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1. Introduction

The TU Delft Solar Boat Team participates in the Dong Energy Solar Challenge and the Solar1
Cup for high-speed solar powered boats. Their current design utilizes two T-shaped hydrofoils.
The forward hydrofoil is equipped with �aps, which can be actively controlled to lift the hull
from the water, decreasing drag. Although this design results in high speeds, the boat is easily
turned over due to the lack of roll stability. The stability analysis to overcome this problem
requires the input of the three moments of inertia along the main axes of rotation.

In an earlier bachelors project a start was made with the stability analysis of the Solar boat.
In this project, six nonlinear second-order di�erential equations were formulated to describe
the motion of the boat, three for the position and three for the orientation. These were subse-
quently reformulated as a system of twelve nonlinear �rst-order ordinary di�erential equations.
After linearization around one of the pseudo-equilibrium points, the stability of the boat can
be assessed by computing the eigenvalues of the matrix of the dynamical system. The accu-
racy of this analysis relies heavily on the input parameters; the lift and drag coe�cients of the
hydrofoils and control surfaces, but also on the moment s of inertia.

As stated by Newton's �rst law of motion, 'an object either remains at rest or continues to
move at a constant velocity, unless acted upon by an external force'. Inertia is a measure for
this resistance of an object to change its current linear movement. The rotational counterpart
of this is moment of inertia, which describes an object's resistance to change to its current
rotational movement. Using a bi�lar pendulum, a two-suspension wire pendulum, this moment
of inertia can be determined experimentally. For a given con�guration of the pendulum, that
is; the relevant lengths and angles of the suspension wires along with the orientation of the
object, the period of the rotational motion of the object can be directly related to the moment
of inertia around the axis of rotation. This project aims at designing an optimal procedure to
suspend the Solar Boat using a bi�lar pendulum and to measure the moments of inertia.

The project will aim at answering two main research questions:

• How should the Solar Boat be suspended to measure the three moments of inertia taking
into consideration the accuracy of the measured moments of inertia and the practicality
of the procedure?

• Is it possible to quantitatively predict the accuracy of the determined moments of inertia?
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2. Equations of motion of the solar boat

In a previous project, a start was made with analyzing the motion stability of the Solar boat.
This project used Newton's second law of motion to derive the equations of motion of the boat:

M
d2x

dt2
=

∑
i

Fi. (2.0.1)

In this equation, M is the mass of the object, x its position and Fi are the forces working on
the object. This equation requires all the forces acting on the boat to be known. These forces
can be described either in a earth-�xed or a body-�xed reference frame, respectively [x, y, z]
and [x′, y′, z′] as illustrated in the �gure below.

Figure 2.0.1: Earth- and body-�xed frames of reference

In a earth-�xed reference frame, the axes do not change with the movement of the boat and
stay stationary relative to earth. In a body-�xed reference frame, the axes change with the
rotation of the boat such that they stay stationary relative to the boat. Since all forces, except
the gravitational force, are stationary relative to the boat it is convenient to describe them in a
body-�xed reference frame. The origin of the reference frame is chosen to be the center of mass
of the boat. For each of the axes, all forces can be explicitly expressed in terms of the boat's
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speed. Doing so results in the following three nonlinear second-order di�erential equations:

M
d2x′

dt2
= Fx′ ,

M
d2y′

dt2
= Fy′ , (2.0.2)

M
d2z′

dt2
= Fz′ ,

here Fx′ , Fy′ , Fz′ capture all the forces working in that particular direction. The solution to
this system of di�erential equations gives the motion of the boat in the body-�xed reference
system. In order to get the motion in the earth �xed reference system, a translation has to be
made between the two systems. In the project, a rotation matrix R(φ1, φ2, φ3) is constructed
which describes a rotation around the x-, y- and z-axis respectively along angles φ1, φ2 and φ3.
To make a translation from a body-�xed reference system to a earth-�xed reference system,
the inverse of this matrix can be used. All forces (except gravity) captured in equations (2.0.2)
are working along the axes in a body-�xed coordinate system. Writing these equations in
matrix form, writing the system as a system of �rst-order di�erential equations and multiplying
with the inverse rotation matrix yields a system of di�erential equations of which the solution
describes the position in a earth-�xed reference system:

dx1

dt
= x2 ,

M
dx2

dt
= R−1(φφφ)

∑
i

F ′i

(
dR(φφφ)

dt
x1 +R(φφφ)x2

)
−Mgẑ , (2.0.3)

where x1 = [x, y, z]T , x2 =
dx1

dt
and it has been used that:

Fi = R(φ)−1F ′i

(
dx′

dt

)
.

These di�erential equations give expressions for the position of the boat, and its time deriva-
tives. However, these depend on the angles of rotation φφφ of the boat, which are therefore also
calculated.

To calculate the angles of rotation, a torque balance is used to derive expressions for the
orientations along the three body-�xed axes. Euler's equations are used to describe the rotation
along the three principle axes:

I1ω̇1 + (I3 − I2)ω2ω3 = M1 =
∑
i

(ri × F ′i )1 ,

I2ω̇2 + (I1 − I3)ω3ω1 = M2 =
∑
i

(ri × F ′i )2 , (2.0.4)

I3ω̇3 + (I2 − I1)ω1ω2 = M3 =
∑
i

(ri × F ′i )3 .

In these equations, the angular speed ωi is given by the time derivative of the angle around the
corresponding axis; θ̇i, and the moments of inertia I1, I2, I3 are those around the axes x′, y′ and
z′ of the body-�xed reference system respectively. Furthermore, the orientations of the forces
relative to the body-�xed reference system do not change. The same holds for the radius ri,
and as a result ri × F ′i has a constant direction ciF

′
i , where ci is the e�ective arm of force F ′i .
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Substitution of all this results in the equations:

Ix′
d2φ1

dt2
+ (Iz′ − Iy′)

dφ2

dt

dφ3

dt
=

∑
i

(ciF
′
i )x′ ,

Iy′
d2φ2

dt2
+ (Ix′ − Iz′)

dφ3

dt

dφ1

dt
=

∑
i

(ciF
′
i )y′ , (2.0.5)

Iy′
d2φ3

dt2
+ (Iy′ − Ix′)

dφ1

dt

dφ2

dt
=

∑
i

(ciF
′
i )z′ .

Finally, these equations are written in matrix form and transformed to a �rst-order system by
de�ning ρρρ1 = φφφ , ρρρ2 = dφφφ

dt
in (2.0.5) and combined with equation (2.0.3), the following system

of di�erential equations is obtained:

dx1

dt
= x2 ,

M
dx2

dt
= R−1(ρρρ1)

∑
i

F ′i

(
dR(ρρρ1)

dt
x1 +R(ρρρ1)x2

)
−Mgẑ , (2.0.6)

dρρρ1
dt

= ρρρ2 ,

I
dρρρ2
dt

+ ρρρ2 × (Iρρρ2) =
∑
i

(
ciF

′
i

(
dR(ρρρ1)

dt
x1 +R(ρρρ1)x2

))
,

where F ′i has been de�ned as:

F ′i =

Fm +DB +Db +Df +
∑4

i=1Di

Fs + Lb + Lf∑4
i=1 Li

 ,

such that all terms are forces resulting from lift and drag. The solution to the system of equa-
tions given in (2.0.6) describes the position and orientation of the Solar boat as a function of
time. A numerical integration method of choice can be used to solve this system. The accu-
racy of this solution depends heavily on the accuracy of the input parameters; the resistance
coe�cients and moments of inertia. Therefore, in order to be able to describe the motion of
the boat accurately it is imperative to have a good estimation of these input parameters.

In this previous project, the moments of inertia Ix′,y′,z′ of the Solar Boat have been approximated
using a geometric approximation method for the Solar Boat. The accuracy of the moments of
inertia obtained in this way is low, since the boat was very coarsely approximated. This project
will focus on a procedure to determine the mass moments of inertia Ix′,y′,z′ of the Solar Boat
more accurately and aims at designing an optimal procedure to determine these quantities using
a bi�lar pendulum. The next section will discuss several methods for obtaining the moments
of inertia of an object. Furthermore, the tensional forces the Solar Boat will experience while
suspended by the bi�lar pendulum will be determined. These are of practical interest to check
whether the solar deck of the boat will be able support itself. The results obtained for the Solar
Boat will be presented in section 8.
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3. Determination of moments of inertia

Intuitively, the moment of inertia of an object is a measure for an object's resistance to change
to its angular speed. More formally it is the torque required for an angular acceleration along a
chosen axis of 1 rad

s2
. The moment of inertia, I, can be calculated by summing over the product

of mass m and its perpendicular distance to the rotation axis squared r2: mr2 for every particle
in the object. For objects which consist of a �nite number of particles, this results in a �nite
sum. If the object is continuous, this summation becomes a integration over r2dm over all the
in�nitesimally small mass elements where r is the perpendicular distance from mass element
dm to the axis of rotation:

I =

∫
V

r2dm .

This de�nition states that mass with a large perpendicular distance to the axis of rotation
contributes more to the moment of inertia than that mass with a smaller perpendicular distance.
The above formula requires integrating over the volume of an object. For most simple geome-
tries this integration can be easily done. However, once a object takes on a complex shape, such
as the Solar boat, this becomes nearly impossible. In these cases, an approximation method
can be used to estimate the value of the moment of inertia.

One method for approximating the moment of inertia is by approximating the geometry of the
object with a combination of basic geometries such as cylinders, beams and rectangular blocks.
An example of such an approximation can be seen in the �gure below.

Figure 3.0.1: Approximation of a dumbbell by two solid cylinders.
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In this �gure, the weights of the dumbbell, with massless handle, have been approximated using
two solid cylinders. The estimated moment of inertia of the dumbbell about the dotted axis is
the sum of the two moments of inertia of the cylinders about that axis.
For each of these basic geometries the moment of inertia Ii can be determined using the de�-
nition given above or calculated using know expressions for these geometries. Adding all these
values yields an estimation for the moment of inertia of the original object I:

I =
∑
i

Ii .

The moment of inertia is calculated along the rotational axes through the center of mass of
the solar boat. This center of mass can be determined by taking the weighted average of the
centers of mass of all approximation geometries i:

rCM =

∑
imiri
M

,

in which M is the total mass of the boat and mi, ri respectively the mass and distance to the
rotational axis for element i. When calculating the moment of inertia of each element i, it has
to be taken into account that the required moment of inertia is along a di�erent axis than the
axis going through element i's center of mass. For this, the Parallel axis theorem can be applied
to calculate the moment of inertia along the correct rotational axis.

As an example of the above described procedure, consider the dumbbell from �gure (3.0.1).
Assume each weight of the dumbbell has a weight of m = 10 kilograms, the distance from
the middle of the handle to the center of mass of each weight is d = 0.06 meters and the
weights have a radius of r = 0.10 meters and width of l = 0.05. The moment of inertia will be
calculated about the dotted line; the perpendicular bisector of the handle. Since this problem
is symmetric around this axis, the moment of inertia of the dumbbell can be written as:

I = 2I∗ ,

where I∗ is the moment of inertia of one weight about the dotted axis. For a cylinder it is
known that the moment of inertia about an axis perpendicular to the central axis and through
the center of mass is given by:

I∗p =
1

4
mr2 +

1

12
ml2 ⇐⇒

=
13

480
.

Now, to calculate the moment of inertia about the dotted axis, the Parallel Axis Theorem can
be applied:

I∗ = I∗p +md2 ⇐⇒

=
757

12000
.

The moment of inertia of the dumbbell about the dotted axis thus becomes:

I =
1514

12000
.

Obviously, the accuracy of this approach relies on how accurate an object's shape can be ap-
proximated with basic geometries. It is clear that the accuracy of the estimate increases as
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the size of the approximating geometries decrease, as a result of the shape of the object more
accurately being approximated. On the other hand, decreasing the size of the approximating
geometries results in more of these geometries. Therefore, a consideration has to be made
between the desired accuracy of the approximation and the computational time required to
perform the calculations.

Another method to approximate the moment of inertia is deriving it experimentally using a
bi�lar pendulum; a two-suspension wire pendulum. One such bi�lar pendulum is shown in the
�gure below.

Figure 3.0.2: Bi�lar Pendulum

For a given con�guration of the pendulum, that is the mass of the object, the angles and length
of the suspension wires, the period of rotational motion can be linked to the moment of in-
ertia along that rotational axis. This relation can be retrieved from the equations of motion
of the particular con�guration of the bi�lar pendulum. Performing the actual experiment is
sometimes impractical due to the fact that there are no attachment points for the suspension
wires on the object. In such case, a platform (with known moment of inertia) can be used to
carry the object on it. Doing this results in the moment of inertia of the two object combined.
Subtraction of the moment of inertia of the platform yields the desired moment of inertia of
the object.

In this project, a numerical model will be made of the solar boat suspended by the bi�lar
pendulum. The equations of motion from this model will then be analyzed to attempt to
obtain an optimal con�guration for the bi�lar pendulum such that the error in the estimation
of the moment of inertia is smallest. To do this, the equations of motion of the solar boat
suspended by a bi�lar pendulum have to be determined. The suspension wires of the bi�lar
pendulum prevent the solar boat to move in certain directions. This makes the equations of
motion special, in the sense that they contain these constraints. First, a less complex system
will be considered to see which method is easiest in obtaining equations of motion with such
constraints. The system which will be looked at is a pendulum which is not restricted to swing
only in a plane, which will be referred to as a spherical pendulum (a second example of a 'planar'
pendulum can be found in appendix A). The found method will then be applied to the bi�lar
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pendulum to obtain the equations of motion of the bi�lar pendulum. It is important to note
that these equations of motion are unique, and that every method which will be considered can
result in a di�erent formulation of a equation of motion, but describe the same unique solution.
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4. Equations of motion with constraints

The equations of motion of a system are equations which describe the position and orientation
of the system as a function of time. There are multiple ways of deriving the equations of motion
of a system, some of these are:

• The classical Newtonian approach using Newton's second law of motion,

• A 'smart' Newtonian approach where in advance a preferable set of coordinates is known,

• The Lagrangian approach,

• Kane's Method.

The �rst three of these approaches will be elaborated on for point masses. Since a point mass
has no dimension, orientation is not relevant and only the position will be considered. Kane's
method will be described for objects with dimensions, since an explanation of Kane's method
for point masses would not be su�cient for using this method for objects with dimensions. After
these elaborations, each of the methods will be applied to the spherical pendulum to derive
the equations of motion which contain constraints. From this examples, it will become evident
that the certain approaches have advantages over others when dealing with these constraints.

4.1 Newtonian mechanics

Newton's second law of motion states that the rate of change of an object's momentum p(t) =
m · v(t) equals the sum of the external forces. Now, consider a system of n connected particles
each with mass mi and acceleration ai (i = 1, . . . , n) and assume the mass does not change in
time. The above equation can then be written as:

n∑
i=1

Fi =

(
n∑
i=1

mi

)
ao , (4.1.1)

where Fi is the force on particle i and ao is the acceleration of the center of mass of the system.
Since all the internal forces between the particles cancle out, this can also be written as:

FExt =

(
n∑
i=1

mi

)
ao , (4.1.2)

here FExt is the net external force on the system. Division of this equation by
∑n

i=1mi yields
a second-order di�erential equation which can be solved to get a expression for the position of
the center of mass of the system as a function of time.
In some cases, the constraint force Fc is part of the given problem. However, when looking
for example at a pendulum, the constraint force of the suspension wire is not known. In
these cases, the constraint force can be calculated separately from the equation of motion by
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decomposing the other forces along the extension of the constraint force and then using that
Fc+Fnet,other = mac, where ac is the centripetal acceleration. This yields an extra equation for
the constraint force which can be solved together with the equation of motion found using the
above.

