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Abstract
With mobile robotics being applied for more and more complex applications, their 
autonomy should be preserved. While a lot of research is performed into the 
direction of failure prediction for autonomous processes or systems, the field of 
mobile robots has received less attention. Proactive failure prediction for mobile 
robots is a useful tool to prevent unwanted downtime and undesired damages. This 
work attempts to fill this research gap by showing the applicability of anomaly 
detection methods for failure prediction in the field of mobile robots. Specifically, we 
employ an unsupervised Variational Autoencoder to predict failures in the operational 
data from the Discovery Collector, a manure cleaning robot developed by Lely 
Industries. We elaborately showcase the feature engineering steps which yield the 
best performance, provide the performance of three general datasets, and state 
promising next steps for root cause classification which is enabled by accurate 
failure prediction. All in all, our work shows that the use of feature offsets, calculated 
from desired values compared to actual values, enhances the model performance 
tremendously. The provided datasets showcase F1-scores ranging from 0.64-0.76, 
showing the proposed solution is able to solve the failure prediction problem in the 
field of mobile robots, while highlighting the encountered limitations for future 
improvement.
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Abstract �With mobile robotics being ap-
plied for more and more complex applications,
their autonomy should be preserved. While a
lot of research is performed into the direction of
failure prediction for autonomous processes or
systems, the �eld of mobile robots has received
less attention. Proactive failure prediction for
mobile robots is a useful tool to prevent un-
wanted downtime and undesired damages. This
work attempts to �ll this research gap by show-
ing the applicability of anomaly detection meth-
ods for failure prediction in the �eld of mobile
robots. Speci�cally, we employ an unsupervised
Variational Autoencoder to predict failures in
the operational data from the Discovery Col-
lector, a manure cleaning robot developed by
Lely Industries. We elaborately showcase the
feature engineering steps which yield the best
performance, provide the performance of three
general datasets, and state promising next steps
for root cause classi�cation which is enabled by
accurate failure prediction. All in all, our work
shows that the use of feature o�sets, calculated
from desired values compared to actual values,
enhances the model performance tremendously.
The provided datasets showcase F1-scores rang-
ing from 0.64-0.76, showing the proposed solu-
tion is able to solve the failure prediction prob-
lem in the �eld of mobile robots, while high-
lighting the encountered limitations for future
improvement.

I. Introduction

Mobile robots are becoming more and more integrated
into automation processes. While robotic arms dom-
inated automation a few decades ago, advancements
in arti�cial intelligence and control algorithms now en-
able the use of more complex mobile robotic solutions.
Adeleke et al. recently stated that "machine learn-
ing algorithms will enable robots to adapt to changing
production demands, optimize work�ows, and perform
complex tasks with greater autonomy and e�ciency."
([1], p.907). Speci�cally for mobile robotics, Ullah et
al. gives a nice overview about the current challenges
in their work ([2], p.25-28). These challenges involve a
wide range of technical and operational considerations,
from navigation and environmental adaptation to sys-
tem reliability and performance consistency. As mobile
robots take on more and more roles in various indus-

tries, ensuring their reliable operation becomes essen-
tial. Among the current challenges, failure prediction
stands out as a particularly complex problem missing
a universal solution. Despite numerous research e�orts
(for example, [3], [4], [5], [6], [7]), it turns out to be dif-
�cult to reach a general solution for failure prediction,
due to the diverse nature of robots and their opera-
tional contexts [8].
Related to failure prediction, is root cause analysis.

Root cause analysis is the task to identify the funda-
mental source of failure to enable the development of
targeted preventive solutions. When root causes can be
detected exactly when they occur during robotic exe-
cution, failure prediction becomes a trivial task. Cur-
rently, one of the challenges of applying machine learn-
ing solutions to this problem is the acquisition and de-
termination of ground truth labels for robotic failures.
Labelling is a process that often demands extensive
expert domain knowledge and a signi�cant amount of
time. Extending the current e�orts into failure predic-
tion and unsupervised root cause analysis eliminates
this need for labelling. Besides, it o�ers substantial
practical value for mobile robots, enabling proactive
maintenance strategies and enhancing operational reli-
ability.
Failure prediction starts by identifying irregular pat-

terns in data streams [9]. Anomaly detection algo-
rithms are a popular choice to determine when there
are patterns in the data that do not conform to ex-
pected nominal behavior ([10], p.1). These algorithms
can also be applied to failure prediction when an error
is de�ned as "the situation in which a system deviates
from the correct state, which may or may not even-
tually result in a system failure" ([9], p.5). Thus, for
anomaly detection algorithms to be e�ective in pre-
dicting failures, there must be a detectable deviation
from nominal data patterns before an error, as these
algorithms rely on recognizing unusual or unexpected
behaviors. Anomaly detection algorithms are already
widely researched in many �elds, like network intru-
sion [11], smart manufacturing [12], healthcare [13] and
video surveillance [14].
Mobile robots require sensors and internal models to

make sense of their environment, after which they take
appropriate actions to reach some goal. Autonomous
mobile robots behave very complex, which makes it
hard for the current state-of-the-art anomaly detection
algorithms to be able to learn the patterns of nominal
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behavior and detect the deviations from it. However,
these algorithms are particularly valuable because they
can detect root causes as anomalies [15], thereby en-
hancing root cause analysis and ultimately contributing
to better failure prevention strategies. OmniAnomaly,
proposed by [16], is a promising unsupervised deep
learning model with the ability to learn strong tem-
poral dependencies in the data and capture stochastic
variables, which are two aspects that are required in the
context of this problem. This will be elaborated upon
in Section III.B. Within this work, we will focus on an
autonomous mobile robot, called the Discovery Collec-
tor, created by Lely Industries (see Figure 3), which
works with precomputed path planning and by execut-
ing discrete actions. More details about the robot will
be provided later in Section III.A.
We state the following research question: "What pre-

dictive performance can be achieved using a state-of-

the-art anomaly detection model for predicting and cat-

egorizing upcoming failures for a mobile robot, speci�-

cally the Discovery Collector made by Lely Industries1,

and how do variations of the input feature types impact

the e�ectiveness of this model?".
By answering this question we will show that the

autonomous mobile robot of this study exhibits consis-
tent enough behavior. This consistent behavior allows
the anomaly detection algorithm to learn the under-
lying nominal patterns in the behavior and to detect
deviations from it in its sensor data streams. In turn,
this provides the robot with a signal that can be used
to prevent upcoming failures by executing failure pre-
vention strategies which minimize the robotic system
failures. Overall, this paper contributes the following:

� An assessment of the e�ectiveness of di�erent fea-
ture types on the learning model performance with
a feature ablation study.

� A performance evaluation of OmniAnomaly [16]
for failure prediction on a mobile robot dataset.
Failure prediction using anomaly detection for mo-
bile robots is a novel �eld of application. The
novelty of the research domain is highlighted by
a systematic Scopus query [17], which yields only
4 related publications. For more details, see Sec-
tion II.B.

� Preliminary insight into the relation between the
learning model's input, output, and the underlying
root causes of the predicted failures.

The rest of this paper is organized as follows. Section
II will go over the state-of-the-art anomaly detection so-
lutions, while highlighting the existing approaches and
applicability to the �eld of mobile robots. Followed by
Section III which gives the context of the problem, elab-
orates on the selected anomaly detection model and in-
troduces the dataset used within this research. Section
IV describes the experiments which will aim to answer
the research questions de�ned above, followed by Sec-

1The Discovery Collector is a 2D mobile robot with uncer-
tainty in its odometry due to limited sensing, navigating over a
predetermined route with a known map.

Figure 1: Example of an Auto Encoder architecture. Source:
[22]

tion V which goes over all the obtained results, after
which Section VI provides a discussion of the results.
Finally, Section VII highlights the most important con-
tributions this paper holds, answering and discussing
the research questions stated above.

II. Related work

Anomaly detection is a popular tool for identifying
unusual patterns or outliers in data. It has found
widespread application across various �elds, including
cybersecurity, manufacturing, healthcare, and surveil-
lance. On the other hand, little can be found about
anomaly detection in the �eld of mobile robots. Within
this section an overview of the existing anomaly detec-
tion applications is provided and the research gap of
anomaly detection for mobile robotics is stated.

