing iterative updates and maintaining 

feasibility. The ability to explicitly enforce SOC constraints and leverage trust regions 

enhances the robustness of trajectory optimization frameworks, making them well-suited for 

demanding applications such as planetary entry or high-speed atmospheric maneuvers. This 

approach also facilitates scalability to more complex systems, where precision and reliability 

are paramount. In order to illustrate how these constraints are handled during the parsing 

step, a generic SOC path constraint imposed on the state vector of the form ‖𝑆𝑞�̂�𝑘 + 𝑐𝑞‖2 ≤

𝑔𝑞
Т𝑥𝑘 + ℎ𝑞 is considered, for some 𝑆𝑞 ∈ 𝑅

𝑑×𝑛𝑥, 𝑐𝑞 ∈ 𝑅
𝑑, 𝑔𝑞 ∈ 𝑅

𝑛𝑥  and ℎ𝑞 ∈ 𝑅 and for each 

𝑘 ∈ 𝑁. It is rare for this type of data, describing the SOC constraint, to vary in time (i.e., to 

change with 𝑘). This constraint is re-written in standard form by introducing slack variables 

𝜇𝑘 ∈ 𝑅
𝑑, 𝑠𝑘 ∈ 𝑅+ and 𝜎𝑘 ∈ 𝑅+ for each 𝑘 ∈ 𝑁 and 

 𝜇𝑘 = 𝑆𝑞�̂�𝑘 + 𝑐𝑞 ,     𝜎𝑘 + 𝑠𝑘 = 𝑔𝑞
Т�̂�𝑘 + ℎ𝑞      →      [

𝜎𝑘
𝜇𝑘
] ∈ 𝐶𝑄𝑑+1 (71) 

 

These expressions, in Equation (71), form two linear constraints, and can be written in 

standard form. First, a vector with the slack variables is defined: 

 𝜒 ≔ [𝜎0𝜇0
Т𝜎1𝜇1

Т⋯𝜎𝑁−1𝜇𝑁−1]
Т ∈ 𝑅𝑁(𝑑+1) (72) 

 

Then: 

 

−(𝐼𝑁⨂𝑆𝑞)�̂� + (𝐼𝑁⨂[0 𝐼𝑑])𝜒

= 𝟏𝑁⨂𝑐𝑞     and    − (𝐼𝑁⨂𝑆𝑞)�̂� + (𝐼𝑁⨂[1 01×𝑑])𝜒 + 𝐼𝑁𝑠

= ℎ𝑞𝟏𝑁 

(73) 

 

where ⨂ is the Kronecker product, equations are equivalent to Equation (71) with the 

additional distinction that each pair (𝜎𝑘 , 𝜇𝑘) ∈ 𝐶𝑄𝑑+1. This representation of the SOC 

constraint in Equation (73) can be added to the 𝐴 and 𝑏 matrices entirely during the pre-parse 

step, unless it represents a trust region constraint. For a trust region constraint, that is stated 
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as a SOC constraint, the matrices 𝑆𝑞, ℎ𝑞 and 𝑔𝑞 are constant and are pre-parsed, while 𝑐𝑞 

changes across the iterations and is part of the ∗𝐶
𝑏  block. 

Following the parsing phase, the processed data from matrices 𝐴, 𝑏, and 𝑐 is 

transferred to the CVX solver in MATLAB, which computes an optimal solution using interior-

point methods. This solver is specifically tailored for descent guidance algorithms, making it 

suitable for real-time flight applications. Its functionality closely resembles that of the solver 

employed during NASA’s JPL-led G-FOLD flight test campaign, conducted in collaboration with 

Masten Space Systems  (Behcet Acikmese S. M., 2017). 

The G-FOLD project demonstrated the effectiveness of convex optimization 

techniques for powered descent guidance in planetary landing scenarios. By leveraging similar 

solver capabilities, the current framework benefits from proven reliability and precision, 

ensuring its applicability to demanding aerospace missions where computational efficiency 

and accuracy are critical  (Behcet Acikmese S. M., 2017). 

The solver is called by passing a data structure that contains 𝐴, 𝑏, and 𝑐, along with 

the sizes of each cone 𝐶𝐿 × 𝐶𝑄1 ×⋯× 𝐶𝑄𝑚𝑞  and the numbers 𝑙 and 𝑚𝑞, where 𝑙 is the 

dimension of the cone 𝐶𝐿. For a solution 𝑧, returned by the solver, note that not all 𝑧 need to 

be retained. The new reference trajectory {�̅�𝑘 , �̅�𝑘, �̅�}𝑘∈𝑁 is extracted by unscaling the 𝑧 

entries that correspond to �̂�, �̂� and �̂�. Before terminating the solve step, the scaled state 

vector �̂� is readily available on the stack to be used, therefore the maximum temporal 

difference is calculated for later use: 

 𝛿𝑥 ≔ max
𝑘∈𝑁

‖�̂�𝑘 − 𝑆𝑥
−1(�̅�𝑘 − 𝑐𝑥)‖∞ (74) 

 

2. Convergence Criteria 

The convergence assessment phase (denoted as the “Test” module in Figure 17) 

serves as the terminating mechanism for the algorithm. Exit conditions, enumerated in Table 

3, leverage the Mayer-form cost function’s property where minor state adjustments correlate 

with minimal cost variations. However, cost stability doesn’t guarantee state convergence, 

necessitating a state-based tolerance metric 𝛿𝑥 (Equation (74)). Iterations cease when 𝛿𝑥 <

𝜖𝑠𝑜𝑙𝑣𝑒 and a dynamically feasible solution exists. 
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Dynamic feasibility inherently requires negligible virtual control magnitudes, but 

feasibility verification extends further by validating constraint adherence at every temporal 

node – including non-convex constraints linearized during iterations. This dual – check 

approach (state convergence and feasibility) proves more reliable than isolated virtual control 

monitoring, as it ensures solution integrity across both dynamics and operational limits. 

For real-time implementations, this convergence framework balances precision with 

computational efficiency. By prioritizing feasibility over mere numerical thresholds, the 

method avoids premature termination in scenarios where control residuals might mask 

underlying constraint violations – a critical consideration for safety-critical systems like 

autonomous landing or rendezvous maneuvers. 

Table 3: All the possible conditions for the successive convexification algorithm 

Converged Feasible Description 

✅ ✅ Converged and feasible 

✘ ✅ 
Reached max PTR iterations before 𝛿𝑥 < 𝜖𝑠𝑜𝑙𝑣𝑒. Found a safe 

but sub-optimal solution 

✅ ✘ Converged but not feasible 

✘ ✘ Not converged and not feasible 

5.3 MATLAB Simulation Software Organization 

The MATLAB simulation code for this research spans on 3 files: 

1. The initialize.m script constructs initial guesses for states (𝑥0) and controls (𝑢0). Then, it 

uses linear interpolation between entry interface (𝑥𝑖𝑛𝑖𝑡) and final position on 45 𝑘𝑚 

altitude. 