4.2 'Smart' Newtonian mechanics

For most systems, it is usually not evident which set of coordinates describes the system most
e�ciently. When using this approach, one tries to choose the coordinates in such a way that the
constraints are more easily incorporated in the problem since they coincide with the coordinate
planes in state-space. Examples of systems where this choice is obvious are a planar pendulum
and a spherical pendulum. A planar pendulum is a pendulum which is restricted to move in
a plane, whereas a spherical pendulum does not have this restriction and can move in three
dimensions. In these systems, it is known that polar- and spherical-coordinates work most
conveniently since the constraint coincides with the coordinate planes. The practical use of
this approach is small, since usually this knowledge on the choice of coordinates follows from
the actual equations of motion and is thus not applicable for systems of which the movement
is not known in advance.

4.3 Lagrangian mechanics

In the Lagrangian approach, Lagrange's equation is used to derive the equations of motion of
a system:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (4.3.1)

In this equation, L is the so-called Lagrangian, a function of the kinetic- and potential energy
of the system and q is a generalized coordinate. If the system requires n generalized coordinates
qi to be de�ned to capture the state of the system, there will also be a Lagrange's equation for
each of the qi.

Equation (4.3.1) can be derived from d'Alembert's principle. This principle states that for a
system of n particles the sum over the di�erence between the external forces working on particle
i and the change in momentum of that particle, multiplied by a virtual displacement is 0:

n∑
i=1

(Fi − ṗi) · δri = 0 . (4.3.2)

The constraint forces are not taken into account here since there cannot be a virtual displace-
ment δri in the direction of these forces, and thus including these forces in the equation above
would only add 0 to the summation. A virtual displacement refers to a in�nitesimal change
in position at a given instance of time. The virtual displacement happens instantaneously
without any time interval dt passing; hence why it is virtual, to distinguish it from an actual
displacement where such a time interval does pass.
If it is assumed that the mass of any particle does not change with time the mass can be
brought outside the time derivative and thus ṗi can be written as miai. Substitution into
equation (4.3.2) yields a more familiar form:

n∑
i=1

(Fi −miai) · δri = 0 .

18



In this form, with Newton's second law of motion it is immediately clear why this summation
equals 0. In order to express d'Alemberts principle in Cartesian coordinates, 3 coordinates are
needed for each particle; an x-,y- and z-coordinate. For a system of n particles, 3n coordinates
would be needed to completely describe the system's position. Transforming this to generalized
coordinates would also require 3n generalized coordinates. However, for each independent
constraint the degrees of freedom of the system decrease by 1 and thus the number of required
generalized coordinates. The transformation equations for the Cartesian coordinates assuming
k independent constraints then becomes:

x1 = x1(q1, . . . , q3n−k, t)
... (4.3.3)

x3n = x3n(q1, . . . , q3n−k, t)

Another way of looking at this is by noting that the Cartesian coordinates form a dependent
set of coordinates, where the dependencies result from the constraints. Assuming there are
k constraints, k coordinates can be discarded to obtain a basis q1, . . . , q3n−k with which the
system can be described.

Writing d'Alemberts principle in terms of Cartesian coordinates gives:

3n∑
i=1

(Fi −miai) · δxi = 0. (4.3.4)

Taking the derivative of the transformation equations from (4.3.3) leads to:

dxi =
3n−k∑
j=1

∂xi
∂qj

δqj +
∂xi
∂t

dt.

Since for a virtual displacement δxi the time is assumed to be frozen, the last term vanishes in
the expression for the virtual displacement:

δxi =
3n−k∑
j=1

∂xi
∂qj

δqj. (4.3.5)

With this expression, the summation over Fiδxi in the Cartesian version of d'Alembert (4.3.4)
can be written as:

3n∑
i=1

Fiδxi =
3n∑
i=1

Fi

(
3n−k∑
j=1

∂xi
∂qj

δqj

)
=

3n∑
i=1

3n−k∑
j=1

(
Fi
∂xi
∂qj

)
δqj =

3n−k∑
j=1

Qjδqj. (4.3.6)

Here Qj denotes the total virtual work done during the entire virtual displacement.
For the summation over the second part in the Cartesian version of d'Alembert (4.3.4) we have
that:

3n∑
i=1

miaiδxi =
3n∑
i=1

miai

3n−k∑
j=1

∂xi
∂qj

δqj =
3n∑
i=1

3n−k∑
j=1

miẍi
∂xi
∂qj

δqj. (4.3.7)

This equation can be reformulated using:

d

dt

(
miẋi

∂xi
∂qj

)
= miẍi

∂xi
∂qj

+miẋi
d

dt

∂xi
∂qj

⇐⇒

miẍi
∂xi
∂qj

=
d

dt

(
miẋi

∂xi
∂qj

)
−miẋi

d

dt

∂xi
∂qj

, (4.3.8)
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and noting that

∂xi
∂qj

=
∂ẋi
∂q̇j

, (4.3.9)

d

dt

∂xi
∂qj

=
∂vi
∂qj

=
∂ẋi
∂qj

. (4.3.10)

Equation (4.3.9) follows from the fact that, for a single particle, it holds that its Cartesian
coordinates depend at most on all of the generalized coordinates; xi = xi(q1, q2, q3, t). The
velocity of the particle in the xi direction is the time derivative of this transformation, yielding:

vi =
dxi
dt

=
3∑
j=1

∂xi
∂qj

dqj
dt

+
dxi
dt

=
3∑
j=1

∂xi
∂qj

q̇j +
dxi
dt

.

This can be rewritten by using the fact that the order of taking partial derivatives does not
in�uence the outcome. As a result it follows that:

∂

∂q̇j

dxi
dt

=
d

dt

∂xi
∂q̇j

= 0 ,

and because the Cartesian coordinate xi is independent of the generalized velocity q̇j, this
quantity is equal to 0. Taking the partial derivative of vi with respect to the generalized
velocity q̇j and using twice that the above equation is equal to 0 leads to:

∂vi
∂q̇j

=
∂

∂q̇j

(
3∑

h=1

∂xi
∂qh

q̇h +
dxi
dt

)

=
∂

∂q̇j

3∑
h=1

∂xi
∂qh

q̇h +
∂

∂q̇j

dxi
dt

=
∂

∂q̇j

3∑
h=1

∂xi
∂qh

q̇h + 0

=
3∑

h=1

(
∂

∂q̇j

∂xi
∂qh

)
q̇h +

3∑
h=1

∂xi
∂qh

∂q̇h
∂q̇j

= 0 +
3∑

h=1

∂xi
∂qh

δhj

=
∂xi
∂qj

,

such that δhj = 1 if and only if h = j, and δhj = 0 for h 6= j. From this derivation equation
(4.3.9) follows. Substitution of equations (4.3.8) and (4.3.9) into equation (4.3.7) then yields:

3n∑
i=1

miaiδxi =
3n∑
i=1

3n−k∑
j=1

[
d

dt

(
miẋi

∂xi
∂qj

)
−miẋi

∂ẋi
∂qj

]
δqj ,

=
3n∑
i=1

3n−k∑
j=1

[
d

dt

(
miẋi

∂ẋi
∂q̇j

)
−miẋi

∂ẋi
∂qj

]
δqj. (4.3.11)

For the kinetic energy of the entire system holds:

∂T

∂qj
=

∂

∂qj

3n∑
i=1

(
1

2
miẋ

2
i

)
=

3n∑
i=1

1

2
mi

(
∂

∂qj
ẋ2i

)
=

3n∑
i=1

miẋi
∂ẋi
∂qj

,

∂T

∂q̇j
=

∂

∂q̇j

3n∑
i=1

(
1

2
miẋ

2
i

)
=

3n∑
i=1

1

2
mi

(
∂

∂q̇j
ẋ2i

)
=

3n∑
i=1

miẋi
∂ẋi
∂q̇j

. (4.3.12)
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Substitution of the above the above into equation (4.3.11) then gives:

3n∑
i=1

miaiδxi =
3n−k∑
j=1

(
d

dt

∂T

∂q̇j
− ∂T

∂qj

)
δqj (4.3.13)

Substitution of equations (4.3.6) and (4.3.13) back into d'Alemberts principle (4.3.4) gives:

3n∑
i=1

(Fi −miai) · δxi =
3n−k∑
j=1

Qjδqj −
3n−k∑
j=1

(
d

dt

∂T

∂q̇j
− ∂T

∂qj

)
δqj ⇐⇒

=
3n−k∑
j=1

(
Qj −

d

dt

∂T

∂q̇j
− ∂T

∂qj

)
δqj = 0 . (4.3.14)

The virtual displacements δqj's form a linear independent set and thus form a basis for R3n−k.
Therefore, an arbitrary combination of δqj's has to result in the above summation equal to 0.
As a consequence, each of the summation terms has to be 0:

Qj −
d

dt

∂T

∂q̇j
− ∂T

∂qj
= 0 , ∀j ∈ {1, · · · , 3n− k} . (4.3.15)

If the forces acting upon the system are conservative, it follows that the work done by a
conservative force is equal to the change in potential energy due to that force. Therefore, the
above equation can be rewritten by using:

Qj = −
∂V

∂qj
.

With this equality, equation (4.3.15) becomes:

d

dt

∂T

∂q̇j
− ∂T

∂qj
+
∂V

∂qj
= 0 ,

or after rewriting:

d

dt

∂T

∂q̇j
− ∂(T − V )

∂qj
= 0 .

Finally, because the potential energy V is not a function of velocity q̇j it holds that
∂V
∂q̇j

= 0.

Adding this term to the equation and de�ning the Lagrangian to be the di�erence between the
kinetic and potential energies, L ≡ T −V , Lagrange's equation for conservative forces becomes:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 , j = 1, . . . , 3n− k . (4.3.16)

Further on in this section, equation (4.3.16) will be used to illustrate how the equations of
motion of a spherical pendulum follows from this equation.

4.4 Kane's Method [4]

Consider a multi-body system of n interconnected rigid bodies. Each body is subject to a
external and constraint force. Each external force can be decomposed into their equivalent
force Fi through the center of mass of body i and equivalent torque Ti (i = 1, . . . , n). In the
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same way, each constraint force can be decomposed into its equivalent force through the center
of mass of the object its working on and torque: Fc

i , T
c
i .

Using d'Alembert's principle for the force equilibrium of body i yields:

Fi + Fc
i = miai ,

and de�ning the inertia force of body i as F∗i = −miai this equation becomes:

Fi + Fc
i + F∗i = 0 .

Applying the principle of virtual work to the system and considering only the work resulting
from the forces on the system gives:

δW = (Fi + F∗i + Fc
i) δri = 0 , (i = 1, . . . , n) . (4.4.1)

The constraints typically encountered in problems do not allow a displacement in the direction
of the constraint force, and are thus workless (e.g. with the bi�lar pendulum the constraint
forces of the suspension wires do not result in displacement along these wires). In symbols:
Fc
iδri = 0 .

This simpli�es the virtual work equation (4.4.1) to:

δW = (Fi + F∗i ) δri = 0 , (i = 1, . . . , n) , (4.4.2)

or when using the alternate form of a virtual displacement from equation (4.3.5):

δW = (Fi + F∗i )

(
3n∑
j=1

∂ri
∂qj

δqj

)
= 0 ⇒

δW = (Fi + F∗i )
∂ri
∂qj

δqj = 0 , (j = 1, . . . , 3n) , (4.4.3)

where the implication holds since the virtual displacement is arbitrary and therefore equality
must hold for each term. De�ne generalized active and generalized inertia force fr and f

∗
r as:

fj = Fi ·
∂ri
∂qj

f ∗j = F∗i ·
∂ri
∂qj

Substitution of fj and f
∗
j into equation (4.4.3) gives:(

fj + f ∗j
)
δqj = 0 . (4.4.4)

It has been shown in equation (4.3.9) that:

∂ṙi
∂q̇j

=
∂ri
∂qj

.

This property can be substituted to �nd an alternate expression for fj and f
∗
j

1:

fj = Fi ·
∂ri
∂qj

= Fi ·
∂ṙi
∂q̇j

= Fi ·
∂vi
∂q̇j

f ∗j = F∗i ·
∂ri
∂qj

= F∗i ·
∂ṙi
∂q̇j

= F∗i ·
∂vi
∂q̇j

1It is clear that these expressions are equivalent. However, why these substitutions are necessary for the

further derivation of Kane's equations is not clear.
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Since the virtual displacement δqj in equation (4.4.4) is arbitrary, it follows that:(
fj + f ∗j

)
= 0 .

In a similar way, using virtual work can be used to show that the sum of the moments equal 0.
To this extend, one can use Euler's equation to obtain:

Ti +Tc
i = αi ·

~~I + ωi ×
~~I · ωi .

De�ning T∗i = −
(
αi ·

~~I + ωi ×
~~I · ωi

)
this can be written as:

Ti +Tc
i +T∗i = 0 .

Letting δφi be a virtual rotation and using the principle of virtual work again obtains:

(Ti +Tc
i +T∗i ) δφi = 0 .

Because the constraint force does not allow for a (virtual) displacement it does not do any work.
As a result, it must hold that its equivalent torque T ci also does not do any work: Tc

i δφi = 0.
It then follows that:

(Ti +T∗i ) δφi = 0 ⇐⇒

(Ti +T∗i )

(
3n∑
j=1

∂φi
∂qj

δqj

)
= 0 ,

and again because the virtual displacement is arbitrary, it must hold that:

(Ti +T∗i )
∂φi
∂qj

= 0 ,

which can be written as:

Mj +M∗
j = 0 ,

where Mj and M∗
j are respectively de�ned as the generalized active and generalized inertia

moments (using equation (4.3.9)):

Mj = Ti ·
∂ωi
∂q̇j

,

M∗
j = −

(
αi ·

~~I + ωi ×
~~I · ωi

)
· ∂ωi
∂q̇j

.

Since the dimension of both equations are the same, one can add the equalities:

fj + f ∗j = 0 ,

Mj +M∗
j = 0 ,

to yield:

fj + f ∗j +Mj +M∗
j = 0 . (4.4.5)

De�ning the generalized active and generalized inertia forces Fj and F
∗
j as follows:

Fj = fj +Mj ,

F ∗j = f ∗j +M∗
j ,
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and substitution into equation (4.4.5) results in Kane's equation:

Fj + F ∗j = 0 , (4.4.6)

where:

Fj = fj +Mj = Fi ·
∂vi
∂q̇j

+Ti
∂ωi
∂q̇j

,

F ∗j = f ∗j +M∗
j = F∗i ·

∂vi
∂q̇j
−
(
αi ·

~~I + ωi ×
~~I · ωi

)
· ∂ωi
∂q̇j

, (j = 1 . . . 3n) .

For a problem with n degrees of freedom, n generalized coordinates qi have to be chosen.
Typically, the time derivatives of these coordinates, ui, are de�ned as the generalized velocities.
Subsequently, for each of the j, expressions for ∂vi

∂q̇j
and ∂ωi

∂q̇j
have to be found in terms of the

generalized velocities ui and its time derivatives u̇i with respect to a Cartesian reference system.
Because these expressions are linear in u̇i this can be written in matrix form as:

M(q,u)u̇ = f(q,u) ,

whereM contains the coe�cients of u̇i in equations (4.4.6). Multiplying with the inverse matrix
M−1 yields the equations of motion of the system.

4.5 Example: Spherical pendulum

In this example, a regular pendulum is considered which, as discussed earlier, is not restricted
to moving solely in a plane. In the �gure below such a pendulum can be seen.

The equations of motion will be derived using the di�erent methods. For this example, the
Newtonian approach will not be used since an example with a planar pendulum (see appendix
A) made it apparent that this method is not e�cient in deriving equations of motion of a
system with constraints. Furthermore, the 'smart' Newtonian approach will also not be used
due to its lack of practicality, discussed in Section 4.2.

• Lagrangian Mechanics
The spherical pendulum is an extension to the planar pendulum, where the pendulum can
only swing in a plane. The three degrees of freedom of this system require an additional
parameter ϕ to describe the rotation along the z-axis relative to the x-axis. Again the
kinetic- and potential energy of the system are determined to obtain the Lagrangian of the
system. For the kinetic energy we have T = 1

2
mv2. Similarly to the Euclidean distance,
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the velocity v can be expressed as v =
√
ẋ2 + ẏ2 + ż2, where from spherical coordinates

one has that:

x = l sin(θ) cos(ϕ) ,

y = l sin(θ) sin(ϕ) ,

z = l cos(θ) .