A. Applications of Anomaly Detection

The contexts of the �elds of application of anomaly
detection algorithms can di�er greatly, resulting in ap-
proaches that are not universally applicable. A very
common �eld of anomaly detection is network intrusion
detection systems (NIDS). Anomaly detection systems
within this �eld are tasked with monitoring network-
related timeseries data. Their primary function is to
detect when the network is under attack by an adver-
sary. Yang et al. [11] identi�ed 119 top-cited NIDS
papers from 2021 and before in their survey. Other
more recent approaches of NIDS include [18][19][20][21]
which use graph neural networks, random forests, de-
cision trees or generative adversarial networks (GAN)
respectively to detect intrusions. Yang et al. [11] ob-
served that many NIDS related anomaly detection ap-
proaches still rely on supervised algorithms and models,
which requires the availability of ground truth labels.
Consequently, they conclude that the way forward is to
invest in unsupervised or semi-supervised approaches.
These approaches only require little to no ground truth
labels, which reduces the computational and resource-
intensive process of manual data annotation and en-
ables more scalable and adaptable models. However, Li
et al. [21] conclude that, although their unsupervised
model shows good performance, unsupervised learning
approaches in the context of NIDS are rare and imma-
ture, with signi�cant room for improvement.
While NIDS focuses on network security, another
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popular application of anomaly detection is in real-time
monitoring of smart manufacturing processes. The goal
of anomaly detection in smart manufacturing is being
able to detect unplanned production downtimes quickly
in order to enhance production e�ciency. [23], [24], [25]
and [26] for example, all use Auto Encoder (AE) mod-
els to detect such anomalies. Other approaches in the
�eld use GANs ([27], [28]), neural networks (NN) ([29],
[30], [31]), or unsupervised clustering ([32]).
This shift towards unsupervised models re�ects a

broader trend in anomaly detection, where techniques
like AEs, GANs, and clustering algorithms are gain-
ing popularity due to their ability to learn from unla-
beled data. AEs have become particularly popular for
anomaly detection due to their ability to learn compact
representations of normal behavior and identify devia-
tions from it. Currently, AEs are most commonly used,
and an example architecture can be seen in Figure 1.
It shows the general structure of an encoder part, a
smaller latent space representation in the middle, and
a decoder part that tries to map the latent space repre-
sentation back to the original input. Such models only
require nominal data for training, and detect anomalies
by failing to successfully map deviating behavior to and
from the learned latent space representation. The pop-
ularity of unsupervised methods highlights the need for
models that can adapt to changing environments and
applications. Besides the �elds discussed above, there
are many more �elds that work with anomaly detection
algorithms. These �elds include for example healthcare
[13], video surveillance [14] and the Internet of Things
(IoT) [33]. A more elaborate overview of relatively re-
cent papers in various �elds can be found in [34].

B. Anomaly Detection for Mobile Robots

In contrast to these well-studied �elds, anomaly de-
tection in mobile robotics has received relatively lit-
tle attention. Examples of work that is performed so
far in this �eld are [35], which apply anomaly detec-
tion to detect sensor and actuator misbehavior, [36]
which use camera images to detect anomalies on the
drivable plane in front of the mobile robot, and [37]
which applies anomaly detection on positional infor-
mation to detect deviations from a robot's planned tra-
jectory. Azzalini et al. [37] interestingly follow up on
the latter paper with [38] which does not only detect
deviations from a robot's trajectory, but also classi�es
the type of deviation in an unsupervised manner using
the latent space representation of the input data with
a Variational Auto Encoder (VAE). [38] however did
not work with mobile robots, but with nautical drones.
They quanti�ed the performance of their work by a
False Positive Rate (FPR) of 0.0 on the nautical drone
dataset, but did not quantify the latent space cluster-
ing of the di�erent deviations. Nonetheless, the use of
VAEs in their work demonstrates the ability of VAEs
for clustering di�erent types of anomalies or failures.
Figure 2 shows an example of such latent space classi�-
cation, found by Azzalini et al. in [38]. This highlights

Figure 2: Latent space representation classi�cation results,
found by Azzalini et al. The abbreviations are all the di�er-
ent failure modes. Source: [38].

its potential application for root cause classi�cation.
Furthermore, related to predicting upcoming fail-

ures, is [39] which proposed a proactive anomaly de-
tection model trained on camera images and LiDAR
scans. Papers related to mobile robot anomaly detec-
tion or failure prediction ([35], [36], [37], [39]) however,
do not go into the potential root cause identi�cation
behind the detected anomaly or failure. The exception
to this is [38] which does apply some form of classi�-
cation. Moreover, [35] did mention they were not able
to pinpoint potential root causes because their model
aggregated the data in an irreversible manner. This
limitation suggests a need for more interpretable un-
supervised models in robotics, capable of not only de-
tecting anomalies, but also providing insights into their
origins.

III. Preliminaries

Before de�ning how the research into anomaly detec-
tion for mobile robots is performed, it is relevant to in-
troduce the details surrounding the problem at hand.
Below, an overview of the problem context is provided,
along with the model used for the anomaly detection
problem for mobile robots and the preliminary steps
taken with the available data.

A. Problem Context

The mobile robot upon which this paper is based is the
Discovery Collector2, see Figure 3. The Collector is
made by Lely, a company in the Netherlands focussed
on robotic applications in the dairy industry. The Col-
lector robot operates in a barn with milk cows, which
is a challenging environment. The presence of manure,
feed, and hay creates complex environmental condi-
tions. Many external sensors are less reliable when they
are dirty, and the �oor traction varies signi�cantly due
to the manure on the ground. The robot navigates us-
ing a provided map, considered to be the ground truth
map, and precomputed routes consisting of discrete ac-
tions. Discrete actions are for example straight actions

2https://www.lely.com/nl/discovery-collector/
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Figure 3: The Discovery Collector robot made by Lely, which
is tasked to autonomously clean up all the manure in a cow barn.
Source: [40]

parallel to a wall, or a turn with a speci�c radius and
angle. As the environment is so harsh for external sen-
sors, the robot navigates mainly by using measures of
the velocity of its two actuated wheels and two ultra-
sonic sensors, each orthogonal from the robot facing
left and right, see also Figure 5. This limited sensing
capability results in challenging localization, requiring
the robot to occasionally bump into walls to recalibrate
its position.
Moreover, due to the �oor conditions being wet and

covered in manure, it is not uncommon that the robot
slips. Combining this with occasional incorrectly de-
tected bumps or unreliable sensor information due to
it being dirty, the robot sometimes localizes itself in-
correctly, or starts or �nishes actions prematurely. The
robot is equipped with certain recovery actions which it
can take when it detects it is no longer in the correct lo-
cation. However, when this fails the robot goes into an
erroneous state and will not move anymore until man-
ual intervention. This is the failure that we are trying
to predict using anomaly detection, with the goal of
preventing the need for manual intervention after fail-
ure, thereby increasing the robot's uptime signi�cantly.
Preventing such failures can be achieved by learning
nominal data patterns, in order to detect deviating
data that precede failures. Despite the predetermined
routes, this remains a challenging problem, due to the
robot's limited sensing capabilities. The di�culty lies
in distinguishing between critical uncertainty resulting
in failure and temporary uncertainty from which the
robot can recover on its own. This gray area, where
the di�erence is often unclear to the human eye, is pre-
cisely where deep learning (DL) models can be highly
e�ective if applied right [41].

