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A B S T R A C T

Recent advances in battery technology have opened the possibility for short-haul electric flight.
This is particularly attractive for commuter airlines that operate in remote regions such as
archipelagos or Nordic fjords where the geography impedes other means of transportation. In
this paper we address the question of how to optimize the charging infrastructure (charging
power, spare batteries) for an airline when considering a battery swapping system. Our analysis
considers the expenditures needed for (i) the significant charging power requirements, (ii) spare
aircraft batteries, (iii) the used electricity, and (iv) delay costs, should the infrastructure not be
sufficient to accommodate the flight schedule. The main result of this paper is the formulation
of this problem as a two-phase recourse model. This is required to account for the variation of
the flight schedule throughout a year of operations. With this, both the strategic (infrastructure
sizing) and tactical (battery recharge scheduling) planning are addressed The model is applied
for Widerøe Airlines, with a network of 7 hub airports and 36 regional airports in Norway.
The results show that a total investment of 4412 kW in electricity power supply and 25 spare
batteries is needed for the considered network, resulting in a daily investment of e11700. We
also quantify the benefits of considering an entire year of operations for our analysis, instead of
just one congested day (7% cost reduction) or one average day of operations (31% reduction)
at the most congested airport.

1. Introduction

To limit anthropogenic emissions, the aviation industry targets climate-neutrality by 2050 (UNFCCC, 2021). Opposed to the
automotive sector, where electric vehicles are now fully rolled out across the globe by major manufacturers and hold a 10% share
of total sales worldwide (Paoli et al., 2022) with up to 80% in Norway (Klesty, 2022), the low energy density of batteries has
prevented a similar transition in the aviation sector. Emission reductions in aviation have for now been focused on e.g. improving
operations by electric taxiing (Soltani et al., 2020; Guo et al., 2014) or electric urban air mobility (Garrow et al., 2021; Shao et al.,
2021). Nevertheless, battery technologies have greatly developed over the last ten years: gravimetric energy density has almost
tripled (Balogun et al., 2018), volumetric energy density has increased eightfold (Muralidharan et al., 2022) and prices per kWh
have decreased tenfold (Ziegler and Trancik, 2021). As such, battery technology is now at the level where it can be used for small
electric aircraft (Holland, 2021; Taraldsen, 2021; Taylor-Marriott, 2022).

Electric aircraft (e-AC) are becoming an alternative for high frequency commuter airlines operating short-haul flights in remote
areas with low passenger volumes (Justin et al., 2022). By using electric motors, which use less expensive energy and require less
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maintenance, these aircraft are cleaner and cheaper to operate than their kerosene-fueled equivalents. This would improve access to
remote regions such as archipelagos, deltas and fjords, where the geography and low population density cannot justify an extensive
road/train network.

From an operational point of view, however, replacing conventional aircraft with e-AC poses challenges. Batteries have to be
echarged quickly in order to maintain short turnaround times. However, charging only during the turnaround of an aircraft results
n a capricious energy demand with high peaks. To sustain this, an overly large and expensive charging infrastructure may be
eeded (Brdnik et al., 2022).

A way to circumvent these operational problems is to consider swapping batteries between flights. For this, we aim to determine
he charging infrastructure (how many spare batteries are needed) and the charging schedule for these batteries. The objective of
his paper is to determine an optimal charging infrastructure while accounting for the variability of the operations over a large
eriod of time. This is achieved by means of a recourse model that optimizes the infrastructure which considers an entire year of
perations. This is in contrast to existing studies, which limit their optimization models to a single day of operations, such as a peak
r average day of operations.

The recourse model has a hierarchical structure. It consists of one mixed-integer linear program as master problem and a second
ixed-integer linear program as subroutine. The master problem determines an optimal total charging power and number of spare

atteries at each airport (sizing the charging infrastructure). The objective is to minimize the infrastructure acquisition cost and the
perational cost (cost of electricity and potential flight delays). To capture the seasonality of the air traffic, flight schedules from
n entire year of operations are considered. In the subroutine, a schedule for battery swapping and charging is determined for one
ay of operations, given a charging infrastructure. We apply our model for Norwegian carrier Widerøe Airlines and its network of
egional and hub airports . Widerøe, Scandinavia’s largest regional airline, aims to introduce a fully electric aircraft to the market by
026 (Taraldsen, 2021). We consider an e-AC with the specifications of the already existing Eviation Alice aircraft. The results show
hat a total charging power of 4400 kW and 23 spare batteries are required, leading to a daily cost of e11,600. We also quantify

the benefit of optimizing the infrastructure over an entire year of operations, instead of optimizing for only a peak traffic day or a
median traffic day.

The main contributions of this paper are:

• We propose a recourse model that determines an optimal battery charging infrastructure for a network of airports, assuming
a battery swap system. This recourse model is necessary to account for the variability of the flight schedule throughout the
year when optimizing the charging infrastructure. This is in contrast to existing studies, which optimize the infrastructure
considering a single (representative or peak) day of operations.

• Our proposed model minimizes the sum of the infrastructure acquisition costs (charging capacity and spare batteries), and the
operational costs (electricity costs and flight delays due to battery charging).

• We illustrate our model for a network of 7 hub and 36 regional airports in Norway, using an existing flight schedule from
a year of operations. We also consider an already existing configuration of an electric aircraft (Eviation Alice) designed for
short-range flights.

The remainder of the paper is structured as follows. In Section 2, we discuss literature on scheduling operations at- and sizing
of-battery swapping stations, as well as e-AC charging infrastructure. In Section 3, we describe the problem of e-AC charging
infrastructure management. In Section 4, the recourse model for e-AC charging infrastructure management is introduced. In
Section 5, we illustrate the performance and results of our model in a case study for a regional carrier operating electric aircraft
in Norway. In Section 6 we quantify the advantage gained by our recourse model which accounts for an entire year of operations,
versus an optimization model which considers only a single day (peak-traffic or median-traffic day). Concluding remarks and future
research directions are given in Section 7.

2. Prior work and contributions

The concept of battery swaps systems (BSSs) as an alternative to plug-in charging has been proposed as a means of reducing
recharge times, to protect the electricity grid against high and unpredictable demand, and to limit battery degradation (Sarker et al.,
2015; Sultana et al., 2018). BSSs have mainly been studied in the context of electric cars, electrified public transport busses and
delivery drones (see e.g. Schneider et al. (2018), Ayad et al. (2021), and Kwizera and Nurre (2018)). Two research themes regarding
BSSs are relevant for this study: the sizing of the BSS infrastructure, and the scheduling of charging of the batteries.

In the past years, several studies have addressed the operations’ scheduling of BSSs, which considers determining when to
recharge the batteries at the BSS to ensure a sufficient stock. Worley and Klabjan (2011) propose a model to optimize the charging
schedule at a BSS for day-ahead planning, while considering a fixed and predetermined demand for full batteries. They formulate the
problem as a mixed-integer linear program with the objective of maximizing the revenue by supplying full batteries to customers
while minimizing the electricity costs. This model is expended by Nurre et al. (2014), who add Vehicle-to-grid (V2G) charging
as a possibility for increasing BSS revenue, and by Park et al. (2017), who study the minimization of waiting time for charged
batteries. All of these studies, however, assumed a known demand for batteries before optimization. Sarker et al. (2015) were the
first to recognize the uncertainty in the demand of a BSS, proposing a robust optimization approach to ensure a sufficient supply
of fully charged batteries. However, this study was limited to using fixed charging times, as opposed to a state-of-charge dependent
one. Additional studies have focused on minimizing battery degradation (Wu et al., 2017; Asadi and Nurre Pinkley, 2021; Kwizera
2

and Nurre, 2018). In this paper, we assume that the flight schedule is known and consider deterministic planning like Worley
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and Klabjan (2011) and Park et al. (2017). We expand upon the previous work done by considering partial charging, and our
objective also considers the minimization of the waiting time for a full battery, apart from the electricity costs. Inextricably linked
with the optimization of the battery recharge schedule is the problem of recharge infrastructure sizing: determining how many
batteries can be charged simultaneously and how many spare batteries to keep in stock at the station. Worley and Klabjan (2011)
combine a day-ahead scheduling of a BSS with determining the required spare battery inventory. However, batteries cannot always
be acquired a single day ahead, and are hence not a flexible asset. As such, there is a trade-off between making long-term investments
in infrastructure (spare batteries and chargers), and short-term operational expenses related to the charging schedule (electricity
costs, battery degradation, etc.). This is the reason why the two problems are not solved simultaneously in more recent studies. This
two-phase approach to the problem was first proposed by Schneider et al. (2018), who minimize the sum of the investment costs
for batteries and chargers and the costs of operating the BSS (customers served against electricity cost). Customer arrival times are
assumed to be exponentially distributed. Using a Monte-Carlo Dynamic Programming approach, a near-optimal policy for charge
scheduling was developed. Sun et al. (2018) consider a similar problem, but add a minimum level-of-service for the customers, while
only considering fixed charging times. Later, Sun et al. (2019) expand the problem to a three-phase approach where the number of
required chargers and batteries is determines in two phases. Other studies focus on combining the sizing of BSSs with finding an
optimal location (see Mak et al. (2013) or Liu et al. (2016)) or simultaneously routing the vehicles which use the BSS (see Ayad
et al. (2021)). For an extensive literature overview of optimization models for BSSs, we refer to Zhan et al. (2022). In this study,
we consider a two-phase approach (sizing the charging capacity and spare batteries in the first phase, scheduling the recharging
operations in the second), similar to Schneider et al. (2018), Sun et al. (2018). We extend these approaches in by considering a
state-of-charge dependent time of charge for the batteries. We also allow for preemptive battery charging during the second phase.