Taking the time derivative of x, y, z and substituting in the expression for the velocity
yields an expression for the kinetic energy ( using cos2(θ) = 1− sin2(θ) ):

T =
1

2
ml2

(
θ̇2 + ϕ̇2 sin2(θ)

)
.

The potential energy is calculated as:

V = −mgh = −mgl cos(θ) .

The Lagrangian then becomes:

L =
1

2
ml2

(
θ̇2 + ϕ̇2 sin2(θ)

)
+mgl cos(θ).

Lagrange's equation is used twice, with respect to θ and ϕ:

d

dt

(
dL

dθ̇

)
− dL

dθ
= 0 ,

d

dt

(
dL

dϕ̇

)
− dL

dϕ
= 0 .

Solving these two equations for θ̈ and ϕ̈ respectively yields the two equations of motion
which describe the movement of the spherical pendulum:

θ̈(t) =
lϕ̇2 sin(θ) cos(θ)− g sin(θ)

l

ϕ̈(t) = −2ϕ̇ cos(θ)θ̇

sin(θ)
(4.5.1)

Using Lagrangian mechanics the equations of motion can be determined with relative
ease, only having to determine the kinetic- and potential energy and taking derivatives.
Another advantage of this method is that the constraint of the pendulum wire is incorpo-
rated in the problem naturally, and does not have to be added to the system as a separate
equation as seen in the approach using Newtonian mechanics (see appendix A).

• Kane's Method
To describe the motion of the spherical pendulum three sets of orthonormal unit vectors
will be de�ned. These sets are shown in the �gures below.

The set {t1, t2, t3} is obtained by rotating {n1,n2,n3} counter-clockwise through an angle
of φ around the origin in the horizontal plane. The origin is de�ned to be vertically below
the beginning of the suspension wire. The set {b1,b2,b3} is then obtained by rotating
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(a) Cartesian unit vectors {n1,n2,n3} (b) Rotated unit vectors {t1, t2, t3}, {b1,b2,b3}

{t1, t2, t3} clockwise through an angle of π
2
− θ around the origin in the plane spanned

by (t2, t3). In the �gure above, the set {b1,b2,b3}, which is obtained by these two
consecutive rotations, is translated vertically as to show that the orientation of vector b2

coincides with the orientation of the suspension wire.

The transformation matrix between {n1,n2,n3} and {t1, t2, t3} is the trivial extension
from a two-dimensional rotation matrix:

t1 t2 t3
n1 cos(φ) − sin(φ) 0
n2 sin(φ) cos(φ) 0
n3 0 0 1

Before the transformation matrix is given which relates {t1, t2, t3} and {b1,b2,b3}, a
�gure is provided as to motivate why these sets are related by a rotation through an
angle of π

2
− θ.

This �gure displays the plane spanned by (t2, t3). Since t1,b1 are perpendicular to
this plane, these vectors are invariant to the rotation in this plane and are left out of
consideration. Translating vectors t2, t3 down vertically such that the center coincides
with the center of {b2,b3}, it can be easily veri�ed that {b2,b3} is obtained by rotating
{t2, t3} clockwise through an angle of π

2
− θ. This results in the following transformation

matrix.
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b1 b2 b3

t1 1 0 0
t2 0 cos(π

2
− θ) sin(π

2
− θ)

t3 0 − sin(π
2
− θ) cos(π

2
− θ)

=

b1 b2 b3

t1 1 0 0
t2 0 sin(θ) cos(θ)
t3 0 − cos(θ) sin(θ)

Multiplying the two rotation matrices yields the relation between {n1,n2,n3} and {b1,b2,b3}:

b1 b2 b3

n1 cos(φ) − sin(φ) sin(θ) − sin(φ) cos(θ)
n2 sin(φ) cos(φ) sin(θ) cos(φ) cos(θ)
n3 0 − cos(θ) sin(θ)

Since the spherical pendulum has two degrees of freedom, two generalized coordinates
q1, q2 have to be chosen. These are chosen as: q1 = φ, q2 = θ, where φ = φ(t), θ =
θ(t). The generalized velocities u1, u2 are then de�ned as the time derivatives of q1, q2
respectively; u1 = φ̇, u2 = θ̇.

Now the angular velocity ω of P can be calculated by the sum of the angular velocities
resulting from the rotations along angles φ and θ:

ω = ωφ + ωθ = φ̇n3 + θ̇b1 ⇐⇒
= φ̇n3 + θ̇(cos(φ)n1 + sin(φ)n2) ⇐⇒
= θ̇ cos(φ)n1 + θ̇ sin(φ)n2 + φ̇n3 . (4.5.2)

With the angular velocity, the velocity v of P can be calculated by taking the cross-
product of the angular velocity ω and the vector from the origin to point P , rP :

v = ω × rP ⇐⇒
=

(
θ̇ cos(φ)n1 + θ̇ sin(φ)n2 + φ̇n3

)
× lb2 ⇐⇒

=
(
θ̇ cos(φ)n1 + θ̇ sin(φ)n2 + φ̇n3

)
×

l (− sin(φ) sin(θ)n1 + cos(φ) sin(θ)n2 − cos(θ)n3) ⇐⇒
= −l(θ̇ sin(φ) cos(θ) + φ̇ cos(φ) sin(θ))n1

+l(θ̇ cos(φ) cos(θ)− φ̇ sin(φ) sin(θ))n2

+lθ̇ sin(θ)n3 . (4.5.3)

Taking the time derivate of v results in the acceleration a of P with respect to the
Newtonian reference frame:

a =
d

dt
v ⇐⇒

= l
(
sin(φ) sin(θ)φ̇2 − 2 cos(φ)θ̇ cos(θ)φ̇+ sin(θ)θ̇2 sin(φ)− cos(φ) sin(θ)φ̈

−θ̈ cos(θ) sin(φ)
)
n1

+l
(
− cos(φ) sin(θ)θ̇2 + θ̈ cos(φ) cos(θ)− 2θ̇ cos(θ) sin(φ)φ̇

− sin(θ) sin(φ)φ̈− cos(φ) sin(θ)φ̇2
)
n2

+l
(
θ̇2 cos(θ) + θ̈ sin(θ)

)
n3
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The partial velocities vr and partial angular velocities ωr follow from taking the partial
derivatives of v and ω respectively with respect to φ̇ and θ̇:

v1 =
∂v

∂φ̇
= −l cos(φ) sin(θ)n1 − l sin(φ) sin(θ)n2 ,

v2 =
∂v

∂θ̇
= −l cos(θ) sin(φ)n1 + l cos(φ) cos(θ)n2 + l sin(θ)n3 ,

ω1 =
∂ω

∂φ̇
= n3 ,

ω2 =
∂ω

∂θ̇
= cos(φ)n1 + sin(φ)n2 . (4.5.4)

Kane's equation can now be assembled by calculating the generalized active forces F1, F2

and the generalized inertia forces F ∗1 , F
∗
2 . It follows that:

F1 = Fz · v1 +T · ω1 = −mgn3 · (−l cos(φ) sin(θ)n1 − l sin(φ) sin(θ)n2) + 0 · ω1 = 0 ,

F2 = Fz · v2 +T · ω2 = −mgn3 · (l cos(θ) sin(φ)n1 + l cos(φ) cos(θ)n2 + l sin(θ)n3) + 0 · ω2

= −mgl sin(θ) ,

F ∗1 = −ma · v1 −
(
α1 ·

~~I + ω1 ×
~~I · ω1

)
· ω1 ⇐⇒

= −ml2 sin(θ)(2φ̇θ̇ cos(θ) + sin(θ)φ̈)− 0 ,

F ∗2 = −ma · v2 −
(
α2 ·

~~I + ω2 ×
~~I · ω2

)
· ω2 ⇐⇒

= ml2(φ̇2 sin(θ) cos(θ)− θ̈)− 0 .

The object suspended by the spherical pendulum is a point mass and thus has no moments
of inertia, I = 0. Since the external force Fz is already working on the center of mass of
the object, there is no equivalent torque, T = 0.

Assembling Kane's equations yields:

F1 + F ∗1 = −ml2 sin(θ)(2φθ cos(θ) + sin(θ)φ̈) = 0 ,

F2 + F ∗2 = −mgl sin(θ) +ml2(φ2 sin(θ) cos(θ)− θ̈) = 0 . (4.5.5)

Writing these equations in matrix form:(
−ml2 sin2(θ) 0

0 −ml2
)(

φ̈

θ̈

)
=

(
2ml2φ̇θ̇ sin(θ) cos(θ)

mgl sin(θ)−ml2φ̇2 sin(θ) cos(θ)

)
. (4.5.6)

Solving this system for φ̈, θ̈ by inverting the matrix leads to the equations of motion for
the spherical pendulum:

θ̈(t) =
lφ̇2 sin(θ) cos(θ)− g sin(θ)

l

φ̈(t) = −2φ̇ cos(θ)θ̇

sin(θ)
(4.5.7)

This formulation of the equations of motion is the same as the one found using the
Lagrangian approach. Similarly to Lagrangian mechanics, the constraint of the system
is incorporated naturally into the formulation of the problem, which is an advantage of
these methods over using Newtonian mechanics.
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• Numerical Solution
In order to solve these equations of motion, the equations of motion from (4.5.7) are
rewritten as a system of four �rst-order di�erential equations. Setting: y1 = θ, y2 = θ̇,
y3 = φ, y4 = φ̇ the system becomes:

ẏ1 = y2 ,

ẏ2 =
ly24 sin(y1) cos(y1)− g sin(y1)

l
,

ẏ3 = y4 ,

ẏ4 = −2y4 cos(y1)y2
sin(y1)

.

Solving this system with initial speeds θ̇(0) = 1 and ϕ̇(0) = 2 results in the following
�gure:

Figure 4.5.2: Pendulum with initial speeds θ̇(0) = 1, φ̇(0) = 2

The length of the suspension wire is l = 5. The spherical pendulum moves in three
dimensions because it is given an angular speed in both directions. Setting either of these
initial speeds to 0 results in a 2-dimensional movement:

Figure 4.5.3: Pendulum with initial speeds θ̇(0) = 1, φ̇(0) = 0
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From the above example it becomes clear that the Lagrangian approach and Kane's method
are to be preferred over the approach using classical Newtonian mechanics for deriving the
equations of motion with constraints. This results from the fact that in these two approaches
the constraints are incorporated in the formulation of the problem in a natural way such that
these constraints do not have to be added to the system as an extra equation.
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5. Bi�lar pendulum

The bi�lar pendulum is a torsional pendulum where an object is suspended by two wires.
Dynamic modeling of the equations of motion is used to relate the measurable parameters
of the pendulum's con�guration to the moment of inertia of the object [1]. In this section,
Kane's method and the Lagrangian approach will be used to derive the equations of motion of
the bi�lar pendulum. The full non-linear model for the bi�lar pendulum will be derived with
Kane's model. The derivation using the Lagrangian approach will assume certain simpli�cations
and will only be used as a veri�cation of Kane's model for these assumptions.
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5.1 Kane's method

This derivation follows a paper which derives the 'full nonlinear equations of motion of a
bi�lar pendulum ... without the aid of simplifying assumptions about the geometry of the
suspension or the inertia properties of the suspended body' [3]. In this paper, the derivation
of the equations of motion is presented in a rather unstructured way. The derivation below
attempts to reformulate this unstructured derivation in such a way that it is more structured
and as a result better readable and easier to comprehend. In order to describe the motion of
the bi�lar pendulum, geometric quantities have to be introduced with which the motion will
be described. These quantities can be seen in the �gure below. It is important to note that the
�gure intentionally displays a state of the bi�lar pendulum while not at rest; the �gure displays
the bi�lar pendulum while at a certain orientation and position during its movement. This
is done to help the reader create an understanding how each angle in�uences the suspended
objects' orientation and position.

Figure 5.1.1: Geometric quantities used to describe the motion of the bi�lar pendulum

A list of these basic quantities with descriptions is:

A,B,C,D labels for the attachment points of suspension wires
R label for suspended object
R∗ label for center of mass of object R
b, b′ distances between attachment points
l, l′ lengths of suspension wires
ni unit vectors earth-�xed reference system
θi orientation angles.
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The angles θ2, . . . , θ5 are used to capture the orientation of lines BC and CD. From �gure

5.1.1 it is clear that
−→
AB +

−−→
BC +

−−→
CD =

−−→
AD, and thus that the angles corresponding to these

lines, θ2, . . . , θ5, do not form an independent set. Decomposing
−→
AB,

−−→
BC and

−−→
CD into their

components along the earth-�xed reference system axes yields:

−→
AB = −bn2 ,
−−→
BC = l sin(θ2) cos(θ3)n1 + l sin(θ2) sin(θ3)n2 − l cos(θ2)n3 ,
−−→
CD = b′ sin(θ4) cos(θ5)n1 + b′ cos(θ4) cos(θ5)n2 + b′ sin(θ5)n3 .

Introducing the following notation to keep the expressions with cos and sin terms compact:

cos(θi) = ci, sin(θi) = si,
−→
AB +

−−→
BC +

−−→
CD =

−−→
AD can be written as:

−bn2 + l(s2(c3n1 + s3n2)− c2n3) + b′(c5(s4n1 + c4n2) + s5n3) =
−−→
AD . (5.1.1)

The above constraint equation can be graphically veri�ed by plotting the vectors
−→
AB,

−−→
BC and−−→

CD and checking whether the vector
−−→
AD closes the 'loop'.

To this extend, consider the pendulum at rest such that the angles are given by θ = [0, π
6
, π
2
, 0, 0]T

and the cable lengths are 5 meters. This choice of values, θ3 = π
2
and θ4 = 0, results in all

the vectors will lie in the plane spanned by (n2,n3). Plotting the earlier mentioned constraint

vectors yields the plot where vector
−−→
AD is shown red:

Figure 5.1.2: Graphical veri�cation of constraint equation

Now consider the pendulum at a di�erent initial, non-stationary, position with angles θ =

[0, π
6
, π
4
, π
4
, 0]T and cable lengths of 5 meters. Plotting vectors

−→
AB,

−−→
BC,

−−→
CD and

−−→
AD again

yields the plot:

33



Figure 5.1.3: Graphical veri�cation of constraint equation; diagonal and top view

Both of the above �gures graphically verify that the vectors
−→
AB+

−−→
BC+

−−→
CD and

−−→
AD are equal,

which veri�es the constraint from equation (5.1.1).

Since both of these vectors are equal, it must hold that their lengths are equal (and their
lengths squared). Therefore, scalar multiplication of each component of equation (5.1.1) with
itself leads to the constraint of the system:

(ls2c3 + b′s4c5)
2 + (−b+ ls2s3 + b′c4c5)

2 + (−lc2 + b′s5)
2 = (l′)2 .

The left-hand side of this equation is only a function of θ1, . . . , θ5 and the right-hand side a
constant. Therefore, the above equation can be compactly written as:

g(θ) = a . (5.1.2)

The notation g(θ) is used to compactly denote that g is a function of θ = (θ1, · · · , θ5). Further
on in the derivation, the notation f(θ) will also be used, which denotes that f is a vector of
which the components are functions of θ.

Five angles have been de�ned to capture the orientation of the entire system. However, these
angles do not form an independent set since the constraint equation (5.1.2) above reduces the
degrees of freedom by 1 and as a result, the system has 4 degrees of freedom. When θ1 . . . θ5
are seen as generalized coordinates of the system, θ5's is a function of the other four.
Equation (5.1.2) can be converted into a di�erential equation by di�erentiating it with respect
to time yielding:

dg(θ)

dt
=

(
dg(θ)

dθ

)T
dθ

dt
:= β(θ)T · θ̇ = 0 . (5.1.3)

From equation (5.1.3), θ̇5 can easily be written as a function of θ̇1, θ̇2, θ̇3, θ̇4:

θ̇5 =

(
−I45β(θ)
eT5 β(θ)

)T
I45 θ̇ := γ(θ)T I45 θ̇ . (5.1.4)

The vector ei is the 5th unit vector of the standard basis for R5. The matrix I45 is a (4 × 4)
identity matrix with an added column of zeros forming a (4×5)-matrix. Therefore, the product
I45 θ̇ is a (4× 1)-vector with entries θ̇1, · · · , θ̇4 such that this is an explicit function for θ̇5.
Equations (5.1.2) and (5.1.4) can be used to �nd initial values for θ5 and θ̇5 for chosen values
of θi and θ̇i , (i = 1 . . . 4).
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Certain quantities needed for Kane's method are most conveniently described in a body-�xed
reference frame. Therefore, two extra sets of unit vectors are de�ned. One set of body-�xed
unit vectors {ñ,ñ,ñ} is de�ned as shown in the �gure (5.1.4) below.

