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Abstract

Rank-biased Overlap (RBO) is a measure that is
used to compare two rankings against each other
mathematically using a hyperparameter for persis-
tence, p, to define the importance of items higher
up in the rankings. This is able to follow the prop-
erties of incompleteness, indefiniteness, and top-
heaviness for its results, making it a flexible op-
tion for rank similarity. In traditional RBO, the in-
tersection of the items in each of the rankings is
weighted by the persistence to reach the final value
for RBO as it tends towards infinity. RBO has sev-
eral assumptions, such as on what happens when
rankings are tied, having an infinitely long ranking,
and a degree of conjointness between the rankings.
In this paper, two new variations are derived on the
aspects of having the rankings be fully conjoint,
as well as the aspect of having a known finite do-
main for the rankings. These are described through
the equations of RBO°¢, for fully conjoint rankings,
and RBO/, for rankings within a known finite do-
main. While RBO*® tends to be slightly larger and
RBOY tends to be smaller when compared to tra-
ditional RBO, both can be more fitting depending
on the greater context of their use cases.

Key words: Rank-biased overlap, Ranking simi-
larity, Summation

1 Introduction

In everyday life, rankings are used more often than one would
think. Rankings are a list of items in a specific order to show
a level of preference or importance. Found in search engines,
magazines, and statistics, the ability to compare two different
rankings mathematically and know how similar they are is
needed more than ever before.

Rank-Biased Overlap [3] is a measure that is used to com-
pare two different rankings. The unique aspect of this mea-
sure, over other rank similiarity measures such as Kendall’s 7
[2] or Average Precision [5], is that it is able to deal with three
different properties of rankings. These properties are known
as indefiniteness, incompleteness, and top-heaviness.

In short, indefiniteness is the concept that a ranking can
be cut off at any point, making their length arbitrary. Next,
incompleteness is the principle which states that a ranking
may not contain all possible items within its domain. And
finally, top-heaviness is the property which states that items
higher up on a ranking are more important than lower items.

Together, the properties of indefiniteness and incomplete-
ness lead to the idea of conjointness, or how many items the
rankings share altogether. This is due to the possibility that
not all items may be ranked by both rankings.

While RBO manages to deal with all three properties, the
aim of this paper is to formulate new equations based on RBO
to fit specific situations, by setting the goal: ’Define RBO for
fully conjoint and/or finite rankings’. This relates to both
the properties of indefiniteness and incompleteness, and the
changes that occur when both fully conjoint and finite do-
mains are considered.

This leads to a few distinct options based on the combina-
tion of these conditions. These different possibilities are as
follows:

1. Conjoint rankings within an infinite domain.

2. Two rankings within a finite domain at a level of con-
jointness.

In order to properly answer each of these questions, two
sub-questions have been defined to help answer these possi-
bilities:

* What occurs in the RBO measure in the case of fully

conjoint rankings rather than assuming disjointness?

* How does the RBO measure change when there is a
known finite domain and how does it change with both
a conjoint and non-conjoint domain?

In this paper, new equations will be defined on how the
RBO measure changes for these two possibilities, in the form
of RBO°® for the first sub-question and RBOY for the sec-
ond sub-question. These changes are then shown through ex-
periments done comparing RBO and the two new variations,
using synthetic data to show the difference.

2 Rank-Biased Overlap

When calculating Rank-Biased Overlap [3], there are two dif-
ferent parts that can be looked at: the agreement, A4 at depth
d, and their associated weights, wg.

The agreement Ay can be described as the proportion of
items that two rankings, S and L, share at a depth d. We use
the term X4 to define the intersection between rankings S and
L at depth d. This can be written as:
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Its associated weight wy is also described using a hyperpa-
rameter p for persistence, which can be tuned to fit the amount
of top-heaviness wanted. This is described using the infinite
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In traditional RBO, we assume that there is an infinite num-
ber of items that could appear in each ranking. This leads to a
general equation by putting together the agreement, A4, and
its respective weight, wg, at depth d:

RBO(S,L,p) = (1—p) Y Asp.ap’™" 3)
d=1

where S is the ranking of shorter length, L is the ranking of
longer length with s and [ as the lengths of S and L respec-
tively. This is bound within the range of [0,1].

These rankings can be split into two different parts: a seen
section and an unseen section. Since RBO is assumed to have
an infinite number of items, the unseen section is reached af-
ter we have passed the depth equal to the length of the rank-
ing. This also leads to a possible overlap between the seen
section of one ranking and the unseen section of another rank-
ing.
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Table 1: Example pair of rankings. Brackets represent the seen
items in the rankings and the given S and L where s = 6 and
! = 8. For RBO¢, all unmatched items in each ranking would
appear at later depths past 12. For RBOY, we can end at depth
d =12 whereby n = 12 and ¢ would equal 0.75.