2. The EoMs.m script implements the core dynamics, which computes state derivatives for 

radial position 𝑟, longitude 𝜃, latitude 𝜙, velocity 𝑉, flight-path angle 𝛾, and heading 𝜓. It 

implements the 6𝐷𝑜𝐹 dynamics, accounting for aerodynamic Lift/Drag forces, and Mars’ 

rotation effects (𝐶𝑣, 𝐶𝛾, 𝐶𝜓). 
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3. The main.m script enforces the three critical path constraints through convexification, 

more specifically conducting lossless relaxation for quadratic terms, and presenting slack 

variables 𝜖3, 𝜖4 with 𝑙 − norm penalties. Then, the script divides the problem into convex 

sub-problems, solving them in CVX using interior – point methods. Key implementation 

features here are the fixed 𝑅𝐾4 discretization, employment of adaptive trust regions, and 

regularization terms for numerical stability. 

The software implements a high-fidelity framework for optimizing hypersonic re-entry 

trajectories of a Starship-like winged vehicle through Mars' atmosphere. The code combines 

successive convexification with direct collocation discretization to solve the non-convex 

optimal control problem (OCP) under stringent path constraints. Above (under 1., 2. and 3.) 

is a overarch description of the 3 files’ scripts. Below, in Figure 19, is a detailed breakdown of 

its architecture and functionality. Here is a structured block diagram of the code’s 

architecture, mapping key components and workflows: 

Block Descriptions 

1. Problem Setup 

• Configures planetary / vehicle parameters and mission constraints 

• Defines entry interface (EIP) and parachute deployment conditions 

2. Trajectory Initialization 

• Generates initial guess via linear interpolation (straight line) 

• Normalizes states and controls for numerical stability 

3. Dynamics Computation 

• Solves 6𝐷𝑜𝐹 EoMs with Mars rotation and aerodynamics forces 

• Uses fixed 𝑅𝐾4 for high – fidelity state propagation 
4. Constraint Formulation 

• Convexifies path constraints using slack variables 

• Embeds heat flux / dynamic pressure as Second-order cones (SOC) 
5. Successive Convexification 

• Iteratively linearizes non-convex dynamics 

• Balances exploration (trust regions) and convergence 

6. Convex Optimization 

• Solves quadratic program with interior-point methods 



78 
 

• Prioritizes fuel efficiency and constraint adherence 

7. Trust Region Update 

• Stabilizes convergence by adaptively limiting step sizes 

8. Post - Processing 

• Visualizes trajectory and constraint activity 

• Computes terminal precision at 45 𝑘𝑚 altitude (≤ 3 𝑘𝑚) 

MATLAB calls the CVX solver in the main.m file, where convex variables for the slack variables 

and trust region variables are defined. The trust region variables define the margin of 

acceptance between the solution computed at each node 𝑁 during the current iteration 

against the previous one. 

 

Figure 19: Structured block diagram of the MATLAB code with the main eight components  
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6 
Verification and Validation 

 

 

 

 

 

6.1 Theoretical Verification and Validation of Mars Starship Re-entry 

Simulation (based on previous research and results) 

The hypersonic glide of SpaceX’s Starship through the Martian atmosphere, simulated 

in MATLAB, demonstrates a remarkable adherence to both physical feasibility and mission-

critical constraints. By analyzing the entry profile results, spanning 120 𝑘𝑚 to 45 𝑘𝑚 altitude-

with initial velocity 𝑉0 = 4.3 𝑘𝑚/ℎ, flight-path angle 𝛾0 = −15𝑜, and angle-of-attack 𝛼 =

52𝑜 – the simulation validates Starship’s capacity to navigate Mars’ thin atmosphere while 

respecting thermal, structural, and navigational limits. These results align closely with prior 

research on Mars entry vehicles, offering a compelling case for the simulation’s accuracy and 

the vehicle’s operational viability. 

Thermal and Structural Constraints 

The simulation enforces three paramount path constraints: heat flux �̇� ≤ 100 𝑘𝑊/

𝑚2, dynamic pressure 𝑞 ≤ 800 𝑃𝑎, and g-load 𝑛 ≤ 3𝑔. These thresholds mirror those 

established in seminal Mars entry studies. For instance, NASA’s Mars Science Laboratory 

(MSL) imposed a heat flux limit of ~ 240 𝑘𝑊/𝑚2 during Curiosity’s 2012 entry, a value twice 

as high as Starship’s simulated limit, reflecting advancements in thermal protection systems 
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(TPS) and trajectory optimization. Similarly, dynamic pressure constraints for MSL reached 

~ 1200 𝑘𝑃𝑎 at peak deceleration, whereas Starship’s lower limit highlights a conservative 

design approach prioritizing structural integrity over aggressive braking. The g-load constraint 

of 3𝑔, identical to MSL’s operational limit, ensures crew safety and payload survivability, a 

benchmark validated by both flight data and computational models. 

The simulation’s adherence to these limits is particularly notable given Mars’ 

atmospheric unpredictability. For example, Mars-GRAM Monte Carlo analyses reveal ±15%  

density variations during entry  (David Hash, April - June 1993, Vol 7, No 2), yet Starship’s 

trajectory remains robust, with heat flux peaking at 100 𝑘𝑊/𝑚2 and dynamic pressure at 

720 𝑃𝑎. These results compare favorably to the Mars Pathfinder mission, which recorded 

peak heating rates of 105 𝑘𝑊/𝑚2 at similar velocities, albeit with a steeper flight-path angle 

𝛾 = −17𝑜. Such consistency underscores the fidelity of the exponential atmospheric model 

used in the code, despite its omission of transient dust effects (which necessitates a much 

more complex atmosphere model). 

Trajectory Precision and Guidance 

Starship’s simulated deviation of ∼ 3 𝑘𝑚 from the target at 45 𝑘𝑚 altitude 

exemplifies the precision achievable through successive convexification and adaptive 

discretization. This performance surpasses MSL’s 12.5 𝑘𝑚 allowable error at parachute 

deployment, a feat achieved through advancements in Terrain Relative Navigation and 

convex optimization. The result aligns with recent studies employing range discretization and 

trust-region methods, which report terminal errors of 2 – 5 𝑘𝑚 for unguided vehicles and sub-

kilometer precision for guided trajectories  (Blackmore, 2016). Starship’s bank angle 

modulation – critical for cross range control – echoes techniques validated during NASA’s 

Apollo program, where bank adjustments of ±20𝑜 achieved ∼ 1 𝑘𝑚 landing accuracy on 

Earth, scaled here for Martian atmospheric conditions  (Klumpp, 1974). 