Figure 5.1.4: Unit vectors body-�xed reference system

The second set of body-�xed unit vectors {b1,b2,b3} is de�ned as being parallel to the principal
axes of inertia of R for R∗. That is, the unit vectors are parallel to a set of axes such that the
moment of inertia tensor with respect to these axes is a diagonal matrix where the moments of
inertia about these axes are on the diagonal, called the principal moments of inertia. Express-
ing quantities such as angular velocity or acceleration of body R with respect to this speci�c
reference frame has the advantage that terms involving moment of inertia become less complex
since they are only a function of the principle moments of inertia, as a result of the moment of
inertia tensor being diagonal. If any other body-�xed reference frame was chosen, the moment
of inertia tensor would have products of inertia on the o�-diagonals, which would complicate
the expressions.

Some notation will be introduced to compactly formulate the transformations between the unit
bases sets. Suppose there are two unit vector sets: {a1, a2, a3} and {b1,b2,b3} and write:
A =

[
a1, a2, a3

]
, B =

[
b1,b2,b3

]
. The transformation matrix from unit vectors A to B will

be written as:

B = Nb
a (θ) A ,

where θ denotes the dependency of the transformation on angles θ1, . . . , θ5.

With this notation, the set {ñ,ñ,ñ} can be decomposed into components along the earth-
�xed coordinate system. This gives a relation between {ñ,ñ,ñ} and {n1,n2,n3}:

Ñ = N ñ
n (θ)N , (5.1.5)
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where from �gures 5.1.1 and 5.1.4 it follows that the transformation matrix N ñ
n (θ) is given by:

N ñ
n (θ) =

 s1c4 + c1s4s5 c1c4 − s1s4s5 −s4c5
−s1s4 + c1c4s5 −c1s4 − s1c4s5 −c4c5
−c1c5 s1c5 −s5

 .

To see that Ñ is in fact a orthonormal basis for R3, one can verify that the inner products
between each of the basis vectors is 0, and the inner products of the basis vectors with themselves
is 1.
Both {b1,b2,b3} and {ñ,ñ,ñ} are body-�xed reference frames and thus their orientation
relative to each other does not change. Therefore, the relation between them is constant and
can be written as:

B = Nb
ñ Ñ , (5.1.6)

where the coe�cients of Nb
ñ only depend on the choice of the attachment points C and D.

Using equation (5.1.5), the relation between (b1,b2,b3) and (n1,n2,n3) can be given:

B = Nb
ñ Ñ = Nb

ñ

(
N ñ

n (θ)N
)
= Nb

n (θ)N . (5.1.7)

From �gures 5.1.1 and 5.1.4 the angular velocity ω of R can be derived. Introducing a new
basis Q:

Q = [ñ , −n3 , c4n1 − s4n2] ,

such that the angular velocity ω with respect to this new basis can be expressed as:

[ω]Q =

θ̇1θ̇4
θ̇5

 = S145 θ̇ .

Here S145 is a (3× 5)-matrix which selects the �rst, fourth and �fth components of a (5× 1)-
vector to obtain a (3× 1)-vector.
The new basis Q can be written as (using N = I3):

Q = Nq
n (θ)N = Nq

n (θ) ,

where Nq
n (θ) is given by:

Nq
n (θ) =

−s4c5 0 c4
−c4c5 0 −s4
−s5 −1 0

 . (5.1.8)

As a result, the angular velocity is given by:

ω = Q [ω]Q = Nq
n (θ) [ω]Q = Nq

n (θ) S145 θ̇ . (5.1.9)

From equation (5.1.9) it follows that the angular velocity can be written as (using N = I3):

ω = N Nq
n (θ) S145 θ̇ ,

which is of the form ω = N [ω]N . From this it follows that ω can be expressed with respect to
the basis N as:

[ω]N = Nq
n (θ) S145 θ̇ := G(θ) θ̇ . (5.1.10)
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Alternatively, ω can be expressed with respect to the basis B. Using equation (5.1.10) and the
transformation from equation (5.1.7) this gives:

[ω]B = Nn
b (θ)G(θ) θ̇ , (5.1.11)

where Nn
b (θ) = Nb

n (θ)
−1. The inverse matrix of Nb

n (θ) has to be used here since all vectors
expressed with respect to a basis are contravariant to a change of basis. To illustrate the
concept of contravariance, consider a temperature scale with intervals of 1 ◦Celsius. For an
object of 5 ◦Celsius, the quantative vector on this scale has to have a length of 5. Now, if the
scale is divided by a factor 10, the vector for displaying the temperature has to be multiplied
by the inverse, multiplied by 10. The analogous happens when a basis is rotated where the
quantative vectors are rotated opposite to the basis such that their quantative description of a
physical entity remains equal.
The angular acceleration α of R can also be expressed either with respect to the basis N or B.
Since α = d

dt
ω it follows from equation (5.1.10) that:

[α]N = N [α]N = α =
d

dt
ω =

d

dt
(N [ω]N) = N

d

dt
([ω]N) ⇐⇒

=
d

dt
[ω]N =

d

dt

(
G(θ) θ̇

)
=

d

dt
(Nq

n (θ)) S145 θ̇ +Nq
n (θ) S145 θ̈ , (5.1.12)

or, because B is a orthonormal basis, using the transformation matrix from equation (5.1.7):

[α]B = Nn
b (θ)

(
d

dt
(Nq

n (θ)) S145 θ̇ +Nq
n (θ) S145 θ̈

)
. (5.1.13)

The position r of the center of mass R∗ relative to the attachment point C can be derived from
�gure 5.1.4. It is immediately clear that r can be give in terms of the angle λ and the distance
r. It holds that because the position of the center of mass is stationary relative to attachment
point C, r can be expressed with respect to the basis Ñ as:

[r]Ñ =

 r sin(λ)
0

−r cos(λ)

 , (5.1.14)

such that:

r = Ñ [r]Ñ .

Using the transformation matrix of equation (5.1.5) yields an expression with respect to the
basis N :

[r]N = Nn
ñ(θ) [r]Ñ . (5.1.15)

The velocity vR
∗
of the center of mass R∗ can be derived using:

NvR
∗

= NvC + NωR × rCR
∗
,

which is in this example: [
vR
∗]
N

=
[
vC
]
N
+ [ω]N × [r]N ,

where vC is the tangential velocity of attachment point C, which can be derived from �gure
5.1.1:

[
vC
]
N

=

lc2c3θ̇2 − ls2s3θ̇3lc2s3θ̇2 + ls2c3θ̇3
ls2θ̇2

 =

0 lc2c3 −ls2s3 0 0
0 lc2s3 ls2c3 0 0
0 ls2 0 0 0

 θ̇ := C(θ) θ̇ . (5.1.16)
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Substitution of [ω]N , [r]N and
[
vC
]
N
from equations (5.1.10), (5.1.15) and (5.1.16) gives that

the angular velocity can be written as:[
vR
∗]
N

= C(θ) θ̇ +G(θ) θ̇ × [r]N ⇐⇒
= C(θ) θ̇ +W (θ) θ̇ = (C(θ) +W (θ)) θ̇ ⇐⇒
:= V (θ) θ̇ , (5.1.17)

where W (θ) is a (3× 5)-matrix with columns wi = G(θ) ei × [r]N .
Taking the time derivative of equation (5.1.17) results in an expression for the acceleration aR

∗

of R∗ with respect to the basis N :[
aR
∗]
N

= V̇ (θ) θ̇ + V (θ) θ̈ . (5.1.18)

To use Kane's equation, the partial rates of change of orientation ωθ̇r of the body R, and four
partial rates of change of position vθ̇r of the center of mass R∗ have to be known in order to
calculate Fr and F

∗
r . Since the partial rates of change of orientation are the partial derivatives

of ω with respect to θ̇1, . . . , θ̇4, these partial rates are the coe�cients of θ̇1, . . . , θ̇4 in equation
(5.1.10), where θ̇5 has �rst been substituted out using the constraint equation (5.1.4).
Eliminating θ̇5 from equation (5.1.10) using the constraint equation (5.1.4) yields an alternate
expression for [ω]N :

[ω]N = G(θ) θ̇ = Nq
n (θ) S145 θ̇ = Nq

n (θ)

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 θ̇

= Nq
n (θ)

1 0 0 0
0 0 0 1

γ(θ)T

 I45θ̇

:= Gnew(θ) I45θ̇ . (5.1.19)

Because ω = N [ω]N and N = I3 it follows that:

ω = Gnew(θ) I45θ̇ . (5.1.20)

Equation (5.1.20) is of the form:

ω = ωθ̇1 θ̇1 + ωθ̇2 θ̇2 + ωθ̇3 θ̇3 + ωθ̇4 θ̇4 ,

such that the partial rates of change of orientation ωθ̇r are the columns of the matrix Gnew(θ).

Equivalently, the constraint equation (5.1.4) can be used to rewrite equation (5.1.17) as:[
vR
∗]
N

= V (θ) θ̇ =
(
V (θ) I54 + V (θ) e5 γ(θ)

T
)
I45 θ̇ ⇐⇒

:= Vnew(θ) I45 θ̇ , (5.1.21)

here I54 is a (4× 4)-identity matrix with an added row of zeros forming a (5× 4)-matrix such
that Vnew(θ) is a (3× 4)-matrix.
Again, because vR

∗
= N

[
vR
∗]
N
and N = I3 it follows that:

vR
∗

= Vnew(θ) I45 θ̇ . (5.1.22)

Equation (5.1.22) is of the form:

vR
∗

= vθ̇1 θ̇1 + vθ̇2 θ̇2 + vθ̇3 θ̇3 + vθ̇4 θ̇4 ,
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from which it follows that the partial rates of change of position vθ̇r are the columns of the
matrix Vnew(θ).

The generalized active forces F1, . . . , F4 can now be determined by multiplying the partial rates
of change of position with the gravitational force. Because the gravitational force is the only
external force in the system (and it is already working on the center of mass of the suspended
object R), the generalized active forces can then be expressed as:

Fr = vθ̇r · (−mgn3) , (5.1.23)

where g is the gravitational acceleration and m the mass of the suspended body R. This
expression can be given explicitly in terms of the earlier found matrix Vnew(θ).

Fr = vθ̇r · (−mgn3) ⇐⇒
= (Vnew(θ) e

∗
r)
T (−mgn3) . (5.1.24)

The notation e∗r for the r-th unit vector of R4 is used to emphasize the di�erence with earlier
used unit vectors er which have dimension 5, whereas the vector e∗r has dimension 4.

The generalized inertia forces F ∗r are calculated by adding the product of the inertia force and
the partial rate of change of position with the product of the inertia torque and the partial rate
of change of orientation:

F ∗r = vθ̇r · (−m
[
aR∗
]
N
) + ωθ̇r ·T ⇐⇒

=
(
vθ̇r
)T

(−m
[
aR∗
]
N
) +

(
ωθ̇r
)T

T . (5.1.25)

Here
[
aR∗
]
N
is the expression for the acceleration of R∗ without dependency on θ̇5 or θ̈5 found

by di�erentiating equation (5.1.21) with respect to time:[
aR∗
]
N

= V̇new(θ) I45 θ̇ + Vnew(θ) I45 θ̈ ,

and T denotes the vector containing the inertia torques about the principle axes b1,b2,b3:

T = B [T]B , (5.1.26)

where [T]B can be calculated using Euler's Equations for rigid bodies:

[T]B = − (I [α]B + [ω]B × (I [ω]B)) .

In this equation, [ω]B is derived from equation (5.1.20) by using ω = Nb
n (θ) [ω]B:

[ω]B = Nn
b (θ)Gnew(θ) I45θ̇ ,

and [α]B is also derived from equation (5.1.20) by �rst di�erentiating ω with respect to time,
and subsequently multiplying with the transformation matrix Nn

b (θ):

[α]B = Nn
b (θ) [α]N = Nn

b (θ)α = Nn
b (θ)

dω

dt

= Nn
b (θ)

(
Ġnew(θ) I45θ̇ +Gnew(θ) I45θ̈

)
.

Writing equation (5.1.25) in terms of earlier found expressions:

F ∗r =
(
vθ̇r
)T

(−m
[
aR∗
]
N
) +

(
ωθ̇r
)T

T ⇐⇒

= −m (Vnew(θ) e
∗
r)
T
(
V̇new(θ) I45 θ̇ + Vnew(θ) I45 θ̈

)
+ (Gnew(θ) e

∗
r)
T T (5.1.27)
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Assembling Kane's equation yields four dynamical equations of motion:

Fr + F ∗r = 0 , (r = 1, . . . , 4) . (5.1.28)

These four equations together with constraint equation (5.1.2) govern all motions of the system.

The only quantities in Kane's equations which are functions of θ̈1, · · · , θ̈5 are
[
aR∗
]
N
and T.

Since these terms are linear in θ̈ and are not multiplied with one another, the equations (5.1.28)
are linear in θ̈. Therefore, equations (5.1.28) can be written in matrix form as:

M4(θ)


θ̈1
θ̈2
θ̈3
θ̈4

 = N4(θ, θ̇) . (5.1.29)

The constraint equation can be added to this system by di�erentiating the constraint equation
(5.1.4) once with respect to time:

θ̈5 = γ̇(θ)T I45 θ̇ + γ(θ)T I45 θ̈ .

This expression is linear in θ̈ and, as such, can be added to the matrix equation to obtain:

M5(θ)


θ̈1
θ̈2
θ̈3
θ̈4
θ̈5

 = N5(θ, θ̇) . (5.1.30)

The �rst four rows of matrix M5 contain the coe�cients of θ̈1, . . . , θ̈5 in equations (5.1.28)
for respectively r = 1, . . . , 4. The �fth row contains the coe�cients of θ̈1, . . . , θ̈5 in the time-
di�erentiated constraint equation. The right-hand side vector N5 contains all other terms which
do not include any second-order time derivatives.

5.2 Lagrangian mechanics

In this section, the equations of motion are derived using a Lagrangian approach. As a guideline
for this derivation a paper is used in which the suspension wires are assumed to be parallel [1].
The con�guration of the bi�lar pendulum is shown in the �gure below.

Figure 5.2.1: Con�guration of the bi�lar pendulum
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The object is suspended by two parallel wires of length h separated by distance D. Once the
object is rotated over angle θ along the vertical axes through the center of mass of the object,
the object is slightly raised compared to the position at rest. This di�erence in height will be
referred to as z.

Lagrange's equation (4.3.16) was derived in section 4.3:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 . (5.2.1)

To determine the Lagrangian L = T − V , the kinetic energy T and potential energy V of the
system are to be calculated.

Since the pendulum has rotational movement θ and a translational movement z the kinetic
energy is the sum of these two components:

T = Tr + Tt =
1

2
Iθ̇2 +

1

2
mż2 . (5.2.2)

Now to determine z consider the �gure below.

Figure 5.2.2: Schematic of bi�lar pendulum rotation

This �gure displays one half of the bi�lar pendulum, since the other half is identical (except
mirrored). It displays how one of the suspension wires changes position as the object rotates
over an angle θ about the center of mass (the center of the three unit vectors). From this �gure
it immediately follows that:

z = h− x . (5.2.3)
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Because the triangle with sides (h, x, y) is right-angled, it follows with Pythagorean theorem
that x can be expressed as:

x =
√
h2 − y2 . (5.2.4)

To determine y, note that y can be translated down vertically to form a triangle with sides
(D
2
, D
2
) as shown in the �gure below.

