The Applicability of Anomaly
Detection Algorithms for
Failure Prediction with 2D
Mobile Robots

by
Lars Rhijnsburger

]
TUDelft

In partial fulfilment of the requirements for the degree of
Master of Science
at Delft University of Technology,
to be defended publicly on 08/01/2025.

Faculty: Mechanical Engineering
Department: Cognitive Robotics
Programme: Robotics

Mentors / Supervisors: Yke Bauke Eisma
Erik Vlasblom
Alexis Siagkris-Lekkos
Graduation committee: Joost de Winter
Dimitra Dodou
Renchi Zhang

An electronic version of this thesis is available at:
http://dx.doi.org/10.13140/RG.2.2.30081.98403

http://dx.doi.org/10.13140/RG.2.2.30081.98403

Keywords:

Failure Prediction
Anomaly Detection
Mobile Robots

Root cause Analysis
Unsupervised Learning

Abstract

With mobile robotics being applied for more and more complex applications, their
autonomy should be preserved. While a lot of research is performed into the
direction of failure prediction for autonomous processes or systems, the field of
mobile robots has received less attention. Proactive failure prediction for mobile
robots is a useful tool to prevent unwanted downtime and undesired damages. This
work attempts to fill this research gap by showing the applicability of anomaly
detection methods for failure prediction in the field of mobile robots. Specifically, we
employ an unsupervised Variational Autoencoder to predict failures in the operational
data from the Discovery Collector, a manure cleaning robot developed by Lely
Industries. We elaborately showcase the feature engineering steps which yield the
best performance, provide the performance of three general datasets, and state
promising next steps for root cause classification which is enabled by accurate
failure prediction. All in all, our work shows that the use of feature offsets, calculated
from desired values compared to actual values, enhances the model performance
tremendously. The provided datasets showcase F1-scores ranging from 0.64-0.76,
showing the proposed solution is able to solve the failure prediction problem in the
field of mobile robots, while highlighting the encountered limitations for future
improvement.

The Applicability of Anomaly Detection Algorithms for
Failure Prediction with 2D Mobile Robots

Erik Vlasblom
Lely Industries N.V.

Lars Rhijnsburger
Cognitive Robotics (CoR)

Yke Bauke Eisma
Cognitive Robotics (CoR)

Alexis Siagkris-Lekkos
Lely Industries N.V.

Delft University of Technology
December 19, 2024

Abstract — With mobile robotics being ap-
plied for more and more complex applications,
their autonomy should be preserved. While a
lot of research is performed into the direction of
failure prediction for autonomous processes or
systems, the field of mobile robots has received
less attention. Proactive failure prediction for
mobile robots is a useful tool to prevent un-
wanted downtime and undesired damages. This
work attempts to fill this research gap by show-
ing the applicability of anomaly detection meth-
ods for failure prediction in the field of mobile
robots. Specifically, we employ an unsupervised
Variational Autoencoder to predict failures in
the operational data from the Discovery Col-
lector, a manure cleaning robot developed by
Lely Industries. We elaborately showcase the
feature engineering steps which yield the best
performance, provide the performance of three
general datasets, and state promising next steps
for root cause classification which is enabled by
accurate failure prediction. All in all, our work
shows that the use of feature offsets, calculated
from desired values compared to actual values,
enhances the model performance tremendously.
The provided datasets showcase F1-scores rang-
ing from 0.64-0.76, showing the proposed solu-
tion is able to solve the failure prediction prob-
lem in the field of mobile robots, while high-
lighting the encountered limitations for future
improvement.

I. INTRODUCTION

Mobile robots are becoming more and more integrated
into automation processes. While robotic arms dom-
inated automation a few decades ago, advancements
in artificial intelligence and control algorithms now en-
able the use of more complex mobile robotic solutions.
Adeleke et al. recently stated that "machine learn-
ing algorithms will enable robots to adapt to changing
production demands, optimize workflows, and perform
complex tasks with greater autonomy and efficiency."
([1], p-907). Specifically for mobile robotics, Ullah et
al. gives a nice overview about the current challenges
in their work (2], p.25-28). These challenges involve a
wide range of technical and operational considerations,
from navigation and environmental adaptation to sys-
tem reliability and performance consistency. As mobile
robots take on more and more roles in various indus-

tries, ensuring their reliable operation becomes essen-
tial. Among the current challenges, failure prediction
stands out as a particularly complex problem missing
a universal solution. Despite numerous research efforts
(for example, [3], [4], [5], [6], [7]), it turns out to be dif-
ficult to reach a general solution for failure prediction,
due to the diverse nature of robots and their opera-
tional contexts [8].

Related to failure prediction, is root cause analysis.
Root cause analysis is the task to identify the funda-
mental source of failure to enable the development of
targeted preventive solutions. When root causes can be
detected exactly when they occur during robotic exe-
cution, failure prediction becomes a trivial task. Cur-
rently, one of the challenges of applying machine learn-
ing solutions to this problem is the acquisition and de-
termination of ground truth labels for robotic failures.
Labelling is a process that often demands extensive
expert domain knowledge and a significant amount of
time. Extending the current efforts into failure predic-
tion and unsupervised root cause analysis eliminates
this need for labelling. Besides, it offers substantial
practical value for mobile robots, enabling proactive
maintenance strategies and enhancing operational reli-
ability.

Failure prediction starts by identifying irregular pat-
terns in data streams [9]. Anomaly detection algo-
rithms are a popular choice to determine when there
are patterns in the data that do not conform to ex-
pected nominal behavior ([10], p.1). These algorithms
can also be applied to failure prediction when an error
is defined as "the situation in which a system deviates
from the correct state, which may or may not even-
tually result in a system failure" ([9], p.5). Thus, for
anomaly detection algorithms to be effective in pre-
dicting failures, there must be a detectable deviation
from nominal data patterns before an error, as these
algorithms rely on recognizing unusual or unexpected
behaviors. Anomaly detection algorithms are already
widely researched in many fields, like network intru-
sion [11], smart manufacturing [12], healthcare [13] and
video surveillance [14].

Mobile robots require sensors and internal models to
make sense of their environment, after which they take
appropriate actions to reach some goal. Autonomous
mobile robots behave very complex, which makes it
hard for the current state-of-the-art anomaly detection
algorithms to be able to learn the patterns of nominal

behavior and detect the deviations from it. However,
these algorithms are particularly valuable because they
can detect root causes as anomalies [15], thereby en-
hancing root cause analysis and ultimately contributing
to better failure prevention strategies. OmniAnomaly,
proposed by [16], is a promising unsupervised deep
learning model with the ability to learn strong tem-
poral dependencies in the data and capture stochastic
variables, which are two aspects that are required in the
context of this problem. This will be elaborated upon
in Section ITI.B. Within this work, we will focus on an
autonomous mobile robot, called the Discovery Collec-
tor, created by Lely Industries (see Figure 3), which
works with precomputed path planning and by execut-
ing discrete actions. More details about the robot will
be provided later in Section IIT.A.

We state the following research question: "What pre-
dictive performance can be achieved using a state-of-
the-art anomaly detection model for predicting and cat-
egorizing upcoming failures for a mobile robot, specifi-
cally the Discovery Collector made by Lely Industries',
and how do variations of the input feature types impact
the effectiveness of this model?".

By answering this question we will show that the
autonomous mobile robot of this study exhibits consis-
tent enough behavior. This consistent behavior allows
the anomaly detection algorithm to learn the under-
lying nominal patterns in the behavior and to detect
deviations from it in its sensor data streams. In turn,
this provides the robot with a signal that can be used
to prevent upcoming failures by executing failure pre-
vention strategies which minimize the robotic system
failures. Overall, this paper contributes the following:

e An assessment of the effectiveness of different fea-
ture types on the learning model performance with
a feature ablation study.

e A performance evaluation of OmniAnomaly [16]
for failure prediction on a mobile robot dataset.
Failure prediction using anomaly detection for mo-
bile robots is a novel field of application. The
novelty of the research domain is highlighted by
a systematic Scopus query [17], which yields only
4 related publications. For more details, see Sec-
tion II.B.

e Preliminary insight into the relation between the
learning model’s input, output, and the underlying
root causes of the predicted failures.

The rest of this paper is organized as follows. Section
IT will go over the state-of-the-art anomaly detection so-
lutions, while highlighting the existing approaches and
applicability to the field of mobile robots. Followed by
Section IIT which gives the context of the problem, elab-
orates on the selected anomaly detection model and in-
troduces the dataset used within this research. Section
IV describes the experiments which will aim to answer
the research questions defined above, followed by Sec-

IThe Discovery Collector is a 2D mobile robot with uncer-
tainty in its odometry due to limited sensing, navigating over a
predetermined route with a known map.

Input Output

Compressed
representation

Figure 1:
22]

Example of an Auto Encoder architecture. Source:

tion V which goes over all the obtained results, after
which Section VI provides a discussion of the results.
Finally, Section VII highlights the most important con-
tributions this paper holds, answering and discussing
the research questions stated above.

II. RELATED WORK

Anomaly detection is a popular tool for identifying
unusual patterns or outliers in data. It has found
widespread application across various fields, including
cybersecurity, manufacturing, healthcare, and surveil-
lance. On the other hand, little can be found about
anomaly detection in the field of mobile robots. Within
this section an overview of the existing anomaly detec-
tion applications is provided and the research gap of
anomaly detection for mobile robotics is stated.

A. Applications of Anomaly Detection

The contexts of the fields of application of anomaly
detection algorithms can differ greatly, resulting in ap-
proaches that are not universally applicable. A very
common field of anomaly detection is network intrusion
detection systems (NIDS). Anomaly detection systems
within this field are tasked with monitoring network-
related timeseries data. Their primary function is to
detect when the network is under attack by an adver-
sary. Yang et al. [11] identified 119 top-cited NIDS
papers from 2021 and before in their survey. Other
more recent approaches of NIDS include [18][19][20][21]
which use graph neural networks, random forests, de-
cision trees or generative adversarial networks (GAN)
respectively to detect intrusions. Yang et al. [11] ob-
served that many NIDS related anomaly detection ap-
proaches still rely on supervised algorithms and models,
which requires the availability of ground truth labels.
Consequently, they conclude that the way forward is to
invest in unsupervised or semi-supervised approaches.
These approaches only require little to no ground truth
labels, which reduces the computational and resource-
intensive process of manual data annotation and en-
ables more scalable and adaptable models. However, Li
et al. [21] conclude that, although their unsupervised
model shows good performance, unsupervised learning
approaches in the context of NIDS are rare and imma-
ture, with significant room for improvement.