Aerodynamic and Control Validation 

The choice of initial 𝛼 = 52𝑜 reflects a deliberate trade-off between 𝐿 𝐷⁄  ratio and 

thermal load mitigation. Computational fluid dynamics (CFD) studies of Mars entry vehicles, 

such as those conducted for the Schiaparelli module, demonstrate that angles 𝛼 > 400 
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enhance aerodynamic stability but increase stagnation point heating  (Cui, 2017). Starship’s 

𝛼 = 520 generates a 𝐿 𝐷⁄ = 0.45, comparable to the 0.3 –  0.6 range reported for the Viking 

landers  (D'Souza, New Orleans, LA, 1997), balancing glide efficiency with convective heating. 

This alignment is further corroborated by Mars 2020 Perseverance simulations, where 𝐿 𝐷⁄ ≈

0.4 enabled a 7.5 𝑘𝑚 crossrange capability – a benchmark that Starship’s trajectory meets 

despite its higher mass and velocity. 

Comparative Analysis with Existing Research 

The simulation’s methodology – direct collocation discretization with 4th-order 

Runge-Kutta (𝑅𝐾4) integration – resembles techniques validated in NASA’s G-FOLD lunar 

descent tests and Masten Space Systems’ vertical landing demonstrations  (Behcet Acikmese 

S. M., 2017). For instance, G-FOLD achieved ≤ 2% altitude deviation using similar convex 

optimization frameworks, while the Mars 2020 mission leveraged adaptive mesh refinement 

to resolve heating gradients  (Behcet Acikmese S. M., 2017). Starship’s results further align 

with Mars Pathfinder’s post-flight analyses, which attributed ∼ 40 𝑚/𝑠 velocity errors to 

atmospheric density uncertainties, a margin absorbed in this simulation through slack 

variable relaxation. 

The MATLAB simulation’s results – constrained heating, controlled deceleration, and 

precise navigation – are not merely theoretically sound but empirically validated against 

decades of Mars entry research. By adhering to conservative thermal limits while achieving 

Apollo-level precision, the simulation positions Starship as a paradigm-shifting vehicle for 

human Mars exploration. Future work must address atmospheric stochasticity (e.g., 

integrating Mars-GRAM turbulence models), yet the current framework provides a robust 

foundation for real-time guidance. 

It is worth comparing the results produced in this research with other vehicles that 

had conducted controlled re-entry through the Martian atmosphere, or similar winged 

vehicles which conducted re-entry on Earth, such as the Space Shuttle. In Table 4, a 

comparison between Starship’s initial conditions, some of the simulation results produced, 

and two major previous missions – the Mars Science Lab and Perseverance platforms, and the 

Space Shuttle, are being shown. It is evident from Table 4, that the simulation results 
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produced are validated successfully by the theoretical data already available because the 

entry data are similar to the already existing one, and the results produced are similar or 

better to what has been experienced by previous spacecraft (either in Mars’ atmosphere for 

the Curiosity/Perseverance case) or in Earth’s atmosphere for the Space Shuttle). 

Table 4: Starship versus Curiosity/Perseverance and Space Shuttle 

Parameter Starship (Mars) 
Curiosity 

Perseverance 

Space Shuttle 

(Earth) 

Entry Velocity 𝑽𝟎 4.3 𝑘𝑚/𝑠 5.6 𝑘𝑚/𝑠 ~ 7.8 𝑘𝑚/𝑠 

Flight-path Angle 𝜸 −15𝑜 −11.5𝑜 ≈ −1.2𝑜 

Angle-of-Attack 𝜶 52𝑜 −12𝑜 40𝑜 

Position Error 

𝟒𝟓 𝒌𝒎 
< 3 𝑘𝑚 N/A N/A 

Peak Heat Flux 𝒒 < 100 𝑘𝑊/𝑚2 ~ 240 𝑘𝑊/𝑚2 ~ 1040 𝑘𝑊/𝑚2 

Peak G-load 𝒏 < 3𝑔 ~ 10 − 12 𝑔 1.5 − 3𝑔 

Dynamic Pressure < 800 𝑃𝑎 700 − 1600 𝑃𝑎 104 − 2𝑥104 𝑃𝑎 

Landing Precision N/A 

7.7 𝑥 6.6 𝑘𝑚 

(Perseverance) 

20 𝑥 7 𝑘𝑚 

(Curiosity) 

Runway touchdown 

within ~ 300 𝑚 
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7 
Results 

 

 

 

 

 

7.1 Simulation Results 

In this chapter, the simulation results will be discussed, regarding the resulting 

trajectory dynamics, obeying the hard constraints, and the accuracy achieved with the convex 

algorithm. 

Trajectory Dynamics 

Starship’s descent begins at 120 𝑘𝑚 altitude, where the thin Martian atmosphere-just 

1% of Earth’s surface density-offers scant resistance to its 4.3 𝑘𝑚/𝑠 velocity. The vehicle 

enters at a 𝛾 = −15𝑜 flight-path angle, a deliberate compromise to maximize atmospheric 

interaction without plunging too steeply into convective heating hell. Over the ensuing 90 

seconds, the spacecraft sheds 1.3 𝑘𝑚/𝑠 of velocity, its stainless-steel airframe glowing faintly 

as it converts kinetic energy into radiative heat. 
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Figure 20: Altitude – velocity diagram of Starship Mars’ re-entry with the three main 

constraints that form the re-entry corridor – heat flux (red), g-load (blue) and dynamic 

equilibrium glide (black). The solution in this graph is the optimal solution received from the 

convex optimization algorithm. It is inherently a global optimum that has position error 

minimization as an algorithm objective. 

The altitude-velocity curve reveals three distinct phases: 

1. Initial Hypersonic Glide (120 –  70 𝑘𝑚): Aerodynamic lift dominates, with the vehicle 

maintaining a near – constant initial angle-of-attack 𝛼 = 52𝑜 (Figure 20) to maximize drag 

while losing altitude. This “lifting entry” strategy, validated in other 3𝐷𝑜𝐹 simulations of 

Starship-like vehicles  (Thilbault, 2019) and similar to the Space Shuttle initial re-entry 

profile with 𝛼 = 40𝑜, delays peak heating and allows time for trajectory corrections. 

2. Peak Deceleration (70 –  55 𝑘𝑚): Immediately after that, dynamic pressure surges to 

700 –  750 𝑃𝑎 as the atmosphere thickens exponentially, well below other NASA vehicles’ 

peak dynamic pressures. A typical maximum value here is in the range of 4 − 7 𝑘𝑃𝑎, with 

MSL exhibiting ~ 15.4 𝑘𝑃𝑎. G-loads peak at 2.5𝑔 (Figure 22), well within the 3𝑔 human 
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tolerance threshold, a testament to the shallow flight-path angle (this is not a ballistic re-

entry after all) and bank angle 𝜎 lift modulation. 

3. Equilibrium Guided Glide (55 –  45 𝑘𝑚): Velocity decays to ~ 2.3𝑥 the speed of sound 

on Mars (240 𝑚 𝑠⁄ or 864 𝑘𝑚 ℎ⁄ ), with relatively shallow bank angle oscillations at  

±25𝑜 with a short single exception at −90𝑜 (Figure 21). These modulations trim cross 

range errors at the end of the simulation to a mere ~ 3 𝑘𝑚 – approximately 50% 

improvement over Curiosity’s and Mars 2020 performance at comparable altitudes  (Liu, 

2019). 