Figure 5.2.3: Projection of y on horizontal plane

Using the law of cosines gives an expression for y2:

y2 = (
D

2
)2 + (

D

2
)2 − 2

D

2

D

2
cos(θ) ⇐⇒ (5.2.5)

=
D2

2
(1− cos(θ)) . (5.2.6)

Combining equations (5.2.3), (5.2.4), (5.2.5) yields an expression for z in terms of θ:

z = h− x ⇐⇒
= h−

√
h2 − y2 ⇐⇒

= h−
√
h2 − D2

2
(1− cos(θ)) ⇐⇒

= h− h

√
1− 1

2

(
D

h

)2

(1− cos(θ)) ⇐⇒

= h

1−

√
1− 1

2

(
D

h

)2

(1− cos(θ))

 . (5.2.7)

Note that h2 can be taken out of the root without writing |h| since the suspension wires per
de�nition have a positive length and thus |h| = h.
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Taking the time derivative of z from equation (5.2.5):

ż =
d

dt
z ⇐⇒

=
d

dt

h
1−

√
1− 1

2

(
D

h

)2

(1− cos(θ))

 ⇐⇒

= −1

2
h

(
1− 1

2

(
D

h

)2

(1− cos(θ))

)− 1
2
(
−1

2

(
D

h

)2

sin(θ)

)
θ̇ ⇐⇒

=
h
4

(
D
h

)2
sin(θ)√

1− 1
2

(
D
h

)2
(1− cos(θ))

θ̇ . (5.2.8)

With the above expression, the kinetic energy as in equation (5.2.2) is known. For the potential
energy V it holds that:

V = mgz , (5.2.9)

which is now also known. The Lagrangian thus becomes:

L = T − V ⇐⇒

=
1

2
Iθ̇2 +

1

2
m

h
4

(
D
h

)2
sin(θ)√

1− 1
2

(
D
h

)2
(1− cos(θ))

θ̇ −mgz . (5.2.10)

Assuming the bi�lar pendulum will only be given small initial values for θ, the rotational kinetic
energy 1

2
Iθ̇2 will be signi�cantly greater than the translational kinetic energy 1

2
mż2.

Neglecting the translation kinetic energy, the Lagrangian simpli�es to:

L =
1

2
Iθ̇2 −mgz . (5.2.11)

Using Lagrange's equation from (5.2.1) where qj = θ, q̇j = θ̇ the equation of motion for the
bi�lar pendulum follows:

Iθ̈ +
mgD2

4h
sin(θ)√

1− 1
2

(
D
h

)2
(1− cos(θ))

= 0 , (5.2.12)

which for convenience of solving can be rewritten as:

θ̈ +
mgD2

4hI

sin(θ)√
1− 1

2

(
D
h

)2
(1− cos(θ))

= 0 . (5.2.13)

The second-order di�erential equation from (5.2.13) can be linearized using the assumption
that the angle θ is small. As a result of this assumption, it follows from the series expansion of
sin(θ) and cos(θ) that these can be approximated by:

sin(θ) = θ +O(θ3) ≈ θ ,

cos(θ) = 1 +O(θ2) ≈ 1 . (5.2.14)
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Substitution of these approximations into (5.2.13) yields a linearized second-order di�erential
equation:

θ̈ +
mgD2

4hI
θ = 0 . (5.2.15)

Solving this equation analytically, an approximating expression can be found for the moment of
inertia I as a function of the period and the con�guration parameters. The solution of equation
(5.2.15) is of the form:

θ(t) = c1 sin

(√
mgD2

4hI
t

)
+ c2 cos

(√
mgD2

4hI
t

)
, (5.2.16)

where the constants c1, c2 can be determined from the initial conditions. These constants
only have an in�uence on the amplitude of the solution, and are therefore intentionally left
undetermined since only the period of the above solution will be of interest. The period of
equation (5.2.16) follows directly from the coe�cients inside the trigonometric functions:

T =
2π√
mgD2

4hI

. (5.2.17)

The above equation can be rewritten to an expression for I:

T =
2π√
mgD2

4hI

⇐⇒

√
mgD2

4hI
=

2π

T
⇐⇒

mgD2

4hI
=

4π2

T 2
⇐⇒

I =
mgD2

4h

T 2

4π2
=
mgD2T 2

16hπ2
. (5.2.18)

Having performed the actual measurement of the bi�lar pendulum and measured the period
of oscillation, this equation can then be used to determine the moment of inertia along the
vertical axis of the suspended object.
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6. Veri�cation equations of motion

This section will numerically solve the equations of motion of the bi�lar from equation (5.1.30)
for a number of di�erent con�gurations. These con�gurations have been chosen such that these
can be veri�ed by analogous models for which the solutions are known. Once the equations of
motion have been su�ciently veri�ed, the next section will look at several applications of the
equations of motion.

6.1 Side-Sway

Recall the con�guration used when graphically checking the constraint equation; �gure 5.1.2.
In this con�guration, the pendulum is at rest since the center of mass is at its lowest point
possible, and there are no initial velocities. As a result, one expects that the initial angles
θ(0) = [0, π

6
, π
2
, 0, 0]T will remain constant. Numerically solving this con�guration yields the

following �gure:

As expected all angles (θ1, θ4, θ5 are not shown) stay constant at their initial values. Now
instead of having no initial velocities, θ̇3(0) will be set to 1 radial per second. The object will
sway sideways parallel to the n2-axis and from �gure 5.1.1, one expects that in this case θ3 will
oscillate around its initial value π

2
and that θ2 will oscillate around a value slightly larger than

its initial value π
6
due to the fact that θ2 is smallest when the attachment point C is above the

n2-axis. Numerically solving this con�guration yields:
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In the above �gure, the expected behavior of the con�guration is shown; θ2 is smallest when
the object goes through its stationary point, that is θ3 =

π
2
.

The above motion is in fact analogous to a planar pendulum with same mass and a suspension
wire of length 5 cos(π

6
). The period for such a pendulum is known to be

T = 2π

√
l

g
= 2π

√
5 cos(π

6
)

9.81
= 4.1744 seconds .

Deriving the period of θ3 from the simulation yields T = 4.2 seconds, which is relatively similar
to the theoretical value, where the di�erence can be caused due to the error made in the
ODE-solver of Matlab.

Another way of validating this result is to verify the relation between angles θ2 and θ3. To derive
this relation, a schematic of this particular con�guration of the bi�lar pendulum is shown in the
�gure below. The top half displays a side-view of the con�guration while at rest whereas the
bottom half displays a top-view of the bi�lar pendulum both at rest and while in oscillation.

Figure 6.1.1: Side-view at rest & Top view at rest and during oscillation.
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From this schematic, the length x can be derived:

x =
5 sin

(
π
6

)
cos(∆θ3)

,

where ∆θ3 = θ3 − π
2
.

Length x can also be expressed in terms of θ2 by looking at the con�guration in the plane

spanned by (n3,
−−→
BC):

Figure 6.1.2: Bi�lar pendulum in (n3,
−−→
BC)-plane.

From this view, it becomes immediately clear that x can be expressed as:

x = 5 sin(θ2) .

Both expressions for x should be equal resulting in the relation between θ2 and θ3:

5 sin
(
π
6

)
cos(∆θ3)

= 5 sin(θ2) .

Seeing θ2, ∆θ3 as random variables which are generated by the simulation, the mean and vari-

ance can be calculated of
5 sin(π6 )
cos(∆θ3)

− 5 sin(θ2). Doing so yields:

µ = −2.0496 · 10−07 ,
σ2 = 2.0200 · 10−13 .

Since the mean of
5 sin(π6 )
cos(∆θ3)

− 5 sin(θ2) is so close to 0 with such little variance, this veri�es that
the simulation complies with the theoretical relation between θ2, θ3.

6.2 Torsional movement

To draw the parallel between the derivation using Kane's method and the lagrangian method,
the suspension wires in Kane's model have to be parallel to one another, in other words θ2 = 0
and the bi�lar pendulum should rotate along the vertical axis through the center of mass. How-
ever, setting θ2 at 0 yields the situation in which θ3 is not uniquely de�ned. As a result, there
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is no unique solution. This can also be seen in the matrix M5(θ) from equation (5.1.30) which
is singular for θ2 = 0 for arbitrary values of θ1, θ3, θ4, θ5 as a result of having a column (third)
and a row (third) of zeros.

In order for Matlab to be able to solve this problem, in which it will encounter a singular mass
matrix each time the object goes through the stationary point, it has to be told that it will
encounter such matrix. Because the matrix M5(θ) is so large, the equations of motion are
for computational reasons left in the form M5(θ) θ̈ = N5(θ, θ̇). In the situation that M5 is
singular, the problem is a system of di�erential-algebraic equations (DAE). These systems only
have a consistent solution θ(0) when there is a initial slope θ̇(0) such that M5(θ(0)) θ̈(0) =
N5(θ(0), θ̇(0)). One can give the ode-solver in Matlab a initial guess for the slope, or it can be
entirely left to Matlab to calculate an initial slope.

Letting Matlab solve this system with initial angle θ4 =
π
80

yields:

Figure 6.2.1: Numerical solution: rotation along vertical-axis through the center of mass

The jumps in the solution of θ3 are the result of the mentioned singularity. To check whether this
solution satis�es the constraint, for each time step of the numerical solution, one can substitute
the values into equation (5.1.2). The obtained vector C contains a value which should equal
the theoretical value a = l′2 = 25 for each time step i. Looking at the maximum absolute error:

mae = max
i
|ci − 25| ,

yields a absolute maximum error of mae = 3.9453 · 10−05. From the small error it can be
concluded that the solution satis�es the constraint equation.

Since in this example, both models describe the same motion (both parallel suspension wires),
one can compare their solutions. Comparing the solution of θ3 of Kane's solution to the numer-
ical solution of the Lagrangian approach from equation (5.2.13) for an initial angle θ4(0) =

π
80

yields:
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Figure 6.2.2: Comparison numerical solutions Kane's model & Lagrange's model

Both models describe the same motion and as a result their solutions should be equal. In
the above �gure it can be seen that this in fact holds for the numerical solutions for small
initial angles θ4. This is in line with the expectations, since Lagrange's model considers a
linearized model in which the angles are assumed to be small. For large initial angles this
linearization is not accurate anymore and thus explains the di�erent periods for these initial
angles. Numerically solving the above example again but now for a signi�cantly larger initial
angle θ4(0) =

π
8
:

Figure 6.2.3: Comparison numerical solutions Kane's model & Lagrange's model

from which the di�erence in numerical solutions can be clearly seen as a result of the mentioned
assumption in Lagrange's model.

Another method for validating Kane's model is by modifying Lagrange's model such that it no
longer assumes parallel suspension wires. To do this, an extra angle φ has to be introduced
which describes the angle the suspension wires makes with the vertical, similar to θ2 in Kane's
model. The angle φ is not independent of θ and this relation can be found by looking at the
projection of the con�guration on the horizontal plane:
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Figure 6.2.4: Adjusted Lagrange's model projection on horizontal plane

In this horizontal projection, θ is the angle over which the object rotates about its vertical
axis, φ0 is the angle φ while the object is in its stationary position. From this projection, the
projection l sin(φ) can also be expressed in terms of the other 2 sides and the enclosed angle:

l sin(φ) =

√
D2 sin2

(
θ

2

)
+ l2 sin2(φ0)− 2

(
D sin

(
θ

2

))
(l sin(φ0)) cos

(
π − π − θ

2

)
,

from which it follows that:

φ = arcsin


√
D2 sin2

(
θ
2

)
+ l2 sin2(φ0)− 2

(
D sin

(
θ
2

))
(l sin(φ0)) cos

(
π − π−θ

2

)
l

 .

The translational height z can then be expressed as:

z = l cos(φ0)− l cos(φ) ⇐⇒
= l cos(φ0)

−l cos

arcsin


√
D2 sin2

(
θ
2

)
+ l2 sin2(φ0)− 2

(
D sin

(
θ
2

))
(l sin(φ0)) cos

(
π − π−θ

2

)
l

 .

Because φ0 is a constant, z is now a function of θ. The Lagrangian then, as in section 5.2:

L =
1

2
Iθ̇2 −mgz .

Using Lagrange's equation again yields the equation of motion for Lagrange's model, without
the assumption of parallel suspension wires. If now φ0 is chosen such that it is equal to the
value of θ2 while at the stationary position, both models describe the exact same con�guration.
Comparing the solutions of both models results in the following �gure.
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Figure 6.2.5: Comparison numerical solution Kane's model & Lagrange's adjusted model

It can be seen that both solutions do not display any di�erences, which is another veri�cation
that Kane's model has been properly modelled.

6.3 Suspended object with dimensions

In all of the previous examples above, the object was assumed to be in�nitely thin and as a
result of this the center of mass was located on the line CD. A �nal validation step for the
model can be done for a con�guration for which this is not the case: λ > 0. To do so, consider
the �rst con�guration again in which the bi�lar pendulum only experienced side-sway, only now
the center of mass is not on the line CD. Such con�guration is analogous to a double-pendulum;
a pendulum attached to another pendulum, as shown below.
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Figure 6.3.1: Analogy of bi�lar pendulum (side-view) and double pendulum

The double pendulum's movement is entirely de�ned by the two lengths of the suspension wires
L1, L2 and the angles φ1, φ2, where φ2 = θ1 (and φ1 is the projection of θ2 on the plane spanned
by (n1,n3) ).

Solving the models with parameters m1 = m2 = 5, L1 = 5 cos(θ2), L2 = 1
2
and I = m2L

2
2 and

only giving θ1 = φ2 an initial angle not corresponding to a stationary angle, both solutions
become:

Figure 6.3.2: Numerical solutions of bi�lar pendulum and double pendulum

Note that the solutions are only equal for the very �rst part. This is most likely caused by the
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inherent chaotic property of the chaotic pendulum. As a result of this, any small error in the
numeric solution could result to large di�erence in its further movement. As a motivation for
this, two solutions of the chaotic pendulum's equations of motion will be calculated, one for
initial conditions θ(0) = [0, π

6
] and one for θ(0) = [0.05, π

6
]. The solutions for θ2 are plotted in

the following �gure:

Figure 6.3.3: Numerical solutions of θ2 for the chaotic pendulum

This �gure displays the same kind of di�erences between the two solutions: a di�erent period
between the solutions and di�erent values for the maximums and minimums.

6.4 Comparison paper: cylinder

In Kane's paper [3], the authors present a test case for a suspended solid cylinder with the
corresponding solutions for given initial conditions. A solid cylinder, whose height and diameter
are equal to the distance between the suspension wires on the overhead, is suspended by two
suspension wires of unequal length, as shown in the �gure below.

53



Figure 6.4.1: Solid cylinder attached to unequal suspension wires

From this side-view of the bi�lar pendulum, it can be derived that:

r = b√
2
, λ = π

4
,

I1 =
1
2
m
(
b
2

)2
= mb2

8
, I2 = I3 =

1
12
m
(
3
(
b
2

)2
+ b2

)
= 7

48
mb2 .

A set of initial conditions is obtained by imagining a situation in which the angles θ1, · · · , θ4
would have the value as if both suspension wires have equal length and the cylinder were raised
vertically by rotating it about its axis of symmetry through an angle π

4
. The initial angles then

become:

θ1(0) = 0 , θ̇1(0) = 0 ,

θ2(0) = arcsin
(
1
2
sin
(
π
8

))
, θ̇2(0) = 0 ,

θ3(0) =
7
8
π , θ̇3(0) = 0 ,

θ4(0) =
π
4
, θ̇4(0) = 0 ,

and the initial conditions of θ5, θ̇5 can be found by substituting the above into the constraint
equations (5.1.2) and (5.1.4) and solving for θ5(0) and θ̇5(0). In Kane's paper, the results are
presented on a dimensionless x-axis by scaling the time t with

√
g
b
. By choosing b = g, time is

scaled with 1 and thus the numerical solutions found in this report can be compared to those
of Kane's paper without making any changes to the axes. Solving the equations of motion with
the initial conditions from above, the time-development of θ1 and θ4 is:
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Figure 6.4.2: Tilting of the bi�lar pendulum with a solid cylinder (l = 2b, l′ = 1.8b)

Figure 6.4.3: Torsion of the bi�lar pendulum with a solid cylinder (l = 2b, l′ = 1.8b)

These results are exactly the same as those presented in Kane's paper. Furthermore, the amount
of side-sway can be quanti�ed by looking at the projection of the line OE on the horizontal
plane (see �gure 6.4.1). Plotting the absolute value of this projection yields:
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Figure 6.4.4: Side-sway of the bi�lar pendulum with a solid cylinder (l = 2b, l′ = 1.8b)

This result is in accordance with the results presented in Kane's paper [4].