There are a number of studies where optimization of battery charging operations is performed in the context of electric aircraft
e-AC). Justin et al. (2020) consider the minimization of the required investment costs of the infrastructure (chargers and spare
atteries) in order to support a BSS for small e-AC. In their analysis, flight schedules and battery recharge times are assumed to
e known beforehand. They apply their models for Mukuele Airlines (Hawaii) and Cape Air (New England). Salucci et al. (2019)
erform a similar study, considering variable electricity prices throughout the day, but assume identical flight duration and battery
echarge times (similar to Nurre et al. (2014)). This work was further expanded by Trainelli et al. (2021), who also considers
he procurement and routing of a fleet of e-AC from a hub airport. They minimize the sum of the acquisition costs of the electric
ircraft, charging points and spare batteries, and the electricity costs. A similar problem is studied by Mitici et al. (2022), where
fixed electricity price is assumed. A hierarchical cost function is assumed to solve the problem more efficiently (first for aircraft

leet sizing and routing, then for charging infrastructure sizing and scheduling). Guo et al. (2020) also consider the availability of
lectricity based on renewable energy sources. Finally, the sizing of aircraft charging infrastructure at the gates/apron has been
tudied by Doctor et al. (2022).

None of these studies have separated the infrastructure sizing (number of aircraft, chargers, spare batteries) from the scheduling
f operations. As such, these solutions are optimized for one day of operations, instead of for the (predicted) traffic throughout the
ntire year. A two-phase approach, such as in Schneider et al. (2018) or Sun et al. (2018), which takes demand seasonality into
ccount has been shown to outperform such a single-phase approach. We introduce a tactical-phase battery recharge scheduling
odel, an extension of the work of Justin et al. (2020), But opposed to the previous literature on charging infrastructure for electric

ircraft, we assume that the infrastructure size is predetermined and cannot be optimized simultaneously. For this, we introduce
n infrastructure sizing model which accounts for demand variation throughout the year. This inclusion is the main contribution of
ur paper.

. Problem description

lectric aircraft operations with battery swapping

We consider an airline operating a fleet of short-haul electric aircraft, each equipped with one battery. Let 𝑅 and 𝐻 denote the
set of regional and hub airports, respectively, where these electric aircraft fly between. Aircraft can recharge their batteries at all
airports during turnaround, but this is too short to fully recharge it. In order to quickly replenish the battery, the aircraft can swap
it for a fully charged one during turnaround. We assume that only the hub airports have the infrastructure needed to swap the
batteries of the electric aircraft. We also assume that a battery is swapped with a new, fully-charged battery every time an aircraft
visits a hub airport. Fig. 1 shows an example of operations of one electric aircraft. At the start of the day, the aircraft flies from hub
H1 to H2 via regional airports R1 and R2. At R2, the battery is partially recharged. This aircraft swaps its battery at H2. From H2,
the aircraft flies to H3, where it swaps its battery again.

Electric aircraft flight schedules

Let 𝐷 denote a set of days of an entire year during which the airline operates. A flight schedule for day 𝑑 ∈ 𝐷 consists of a list
of arrival and departure times for an entire day of operations. Let 𝑇𝑑 denote the time interval during one day when the aircraft fly
to and from a set of airports (hubs and regional airports). Let 𝐹 𝑑ℎ

𝑎𝑟𝑟 and 𝐹 𝑑ℎ
𝑑𝑒𝑝 denote the set of flights operated by electric aircraft

that arrive and depart at hub airport ℎ ∈ 𝐻 on day 𝑑 ∈ 𝐷, respectively. Let 𝜏𝑎𝑟𝑟𝑓 ∈ 𝑇𝑑 denote the arrival time of flight 𝑓 ∈ 𝐹 𝑑ℎ
𝑎𝑟𝑟 and

𝑑𝑒𝑝 𝑑ℎ
3

let 𝜏𝑓 ∈ 𝑇𝑑 denote the departure time of flight 𝑓 ∈ 𝐹𝑑𝑒𝑝.
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Fig. 1. Example of a day of operations for an electric aircraft.

Fig. 2. Overview of the battery swapping and recharging process at an airport. The battery charging capacity at the airport is 𝑃ℎ = 4 ⋅𝑃 𝑐 (at most four batteries
an be charged at max power), and there at 12 spare batteries (three currently being charged, 13 waiting at the depot, minus four which should depart on the
our parked aircraft).

attery swaps

We assume that each hub airport is equipped with one charging station. Upon arrival at a hub airport, the used battery of an
lectric aircraft is swapped with a new fully charged battery. Let 𝐵𝑑ℎ

𝑎𝑟𝑟 denote the set of batteries which arrive with flights 𝐹 𝑑ℎ
𝑎𝑟𝑟 . For

ach flight 𝑓 ∈ 𝐹 𝑑ℎ
𝑎𝑟𝑟 , let 𝑏𝑓 ∈ 𝐵𝑑ℎ

𝑎𝑟𝑟 be the battery with which it arrives. Let 𝜏𝑡𝑟 denote the time it takes to bring the used battery
o the charging station. The same amount of time 𝜏𝑡𝑟 is assumed to be required to bring a fully charged battery from the charging
tation to an aircraft. Thus 𝜏𝑠𝑏𝑓 = 𝜏𝑎𝑟𝑟𝑓 + 𝜏𝑡𝑟 is the time the battery 𝑏𝑓 ∈ 𝐵𝑑ℎ

𝑎𝑟𝑟 used for flight 𝑓 ∈ 𝐹 𝑑ℎ
𝑎𝑟𝑟 arrives at the charging station.

t the charging station, each battery charges at a constant rate 𝑃 𝑐 until it is fully charged. Let 𝜏𝑐𝑏 denote the required charging time
f battery 𝑏 ∈ 𝐵𝑑ℎ

𝑎𝑟𝑟. Finally, in order to depart on time, a new battery for flight 𝑓 ∈ 𝐹 𝑑ℎ
𝑑𝑒𝑝 needs to depart from the charging station

o the gate at the latest time 𝜏𝑒𝑓 = 𝜏𝑑𝑒𝑝𝑓 − 𝜏𝑡𝑟.

attery charging station

Let 𝑃ℎ denote the charging capacity at hub airport ℎ, i.e., the total power with which batteries can be charged simultaneously
t the airport. Let 𝑃ℎ ⋅ 𝑐𝑝 ∈ R+ denote the daily cost to provide this charging power at hub airport ℎ. Let 𝑛𝑠ℎ ∈ N denote the number
f spare batteries available at a hub airport ℎ. Let 𝑐𝑠 ∈ R+ be the daily cost of having one spare battery at a hub airport.

We assume that batteries can be charged preemptively. We also assume that the price of electricity varies throughout the day
nd is given by a function 𝑐𝑒 ∶ 𝑇𝑑 → R+ of time.

Fig. 2 shows an example of a hub airport and its charging infrastructure, i.e., with charging power 𝑃ℎ = 4 ⋅ 𝑃 𝑐 and 𝑛𝑠ℎ = 12
atteries available at this airport for swap, out of which 3 batteries are charging and 13 batteries are idle in the inventory, from
hich there are 4 which have to depart with an aircraft currently parked at the airport. Each aircraft needs to depart from the
irport with a fully charged battery.

.1. Battery charging station sizing

Given a hub airport ℎ ∈ 𝐻 and set of flight schedules during days 𝐷, the main objective of our study is to determine a suitable
𝑠

4

attery charging infrastructure size (𝑃ℎ, 𝑛ℎ). This problem is solved once for each hub airport before the start of 𝐷, to allow time



Transportation Research Part C 155 (2023) 104313S. van Oosterom and M. Mitici
Fig. 3. Recourse model for sizing the charging infrastructure and recharge scheduling for e-AC battery swaps. Sizing the charging infrastructure is a strategic
planning problem, whereas creating a recharge schedule is a tactical planning problem.

for charging station construction. The infrastructure is optimized to minimize the sum of the capital expenditures (𝑃ℎ ⋅ 𝑐𝑝 + 𝑛𝑠ℎ ⋅ 𝑐𝑠)
and average charging schedule operating costs over 𝐷 are as low as possible. The value of the latter for each 𝑑 ∈ 𝐷 is given by the
battery recharge schedule optimization (Section 3.2), which is used as a subroutine.

3.2. Swapped aircraft batteries recharge scheduling

Given a certain charging infrastructure size (charging capacity 𝑃ℎ and number of spare batteries 𝑛𝑠ℎ) and a flight schedule during
day 𝑑 ∈ 𝐷 at a hub ℎ ∈ 𝐻 , we aim to determine a charging schedule for batteries such that the charging schedule operating cost
(electricity cost and flight delay cost) is minimized. For this, we need to determine which battery departs with which aircraft, and
when to charge these batteries during the day. In the case that the infrastructure is not sufficiently large to ensure that flights depart
on time, a penalty cost is incurred. This is a convex piecewise linear function of time, with breakpoints at 𝑇 𝑑𝑒𝑙. Each time the flight
delay is larger then some 𝜏 ∈ 𝑇 𝑑𝑒𝑙, a cost 𝑐𝑑𝑒𝑙(𝜏) ≥ 0 is incurred per unit of delay time. We assume that these delays are small and
thus are assumed to be absorbed on route.

An overview of the model, with the interaction between the Battery charging station sizing problem and the Swapped aircraft
batteries recharge scheduling problem, can be seen in Fig. 3. The latter is used as a subroutine in order to evaluate the charging
schedule operation cost for a given infrastructure size on a single day.

4. A recourse model to optimize the charging infrastructure for swapped batteries

We propose a novel recourse model which manages the swapping and charging process for an airline operating a fleet of electric
aircraft. This model is able to minimize the infrastructure and charging costs not just for a single day, but for an entire year of
operations. consisting of the battery charging station sizing problem (long-term planning phase) and the swapped aircraft batteries
recharge scheduling problem (medium-term planning phase). First, we propose a MILP which manages the charging schedule of
the aircraft batteries, given a known flight schedule and charging infrastructure. This problem can be solved once a flight schedule
5
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Table 1
Overview of used nomenclature.