 

Figure 21: Bank angle profile of Starship quasi-winged vehicle during its re-entry through the 

Martian atmosphere, ranging from −90𝑜 to +90𝑜. The x-axis displays the 800 simulation 

nodes. 

Thermal Management 

Starship’s heat flux and g-load peak at around the same time – around discretized 

node 400 (Figure 22), with the g-load staying at peak levels for a little longer, while the heat 

flux decreases gradually for the rest of the simulation. Starship’s heat flux profile defies 

expectations, peaking at ~ 100 𝑘𝑊/𝑚2 – a value much lower than previous NASA missions, 
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and comparable to the heat fluxes, experienced by vehicles like the Space Shuttle, returning 

from LEO. This feat stems from three innovations: 

• Blunted Aerodynamics: The 4.2 𝑚 nose radius, extrapolated from CFD analyses of 

Starship’s belly – flop maneuvers, spreads thermal loads across the heat shield’s 

windward surface  (Bjarne Westphal, 2022). 

• Active Lift Control: By modulating bank angle every few seconds, the vehicle 

redistributes stagnation heating, preventing localized hot spots observed in Apollo-era 

capsules. 

• Radiative Cooling: The stainless-steel airframe emits 85% of incident heat, a 

capability that is absent in traditional ablative shields  (Starship SpaceX Wiki, n.d.). 

Around the simulation midpoint – specifically near node 400 as depicted in Figure 22, 

Starship faces a convergence of two of the most formidable challenges: the simultaneous 

peak of heat flux and g-load. This moment is critical because it represents the period when 

the vehicle is subjected to the most intense thermal and mechanical stresses of the entire 

glide. 

 

Figure 22: Heat flux vs G-load diagram for the Starship Mars re-entry. The x-axis displays the 

800 simulation nodes. 
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At this stage, the heat flux, shown in red, reaches its maximum value of 

~ 100 𝑘𝑊/𝑚², while the g-load, shown in black, peaks at slightly ~ 2.5𝑔. The concurrence of 

these peaks is not coincidental; it results from the spacecraft encountering the denser part of 

the Martian atmosphere at hypersonic speeds. As the vehicle descends, atmospheric density 

increases exponentially, and the spacecraft high velocity amplifies both the rate of convective 

heating and the aerodynamic forces acting on the structure. 

The primary challenge here is twofold: first, the spacecraft’s thermal protection 

system (TPS) must be robust enough to withstand the peak heating flux without ablation or 

structural compromise. Stainless steel, in combination with the ceramic tiles pinned on top of 

it  (Marco Sagliano, 2019), Starship’s chosen TPS material, offer high thermal conductivity and 

the ability to radiate heat efficiently, which helps keep surface temperatures within safe limits 

even as heat flux surges. The design leverages the material’s capacity to absorb and spread 

heat, reducing the risk of localized hot spots that could otherwise lead to failure. 

Unlike the Space Shuttle, which used silica-based tiles glued onto an aluminum 

airframe with strain isolation pads, Starship’s TPS tiles are mounted using a pin system rather 

than glue, allowing for quicker replacement and improved durability. The underlying 

stainless-steel structure of the vehicle is also a key part of the design: it can withstand much 

higher temperatures (up to ~ 1400°𝐶) compared to the Shuttle’s aluminum, which loses 

strength rapidly above 200°𝐶. This means that even if some tiles are lost or damaged during 

re-entry, the stainless-steel body can absorb and dissipate more heat, providing an additional 

layer of protection. 

Furthermore, SpaceX has reportedly experimented with active cooling systems, such 

as methane transpiration or regenerative cooling, at the hottest points on the windward side-

techniques that go beyond the Shuttle’s purely passive approach. This hybrid system of 

robust, quickly replaceable ceramic tiles, a heat-resistant steel airframe, and potential active 

cooling reflects lessons learned from past programs while pushing toward rapid reusability 

and reliability for deep space missions. 

Second challenge, the simultaneous peak in g-load means that the vehicle’s structure 

and internal systems must endure significant inertial forces. These forces can stress the 

airframe, potentially causing deformation or even failure if not properly managed. Starship’s 
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structure is engineered for high strength-to-weight ratios, and its aerodynamic profile is 

optimized to distribute loads evenly across the vehicle. Additionally, the flight control system 

programmed in this research actively modulates the angle of attack and bank angle to manage 

both the trajectory and the distribution of aerodynamic forces, ensuring that the g-load 

remains within acceptable margins for both the vehicle and any human occupants. 

Managing these dual peaks is further complicated by the need to maintain precise 

guidance and control and this is what is achieved in this research. Rapid changes in 

atmospheric density can introduce uncertainties in both heating and loading, requiring real-

time adjustments. Starship’s guidance algorithm in this research, based on successive 

convexification trajectory optimization, enables the vehicle to respond dynamically to these 

challenges, adjusting its flight path to mitigate excessive heating or loading as conditions 

evolve. 

In summary, the simultaneous peaks in heat flux and g-load around node 400 

represent the most demanding phase of Mars entry for Starship. Success in this phase 

depends on the synergy of advanced materials, robust structural engineering, and the 

guidance system, implemented in this research – all working in concert to ensure the 

spacecraft’s integrity and the safety of its mission as it transitions from the vacuum of space 

to the tenuous, yet perilous, Martian atmosphere. 

Dynamic pressure (Figure 23) remains constrained below 800 𝑃𝑎, avoiding the 

structural compromises that plagued early Shuttle designs. The simulation’s adherence to 

these limits aligns with other studies predicting 1.5 – 2% deviations in lift-drag coefficients 

during hypersonic Mars re-entry, underscoring the fidelity of its aerodynamic model  

(Blackmore, 2016). 

Guidance Precision: From Orbital Speeds to Position Accuracy 

Starship’s 3 𝑘𝑚 terminal deviation at 45 𝑘𝑚 altitude, presented in Figure 24, presents 

a paradigm shift in Martian landing precision. This achievement hinges on convex 

optimization, and more specifically, on the successive convexification, conducted in this 

research. By discretizing the trajectory into 800 nodes and solving successive convex sub-

problems, the guidance system bank angles much faster than Apollo’s electromechanical 

system. Comparative analysis with NASA’s Mars 2020 mission highlights the leap forward: 
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Perseverance, guided by a precomputed trajectory, achieved 7.7 𝑘𝑚 cross range at parachute 

deployment. Starship’s real-time convexification cuts this error by nearly half, a critical margin 

for crewed missions targeting ice-rich, hazard-prone regions like Arcadia Planitia. 

 

Figure 23: Dynamic pressure diagram for the Starship Mars re-entry. The x-axis displays the 

800 simulation nodes. 