In this section, several di�erent con�gurations of the bi�lar pendulum have been considered and
compared to analogous models. In all these examples, the numerical solutions to Kane's model
behaved the same as its comparable model, and thus indicate that the equations of motion have
been properly modeled. It is therefore concluded that the equations of motion of the bi�lar
pendulum have been correctly modeled.
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7. Applications equations of motion

This section will look two applications of the equations of motion of the bi�lar pendulum. First,
the equations of motion will be linearized around a stationary position, which can be used in
calculating the moments of inertia when performing the experiment of the bi�lar pendulum.
Secondly, the tensional forces in the suspension wires will be derived which can be used to
predict the strains the attachment points on either the ceiling or the object will have to undergo
when performing the experiment.

7.1 Linearization

To reconstruct the moments of inertia I1, I2, I3 from the numerical solutions, the equations of
motion will be linearized around a stationary point. The eigenvalues of the system can then
be expressed as a function of the con�guration parameters and the moment of inertia along
the corresponding axis. Using these eigenvalues, the experimentally determined period of os-
cillation can be directly linked to the con�guration parameters and moment of inertia along
the respective axis. After substitution of all con�guration parameters and the experimentally
determined period the only remaining unknown is the moment of inertia about that axis.

To linearize around a stationary point, de�ne:

θ = θ0 +∆θ ,

where θ0 is the stationary point around which will be linearized and ∆θ the variations the
angles have, which are assumed to be small. It then follows that:

θ̇ = ∆θ̇ ,

θ̈ = ∆θ̈ .

When the system is at rest, it holds that:

A(θ0)θ̈0 = 0 = B(θ0) .

It then follows that:

A(θ0 +∆θ)∆θ̈ = B(θ0 +∆θ)⇐⇒(
A(θ0) +

∂

∂θ
A
∣∣∣
θ0
∆θ

)
∆θ̈ = B(θ0) +

∂

∂θ
B
∣∣∣
θ0
∆θ .

This can be further simpli�ed by noting that:

∂

∂θ
A
∣∣∣
θ0
∆θ∆θ̈ = O(∆θ2) ,
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and thus because this is a higher-order term, what remains is:

A(θ0)∆θ̈ =
∂

∂θ
B
∣∣∣
θ0
∆θ ,

which can then be rewritten to the desired form:

∆θ̈ =

(
A(θ0)

−1 ∂

∂θ
B
∣∣∣
θ0

)
∆θ

:= L(θ0)∆θ .

The stationary position θ0 which will be used for reconstructing all three moments of inertia
is: θ0 = [0, π

6
, π
2
, 0, 0]T , and the body-�xed axes around which the moments of inertia will be

determined are shown in the �gure below.

Figure 7.1.1: Body-�xed axes along which the moments of inertia will be calculated (while
object is at stationary position).

Linearization 1
To reconstruct the moment of inertia along the b1-axis, the bi�lar pendulum will given an
initial condition such that it will only rotate along this axis, in other words:

θ1 = 0 ,

θ2 =
π

6
+∆θ2 ,

θ3 =
π

2
+∆θ3 ,

θ4 = 0 +∆θ4 ,

θ5 = 0 .

Assuming that the length of the suspension wire l is very large, ∆θ2 can be taken constant1 as
a result of:

∆θ2 � ∆θ3, ∆θ4 for l� 0 .

1This assumption only holds for very long suspension wires, that is l� 0. However, in practice it is impossible

to use suspension wires of such length. Therefore, when performing the experiment, one should use the longest

possible suspension wires to justify this assumption as good as possible.

58



Since θ1, θ2, θ5 are stationary, only the third and fourth rows/columns of L are of interest.
Discarding the other rows and columns yields:

∆θ̈3,4 = L3,4(θ0)∆θ3,4 .

This system can now be rewritten to its corresponding �rst-order system. After substitution of
the con�guration parameters;

l = l′ = 500 λ = 0

b = 505 r = b′

2

b′ = 5 g = 9.81
m = 100 ,

into the matrix L, its eigenvalues can be determined. The eigenvalues are then only a function
of the respective moment of inertia. Since these eigenvalues are purely imaginary, the solution
to θ4(t) is:

θ4(t) = c1 e
λ1t + c2 e

λ2t ,

but since the two eigenvalues λ1, λ2 are the complex conjugates of each other (λ1 = xi, λ2 =
−xi), only one of them is needed to obtain:

θ4(t) = c1 e
λ1t ⇐⇒

= c1 e
xit ⇐⇒

= c1 (cos(xt) + i sin(xt)) .

Now, from linearity it follows that both the real and imaginary part of this solution, are again
solutions for θ4(t). Therefore:

θ4(t) = c3 cos(xt) + c4 sin(xt) .

The period of this solution is:

T =
2π

x
,

and because the eigenvalue λ1 is a function of the moment of inertia I1, this equation can be
used to calculate the moment of inertia where the period T is the experimentally determined
period of oscillation. Since this experiment has not been performed, the numerical periods of
oscillation will be used to calculate the moments of inertia using this linearization.
Performing the simulation for an object of which the moment of inertia I1analytical can be calcu-
lated analytically and comparing it to the moment of inertia I1lin found using this linearization
results in:

I1analytical = 260.4167 ,

I1lin = 259.2135 .

Linearization 2
To reconstruct the moment of inertia along the b2-axis, the bi�lar pendulum will be given an
initial condition such that the pendulum will rotate only along that axis:

θ1 = 0 ,

θ2 =
π

6
+∆θ2 ,

θ3 =
π

2
,

θ4 = 0 ,

θ5 = 0 +∆θ5 .
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Again, after discarding the non-relevant rows/columns, substituting the con�guration parame-
ters;

l = l′ = 5 λ = arccos

(
b′
2

r

)
b = 10 r =

√
( b
′

2
)2 + (1

2
)2

b′ = 5 g = 9.81
m = 100 ,

and rewriting the system to its corresponding �rst-order system the eigenvalues can be calcu-
lated as a function of I2. From these eigenvalues, the analytical value for the moment of inertia
I3 can be compared to the one found using the above linearization (again using the period of
oscillation from the numerical solution):

I3analytical = 208.333 ,

I3lin = 201.8223 .

Linearization 3
For reconstructing the moment of inertia along the b3-axis, the bi�lar pendulum will be given
an initial condition such that the pendulum will rotate only along that axis:

θ1 = 0 +∆θ1 ,

θ2 =
π

6
+∆θ2 ,

θ3 =
π

2
+∆θ3 ,

θ4 = 0 ,

θ5 = 0 .

Assuming again that the suspension wires are very long, θ2 will change insigni�cantly, as men-
tioned in the �rst case. Therefore, ∆θ2 = 0. The columns and rows which are of interest in this
situation are the �rst and third. Again, after discarding the other rows/columns, substituting
the con�guration parameters;

l = l′ = 500 λ = arccos

(
b′
2

r

)
b = 10 r =

√
( b
′

2
)2 + (1

2
)2

b′ = 5 g = 9.81
m = 100 ,

and rewriting the system to its corresponding �rst-order system the eigenvalues can be calcu-
lated as a function of I3. From these eigenvalues, the analytical value for the moment of inertia
I3 can be compared to the one found using the above linearization (again using the period of
oscillation from the numerical solution):

I3analytical = 52.0833 ,

I3lin = 52.1033 .

Summarizing all of the three results from the linearizations:

I1 I2 I3
Analytical 260.4167 208.333 52.0833
Linearization 259.2135 201.8223 52.1033

Table 7.1.1: Comparison analytical and approximated values for moments of inertia
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Having all approximations side-by-side, it is clear that the approximations for I1, I3 are more
accurate than the one for I2. This is caused by the fact that the movement along the b2-axis
is signi�cantly in�uenced by the mass of the object. Therefore, the e�ect of the moment of
inertia along this axis is less compared to the other axis, and as a result the approximation of
the moment of inertia is less accurate.

7.2 Tensional forces

For practical reasons of conducting experiments with a bi�lar pendulum, one can be interested
in the tensional forces in the suspension wires. First, a derivation for the tensional forces will
be derived for a situation in which the suspension wires are symmetric along the vertical line
through the center of mass of the object. For some torsional motions of the bi�lar pendulum
this derivation su�ces. However, to be able to calculate the tensional forces in an arbitrary
con�guration, a derivation will also be presented which does not assume symmetric suspension
wires.

To calculate the tensional forces when assuming symmetry, equation (5.1.18) for the acceleration
of the center of mass in the earth-�xed reference frame can be used:

2F3 = −m a3 −m g ,

where F3 is the vertical component of the tensional force along the earth-�xed axis n3 and a3 is
the third component of

[
aR
∗]
N
. The factor 2 results from the assumption of symmetry. From

the constraint function of the bi�lar pendulum it follows that:

[
−−→
BC]N =

l sin(θ2) cos(θ3)l sin(θ2) sin(θ3)
−l cos(θ2)

 .

However, the tensional force works in the opposite direction
−−→
CB:

[
−−→
CB]N =

−l sin(θ2) cos(θ3)−l sin(θ2) sin(θ3)
l cos(θ2)

 .

As a result, the tensional force Ft can be decomposed into its vertical component only using
angle θ2:

2 cos(θ2) Ft = −m a3 −m g .

When calculating the tensional forces, it is assumed that the movement of the bi�lar pendulum
is symmetric along the vertical line through the center of mass of the suspended object. As a
result, the two tensional forces are of same magnitude. From this the tensional force in one
suspension wire follows as:

Ft =
−m a3 −m g

2 cos(θ2)
.

For an object with mass of 100 kilograms, the gravitational force is 981 Newton. This same
force, only with opposite direction, should hold in the vertical component of the suspension
wires while at rest. Calculating the tensional force in one of the suspension wires while the
bi�lar pendulum is at rest, θ = [0, π

6
, π
2
, 0, 0]T , yields:
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Figure 7.2.1: The tensional force in one suspension wire while at rest for a mass of 100 kilograms

In the above �gure it can be seen that the tensional force remains constant at a little over
−566 Newton, where the minus sign originates from it being in opposite direction of gravity.
Calculating the vertical component of this force by multiplying it with cos(θ2) yields −490.5
Newton, which is exactly half of the gravitational force, as expected (θ2 =

π
6
).

To illustrate what happens with the tensional forces when the bi�lar pendulum is in movement,
θ4 will be given an initial angle of

π
12
after which torsional rotation along the vertical line through

the center of mass ensues. The �gure below displays the time development of the tensional force
Ft as well as the angles θ2, θ4. Note that the the angles θ2, θ4 have been added to the �gure to
illustrate how the tensional force behaves compared to these angles. The units on the vertical
axis only apply to the tensional force, θ2, θ4 have been scaled and translated since only their
shape is of interest in this �gure.

Figure 7.2.2: The tensional force in one suspension wire while rotating along the vertical axis
through the center of mass

One can expect that the tensional forces are greatest when the object goes through its stationary
point where the objects velocity will be greatest, and smallest at the extremes of the movement.
This follows from the �gure, as Ft is greatest (in absolute sense) when θ2 is smallest and the
force is smallest for the extremes of θ4. Furthermore, it is also important to notice that the
tensional force never reaches 0, which means that the suspension wires stay taut.
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Knowing the tensional force Ft makes it possible to reconstruct the moments of inertia by using
Euler's equation for rigid bodies:

I · [α]B + [ω]B × (I · [ω]B) = [M]B , (7.2.1)

where again I is a diagonal matrix containing the moments of inertia I1, I2, I3 and [α]B, [ω]B
are the angular velocity and -acceleration with respect to the body-�xed axes b1,b2,b3.

Since the tensional force Ft is known, the torque vector M can be determined by using:

M = r× Ft ⇐⇒
= Nb

n (θ)[r]B × Ft ,

where Ft is a tensional force [r]B is the vector connecting the point of force application and
the center of the axes of rotation, which is the center of mass R∗. It then follows from M =
N b
n(θ)[M]B that Euler's equations becomes:

I · [α]B + [ω]B × (I · [ω]B) = Nn
b (θ)

(
Nb

n (θ)[r]B × Ft

)
. (7.2.2)

The only unknowns remaining in Euler's equation are the moments of inertia I1, I2, I3, and
because there are 3 equations with equal unknowns, it can be solved for I1, I2, I3. Evaluating
the left-hand side for the analytical values of the moments of inertia I1, I2, I3 of a solid plate
and calculating the right-hand side of the equation from the numerical solution in which the 1
meter thick plate was given was given an initial angle θ4 of

π
12

for numerical timestep i = 5:

LHS RHS
610.55 611.97

−3.5003 · 10−4 −1.4786 · 10−6
−1.064 · 10−4 1.0291 · 10−6

and for timestep i = 900:
LHS RHS
−612.10 −612.33
4.30 · 10−2 1.1257
−5.1774 · 10−2 3.4258 · 10−2

At the beginning of the numerical solution, the two sides of equation (7.2.2) are almost equal.
However, after 900 timesteps, especially the torque around the b2-axis is inaccurate. This can
be explained by considering the movement from which these torques were derived. An initial
angle was given to θ4 which mainly ensues a torsional motion of the pendulum along its vertical
axis, b1. As a result of the center of mass not being on the line between the attachment points
the pendulum will have some rotation along the axis along the length of the object, b3. How-
ever, the object will have nearly no rotation along its last axis, b2. Because of this dominance
of the rotation along b1 the moment of inertia about this axis will have the highest accuracy,
and the axes along which the rotation is less signi�cant will result in moments of inertia with
a lower accuracy.

Equation (7.2.2) can also the other-way around as to which is mentioned above; for known
moments of inertia I1, I2, I3 it can be used to �nd the components of the tensional force Ft.

Now, instead of considering a case in which the suspension wires are symmetric along the
vertical line, a derivation for the tensional forces will be given for arbitrary positions of the
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suspension wires. To this extend, let F 1, F 2 be the tensional forces in the suspension wires
BC,DA respectively. The force-vectors then are:

F 1
t = F 1 ĈB ,

F 2
t = F 2 D̂A .

Here ĈB, D̂A are the normalized vectors
−−→
CB,

−−→
DA from section 5.1. Using Newton's second

law of motion then obtains:

F 1 ĈB+ F 2 D̂A+ Fz n3 = −m
[
aR
∗]
N
.

This is a system of three equations with only two unknowns: F 1, F 2. Because the system
is overdetermined, it is su�cient to use two of the three equations to calculate F 1, F 2. To
demonstrate the above procedure, consider a con�guration with unequal suspension wire lengths
as shown in the �gure below:

Figure 7.2.3: Non-symmetric con�guration for tensional force calculation

Since, the con�guration is not symmetric, the bi�lar pendulum will ensue moving. The time-
development of this movement can be seen in the �gure below.

Figure 7.2.4: Time-development of non-symmetric con�guration (100 kilogram object)

This movement is similar to the one seen when linearizing the movement of the bi�lar pendulum
along the b2-axis. For this numerical solution, the tensional forces can be calculated using the
above described method. Doing so yields the tensional forces F 1, F 2:
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Figure 7.2.5: Tensional forces for non-symmetric con�guration

The fact that these two tensional forces have alternating peaks is in correspondence with expec-
tations. Since the object is tilting about the axis perpendicular to CD, in the extreme positions
the tensional force will be greatest in the wire which has the lowest attachment point. Since
this alternates between the two wires, so do their peaks, which also follows from the �gure.
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8. Solar Boat

In this section, all of the knowledge gathered concerning the bi�lar pendulum will be applied
to the Solar Boat. For practical reasons when wanting to conduct the actual experiment with
the Solar Boat, several points are of interest before starting the experiment. These are:

• How much height is needed such that the Solar Boat will not hit the �oor.