Sets

𝐷 Days
𝐻 Hub airports
𝑅 Regional airports
𝐹 𝑑ℎ
𝑎𝑟𝑟 flights on day 𝑑 arriving at hub ℎ

𝐹 𝑑ℎ
𝑑𝑒𝑝 flights on day 𝑑 departing from hub ℎ

𝐵𝑑ℎ
𝑎𝑟𝑟 batteries arriving with flights 𝐹 𝑑ℎ

𝑎𝑟𝑟
𝑇𝑑 Time interval of day of operations 𝑑
𝑇 ∗
𝑑 Discretization of 𝑇𝑑

𝐵𝑑ℎ
𝑡 batteries from 𝐵𝑑ℎ

𝑎𝑟𝑟 arrived by 𝑡

Input Parameters
𝜏𝑎𝑟𝑟𝑎 Arrival time of flight 𝑓
𝜏𝑑𝑒𝑝𝑎 Departure time of flight 𝑓
𝜏 𝑡𝑟 Transport time of batteries from aircraft to swapping stations
𝜏𝑠𝑏 Time battery 𝑏 ∈ 𝐵𝑑ℎ

𝑎𝑟𝑟 can start charging
𝜏𝑐𝑏 Recharge time of battery 𝑏
𝜏𝑒𝑓 Last time to charge a battery for departing flight 𝑓
𝑃 𝑐 Maximum battery charge rate

𝑐𝑝 Charging capacity cost

𝑐𝑠 Spare battery cost
𝑐𝑒 Electricity cost
𝑐𝑑𝑒𝑙(𝜏) Cost for flight delays greater than 𝜏 per unit of time
𝛥𝑡 Discretization size of 𝑇 ∗

𝑑
𝐷𝑑

𝑡 Cumulative demand for charged batteries by 𝑡 ∈ 𝑇 ∗
𝑑

𝑛𝑜 Number of overnight stay batteries

Model variables
𝜏𝑐𝑏𝑡 ∈ R+ Charging time of battery 𝑏 during [𝑡, 𝑡 + 𝛥𝑡]
𝑟𝑏𝑡 ∈ {0, 1} Indicator: battery 𝑏 fully charged by 𝑡
𝑆𝑡 ∈ N Cumulative supply of charged batteries by 𝑡
𝑃ℎ ∈ R+ Charging capacity at hub ℎ
𝑛𝑠ℎ ∈ N Number of spare batteries at hub ℎ
𝑑ℎ ∈ R+ Cost of charging operations for day 𝑑 at hub ℎ
ℎ ∈ R+ Charging infrastructure cost at hub ℎ

is made known, weeks before the day of operations. Second, we propose a master-problem to determine the most cost-effective
charging infrastructure over an entire year of operations. This uses the swapped aircraft batteries recharge scheduling model as a
subroutine. This problem is solved years in advance of the day of operations.

An overview of all used notation can be found in Table 1.

.1. Tactical planning: Swapped aircraft batteries recharge scheduling problem

We first propose the swapped aircraft batteries recharging model, which considers a single day 𝑑 ∈ 𝐷 and hub ℎ ∈ 𝐻 . The
algorithm decides when each battery which arrives at the airport is charged, and to which outbound flight it is assigned. If, because
of charging infrastructure limitations, batteries cannot be charged on time, outbound flights must wait until a fully charged battery
is available. This formulation minimizes the sum of the cost for electricity used to charge the batteries and the cost of flight delays.

Let us first introduce the following notation for a hub ℎ ∈ 𝐻 . First, we discretize the day 𝑇𝑑 in a set of intervals
with length 𝛥𝑡. Let 𝑇 𝑚𝑖𝑛

𝑑 = min(𝑇𝑑 ) and 𝑇 𝑚𝑎𝑥
𝑑 = max(𝑇𝑑 ), the start and end of the day, respectively. As such we obtain

𝑇 ∗
𝑑 = {𝑇 𝑚𝑖𝑛

𝑑 , 𝑇𝑚𝑖𝑛
𝑑 + 𝛥𝑡, 𝑇𝑚𝑖𝑛

𝑑 + 2 ⋅ 𝛥𝑡,… , 𝑇𝑚𝑎𝑥
𝑑 }. Second, we define the cumulative demand for charged batteries at time 𝑡 ∈ 𝑇 ∗

𝑑 as:
𝐷𝑑ℎ

𝑡 = |{𝑓 ∈ 𝐹 𝑑ℎ
𝑑𝑒𝑝 ∶ 𝜏𝑒𝑓 ≤ 𝑡}|. This gives the total number of batteries which should have been charged by 𝑡 in order to allow the

flights to be performed on schedule. Third, a battery can only be charged once it has arrived at the charging station, and for each
time 𝑡 ∈ 𝑇 ∗

𝑑 , the set of these batteries is given by 𝐵𝑑ℎ
𝑡 = {𝑏 ∈ 𝐵𝑑ℎ

𝑎𝑟𝑟 ∶ 𝑡 ≤ 𝑡𝑠𝑏}.
At the start of 𝑇𝑑 , a number of aircraft may already be present at the airport, which stayed there overnight. The batteries with

which these arrived are assumed to have been fully recharged by the start of 𝑇𝑑 . Let 𝑛𝑜 denote the number of these batteries.

Decision variables
We consider the decision variable 𝜏𝑐𝑏𝑡, which gives the amount of time the battery 𝑏 is charged during the interval [𝑡, 𝑡+𝛥𝑡], with

𝑡 ∈ 𝑇 ∗
𝑑 and 𝑏 ∈ 𝐵𝑑ℎ

𝑡 . Additionally, we use the binary variables 𝑟𝑏𝑡, which indicate if a battery has been fully charged by 𝑡 ∈ 𝑇 ∗
𝑑 , with

𝑏 ∈ 𝐵𝑑ℎ. Finally, the integer variable 𝑆 gives the cumulative amount of fully charged batteries by 𝑡 ∈ 𝑇 ∗.
6

𝑡 𝑡 𝑑
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Mixed-integer linear problem formulation
We consider the following MILP to manage the recharging schedule at hub ℎ, given a charging infrastructure (𝑃ℎ, 𝑛𝑠ℎ) and a flight

chedule on day 𝑑, which minimizes the operational costs 𝑑ℎ(𝑃ℎ, 𝑛𝑠ℎ):

𝑑ℎ(𝑃ℎ, 𝑛
𝑠
ℎ) = min

𝑝,𝑟,𝑆

∗
∑

𝑡∈𝑇𝑑

⎡

⎢

⎢

⎣

∑

𝜏∈𝑇 𝑑𝑒𝑙

(

𝑐𝑑𝑒𝑙(𝜏) ⋅max{𝐷𝑓ℎ
𝑡−𝜏 − 𝑆𝑡, 0}

)

+ 𝑐𝑒𝑡
∑

𝑏∈𝐵𝑑ℎ
𝑡

𝜏𝑐𝑏𝑡𝑃
𝑐
⎤

⎥

⎥

⎦

(1a)

s.t.
∑

𝑡∈𝑇 ∗
𝑑

𝜏𝑐𝑏𝑡 = 𝜏𝑐𝑏 ∀𝑏 ∈ 𝐵𝑑ℎ
𝑎𝑟𝑟 (1b)

𝜏𝑐𝑏𝑡 ≤ 𝛥𝑡 ∀𝑡 ∈ 𝑇 ∗
𝑑 , 𝑏 ∈ 𝐵𝑑ℎ

𝑡 (1c)
∑

𝑏∈𝐵𝑑ℎ
𝑡

𝜏𝑐𝑏𝑡 ⋅ 𝑃
𝑐 ≤ 𝛥𝑡 ⋅ 𝑃ℎ ∀𝑡 ∈ 𝑇 ∗

𝑑 (1d)

1 − 𝑟𝑏𝑡 ≥ |𝑇𝑑 |
−1

[

𝜏𝑐𝑏 −
∑

𝑡′≤𝑡
𝜏𝑐𝑏𝑡′

]

∀𝑡 ∈ 𝑇 ∗
𝑑 , 𝑏 ∈ 𝐵𝑑ℎ

𝑡 (1e)

∑

𝑏∈𝐵𝑑ℎ
𝑡

𝑟𝑏𝑡 + 𝑛𝑠ℎ + 𝑛𝑜 = 𝑆𝑡 ∀𝑡 ∈ 𝑇 ∗
𝑑 (1f)

𝜏𝑐𝑏𝑡 ≥ 0, 𝑟𝑏𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 ∗
𝑑 , 𝑏 ∈ 𝐵𝑑ℎ

𝑡 (1g)

The operational costs (Eq. (1a)) are given by the sum of the electricity costs, 𝑐𝑒𝑡
∑

𝑏∈𝐵𝑑ℎ
𝑡

𝜏𝑐𝑏𝑡𝑃
𝑐 , and the aircraft delays incurred,

𝜏∈𝑇 𝑑𝑒𝑙

(

𝑐𝑑𝑒𝑙(𝜏) max{𝐷𝑓ℎ
𝑡−𝜏 − 𝑆𝑡, 0}

)

, for each interval [𝑡, 𝑡 + 𝛥𝑡] with 𝑡 ∈ 𝑇 ∗
𝑑 . Constraints (1b) ensure that all batteries which arrive

t the airport are charged by the end of the day, ensuring a supply of spare batteries on the next day. Constraints (1c) ensure
hat during each interval, batteries are not charged longer than the length of the interval, whereas Constraints (1d) ensure that the
otal charging capacity is not exceeded. Whether or not a battery is ready to be used on an outbound flight by 𝑡 is determined in
onstraints (1e), which force 𝑟𝑏𝑡 to be 0 as long as battery 𝑏 is not fully charged. Finally, Constraints (1f) determine the cumulative
upply of spare batteries.