B. Model Selection and Architecture

Like many other �elds within anomaly detection, la-
belling data for mobile robots is still a di�cult and
time-consuming e�ort. As this problem's context is also
quite complex, labelling would also require expert do-
main knowledge and a signi�cant amount of time. Su-
pervised and semi-supervised approaches are therefore
less suited for this problem. Similar to the conclusion
of Yang et al. [11], and following the general trend in

the �eld of anomaly detection, the current work prefers
an unsupervised model.
Another relevant aspect of the problem context is

the input data format. Mobile robots, like many other
robots and systems, produce multivariate timeseries.
Due to the sequential order of actions the robot in this
scenario takes, it is important to be able to track the
robot's internal state over time. This indicates the need
for a model with good temporal dependency, which en-
ables the robot to not only consider its state based on
current data, but rather evaluate its state based on a
range of recent values. As an example, when the robot
encounters a bump which it believes to be a wall, but
is actually an unknown object on the route, it might
prematurely take its next action, only to potentially
encounter more unexpected bumps, or the absence of
walls in certain places. Tracking the uncertain state of
the robot from the initial early bump onwards for some
time is therefore vital for the model to distinguish be-
tween nominal and anomalous behavior leading to a
failure. The nominal behavior here is de�ned as the
completion of a full route without any recovery behav-
ior. Of course, the model should also be able to deal
with uncertain actions that do not have negative conse-
quences, as during normal behavior it is not uncommon
to have some unexpected bumps here and there due to
the presence of cows.
Furthermore, the model must be able to e�ectively

capture the stochastic elements of the problem, as
stochastic elements permeate this robot's problem con-
text. Sensor measurements inherently contain noise,
the external environment dynamically in�uences the
robot's state at any time, and route execution is contin-
uously challenged by localization uncertainties. These
factors collectively create a need for a stochastic model.
Rios et al. [42] highlight the two typical approaches.
Namely, to model either the dynamical nature of the
data using deterministic approaches, or to model the
stochastic relations in the data using statistical ap-
proaches. Hereafter, they state that real-world systems
produce a mixture of both types, emphasizing the need
for a combined solution, which this problem also re-
quires.
Overall, we require an unsupervised model which is

able to learn nominal behavioral patterns in multivari-
ate timeseries produced by a mobile robot. It has to
consider both the strong temporal dependency of the
data and the presence of stochastic variables. Su et al.
[16] have introduced the OmniAnomaly model which
does exactly all these things and more. Their model
demonstrates good performance for multivariate time-
series anomaly detection, e�ectively handling datasets
with stochastic variables and requiring temporal de-
pendency insights. Compared to other state-of-the-art
models using only temporal or stochastic approaches,
OmniAnomaly achieves an average F1-score of 0.86
compared to 0.77 of the second-best model introduced
by Hundman et al. [43], on the SMAP, MSL (both from
NASA) and SMD (introduced in [16]) datasets. A more
elaborate study into the usability of OmniAnomaly for
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Figure 4: OmniAnomaly's architecture separated into two
parts. The left is the encoder part of the VAE where zKt is the
latent space representation. The right is the decoder part of the
VAE which takes a sample zt from the latent space distribution
zKt and decodes it back to the original input xt. Source: [16]

the problem at hand is performed in an earlier litera-
ture study in [44].
OmniAnomaly uses Gated Recurrent Units (GRU)

(a type of Recurrent Neural Network (RNN)) com-
bined with a Variational Autoencoder (VAE) architec-
ture to capture both temporal dependencies and the
stochastic variables in the data. Besides the classi-
cal multi-Gaussian latent space representation of VAEs,
OmniAnomaly enables learning non-Gaussian distribu-
tions for more complex data patterns by applying pla-
nar Normalizing Flows (NF). The full architecture of
OmniAnomaly can be seen in Figure 4. The output
of this model however, is not yet a prediction. The
model's output is �rst compared to a threshold, which
within OmniAnomaly is currently found by trying mul-
tiple di�erent thresholds in a pre-determined range and
choosing the optimal one. For a complete comprehen-
sive description of OmniAnomaly, it is recommended
to consult the work of Su et al. [16] itself. Further-
more, OmniAnomaly has two other aspects which suit
the �eld of mobile robots well. First, a signi�cant ad-
vantage of using a VAE inside the model is the fact that
the loss is calculated as the sum of the loss on each indi-
vidual input feature. This enables the extraction of the
anomaly score contribution per feature. The anomaly
score contribution per feature indicates how well the
model was able to reconstruct each feature, which can
be used for further root cause analysis, as the features
contributing most to an anomalous output are poten-
tially related to an underlying root cause. Second, the
fact that the output of OmniAnomaly is given per time
step, enables further investigation into the correlation
between the input and output. As seen later Section V,
combining this approach with positional information of
the robot over time yields interesting results that con-
tribute to the possibility of root cause classi�cation of
failures.

C. Data De�nition

The quality of input data is crucial to construct
good learning models. To maintain generalizability in
anomaly detection for mobile robots, we focus on two
generally available data streams: motor velocities and
ultrasonic measures. These sensors provide promis-
ing indicators for failures without relying too much
on robot-speci�c implementations. Within the exper-
iments explained later in Section IV, several feature
engineered data streams are also explored to see if they
improve the model's performance. The additional en-
gineered features are the following:

1. Motor velocity o�sets: calculated by subtract-
ing the motor velocity control setpoint and the ac-
tual measured motor velocity.

2. Ultrasonic o�sets: calculated by subtracting the
expected ultrasonic measure and the actual mea-
sure. The expected ultrasonic measurement is
found by using a simple ray-trace model using the
map provided to the robot, and the position on
which the robot has localized, as can be seen in
Figure 5. The used distance r is found with Equa-
tions (1)-(4) below.

d12 = |r1 − r2| (1)

d13 = |r1 − r3| (2)

d23 = |r2 − r3| (3)

r =


r1+r2

2 , if d12 = min{d12, d13, d23}
r1+r3

2 , if d13 = min{d12, d13, d23}
r2+r3

2 , if d23 = min{d12, d13, d23}
(4)

In the equations above, ri represents the distance
found by a single ray-trace, and dij represents the
distance between two ray-trace distances. The �-
nal used distance r is calculated as the average of
the two most similar ray traces. While the ray-
trace model yields good results for this project, it
is important to state its limitations. The model
is highly dependent on the accuracy of localiza-
tion. When the robot is incorrectly localized,
the obtained ray-trace intersections will not make
any sense. Additionally, the ray-trace model as-
sumes ideal ultrasonic re�ections, which is not the
case in practice. The use of this ray-trace model
should therefore be carefully evaluated before use,
as otherwise the model's predictions are related to
anomalies in the used ray-trace model instead of
related to the robot's execution.

3. Flags: discrete indicators for driving direction
and left and right turning actions during a route.
The value determination of each �ag can be seen
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Figure 5: An illustration of the simple expected ultrasonic mea-
sure ray-trace model. The center position of the robot at each
time t is known, as is the o�set to both ultrasonic sensors. 3
ray-trace intersections to the closest wall in the map are then
calculated of which the average of the two most similar ray-traces
is used to prevent a noisy signal.

in Equations (5)-(7) below.

direction_�ag =


1, if moving forward

−1, if moving backwards

0, otherwise

(5)

turn_left_�ag =

{
1, if turning left

0, otherwise
(6)

turn_right_�ag =

{
1, if turning right

0, otherwise
(7)

From these signals 12 datasets are created with var-
ious combinations, with all input features normalized
to ranges of [0, 1] or [−1, 1]. The �rst nine datasets are
smaller, derived from a single robot on a single route
with only one underlying root cause before the fail-
ures. The single underlying root cause per dataset is
also related to the input feature of the dataset. The
smaller datasets are used for a feature ablation study
[45], to evaluate the e�ectiveness of the various pro-
posed input signals. The last three datasets are larger,
incorporating data from six robots on multiple routes
with multiple underlying root causes before failure, us-
ing the best performing input combinations as deter-
mined by the experiment described in Section IV.D,
and its results in Section V.A. The performance of
the model with the larger datasets demonstrates the
model's ability to generalize across more generally rep-
resentative input data. Table 1 provides a high-level
overview of all datasets, including their composition,
sizes, and amount of routes of each label. This dataset
design allows us to investigate the contributions of each
input type to predictive performance and the impact
of combining multiple sensor streams. A more elab-
orate composition of the test set of each dataset can
be found in Table 4 and Table 5 in Appendix B. All
datasets consist of time steps which are equidistantly
spaced. The original data from the robot is recorded

with a frequency of 10Hz, which is then downsampled
to 2Hz. This maintained the overall trends in the data,
reduced the amount of noise within the datasets which
in�uences the learning model negatively, and reduced
the overall training time of the model. The moments
before a failure itself, present in the available data, is
purposely left out of the test datasets. The reason for
this is that we do not care about behavior deviations
during the failure, but rather the behavior before it.
Finally, the speci�c de�nitions of 'anomalies', 'failures'
and 'routes' in the context of this study are provided
in the Section IV, as these concepts are fundamental to
our approach.

IV. Methods

Within this section the methodology is provided for all
performed research. It provides the exact de�nitions of
all relevant parts of the research, clearly mentions all
changes made to the OmniAnomaly model, and de�nes
the approach used to get speci�c insights.