While NIDS focuses on network security, another

popular application of anomaly detection is in real-time
monitoring of smart manufacturing processes. The goal
of anomaly detection in smart manufacturing is being
able to detect unplanned production downtimes quickly
in order to enhance production efficiency. [23], [24], [25]
and [26] for example, all use Auto Encoder (AE) mod-
els to detect such anomalies. Other approaches in the
field use GANs (]|27], [28]), neural networks (NN) ([29],
[30], [31]), or unsupervised clustering ([32]).

This shift towards unsupervised models reflects a
broader trend in anomaly detection, where techniques
like AEs, GANs, and clustering algorithms are gain-
ing popularity due to their ability to learn from unla-
beled data. AEs have become particularly popular for
anomaly detection due to their ability to learn compact
representations of normal behavior and identify devia-
tions from it. Currently, AEs are most commonly used,
and an example architecture can be seen in Figure 1.
It shows the general structure of an encoder part, a
smaller latent space representation in the middle, and
a decoder part that tries to map the latent space repre-
sentation back to the original input. Such models only
require nominal data for training, and detect anomalies
by failing to successfully map deviating behavior to and
from the learned latent space representation. The pop-
ularity of unsupervised methods highlights the need for
models that can adapt to changing environments and
applications. Besides the fields discussed above, there
are many more fields that work with anomaly detection
algorithms. These fields include for example healthcare
[13], video surveillance [14] and the Internet of Things
(IoT) [33]. A more elaborate overview of relatively re-
cent papers in various fields can be found in [34].

B. Anomaly Detection for Mobile Robots

In contrast to these well-studied fields, anomaly de-
tection in mobile robotics has received relatively lit-
tle attention. Examples of work that is performed so
far in this field are [35], which apply anomaly detec-
tion to detect sensor and actuator misbehavior, [36]
which use camera images to detect anomalies on the
drivable plane in front of the mobile robot, and [37]
which applies anomaly detection on positional infor-
mation to detect deviations from a robot’s planned tra-
jectory. Azzalini et al. [37] interestingly follow up on
the latter paper with [38] which does not only detect
deviations from a robot’s trajectory, but also classifies
the type of deviation in an unsupervised manner using
the latent space representation of the input data with
a Variational Auto Encoder (VAE). [38] however did
not work with mobile robots, but with nautical drones.
They quantified the performance of their work by a
False Positive Rate (FPR) of 0.0 on the nautical drone
dataset, but did not quantify the latent space cluster-
ing of the different deviations. Nonetheless, the use of
VAEs in their work demonstrates the ability of VAEs
for clustering different types of anomalies or failures.
Figure 2 shows an example of such latent space classifi-
cation, found by Azzalini et al. in [38]. This highlights

@ Nominal

e

PC3

Figure 2: Latent space representation classification results,
found by Azzalini et al. The abbreviations are all the differ-
ent failure modes. Source: [38].

its potential application for root cause classification.

Furthermore, related to predicting upcoming fail-
ures, is [39] which proposed a proactive anomaly de-
tection model trained on camera images and LiDAR
scans. Papers related to mobile robot anomaly detec-
tion or failure prediction ([35], [36], [37], [39]) however,
do not go into the potential root cause identification
behind the detected anomaly or failure. The exception
to this is [38] which does apply some form of classifi-
cation. Moreover, [35] did mention they were not able
to pinpoint potential root causes because their model
aggregated the data in an irreversible manner. This
limitation suggests a need for more interpretable un-
supervised models in robotics, capable of not only de-
tecting anomalies, but also providing insights into their
origins.

I11.

Before defining how the research into anomaly detec-
tion for mobile robots is performed, it is relevant to in-
troduce the details surrounding the problem at hand.
Below, an overview of the problem context is provided,
along with the model used for the anomaly detection
problem for mobile robots and the preliminary steps
taken with the available data.

PRELIMINARIES

A. Problem Context

The mobile robot upon which this paper is based is the
Discovery Collector?, see Figure 3. The Collector is
made by Lely, a company in the Netherlands focussed
on robotic applications in the dairy industry. The Col-
lector robot operates in a barn with milk cows, which
is a challenging environment. The presence of manure,
feed, and hay creates complex environmental condi-
tions. Many external sensors are less reliable when they
are dirty, and the floor traction varies significantly due
to the manure on the ground. The robot navigates us-
ing a provided map, considered to be the ground truth
map, and precomputed routes consisting of discrete ac-
tions. Discrete actions are for example straight actions

2https://www.lely.com/nl/discovery-collector/

https://www.lely.com/nl/discovery-collector/

Figure 3: The Discovery Collector robot made by Lely, which
is tasked to autonomously clean up all the manure in a cow barn.
Source: [40]

parallel to a wall, or a turn with a specific radius and
angle. As the environment is so harsh for external sen-
sors, the robot navigates mainly by using measures of
the velocity of its two actuated wheels and two ultra-
sonic sensors, each orthogonal from the robot facing
left and right, see also Figure 5. This limited sensing
capability results in challenging localization, requiring
the robot to occasionally bump into walls to recalibrate
its position.

Moreover, due to the floor conditions being wet and
covered in manure, it is not uncommon that the robot
slips. Combining this with occasional incorrectly de-
tected bumps or unreliable sensor information due to
it being dirty, the robot sometimes localizes itself in-
correctly, or starts or finishes actions prematurely. The
robot is equipped with certain recovery actions which it
can take when it detects it is no longer in the correct lo-
cation. However, when this fails the robot goes into an
erroneous state and will not move anymore until man-
ual intervention. This is the failure that we are trying
to predict using anomaly detection, with the goal of
preventing the need for manual intervention after fail-
ure, thereby increasing the robot’s uptime significantly.
Preventing such failures can be achieved by learning
nominal data patterns, in order to detect deviating
data that precede failures. Despite the predetermined
routes, this remains a challenging problem, due to the
robot’s limited sensing capabilities. The difficulty lies
in distinguishing between critical uncertainty resulting
in failure and temporary uncertainty from which the
robot can recover on its own. This gray area, where
the difference is often unclear to the human eye, is pre-
cisely where deep learning (DL) models can be highly
effective if applied right [41].

B. Model Selection and Architecture

Like many other fields within anomaly detection, la-
belling data for mobile robots is still a difficult and
time-consuming effort. As this problem’s context is also
quite complex, labelling would also require expert do-
main knowledge and a significant amount of time. Su-
pervised and semi-supervised approaches are therefore
less suited for this problem. Similar to the conclusion
of Yang et al. [11], and following the general trend in

the field of anomaly detection, the current work prefers
an unsupervised model.

Another relevant aspect of the problem context is
the input data format. Mobile robots, like many other
robots and systems, produce multivariate timeseries.
Due to the sequential order of actions the robot in this
scenario takes, it is important to be able to track the
robot’s internal state over time. This indicates the need
for a model with good temporal dependency, which en-
ables the robot to not only consider its state based on
current data, but rather evaluate its state based on a
range of recent values. As an example, when the robot
encounters a bump which it believes to be a wall, but
is actually an unknown object on the route, it might
prematurely take its next action, only to potentially
encounter more unexpected bumps, or the absence of
walls in certain places. Tracking the uncertain state of
the robot from the initial early bump onwards for some
time is therefore vital for the model to distinguish be-
tween nominal and anomalous behavior leading to a
failure. The nominal behavior here is defined as the
completion of a full route without any recovery behav-
ior. Of course, the model should also be able to deal
with uncertain actions that do not have negative conse-
quences, as during normal behavior it is not uncommon
to have some unexpected bumps here and there due to
the presence of cows.

Furthermore, the model must be able to effectively
capture the stochastic elements of the problem, as
stochastic elements permeate this robot’s problem con-
text. Sensor measurements inherently contain noise,
the external environment dynamically influences the
robot’s state at any time, and route execution is contin-
uously challenged by localization uncertainties. These
factors collectively create a need for a stochastic model.
Rios et al. [42] highlight the two typical approaches.
Namely, to model either the dynamical nature of the
data using deterministic approaches, or to model the
stochastic relations in the data using statistical ap-
proaches. Hereafter, they state that real-world systems
produce a mixture of both types, emphasizing the need
for a combined solution, which this problem also re-
quires.

Overall, we require an unsupervised model which is
able to learn nominal behavioral patterns in multivari-
ate timeseries produced by a mobile robot. It has to
consider both the strong temporal dependency of the
data and the presence of stochastic variables. Su et al.
[16] have introduced the OmniAnomaly model which
does exactly all these things and more. Their model
demonstrates good performance for multivariate time-
series anomaly detection, effectively handling datasets
with stochastic variables and requiring temporal de-
pendency insights. Compared to other state-of-the-art
models using only temporal or stochastic approaches,
OmniAnomaly achieves an average Fl-score of 0.86
compared to 0.77 of the second-best model introduced
by Hundman et al. [43], on the SMAP, MSL (both from
NASA) and SMD (introduced in [16]) datasets. A more
elaborate study into the usability of OmniAnomaly for

t

3 A2,

[Linear] [Sqﬁplus + e] [Linear] [Sqﬂplus + E]

[Dense layer r®] [Dense layer hf]

Figure 4: OmniAnomaly’s architecture separated into two
parts. The left is the encoder part of the VAE where zX is the
latent space representation. The right is the decoder part of the
VAE which takes a sample z; from the latent space distribution
z[and decodes it back to the original input x¢. Source: [16]

the problem at hand is performed in an earlier litera-
ture study in [44].

OmniAnomaly uses Gated Recurrent Units (GRU)
(a type of Recurrent Neural Network (RNN)) com-
bined with a Variational Autoencoder (VAE) architec-
ture to capture both temporal dependencies and the
stochastic variables in the data. Besides the classi-
cal multi-Gaussian latent space representation of VAEs,
OmniAnomaly enables learning non-Gaussian distribu-
tions for more complex data patterns by applying pla-
nar Normalizing Flows (NF). The full architecture of
OmniAnomaly can be seen in Figure 4. The output
of this model however, is not yet a prediction. The
model’s output is first compared to a threshold, which
within OmniAnomaly is currently found by trying mul-
tiple different thresholds in a pre-determined range and
choosing the optimal one. For a complete comprehen-
sive description of OmniAnomaly, it is recommended
to consult the work of Su et al. [16] itself. Further-
more, OmniAnomaly has two other aspects which suit
the field of mobile robots well. First, a significant ad-
vantage of using a VAE inside the model is the fact that
the loss is calculated as the sum of the loss on each indi-
vidual input feature. This enables the extraction of the
anomaly score contribution per feature. The anomaly
score contribution per feature indicates how well the
model was able to reconstruct each feature, which can
be used for further root cause analysis, as the features
contributing most to an anomalous output are poten-
tially related to an underlying root cause. Second, the
fact that the output of OmniAnomaly is given per time
step, enables further investigation into the correlation
between the input and output. As seen later Section V,
combining this approach with positional information of
the robot over time yields interesting results that con-
tribute to the possibility of root cause classification of
failures.