When we calculate Rank-Biased Overlap from the seen
items in each ranking, we can express the agreement from
these rankings based on whether or not the item in one rank-
ing appears in the other. In equation 1, we can see this ex-
pressed through the intersection of the two rankings, meaning
that this agreement added is either O or 1. However, when the
unseen section is reached, we cannot know if an unseen item
in one ranking appears in the other. This leads to the interpre-
tation that a fractional agreement can be added based on the
assumptions made for how this agreement behaves within the
unseen section. In traditional RBO, the agreement is assumed
to remain the same once it reaches the unseen section.

Eventually, this leads to a final extrapolation of RBO with
different length lists. This extrapolation is what we expect
the final value to be, which is based on assumptions made on
how the agreement behaves. This can be written as:
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This extrapolated value falls between a range, which is cal-
culated from a minimum value, RBO;rn, and a maximum
value, RBOj;ax. How these values are calculated can be
found in the original paper [3] as they serve as a useful refer-
ence for the extrapolation.

Altogether, Rank-Biased Overlap makes several assump-
tions in its calculation, such as having an infinite domain,
letting the agreement remain constant after the unseen sec-
tion is reached, and the non-existence of ties. The first two
assumptions are what we are looking to change in this paper.

2.1 Fully Conjoint Infinite Domains

For the first variation covered in this paper, we look at tra-
ditional RBO but with a different assumptions for how the
agreement behaves within the unseen section of the rankings.
Here, we are now assuming that the two rankings are fully
conjoint, meaning that as the depth approaches infinity, the
agreement will equal 1.

One problem with this variation is the way that the agree-
ment can be modeled to behave in the unseen section. There
are multiple ways that the agreement can be modeled, so we
would need to choose one that best fits our assumptions. In

the end, it should be possible to define a new RBO measure
that fits the assumptions related to full conjointness.

2.2 Finite Domains

For the second possibility, the assumption of an infinite do-
main for the rankings will need to be altered. This leads to
several questions that need to be answered to define the equa-
tion for RBO in a finite domain, D. This is in regards to the
properties of:

¢ Normalization of weights.
* Degree of conjointness, ¢.
* Length of the domain.

As part of the journey to define this new RBO variation,
each of these problems will need to be addressed in the final
equation, with any assumptions being stated along the way.

3 Variations on Rank-Biased Overlap

In order to answer the problem that has been proposed, we
need to look at the math behind Rank-Biased Overlap and see
where we need to change our assumptions. This will then lead
to new equations being made for both variations: assuming
full conjointness and assuming a finite domain.

3.1 Fully Conjoint Rank-Biased Overlap

For this variation, we want to change the assumption of how
the agreement behaves within the unseen section. In the case
of full conjointness, this means that both rankings eventually
share every item. Here we will look at how it is defined for
the minimum possible value, maximum possible value, and a
possible extrapolated value.

3.1.1 Minimum RBO,

For the minimal value, we can assume that every item in the
ranking will appear in reverse order within the unseen section.
This essentially means that every item in one ranking will
take as long as possible to appear in the other, because every
item will need to appear eventually. This is because the two
rankings are fully conjoint and share all of the same items.

However, because there is an assumed infinite number of
items that are within each domain, then there can always be
another pair of unmatched items at each new depth. This
means that the agreement will never increase at each depth,
only remaining at what we had seen from the seen section of
the rankings.

Using this, we can then define the minimum value for the
fully conjoint RBO to be equal to RBO 1y as defined in the
original paper by Webber et Al. [3]. This minimum value is
derived from having the agreement never increase within the
unseen section, only ever increasing from the seen items.

3.1.2 Maximum RBO,.

For the maximum value, we can assume that every unmatched
item in the ranking will appear as soon as possible in the
unseen section of each ranking. This means that by depth
[ + s — X all items that can be matched have been matched
as well. Once every item has been matched, then every new
item in the unseen section will be matched to itself, leading
to the agreement staying at 1 as the depth approaches infinity.



Using this, we can then define the maximum value for the
fully conjoint RBO to be equal to RBOj;4x as defined in
the original paper by Webber et Al. [3].