• What are the tensional forces the Solar Boat will undergo during its motion?

• How does the suspension of the Solar Boat in�uence the movement?

• How does one determine the period of oscillation during the experiment?

This section will try to answer these questions, as well as calculate approximations for mo-
ments of inertia of the Solar Boat using the numerical solutions and by using a geometric
approximation of the boat.

8.1 Geometric model

As mentioned earlier, to determinate the moments of inertia of an object one can approximate
the objects' shape with basic geometries. From this approximation, an estimate for the moments
of inertia can be calculated. In an earlier bachelor project, this approximation was done for the
Solar Boat. A list of the boat's components and the corresponding approximating geometry is
found below.

Part of boat Approximation geometry
Hull Hollow cylinder
Solar deck Plate
Battery Sphere
Cockpit Hollow sphere
Additional electric Sphere
Front & rear wing Beam
Pilot Cylinder

Table 8.1.1: Geometric approximation of the Solar Boat

Note that the pilot is also taken into account in this approximation.

The exterior of what this approximation looks like is shown in the �gure below. Note that some
of the electrical components and the pilot, which are mainly located inside the hull (cylinder)
are not shown.
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To compare the approximation with the actual design, a picture is added of the Solar Boat.

Comparing both �gures, it is easy to see that the boat is very coarsely approximated, which will
have as a consequence that the calculated moments of inertia of the boat have a low accuracy.
In order to calculate the moments of inertia of the model, the moments of inertia of each of the
individual components have to be calculated. For each of the basic geometries the moments of
inertia are known analytically. After determining the center of mass of all these components
by using:

rCM =

∑
imiri
M

,
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these moments of inertia were then used with the Parallel Axis Theorem to calculate the three
moments of inertia of each geometry along the principle axis of the boat. The sum of all these
moments of inertia then yields the desired moments of inertia of the model:

I1 = 317.278 ,

I2 = 317.154 ,

I3 = 83.143 .

It is important to note that the center of mass of this model lies only 20.5 centimeters below
the solar deck. This is the result of the pilots weight being nearly 44% of the total weight
and it being close to the solar deck. Since the vertical distance between the attachment points
(solar deck) and the center of mass is relatively small, torsional movements of the boat will be
accompanied with little tilting due to small lever arm of the forces causing tilting.

8.2 Suspension

There are numerous ways in which the solar boat can be attached to the bi�lar pendulum,
when not considering the constraint of the solar deck of the boat which prevents suspension
on arbitrary positions. Three con�gurations of the suspended boat will be considered in this
section. For each con�guration, the suspension wires are attached to line CD, see �gure 5.1.1.
The di�erence between the con�gurations is distance from the attachment points to the edges
of the deck:

Con�guration 1: Attachment points at either ends of line CD
Con�guration 2: Attachment points 0.5 meter from either ends of line CD
Con�guration 3: Attachment points 1 meter from either ends of line CD

Table 8.2.1: Suspension of the Solar Boat

Since the attachment points A and B on the ceiling are most likely �xed in practical applica-
tions, it is assumed that this distance b between these points is equal in all three con�gurations.
Furthermore, it is assumed that when performing the actual measurements, only one length of
suspension wires is available, and thus equal in each con�guration. A side-view of the station-
ary positions of all three con�gurations is shown in the �gure below (only the deck of the solar
boat is shown).
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Figure 8.2.1: Side-view of the stationary positions of the Solar Boat (only deck is shown)

Each of these con�gurations will be used for each linearization from section 7.1. From the
numerical solutions of each case, a comparison can be made as to which con�guration yields a
most accurate estimate for the moment of inertia about the respective axis.

8.3 Motion of con�gurations

First, all three con�gurations will be looked at for the torsional motion to determine an estimate
for I1. The three con�gurations will be given an equal initial angle in θ4 of π

80
such that a

torsional movement ensues. The numerical solution for con�guration 2 for this con�gurations
is shown in the �gure below.

Figure 8.3.1: Rotation of the Solar boat along the b1-axis for con�guration 2

The results for the other two con�gurations are similar, only the periods of the solutions are
di�erent. From each of these numerical solutions, an estimate can be found for the moment of
inertia I1, where from the geometric approximation it holds that I1 = 317.278. The estimates
for the three con�gurations are:
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Estimate
Con�guration 1 I1 − 11.49
Con�guration 2 I1 + 25.05
Con�guration 3 I1 + 34.68

Table 8.3.1: Estimates for I1 for the di�erent con�gurations

As mentioned earlier, the torsional motion will be accompanied with little tilting of the object
due to the location of the center of mass. To motivate this, the time-development of this tilting,
θ1, is plotted for all three con�gurations with initial angle θ4 = π

12
. This yields the following

�gure:

Figure 8.3.2: Tilting of the Solar Boat for each con�guration

From this �gure it can be concluded that, even though the tilting occurs for all three con�g-
urations, it remains insigni�cant compared to the torsional movement of θ4, which oscillates
between its initial value and its negative value: π

12
,− π

12
. Because there is almost no tilting for

either of the con�gurations, the height required for the actual experiment is fractionally larger
than the height required to suspend the boat in stationary position: l cos(θ2(0)) + hboat. The
minimal height should be taken slightly larger than this to allow for the, even though insignif-
icant, tilting.

Secondly, all three con�gurations will be looked at for the second linearization from section
7.1. Again, θ2 will be given an initial angle of θ2(0) +

π
80
, where θ2(0) is θ2's stationary angle

(which can be derived from �gure 8.1). The numerical solution of this motion is shown below
for con�guration 1:
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Figure 8.3.3: Rotation of the Solar boat along the b2-axis for con�guration 1

The estimates for the moment of inertia I2 which can be derived from these numerical solutions
for all three con�gurations are shown below:

Estimate
Con�guration 1 I2 + 11.95
Con�guration 2 I2 − 86.39
Con�guration 3 I2 − 132.80

Table 8.3.2: Estimates for I2 for the di�erent con�gurations

Lastly, the three con�gurations will be looked at for the third linearization from section 7.1. To
ensue rotation along the b1-axis, θ1 will be given an initial angle of π

80
. The numerical solution

for con�guration 3 is shown below.

Figure 8.3.4: Rotation of the Solar boat along the b3-axis for con�guration 3
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The estimates for the moment of inertia I2 which can be derived from these numerical solutions
for all three con�gurations are shown below:

Estimate
Con�guration 1 I3 − 0.162
Con�guration 2 I3 − 0.162
Con�guration 3 I3 − 0.162

Table 8.3.3: Estimates for I3 for the di�erent con�gurations

The fact that each con�guration yields the exact same estimate for I3 is not surprising, since
the suspension wires have no in�uence on this rotation of the boat along the b3-axis as long as
the attachment points remain on the line CD.

For each linearization, the estimates for the moments of inertia are determined for all three
con�gurations of the suspended solar boat. Summarizing these results in table results in:

Estimate I1 I2 I3
Con�guration 1 I1 − 11.49 I2 + 11.95 I3 − 0.162
Con�guration 2 I1 + 25.05 I2 − 86.39 I3 − 0.162
Con�guration 3 I1 + 34.68 I2 − 132.80 I3 − 0.162

Table 8.3.4: The estimates for all moments of inertia for all three con�gurations

From this table, it is immediately clear that con�guration 1 results in the best estimates for
all three moments of inertia. Therefore, it is recommended to use this con�guration when per-
forming measurements with the Solar boat.

To use the period of oscillation of the actual experiment instead of the one from the numerical
solution in the calculations for the moments of inertia in the linearizations, a methodology is
needed to measure these periods. To measure the period of the bi�lar pendulum, one can mark
a single point on the surface of the boat with some high visibility tape. Examples of these
points could be: attachment point C for measuring the periods of θ2, θ4, θ5 or a point on one
of the edges of the solar deck to measure the period of θ1. The length of several periods could
then be measured starting and ending when the point goes through its stationary position.
Measuring several periods in one measurement decreases the in�uence of human error in the
measurement. The obtained periods of oscillation with this method could then be used in the
linearizations to approximate the moments of inertia.

8.4 Tensional forces

For the torsional motion, all three of the con�gurations are given the same initial angle θ4(0) =
π
12

and the di�erence in tilting has been observed in the previous section. In order to be able
to perform the actual experiment, it is mandatory to know how much force will be applied to
the attachment points on the ceiling, but more importantly on the fragile solar panels of the
Solar Boat. The derivations presented in section 7.2 can be used to calculate these tensional
forces. Since the considered con�gurations of the Solar Boat are symmetric, either of the two
derivations for the tensional forces can be used: the one considering symmetry or the one
without this assumption (since symmetry is a special situation of this general case). Using the
general case to calculate the tensional forces in all three con�gurations yields:
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Figure 8.4.1: Tensional forces for three con�gurations of the Solar Boat

The horizontal lines are the tensional forces in the con�guration while the Solar boat is station-
ary. From the �gure above it follows that the tensional forces increase as the attachment points
of the solar boat come closer to each other. This results from the fact that the suspension wires
become increasingly horizontal as the attachment points on the Solar boat come closer to each
other. As a result, the tensional force in these directions has to become larger such that the
vertical component of these forces remain equal. The same holds in the other two linearized
cases, where the tensional forces will be largest for the con�gurations with attachment points
close together as a result of this. Therefore, if the strength of the solar deck is a limiting factor
and the strains on it want to be kept at a minimum, the attachment points have to be kept as
far apart as possible. It can therefore be concluded that con�guration 1 is to be preferred over
the other two, since it results in the most accurate estimates for the moments of inertia and
causes the least amount of strain on the solar deck.

Now, to summarize all of the above and answer the questions posed at the beginning of this
section:

• The height needed for the experiment is almost solely determined by the stationary po-
sition of the con�guration. Since there is virtually no tilting and only small angles are
considered in the linearizations, only a minimal extra clearance is needed for the boat not
to hit the �oor.

• The tensional forces depend on the con�guration, and increase as the attachment points
are closer together. Therefore, if the strain on the deck is wanted to be kept at a minimum,
the attachment points have to be as far apart as possible. Furthermore, a con�guration
which has its attachment points far apart results in the most accurate estimates for the
moments of inertia.

• The suspension of the boat has almost no in�uence on the motion of the boat. The tilting
increases as the attachment points are further apart, however they remain insigni�cant
compared to other oscillations due to the location of the center of mass (which is almost
located on the line CD between the attachment points). In the two other motions which
were considered in the linearization, only the period of the solution changed with the
con�guration and not its general behaviour.
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• A methodology was presented to measure the periods of oscillation. This involves marking
points on exterior of the boat and measuring several periods at once, to eliminate the
human error as much as possible. The measured periods of oscillation could then be
used in the linearizations of the equations of motion to calculate approximations of the
moments of inertia.
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9. Conclusion & Discussion

The full non-linear model for the bi�lar pendulum has been derived and is presented in a struc-
tured way. The correctness of the model has been veri�ed by comparing the numerical solutions
of certain modes of oscillation to analogous models for which the solutions are known. These
modes include: side-sway which could be compared to a planar pendulum and the torsional
movement which was compared to the adjusted Lagrange's model. Another indication used to
verify the model was by evaluating the constraint equation of the bi�lar pendulum for the nu-
merical solutions. Lastly, a example case presented in Kane's paper involving a suspended solid
cylinder was evaluated, and the results obtained were the same as those presented in Kane's
paper. All these veri�cations imply that the structured derivation of the non-linear model has
been correctly modelled.

The project did not succeed in quantitatively predicting the accuracy of the moments of inertia.
The system of equations which was obtained was too large to analytically work with. It was
even impossible to invert the mass matrix M5 to obtain the di�erential equations in their usual
form y′ = Ay because of its size. However, three di�erent con�gurations of the suspended Solar
Boat have been considered. From the comparison of the estimates for the moments of inertia,
it was concluded that a con�guration which has its attachment points as far apart as possible
results in the most accurate approximations for the moments of inertia.

Furthermore, it was concluded that the suspension of the solar boat has little in�uence on its
movement. This results from the fact that the center of mass of the boat (including pilot) lies
very close under the line connecting the attachment points. As a result, very little parasitic
tilting occurs which could disturb the purely rotational motions of the bi�lar pendulum. It
turned out, that the tilting is of such a low order that it is of almost no signi�cance to the
motion of the Solar Boat.

To use the bi�lar pendulum to obtain approximations for the moments of inertia, the equa-
tions of motion have been linearized around a stationary position. By each time considering
movements of the bi�lar pendulum along only one of the principle axes, the system could be
reduced to a system of two linear second-order di�erential equations. Rewriting this system
to a system of four �rst-order di�erential equations, the eigenvalues for the problem could be
determined, which were a function of the con�guration parameters and the moment of inertia
along the corresponding axis. These eigenvalues could then be used in combination with the
period of the numerical solution to obtain estimates for the moment of inertia. From this it
was concluded that the estimate for the moment of inertia I2 was signi�cantly less accurate
than those along the other two axes. This procedure was then applied to geometric approxi-
mation of the solar boat to obtain estimates for the moments of inertia of this approximation.
Furthermore, a methodology was presented to measure the periods of oscillations for an actual
experiment with the bi�lar pendulum. This involves marking speci�c points on the exterior
of the boat, and tracking these for several periods at a time to minimize human error in the
time measurements. The periods found using this method can be used in the linearizations to
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calculate approximations of the moments of inertia along the principle axis of the Solar Boat.
These experiments have, unfortunately, not been performed in this project.

While working on the linearization, a limitation of this particular choice of coordinates to de-
scribe the system was encountered. With the current choice of coordinates it is impossible to
analyze the behaviour of a single coordinate, since every movement of the object involves at
least change in two coordinates (with the exception of θ1 for an in�nitely thin object). As a
result, the eigenvalues in the linearization for the torsional movement did not simplify to the
point that the expressions found for the moment of inertia along that vertical axis was equal
to the one found in Lagrange's model. With a choice of coordinates in which it is possible to
evaluate con�gurations in which only one coordinate plays a role, this might have been possible.

Finally, for practical reasons, the tensional forces in the suspension wires have been determined.
First these were calculated for con�gurations which are symmetric, such that the suspension
wires are line symmetric along the vertical line through the center of mass. It was found that
the tensional forces show expected behaviour: the forces are smallest when the bi�lar pendulum
is at its extreme positions and largest when going through its stationary position. Once the
tensional forces are known, Euler's equation was used to �nd estimates for the moments of
inertia. From the example considered it was concluded that the axis along which the movement
was dominant provided the best estimate for the respective moment of inertia, and the axis
along which rotation was insigni�cant resulted in less accurate approximations of the moments
of inertia. The assumption of symmetry was then discarded, and using Newton's second law of
motion, a over-determined system of equations was obtained which could be used to calculate
the tensional forces. Using these derivations, the tensional forces could be calculated for several
di�erent con�gurations of the Solar Boat. It turned out that if the strain on the solar deck is
required to be kept at a minimum, the attachment points on the solar deck should be as far
apart as possible.
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10. Appendix A

Example 1: Mono�lar pendulum
For the �rst example, a planar pendulum is considered which moves in a plane as shown in the
�gure below.

Each of the methods (with the exception of the 'smart' Newtonian approach due to its imprac-
ticality discussed earlier) will be used to derive the equations of motion.

• Newtonian Mechanics
Consider the pendulum with unit vectors n1 in the horizontal- and n2 in the vertical
direction (which is chosen to be downwards for convenience):

From this choice of unit vectors, the position of the object can be easily expressed as:

s = x n1 + y n2 ,

where s = s(t), x = x(t), y = y(t).
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The variables x and y are not independent of each other: the constraint imposed by the
suspension wire x2 + y2 = l2 relates them. Taking the time derivative twice yields an
expression for the acceleration:

a = ẍ n1 + ÿ n2 .