C. Data Definition

The quality of input data is crucial to construct
good learning models. To maintain generalizability in
anomaly detection for mobile robots, we focus on two
generally available data streams: motor velocities and
ultrasonic measures. These sensors provide promis-
ing indicators for failures without relying too much
on robot-specific implementations. Within the exper-
iments explained later in Section IV, several feature
engineered data streams are also explored to see if they
improve the model’s performance. The additional en-
gineered features are the following:

1. Motor velocity offsets: calculated by subtract-
ing the motor velocity control setpoint and the ac-
tual measured motor velocity.

2. Ultrasonic offsets: calculated by subtracting the
expected ultrasonic measure and the actual mea-
sure. The expected ultrasonic measurement is
found by using a simple ray-trace model using the
map provided to the robot, and the position on
which the robot has localized, as can be seen in
Figure 5. The used distance r is found with Equa-
tions (1)-(4) below.

—~
—
~

dio = |7“1 - 7"2|

—
)
~

diz = |r1 — 73]
d23 = |7”2 — 7”3| (3)
lf d12 = min{dlg, d13, d23}
if dig = min{dy2, d13,da3} (4)
L2318 if dgg = min{d12, di3, da3}

ritre
2 b

_ 147
r = 123,

In the equations above, r; represents the distance
found by a single ray-trace, and d;; represents the
distance between two ray-trace distances. The fi-
nal used distance r is calculated as the average of
the two most similar ray traces. While the ray-
trace model yields good results for this project, it
is important to state its limitations. The model
is highly dependent on the accuracy of localiza-
tion. When the robot is incorrectly localized,
the obtained ray-trace intersections will not make
any sense. Additionally, the ray-trace model as-
sumes ideal ultrasonic reflections, which is not the
case in practice. The use of this ray-trace model
should therefore be carefully evaluated before use,
as otherwise the model’s predictions are related to
anomalies in the used ray-trace model instead of
related to the robot’s execution.

3. Flags: discrete indicators for driving direction
and left and right turning actions during a route.
The value determination of each flag can be seen

e = Ultrasonic sensors
y [m]

Mapped walls

\ 4

x [m]

Figure 5: An illustration of the simple expected ultrasonic mea-
sure ray-trace model. The center position of the robot at each
time t is known, as is the offset to both ultrasonic sensors. 3
ray-trace intersections to the closest wall in the map are then
calculated of which the average of the two most similar ray-traces
is used to prevent a noisy signal.

in Equations (5)-(7) below.
1, if moving forward

_]_’
0, otherwise

direction flag = if moving backwards

(5)
(6)

if turning left

1
turn_left flag=<{ "’)
- = , otherwise

if turning right

1
turn_right flag = { ’ (7)

, otherwise

From these signals 12 datasets are created with var-
ious combinations, with all input features normalized
to ranges of [0,1] or [—1,1]. The first nine datasets are
smaller, derived from a single robot on a single route
with only one underlying root cause before the fail-
ures. The single underlying root cause per dataset is
also related to the input feature of the dataset. The
smaller datasets are used for a feature ablation study
[45], to evaluate the effectiveness of the various pro-
posed input signals. The last three datasets are larger,
incorporating data from six robots on multiple routes
with multiple underlying root causes before failure, us-
ing the best performing input combinations as deter-
mined by the experiment described in Section IV.D,
and its results in Section V.A. The performance of
the model with the larger datasets demonstrates the
model’s ability to generalize across more generally rep-
resentative input data. Table 1 provides a high-level
overview of all datasets, including their composition,
sizes, and amount of routes of each label. This dataset
design allows us to investigate the contributions of each
input type to predictive performance and the impact
of combining multiple sensor streams. A more elab-
orate composition of the test set of each dataset can
be found in Table 4 and Table 5 in Appendix B. All
datasets consist of time steps which are equidistantly
spaced. The original data from the robot is recorded

with a frequency of 10Hz, which is then downsampled
to 2Hz. This maintained the overall trends in the data,
reduced the amount of noise within the datasets which
influences the learning model negatively, and reduced
the overall training time of the model. The moments
before a failure itself, present in the available data, is
purposely left out of the test datasets. The reason for
this is that we do not care about behavior deviations
during the failure, but rather the behavior before it.
Finally, the specific definitions of ’anomalies’; 'failures’
and ’routes’ in the context of this study are provided
in the Section IV, as these concepts are fundamental to
our approach.

IV. METHODS

Within this section the methodology is provided for all
performed research. It provides the exact definitions of
all relevant parts of the research, clearly mentions all
changes made to the OmniAnomaly model, and defines
the approach used to get specific insights.

A. Definitions

It is crucial to clearly provide definitions of the impor-
tant aspects used in this research. These definitions
also determine some changes made to OmniAnomaly
[16] to make the model work for the mobile robot of
this study.

Firstly, the most important definition is what a fail-
ure is within this context. A failure within this study is
defined by the situation where the robot is completely
lost within its barn, and cannot return to its base sta-
tion on its own. It requires manual intervention, and it
will shut itself down in order to preserve battery charge
for a user to drive it back to its base station. Before
this failure the robot may have already executed sev-
eral recovery actions, trying to find its way back on its
route. When unsuccessful, the robot stops, which is the
exact moment of failure. For this study, we disregard
hardware failures and consider only failures as a result
of its executed behavior, and its environment.

Secondly, there is the definition of an anomaly.
Within this context, an anomaly is the deviation from
nominal behavior potentially resulting in failure. This
is a broad definition, as an anomaly can be the repre-
sentation of various root causes. A root cause is the
reason an eventual failure occurs. This can be a com-
bination of different smaller events during a route, or
one big event that on its own was enough to prevent
correct execution. For example, a root cause in this
context might be the ultrasonic sensor being obstructed
by manure. Due to this, the robot cannot measure the
distance to the wall on one side, and therefore eventu-
ally becomes more uncertain about its current location.
The incorrect ultrasonic measures are the anomaly in
this example. When this happens at a crucial part
of a route, the localization might get so bad that the
robot gets completely lost and starts to take the wrong
actions. Finally, when the robot gets lost, does not
manage to recover and decides to preserve battery and

Table 1: High-level overview of the datasets used within this paper.

Name ‘ Dimensions ‘ Train size (time steps) ‘ Amount of train routes ‘ Test size (time steps) ‘ Amount of test routes
1 raw _motor _ velocities 4
2 motor_ velocity _offsets 2
3 raw7motor.7vclocltlcsiwfdliﬂags T 82,532 Nominal: 30 13,604 Nominal: 11
4 motor_ velocity _offsets_ with_ flags 5 Anomalous: 5
5 motor_velocities_ combined _with_flags 9
6 motor_ velocities_ combined _no_ flags 6
7 ultrasonic_raw 2 .
8 ultrasonic_offsets 2 128,410 Nominal: 30 56,734 Nominal: 11

. — Anomalous: 4
9 ultrasonic_combined 6
10 big_set_motor_ velocities 6 inal:
11 big_set_ultrasonic 6 528,846 Nominal: 178 238,856 Nominal: 60
p o= = . P Anomalous: 37
12 big_set_combined 12

wait for manual intervention, a failure occurs.

In addition to the definition of an anomaly and fail-
ure, we have the routes of a robot. A route is a sin-
gle round trip from the robot’s base station® around
the barn, ending back again at its base station. Any
route execution that starts and ends at the base sta-
tion without any recovery actions during the execu-
tion, is declared as a nominal route. If it does not get
back to its base station, a failure must have occurred,
and the route is declared anomalous. Importantly, this
does not mean that all data points within an anomalous
route are anomalous but rather that the route contains
anomalies.

Only the data points contributing to the moment
the anomaly threshold is exceeded are considered the
anomaly. For example, a route execution might be
normal for the first 20 minutes, after which several
anomalous data points come up, and the model pre-
dicts an upcoming failure. As a result of this, the full
route is declared anomalous, and the data points just
before the moment of prediction are appointed as the
anomaly, which is the embodiment of some underlying
root cause. Ideally, when these anomalous data points
are detected before the failure, this detection signal can
be used to prevent the upcoming failure from happen-
ing at all.

B. Changes to OmniAnomaly

First, OmniAnomaly is adapted to predict failures on
route-level instead of anomaly-level. Unlike the origi-
nal approach that focuses on individual anomaly peaks,
our method accounts for the nuanced nature of robotic
route execution. During nominal operations, the robot
can experience uncertainties without necessarily com-
promising the completion of the route. We introduce a
sliding window approach to smooth the model’s output,
which allows us to distinguish between temporary un-
certainties and persistent anomalies that indicate po-
tential route failure. By calculating the average out-
put over the last n minutes of execution, we can bet-
ter detect when uncertainty progressively accumulates
to a critical level. This approach offers two key ad-
vantages: it provides a more robust failure prediction
mechanism in this context, and enables potential root
cause identification by maintaining the temporal con-
text of the model’s output. The sliding window length

3Within this context the base station is the charging station
of the robot. In general, the base station simply indicates the
robot uses the same start and end location.

was treated as a hyperparameter and optimized sepa-
rately, with details provided in Section IV.D. Similar to
OmniAnomaly [16], we still compare the adjusted out-
put against an optimal threshold to predict failures.
While an alternative approach might involve using the
overall average output, the sliding window method pre-
serves the critical temporal relationship between uncer-
tainty and route performance which enables potential
root cause identification.

Moreover, when detecting anomalies on route-level,
the quantitative evaluation steps of OmniAnomaly had
to change too. Instead of classifying each individual
time step as a false or true positive or negative, we
want to classify routes as such. Equations (8) and (9)
below show how the model output at all time steps can
be evaluated either using anomaly-level prediction or
route-level prediction.

1 ift; >0

0 otherwise

anomaly _level(¢;,0) = { (8)
1 if3t, eT:t; >0

0 otherwise

route level(T,0) = { (9)

A full route execution T exists of multiple time steps t;,
which on anomaly-level are all individually compared
to threshold 6 or on route-level checked on the existence
of any time step ¢; exceeding 6. Note here the different
scope of both functions: anomaly-level returns a pre-
diction classification for each provided time step, and
route-level returns a prediction classification for a full
route. During the evaluation process it is thus required
to have information about which time steps belong to
which route.