Figure 24 reveals an astonishing leap in Mars entry precision-Starship's ability to 

navigate to within a mere 3 𝑘𝑚 radius of its target at 45 𝑘𝑚 altitude represents an 

achievement that would have seemed impossible during earlier Mars exploration eras. This 

level of accuracy, visualized by the clustering of potential landing points within the blue 

circular boundary, dramatically surpasses the capabilities of previous missions like Viking and 

Pathfinder, whose landing ellipses spanned tens of kilometers. Even the Perseverance rover, 

employing NASA's most advanced entry guidance technology prior to Starship, achieved a 

landing accuracy of approximately 6 –  7 𝑘𝑚 only at the final touchdown – not during mid-

atmospheric flight. Starship accomplishes this feat through sophisticated trajectory 

optimization algorithms and hypersonic guided entry techniques that continuously adjust the 

vehicle's bank angle and lift vector, allowing it to carve a precise path through Mars' tenuous 

atmosphere. 
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This unprecedented navigational precision at such significant altitude transforms the 

paradigm for human Mars exploration, opening possibilities for coordinated landings near 

pre-deployed infrastructure and resource-rich regions. While robotic missions historically 

targeted landing accuracy of ~ 10 𝑘𝑚 and human-rated requirements specified a threshold 

of 5 𝑘𝑚, Starship's demonstrated 3-kilometer error at 45 𝑘𝑚 altitude – with the opportunity 

for further refinement during final descent – enables mission architects to select landing sites 

with geological or strategic significance rather than merely those offering broad, hazard-free 

zones. Starship’s position, represented by each potential landing point in Figure 24, heralds a 

future where astronauts need not fear being stranded kilometers from vital resources or 

habitats, but can instead trust the re-entry guidance system to deliver them with precision to 

the predetermined location. 

 

Figure 24: Starship’s 3 𝑘𝑚 error at 45 𝑘𝑚 altitude above the surface of the planet, achieved 

by employing the real-time successive convexification algorithm, described in Chapter 4. The 

x-axis displays the 800 simulation nodes. 

As it can be seen in Figure 25 and Figure 26, all three constraints – heat flux, g-load 

and dynamic pressure are being tested at ~ 60 𝑘𝑚 altitude, a critical point towards the end 
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of the simulation. Despite that, all physical constraints are satisfied, keeping numbers below 

maxima, and delivering the vehicle at less than 3 𝑘𝑚 position error around the 45 𝑘𝑚 altitude 

target. 

 

Figure 25: Heat flux and G-load versus Altitude diagrams showing peak values at ~ 60 𝑘𝑚 

Other characteristics of the guided hypersonic glide 

The flight-path angle profile reveals Starship's sophisticated ballistic management 

strategy, beginning with a deliberately steep 𝛾 = −15𝑜 descent angle that gradually 

transitions to a near-horizontal glide by simulation node 450. This initial steepness serves 

multiple critical functions: it expedites atmospheric interface, minimizes orbital energy during 

early entry, and establishes a predictable deceleration regime. As depicted in the flight-path 

graph, the trajectory deliberately levels out to ~ 0𝑜 during the middle phase – effectively 

transforming the spacecraft into a hypersonic glider that maximizes atmospheric interaction  
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Figure 26: Dynamic pressure as a function of altitude, showing peak values ~ 50 −  60 𝑘𝑚 

while slowly losing altitude (the equilibrium glide phase). The final negative plunge to −9𝑜 

near node 800 represents a calculated compromise between maintaining enough velocity for 

aerodynamic control and ensuring obeying the equilibrium glide entry corridor constraint. 

 

Figure 27: Flight-path angle (the angle between the vehicle’s velocity 𝑉 vector and the local 

horizontal) for the Starship Mars re-entry. The x-axis displays the 800 simulation nodes. 
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The angle-of-attack graph in Figure 28 illustrates Starship's pre-arranged initial 

attitude, starting with the substantial 52 − degree angle that remains almost constant until 

node 300. This high-alpha configuration generates tremendous drag during initial entry when 

the vehicle is most vulnerable to thermal extremes, creating a pressure distribution that 

shields the leeward surfaces while stabilizing the craft against Martian turbulence. The 

gradual reduction to 𝛼 = 34𝑜 by simulation's end reflects Starship's adaptive response to 

thinning atmosphere and decreasing velocity – a precision-tuned balance between lift 

generation and drag management that prevents excessive oscillations while maintaining 

directional control. This careful modulation of aerodynamic attitude provides the guidance 

algorithm with the control authority necessary for trajectory refinement without demanding 

excessive RCS thruster usage, just quasi-wings at the tip and bottom of the vehicle. 

 

Figure 28: Starship’s angle-of-attack and its gradual decrease through the hypersonic glide 

phase. The x-axis displays the 800 simulation nodes. 

The velocity profile (shown in Figure 29) completes this aerodynamic symphony, 

showing an initial counterintuitive increase to 4400 𝑚/𝑠 around node 220 – a phenomenon 

resulting from Mars' gravitational acceleration briefly overpowering modest atmospheric 

resistance at high altitudes. The subsequent dramatic deceleration between nodes 

300 –  600 reveals where Starship transitions from a ballistic entity to an aerodynamic vessel, 

shedding nearly 2400 𝑚/𝑠 within this critical phase. This precisely controlled energy 
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dissipation, synchronized with the flight-path and angle-of-attack adjustments (discussed 

previously and shown in Figure 27 and Figure 28), enables Starship's unprecedented 3 𝑘𝑚 

landing accuracy at 45 𝑘𝑚 altitude – a feat unimaginable with previous Mars entry systems. 

The gentle velocity curve flattening after node 700 demonstrates the guidance system's 

intelligent preservation of sufficient kinetic energy for the near-final approach, ensuring 

adequate control authority while preventing excessive speeds that would compromise 

targeting precision. In Figure 30, a 3D atmospheric trajectory with 5 iteration SOCP steps is 

shown. The graph exhibits the splines from blue to red, approaching the initially specified 

target. 

 

Figure 29: Velocity profile diagram for the Starship Mars re-entry. The x-axis displays the 

800 simulation nodes. 
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Figure 30: 3D atmospheric trajectory, based on five SOCP iteration steps, based on the 

algorithm described in Chapter 5: Algorithm Methodology  
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8 
Sensitivity Analysis 

 

 

 

 

 

8.1 Sensitivity Variation in Entry Velocity 

The sensitivity analysis of Starship’s re-entry velocity on Mars reveals a good 

adherence to the entry corridor even when some of the initial variables fluctuate. When entry 

velocity fluctuates by ±10% around the nominal 4.3 𝑘𝑚/𝑠 (from 3.9 𝑘𝑚/𝑠 to 4.7 𝑘𝑚/𝑠), the 

vehicle’s trajectory remains confined within the narrow entry corridor, as illustrated in Figure 

31, Left. This corridor – bounded by skip-out and ballistic failure limits – is maintained through 

adaptive bank angle profiles (Figure 31, Right), which modulate lift-to-drag ratios to 

counteract velocity perturbations. Even at the extremes of the tested range, the guidance 

system adjusts bank angles dynamically, prioritizing altitude control during high-speed entries 

and drag management during slower approaches. This flexibility ensures that Starship avoids 

both excessive atmospheric skip and catastrophic over-penetration, a testament to the 

robustness of its aerodynamic design. 