.2. Strategic planning: battery charging station sizing problem

Second, we propose a recourse model which optimizes the charging infrastructure size, given the flight schedules which reflect
he traffic demand variation during an entire year of operations 𝐷. This functions as the master problem of the recourse model,
nd is solved only once for the entire year. It determines the expected operational cost of a charging infrastructure by using the
ptimization model from Section 4.1 as a subroutine. These operational costs are added to the capital expenditures, i.e., the cost of
cquiring and maintaining chargers and spare batteries to obtain the total costs, which we aim to minimize.

ecision variables
We consider the decision variables 𝑃ℎ ∈ R+ and 𝑛𝑠ℎ ∈ N, the charging capacity and the number of spare batteries at hub airport

, respectively.

ecourse model formulation
We consider the following MILP to determine the suitable charging infrastructure size at a hub, given the distribution of flight

chedules 𝐷, which minimizes the total cost ℎ:

ℎ = min
𝑃ℎ ,𝑛𝑠ℎ

𝑐𝑝𝑃ℎ + 𝑐𝑠𝑛𝑠ℎ +
∑

𝑑∈𝐷
𝑑ℎ(𝑃ℎ, 𝑛

𝑠
ℎ)∕|𝐷| (2a)

𝑃ℎ ≥ 0 (2b)

𝑛𝑠ℎ ∈ N (2c)

In this formulation, ℎ is the sum of the daily cost of the charging capacity, 𝑐𝑝𝑃ℎ, the spare batteries 𝑐𝑠𝑛𝑠ℎ, and the average
perational costs ∑

𝑑∈𝐷 𝑑ℎ(𝑃ℎ, 𝑛𝑠ℎ)∕|𝐷|, which is obtained from the tactical planning problem of Section 4.1 for each day 𝑑 ∈ 𝐷.

imulated annealing algorithm
The value of ∑𝑑∈𝐷 𝑑ℎ(𝑃ℎ, 𝑛𝑠ℎ) cannot be evaluated trivially, hence regular MILP solution algorithms are unsuitable to solve this

roblem. As ∑

𝑑∈𝐷 𝑑ℎ(𝑃ℎ, 𝑛𝑠ℎ) is also non-convex in 𝑃ℎ and 𝑛𝑠ℎ, we use Simulated Annealing to find an approximate solution. The
pproach we use to optimize the airport charging infrastructure is given in Algorithm 1.

The algorithm first obtains an initial solution (lines 2–9). The expected operating costs for each solution are determined. After
he initial solution is found, the algorithm iterates towards better solutions by selecting a solution in the neighborhood of the current
olution (line 11), evaluating the expected operating costs only for the current solution (line 12). The new solution is accepted if it
s an improvement over the current one (line 14), or with a probability less than one if it is not (line 16, to avoid being stuck in
7

ocal optima). This process continues until a stopping criterion is met.
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Algorithm 1: Simulated Annealing algorithm to optimize airport battery charging infrastructure
Data: Hub ℎ, Days with flights 𝐷, 𝑐𝑝, 𝑐𝑠, 𝑐𝑒, 𝑐𝑑𝑒𝑙, (𝑛𝑠𝑚𝑖𝑛, 𝛥𝑛

𝑠, 𝑛𝑠𝑚𝑎𝑥), (𝑃𝑚𝑖𝑛, 𝛥𝑃 , 𝑃𝑚𝑎𝑥), 𝛬𝑠, 𝛬𝑒, 𝛼
Result: Minimum cost charging capacity 𝑃 and number of spare batteries 𝑛𝑠

1 Initialize 𝑃 = 0, 𝑛̂𝑠 = 0, ̂ = ∞ and 𝛬 = 𝛬𝑠;
2 Let 𝑛𝑠∗ = {𝑛𝑠𝑚𝑖𝑛, 𝑛

𝑠
𝑚𝑖𝑛 + 𝛥𝑛𝑠, ..., 𝑛𝑠𝑚𝑎𝑥} ;

3 Let 𝑃 ∗ = {𝑃𝑚𝑖𝑛, 𝑃𝑚𝑖𝑛 + 𝛥𝑃 , ..., 𝑃𝑚𝑎𝑥};
4 for (𝑛𝑠, 𝑃 ) ∈ 𝑛𝑠∗ × 𝑃 ∗ do
5 Determine ℎ(𝑃 , 𝑛𝑠) = 𝑐𝑝𝑃 + 𝑐𝑠𝑛𝑠 +

∑

𝑑∈𝐷 𝑑ℎ(𝑃 , 𝑛𝑠)∕|𝐷| ;
6 if ℎ(𝑃 , 𝑛𝑠) ≤ ̂ℎ then
7 Set 𝑃 ← 𝑃 , 𝑛̂𝑠 ← 𝑛𝑠 and ̂ℎ ← ℎ(𝑃 , 𝑛𝑠) ;
8 end
9 end
10 while 𝛬 ≥ 𝛬𝑒 do
11 Select 𝑃 ∈ 𝑃 + [−𝛥𝑃 , 𝛥𝑃 ] and 𝑛̃𝑠 ∈ 𝑛̂𝑠 + [−𝛥𝑛𝑠, 𝛥𝑛𝑠] randomly;
12 Determine ℎ(𝑃 , 𝑛̃𝑠) = 𝑐𝑝𝑃 + 𝑐𝑠𝑛̃𝑠 +

∑

𝑑∈𝐷 𝑑ℎ(𝑃 , 𝑛̃𝑠)∕|𝐷| ;
13 if ̃ℎ(𝑃 , 𝑛̃𝑠) < ̂ℎ then
14 Accept the new solution (𝑃 , 𝑛̃𝑠);
15 else
16 Accept the new solution (𝑃 , 𝑛̃𝑠) with probability 𝑝 = 𝑒−(̃ℎ(𝑃 ,𝑛̃𝑠)−̂ℎ)∕𝛬;
17 end
18 if We accept the new solution then
19 Set 𝑃 ← 𝑃 , 𝑛̂𝑠 ← 𝑛̃𝑠, and ̂ℎ ← ̃ℎ(𝑃 , 𝑛̃𝑠);
20 end
21 Set 𝛬 ← 𝛼𝛬;
22 end

5. Case study: optimizing the charging infrastructure for Widerøe Airlines (Norway)

In this section, we apply the model presented in Section 4 to the short-haul flight network of Norwegian Widerøe Airlines, using
light schedule based on the performed flights during October 2021–October 2022.

We use the case of Widerøe Airlines because Norway has a strong position for early implementations of electric aircraft on
ommercial flights. Due to the challenging terrain, air transport is often the only viable means of travel. This results in a market
ith a lot of low-passenger short-haul flights: around 77% of all domestic flights in the country are under 400 km (Bærheim et al.,
022). In addition, Norway’s electricity is for 98% produced with renewable resources (Olje- og energidepartementet, 2016) such
hat the electric aircraft can be operated sustainably.

The experiment was performed by implementing the algorithm with Gurobi Optimizer 9.1, on an Intel Core i7-10610U with
GB of RAM.

hort-haul network of Widerøe Airlines
Widerøe Airlines is the largest commuter operator in Scandinavia (Bærheim et al., 2022). It operates a fleet of 23 De Havilland

anada Dash 8–100 aircraft (hereafter: Dash 8) for short-haul flights within and to Norway. These have a capacity of 40 passengers
r a payload of 4500 kg. These aircraft account for the majority of Widerøe’s fleet. We propose a scenario in which this fleet is
eplaced with electric aircraft, while keeping to the existing flight schedule as much as possible. We have imported the flight data
or the Dash 8 between 28 October 2021 and 27 October 2022, using data from Flightradar24 (2022) for each aircraft of the Dash
fleet. We have used the actual time of departure, actual landing time, origin and departure of each flight. As such, cancelled flights
ave not been included in the data. The network spanned by these aircraft consists of 43 airports and 56,000 flights; it is shown in
ig. 4.

The used flight schedules in this case study are based on the analyzed historical flight data. We assume that all itineraries between
ubs (possibly via regional airports) which were previously performed by the Dash 8 and are within range of the electric aircraft,
re performed by the e-AC. The e-AC start each journey from a hub airport with a fully charged battery. If there are any stopovers
t non-hub airports, it will recharge its battery during turnaround. This is done using the existing ground power infrastructure. Last,
f there are two subsequent flights for an aircraft, from A to B and from B to C, and the first flight cannot be performed on time
due to battery/charging limitations), then the aircraft directly flies from A to C. Flights A to B and B to C are not included in the
chedule. We use these as our (365) flight schedules.

Assuming a range of 610 km (see the next subsection on the e-AC model) approximately 52,000 of the 56,000 flights which we
ave analyzed can be performed by the electric aircraft. A comparison of the number of flights visiting the 20 busiest airports can be
een in Fig. 5. We propose to use the seven most visited airports in the network as hubs for the electric aircraft fleet, where batteries
8

an be swapped. These airports are in the towns of Bodø (BOO, 15,000 flights annually), Tromsø(TOS, 10,000 flights), Trondheim
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Fig. 4. Network of the Dash 8–100 of Widerøe airlines, flown between the 28th of October 2021 and the 27 of October 2022.

Fig. 5. Histogram of number of annual flights at the twenty most visited hubs of Widerøe. Flight data between October 28, 2021 and October 27, 2022 is used.

(TRD, 10,000 flights), Oslo (OSL, 9000 flights), Bergen (BGO, 5000 flights), Hammerfest (HFT, 5000 flights) and Vadsø(VDS, 4000
flights). Table 2 shows the distribution of the number of daily flights on each of the selected hubs. Even though there is a significant
variance in the number of daily flights, there is no seasonal difference for this fleet. This is because the Dash-8 100 aircraft are mainly
used for commuting and to deliver cargo, and only to a lesser degree for tourism.

Specifications of the electric aircraft
We propose a scenario where the Dash-8 aircraft are replaced by an e-AC with the specifications of the Eviation Alice (Eviation,

2022). Currently in the certifying phase, the Alice is able to transport ten passengers or a payload of 1150 kg.
The Alice is currently able to fly a distance of 250 nm (approximately 480 km). Assuming a continuation of current battery

development (Ziegler and Trancik, 2021), this will increase to 610 km by 2025. It is equipped with a 820 kWh battery which
requires slightly over 4 h for a full recharge. We assume that the charging power available at hubs and regional airports is the
same. The cruising speed of 260 kts is comparable to the 280 kts of the Dash 8–100, and as such we assume the flight duration
is unchanged. We assume that 7% of the battery capacity is required for take-off (Hepperle, 2012). All used characteristics of the
9
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Table 2
Daily flight statistics at the considered hubs of Widerøe. The average, median, standard deviation and maximum
of the number of daily flights is given. Flight data between October 28, 2021 and October 27, 2022 is used.

Hub airport Daily flights

IATA City average median std peak

BGO Bergen 9.4 10 4.2 22
BOO Bodø 29.7 32 11.5 55
HFT Hammerfest 12.8 13 6.7 27
OSL Oslo 14.6 9 3.5 19
TOS Tromsø 24.7 26 10.6 49
TRD Trondheim 21.8 21 8.5 40
VDS Vadsø 9.9 10 4.7 22

Network total 122.9 125 43.9 184

Table 3
Eviation Alice performance and economic parameters.