Finally, the validation portion parameter, on which
the training data is validated at each batch step, is
lowered from 30% to 5%. This reduction is primarily
motivated by computational efficiency. It represents
a pragmatic choice rather than a rigorously tuned hy-
perparameter. The reduced validation set significantly
decreased training time without compromising model
performance, as shown later by the results in Section
V.

C. Hyperparameter Tuning

The two hyperparameters that require separate tuning
are the sliding window size and the z-space size. For
both of these parameters, the process of tuning is de-
scribed below.

F1 Scores for Different Sets and Z-dimension sizes

—e— Setl —e— Set5 Set 9
Set 2 —e— Set6 —e— Set10

—e— Set3 Set7

09 —e— Set4 —e— Set8

zs Z6 27)) 210 z11
Z dimensions

Set 11
Set 12

F1 Score

Figure 6: The Fl-scores per dataset for multiple z-space sizes.
Only scores are stated where the z-space size is smaller than the
dimension size of that dataset.

Table 2: The selected z-space sizes for each dataset, along with
the dimensions there originally are in the datasets and the ob-
tained F1l-score with this z-space size.

Name ‘ Dimensions | Z-space ‘ F1-score
1 raw_motor_ velocities | 4 3 0.75
2 motor_ velocity _offsets | 2 1 0.91
3 raw_motor_velocities_with flags | 7 3 0.67
4 motor_ velocity _offsets_ with_flags | 5 3 0.77
5 motor_velocities_combined with_flags | 9 3 0.83
[motor_ velocities_combined_no_flags | 6 2 0.83
7 ultrasonic_raw | 2 1 0.42
8 ultrasonic_ offsets | 2 1 1.00
9 ultrasonic_ combined | 6 3 1.00
10 big_set_motor_velocities | 6 1 0.70
11 big_set_ ultrasonic | 6 1 0.71
12 big_set_combined | 12 2 0.71

Z-space The z-space size is determined first by eval-
uating the performance of each set for different sizes.
Hereby setting the input for each dataset and all other
hyperparameters to be independent variables, and the
z-space hyperparameter to be dependent. The perfor-
mance of each z-space size is evaluated with the F1-
score, shown in Equation (10). The sliding window size
for this hyperparameter study is chosen to be an arbi-
trary length of 5 minutes. For this tuning experiment,
a few things should be kept in mind. First, the z-space
should be strictly smaller than the dimension size in
the dataset. Otherwise, the model can simply learn an
identity transformation or a more complex representa-
tion, rather than discovering meaningful latent factors
from the data itself. Having a latent space larger than
the original feature space thus undermines the purpose
of representation learning. Secondly, each set has its
own optimal z-space size, which means all sets should
be evaluated independently. Finally, there is a loss of
visualization opportunity when a z-space of 4 and big-
ger is chosen (for example, plots similar to those in [38]
are then no longer possible). Z-space sizes of 3 or less
therefore have a slight advantage compared to higher
sizes. The resulting F1-scores of this study can be seen
in Figure 6. The final chosen z-space sizes can be seen
in Table 2. There is one value that is selected at a
suboptimal z-space size, which is set number 3. The
obtained F1-score for this z-space is believed to be an
outlier, which was later supported by the results shown
in Table 3 where set number 3 performs similar to the
other sets with flags.

Sliding Window For the sliding window size, the
nine smaller datasets are used to determine the optimal

F1 Scores for Different sliding window sizes

F1 Score

—e— Set1l

—o— Set6
02 Set 2 Set 7
—e— Set3 Set8
—e— Set4 Set9

00 Set5 —e— Average Fl score

200 400 800 1000 1200

00
sliding window size

Figure 7: The Fl-scores per dataset for each sliding window
size, and the overall average per sliding window size.

size. Since this hyperparameter is model-wide, it is
not necessary to tune this on the bigger three datasets
as well. All window sizes between 30 seconds and 10
minutes with steps of 30 seconds were evaluated on the
nine datasets based on their Fl-scores (10). The z-
space sizes for each dataset are already found at this
time and are set to the values shown in Table 2. In
Figure 7, the results of the sliding window tuning can be
seen. The optimal sliding window size is 600 time steps,
which is equal to 5 minutes as time step frequency for
all datasets in this paper is 2Hz.

D. Experiments

With the problem context described in Section III,
the concept definitions provided in Section IV.A and
the model changes and hyperparameters stated in the
Sections above, we are now able to perform research.
There are four experiments described below and later
evaluated in Section V.

Feature Engineering For this novel field for failure
prediction, it is useful to show in detail which feature
engineering steps are beneficial for the deep learning
model’s performance. The smaller datasets (sets 1-9),
described in Section ITI.C are used in a feature abla-
tion study [45]. 10 independent train and test runs are
performed per dataset, where each dataset contains dif-
ferent feature combinations. The feature combinations
can be found in Table 4. Sets 1-6 and sets 7-9 only con-
tain data produced by the execution of a single route,
where the failures in the anomalous routes are also the
result of a single type of root cause. This is described
in Section III.C and can also be seen in Table 5. The
learning model and all its hyperparameters are kept
constant, so the only variable under test is the compo-
sition of the datasets. The performance of the feature
combinations is evaluated using the average F1-score,
precision, and recall over all 10 runs per dataset, cal-
culated as shown in the equations below. All in all,
this full experiment will show the impact of the feature
combination on the performance.

2 x precision x recall

F1 = — (10)
precision + recall
L TP (11)
precision = mp— ~FP
TP
recall = (12)

TP+ FN

Within the equations above, TP, FP, and FN repre-
sents the amount of true positives, false positives and
false negatives respectively.

Performance Evaluation As failure prediction for
mobile robots is a rather unexplored field, it is use-
ful to evaluate the newfound performance within this
field. The experiment with the smaller datasets yields
a good feature combination for the used sensor input
types. As is presented later in Section V.A, the found
optimal feature combinations of both dataset types are
dataset six and nine. With this optimal feature com-
bination, three new datasets are created to show the
current performance of failure prediction in the field
of mobile robots. The three newly created datasets
are more complicated than the smaller datasets. The
datasets contain routes of multiple farms, driven by 6
Discovery Collector robots. The failures in the anoma-
lous routes have various underlying root causes, which
can be found in Table 5. Each big dataset is trained
and tested 10 times independently in order to get more
consistent results. The learning model’s hyperparam-
eters are kept constant, and the performance is mea-
sured using the average Fl-score (10), precision (11),
recall (12) and lead time per route. The lead time is the
time difference in minutes between the prediction and
moment of failure [46]. The time of prediction is the
first occurrence of the sliding window average model
output reaching above the threshold. If no failure is
predicted, but the route does end in one, the lead time
is set to 0. Besides these metrics, the performance of
this setup also provides insight into the generalizabil-
ity of the nominal behavior of the Discovery Collector
robot. This is because the data in this experiment con-
tains execution data of multiple routes, and is much
more representative when compared to the datasets of
performed feature experiments above. Besides the eval-
uation of the datasets with the aforementioned metrics,
there are several other potentially interesting experi-
ments to be performed, which have not been performed
in this study, but are stated later in Section VI.D.

Heatmaps for Root Cause Analysis An experi-
ment is also set up to investigate the possibility of root
cause classification by using heatmaps. Currently, in-
terpreting these heatmaps requires significant expert
domain knowledge, which limits their immediate oper-
ational utility. The heatmaps are constructed from the
output of the model. The mobile robot has a local-
ization algorithm providing global pose information at
each time step, and the anomaly detection model which
provides output at each time step (before the sliding
window application). These two data streams can be
combined into a heatmap by applying a Kernel Density
Estimator (KDE) [47], providing visual information of
the aggregated anomaly score output matched to the
locations of where the robot was in 2D space. To be
able to use heatmaps for root cause classification, sev-
eral hypotheses needs to hold. First, it is necessary
that the heatmap’s hotspots are not linked to the lo-
cation of failure, but ideally match the location of oc-
curring root causes. Second, to be able to effectively

classify root causes, the heatmaps must be consistent
enough or have some form of common pattern, in order
to find significant differences in the spatial patterns be-
tween different root causes, allowing for both visual in-
spection and quantitative comparison through distance
metrics. Third, the heatmaps or spatial patterns within
the heatmaps for different root causes should be unique,
as otherwise multiple root cause types would end up in
the same category. Another use of the heatmaps is
that the heatmaps of individual route executions can
also be combined into an averaged heatmap, which po-
tentially yields insights into risky or difficult parts of
the route. However, drawing meaningful conclusions
from these aggregated heatmaps remains challenging
and currently depends heavily on expert interpreta-
tion.

V. RESULTS

This section will present all the results gained from the
experiments described in Section IV.

A. Feature Engineering Performance

The results of the 10 independent train and test runs
of the smaller datasets can be seen in the first nine
rows of Table 3. It is clear that the model is able to
consistently get a high recall score, on average 0.98,
while the precision generally falls a bit behind with an
average of 0.88.

Table 3 also shows an improvement in performance
for both the addition of the flags and the feature engi-
neered offsets. L.e., the Fl-score of dataset one of 0.83
improves to 0.89 in dataset three with the addition of
flags, and to 1.00 in dataset two with the addition of the
feature engineered offsets. When examining the flags
in more detail however, it appears that dataset four
with the flags performs slightly worse than dataset two
without the flags. Both feature additions thus enhance
the performance, but the offsets on their own perform
better than when combined with the flags. As is men-
tioned in the description of the Feature Engineering in
Section IV.D, datasets six and nine are selected for the
bigger, more general datasets, even though they per-
formed equally well as datasets two and eight. The
reason for this is that the context used for training and
testing of the smaller datasets is very simplistic (one
type of route, one type of root cause, see also Table 5)
and the bigger datasets require a more general under-
standing of the nominal behavior of the robot. There-
fore, the feature combinations with both the raw and
the offset values are presumed to be more reliable when
applied on a more complex learning task.

B. General Dataset Performance

The performance of the bigger three datasets can be
found in the lower three rows of Table 3. Notably, the
scores are lower than the smaller nine datasets. Similar
to the smaller datasets, the model is able to achieve a
higher average recall of 0.73, and a somewhat lower

Table 3: Results of 10 independent train and test runs on the
different datasets. Note that the metrics are the average values
of all 10 runs, thus the precision and recall value in the table
are not the exact values used to calculate the Fl-score, as that
metric is an average of 10 runs too.