A. De�nitions

It is crucial to clearly provide de�nitions of the impor-
tant aspects used in this research. These de�nitions
also determine some changes made to OmniAnomaly
[16] to make the model work for the mobile robot of
this study.
Firstly, the most important de�nition is what a fail-

ure is within this context. A failure within this study is
de�ned by the situation where the robot is completely
lost within its barn, and cannot return to its base sta-
tion on its own. It requires manual intervention, and it
will shut itself down in order to preserve battery charge
for a user to drive it back to its base station. Before
this failure the robot may have already executed sev-
eral recovery actions, trying to �nd its way back on its
route. When unsuccessful, the robot stops, which is the
exact moment of failure. For this study, we disregard
hardware failures and consider only failures as a result
of its executed behavior, and its environment.
Secondly, there is the de�nition of an anomaly.

Within this context, an anomaly is the deviation from
nominal behavior potentially resulting in failure. This
is a broad de�nition, as an anomaly can be the repre-
sentation of various root causes. A root cause is the
reason an eventual failure occurs. This can be a com-
bination of di�erent smaller events during a route, or
one big event that on its own was enough to prevent
correct execution. For example, a root cause in this
context might be the ultrasonic sensor being obstructed
by manure. Due to this, the robot cannot measure the
distance to the wall on one side, and therefore eventu-
ally becomes more uncertain about its current location.
The incorrect ultrasonic measures are the anomaly in
this example. When this happens at a crucial part
of a route, the localization might get so bad that the
robot gets completely lost and starts to take the wrong
actions. Finally, when the robot gets lost, does not
manage to recover and decides to preserve battery and
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Table 1: High-level overview of the datasets used within this paper.

# Name Dimensions Train size (time steps) Amount of train routes Test size (time steps) Amount of test routes

1 raw_motor_velocities 4

82,532 Nominal: 30 43,604
Nominal: 11
Anomalous: 5

2 motor_velocity_o�sets 2
3 raw_motor_velocities_with_�ags 7
4 motor_velocity_o�sets_with_�ags 5
5 motor_velocities_combined_with_�ags 9
6 motor_velocities_combined_no_�ags 6

7 ultrasonic_raw 2
128,410 Nominal: 30 56,734

Nominal: 11
Anomalous: 4

8 ultrasonic_o�sets 2
9 ultrasonic_combined 6

10 big_set_motor_velocities 6
528,846 Nominal: 178 238,856

Nominal: 60
Anomalous: 37

11 big_set_ultrasonic 6
12 big_set_combined 12

wait for manual intervention, a failure occurs.
In addition to the de�nition of an anomaly and fail-

ure, we have the routes of a robot. A route is a sin-
gle round trip from the robot's base station3 around
the barn, ending back again at its base station. Any
route execution that starts and ends at the base sta-
tion without any recovery actions during the execu-
tion, is declared as a nominal route. If it does not get
back to its base station, a failure must have occurred,
and the route is declared anomalous. Importantly, this
does not mean that all data points within an anomalous
route are anomalous but rather that the route contains
anomalies.
Only the data points contributing to the moment

the anomaly threshold is exceeded are considered the
anomaly. For example, a route execution might be
normal for the �rst 20 minutes, after which several
anomalous data points come up, and the model pre-
dicts an upcoming failure. As a result of this, the full
route is declared anomalous, and the data points just
before the moment of prediction are appointed as the
anomaly, which is the embodiment of some underlying
root cause. Ideally, when these anomalous data points
are detected before the failure, this detection signal can
be used to prevent the upcoming failure from happen-
ing at all.

B. Changes to OmniAnomaly

First, OmniAnomaly is adapted to predict failures on
route-level instead of anomaly-level. Unlike the origi-
nal approach that focuses on individual anomaly peaks,
our method accounts for the nuanced nature of robotic
route execution. During nominal operations, the robot
can experience uncertainties without necessarily com-
promising the completion of the route. We introduce a
sliding window approach to smooth the model's output,
which allows us to distinguish between temporary un-
certainties and persistent anomalies that indicate po-
tential route failure. By calculating the average out-
put over the last n minutes of execution, we can bet-
ter detect when uncertainty progressively accumulates
to a critical level. This approach o�ers two key ad-
vantages: it provides a more robust failure prediction
mechanism in this context, and enables potential root
cause identi�cation by maintaining the temporal con-
text of the model's output. The sliding window length

3Within this context the base station is the charging station
of the robot. In general, the base station simply indicates the
robot uses the same start and end location.

was treated as a hyperparameter and optimized sepa-
rately, with details provided in Section IV.D. Similar to
OmniAnomaly [16], we still compare the adjusted out-
put against an optimal threshold to predict failures.
While an alternative approach might involve using the
overall average output, the sliding window method pre-
serves the critical temporal relationship between uncer-
tainty and route performance which enables potential
root cause identi�cation.
Moreover, when detecting anomalies on route-level,

the quantitative evaluation steps of OmniAnomaly had
to change too. Instead of classifying each individual
time step as a false or true positive or negative, we
want to classify routes as such. Equations (8) and (9)
below show how the model output at all time steps can
be evaluated either using anomaly-level prediction or
route-level prediction.

anomaly_level(ti, θ) =

{
1 if ti ≥ θ

0 otherwise
(8)

route_level(T, θ) =

{
1 if ∃ti ∈ T : ti ≥ θ

0 otherwise
(9)

A full route execution T exists of multiple time steps ti,
which on anomaly-level are all individually compared
to threshold θ or on route-level checked on the existence
of any time step ti exceeding θ. Note here the di�erent
scope of both functions: anomaly-level returns a pre-
diction classi�cation for each provided time step, and
route-level returns a prediction classi�cation for a full
route. During the evaluation process it is thus required
to have information about which time steps belong to
which route.
Finally, the validation portion parameter, on which

the training data is validated at each batch step, is
lowered from 30% to 5%. This reduction is primarily
motivated by computational e�ciency. It represents
a pragmatic choice rather than a rigorously tuned hy-
perparameter. The reduced validation set signi�cantly
decreased training time without compromising model
performance, as shown later by the results in Section
V.

C. Hyperparameter Tuning

The two hyperparameters that require separate tuning
are the sliding window size and the z-space size. For
both of these parameters, the process of tuning is de-
scribed below.
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Figure 6: The F1-scores per dataset for multiple z-space sizes.
Only scores are stated where the z-space size is smaller than the
dimension size of that dataset.

Table 2: The selected z-space sizes for each dataset, along with
the dimensions there originally are in the datasets and the ob-
tained F1-score with this z-space size.

# Name Dimensions Z-space F1-score

1 raw_motor_velocities 4 3 0.75
2 motor_velocity_o�sets 2 1 0.91
3 raw_motor_velocities_with_�ags 7 3 0.67
4 motor_velocity_o�sets_with_�ags 5 3 0.77
5 motor_velocities_combined_with_�ags 9 3 0.83
6 motor_velocities_combined_no_�ags 6 2 0.83

7 ultrasonic_raw 2 1 0.42
8 ultrasonic_o�sets 2 1 1.00
9 ultrasonic_combined 6 3 1.00

10 big_set_motor_velocities 6 1 0.70
11 big_set_ultrasonic 6 1 0.71
12 big_set_combined 12 2 0.71

Z-space The z-space size is determined �rst by eval-
uating the performance of each set for di�erent sizes.
Hereby setting the input for each dataset and all other
hyperparameters to be independent variables, and the
z-space hyperparameter to be dependent. The perfor-
mance of each z-space size is evaluated with the F1-
score, shown in Equation (10). The sliding window size
for this hyperparameter study is chosen to be an arbi-
trary length of 5 minutes. For this tuning experiment,
a few things should be kept in mind. First, the z-space
should be strictly smaller than the dimension size in
the dataset. Otherwise, the model can simply learn an
identity transformation or a more complex representa-
tion, rather than discovering meaningful latent factors
from the data itself. Having a latent space larger than
the original feature space thus undermines the purpose
of representation learning. Secondly, each set has its
own optimal z-space size, which means all sets should
be evaluated independently. Finally, there is a loss of
visualization opportunity when a z-space of 4 and big-
ger is chosen (for example, plots similar to those in [38]
are then no longer possible). Z-space sizes of 3 or less
therefore have a slight advantage compared to higher
sizes. The resulting F1-scores of this study can be seen
in Figure 6. The �nal chosen z-space sizes can be seen
in Table 2. There is one value that is selected at a
suboptimal z-space size, which is set number 3. The
obtained F1-score for this z-space is believed to be an
outlier, which was later supported by the results shown
in Table 3 where set number 3 performs similar to the
other sets with �ags.
Sliding Window For the sliding window size, the

nine smaller datasets are used to determine the optimal

Figure 7: The F1-scores per dataset for each sliding window
size, and the overall average per sliding window size.

size. Since this hyperparameter is model-wide, it is
not necessary to tune this on the bigger three datasets
as well. All window sizes between 30 seconds and 10
minutes with steps of 30 seconds were evaluated on the
nine datasets based on their F1-scores (10). The z-
space sizes for each dataset are already found at this
time and are set to the values shown in Table 2. In
Figure 7, the results of the sliding window tuning can be
seen. The optimal sliding window size is 600 time steps,
which is equal to 5 minutes as time step frequency for
all datasets in this paper is 2Hz.