Aircraft specifications Economic assumptions

Battery capacity 820 kWh (Eviation, 2022) Spare battery cost 80 e/day (Justin et al., 2020)
Range 610 km (Adu-Gyamfi and Good, 2022) Charging capacity cost 0.4 e/kW/day (Justin et al., 2020)
Maximum power 2 × 700 kW (Eviation, 2022) Delay cost 9.05–29.90 e/min Cook and Graham (2015)
Maximum charging power 200 kW (Hepperle, 2012) Peak electricity price 0.134 e/kWh (sentralbyrå, 2022)
Take-off and climbing energy 60 kWh (Hepperle, 2012) Peak-hours 7 AM–8 PM (Nordpool Group, 2022)
Battery transport time 30 min off-peak electricity cost 0.067 e/kWh (Nordpool Group, 2022)
Final reserve 120 kWh (Eviation, 2022)

Fig. 6. Actual and piece-wise linear approximation of the flight delay costs. The actual costs are based on European reference values for the ATR-43 (Cook
and Graham, 2015).

aircraft can be found in Table 3. The electricity cost is derived from historical data (Nordpool Group, 2022), and a resolution of 𝛥𝑡
= 15 min has been used.

Flight delay costs are derived from European industry data (Cook and Graham, 2015), which takes flight personnel, maintenance,
fuel and passenger costs into account. We use the tactical costs of the ATR-43 as reference and scale them to account for the difference
in size (10 passengers instead of 42) and inflation (20%). Using 𝜏𝑑𝑒𝑙 = {00:00, 00:45, 01:15}, we have found 𝑐𝑑𝑒𝑙(0:00) = e9.05,
𝑑𝑒𝑙(0:45) = e10.90, and 𝑐𝑑𝑒𝑙(1:15) = e10.95. The original data and this approximation are shown in Fig. 6.

Because of this, the payload is about a quarter of the size of the payload of Dash 8. In this paper we aim to maintain the original
light schedule without optimizing for the difference in the payload. This would required adding more flights to the schedule, and
s addressed in Section 5.2.

.1. Results—optimizing the charging infrastructure for widerøe airlines

We apply the optimization framework from Section 4 to the flight network of Widerøe Airlines and the e-AC model to obtain
he most cost-effective charging infrastructure at the 7 hub airports. We first discuss the results for the largest hub, Bodø, in detail.
fter this, we shall present the results for all hubs.
10
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Table 4
Infrastructure (charging capacity [𝑃ℎ] and spare batteries [𝑛𝑠ℎ]), average operational
characteristics and costs (electricity and caused hours of delay) at Bodø Lufthavn.

Size Costs [e]

Infrastructure Charging capacity 𝑃ℎ [kW] 900 360
Spare batteries 𝑛𝑠ℎ [–] 6 1500

Operations Energy consumption [kWh] 8950 890
Delays [hh:mm] 00:12 140

Total – 2943

Fig. 7. Optimal recharging schedule of the swapped batteries at Bodø Lufthavn on the peak traffic day (August 25, 2022), using 𝑃ℎ = 900 kW and 𝑛𝑠ℎ = 6. Each
bar represents a battery, which starts and ends when it arrives at and departs from the charging station, respectively. The color of the bar indicates the current
battery state-of-charge. Each arrow shows the scheduled and actual departure time of the flights to which the batteries are assigned.

5.1.1. Bodø Lufthavn
Bodø Lufthavn is the most frequently visited airport in the network of Widerøe Airlines, and serves as a hub to connect the north

of Norway with the south. The daily amount of traffic ranges up to 55 flights (on August 25, 2022) with a median of 32 (on a.o.
July 13, 2022) and an average of 29.7.

We have determined the most cost-effective charging infrastructure at Bodø Airport: (𝑃ℎ, 𝑛ℎ𝑠 ) = (900 kW, 6). This requires an
investment of 𝑐𝑝𝑃ℎ + 𝑐𝑠𝑛𝑠ℎ =e1840 per day. Table 4 shows the optimal infrastructure size, operational characteristics, and costs on
average over all days. In addition to the e1840 daily infrastructure investment, there are e1030 daily operational costs. These are
mainly due to the electricity costs (8950 kWh consumption for e890) with average delays fairly minimal. On average over all days,
the aircraft at Bodø are delayed for a total of 12 minutes, showing how much the optimal solution prefers to avoid disrupting the
flight schedule.

Fig. 7 shows the most efficient battery recharge schedule on the peak day (August 25, 2022), using the optimized infrastructure.
Each bar in the figure represents a battery. The bar starts and ends when the battery arrives and departs from the charging station.
The row in which a battery is placed is irrelevant: different batteries are placed on the same row in order to limit the number of
rows in the figure. The color of the bar indicates the current state-of-charge. Additionally, the black arrows show the scheduled and
actual departure times of the flights to which the batteries are assigned. At the start of the day, 11 batteries are available at the
airport (six spare batteries and five batteries from flights which arrived on the previous day). As can be seen, batteries which are
fuller when they arrive tend to be charged first, whereas the batteries which take longer to charge tend to spend more idle time
at the airport. Also, three flight experience a delay, two of which are limited (15 min delay) and one is more severe (45 min). At
the end of the day, 9 batteries (of which 6 are spares) remain at the airport. Given that these delays are in the order of a couple of
minutes on the peak traffic day, we assume that these are absorbed en-route in the next leg.

The charging schedules on the peak traffic day (August 25, 2022) and a median traffic day (July 13, 2022) are further detailed
in Fig. 8. The spare battery stock (or backlog) is shown in the top row, and the electricity consumption and price are shown in the
bottom row. On the median traffic day, there is almost always a fully charged spare battery in stock. Additionally, a large portion
of the charging is done during the off-peak electricity pricing hours: only the bear minimum of charging is performed between 3
PM and 8 PM, after which it uses the full charging capacity. Contrasting this, the full charging capacity is almost constantly used
on the peak day. As a result, battery backlog remains limited even though there is almost never a charged battery available during
10 AM and midnight. The longer delay from Fig. 7 can be seen as battery backlog just before 12 PM. The fact that delays remain
minimal even on the peak day shows the robustness of this infrastructure size.
11
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Fig. 8. Battery supply and backlog and electricity use and price throughout the median (July 13th, 2022) and peak (August 25th, 2022) days of operations at
Bodø Lufthavn, using 𝑃ℎ = 900 kW and 𝑛𝑠ℎ = 6.

Table 5
Infrastructure and expected operational cost for the considered hubs in the network. The first column lists the airport codes
and average daily number of flights. Here, 𝑒

ℎ and 𝑑𝑒𝑙
ℎ give the average daily electricity and delay cost.

Hub airport Infrastructure Operations Average cost
Airport ℎ Flights 𝑃ℎ 𝑛𝑠ℎ Energy Delays 𝑐𝑝𝑃ℎ 𝑐𝑠𝑛𝑠ℎ 𝑒

ℎ 𝑑𝑒𝑙
ℎ ℎ

[–] [–] [kW] [–] [kWh] [hh:mm] [e] [e] [e] [e] [e]

BGO Bergen 9.4 425 2 3553 00:13 170 500 300 123 1093
BOO Bodø 29.7 900 6 8950 00:12 360 1500 890 140 2890
HFT Hammerfest 12.8 413 2 2430 00:06 160 500 240 70 970
OSL Oslo 14.6 612 3 4410 00:09 245 750 460 95 1550
TOS Tromsø 24.7 812 4 6303 00:11 325 1000 642 120 2087
TRD Trondheim 21.8 850 5 7330 00:09 340 1250 744 101 2478
VDS Vadsø 9.9 400 2 255 00:14 160 500 260 142 1062

Network total 122.9 4412 25 33231 01:14 1600 6000 3392 801 11793

5.1.2. Charging infrastructure at Bergen, Bodø, Hammerfest, Oslo, Tromsø, Trondheim and Vadsø
Table 5 shows the optimized infrastructure, together with the average operations energy consumption, delays and costs for all

even hubs. The daily costs range from e970 at Hammerfest Lufthavn (HFT) up to e2890 at Bodø Lufthavn, accumulating to a
network total of e11,793 per day. It should be kept in mind that this does not account for the decrease in payload caused by
using 10-seater aircraft instead of the 37-seater Dash-8. The table shows an approximate marginal cost of e100 per flight, which
is independent of the difference in payload, of which the spare battery supply forms the biggest share. Furthermore, the delay costs
are not proportional to the number of daily flights. For example, the average delay costs at Vadsøof e142 are larger than the costs
at Bodø, of e140, which accommodates three times the number of flights.

5.2. Sensitivity analysis: battery capacity and daily number of flights

We perform a sensitivity analysis to assess the impact of the technological and economical assumptions we have made on the
results. This is done for the development of battery energy density and the daily number of flights. We evaluate the impact of
these on the optimal infrastructure, as well as the computational requirements to solve the problems. We show the results for Bodø
Airport.

Table 6 shows the impact of the aircraft battery performance. We assume that the energy density of the batteries increases by an
annual rate of 8% (Ziegler and Trancik, 2021), resulting in a 610 km flight range. We compare this rate with a pessimistic scenario
of 0% (range of 480 km) annual increase of the energy density, 4% (range of 540 km), 12% (range of 685 km) and 16% annual
increase (range of 775 km). Table 6 shows the required infrastructure, investment, as well as the total optimization time and average
optimization time per day subroutine.
12
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Table 6
Optimal charging infrastructure at Bodø Airport given various battery energy densities. Both the computational time
of the infrastructure optimization and the average per daily recharge scheduling optimization are given. The green
case represents the nominal case considered in Section 5.1.1.

Battery development Infrastructure Operations Cost Computational time
Range Average # Flights per Day 𝑃ℎ 𝑛𝑠ℎ Energy Delays ℎ total instance

km – kW – kWh hh:mm e mm:ss s

480 22.3 755 5 6010 00:03 1862 21:05 0.403
540 29.6 865 7 8680 00:09 2796 24:24 0.451
610 29.7 900 6 8950 00:12 2890 26:00 0.459
685 29.8 1145 5 9270 00:10 3036 26:12 0.472
775 29.9 1345 5 9624 00:10 3566 26:29 0.480

Table 7
Optimal charging infrastructure at Bodø Airport given various average number of flights per day. Both
the computational time of the infrastructure optimization and the average per daily recharge scheduling
optimization are given. The green case represents the nominal case considered in Section 5.1.1.