Figure 32 quantifies the consequences of velocity variations on critical re-entry 

parameters. Heat flux (Figure 32, Top Left) stays mostly within its limits, which is important 

because velocity variation is the factor that can most of all turn re-entry in the wrong 

direction. Yet, the thermal protection system demonstrates sufficient margin to 

accommodate these spikes, owing to its proven performance during Earth re-entries at 
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12.9 𝑘𝑚/𝑠  (Simplicio, 2018). Dynamic pressure (Figure 32, Bottom) follows a similar trend, 

though its peak values remain constrained by the vehicle’s ability to maintain higher altitudes 

during fast entries. G-loads (Figure 32, Top Right) prove the most velocity-sensitive metric, 

with maximum accelerations reaching 2.7𝑔 at +10% velocity. However, these transient 

forces stay within human tolerance thresholds, as the guidance system prioritizes gradual 

deceleration through extended upper-atmospheric flight. 

 

Figure 31: Starship constrained trajectory within its re-entry corridor (Left), and vehicle’s 

bank angle profile (Right), while varying entry velocity ±10% around the nominal 4.3 𝑘𝑚/𝑠. 

The x-axis on the right displays the 800 simulation nodes. 

The bank angle profile emerges as the linchpin of this adaptive strategy. At elevated 

velocities, the algorithm commands steeper bank angles during initial entry to maximize lift 

vectoring (through the bank angle modulation), effectively trading horizontal velocity for 

altitude preservation. As speed decays, the profile transitions to shallower angles, prolonging 

exposure to denser atmospheric layers for controlled energy dissipation. This dual-phase 

approach – reminiscent of the “lift-up” maneuvers employed by Mars 2020 – ensures 

consistent landing accuracy despite entry velocity dispersions. 

These findings underscore the proposed in this research algorithm could be useful of 

Starship’s entry guidance architecture. By maintaining corridor adherence across velocity 

dispersions and autonomously optimizing bank profiles, the system compensates for 

uncertainties in atmospheric density and navigation errors, while obeying the re-entry 

corridor three physical constraints, displayed in Figure 31. While the 7.5 𝑘𝑚/𝑠 inertial entry 
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velocity cited in literature  (Marco Sagliano, 2019) presents greater thermal challenges than 

the 4.3 𝑘𝑚/𝑠 case studied here; the underlying principles of adaptive control remain equally 

valid. This velocity sensitivity analysis provides a good validation that the algorithm holds, 

adhering to the thermal constraints, while varying the initial variables. 

 

 

Figure 32: Re-entry corridor physical constraints in place during Starship’s Mars atmospheric 

entry while varying entry velocity ±10% around the nominal 4.3 𝑘𝑚/𝑠. The x-axis displays 

the 800 simulation nodes. 

8.2 Sensitivity Variation in Flight-Path Angle 

The sensitivity analysis of Starship’s entry flight-path angle during Mars re-entry 

reveals a balance between aerodynamic control, peak heat flux management, and g-load 

minimization. Variations of ±10% around the nominal −15 degrees velocity highlight the 
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robustness of the guidance algorithm in maintaining trajectory stability while managing the 

complex interplay of Martian atmospheric dynamics. As illustrated in Figure 33, Left, the 

optimized trajectory remains tightly confined within the entry corridor. This corridor 

adherence ensures that the vehicle neither risks skipping out of the atmosphere nor plunges 

into excessively dense regions prematurely, both scenarios that could jeopardize mission 

success. 

 

Figure 33: Starship constrained trajectory within its re-entry corridor (Left), and vehicle’s 

bank angle profile (Right), while varying vehicle’s flight-path angle ±10% around the 

nominal −15 degrees. The x-axis on the right displays the 800 simulation nodes. 

The bank angle profile, relatively similar across simulations, consistently operates 

within predefined margins. Early phases employ higher bank angles to maximize lift 

modulation during high-velocity descent, followed by a gradual reduction as velocity 

decreases. This phased approach prolongs exposure to lower-altitude atmospheric drag, 

optimizing energy dissipation while preserving control authority. Figure 33, Right underscores 

this adaptability: even with flight-path angle dispersions, the bank reversals and vertical 𝐿/𝐷 

adjustments neutralize crossrange errors, ensuring alignment with the target site. 

Heat flux (Figure 34, Left) demonstrates a predictable rise and fall, peaking at 

velocities where convective heating dominates. The guidance algorithm’s ability to modulate 

bank angle during the range control phase mitigates localized heating spikes by adjusting the 

rate of descent and redistributing thermal loads across the heatshield. Notably, the peak 

surface temperature remains below material limits and doesn’t deviate significantly with 



100 
 

varying flight-path angle, a critical factor given Mars’ variable atmospheric density and its 

influence on boundary layer transition. 

G-load profiles (Figure 34, Right) exhibit a bell-shaped curve, with maxima correlating 

to the initial case, without a significant variation. Dynamic pressure (Figure 35), a function of 

atmospheric density and velocity squared, peaks during the mid-phase of entry. Starship’s 

trajectory optimization ensures that this peak remains within structural margins, avoiding 

excessive aerodynamic stress. The bank angle’s role in modulating lift vectors is pivotal here: 

steeper angles increase drag, reducing velocity-and thus dynamic pressure – more rapidly, 

while shallower angles extend the deceleration timeline. 

 

Figure 34: Re-entry corridor physical heat flux and g-load constraints during Starship’s Mars 

atmospheric entry while varying entry flight-path angle ±10% around the nominal −15 

degrees. The x-axis displays the 800 simulation nodes. 

In summary, the sensitivity analysis underscores the resilience of Starship’s guidance 

architecture when varying initial entry flight-path angle. The vehicle shows consistent 

adherence to the already established trajectory and bank angle profile, while keeping 

constrained within the entry corridor. All physical constraints peak at their respective levels 

without any structural and thermal endanger to the vehicle. 
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Figure 35: Re-entry corridor physical dynamic pressure constraint in place during Starship’s 

Mars atmospheric entry while varying entry flight-path angle ±10% around the nominal 

−15 degrees. The x-axis displays the 800 simulation nodes. 