3.1.3 Extrapolated RBO,
To figure out what the extrapolation would be based from tra-
ditional RBO, we need to change how it handles the agree-
ment from the section of [ 4 1 to infinity. From the equation
4, this agreement is described by the final section:

Alt1i00 = M + X )
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From here, we can add on a fraction of the remaining agree-
ment until it equals 1 as the depth tends towards infinity. For
this, we will use:
d—1

limd—»ooT =1 (6)

We can multiply this by the remaining amount of agreement
from equation 5 to get a total agreement of 1 when added
together as the depth approaches infinity. To use this function,
we make the assumption that because the two rankings are
fully conjoint, they will share the same items quickly. Other
equations can be used to model the behavior of the agreement,
but this is used due to its simplicity. From depth d to infinity,
the remaining agreement can be described using:
X —Xs Xs.d—1
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This can then be added with the agreement from equation 5
as the total agreement from [ + 1 to infinity. This can then be
substituted back into the last section of equation 4. Rearrang-
ing this new equation, we get:
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There are other equations that could be used to model how the
agreement behaves in the unseen section, but this is the most
straight-forward in its approach as it simplifies more easily.
Other models, such as substituting 1 — e~?? for equation 6,
can fit the same assumptions but with a different behavior
based on how the agreement is wanted to be modeled.

3.2 Finite Rank-Biased Overlap

With a finite domain of which the rankings take place in, we
can define a new hyperparameter of n = |Dg| = , which
is the length of the domain. This does not necessarily mean
that the two rankings will share all of the same items, but
rather that there is the same number of items that the rankings
share in total. This means that S € Dg and L € Dy, thus
n > |L| must hold as well.

Starting from equation 2 we will need to redefine how the
weights are calculated, ensuring that the range of RBO is kept
to [0,1]. This gives us:

Zpd ! 1_— ©)
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Changing the limit of equation 3 to n and substituting in
the the weights from equation 9, we get:

RBO!(S,L,p,n —p ZA pl(10)

In the case that n = |L| with even rankings, where |S| =
|L|, we can just use equation 10 which leads to a version of
Average Accuracy [4] with the weight being taken from equa-
tion 9.

To find out the extrapolation of this equation with both the
seen and unseen sections, we can split it up into three parts:
1) from 1 to s, 2) from s + 1 to [, and3)fr0ml—|—1t0n All
of these parts are multiplied by ’; to normalize the final

values.
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For each of these sections, RBOJ{/HN, RBOLAX, and

RB O]’; 7 Will be determined for the minimal, maximal, and
extrapolated values from the finite rankings respectively. This
can give us a range between M I N — M AX for what the final
value could be.

This is used with a new hyperparameter, ¢, to represent the
degree of conjointness between the two domains that make
up the rankings. Here ¢ is equal to 0 when the domains are
fully disjoint and 1 when the domains are fully conjoint. This
can be defined as:

s, = —— (12)

This is used to create the extrapolation of equation 10,
RBO]}; x7- However, it should be the case due to the rank-
ings being drawn from their domains that 1 > ¢ > %

3.2.1 First part: from 1 to s
Using equation 10, we can set it to end at depth s as this will
cover the completely seen section from both rankings:

%pd‘l (13)
d=1
3.2.2 Second part: from s + 1 to ]
This part deals with the remaining section of the seen items
in L and the unseen items from S. Here, we have to make
assumptions about the agreement added from these unseen
items in S to the agreement added from the seen items in L.
As explained by Webber et al. [3], this unseen agreement is
fractional, rather than being described set-wise through X.
For RB O{/j NG

In this case, all unseen items will be disjoint, so no agreement
will need to be added from the unseen items. This leaves us
with the agreement from the seen items in L:

Xa 41
. w (14)



For RBO}Cw AX

Here, all unseen items will be conjoint so they will always
match an item from L that we have seen. When a seen item
in L matches with an unmatched item in S, it means that there
is some item in L that is also unmatched, which the unseen
item in S can then match. When the seen item in L does not
match with an item in S, then the unseen item in S can then
also match it. This gives us the agreement at:

l
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Which can then be rearranged to:
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For RBO};XT:

Here, we want to use the hyperparameter ¢ to determine how
the agreement in the unseen section of S behaves. Given
that the length of the domain n can equal [, we have to con-
sider how much agreement needs to be added so that the final
agreement can equal ¢ whether or not there is a unseen sec-
tion from L.

To do so, the amount of agreement that needs to be added
from s + 1 to n must equal ¢ — % This amount can be split
across the depths from s + 1 to n equally, added to the seen
agreement. This means the contribution from depths s 4 1 to
l is equal to:

d=s+1 n s
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When n = [, this will give us an agreement of ¢ at depth n,
which should be the case due to what we know from equation
12. This can be further rearranged into:
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3.2.3 Third part: from [ + 1 ton
This part covers the rest of the unseen section for both rank-
ings. Here, we have to make assumptions about how the
agreement behaves in the unseen section.