Schedule Infrastructure Operations Cost Optimization time
Average # Flights per Day 𝑃ℎ 𝑛𝑠ℎ Energy Delays ℎ total per instance

– kW – kWh hh:mm e min s

30 900 6 8950 00:12 2890 26 0.459
60 1740 12 17900 00:15 5651 51 0.911
89 2410 17 26850 00:21 8075 108 1.90
119 3190 23 35800 00:27 10837 201 3.49

The results show that above 540 km, range no longer is a limiting factor on the number of flights, stabilizing at around 29.6–29.8.
bove this number, the energy requirements increase linearly, affecting the total costs. Only in the most pessimistic scenario (range
f 480 km), the range does impede the flight schedule, reducing the number of daily flights by a quarter. In this case, the entire
nfrastructure is reduced in size and the costs decrease by a third. Finally, in all cases, the computational time is limited to under
0 min for the entire algorithm, and under half a second for each day of operations.

Table 7 shows the impact of the number of electric flights performed on the infrastructure and costs. We assumed that the original
chedule is adhered as much as possible, but this does decrease the total payload which can be carried to about 25% of the original
chedule. We compare this with 50%, 75% and 100% by doubling, tripling, and quadrupling the number of times each flight is
erformed. Table 7 shows the average number of flights at Bodø, the infrastructure requirements and costs, and the optimization
ime.

The results show a sub-linear increase of the costs as a function of number of flights. The infrastructure does grow approximately
inear with the number of flights, but the delays remain fairly limited. The computational time increased from 26 to 201 min for
he infrastructure optimization and from 0.46 to 3.5 s for each recharge scheduling optimization.

. Quantifying the benefit of recourse optimization considering air traffic for an entire year vs. infrastructure optimization
onsidering only one day of traffic

.1. Infrastructure optimization considering only a peak-day or a median-day of air traffic

In order to assess the performance of the recourse model proposed in Section 4.2, we consider two alternative battery charging
nfrastructure optimization approaches. These approaches optimize the infrastructure using only the flight schedule from a single
ay of operations. For this, we use either the peak traffic day (PD) or a median traffic day (MD), according to the total number of
lights. Using a peak-day flight schedule corresponds to the desire to obtain an infrastructure which is able to cope with the most
ongested days, although this expensive infrastructure may be overly large during less busy days. Using a median day as reference
eads to obtaining an infrastructure which performs well on most days of operations but may be insufficient during congested days.

The two alternative infrastructure optimization approaches use a version of the MILP from Section 4.1 modified in two respects.
irst, the charging capacity 𝑃ℎ and the number of spare batteries 𝑛𝑠ℎ are model variables instead of input parameters. Second, their

associated costs (𝑐𝑝 and 𝑐𝑠) are included in the objective function. As such, the following model is considered:

𝑆𝐷
𝑑ℎ = min

𝑃ℎ ,𝑛𝑠ℎ ,𝜏,𝑟,𝑆
𝑐𝑝𝑃ℎ + 𝑐𝑠𝑛𝑠ℎ +

∗
∑

𝑡∈𝑇𝑑

⎡

⎢

⎢

⎣

∑

𝜏∈𝜏𝑑𝑒𝑙

(

𝑐𝑑𝑒𝑙(𝜏) ⋅max{𝐷𝑓ℎ
𝑡−𝜏 − 𝑆𝑡, 0}

)

+ 𝑐𝑒𝑡
∑

𝑏∈𝐵𝑑ℎ
𝑡

𝜏𝑐𝑏𝑡𝑃
𝑐
⎤

⎥

⎥

⎦

(3a)

(1b) − (1g) ⋮

𝑃ℎ ≥ 0, 𝑛𝑠ℎ ∈ N (3b)
13
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Table 8
Infrastructure and average electricity consumption and flight delays at Bodø Lufthavn, with their associated daily costs (𝑐𝑝𝑃 𝑥

ℎ
, 𝑐𝑠𝑛𝑠,𝑥ℎ , 𝑒,𝑥, and 𝑑𝑒𝑙,𝑥, respectively) for three infrastructures 𝑥. We consider the recourse optimization model (YR) vs. the
optimization model for only one peak-traffic day SD(PD) and only one median-traffic day SD(MD). The PD is August 25th, 2022.
The MD is July 13th, 2022. For (*) there are on average 29.7 flights/day considering the entire year of operations.

Solution 𝑥 Flights Infrastructure Operations Average Cost

𝑃 𝑥
ℎ 𝑛𝑠,𝑥ℎ Energy Delays 𝑐𝑝𝑃 𝑥

ℎ 𝑐𝑠𝑛𝑠,𝑥ℎ 𝑒,𝑥 𝑑𝑒𝑙,𝑥 𝑥

[–] [kW] [–] [kWh] [hh:mm] [e] [e] [e] [e] [e]

(𝑌 𝑅) 29.5∗ 900 6 8950 0:12 360 1500 890 140 2890
(𝑃𝐷) 55 1130 7 8950 00:05 430 1750 870 80 3140
(𝑀𝐷) 32 800 4 8950 02:36 320 1000 950 1925 4195

The objective function, Eq. (1a), has been replaced by Eq. (3a), and now computes the most cost-effective infrastructure for a
ingle day 𝑑 at hub ℎ. The corresponding cost is denoted as 𝑆𝐷

𝑑ℎ . Constraints (1b)–(1g) are unaltered, and Constraint (3b) has been
added to the model.

6.2. Results: quantifying the advantage of recourse infrastructure optimization for Widerøe Airlines at Bodø

We quantify the cost reduction gained by using the infrastructure optimized by the recourse MILP for Widerøe Airlines at Bodø
Lufthavn. This original solution (see Section 5.1.1) takes the year-round flight schedule into account and is referred to as the (YR)
solution hereafter. We compare it with optimized infrastructure for the peak- and median levels of traffic days of operations, using
the algorithm from Section 6.1. For the peak- and median traffic days, we have used PD = August 25, 2022, with 55 flights, and
MD = June 13, 2022, with 32 flights. The infrastructure solutions obtained with only these single days are referred to as the (PD)
and (MD) solutions, respectively.

The three charging infrastructure solutions can be found in Table 8. For each solution 𝑥 ∈ {(𝑌 𝑅),(𝑀𝐷),(𝑃𝐷)} the size of the
different components is shown, together with the expected costs, similar to Table 5. The peak-traffic day optimized infrastructure
consists of (𝑃 (𝑃𝐷)

𝑐 , 𝑛𝑠,(𝑃𝐷)
ℎ ) = (1130 kW, 7), resulting in a daily infrastructure cost of e2180. It was computed in 12.7 s. The

median-traffic day optimized infrastructure consists of (𝑃 (𝑀𝐷)
𝑐 , 𝑛𝑠,(𝑀𝐷)

ℎ ) = (800 kW, 4) resulting in a daily infrastructure cost of
1320. This was computed in 5.7 s.

The total average daily costs of each solution 𝑥 is given as:

𝑥 = 𝑐𝑝𝑃 𝑥
ℎ + 𝑐𝑠𝑛𝑠,𝑥ℎ +

∑

𝑑∈𝐷
𝑑ℎ(𝑃 𝑥

ℎ , 𝑛
𝑠,𝑥
ℎ )∕|𝐷| (4)

For our analysis, (𝑌 𝑅) = e2890, compared to  = e4730 (+58%) for the (𝑀𝐷) solution and (𝑃𝐷) = e3140 (+6%) for
he (𝑃𝐷) solution. Table 8 shows a breakdown of the costs, split up into charging capacity, spare battery, electricity and delay
osts. Compared with the (𝑌 𝑅) solution, the (𝑃𝐷) solution trades charging capacity for an extra battery and a significantly larger
nfrastructure investment, but reduces the expected delays and is able to profit from slightly lower electricity costs. On the other
and, the (𝑀𝐷) solution consists of a relatively small charging capacity, but causes significant flight delays (on average a total of
:36 h daily).

Last, Fig. 9 shows the cost of the three infrastructure solutions depending on the number of flights on the days of operation.
ach point represents one of the 356 days of operations, which are sorted by number of flights. Generally speaking, the daily costs
ncrease with the number of flights. Additionally, the (𝑀𝐷) and (𝑌 𝑅) infrastructures are stressed more for a large number of
lights then the (𝑃𝐷) infrastructure.

Note that for a small number of flights, not the (𝑀𝐷) but the (𝑌 𝑅) solution has the lowest total costs, aided by the flexibility
f a larger charging capacity. For busier days, the (𝑃𝐷) solution starts to outperform the other two, with the costs of the (𝑌 𝑅)
nd (𝑀𝐷) solutions increasing to e5000 and e24,000 (not on chart), respectively.

. Conclusions

This paper proposes a two-phase recourse model optimization framework for battery swap and recharge operations for an airline
perating a fleet of short-haul electric aircraft. This framework integrates the scheduling of swapped battery recharges with the sizing
f the recharge infrastructure, without merging them completely to account for the fact that the infrastructure size cannot be altered
aily. The objective for the former is to minimize the charging station operational costs, comprised of the electricity and the caused
elay cost. For the latter, the objective is to minimize the sum of the infrastructure acquisition cost and the average operational cost
hroughout the year. The scheduling problem, posed as a mixed-integer linear program, is used as a subroutine for the infrastructure
izing problem, which is solved using a simulated annealing algorithm.