D. Experiments

With the problem context described in Section III,
the concept de�nitions provided in Section IV.A and
the model changes and hyperparameters stated in the
Sections above, we are now able to perform research.
There are four experiments described below and later
evaluated in Section V.
Feature Engineering For this novel �eld for failure

prediction, it is useful to show in detail which feature
engineering steps are bene�cial for the deep learning
model's performance. The smaller datasets (sets 1-9),
described in Section III.C are used in a feature abla-
tion study [45]. 10 independent train and test runs are
performed per dataset, where each dataset contains dif-
ferent feature combinations. The feature combinations
can be found in Table 4. Sets 1-6 and sets 7-9 only con-
tain data produced by the execution of a single route,
where the failures in the anomalous routes are also the
result of a single type of root cause. This is described
in Section III.C and can also be seen in Table 5. The
learning model and all its hyperparameters are kept
constant, so the only variable under test is the compo-
sition of the datasets. The performance of the feature
combinations is evaluated using the average F1-score,
precision, and recall over all 10 runs per dataset, cal-
culated as shown in the equations below. All in all,
this full experiment will show the impact of the feature
combination on the performance.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)
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Within the equations above, TP, FP, and FN repre-
sents the amount of true positives, false positives and
false negatives respectively.
Performance Evaluation As failure prediction for

mobile robots is a rather unexplored �eld, it is use-
ful to evaluate the newfound performance within this
�eld. The experiment with the smaller datasets yields
a good feature combination for the used sensor input
types. As is presented later in Section V.A, the found
optimal feature combinations of both dataset types are
dataset six and nine. With this optimal feature com-
bination, three new datasets are created to show the
current performance of failure prediction in the �eld
of mobile robots. The three newly created datasets
are more complicated than the smaller datasets. The
datasets contain routes of multiple farms, driven by 6
Discovery Collector robots. The failures in the anoma-
lous routes have various underlying root causes, which
can be found in Table 5. Each big dataset is trained
and tested 10 times independently in order to get more
consistent results. The learning model's hyperparam-
eters are kept constant, and the performance is mea-
sured using the average F1-score (10), precision (11),
recall (12) and lead time per route. The lead time is the
time di�erence in minutes between the prediction and
moment of failure [46]. The time of prediction is the
�rst occurrence of the sliding window average model
output reaching above the threshold. If no failure is
predicted, but the route does end in one, the lead time
is set to 0. Besides these metrics, the performance of
this setup also provides insight into the generalizabil-
ity of the nominal behavior of the Discovery Collector
robot. This is because the data in this experiment con-
tains execution data of multiple routes, and is much
more representative when compared to the datasets of
performed feature experiments above. Besides the eval-
uation of the datasets with the aforementioned metrics,
there are several other potentially interesting experi-
ments to be performed, which have not been performed
in this study, but are stated later in Section VI.D.
Heatmaps for Root Cause Analysis An experi-

ment is also set up to investigate the possibility of root
cause classi�cation by using heatmaps. Currently, in-
terpreting these heatmaps requires signi�cant expert
domain knowledge, which limits their immediate oper-
ational utility. The heatmaps are constructed from the
output of the model. The mobile robot has a local-
ization algorithm providing global pose information at
each time step, and the anomaly detection model which
provides output at each time step (before the sliding
window application). These two data streams can be
combined into a heatmap by applying a Kernel Density
Estimator (KDE) [47], providing visual information of
the aggregated anomaly score output matched to the
locations of where the robot was in 2D space. To be
able to use heatmaps for root cause classi�cation, sev-
eral hypotheses needs to hold. First, it is necessary
that the heatmap's hotspots are not linked to the lo-
cation of failure, but ideally match the location of oc-
curring root causes. Second, to be able to e�ectively

classify root causes, the heatmaps must be consistent
enough or have some form of common pattern, in order
to �nd signi�cant di�erences in the spatial patterns be-
tween di�erent root causes, allowing for both visual in-
spection and quantitative comparison through distance
metrics. Third, the heatmaps or spatial patterns within
the heatmaps for di�erent root causes should be unique,
as otherwise multiple root cause types would end up in
the same category. Another use of the heatmaps is
that the heatmaps of individual route executions can
also be combined into an averaged heatmap, which po-
tentially yields insights into risky or di�cult parts of
the route. However, drawing meaningful conclusions
from these aggregated heatmaps remains challenging
and currently depends heavily on expert interpreta-
tion.

V. Results

This section will present all the results gained from the
experiments described in Section IV.

A. Feature Engineering Performance

The results of the 10 independent train and test runs
of the smaller datasets can be seen in the �rst nine
rows of Table 3. It is clear that the model is able to
consistently get a high recall score, on average 0.98,
while the precision generally falls a bit behind with an
average of 0.88.
Table 3 also shows an improvement in performance

for both the addition of the �ags and the feature engi-
neered o�sets. I.e., the F1-score of dataset one of 0.83
improves to 0.89 in dataset three with the addition of
�ags, and to 1.00 in dataset two with the addition of the
feature engineered o�sets. When examining the �ags
in more detail however, it appears that dataset four
with the �ags performs slightly worse than dataset two
without the �ags. Both feature additions thus enhance
the performance, but the o�sets on their own perform
better than when combined with the �ags. As is men-
tioned in the description of the Feature Engineering in
Section IV.D, datasets six and nine are selected for the
bigger, more general datasets, even though they per-
formed equally well as datasets two and eight. The
reason for this is that the context used for training and
testing of the smaller datasets is very simplistic (one
type of route, one type of root cause, see also Table 5)
and the bigger datasets require a more general under-
standing of the nominal behavior of the robot. There-
fore, the feature combinations with both the raw and
the o�set values are presumed to be more reliable when
applied on a more complex learning task.

B. General Dataset Performance

The performance of the bigger three datasets can be
found in the lower three rows of Table 3. Notably, the
scores are lower than the smaller nine datasets. Similar
to the smaller datasets, the model is able to achieve a
higher average recall of 0.73, and a somewhat lower
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Table 3: Results of 10 independent train and test runs on the
di�erent datasets. Note that the metrics are the average values
of all 10 runs, thus the precision and recall value in the table
are not the exact values used to calculate the F1-score, as that
metric is an average of 10 runs too.

# Name F1-score Precision Recall

1 raw_motor_velocities 0.83 0.79 0.92
2 motor_velocity_o�sets 1.00 1.00 1.00
3 raw_motor_velocities_with_�ags 0.89 0.92 0.90
4 motor_velocity_o�sets_with_�ags 0.99 0.98 1.00
5 motor_velocities_combined_with_�ags 0.98 0.97 1.00
6 motor_velocities_combined_no_�ags 1.00 1.00 1.00

7 ultrasonic_raw 0.44 0.28 1.00
8 ultrasonic_o�sets 1.00 1.00 1.00
9 ultrasonic_combined 1.00 1.00 1.00

10 big_set_motor_velocities 0.64 0.61 0.74
11 big_set_ultrasonic 0.76 0.78 0.75
12 big_set_combined 0.72 0.75 0.71

average precision of 0.71. The model thus detects a
slightly higher proportion of true positive predictions at
the cost of introducing more false positive predictions.
Insight into the decision-making of the model is

shown in Figure 9. These �gures show examples of the
o�sets of each feature type, which are the most insight-
ful features, next to the model output of the model
trained with dataset 12, the dataset with both input
types combined. The dark red boxes in the �gures in-
dicate the moment the sliding window averaged output
of the model reaches above the threshold. The light red
box shows the 5 minutes before the moment a failure is
predicted, which is relevant as these 5 minutes are all
time steps that contributed to the moment of the fail-
ure prediction. Note, that this is due to the application
of a sliding window average over the output of the last
5 minutes. Figures 9a, 9b and 9c show the input of
an anomalous route execution which eventually ends in
failure. Each of these �gures have a di�erent underly-
ing root cause, which can be recognized in the input
o�set data. Figure 9d shows a nominal route execution
to put the observed values into perspective.
The average lead times of a prediction before a failure

are shown in Figure 8. It can be seen that most of the
routes have a relatively high lead time when compared
to the average duration of each route in Table 5. The
higher the lead time, the earlier the failure is predicted
within the route on average.