Name ‘ Fl-score Precision Recall
1 raw_motor_ velocities 0.83 0.79 0.92
2 motor_velocity _ offsets 1.00 1.00 1.00
3 raw_motor_ velocities_ with flags 0.89 0.92 0.90
4 motor_velocity _offsets_ with _flags 0.99 0.98 1.00
5 motor_velocities_combined with flags 0.98 0.97 1.00
6 motor_ velocities_ combined _no_ flags 1.00 1.00 1.00
7 ultrasonic_raw 0.44 0.28 1.00
8 ultrasonic _offsets 1.00 1.00 1.00
9 ultrasonic_combined 1.00 1.00 1.00
10 big_set_motor_ velocities 0.64 0.61 0.74
11 big_set _ultrasonic 0.76 0.78 0.75
12 big_set_combined 0.72 0.75 0.71

average precision of 0.71. The model thus detects a
slightly higher proportion of true positive predictions at
the cost of introducing more false positive predictions.

Insight into the decision-making of the model is
shown in Figure 9. These figures show examples of the
offsets of each feature type, which are the most insight-
ful features, next to the model output of the model
trained with dataset 12, the dataset with both input
types combined. The dark red boxes in the figures in-
dicate the moment the sliding window averaged output
of the model reaches above the threshold. The light red
box shows the 5 minutes before the moment a failure is
predicted, which is relevant as these 5 minutes are all
time steps that contributed to the moment of the fail-
ure prediction. Note, that this is due to the application
of a sliding window average over the output of the last
5 minutes. Figures 9a, 9b and 9c show the input of
an anomalous route execution which eventually ends in
failure. Each of these figures have a different underly-
ing root cause, which can be recognized in the input
offset data. Figure 9d shows a nominal route execution
to put the observed values into perspective.

The average lead times of a prediction before a failure
are shown in Figure 8. It can be seen that most of the
routes have a relatively high lead time when compared
to the average duration of each route in Table 5. The
higher the lead time, the earlier the failure is predicted
within the route on average.

20.0
ZZ1 Set 10

=9 Set 11
[0 Set 12

—

17.5

Lead Times (minutes)
= = =
v N S N ol
o 0 o n o

[l
o

ANANNNNNANY

RO6 p3-o0 g0 o0 a0 o0 o0 o0 oV o0 oV oV oD o o)

RO4 f
RO8

Figure 8: The average lead time before failure of the bigger
datasets per route over all 10 test runs. Note that the bars that
are zero, indicate false negatives on average for that route, as
there was no lead time of the prediction before failure.

10

C. Heatmap Visualizations

Several created heatmaps can be found in Figure 10.
These examples can be used to show which of the hy-
potheses stated in Section IV hold. Figures 10a, 10b
and 10c show heatmaps of individual route executions,
including the robot estimated failure location, the lo-
cations where the robot was in recovery mode, and
the path the robot has taken over the route. The red
hotspots on the heatmaps show the locations on the
map where the model output is high. Figure 10d shows
the aggregated average heatmap of multiple executions
of the same route, providing a more general insight into
the locations where the model output over multiple ex-
ecutions was high.

VI. DISCUSSION

This section discusses how the research question, stated
in Section I, has been addressed through the experi-
mental results and subsequent analysis. The results
show that while the current model’s performance is
not yet suitable for practical deployment, it provides
promising insights for future research.

A. Feature Engineering Insights

As can be seen in the first nine rows of Table 3, both the
addition of flags and offsets to the datasets improves the
performance of the model in all scenarios. However, the
combination of both feature engineered data streams
does not perform better than the offset data streams on
their own. This insight addresses the first contribution
of the paper: assessing the effectiveness of two feature
types on model performance.

The insights of Figure 9 can be explained in more
detail by a physical link that is found when examining
the relation between the input and output of the model.
An example of this is shown in Figure 11. Within this
figure, the motor velocity offsets input and model out-
put is shown from the test set of dataset six. As can
be seen in the figure, the peaks of the model output in
blue clearly overlap with sudden jumps in the motor
velocity offsets fed to the model as input. This coin-
cides with physical action where the robot changes driv-
ing direction or encounters unexpected bumps. In Fig-
ure 11, the multiple smaller peaks coincide with driv-
ing direction changes of the robot, whereas the larger
peaks, inside the dashed red boxes, coincide with un-
expected bumps during the route. The fact that the
directional changes have smaller peaks compared to the
unexpected bumps might be the result of the fact that
directional changes are common within a route execu-
tion, thus the model might have incorporated this into
its latent space representation as a possibility. Unex-
pected bumps on the other hand, are much more un-
common and ideally should not happen at all. There-
fore, it seems likely that the latent space representa-
tion does not model for this uncommon moment during
routes, and as a result, when it does occur, the model
is less able to anticipate this and yields a higher out-

1.0

—— ultrasonic_offset_left —— ultrasonic_offset_right

0.5

0.0

Normalized Values

=

-0.5

-1.0

—— motor_velocity_offset_left

i
S

—— motor_velocity_offset_right

—— Model output
--- sliding window output
--- Threshold

120

Timestep (t)

(a) Root cause: Lots of slip and unexpected bumps. Route: R2

10

—— ultrasonic_offset_left —— ultrasonic_offset_right

0.5

0.0

Normalized Values

+

-0.5

-1.0

—— motor_velocity_offset_left

E3
3

—— motor_velocity_offset_right —— Model output
--- sliding window output

~-- Threshold

120

Timestep (t)

(b) Root cause: Dirty ultrasonic sensor. Route: R2

1.0

—— ultrasonic_offset_left —— ultrasonic_offset_right

0.5

0.0

Normalized Values

=

-0.5

-1.0

—— motor_velocity_offset_left

s

—— motor_velocity_offset_right —— Model output
—=-- sliding window output

~-- Threshold

100

80

60

40

4

20

Timestep (t)

(¢) Root cause: Low obstacle blocking the route. Route: R15

1.0

—— ultrasonic_offset_left —— ultrasonic_offset_right

0.5

L1l

0.0

i
i

Normalized Values

-0.5

-1.0

— motor_velocity_offset_left

—— motor_velocity_offset_right

—— Model output
--- sliding window output
--- Threshold

100

£

Timestep (t)

(d) Nominal route input and its output. No failure is predicted as the threshold is not exceeded. Route: R9

Figure 9: The input and output of a few scenarios. The dark red box indicates the moment the sliding window output exceeds the
threshold and a failure is predicted. The light red box shows the sliding window contributing time steps before failure prediction.

The details of each route can be found in Table 5.

put. Note that this is a hypothetical assumption of the
inner workings of the model, and that this is hard to
confirm as the model is considered to be a black box
[48]. To confirm this assumption, an experiment could
be set up with a mobile robot dataset where the mo-
ments of bumps are known. This would allow for the
physical link to be captured in a metric [49]. Never-
theless, the difference in the height of the output works
in our advantage. Namely, directional changes are part
of nominal behavior, and should not be detected as an
anomaly, whereas the unexpected bump indicate wrong
localization or obstacles, which should be detected as
an anomaly as they are good indicators of upcoming
failures.

This found physical link is not limited to dataset
six or motor velocities specifically. The same link is
present in all 12 datasets and both for ultrasonic mea-
sures and motor velocities. Moreover, the physical link

between input and output yields a new hypothesis that
is promising for future research. The model currently
seems to not always be able to anticipate sudden state
changes, but has seemingly learned in a way that di-
rectional changes are more common than unexpected
bumps. This may indicate that the addition of other
data streams, for example, indicating upcoming direc-
tional changes (like the combination of the distance
driven and distance to drive for a current action), en-
ables the model to learn more accurate latent space
representations resulting in better anticipated sudden
state changes. In turn, this hopefully results in an
even bigger difference between nominal and anoma-
lous model output, making the overall failure predic-
tion problem easier.

Section V.B provided the performance of the bigger,
more general datasets in the bottom three rows of Ta-
ble 3. These current results are not very suitable yet

(d) Aggregated average heatmap of a specific route made from mul-
tiple heatmaps based on executions of this route.

Figure 10: Figures 10a, 10b and 10c show a heatmap of a single
route execution, Figure 10d shows a heatmap of all executions
on the same route, summed and averaged.

to be used in practice, as it would result in a lot of
false alarms due to the low precision values, which ul-
timately does not result in more autonomy or uptime
of the robot. The exact performance required for the
model to be applicable, depends highly on the execu-
tion context of the robot at hand and the prevented

12

motor_velocity_offset_left
motor_velocity_offset_right
———— Model output
== Unexpected bump

Normalized values

| \
05 [‘

1100 1200 1300

Timestep (t)

1400 1500

Figure 11: The output of the model overlaid with the motor
velocity offset input streams at specific time steps on a route,
highlighting the clear physical link between the input and the
output of the model, and indicating the larger peaks at unex-
pected bumps.

amount of downtime as a result of the predicted fail-
ures. Altogether, the results do show the possibility of
a working solution for the failure prediction problem.
There are also several promising directions of improve-
ment for this problem that have not been explored in
this study. More about this in Section VI.D below.

Finally, a remark must be made about the lead times
stated in Figure 8. The figure nicely shows that most
failures in the dataset can be predicted ahead of time,
but it does not link these predictions to actual underly-
ing root causes. It might now be that the first moment
a failure is predicted is a hallucination of the model
that is not necessarily linked to the eventual failure.
For example, when looking at Figure 9a, there are two
moments the threshold is exceeded. The first one is
shown in the figure in dark red, but near the end of the
route execution, there is another. As there are no root
cause timeframe labels, it is currently not possible to
say which of the two (or both) is the actual root cause
of the eventual failure. Currently, only the first oc-
currence of threshold exceedance is used, which might
result in higher lead times. Despite the current ambi-
guity in pinpointing exact root cause timeframes, this
analysis provides initial evidence of the model’s ability
to predict failures ahead of time, and calls for further
research to obtain accurate lead times [46].