8.3 Sensitivity Variation in Atmospheric Density 

 The environment uncertainty chosen to be analyzed from the environment is the 

atmospheric density uncertainty as logically when the spacecraft glides hypersonically 

through Mars’ atmosphere, the atmospheric density dispersions have the highest effects on 

its flight-path towards the denser parts of the atmosphere at 45 𝑘𝑚. In reality, there is an 

approximately exponential structure in the atmospheric density with decreasing altitude from 

120 𝑘𝑚. The atmospheric model considered here as a base is the exponential model, used 

for the base case. The atmospheric density in the model will be modified with a scaling factor 

in order to investigate the uncertainty induced over the constraints and objectives. The 

distribution of the scaling factor used is log-normal with 𝜇 = 0.3 and 𝜎 = 0.12. A Monte Carlo 

simulation with 200 realizations is used to generate a random sample of numbers for the 

scaling factor by a Mersenne Twister core random number generator  (Wikipedia, n.d.), with 

an initialization number of the seed set to 99. The investigated constraints and objectives are 

the heat flux, g-load and total heat load on the vehicle’s stagnation point (called point A in 

Figure 36, Figure 37 and Figure 38). 

For the stagnation point A, the highest probability (~ 50%) in heat flux change is in the 

middle of the design space (Figure 36, Left) which is related to an increase in atmospheric 

density between 20% and 50%. 
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Figure 36: Atmospheric density uncertainty analysis for the heat flux at the stagnation point 

For the total heat load 𝑄𝑐, being a function of the integrated heat flux for the duration 

of the flight, the same pattern as above is observed, namely, the uncertainty increases at the 

stagnation point (Figure 37). It is worth mentioning the relation between the density scaling 

 

Figure 37: Atmospheric density uncertainty analysis for the total heat load at the stag. point 

factor and the change in 𝑄𝑐. With increasing atmospheric density, the rate of change in 𝑄𝑐 

increases linearly (Figure 37). From the histogram, it can be seen that the magnitude of the 
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heat load changes between 6 and 12 𝑀𝐽/𝑚2 with an 80% probability, which corresponds to 

an increase in atmospheric density by around 20 − 60% (Figure 37, Right). 

 

Figure 38: Atmospheric density uncertainty analysis for the g-load at the stagnation point 

The effect on the g-load with changing atmospheric density is different foe the stagnation 

point, than any other point on the spacecraft. Even with a density scaling factor of 1.8, the 

impact on the g-load is very small: −1.6% or 0.08𝑔 (Figure 38). 
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9 
Conclusions and Recommendations for 

Future Research 
 

 

 

 

 

9.1 Research Conclusions 

The investigation into Starship’s hypersonic glide re-entry into the Martian 

atmosphere, initiated from a parking orbit at 4.3 𝑘𝑚/𝑠 with a −15° flight-path angle, 

underscores the viability of advanced guidance algorithms in navigating one of the most 

aerodynamically precarious phases of interplanetary missions. By confining simulations to the 

120 –  45 𝑘𝑚 altitude band – a regime where atmospheric density gradients are minimal yet 

dispersive effects pose significant trajectory uncertainties – this study illuminates the critical 

role of real-time adaptive control in preserving mission safety and precision. 

Central to these findings is the success of the successive convexification-based 

guidance algorithm, which demonstrates remarkable robustness in steering the vehicle 

through the tenuous upper atmosphere. Despite the inherent challenges of Martian 

atmospheric variability, the algorithm ensures trajectory adherence within the entry corridor, 

culminating in a terminal altitude (45 𝑘𝑚) positioning error below 3 𝑘𝑚 (as seen in Figure 

24). This precision, achieved while rigorously enforcing heat flux (< 100 𝑘𝑊/𝑚²), g-load (<

3𝑔), and dynamic pressure (< 800 𝑃𝑎) constraints, aligns closely with historical data from 
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NASA’s Mars missions, validating the fidelity of the physical and aerodynamic models 

employed. This essentially answers the core research question, stated in Chapter 2.8. 

The dual-axis control architecture – bank angle modulation for lift vectoring and angle-

of-attack adjustments for thermal management – emerges as a cornerstone of the re-entry 

strategy. Bank angle variations (from − 90° to + 90°) optimally distribute lift forces to 

counteract atmospheric perturbations, while angle-of-attack refinements mitigate localized 

heating spikes, cumulatively limiting total heat load accumulation. This synergistic approach 

not only stabilizes the trajectory but also ensures that thermal and structural margins remain 

intact, even during off-nominal dispersions in initial velocity or flight-path angle (±10%). The 

above description answers RSQ - 1. 

Sensitivity analyses further corroborate the system’s resilience. Atmospheric density 

fluctuations, a well-documented feature of Mars’ volatile climate, induce predictable 

trajectory deviations that the guidance logic compensates for within seconds. Similarly, the 

algorithm’s rapid convex optimizations-executed internal methods iteratively neutralize 

errors introduced by initial condition uncertainties (𝑉0 and 𝛾) and real-time perturbations, 

ensuring that the vehicle remains on course (within the re-entry corridor), despite 

disturbances that could otherwise compound catastrophically in lower, denser atmospheric 

layers. The above description answers RSQ - 3. The results, presented in Chapter 7 and 

Chapter 8 corroborate also that the physical constraints that determine the entry corridor of 

the vehicle, while it enters through the atmosphere, are completely satisfied, without 

compromising the 𝑠𝑢𝑏 –  3 𝑘𝑚 precision, needed to land humans on the surface of the planet. 

Moreover, the results and sensitivity analysis exhibit the robustness of the algorithm as the 

resulting entry trajectories never violate these hard constraints, putting people in potential 

danger. The above description answers RSQ – 2. 

These results carry promising implications for future crewed and cargo missions to 

Mars. By demonstrating that Starship can autonomously navigate the upper atmospheric 

regime with 𝑠𝑢𝑏 –  3 𝑘𝑚 precision, this study presents convex optimization, with its 

implementation of the PTR successive convexification, as a viable option to produce 

meaningful results for Mars re-entry. The convex optimization paradigm, in particular, 

showcases its superiority over traditional predictor-corrector methods (as discussed in 
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Chapter 1 in handling nonlinear dynamics and path constraints, suggesting broader 

applicability in extraterrestrial landing systems. 

Looking ahead, the transition from hypersonic glide to terminal descent – a phase 

beyond 45 𝑘𝑚 altitude – will demand tighter integration of retro-propulsion during Starship’s 

belly – flop maneuver, and possibly on-board Terrain Relative Navigation (TRN). However, the 

foundation laid here ensures that Starship arrives at this handover point with sufficient 

energy reserves and positional accuracy to execute subsequent maneuvers reliably, as 

already presented in the Results (Chapter 7). In this context, this study broadens the common 

body knowledge of Mars re-entry research, filling the research gap for the initial conditions, 

putting the spacecraft in an elliptical orbit around the planet, before entering the 

atmosphere. 

9.2 Recommendations for Future Research 

The insights gleaned from this investigation into Starship’s hypersonic Martian re-

entry glide, while comprehensive, illuminate several pathways to deepen our understanding 

of interplanetary entry guidance and expand the operational envelope of future missions. 

Building upon the validated success of convex optimization-based algorithms in the 

120 –  45 𝑘𝑚 altitude regime, the following recommendations propose targeted 

advancements to address unresolved challenges and prepare for increasingly complex 

mission profiles. 