In order to use Newton's second law of motion, the tensional force from the suspension
wire is decomposed in components along the two prede�ned axes.

From this simple geometry it immediately follows that the tensional force Fc can be
decomposed in Fc,x and Fc,y as follows:

Fc,x = −Fc sin(θ)n1 ,

Fc,y = −Fc cos(θ)n2 .

Filling in the above in Newton's second law of motion yields:

m a =
∑
i

Fi ⇐⇒

m(ẍ n1 + ÿ n2) = mg n2 − Fc cos(θ) n2 − Fc sin(θ) n1 ⇐⇒
= (mg − Fc cos(θ)) n2 − Fc sin(θ) n1 .

For both n1- and n2-components of this equation equality should hold. Therefore, it
follows that:

ẍ = − 1

m
Fc sin(θ) ,

ÿ = g − 1

m
Fc cos(θ) . (10.0.1)
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Equations (10.0.1) are the equations of motion for a planar pendulum. These equations
still have a dependency on θ in them. It follows immediately from the �gure above that
tan(θ) = x

y
. Because θ ∈ (−π

2
, π
2
) it follows that θ can be expressed in the Cartesian

coordinates x and y as: θ = arctan x
y
.

To solve these equations, an additional expression for the tensional force Fc has to be
found. In order to �nd this expression, the gravitational force is decomposed into its
component along the line of the constraint force Fc. From the simple geometry of the
example it follows this component is equal to Fz cos(θ). Using Newton's second law of
motion in this centripetal direction, where pointing towards the rotational center of the
pendulum is de�ned to be positive, yields the following expression:

Fc + Fz,x = mac ,

where Fz,x = −Fz cos(θ) and ac is the centripetal acceleration which is known to be:

ac =
v2

l
=

(ωl)2

l
= ω2l = θ̇2l .

Substitution and rearrangement of terms leads to:

Fc = mg cos(θ) +mθ̇2l . (10.0.2)

To substitute θ̇ out, the expression tan(θ) = x
y
is di�erentiated once with respect to time

to yield:

d

dt
tan(θ) =

d

dt

(
x

y

)
⇐⇒

cos2(θ)θ̇ + sin2(θ)θ̇

cos2(θ)
=

yẋ− xẏ
y2

⇐⇒

θ̇ =
(yẋ− xẏ)

y2
cos2(θ) =

(yẋ− xẏ)
y2

cos2
(
arctan

x

y

)
Substituting this equality into the constraint force equation (10.0.2) leads to:

Fc = mg cos

(
arctan

x

y

)
+m

(
(yẋ− xẏ)

y2
cos2

(
arctan

x

y

))2

l

This constraint equation together with the two equations from equation (10.0.1) form the
equations of motion for a planar pendulum:

ẍ = − 1

m
Fc sin

(
arctan

x

y

)
,

ÿ = g − 1

m
Fc cos

(
arctan

x

y

)
, (10.0.3)

Fc = mg cos

(
arctan

x

y

)
+m

(
(yẋ− xẏ)

y2
cos2

(
arctan

x

y

))2

l .

These equations can be further simpli�ed by de�ning φ = arctan x
y
. Taking the tangent

on both sides of the equation obtains tan(φ) = x
y
. This equation represents a right-angled

triangle with angle φ, opposite side of length x and adjacent side of length y as shown in
the �gure below.

81



From this �gure it is immediately obvious that:

sin(φ) = sin

(
arctan

x

y

)
=

x√
x2 + y2

,

cos(φ) = cos

(
arctan

x

y

)
=

y√
x2 + y2

.

Substitution of these simpli�cations into equations (10.0.3) yields:

ẍ = − 1

m
Fc

x√
x2 + y2

,

ÿ = g − 1

m
Fc

y√
x2 + y2

, (10.0.4)

Fc = mg
y√

x2 + y2
+m

(
yẋ− xẏ
x2 + y2

)2

l .

Now, the equation for the constraint force Fc can be substituted into the second-order
di�erential equations for ẍ, ÿ to obtain the equations of motion for the planar pendulum:

ẍ = −

(
g

y√
x2 + y2

+

(
yẋ− xẏ
x2 + y2

)2

l

)
x√

x2 + y2

ÿ = g −

(
g

y√
x2 + y2

+

(
yẋ− xẏ
x2 + y2

)2

l

)
y√

x2 + y2
(10.0.5)

The advantage of using Newtonian mechanics is that the formulation of the equations of
motion remains very close to the geometric nature of the problem by only using Newton's
second law of motion. As a result, it is easier to understand what is happening in the
derivation of the equations of motion. However, from the above derivation of the equations
of motion it is clear that, with this method, the constraint does not conveniently reduce
the complexity of the problem, and as a result the equations of motion form a complex
system for a relatively easy problem. Since the geometry of the bi�lar pendulum and its
constraints will be signi�cantly more di�cult than the planar pendulum, this method will
not be used in the example with the spherical pendulum or used for the bi�lar pendulum.

• Lagrangian Mechanics
To determine the Lagrangian for this system the kinetic energy T and the potential energy
V of the system have to be determined.
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Since this system involves rotational movement, it is convenient to use polar coordinates:

x = l cos(θ) ,

y = l sin(θ) .

In Cartesian coordinates kinetic energy is de�ned by T = 1
2
mv2. Since the size of the

tangential velocity v can be written as the product of the radius and angular velocity ,
lθ̇, an alternate expression for the kinetic energy is:

T =
1

2
m(lθ̇)2.

For the potential energy the Cartesian expression is V = mgh. Choosing the rotational
axis of the pendulum as reference point, it follows that the height h can be written as
−l cos(θ). The potential energy therefore becomes:

V = −mgl cos(θ).

Therefore, the Lagrangian of the 2-dimensional pendulum is given by:

L =
1

2
ml2θ̇2 +mgl cos(θ).

Lagrange's equation (4.3.16) is now used to derive the equation of motion using the
expression of the Lagrangian above. Substitution of the Lagrangian into Langrange's
equation and rearrangement of the terms yields:

θ̈(t) = −g
l
sin(θ(t)) (10.0.6)

the equation of motion for a planar pendulum.

It is immediately clear that this formulation of the equation of motion is signi�cantly
less complex than those obtained when using classical Newtonian mechanics as described
previously. This formulation is also easier to obtain, since the only thing remaining once
the kinetic- and potential energy are known, is taking derivatives. Furthermore, the
constraint forces of the system do not have to be taken into consideration, except for the
choice of coordinates (which have to be consistent with the constraints).

• Kane's Method
Consider the mono�lar pendulum with point mass P as shown below.
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Since the velocity and acceleration of point P are most conveniently expressed with respect
to body-�xed unit vectors two sets of axes are de�ned: a earth-�xed set {n1,n2,n3} and
a body-�xed set {b1,b2,b3}. The vectors n3,b3 are also de�ned because the vector for
angular velocity is perpendicular to the plane of rotation. These vectors are not displayed
in the �gure above since they point out of the paper. The set {b1,b2,b3} is obtained by
rotating the set {n1,n2,n3} counter-clockwise through an angle θ about the rotational
point. The corresponding rotation matrix can be used to express the vectors {b1,b2,b3}
in terms of the vectors {n1,n2,n3}:

b1 b2 b3

n1 cos(θ) − sin(θ) 0
n2 sin(θ) cos(θ) 0
n3 0 0 1

Since there is only one degree of freedom for particle P , only one generalized coordinate
has to be chosen. This generalized coordinate q1 is chosen as the angle the pendulum
makes with the stationary position, and the generalized velocity u1 is its time derivative.
It holds that q1 = θ(t), u1 = θ̇(t).
In order to use Kane's equation as in equation (4.4.6), expressions for ∂v

∂θ̇
and ∂ω

∂θ̇
have to

be found. Per de�nition it holds that q̇1 = θ̇. Therefore it is su�cient to �nd expressions
for v and ω. These expressions can then be di�erentiated with respect to θ̇ to �nd
expressions for ∂v

∂θ̇
and ∂ω

∂θ̇
.

The size of the tangential velocity v of P is given by the product of the angular velocity
ω and the radial distance r. With the choice of unit vectors {b1,b2,b3} it follows that:

v = ω × r

= (θ̇b3)× (−lb2)

= θ̇lb1 .

Taking the time derivative of v results in the acceleration a of P:

a =
d

dt
v ⇐⇒

=
d

dt

(
θ̇lb1

)
⇐⇒

=
d

dt

(
θ̇l(cos(θ)n1 + sin(θ)n2)

)
⇐⇒

= θ̈l(cos(θ)n1 + sin(θ)n2 + θ̇2l(− sin(θ)n1 + cos(θ)n2)) ⇐⇒
= θ̈lb1 + θ̇2lb2 .

Taking the partial derivative with respect to θ̇ yields the partial velocities v1 and ω1:

v1 =
∂v

∂θ̇
= lb1 = l (cos(θ)n1 + sin(θ)n2) ,

ω1 =
∂ω

∂θ̇
= b3 = n3 .

Kane's equation can be assembled by calculating the generalized active force F1 and the
generalized inertia force F ∗1 (r = 1, since there is only one generalized coordinate). It
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follows that:

F1 = Fz · v1 +T · ω1 = −mgn2 · lb1 ⇐⇒
= −mgn2 · l (cos(θ)n1 + sin(θ)n2) = −mglsin(θ) ,

F ∗1 = −ma · v1 −
(
α1 ·

~~I + ω1 ×
~~I · ω1

)
· ω1 ⇐⇒

= −m
(
θ̈lb1 + θ̇2lb2

)
· lb1 = −ml2θ̈ .

Both the second terms in the equations for F1, F
∗
1 disappear since this example considers

a point mass which has a moment of inertia of 0 along all principle axes, I = 0, and the
torque T = 0 since all forces work along a line through the center of mass of P .

Assembling Kane's equation, F1 + F ∗1 = 0 thus yields:

−mlg sin(θ)−mL2θ̈ = 0 ,

from which the equation of motion follows directly:

θ̈(t) = −g
l
sin(θ(t)) (10.0.7)

This equation is the same as obtained with the method using Lagrangian mechanics.

• Numerical Solution
The equations of motion found with the above methods, will now solved numerically
using a computer. The formulation of the equation of motion found with the Lagrangian-
and Kane's method is used for this simulation since these are most conveniently solved.
Since this equation of motion is a second-order di�erential equation, two initial conditions
have to be speci�ed in order to solve it; θ(0) and θ̇(0). Choosing θ(0) = 0 and θ̇(0) ∈
{0.5, 1.5, 2.5, 3.0}, setting l = 5 and solving for t ∈ [0, 100] gives the following �gures:

In the simulations, the object attached to the pendulum is considered a point mass with
no dimensions.
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(a) θ̇(0) = 0.5 (b) θ̇(0) = 1.5

(c) θ̇(0) = 2.5 (d) θ̇(0) = 3.0

Figure 10.0.1: Planar pendulum simulation with 0-dimensional object

86



11. Appendix B

Equation (5.1.3):

β1(θ) = 0

β2(θ) =
l

b′
(c2c3(

l

b′
s2c3 + s4c5) + c2s3(−

b

b′
+
l

b′
s2s3 + c4c5) + s2(−

l

b′
c2 + s5))

β3(θ) =
l

b′
(−s2s3(

l

b′
s2c3 + s4c5) + s2c3(−

b

b′
+
l

b′
s2s3 + c4c5))

β4(θ) = c4c5(
l

b′
s2c3 + s4c5)− s4c5(−

b

b′
+
l

b′
s2s3 + c4c5)

β5(θ) = s4s5(
l

b′
s2c3 + s4c5) + c4s5(−

b

b′
+
l

b′
s2s3 + c4c5)− c5(−

l

b′
c2 + s5) .

Equation (5.1.4):

θ̇5 =

(
−I45 β(θ)
eT5 β(θ)

)T
I45 θ̇ .

De�ne: γ(θ) = −I45 β(θ)
eT5 β(θ)

.

θ̇5 = γ
T (θ) I45 θ̇ .

Equation (5.1.5):

N ñ
n (θ) =

 s1c4 + c1s4s5 c1c4 − s1s4s5 −s4c5
−s1s4 + c1c4s5 −c1s4 − s1c4s5 −c4c5
−c1c5 s1c5 −s5

 .

Equation (5.1.7):

Nb
ñ(θ) ·N ñ

n (θ) = Nb
n (θ)

Equation (5.1.9):

S145 =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,

such that

S145 θ̇ =

θ̇1θ̇4
θ̇5

 .
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Equation (5.1.11): The transformation between the bases N and B has been de�ned as:

B = Nb
n (θ)N = Nb

n (θ)N ,

using that N = I3. From this it follows that:

B [ω]B = N [ω]N ⇐⇒
[ω]B = B−1 N [ω]N ⇐⇒

=
(
Nb

n (θ)
)−1

N [ω]N ⇐⇒

=
(
Nb

n (θ)
)−1

[ω]N ⇐⇒
:= Nn

b (θ) [ω]N ⇐⇒

Equation (5.1.17):

V (θ) =

v11 · · · v15
... · · · ...
v31 · · · v35

 ,

where:

v11 = rsλ(c1c4 − s1s4s5)
v12 = lc2c3

v13 = −ls2s3
v14 = r(sλ(−s1s4 + c1c4s5) + cλc4c5)

v15 = r(−cλs4s5 + sλc1s4c5)

v21 = −rsλ(c1s4 + s1c4s5)

v22 = lc2s3

v23 = ls2c3

v24 = −r(sλs4c5 + sλ(s1c4 + c1s4s5))

v25 = r(sλc1c4c5 − cλc4s5)
v31 = rsλs1c5

v32 = ls2

v33 = 0

v34 = 0

v35 = r(cλc5 + sλc1s5)

Equation (5.1.18):

V̇ (θ) =
d

dt
V (θ) =

v̇11 · · · v̇15
... · · · ...
v̇31 · · · v̇35

 ,
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where:

v̇11 = −rsλ((s1c4 + c1s4s5)θ̇1 + (c1s4 + s1c4s5)θ̇4 + s1s4c5θ̇5)

v̇12 = −l(s2c3θ̇2 + c2 + s3θ̇3)

v̇13 = −l(c2s3θ̇2 + s2c3θ̇3)

v̇14 = r(−sλ(c1s4 + s1c4s5)θ̇1 − (sλs1c4 + sλc1s4s5 + cλs4c5)θ̇4 + (sλc1c4c5 − cλc4s5)θ̇5)
v̇15 = r(−sλs1s4c5θ̇1 + (sλc1c5 − cλs5)c4θ̇4 − (cλs4c5 + sλc1s4s5)θ̇5)

v̇21 = −rsλ((c1c4s5 − s1s4)θ̇1 + (c1c4 − s1s4s5)θ̇4 + s1c4c5θ̇5)

v̇22 = l(−s2s3θ̇2 + c2c3θ̇3)

v̇23 = l(c2c3θ̇2 − s2s3θ̇3)
v̇24 = −r(sλ(c1c4 − s1s4s5)θ̇1 + (cλc4c5 − sλs1s4 + sλc1c4s5)θ̇4 + (sλc1s4c5 − cλs4s5)θ̇5)
v̇25 = r(−sλs1c4c5θ̇1 + (cλs5 − sλc1c5)s4θ̇4 − (sλc1c4s5 + cλc4c5)θ̇5)

v̇31 = rsλ(c1c5θ̇1 − s1s5θ̇5)
v̇32 = lc2θ̇2

v̇33 = 0

v̇34 = 0

v̇35 = r(−sλs1s5θ̇1 + (sλc1c5 − cλs5)θ̇5)

Equation (5.1.25):

T = B [T]B = Nb
n (θ) [T]B ,

where from Euler's equation it follows [T]B can be determined by:

[T]B = − (I [α]B + [ω]B × (I [ω]B)) .

Solving equation (5.2.13) numerically for initial values θ(0) = 0, θ̇(0) = 1 results in the following
two �gures.

(a) Position at rest (b) Position at maximum angle θ
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