Our optimization framework is applied in a case study for Norway’s Widerøe Airlines, where the airline’s fleet of DHC Dash 8–100
ircraft is replaced with a fleet of electric aircraft based on Eviation Alice’s specifications. We use flight data from 28 October 2021
nd 27 October 2022 and keep to the original schedule as much as possible. It is assumed that the aircraft will be able to swap their
atteries at the seven most visited airports in the network, such that approximately 52,000 out of the 56,000 analyzed flights can
14

e performed. The results show that a combined power supply consists of 4412 kW and that 25 spare batteries are required, such
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Fig. 9. Daily infrastructure costs 𝑑ℎ(𝑃 𝑥
ℎ , 𝑛

𝑠,𝑥
ℎ ) when considering (𝑃 (𝑌 𝑅)

ℎ , 𝑛𝑠,(𝑌 𝑅)ℎ ) = (900 kW, 6), (𝑃 (𝑃𝐷)
ℎ , 𝑛𝑠,(𝑃𝐷)

ℎ ) = (1130 kW, 7), and (𝑃 (𝑀𝐷)
ℎ , 𝑛𝑠,(𝑀𝐷)

ℎ ) = (800 kW, 4),
during the period 28th October 2021–27th October 2022. Each point represents a single day of operations.

that the daily cost of this charging infrastructure is e11,793. However, this analysis does not account for the decrease in payload
which results from replacing the 40-seats Dash-8 with the 10-seats Alice. The actual infrastructure cost are bounded from above by
multiplying the found values by a factor of 4.

We also propose two baseline infrastructure sizing solutions, which minimize the charging infrastructure size given only one day
of operations: the peak- or median-traffic day. Overall, these approaches achieve an optimality gap of 8% and 45%, respectively.
Infrastructure optimized for the peak day tends to be oversized on average, resulting in high capital expenditures but relatively low
operational costs. Infrastructure optimized for the median day, on the other hand, is used well on average days but results in major
flight delay on peak load days.

As future work, we plan to extend the model for an airline operating different e-AC models with different specifications and
charging needs. Second, when applied to an airline with seasonality in the flight schedule, the option of a seasonally varying spare
battery stock can be studied. It will also introduce the arrival and departure time of flights not as fixed but as stochastic variables.
Using this information can help to create a more realistic assessment of the performance of the charging infrastructure. Finally, we
plan to improve our model to identify the most suitable airports to place the battery swapping stations, rather than all hub airports.

CRediT authorship contribution statement

Simon van Oosterom: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing –
original draft, Visualization. Mihaela Mitici: Conceptualization, Methodology, Validation, Investigation, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Adu-Gyamfi, B.A., Good, C., 2022. Electric aviation: A review of concepts and enabling technologies. Transp. Eng. 9, 100134. http://dx.doi.org/10.1016/j.treng.
2022.100134.

Asadi, A., Nurre Pinkley, S., 2021. A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations. Transp. Res. E 146,
102212. http://dx.doi.org/10.1016/j.tre.2020.102212.

Ayad, A., El-Taweel, N.A., Farag, H.E.Z., 2021. Optimal design of battery swapping -based electrified public bus transit systems. IEEE Trans. Transp. Electr. 7
(4), 2390–2401. http://dx.doi.org/10.1109/TTE.2021.3083106, Conference Name: IEEE Transactions on Transportation Electrification.

Bærheim, T., Lamb, J.J., Nøland, J.K., Burheim, O.S., 2022. Potential and limitations of battery -powered all -electric regional flights –A Norwegian case study.
IEEE Trans. Transp. Electr. 1. http://dx.doi.org/10.1109/TTE.2022.3200089, Conference Name: IEEE Transactions on Transportation Electrification.

Balogun, M.-S., Yang, H., Luo, Y., Qiu, W., Huang, Y., Liu, Z.-Q., Tong, Y., 2018. Achieving high gravimetric energy density for flexible lithium-ion batteries
facilitated by core–double-shell electrodes. Energy Environ. Sci. 11 (7), 1859–1869. http://dx.doi.org/10.1039/C8EE00522B, Publisher: The Royal Society of
Chemistry.

Brdnik, A.P., Kamnik, R., Bozicnik, S., Marksel, M., 2022. Ground infrastructure investments for operation of hybrid-electric aircraft. In: IOP Conference Series:
Materials Science and Engineering, Vol. 1226, No. 1. 012073. http://dx.doi.org/10.1088/1757-899X/1226/1/012073, Publisher: IOP Publishing.

Cook, A., Graham, T., 2015. European airline delay cost reference values. Tech. Rep., Eurocontrol, URL https://www.eurocontrol.int/publication/european-airline-
delay-cost-reference-values.

Doctor, F., Budd, T., Williams, P.D., Prescott, M., Iqbal, R., 2022. Modelling the effect of electric aircraft on airport operations and infrastructure. Technol.
Forecast. Soc. Change 177, 121553. http://dx.doi.org/10.1016/j.techfore.2022.121553.

Eviation, 2022. Alice. Eviation. URL https://www.eviation.com/aircraft/.
15

http://dx.doi.org/10.1016/j.treng.2022.100134
http://dx.doi.org/10.1016/j.treng.2022.100134
http://dx.doi.org/10.1016/j.treng.2022.100134
http://dx.doi.org/10.1016/j.tre.2020.102212
http://dx.doi.org/10.1109/TTE.2021.3083106
http://dx.doi.org/10.1109/TTE.2022.3200089
http://dx.doi.org/10.1039/C8EE00522B
http://dx.doi.org/10.1088/1757-899X/1226/1/012073
https://www.eurocontrol.int/publication/european-airline-delay-cost-reference-values
https://www.eurocontrol.int/publication/european-airline-delay-cost-reference-values
https://www.eurocontrol.int/publication/european-airline-delay-cost-reference-values
http://dx.doi.org/10.1016/j.techfore.2022.121553
https://www.eviation.com/aircraft/


Transportation Research Part C 155 (2023) 104313S. van Oosterom and M. Mitici

G

G

H
H

J

J

K

K

L

M

M

M

N
N

O

P

P

S

S

S

s
S

S

S

S

S

T

T

T

U

W

W

Z

Z

Flightradar24, 2022. Wideroe routes and destinations. Flightradar24. URL https://www.flightradar24.com/data/airlines/wf-wif/routes.
Garrow, L.A., German, B.J., Leonard, C.E., 2021. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground

transportation for informing future research. Transp. Res. C 132, 103377. http://dx.doi.org/10.1016/j.trc.2021.103377.
uo, Z., Zhang, X., Balta-Ozkan, N., Luk, P., 2020. Aviation to grid : Airport charging infrastructure for electric aircraft. In: Volume 10: Sustainable Energy

Solutions for Changing the World: Part II. http://dx.doi.org/10.46855/energy-proceedings-7180.
uo, R., Zhang, Y., Wang, Q., 2014. Comparison of emerging ground propulsion systems for electrified aircraft taxi operations. Transp. Res. C 44, 98–109.

http://dx.doi.org/10.1016/j.trc.2014.03.006.
epperle, M., 2012. Electric Flight - Potential and Limitations. Lisbon, Portugal, URL https://elib.dlr.de/78726/1/MP-AVT-209-09.pdf.
olland, F., 2021. DHL express buys electric cargo planes for U.S. package delivery from start-up eviation. CNBC News. URL https://www.cnbc.com/2021/08/

03/dhl-express-buys-eviation-electric-planes-for-us-package-delivery.html.
ustin, C.Y., Payan, A.P., Briceno, S.I., German, B.J., Mavris, D.N., 2020. Power optimized battery swap and recharge strategies for electric aircraft operations.

Transp. Res. C 115, 102605. http://dx.doi.org/10.1016/j.trc.2020.02.027.
ustin, C.Y., Payan, A.P., Mavris, D.N., 2022. Integrated fleet assignment and scheduling for environmentally friendly electrified regional air mobility. Transp.

Res. C 138, 103567. http://dx.doi.org/10.1016/j.trc.2022.103567.
lesty, V., 2022. Electric cars hit 65% of Norway sales as Tesla grabs overall pole. Reuters. URL https://www.reuters.com/business/autos-transportation/electric-

cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/.
wizera, O., Nurre, S.G., 2018. Using drones for delivery: A two-level integrated inventory problem with battery degradation and swap stations. In: Proceedings

of the Industrial and Systems Engineering Research Conferences. pp. 1–6.
iu, W., Niu, S., Xu, H., Li, X., 2016. A new method to plan the capacity and location of battery swapping station for electric vehicle considering demand side

management. Sustainability 8 (6), 557. http://dx.doi.org/10.3390/su8060557, Number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
ak, H.-Y., Rong, Y., Shen, Z.-J.M., 2013. Infrastructure planning for electric vehicles with battery swapping. Manage. Sci. 59 (7), 1557–1575. http:

//dx.doi.org/10.1287/mnsc.1120.1672, Publisher: INFORMS.
itici, M., Pereira, M., Oliviero, F., 2022. Electric flight scheduling with battery-charging and battery-swapping opportunities. EURO J. Transp. Logist. 11,

100074. http://dx.doi.org/10.1016/j.ejtl.2022.100074.
uralidharan, N., Self, E.C., Dixit, M., Du, Z., Essehli, R., Amin, R., Nanda, J., Belharouak, I., 2022. Next-generation cobalt -free cathodes – A prospective solution

to the battery industry’s cobalt problem. Adv. Energy Mater. 12 (9), 2103050. http://dx.doi.org/10.1002/aenm.202103050, _eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/aenm.202103050.

ordpool Group, 2022. Hourly electricity prices. URL https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/ALL1/Hourly/.
urre, S.G., Bent, R., Pan, F., Sharkey, T.C., 2014. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid.

Energy Policy 67, 364–377. http://dx.doi.org/10.1016/j.enpol.2013.11.052.
lje- og energidepartementet, 2016. Renewable energy production in Norway. Government.no, Publisher: regjeringen.no. URL https://www.regjeringen.no/en/

topics/energy/renewable-energy/renewable-energy-production-in-norway/id2343462/.
aoli, L., Dasgupta, A., McBain, S., 2022. International Energy Agency : Electric Vehicles. Tech. Rep., International Energy Agency, URL https://www.iea.org/

reports/electric-vehicles.
ark, S., Zhang, L., Chakraborty, S., 2017. Battery assignment and scheduling for drone delivery businesses. In: 2017 IEEE /ACM International Symposium on

Low Power Electronics and Design. ISLPED, pp. 1–6. http://dx.doi.org/10.1109/ISLPED.2017.8009165.
alucci, F., Trainelli, L., Faranda, R., Longo, M., 2019. An optimization model for airport infrastructures in support to electric aircraft. In: 2019 IEEE Milan

PowerTech. pp. 1–5. http://dx.doi.org/10.1109/PTC.2019.8810713.
arker, M.R., Pandžić, H., Ortega-Vazquez, M.A., 2015. Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans.