B. Root Cause Identification

Figure 9 provides a more elaborate insight into the
workings behind the model. As explained earlier in Sec-
tion V.B, Figures 9a, 9b, and 9c¢ show the timeframe
contributing to a failure prediction made by the model
of three route executions with three different underly-
ing root causes, and Figure 9d shows a nominal route
execution without any predicted failure. The visualiza-
tions only go over three routes containing root causes,
but they show a general trend in most of the correctly
predicted route executions ending in failure. Figures 9a
and 9c both show a failure where the motor velocities
are indicative of the underlying root causes. In both

of these figures, the 5 minutes of the sliding window
contributing to the predicted failure show anomalies in
their motor velocity offset values as well. For Figure 9a
there is a lot of jitter in the right wheel’s motor veloc-
ity offset and an indication of an unexpected bump just
before the predicted failure. In Figure 9c it is clearly
visible in the right wheel’s motor velocity offset that
the target motor velocity is not achieved, as the green
line is far from 0. Figure 9b ends in a failure where the
ultrasonic sensors are indicative of the underlying root
cause, namely a dirty ultrasonic sensor. This can also
clearly be seen in the plot of the offset of the left ultra-
sonic sensor, where the offset is far from 0 in the light
red sliding window before the failure. Interestingly, the
failure in Figures 9a and 9b are predicted a long time
before the actual failure occurs, which happens after
the last time step visible in the figures. The model
output of this initial anomaly is already detrimental
enough such that the model predicted that the route
execution would end in failure. Figure 9c however, pre-
dicts a failure only right before it actually happened.
The underlying root cause of the failure in this case is
the route of the robot being obstructed by some un-
known object or cow. Even though generally there is
less indication before the occurrence of such failure as
compared to the dirty ultrasonic sensors or multiple un-
expected bumps during a route, the model is still able
to predict such failures before they happen.

C. Heatmap Interpretation

Since the heatmaps are visualizations of the model’s
output per route, and we found above that often the
model is good at having higher model output at the
moments of root causes, the heatmaps can be used to
potentially visualize the problematic locations within
a route. As Section V.C described, there are several
hypotheses that need to hold to enable root cause clas-
sification by using the heatmap images. The first hy-
pothesis, stating that the location of failure should not
be coinciding with the hotspots in the heatmaps, holds.
Figures 10a, 10b, and 10c show this, as the heatmap
hotspots do not coincide with the location of failure
shown in the figures. The second hypothesis however,
does not hold. This can be concluded from Figures
10a and 10b. The two heatmaps in these figures are
both based on a failure which have the same underly-
ing root cause, determined by domain experts at Lely
Industries. The root cause in this case is one of the
ultrasonic sensors giving a fixed value. As the hotspot
patterns are different for both of these heatmaps, clus-
tering these images to the same cluster in order to more
easily extract similar root causes seems unlikely. More-
over, root causes do not follow unique patterns. Fig-
ure 10c has a different underlying root cause, namely
wrong localization due to wheel slip, but shows a sim-
ilar hotspot pattern as Figure 10b. Consequently, root
cause classification by using heatmaps is not so feasible
for this study.

Nonetheless, as can be seen as well in Figures 10a,

13

10b and 10c, there is a connection between the hotspots
in the heatmap and the locations where the robot ex-
ecutes recovery behavior. This confirms the ability of
the model being able to detect deviations from nomi-
nal behavior, as recovery actions are not part of nor-
mal route execution. Besides, the heatmaps therefore
provide an intuitive representation of potential prob-
lematic parts in a single route. Note however, that the
hotspots are not only related to the problematic sub-
sequent actions in a route, as the model output also
takes into account the temporal context of execution
in the dynamic environment. An object blocking the
route for example, also results in higher model out-
put (for example, as shown in Figure 9c earlier). The
hotspots on their own therefore do not necessarily in-
dicate problematic sections in the route. A solution to
get a more general insight into the problematic sections
of a route is to aggregate the heatmaps into the average
heatmap of multiple executions of the same route. By
averaging the values for all locations in the heatmap,
the hotspots related to incidental root causes are aver-
aged out, and the hotspots due to structurally difficult
locations remain, as these hotspots are always in the
same location. Such a heatmap is shown in Figure 10d.
Since the problematic sections of a specific route are al-
ways in the same location, the aggregation of multiple
heatmaps of that route will still show a higher model
output in those locations, whereas the routes that show
high model output related to environmental changes
and obstacles averages out and are less prevalent in
the resulting heatmap. There is however a big limita-
tion to these insights, namely that there are no ground
truths available for the datasets used within this work
for the root cause locations or exact timeframes of the
root causes. The gained insights in this section now
rely on the expert domain knowledge of this particu-
lar robot, thus still require labelled data for quantifica-
tion. More scientific confidence can therefore be gained
by a future study using datasets where these ground
truths are available for further evaluation. All in all,
the current section shows how both the insights into
root causes, and the insight into the heatmaps provide
our third research contribution, providing preliminary
understanding of the relationship between the learning
model’s input, output, and the underlying root causes
of predicted failures.

D. Limitations and Future Research

Currently, this work provides a first investigation into
the performance of failure prediction for mobile robot
using anomaly detection. Its findings however, may be
specific to this context and require further validation.
Research is required to validate the broader applicabil-
ity of failure prediction using anomaly detection in the
field of mobile robots. A valuable study would be to
perform a sensitivity analysis [50], for example similar
to [51], who have extended first-order sensitivity anal-
ysis to generative models. Such study will result in a
better understanding of the relation between the input

and the inner workings of the model. Another seem-
ingly useful study is a Bootstrap analysis [52] in order
to better differentiate between variance and shortcom-
ings of the model’s performance. While the current
study did not resample datasets, the use of multiple in-
dependent train and test runs and averaging of perfor-
mance metrics provides some protection against model
variance. A Bootstrap analysis similar to [53] however,
can strengthen this belief even more.

It is also worth mentioning separately that the per-
formance of the algorithm in this work is relatively
low compared to other works in the different fields of
anomaly detection. For Network Intrusion Detection
Systems (NIDS) the state-of-the-art performance has
F1-scores of above 0.95, see for example [54] (p.9399)
with an elaborate overview of the performances and the
limitations of several works. The performance for smart
manufacturing applications lies somewhat lower, more
ranging between 0.80-0.95, see for example [27]. Both
fields thus achieve much higher performance compared
to the results of this study with F1-scores of about 0.64-
0.76. Needless to say that the field of mobile robots is
complex, and the particular context of this study has
a very uncertain and dynamic nature. Besides, this
study focused on the most promising parts of the study.
For example, the feature engineering process, however
valuable, can be extended greatly. There are also many
more sensors present within the field of mobile robotics,
and even with the existing feature combinations of this
work, not all subsets have been evaluated.

Finally, something that received little attention in
this work, is the latent space representation that comes
with the use of Variational Autoencoders (VAE). As we
understand more and more about VAEs, the more use
is found for the encoded latent space representation.
Specifically, the aforementioned paper by Azzalini et
al. [38] achieved a lot by evaluating the latent space of
their dataset, as mentioned earlier in the paper. They
proposed a way to cluster different root causes by the
samples taken from the latent space distributions, in-
stead of finding root causes after decoding. Since good
root cause analysis is one of the goals of anomaly de-
tection, this is a huge achievement, and it can likely be
extended to more fields. Su et al. with OmniAnomaly,
as mentioned shortly in [16], also enable latent space vi-
sualizations, but have not attempted further classifica-
tion within this space, which might be very insightful.
Another option for potential root cause classification
is investigating the correlation between the individual
feature loss contributions and the root causes leading
to failures. This is shortly mentioned as an option in
the end of Section III.B, but is not investigated further
within this research.

Another interesting and promising direction for this
field, in line with the found physical link between the
model’s input and output, is the approach of major-
ity voting, as proposed in [55]. Alshede et al. combine
several models to improve parallel computational loads,
while preserving the achieved performance with other
state-of-the-art models. The approach of majority vot-

14

ing itself is very promising for the failure prediction
problem of mobile robots. Mobile robots usually have
multiple sensors or controlled variables, thus the same
model can be applied on each individual sensor or vari-
able, combined by a majority voting layer. This ap-
proach would enable better root cause analysis as well,
as it gives the opportunity to identify the individual
sensors which contributed to the final decision, without
the need for manual evaluation of all input sensors.

VII.

Within this work we successfully showed the appli-
cability of anomaly detection models for the use of
failure prediction in the field of mobile robots. The
performance of this novel application is clearly stated
by three general datasets, achieving F1-scores between
0.64-0.76. The process of selecting effective indicators
of failure for the context of the robotic application used
within this paper is stated in the results and explained
in the discussion, and shows a promising advantage in
the use of offsets, comprised of target or expected fea-
tures subtracted from the currently measured features.
At the same time the results also show an increasing
performance with the use of discrete flags as indicators
in the datasets. The performance however can still be
enhanced further to enable satisfactory failure predic-
tion in practice. The study therefore highlights mul-
tiple potential directions for further research. Namely,
we identified a physical link between the input and out-
put of the model, and the accompanied heatmap visu-
alizations showcase its potential for identifying specific
root cause locations during route executions. Further-
more, a change in the underlying model used for failure
prediction in the direction of majority voting appears
promising for the performance and has the bonus of en-
abling even more concrete root cause analysis. More-
over, this work clearly states the limitations in the re-
search; the amount of feature combinations used to find
the optimal feature combinations, the lack of ground
truth timeframe labels of root causes for capturing the
performance of root cause identification, and, being the
first work in the field, missing extensive other work to
compare to. All in all, this research lays the ground-
work for more intelligent, proactive failure prediction in
mobile robotics, enabling the transition from reactive
maintenance towards predictive precision.

CONCLUSION

VIII.

The authors acknowledge the use of Claude (Anthropic,
2024), a Large Language Model (LLM), to improve the
readability and clarity of certain sections within this
work. Allintellectual content, analysis, and conclusions
remain the authors’ own work.

ACKNOWLEDGEMENTS

REFERENCES

[1] A. K. Adeleke, D. J. P. Montero, K. A. Olu-lawal, and
O. K. Olajiga, “Process development in mechanical engineer-
ing: innovations, challenges, and opportunities,” Engineer-

(2]

(3]

(4]

(5]

(6]

(7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

ing Science & Technology Journal, vol. 5, no. 3, pp. 901-912,
2024.

I. Ullah, D. Adhikari, H. Khan, M. S. Anwar, S. Ahmad,
and X. Bai, “Mobile robot localization: Current challenges
and future prospective,” Computer Science Review, vol. 53,
p. 100651, 2024.

P. S. Muhuri, P. Chatterjee, X. Yuan, K. Roy, and A. Es-
terline, “Using a long short-term memory recurrent neural
network (Istm-rnn) to classify network attacks,” Informa-
tion, 2020.

A. Alvanpour, S. K. Das, C. K. Robinson, O. Nasraoui, and
D. Popa, “Robot failure mode prediction with explainable
machine learning,” in 2020 IFEE 16th International Con-
ference on Automation Science and Engineering (CASE),
pp. 61-66, IEEE, 2020.