Figure 8: The average lead time before failure of the bigger
datasets per route over all 10 test runs. Note that the bars that
are zero, indicate false negatives on average for that route, as
there was no lead time of the prediction before failure.

C. Heatmap Visualizations

Several created heatmaps can be found in Figure 10.
These examples can be used to show which of the hy-
potheses stated in Section IV hold. Figures 10a, 10b
and 10c show heatmaps of individual route executions,
including the robot estimated failure location, the lo-
cations where the robot was in recovery mode, and
the path the robot has taken over the route. The red
hotspots on the heatmaps show the locations on the
map where the model output is high. Figure 10d shows
the aggregated average heatmap of multiple executions
of the same route, providing a more general insight into
the locations where the model output over multiple ex-
ecutions was high.

VI. Discussion

This section discusses how the research question, stated
in Section I, has been addressed through the experi-
mental results and subsequent analysis. The results
show that while the current model's performance is
not yet suitable for practical deployment, it provides
promising insights for future research.

A. Feature Engineering Insights

As can be seen in the �rst nine rows of Table 3, both the
addition of �ags and o�sets to the datasets improves the
performance of the model in all scenarios. However, the
combination of both feature engineered data streams
does not perform better than the o�set data streams on
their own. This insight addresses the �rst contribution
of the paper: assessing the e�ectiveness of two feature
types on model performance.
The insights of Figure 9 can be explained in more

detail by a physical link that is found when examining
the relation between the input and output of the model.
An example of this is shown in Figure 11. Within this
�gure, the motor velocity o�sets input and model out-
put is shown from the test set of dataset six. As can
be seen in the �gure, the peaks of the model output in
blue clearly overlap with sudden jumps in the motor
velocity o�sets fed to the model as input. This coin-
cides with physical action where the robot changes driv-
ing direction or encounters unexpected bumps. In Fig-
ure 11, the multiple smaller peaks coincide with driv-
ing direction changes of the robot, whereas the larger
peaks, inside the dashed red boxes, coincide with un-
expected bumps during the route. The fact that the
directional changes have smaller peaks compared to the
unexpected bumps might be the result of the fact that
directional changes are common within a route execu-
tion, thus the model might have incorporated this into
its latent space representation as a possibility. Unex-
pected bumps on the other hand, are much more un-
common and ideally should not happen at all. There-
fore, it seems likely that the latent space representa-
tion does not model for this uncommon moment during
routes, and as a result, when it does occur, the model
is less able to anticipate this and yields a higher out-
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(a) Root cause: Lots of slip and unexpected bumps. Route: R2

(b) Root cause: Dirty ultrasonic sensor. Route: R2

(c) Root cause: Low obstacle blocking the route. Route: R15

(d) Nominal route input and its output. No failure is predicted as the threshold is not exceeded. Route: R9

Figure 9: The input and output of a few scenarios. The dark red box indicates the moment the sliding window output exceeds the
threshold and a failure is predicted. The light red box shows the sliding window contributing time steps before failure prediction.
The details of each route can be found in Table 5.

put. Note that this is a hypothetical assumption of the
inner workings of the model, and that this is hard to
con�rm as the model is considered to be a black box
[48]. To con�rm this assumption, an experiment could
be set up with a mobile robot dataset where the mo-
ments of bumps are known. This would allow for the
physical link to be captured in a metric [49]. Never-
theless, the di�erence in the height of the output works
in our advantage. Namely, directional changes are part
of nominal behavior, and should not be detected as an
anomaly, whereas the unexpected bump indicate wrong
localization or obstacles, which should be detected as
an anomaly as they are good indicators of upcoming
failures.
This found physical link is not limited to dataset

six or motor velocities speci�cally. The same link is
present in all 12 datasets and both for ultrasonic mea-
sures and motor velocities. Moreover, the physical link

between input and output yields a new hypothesis that
is promising for future research. The model currently
seems to not always be able to anticipate sudden state
changes, but has seemingly learned in a way that di-
rectional changes are more common than unexpected
bumps. This may indicate that the addition of other
data streams, for example, indicating upcoming direc-
tional changes (like the combination of the distance
driven and distance to drive for a current action), en-
ables the model to learn more accurate latent space
representations resulting in better anticipated sudden
state changes. In turn, this hopefully results in an
even bigger di�erence between nominal and anoma-
lous model output, making the overall failure predic-
tion problem easier.
Section V.B provided the performance of the bigger,

more general datasets in the bottom three rows of Ta-
ble 3. These current results are not very suitable yet
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(a) Heatmap 1 with a �xed ultrasonic measure as root cause.

(b) Heatmap 2 with a �xed ultrasonic measure as root cause.

(c) Heatmap with wheel slip as root cause.

(d) Aggregated average heatmap of a speci�c route made from mul-
tiple heatmaps based on executions of this route.

Figure 10: Figures 10a, 10b and 10c show a heatmap of a single
route execution, Figure 10d shows a heatmap of all executions
on the same route, summed and averaged.

to be used in practice, as it would result in a lot of
false alarms due to the low precision values, which ul-
timately does not result in more autonomy or uptime
of the robot. The exact performance required for the
model to be applicable, depends highly on the execu-
tion context of the robot at hand and the prevented

Figure 11: The output of the model overlaid with the motor
velocity o�set input streams at speci�c time steps on a route,
highlighting the clear physical link between the input and the
output of the model, and indicating the larger peaks at unex-
pected bumps.

amount of downtime as a result of the predicted fail-
ures. Altogether, the results do show the possibility of
a working solution for the failure prediction problem.
There are also several promising directions of improve-
ment for this problem that have not been explored in
this study. More about this in Section VI.D below.
Finally, a remark must be made about the lead times

stated in Figure 8. The �gure nicely shows that most
failures in the dataset can be predicted ahead of time,
but it does not link these predictions to actual underly-
ing root causes. It might now be that the �rst moment
a failure is predicted is a hallucination of the model
that is not necessarily linked to the eventual failure.
For example, when looking at Figure 9a, there are two
moments the threshold is exceeded. The �rst one is
shown in the �gure in dark red, but near the end of the
route execution, there is another. As there are no root
cause timeframe labels, it is currently not possible to
say which of the two (or both) is the actual root cause
of the eventual failure. Currently, only the �rst oc-
currence of threshold exceedance is used, which might
result in higher lead times. Despite the current ambi-
guity in pinpointing exact root cause timeframes, this
analysis provides initial evidence of the model's ability
to predict failures ahead of time, and calls for further
research to obtain accurate lead times [46].

B. Root Cause Identi�cation

Figure 9 provides a more elaborate insight into the
workings behind the model. As explained earlier in Sec-
tion V.B, Figures 9a, 9b, and 9c show the timeframe
contributing to a failure prediction made by the model
of three route executions with three di�erent underly-
ing root causes, and Figure 9d shows a nominal route
execution without any predicted failure. The visualiza-
tions only go over three routes containing root causes,
but they show a general trend in most of the correctly
predicted route executions ending in failure. Figures 9a
and 9c both show a failure where the motor velocities
are indicative of the underlying root causes. In both
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of these �gures, the 5 minutes of the sliding window
contributing to the predicted failure show anomalies in
their motor velocity o�set values as well. For Figure 9a
there is a lot of jitter in the right wheel's motor veloc-
ity o�set and an indication of an unexpected bump just
before the predicted failure. In Figure 9c it is clearly
visible in the right wheel's motor velocity o�set that
the target motor velocity is not achieved, as the green
line is far from 0. Figure 9b ends in a failure where the
ultrasonic sensors are indicative of the underlying root
cause, namely a dirty ultrasonic sensor. This can also
clearly be seen in the plot of the o�set of the left ultra-
sonic sensor, where the o�set is far from 0 in the light
red sliding window before the failure. Interestingly, the
failure in Figures 9a and 9b are predicted a long time
before the actual failure occurs, which happens after
the last time step visible in the �gures. The model
output of this initial anomaly is already detrimental
enough such that the model predicted that the route
execution would end in failure. Figure 9c however, pre-
dicts a failure only right before it actually happened.
The underlying root cause of the failure in this case is
the route of the robot being obstructed by some un-
known object or cow. Even though generally there is
less indication before the occurrence of such failure as
compared to the dirty ultrasonic sensors or multiple un-
expected bumps during a route, the model is still able
to predict such failures before they happen.