For RBO{WN:
For this, all unseen items will be disjoint so no agreement will
be added. This means we can take the number of shared items
from depth [, X;, and extrapolate that until the final depth:

Xi g1 o "D p
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For RBO‘]Q Ax:
We can continue the assumption that all unseen items from
s + 1 to [ have matched with seen items in L. All remaining
items that have not been matched yet will be matched at depth
f =14 s — X;. Once that depth has been reached, then the
agreement stays at 1 until the depth reaches n:

f n
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However, this leads to two different cases: when f > n and
f < n. This is because the length of the domain, n, may
not be long enough to allow for all of the unmatched items to
appear from [ + 1 to n. Therefore, we must

In the first case, we have to alter equation 22 by remov-
ing the second summation and changing the upper limit to n.
With some rearranging, we get:
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For the second case, the agreement from [ + 1 to f will
equal the agreement from equation 15 with an additional 2
for each depth. This lets us redefine equation 22 to:

f
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For RBO]’; X7

Here, we can continue the assumption of how the agreement
behaves from s + 1 to [, but now keeping the contribution
from the seen section at depth :
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With some rearrangement, we get:
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3.2.4 Extrapolation in full

Now that we have covered from 1 to n, we can substitute
equations 13, 17, and 24 into the general equation 11 for the
full extrapolation:

RBOJ,‘EXT(S L,s,l,pn,¢) =
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With some rearrangement for the final equation, we then get:
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4 Experiment and Discussion

In order to see how the newly defined RBO® and RBO/ are
different from traditional RBO, we can use synthetic rankings
for comparison. 10000 different pairs of rankings are gener-
ated from a set of 1000 items for comparison, setting 0.9 for
p and 1000 for n from the number of items, using a similar
process to Corsi, M. and Urbano, J. [1] while ensuring that no
ties are generated. When a value for ¢ is needed for RBO/,
the value of 1 is used as all items from the rankings are pulled
from the same 1000 items. Given the definition of ¢, when
the final depth is reached, all items should have appeared in
both rankings with full conjointness.

Using the rankings generated, two different graphs have
been created, as seen in Figure 1 that compare the value
from RBOpgxr from equation 4 against RBO%XT and
RBOg yp from equations 8 and 27 respectively. There is
also Table 2 which shows a statistical summary using the ab-
solute difference between the generated values between RBO

Table 2: Summary of the differences between traditional RBO
and the variations RBO® and RBOY using synthetic data. M
for medium differences (0.01,0.1], and L for large in (0.1,1].

|[RBO — RBO‘\ |[RBO — RBOf|
p Avg. Max. L Avg. Max. L
0.8 | 3.8x1073 ] 0.02 <1% <1% | 1.5x10~% ] 0.03 5% <1%
09 | 64x1071]0.12 | 2% <1% | 0.01 0.14 | 29% | 1%
0.95 | 4.8x1073 [ 0.26 | 11% | <1% | 0.05 033 | 52% | 15%

against RBO® and RBO/. The medium differences show
the proportion of rankings that have an absolute difference
between 0.01 and 0.1 when compared to the RBO measures,
while the large difference shows the proportion of rankings
with an absolute difference between 0.1 and 1.

Also, the graph in Figure 2 compares the average RBO
value across p in the range of [0.5,0.95]. This helps to show
the different impact that p can have on the final RBO value as
RBOY uses a different weight as shown in equation 9.

From these graphs, we can see that the extrapolated values
from RBO*€ are quite similar to the traditional RBO value, if
not for a few values being higher than normal. This makes
sense as for RBO® we are assuming that both rankings are
fully conjoint. Even with the weights decreasing as the depth
increases, with the agreement only ever increasing more and
more as it approaches infinity, this means that there is always
be a higher value than compared to the traditional RBO value.

And from what we can see from the values from Table 2,
the difference between RBO® and RBO is quite low, only in-
creasing slightly as p increases. The difference would only
be more apparent when the rankings themselves are not very
conjoint to begin with, in the case of the seen section having
a low agreement. This would then remain the same in tradi-
tional RBO while increasing all the way to 1 in RBO€. This
difference could also be attributed to the way that the agree-
ment’s behavior is modeled in this paper, with other versions
having slightly more or less agreement added at each depth.