Power Syst. 30 (2), 901–910. http://dx.doi.org/10.1109/TPWRS.2014.2331560, Conference Name: IEEE Transactions on Power Systems.
chneider, F., Thonemann, U.W., Klabjan, D., 2018. Optimization of battery charging and purchasing at electric vehicle battery swap stations. Transp. Sci. 52

(5), 1211–1234. http://dx.doi.org/10.1287/trsc.2017.0781, Publisher: INFORMS.
entralbyrå, S., 2022. Electricity prices. Statistisk sentralbyra. URL https://www.ssb.no/en/energi-og-industri/energi/statistikk/elektrisitetspriser.
hao, Q., Shao, M., Lu, Y., 2021. Terminal area control rules and eVTOL adaptive scheduling model for multi-vertiport system in urban air Mobility. Transp.

Res. C 132, 103385. http://dx.doi.org/10.1016/j.trc.2021.103385.
oltani, M., Ahmadi, S., Akgunduz, A., Bhuiyan, N., 2020. An eco-friendly aircraft taxiing approach with collision and conflict avoidance. Transp. Res. C 121,

102872. http://dx.doi.org/10.1016/j.trc.2020.102872.
ultana, U., Khairuddin, A.B., Sultana, B., Rasheed, N., Qazi, S.H., Malik, N.R., 2018. Placement and sizing of multiple distributed generation and battery swapping

stations using grasshopper optimizer algorithm. Energy 165, 408–421. http://dx.doi.org/10.1016/j.energy.2018.09.083.
un, B., Sun, X., Tsang, D.H.K., Whitt, W., 2019. Optimal battery purchasing and charging strategy at electric vehicle battery swap stations. European J. Oper.

Res. 279 (2), 524–539. http://dx.doi.org/10.1016/j.ejor.2019.06.019.
un, B., Tan, X., Tsang, D.H.K., 2018. Optimal charging operation of battery swapping and charging stations with QoS guarantee. IEEE Trans. Smart Grid 9 (5),

4689–4701. http://dx.doi.org/10.1109/TSG.2017.2666815, Conference Name: IEEE Transactions on Smart Grid.
araldsen, L.E., 2021. Norway’s Wideroe to Fly First Zero -Emission Passenger Plane, Europe ed. Bloomberg, URL https://www.bloomberg.com/news/articles/

2021-11-10/norway-s-wideroe-plans-first-zero-emission-plane-in-five-years.
aylor-Marriott, N., 2022. American cape air orders 75 electric airplanes from eviation. Simple Flying. URL https://simpleflying.com/eviation-announces-75-

plane-order-from-cape-air-for-electric-plane/.
rainelli, L., Salucci, F., Riboldi, C.E.D., Rolando, A., Bigoni, F., 2021. Optimal sizing and operation of airport infrastructures in support of electric -powered

aviation. Aerospace 8 (2), 40. http://dx.doi.org/10.3390/aerospace8020040.
NFCCC, 2021. International Aviation Climate Ambition Coalition - COP 26 Declaration. United Nations, URL https://ukcop26.org/cop-26-declaration-

international-aviation-climate-ambition-coalition/.
orley, O., Klabjan, D., 2011. Optimization of battery charging and purchasing at electric vehicle battery swap stations. In: 2011 IEEE Vehicle Power and

Propulsion Conference. (ISSN: 1938-8756) pp. 1–4. http://dx.doi.org/10.1109/VPPC.2011.6043182.
u, H., Pang, G.K.-H., Choy, K.L., Lam, H.Y., 2017. A charging-scheme decision model for electric vehicle battery swapping station using varied population

evolutionary algorithms. Appl. Soft Comput. 61, 905–920. http://dx.doi.org/10.1016/j.asoc.2017.09.008.
han, W., Wang, Z., Zhang, L., Liu, P., Cui, D., Dorrell, D.G., 2022. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping

stations. Energy 258, 124723. http://dx.doi.org/10.1016/j.energy.2022.124723.
iegler, M., Trancik, J., 2021. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14 (4), 1635–1651.

http://dx.doi.org/10.1039/D0EE02681F, Publisher: Royal Society of Chemistry.
16

https://www.flightradar24.com/data/airlines/wf-wif/routes
http://dx.doi.org/10.1016/j.trc.2021.103377
http://dx.doi.org/10.46855/energy-proceedings-7180
http://dx.doi.org/10.1016/j.trc.2014.03.006
https://elib.dlr.de/78726/1/MP-AVT-209-09.pdf
https://www.cnbc.com/2021/08/03/dhl-express-buys-eviation-electric-planes-for-us-package-delivery.html
https://www.cnbc.com/2021/08/03/dhl-express-buys-eviation-electric-planes-for-us-package-delivery.html
https://www.cnbc.com/2021/08/03/dhl-express-buys-eviation-electric-planes-for-us-package-delivery.html
http://dx.doi.org/10.1016/j.trc.2020.02.027
http://dx.doi.org/10.1016/j.trc.2022.103567
https://www.reuters.com/business/autos-transportation/electric-cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/
https://www.reuters.com/business/autos-transportation/electric-cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/
https://www.reuters.com/business/autos-transportation/electric-cars-take-two-thirds-norway-car-market-led-by-tesla-2022-01-03/
http://refhub.elsevier.com/S0968-090X(23)00302-9/sb19
http://refhub.elsevier.com/S0968-090X(23)00302-9/sb19
http://refhub.elsevier.com/S0968-090X(23)00302-9/sb19
http://dx.doi.org/10.3390/su8060557
http://dx.doi.org/10.1287/mnsc.1120.1672
http://dx.doi.org/10.1287/mnsc.1120.1672
http://dx.doi.org/10.1287/mnsc.1120.1672
http://dx.doi.org/10.1016/j.ejtl.2022.100074
http://dx.doi.org/10.1002/aenm.202103050
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103050
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103050
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202103050
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-Prices/ALL1/Hourly/
http://dx.doi.org/10.1016/j.enpol.2013.11.052
https://www.regjeringen.no/en/topics/energy/renewable-energy/renewable-energy-production-in-norway/id2343462/
https://www.regjeringen.no/en/topics/energy/renewable-energy/renewable-energy-production-in-norway/id2343462/
https://www.regjeringen.no/en/topics/energy/renewable-energy/renewable-energy-production-in-norway/id2343462/
https://www.iea.org/reports/electric-vehicles
https://www.iea.org/reports/electric-vehicles
https://www.iea.org/reports/electric-vehicles
http://dx.doi.org/10.1109/ISLPED.2017.8009165
http://dx.doi.org/10.1109/PTC.2019.8810713
http://dx.doi.org/10.1109/TPWRS.2014.2331560
http://dx.doi.org/10.1287/trsc.2017.0781
https://www.ssb.no/en/energi-og-industri/energi/statistikk/elektrisitetspriser
http://dx.doi.org/10.1016/j.trc.2021.103385
http://dx.doi.org/10.1016/j.trc.2020.102872
http://dx.doi.org/10.1016/j.energy.2018.09.083
http://dx.doi.org/10.1016/j.ejor.2019.06.019
http://dx.doi.org/10.1109/TSG.2017.2666815
https://www.bloomberg.com/news/articles/2021-11-10/norway-s-wideroe-plans-first-zero-emission-plane-in-five-years
https://www.bloomberg.com/news/articles/2021-11-10/norway-s-wideroe-plans-first-zero-emission-plane-in-five-years
https://www.bloomberg.com/news/articles/2021-11-10/norway-s-wideroe-plans-first-zero-emission-plane-in-five-years
https://simpleflying.com/eviation-announces-75-plane-order-from-cape-air-for-electric-plane/
https://simpleflying.com/eviation-announces-75-plane-order-from-cape-air-for-electric-plane/
https://simpleflying.com/eviation-announces-75-plane-order-from-cape-air-for-electric-plane/
http://dx.doi.org/10.3390/aerospace8020040
https://ukcop26.org/cop-26-declaration-international-aviation-climate-ambition-coalition/
https://ukcop26.org/cop-26-declaration-international-aviation-climate-ambition-coalition/
https://ukcop26.org/cop-26-declaration-international-aviation-climate-ambition-coalition/
http://dx.doi.org/10.1109/VPPC.2011.6043182
http://dx.doi.org/10.1016/j.asoc.2017.09.008
http://dx.doi.org/10.1016/j.energy.2022.124723
http://dx.doi.org/10.1039/D0EE02681F

	Optimizing the battery charging and swapping infrastructure for electric short-haul aircraft—The case of electric flight in Norway
	Introduction
	Prior work and contributions
	Problem description
	Electric aircraft operations with battery swapping
	Electric aircraft flight schedules
	Battery swaps
	Battery charging station
	Battery charging station sizing
	Swapped aircraft batteries recharge scheduling

	 A recourse model to optimize the charging infrastructure for swapped batteries
	 Tactical planning: Swapped aircraft batteries recharge scheduling problem
	Decision variables
	Mixed-Integer Linear Problem Formulation

	 Strategic planning: Battery charging station sizing problem
	Decision variables
	Recourse model formulation
	Simulated Annealing Algorithm


	Case study: optimizing the charging infrastructure for Widerøe Airlines (Norway)
	Short-haul network of Widerøe Airlines
	Specifications of the electric aircraft

	Results—Optimizing the charging infrastructure for Widerøe Airlines
	Bodø Lufthavn
	Charging infrastructure at Bergen, Bodø, Hammerfest, Oslo, Tromsø, Trondheim and Vadsø

	Sensitivity analysis: battery capacity and daily number of flights 

	Quantifying the benefit of recourse optimization considering air traffic for an entire year vs. infrastructure optimization considering only one day of traffic
	Infrastructure optimization considering only a peak-day or a median-day of air traffic
	Results: quantifying the advantage of recourse infrastructure optimization for Widerøe Airlines at Bodø

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