C. Heatmap Interpretation

Since the heatmaps are visualizations of the model's
output per route, and we found above that often the
model is good at having higher model output at the
moments of root causes, the heatmaps can be used to
potentially visualize the problematic locations within
a route. As Section V.C described, there are several
hypotheses that need to hold to enable root cause clas-
si�cation by using the heatmap images. The �rst hy-
pothesis, stating that the location of failure should not
be coinciding with the hotspots in the heatmaps, holds.
Figures 10a, 10b, and 10c show this, as the heatmap
hotspots do not coincide with the location of failure
shown in the �gures. The second hypothesis however,
does not hold. This can be concluded from Figures
10a and 10b. The two heatmaps in these �gures are
both based on a failure which have the same underly-
ing root cause, determined by domain experts at Lely
Industries. The root cause in this case is one of the
ultrasonic sensors giving a �xed value. As the hotspot
patterns are di�erent for both of these heatmaps, clus-
tering these images to the same cluster in order to more
easily extract similar root causes seems unlikely. More-
over, root causes do not follow unique patterns. Fig-
ure 10c has a di�erent underlying root cause, namely
wrong localization due to wheel slip, but shows a sim-
ilar hotspot pattern as Figure 10b. Consequently, root
cause classi�cation by using heatmaps is not so feasible
for this study.
Nonetheless, as can be seen as well in Figures 10a,

10b and 10c, there is a connection between the hotspots
in the heatmap and the locations where the robot ex-
ecutes recovery behavior. This con�rms the ability of
the model being able to detect deviations from nomi-
nal behavior, as recovery actions are not part of nor-
mal route execution. Besides, the heatmaps therefore
provide an intuitive representation of potential prob-
lematic parts in a single route. Note however, that the
hotspots are not only related to the problematic sub-
sequent actions in a route, as the model output also
takes into account the temporal context of execution
in the dynamic environment. An object blocking the
route for example, also results in higher model out-
put (for example, as shown in Figure 9c earlier). The
hotspots on their own therefore do not necessarily in-
dicate problematic sections in the route. A solution to
get a more general insight into the problematic sections
of a route is to aggregate the heatmaps into the average
heatmap of multiple executions of the same route. By
averaging the values for all locations in the heatmap,
the hotspots related to incidental root causes are aver-
aged out, and the hotspots due to structurally di�cult
locations remain, as these hotspots are always in the
same location. Such a heatmap is shown in Figure 10d.
Since the problematic sections of a speci�c route are al-
ways in the same location, the aggregation of multiple
heatmaps of that route will still show a higher model
output in those locations, whereas the routes that show
high model output related to environmental changes
and obstacles averages out and are less prevalent in
the resulting heatmap. There is however a big limita-
tion to these insights, namely that there are no ground
truths available for the datasets used within this work
for the root cause locations or exact timeframes of the
root causes. The gained insights in this section now
rely on the expert domain knowledge of this particu-
lar robot, thus still require labelled data for quanti�ca-
tion. More scienti�c con�dence can therefore be gained
by a future study using datasets where these ground
truths are available for further evaluation. All in all,
the current section shows how both the insights into
root causes, and the insight into the heatmaps provide
our third research contribution, providing preliminary
understanding of the relationship between the learning
model's input, output, and the underlying root causes
of predicted failures.

D. Limitations and Future Research

Currently, this work provides a �rst investigation into
the performance of failure prediction for mobile robot
using anomaly detection. Its �ndings however, may be
speci�c to this context and require further validation.
Research is required to validate the broader applicabil-
ity of failure prediction using anomaly detection in the
�eld of mobile robots. A valuable study would be to
perform a sensitivity analysis [50], for example similar
to [51], who have extended �rst-order sensitivity anal-
ysis to generative models. Such study will result in a
better understanding of the relation between the input
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and the inner workings of the model. Another seem-
ingly useful study is a Bootstrap analysis [52] in order
to better di�erentiate between variance and shortcom-
ings of the model's performance. While the current
study did not resample datasets, the use of multiple in-
dependent train and test runs and averaging of perfor-
mance metrics provides some protection against model
variance. A Bootstrap analysis similar to [53] however,
can strengthen this belief even more.
It is also worth mentioning separately that the per-

formance of the algorithm in this work is relatively
low compared to other works in the di�erent �elds of
anomaly detection. For Network Intrusion Detection
Systems (NIDS) the state-of-the-art performance has
F1-scores of above 0.95, see for example [54] (p.9399)
with an elaborate overview of the performances and the
limitations of several works. The performance for smart
manufacturing applications lies somewhat lower, more
ranging between 0.80-0.95, see for example [27]. Both
�elds thus achieve much higher performance compared
to the results of this study with F1-scores of about 0.64-
0.76. Needless to say that the �eld of mobile robots is
complex, and the particular context of this study has
a very uncertain and dynamic nature. Besides, this
study focused on the most promising parts of the study.
For example, the feature engineering process, however
valuable, can be extended greatly. There are also many
more sensors present within the �eld of mobile robotics,
and even with the existing feature combinations of this
work, not all subsets have been evaluated.
Finally, something that received little attention in

this work, is the latent space representation that comes
with the use of Variational Autoencoders (VAE). As we
understand more and more about VAEs, the more use
is found for the encoded latent space representation.
Speci�cally, the aforementioned paper by Azzalini et
al. [38] achieved a lot by evaluating the latent space of
their dataset, as mentioned earlier in the paper. They
proposed a way to cluster di�erent root causes by the
samples taken from the latent space distributions, in-
stead of �nding root causes after decoding. Since good
root cause analysis is one of the goals of anomaly de-
tection, this is a huge achievement, and it can likely be
extended to more �elds. Su et al. with OmniAnomaly,
as mentioned shortly in [16], also enable latent space vi-
sualizations, but have not attempted further classi�ca-
tion within this space, which might be very insightful.
Another option for potential root cause classi�cation
is investigating the correlation between the individual
feature loss contributions and the root causes leading
to failures. This is shortly mentioned as an option in
the end of Section III.B, but is not investigated further
within this research.
Another interesting and promising direction for this

�eld, in line with the found physical link between the
model's input and output, is the approach of major-
ity voting, as proposed in [55]. Alshede et al. combine
several models to improve parallel computational loads,
while preserving the achieved performance with other
state-of-the-art models. The approach of majority vot-

ing itself is very promising for the failure prediction
problem of mobile robots. Mobile robots usually have
multiple sensors or controlled variables, thus the same
model can be applied on each individual sensor or vari-
able, combined by a majority voting layer. This ap-
proach would enable better root cause analysis as well,
as it gives the opportunity to identify the individual
sensors which contributed to the �nal decision, without
the need for manual evaluation of all input sensors.

VII. Conclusion

Within this work we successfully showed the appli-
cability of anomaly detection models for the use of
failure prediction in the �eld of mobile robots. The
performance of this novel application is clearly stated
by three general datasets, achieving F1-scores between
0.64-0.76. The process of selecting e�ective indicators
of failure for the context of the robotic application used
within this paper is stated in the results and explained
in the discussion, and shows a promising advantage in
the use of o�sets, comprised of target or expected fea-
tures subtracted from the currently measured features.
At the same time the results also show an increasing
performance with the use of discrete �ags as indicators
in the datasets. The performance however can still be
enhanced further to enable satisfactory failure predic-
tion in practice. The study therefore highlights mul-
tiple potential directions for further research. Namely,
we identi�ed a physical link between the input and out-
put of the model, and the accompanied heatmap visu-
alizations showcase its potential for identifying speci�c
root cause locations during route executions. Further-
more, a change in the underlying model used for failure
prediction in the direction of majority voting appears
promising for the performance and has the bonus of en-
abling even more concrete root cause analysis. More-
over, this work clearly states the limitations in the re-
search; the amount of feature combinations used to �nd
the optimal feature combinations, the lack of ground
truth timeframe labels of root causes for capturing the
performance of root cause identi�cation, and, being the
�rst work in the �eld, missing extensive other work to
compare to. All in all, this research lays the ground-
work for more intelligent, proactive failure prediction in
mobile robotics, enabling the transition from reactive
maintenance towards predictive precision.
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Appendix

A. Features per Dataset

The exact features used within each dataset can be
found in Table 4 below.