For RBO/, we can see a much larger amount of difference
between the traditional and new value, whereby the RBOY
value is either the same or lower than the traditional one.
The reason for this could be interpreted as either through the
new definition of the weights with the finite summation of p.
Given that equation 27 uses a finite domain rather than infi-
nite one, there would not be the section of n to infinity that is
added onto the final total. This would help to explain why the
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Figure 1: The difference between traditional RBO and the variations

RBO° and RBO’.
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Figure 2: The average difference between
RBO and RBOY across values for p



difference at the large values is greater as a larger value means
a higher agreement, one that would normally continue for an
infinite depth rather than a finite one. This trend can also be
seen in Figure 2, as when the value for p gets larger, the av-
erage difference between the two RBO versions gets larger
as well, with the one for RBO/ being smaller. Similarly to
RBO¢, this can also come from the assumptions related to the
behavior of the agreement within the unseen section, where
other ways to model this behavior may fit better.

From Table 2, we can also see that the absolute difference
increases as well as the persistence increases. Given the def-
inition for the persistence, with a larger p, there is less of a
weight put onto the top items. In traditional RBO, this would
mean that the later depths have a greater impact on the final
value, depths that RBOY does not reach. This would make
it so that the value for RBO/ is more sensitive to what p is
selected for use.

5 Responsible Research

In this paper, synthetic rankings were used for comparing the
new formulas introduced in this paper to the traditional RBO
measure. For these rankings, a seed of 65074241 was used
when generating the rankings, meaning that the rankings can
be fully reproduced if wanted.

The synthetic rankings that have been generated were made
from the code provided from Corsi, M. and Urbano, J 1 This
allows for easy parameterization of the rankings generated
so that we can get exactly what we need from the synthetic
rankings. The aspect of ties is also ignored when generating
the rankings for simplicity.

Given that there is no real data used here, all of the re-
search done in this paper can be reproduced in full using the
provided equations in this paper and in the tradiational RBO
paper [3].

When this results from this paper are used, all assumptions
made in this paper, in regards to the existence of ties, how the
agreement is extrapolated, and the properties of the rankings
themselves, need to be considered. This paper has specific
cases where each of the equations should be used, where if
this is deviated from, it can lead to incorrect results. This
means that these equations cannot be used in a general sce-
nario, but rather ones where it meets the specific criteria for
each of the equations here.

For RBO¥¢, it should be used when the two rankings come
from the same domain. This also uses the assumption that
the rankings will have their unmatched items appear in the
other ranking quickly, rather than being dispersed across the
infinite depth. Then for RBO/, it should be used when the
two rankings come from domains of which all of the items
would be known. The domains for these two rankings should
also be the same length, but do not need to share all the same
items. Here, the unmatched items are assumed to be appear
evenly throughout the unseen section as well.

6 Conclusions and Future Work

In this paper, the goal was to ’Define RBO for fully con-
joint and/or finite rankings’. To be able to do this, two sub-

"https://github.com/julian-urbano/sigir2024-rbo

questions were defined which led into two different variations
for RBO: RBO® where RBO is assumed to be fully conjoint
as its agreement eventually reaches 1, and RBO/ where RBO
is assumed to not have an infinite domain and introduces a
new hyperparameter, n, for the domain length, and ¢, for the
conjointness of the two rankings’ domains. These new as-
sumptions are followed along from the original derivation of
RBO which leads to new equations being defined, equations
8 and 27 for RBO® and RBOY respectively. The range for
the extrapolated values of RBOY, x and RBO’,CE x are also
provided through their M IN and M AX variations.

These new formulas for Rank-Biased Overlap are then
compared to the traditional RBO to see how differently they
behave with their final results. From what we see, RBO° is
still quite close to the traditional RBO while still remaining
slightly higher due to the agreement being potentially higher,
and RBO/ is lower than the traditional RBO which comes
from the assumptions related to the behavior of the agreement
and the sensitivity of the hyperparameter p.

There is further work that can be done on this topic. For
both variations, only one of many different ways to model
the agreement within the unseen section is chosen, with other
models being perhaps better fits depending on the circum-
stance. Furthermore for RBOY, the case of having two dif-
ferent domain lengths has not been covered which may also
further impact the final result. Similarly, the values from
RBOﬁ/I 1 and RBO{VI Ax are not tight bounds as phi could
be used to determine how many items would appear in the
rankings, allowing for a better definition of the range within
the known domains.

And for both of these cases, other assumptions that tradi-
tional RBO need to also be considered, such as what occurs
when there are ties in the rankings. Finally, with the approach
that RBOY has towards the conjointness of the two ranking’s
domains with the hyperparameter ¢, this could also be ex-
panded to the traditional RBO to better defined how the ex-
trapolation of the RBO score is made based on further knowl-
edge.
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