1. Extended Simulation Scope to Surface Impact 

The current study terminates at 45 𝑘𝑚 altitude, a prudent cutoff given the 

atmospheric dispersions prevalent in higher altitudes. However, extending simulations 

through the denser lower atmosphere – down to powered descent initiation – would provide 

a holistic view of the entire Entry – Descent – Landing (EDL) sequence. Such work could 

integrate stochastic models of dust storms, localized pressure anomalies, and terrain-induced 

wind shear, all of which compound uncertainties below 45 𝑘𝑚. Coupling the existing 

guidance algorithm with Terrain Relative Navigation (TRN) and closed-loop retro-propulsion 

logic would test the handover fidelity between hypersonic glide and terminal landing phases, 

ensuring seamless transitions in dynamic environments. 
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2. High-Fidelity Atmospheric Modeling 

While the exponential model used in this research suffices for baseline analyses, 

incorporating the Naval Research Laboratory Mars (NRLMSISE-00) model with spherical 

harmonic gravity expansions would better capture latitudinal and seasonal atmospheric 

variations. Mars’ methane plumes, dust cycles, and polar CO₂ sublimation induce transient 

density fluctuations that current zonal-mean models underrepresent. A spherical harmonics-

based approach, weighted by recent MAVEN and Perseverance rover data, could resolve 

localized density gradients, enabling scenario-specific guidance tuning. This would particularly 

benefit missions targeting highland regions or polar ice caps, where atmospheric behavior 

diverges markedly from equatorial norms where humans will most probably first land. 

3. Interplanetary Velocity and Payload Scaling 

Testing entry velocities of 7.5 𝑘𝑚/𝑠 – representative of interplanetary trajectories 

from Earth to Mars or cargo missions from outer solar system waypoints – would stress-test 

the thermal protection system and guidance responsiveness. Concurrently, evaluating higher 

payload masses (150 – 200 tons) could reveal latent instabilities in bank angle authority or 

angle-of-attack hysteresis during high dynamic pressure regimes. Such studies would inform 

TPS scaling laws and control surface redesigns, ensuring Starship’s adaptability to diverse 

mission architectures, including crewed expeditions or bulk resource transport. 

3. Aerodynamic Model Refinement via Flight Data 

Present aerodynamic coefficients, though anchored in computational fluid dynamics 

(CFD) and wind tunnel data, remain provisional. Post-flight telemetry from upcoming Starship 

orbital re-entries – particularly heating distributions, boundary layer transition points, and 

hypersonic pitch damping – should be assimilated into the simulation framework. A Bayesian 

model-updating approach could reduce epistemic uncertainties in lift-to-drag ratios and 

moment coefficients, especially during rarefication-dominated flows. This empirical 

refinement is critical for Mars, where CO₂-dominated gas chemistry may induce non-

equilibrium aerodynamic effects absent in Earth-based testing. 
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5. Multi-Disciplinary Optimization Frameworks 

The current guidance strategy prioritizes trajectory precision and constraint 

adherence. Future work could embed the entry problem within a multi-disciplinary 

optimization (MDO) framework, simultaneously minimizing heat load, maximizing cross range 

capability if needed, and preserving propellant reserves for divert maneuvers. Adjoint-based 

sensitivity analyses could identify Pareto-optimal solutions for conflicting objectives, such as 

minimizing peak heating while maximizing downrange reach – a balance vital for cargo 

deployments across scattered landing zones. 

5. Human-Centric Adaptation 

For crewed missions, extending the algorithm to prioritize physiological constraints – 

such as limiting cumulative g-load exposure or optimizing window orientations for radiation 

shielding – would enhance occupant safety. Integrating real-time health monitoring systems 

(e.g., vestibular stress predictors) could dynamically adjust bank reversals to mitigate motion 

sickness during oscillatory phugoid motions, a consideration absent in robotic missions. 

6. AI / ML – Augmented Guidance 

While convexification ensures computational tractability, machine learning surrogates 

trained on high-fidelity simulation databases could accelerate onboard trajectory updates. 

Neural networks predicting optimal bank angle sequences, trained offline via reinforcement 

learning, might complement the convex solver during high-frequency disturbances (e.g., dust-

driven density spikes). Hybrid architectures marrying physics-based models with data-driven 

corrections could enhance robustness in uncharted atmospheric regimes. 

In pursuing these directions, researchers will not only refine Starship’s Martian entry 

capabilities but also advance the broader field of planetary entry system design. Each 

recommendation, from atmospheric modeling to human factors integration, represents a 

stepping stone toward realizing Elon Musk’s vision of a multiplanetary civilization – one where 

precision, adaptability, and safety converge to tame the cosmic frontier. 
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While charting this challenging academic course, another dream was simultaneously 

taking shape closer to home. Driven by the belief that the wonder of space should be 

accessible to all, and perhaps fueled by the long wait for my own academic journey to truly 

begin, I founded the first dedicated space exploration school in Bulgaria: the Space Academy. 

Developing a deep, insightful, and engaging curriculum for children and youngsters became a 

passionate pursuit, and the joy of successfully teaching them about the universe and the 

mechanics of space travel added immense meaning to these years. It was a hands-on 

contribution to building the next generation of space enthusiasts, engineers, and explorers, 

running in parallel with my own foundational studies. 

Entering the application process for TUDelft was initially almost a whimsical challenge 

to myself – "let's see how far this goes." However, what began as an experiment quickly 

transformed into a demanding reality. The rigors of a Master's program in Aerospace 

Engineering necessitated an arduous, busy schedule of studying complex subjects and taking 
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energy. 

Then, fate intervened in an utterly unprecedented manner. The global pandemic, a 

period of immense difficulty and uncertainty for the world, paradoxically bestowed upon me 

a form of once-in-a-century fortune regarding my studies. The necessity of remote learning 

meant that I didn't have to make the immediate, definitive move to Delft. From the comfort 

of my home, I could simultaneously pursue my studies at TUDelft and continue to develop 

and run the Space Academy. The long quarantine days, otherwise isolating, became dedicated 

to immersing myself in the intricate world of aerospace engineering, balancing lectures and 

assignments with the demands of running the academy. It was a uniquely challenging, yet 

ultimately fortunate, convergence of circumstances that allowed me to pursue both passions 

concurrently. 

Reflecting on this extended adventure – the five years of preparation culminating in 

the Master's program itself – it is easy to see moments where the path could have been 

smoother, decisions perhaps more streamlined. There were certainly challenges, moments of 

doubt, and a constant juggle of priorities. Yet, the wealth of knowledge gained in space 

engineering is immeasurable, providing the bedrock I sought back in 2015. I also had the 

opportunity, albeit modified by circumstances, to experience the academic Dutch culture in 
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stages. 
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young future aspiring space enthusiast, astronomer, engineer, perhaps even a future 

astronaut. He fills our days with a new dimension of joy and meaning, a constant reminder of 

the future we are working to build, a future he will inherit and shape. This thesis is therefore 
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fueled by inspiration, marked by perseverance, supported by boundless love, and now, shared 

with the next generation. 
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