Table 4: The features present within each dataset, matching
the dimensions of Table 1.

Feature \Set 1 2 3 4 5 6 7 8 9 10 11 12

motor_velocity_left X X X X X X
motor_velocity_right X X X X X X

motor_velocity_target_left X X X X X X
motor_velocity_target_right X X X X X X
motor_velocity_o�set_left X X X X X X

motor_velocity_o�set_right X X X X X X
ultrasonic_left X X X X

ultrasonic_right X X X X
expected_ultrasonic_left X X X

expected_ultrasonic_right X X X
ultrasonic_o�set_left X X X X

ultrasonic_o�set_right X X X X
direction_�ag X X X
turn_left_�ag X X X

turn_right_�ag X X X

B. Detailed Dataset Composition

A more detailed composition of the test set of each
dataset can be found in Table 5 below.

C. Hardware and Training Specifica-

tions

For this study, all experiments were conducted on
the NVIDIA GP104GLM Quadro P3200 Mobile 6GB
GDDR5 GPU. With all hyperparameters similar to
OmniAnomaly or stated otherwise within this paper,
the full training time for 20 epochs of the model was
about 80 minutes for each of the �rst nine smaller
datasets, and 24 hours for the individual last three big-
ger datasets.

D. Peaks-Over-Threshold

Su et al. [16] introduced an unsupervised thresh-
old selection algorithm in their work, called Peaks-
Over-Threshold (POT). As this study used the Omni-
Anomaly model on new datasets, a study into the per-
formance of the POT algorithm on these new datasets
is also performed. POT �ts the tail portion of a proba-
bility distribution to a generalized Pareto distribution
using only two parameters which are model-wide and
can be set empirically. Within [16] they showcase that
applying POT comes at the cost of a slightly lower F1
score (0.003 - 0.077 lower), but enables a fully unsuper-
vised way of �nding a good threshold for the model's
output without the need of an optimal threshold se-
lection process which requires labels for threshold per-
formance evaluation. The lower quantile level is tuned
separately for this study. It is found by multiplying
two ratios. First, ratio R1 is the amount of time steps
exceeding the threshold within an anomalous route di-
vided by all route time steps, averaged over all anoma-
lous routes within the datasets. Second, ratio R2 is the
routes that are anomalous compared to all performed
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Table 5: A detailed overview of the composition of all test datasets. The root causes present within the anomalous routes can
be a single root cause or a combination of multiple. For example, the last row only holds one anomaly of this route, which is a
combination of both stated root causes.

Datasets Nr. of routes in set Route index Nr. of turn actions Total actions Distance (m) Average duration (min) Composition Root cause(s)

1-6 1 R1 19 52 173 28
Nominal: 11
Anomalous: 5

� Incorrect bump detected

7-9 1 R2 33 76 284 37
Nominal: 11
Anomalous: 4

� Dirty ultrasonic sensor

10-12 16

R1 19 52 173 28
Nominal: 0
Anomalous: 5

� Incorrect bump detected

R2 33 76 284 37
Nominal: 0
Anomalous: 10

� Wheel slip
� Low obstacle blocking route
� Dirty ultrasonic sensor

R3 16 40 205 26
Nominal: 0
Anomalous: 3

� Incorrect longitudinal localization correction
� Dirty ultrasonic sensor

R4 26 68 232 30
Nominal: 0
Anomalous: 1

� Dirty ultrasonic sensor

R5 20 54 169 23
Nominal: 0
Anomalous: 2

� Wheel slip
� Incorrect orientation localization correction

R6 40 91 249 31
Nominal: 0
Anomalous: 1

� Incorrect lateral localization correction

R7 9 16 83 14
Nominal: 0
Anomalous: 2

� Incorrect wall detection
� Incorrect longitudinal localization correction

R8 7 17 85 13
Nominal: 0
Anomalous: 2

� Incorrect wall detection

R9 4 18 107 14
Nominal: 23
Anomalous: 0

-

R10 13 44 203 25
Nominal: 8
Anomalous: 1

� Low obstacle blocking route

R11 15 38 131 19
Nominal: 9
Anomalous: 1

� Low obstacle blocking route

R12 4 10 106 14
Nominal: 0
Anomalous: 1

� Dirty ultrasonic sensor

R13 12 29 149 21
Nominal: 0
Anomalous: 1

� Wheel slip
� Dirty ultrasonic sensor

R14 31 72 176 23
Nominal: 14
Anomalous: 0

-

R15 34 73 191 26
Nominal: 4
Anomalous: 6

� Low obstacle blocking route
� Incorrect longitudinal localization correction
� Incorrect orientation localization correction
� Incorrect lateral localization correction

R16 29 57 187 25
Nominal: 2
Anomalous: 1

� Incorrect bump detected
� Incorrect longitudinal correction

Table 6: The obtained low quantile values of each dataset type
for the Peaks-over-Threshold (POT) algorithm.

Set numbers Dataset type Lower quantile percentage

1-6 small datasets, motor velocity features 1.5%
7-9 small datasets, ultrasonic features 1.3%
10-12 big datasets 1.3%

routes. See also Equations (13), (14) below.

R1 =

∑Nanomalous

i=1

(∑Ti

j=1 1 [tj ≥ θ]
)

Nanomalous
(13)

R2 =
Nanomalous

Ntotal
(14)

R3 = R1 ∗R2 (15)

Nanomalous is the number of routes that anomalous.
Ntotal is the total amount of routes in the dataset. Ti

is the total amount of time steps within route i, and tj
is a speci�c time step within a route. 1 is the indicator
function of a particular time step exceeding the thresh-
old θ. By multiplying these two ratios you get R3 (15),
an empiric probability of a time step being anomalous
or not, which are the points we ideally want to be in
the tail portion of the Pareto distribution.
Table 6 shows the obtained values for each dataset

type. Note that we now set the level by using the op-
timal threshold found by using labels to quantify the
results, which makes it supervised. Figure 12 shows the
obtained POT F1-scores compared to the optimal F1-
scores, both as an average of 10 individual train and
test runs. Similar to what [16] concluded, the POT
F1-score is always lower than the best F1-score. The
di�erence in performance however, is bigger compared
to what [16] found. Instead of a performance drop of
about 0.003-0.077, this study found a performance drop
of 0.08-0.58.

Figure 12: The F1-scores vs. POT F1-scores per dataset.

Some remarks that can be made based on this study
are the following. First, there is a change in the evalua-
tion approach used within this paper compared to how
POT was initially constructed. Namely, on route-level
instead of on anomaly-level. This has an impact on the
way the peaks in the output are considered. Second,
the datasets within this work are from a robot that
encounters uncertainty, which is not directly captured
within the data streams. The datasets used within [16]
have a lot more features with the aim to describe the
entire system's context.
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Erratum to: The Applicability of Anomaly Detection Algorithms for
Failure Prediction with 2D Mobile Robots
This is an erratum to: L.E. Rhijnsburger, E. Vlasblom, A. Siagkris-Lekkos, and Y.B. Eisma, The Applicability
of Anomaly Detection Algorithms for Failure Prediction with 2D Mobile Robots, https://resolver.tudelft.
nl/uuid:a176832e-98e9-4851-b835-cb2291e63d31, published 19 December 2024.

In the original version of the thesis, there is a discrepancy in the obtained results. During the evaluation process,
a technical error caused route classifications to be based on partially overlapping model outputs from different
routes. Specifically, when comparing a route’s model output to the classification threshold, the evaluation
incorrectly included data from adjacent routes. This may sometimes result in wrongful in misclassifications or
unintentional correct classification, and thus in different F1, precision, and recall scores. This error affects the
following elements of the thesis:

1. Table 2 in Section IV (Methods): Contains incorrect metric values

2. Figures 6 and 7 in Section IV (Methods): Display incorrect values

3. The hyperparameter selection based on these results

The evaluation mistake however is hereafter fixed within the paper and the classifications were evaluated cor-
rectly. The error was identified and corrected in subsequent parts of the thesis, ensuring that all later classifi-
cations were evaluated correctly. However, as the hyperparameter selection was based on the flawed evaluation
process, the chosen parameters may not be optimal. While the overall research methodology remains valid,
a new hyperparameter study is conducted with the corrected evaluation process. Should this yield different
optimal parameters, all dependent experiments will be repeated and the results and conclusions will be updated
accordingly. It is not expected to find significantly deviating hyperparameter values and consequently to find
significantly different results as a consequence of these different hyperparameters.
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