A. Farid, D. Snyder, A. Z. Ren, and A. Majumdar, “Failure
prediction with statistical guarantees for vision-based robot
control,” Robotics: Science and Systems, 2022.

C. Gokmen, D. Ho, and M. Khansari, “Asking for help: Fail-
ure prediction in behavioral cloning through value approx-
imation,” Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2023-May, pp. 5821-5828,
2023.

H. Ichiwara, H. Ito, and K. Yamamoto, “Real- time fail-
ure/anomaly prediction for robot motion learning based on
model uncertainty prediction,” 202/ IEEE/SICE Interna-
tional Symposium on System Integration (SII), pp. 376-381,
1 2024.

A. Bala and I. Chana, “Intelligent failure prediction models
for scientific workflows,” Expert Systems with Applications,
vol. 42, no. 3, pp. 980-989, 2015.

F. Salfner, M. Lenk, and M. Malek, “A survey of on-
line failure prediction methods,” ACM Computing Surveys
(CSUR), vol. 42, no. 3, pp. 1-42, 2010.

V. Chandola, A. Banerjee, V. K. A. computing surveys
(CSUR), and undefined 2009, “Anomaly detection: A sur-
vey,” dl.acm.org, vol. 41, pp. 1-22, 2009.

Z. Yang, X. Liu, T. Li, D. Wu, J. Wang, Y. Zhao, and
H. Han, “A systematic literature review of methods and
datasets for anomaly-based network intrusion detection,”
Computers & Security, vol. 116, p. 102675, 2022.

Q.-T. Nguyen, T. N. Tran, C. Heuchenne, and K. P. Tran,
“Decision support systems for anomaly detection with the
applications in smart manufacturing: a survey and per-
spective,” in Machine Learning and Probabilistic Graphi-
cal Models for Decision Support Systems, pp. 34—61, CRC
Press, 2022.

T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and
C. Fookes, “Deep learning for medical anomaly detection—a
survey,” ACM Computing Surveys (CSUR), vol. 54, no. 7,
pp. 1-37, 2021.

H.-T. Duong, V.-T. Le, and V. T. Hoang, “Deep learning-
based anomaly detection in video surveillance: A survey,”
Sensors, vol. 23, no. 11, p. 5024, 2023.

Y. Yuan, J. Yang, R. Duan, I. Chih-Lin, and J. Huang,
“Anomaly detection and root cause analysis enabled by arti-
ficial intelligence,” in 2020 IEEE Globecom Workshops (GC
Wkshps), pp. 1-6, IEEE, 2020.

Y. Su, R. Liu, Y. Zhao, W. Sun, C. Niu, and D. Pei, “Ro-
bust anomaly detection for multivariate time series through
stochastic recurrent neural network,” Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, vol. pp, pp. 2828-2837, 7 2019.
Scopus, “Scopus Database Search on Mobile Robot Fail-
ure Prediction and Anomaly Detection,” nov 2024. Search
query: TITLE-ABS-KEY (("mobile robot*" OR "mobile
robotics" OR "autonomous robot*" OR "robotic system*")
AND ("failure predict*" OR "fault detect*") AND ("ma-
chine learning" OR "deep learning" OR "neural network*"
OR "statistical model*") AND ("anomaly detect*" OR
"outlier detect*" OR "novelty detect*" OR. "deviation de-
tect*" OR "rare event detect™")).

E. Caville, W. W. Lo, S. Layeghy, and M. Portmann,
“Anomal-e: A self-supervised network intrusion detection
system based on graph neural networks,” Knowledge-Based
Systems, vol. 258, p. 110030, 2022.

15

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

[34]

[35]

[36]

[37]

M. B. Pranto, M. H. A. Ratul, M. M. Rahman, 1. J. Diya,
and Z.-B. Zahir, “Performance of machine learning tech-
niques in anomaly detection with basic feature selection
strategy-a network intrusion detection system,” J. Adv. Inf.
Technol, vol. 13, no. 1, 2022.

I. Ahmad, Q. E. Ul Haq, M. Imran, M. O. Alassafi, and R. A.
AlGhamdi, “An efficient network intrusion detection and
classification system,” Mathematics, vol. 10, no. 3, p. 530,
2022.

Z. Li, P. Wang, Z. Wang, and D.-c. Zhan, “Flowgananomaly:
Flow-based anomaly network intrusion detection with ad-
versarial learning,” Chinese Journal of Electronics, vol. 33,
no. 1, pp. 58-71, 2024.

K. D. Garcia, C. R. de S4, M. Poel, T. Carvalho, J. Mendes-
Moreira, J. M. Cardoso, A. C. de Carvalho, and J. N. Kok,
“An ensemble of autonomous auto-encoders for human ac-
tivity recognition,” Neurocomputing, vol. 439, pp. 271-280,
2021. Figure 2.

A. L. Alfeo, M. G. Cimino, G. Manco, E. Ritacco, and
G. Vaglini, “Using an autoencoder in the design of an
anomaly detector for smart manufacturing,” Pattern Recog-
nition Letters, vol. 136, pp. 272-278, 2020.

S. Abbasi, M. Famouri, M. J. Shafiee, and A. Wong, “Out-
liernets: Highly compact deep autoencoder network archi-
tectures for on-device acoustic anomaly detection,” Sensors,
vol. 21, no. 14, p. 4805, 2021.

M.-A. Tnani, M. Feil, and K. Diepold, “Smart data collec-
tion system for brownfield cnc milling machines: A new
benchmark dataset for data-driven machine monitoring,”
Procedia CIRP, vol. 107, pp. 131-136, 2022.

K. S. Lee, S. B. Kim, and H.-W. Kim, “Enhanced anomaly
detection in manufacturing processes through hybrid deep
learning techniques,” IEEE Access, 2023.

H. Yan, J. Wang, J. Chen, Z. Liu, and Y. Feng, “Virtual
sensor-based imputed graph attention network for anomaly
detection of equipment with incomplete data,” Journal of
Manufacturing Systems, vol. 63, pp. 52—63, 2022.

C. Park, S. Lim, D. Cha, and J. Jeong, “Fv-ad: F-anogan
based anomaly detection in chromate process for smart
manufacturing,” Applied Sciences, vol. 12, no. 15, p. 7549,
2022.

A. Albanese, M. Nardello, G. Fiacco, and D. Brunelli, “Tiny
machine learning for high accuracy product quality inspec-
tion,” IEEE Sensors Journal, vol. 23, no. 2, pp. 1575-1583,
2022.

A.-E. R. Abd-Elhay, W. A. Murtada, and M. I. Yosof, “A
high accuracy modeling scheme for dynamic systems: space-
craft reaction wheel model,” Journal of Engineering and
Applied Science, vol. 69, no. 1, p. 4, 2022.

L. Kou, J. Chen, Y. Qin, and W. Mao, “The robust
multi-scale deep-svdd model for anomaly online detection
of rolling bearings,” Sensors, vol. 22, no. 15, p. 5681, 2022.
L. Scime and J. Beuth, “Anomaly detection and classifica-
tion in a laser powder bed additive manufacturing process
using a trained computer vision algorithm,” Additive Man-
ufacturing, vol. 19, pp. 114-126, 2018.

A. A. Cook, G. Misirli, and Z. Fan, “Anomaly detection for
iot time-series data: A survey,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6481-6494, 2019.

R. Chalapathy and S. Chawla, “Deep learning for anomaly
detection: A survey,” arXiv preprint arXiv:1901.03407,
2019.

P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu,
“Roboads: Anomaly detection against sensor and actua-
tor misbehaviors in mobile robots,” in 2018 48th Annual
IEEE/IFIP international conference on dependable systems
and networks (DSN), pp. 574-585, IEEE, 2018.

H. Wang, R. Fan, Y. Sun, and M. Liu, “Applying surface
normal information in drivable area and road anomaly de-
tection for ground mobile robots,” in 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pp. 2706-2711, IEEE, 2020.

D. Agzzalini, A. Castellini, M. Luperto, A. Farinelli,
F. Amigoni, et al., “Hmms for anomaly detection in au-
tonomous robots,” in Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

(AAMAS 2020), pp. 105113, IFAAMAS, 2020.

D. Azzalini, L. Bonali, and F. Amigoni, “A minimally su-
pervised approach based on variational autoencoders for
anomaly detection in autonomous robots,” IEEE Robotics
and Automation Letters, vol. 6, pp. 2985-2992, 4 2021.

T. Ji, A. N. Sivakumar, G. Chowdhary, and K. Driggs-
Campbell, “Proactive anomaly detection for robot naviga-
tion with multi-sensor fusion,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 4975-4982, 2022.

Lely Industries, “Lely discovery collector.” lely.com. Ac-
cessed: Oct 14, 2024 [Online]. Available: https://www.
lely.com/nl/discovery-collector/.

X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu,
A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas,
C. Kern, et al., “A comparison of deep learning performance
against health-care professionals in detecting diseases from
medical imaging: a systematic review and meta-analysis,”
The lancet digital health, vol. 1, no. 6, pp. e271-e297, 2019.
R. A. Rios and R. F. De Mello, “Improving time series
modeling by decomposing and analyzing stochastic and de-
terministic influences,” Signal Processing, vol. 93, no. 11,
pp. 3001-3013, 2013.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Soderstrom, “Detecting spacecraft anomalies using lstms
and nonparametric dynamic thresholding,” in Proceedings of
the 24th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pp. 387-395, 2018.

L. E. Rhijnsburger and Y. B. Eisma, “Exploring the appli-
cability of failure prediction for 2d mobile robots.” Unpub-
lished paper, 2024.

S. Sheikholeslami, M. Meister, T. Wang, A. H. Payberah,
V. Vlassov, and J. Dowling, “Autoablation: Automated par-
allel ablation studies for deep learning,” in Proceedings of the
1st Workshop on Machine Learning and Systems, pp. 55—
61, 2021.

A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: deep
learning for system health prediction of lead times to failure
in hpc,” in Proceedings of the 27th international sympo-
sium on high-performance parallel and distributed comput-
ing, pp. 40-51, 2018.

D. W. Scott, Multivariate density estimation: theory, prac-
tice, and visualization. John Wiley & Sons, 2015.

T. Carraro, M. Polato, and F. Aiolli, “A look inside the
black-box: Towards the interpretability of conditioned vari-
ational autoencoder for collaborative filtering,” in Adjunct
publication of the 28th ACM conference on user modeling,
adaptation and personalization, pp. 233-236, 2020.

S. Haddadin, A. De Luca, and A. Albu-Schéffer, “Robot col-
lisions: A survey on detection, isolation, and identification,”
IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292—
1312, 2017.

[.-C. Yeh and W.-L. Cheng, “First and second order sensi-
tivity analysis of mlp,” Neurocomputing, vol. 73, no. 10-12,
PD. 2225-2233, 2010.

J. Wu, K. Plataniotis, L. Liu, E. Amjadian, and
Y. Lawryshyn, “Interpretation for variational autoencoder
used to generate financial synthetic tabular data,” Algo-
rithms, vol. 16, no. 2, p. 121, 2023.

B. Efron and R. J. Tibshirani, An introduction to the boot-
strap. Chapman and Hall/CRC, 1994.

D. N. Politis, “The impact of bootstrap methods on time
series analysis,” Statistical science, pp. 219-230, 2003.

Y. K. Saheed, A. I. Abiodun, S. Misra, M. K. Holone, and
R. Colomo-Palacios, “A machine learning-based intrusion
detection for detecting internet of things network attacks,”
Alezxandria Engineering Journal, vol. 61, no. 12, pp. 9395—
9409, 2022.

H. Alshede, L. Nassef, N. Alowidi, and E. Fade, “Ensem-
ble voting-based anomaly detection for a smart grid com-
munication infrastructure.,” Intelligent Automation € Soft
Computing, vol. 36, no. 3, 2023.

16

Appendix

A. FEATURES PER DATASET

The exact features used within each dataset can be
found in Table 4 below.

Table 4: The features present within each dataset, matching
the dimensions of Table 1.

Feature \Set [1 2 3 4 5 6 7 8 9 10 11 12
motor_velocity _left | X X X X X X
motor_velocity _right | X X X X X X
motor_velocity _target _left | X X X X X X
motor_velocity _target right | X X X X X X
motor_velocity _offset _left X X X X X X
motor _velocity offset _right X X X X X X
ultrasonic _left X X X X
ultrasonic_right X X X X
expected _ultrasonic_left X X X
expected _ultrasonic_ right X X X
ultrasonic_ offset _left X X X X
ultrasonic_offset _right X X X X

direction_ flag X X X

turn_left flag X X X

turn_right_flag X X X

B. DETAILED DATASET COMPOSITION

A more detailed composition of the test set of each
dataset can be found in Table 5 below.

C. HARDWARE AND TRAINING SPECIFICA-
TIONS

For this study, all experiments were conducted on
the NVIDIA GP104GLM Quadro P3200 Mobile 6GB
GDDR5 GPU. With all hyperparameters similar to
OmniAnomaly or stated otherwise within this paper,
the full training time for 20 epochs of the model was
about 80 minutes for each of the first nine smaller
datasets, and 24 hours for the individual last three big-
ger datasets.

D. PEAKS-OVER-THRESHOLD

Su et al. [16] introduced an unsupervised thresh-
old selection algorithm in their work, called Peaks-
Over-Threshold (POT). As this study used the Omni-
Anomaly model on new datasets, a study into the per-
formance of the POT algorithm on these new datasets
is also performed. POT fits the tail portion of a proba-
bility distribution to a generalized Pareto distribution
using only two parameters which are model-wide and
can be set empirically. Within [16] they showcase that
applying POT comes at the cost of a slightly lower F1
score (0.003 - 0.077 lower), but enables a fully unsuper-
vised way of finding a good threshold for the model’s
output without the need of an optimal threshold se-
lection process which requires labels for threshold per-
formance evaluation. The lower quantile level is tuned
separately for this study. It is found by multiplying
two ratios. First, ratio Ry is the amount of time steps
exceeding the threshold within an anomalous route di-
vided by all route time steps, averaged over all anoma-
lous routes within the datasets. Second, ratio Rj is the
routes that are anomalous compared to all performed

lely.com
https://www.lely.com/nl/discovery-collector/
https://www.lely.com/nl/discovery-collector/

Table 5: A detailed overview of the composition of all test datasets. The root causes present within the anomalous routes can
be a single root cause or a combination of multiple. For example, the last row only holds one anomaly of this route, which is a

combination of both stated root causes.

Datasets | Nr. of routes in set || Route index Nr. of turn actions Total actions Distance (m) Average duration (min) | Composition | Root cause(s)
1-6 1 R1 19 52 173 28 Nominal: 11 -y vect bump detected
Anomalous: 5
79 1 R2 33 76 284 37 Nominal: 111 e o lerasonic sensor
Anomalous: 4
. . j Nominal: 0
R1 19 52 173 28 e Incorrect bump detected
Anomalous: 5
Nominal: o Wheel slip
R2 33 76 284 37 sominat o Low obstacle blocking route
Anomalous: 10 X .
e Dirty ultrasonic sensor
R3 16 10 205 2% Nominal: 0 0 In.(‘oxirm longl.mdmal localization correction
Anomalous: 3 e Dirty ultrasonic sensor
) Nominal: 0 P
10-12 16 R4 26 68 232 30 Anomalous: 1 e Dirty ultrasonic sensor
- . 5 o ” Nominal: 0 | » Whedlshp T _
Anomalous: 2 e Incorrect orientation localization correction
. . . Nominal: 0 L .
R6 40 91 249 31 o Incorrect lateral localization correction
Anomalous: 1
- Nominal: 0 e Incorrect wall detection
R7 9 16 83 1" Anomalous: 2 | e Incorrect longitudinal localization correction
RS 7 17 85 13 Nominal: 0y 0 reet wall detection
Anomalous: 2
R9 4 18 107 14 Nominal: 23 | _
Anomalous: 0
R10 13 44 203 25 Nominal: 8 1 bstacle blocking route
Anomalous: 1
RI1 15 38 131 19 Nominal: 91y 0 acle blocking route
Anomalous: 1
R12 4 10 106 14 Nominal: 0" " 5 ltrasonic sensor
Anomalous: 1
j Nominal: 0 o Wheel slip
R13 12 2 149 21 Anomalous: 1 | e Dirty ultrasonic sensor
R14 31 72 176 23 Nominal: 14
Anomalous: 0
e Low obstacle blocking route
RI5 3 73 191 2% Nominal: 4 e Incorrect lox'xgxcud.mz\l loca.hza.txon correction
Anomalous: 6 e Incorrect orientation localization correction
e Incorrect lateral localization correction
RI6 2 57 187 25 Nominal: 2 e Incorrect bum.p LletL ed]
Anomalous: 1 e Incorrect longitudinal correction
Table 6: The obtained low quantile values of each dataset type rscore
. 10
for the Peaks-over-Threshold (POT) algorithm. POT Fi-score
0.8
Set numbers ‘ Dataset type ‘ Lower quantile percentage
1-6 small datasets, motor velocity features 1.5% %D'G
7-9 small datasets, ultrasonic features 1.3% o
10-12 big datasets 1.3% 04
. 0.2
routes. See also Equations (13), (14) below.
00
A 1 2 3 a 5 [3 7 8 s 0 11
S Nonomatous (ST 9 1. >] oataset number
i=1 7j=1 J =
Ry = (13)
Nanomalous Figure 12: The Fl-scores vs. POT Fl-scores per dataset.
N, anomalous .
Ry = N (14) Some remarks that can be made based on this study
total : : : :
are the following. First, there is a change in the evalua-
R3 = Ry * Ry 15) tion approach used within this paper compared to how

Nanomalous 1S the number of routes that anomalous.
Niotar is the total amount of routes in the dataset. T;
is the total amount of time steps within route ¢, and ¢;
is a specific time step within a route. 1 is the indicator
function of a particular time step exceeding the thresh-
old 6. By multiplying these two ratios you get R3 (15),
an empiric probability of a time step being anomalous
or not, which are the points we ideally want to be in
the tail portion of the Pareto distribution.

Table 6 shows the obtained values for each dataset
type. Note that we now set the level by using the op-
timal threshold found by using labels to quantify the
results, which makes it supervised. Figure 12 shows the
obtained POT F1-scores compared to the optimal F1-
scores, both as an average of 10 individual train and
test runs. Similar to what [16] concluded, the POT
F1-score is always lower than the best Fl-score. The
difference in performance however, is bigger compared
to what [16] found. Instead of a performance drop of
about 0.003-0.077, this study found a performance drop
of 0.08-0.58.

17

POT was initially constructed. Namely, on route-level
instead of on anomaly-level. This has an impact on the
way the peaks in the output are considered. Second,
the datasets within this work are from a robot that
encounters uncertainty, which is not directly captured
within the data streams. The datasets used within [16]
have a lot more features with the aim to describe the
entire system’s context.

Erratum to: The Applicability of Anomaly Detection Algorithms for
Failure Prediction with 2D Mobile Robots

This is an erratum to: L.E. Rhijnsburger, E. Vlasblom, A. Siagkris-Lekkos, and Y.B. Eisma, The Applicability
of Anomaly Detection Algorithms for Failure Prediction with 2D Mobile Robots, https://resolver.tudelft.
nl/uuid:al176832e-98e9-4851-b835-cb2291e63d31, published 19 December 2024.

In the original version of the thesis, there is a discrepancy in the obtained results. During the evaluation process,
a technical error caused route classifications to be based on partially overlapping model outputs from different
routes. Specifically, when comparing a route’s model output to the classification threshold, the evaluation
incorrectly included data from adjacent routes. This may sometimes result in wrongful in misclassifications or
unintentional correct classification, and thus in different F1, precision, and recall scores. This error affects the
following elements of the thesis:

1. Table 2 in Section IV (Methods): Contains incorrect metric values
2. Figures 6 and 7 in Section IV (Methods): Display incorrect values
3. The hyperparameter selection based on these results

The evaluation mistake however is hereafter fixed within the paper and the classifications were evaluated cor-
rectly. The error was identified and corrected in subsequent parts of the thesis, ensuring that all later classifi-
cations were evaluated correctly. However, as the hyperparameter selection was based on the flawed evaluation
process, the chosen parameters may not be optimal. While the overall research methodology remains valid,
a new hyperparameter study is conducted with the corrected evaluation process. Should this yield different
optimal parameters, all dependent experiments will be repeated and the results and conclusions will be updated
accordingly. It is not expected to find significantly deviating hyperparameter values and consequently to find
significantly different results as a consequence of these different hyperparameters.

https://resolver.tudelft.nl/uuid:a176832e-98e9-4851-b835-cb2291e63d31
https://resolver.tudelft.nl/uuid:a176832e-98e9-4851-b835-cb2291e63d31

