
Next-generation neuromodulator
for epilepsy prevention

Athanasios Karapatis

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

NEXT-GENERATION NEUROMODULATOR
FOR EPILEPSY PREVENTION

by

Athanasios Karapatis

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Engineering

at the Delft University of Technology,
to be defended publicly on Monday July 13, 2015 at 13:30.

Thesis committee:
Advisor: Dr. ir. C. Strydis, Erasmus MC, Neuroscience Department
Advisor: Dr. ir. W. A. Serdijn, TU Delft, Section Bio-electronics
Member: Dr. ir. G. Gaydadjiev, TU Delft, Parallel and Distributed Systems
Member: Dr. F. E. Hoebeek, Erasmus MC, Neuroscience Department
Member: Ir. R. M. Seepers, Erasmus MC, Neuroscience Department

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Closed-loop neurostimulation systems have emerged as a prominent method for treating seizures.
However, most of the proposed solutions do not consider the need for fast (real-time) seizure detec-
tion or their energy overheads, resulting in systems not suitable for wearable or implantable appli-
cations. This thesis describes the design and implementation of a novel closed-loop system that is
capable of real-time seizure detection and suppression, while requiring minimal power and energy
consumption. The proposed system utilizes a complex Morlet wavelet in combination with a thresh-
olding mechanism to detect the presence of ictal-activity in ECoG signals. We evaluate our system in
terms of detection performance (sensitivity, specificity and delay) considering various filter param-
eters, such as the filter order and various (static) detection thresholds. Additionally, we consider the
system’s suitability for implantable applications by evaluating its computational overheads (execution
time, energy consumption) when executed on the SiMS low-power processor. We show that decreas-
ing the filter order results in less accurate detection (sensitivity, specificity), a faster detection (delay),
and less overheads. In addition, we show that we may further improve the detection accuracy and
delay with minimal overheads by considering an input-dependent (adaptive) threshold mechanism.
Furthermore, we show that we can effectively trade-off detection accuracy and energy consumption:
For example, shrinking filter order by 70% results in a decrease in detection accuracy of only 1%, while
allowing us to obtain an improvement in delay by 190 ms (from 710 ms to 520 ms) and in energy
consumption by 70% (from 5.04µJ to 1.51µJ). Compared to related work, we show that we can detect
seizures significantly faster (492 ms, compared to 970 ms) with the same sensitivity (94%) and at a
minimal decrease in specificity of 4.6% (93.60% compared to 98.2%). A prototype implementation of
the closed-loop system has successfully been applied in in-vivo experiments, demonstrating its po-
tential for epilepsy treatment.

iii

Dedicated to my family and friends who believed in me. . .

CONTENTS

Contents viii

List of Figures ix

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Problem statement . 1
1.2 Thesis Objectives . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Absence seizures . 3

2.1.1 Stimulation techniques . 3
2.2 Development platform - BeagleBone White . 4
2.3 SINs Project . 4

2.3.1 IMD Processor Architecture (SiMS) . 5
2.4 Related Work . 6

3 Implementation 9
3.1 Closed-loop system model . 9

3.1.1 Digital module . 9
3.2 Prototype specifications . 14

3.2.1 Analog module. 14
3.2.2 Digital module . 15
3.2.3 In-vivo results . 19

4 Evaluation 21
4.1 Evaluation method . 21

4.1.1 Detection performance . 21
4.1.2 Computational overheads . 25
4.1.3 Detection performance vs. Computational overheads 27

4.2 Detection performance results . 28
4.2.1 Static threshold . 28
4.2.2 Adaptive threshold . 36
4.2.3 Comparison with Related Work . 38

4.3 Computational overheads. 40
4.3.1 Static threshold . 40
4.3.2 Adaptive threshold . 44

4.4 Detection Performance vs. Computational Overheads 45
4.4.1 Pareto front . 45
4.4.2 Battery lifetime vs. Filter performance . 46

vii

viii CONTENTS

5 Conclusions and Future Work 49
5.1 Summary . 49

5.1.1 Thesis Question . 50
5.2 Thesis Contributions . 50
5.3 Future Work. 51

A GUI epilepsy 53

B SiMS Instruction Set 55

C Development platform selection 57

D Tinnnitus treatment prototype 59

Bibliography 65

LIST OF FIGURES

2.1 ElectroCorticoGram where part of the seizure period is zoomed in to illustrate the form
Spike-Wave-Discharges(SWD) . 4

3.1 closed-loop epilepsy detection system overview . 10
3.2 Average wavelet filter’s response for all seizure events, where each seizure-start is aligned

at 1 sec. For illustrative purposes a single seizure is presented. 10
3.3 Discretely sampled impulse response of Complex Morlet at fscale = 7 Hz for the max

effective support of MATLAB®. 11
3.4 Example of an ECoG input (top) and its filter output (bottom) of an ECoG recording,

which contains seizures. Vertical red lines in the ECoG Input mark the seizure periods.
Horizontal orange lines in the Filter Output illustrate the dual thresholding mechanism 12

3.5 Generic of adaptive threshold mechanism presenting how the Upper threshold adapts
in relation to the Filter Output and how the Lower threshold maintains a value close to
the average of non-seizure periods. 12

3.6 Prototype overview . 14
3.7 Schematic of the analog input filter implementation . 14
3.8 Filter precision and response delay trade-off for different truncations 15
3.9 Truncated impulse response for the FIR filter implemented in the prototype (64th order

filter) . 16
3.10 Seizure Detection SW flow chart . 18
3.11 ECoG behavior during optogenetic stimulation during ictal-activity using the close-loop

prototype and suppressing ictal-activity . 19

4.1 Detailed example of static threshold mechanism presenting the detection moment, the
re-enabling of the mechanism and the Detection Delay of a thresholding mechanism. . 23

4.2 Coefficient Window Size and Offset illustration on real component of FIR impulse re-
sponse . 23

4.3 Sensitivity as a function of Upper Threshold Vth,h and Coefficient Window Size 29
4.4 Specificity as a function of Upper Threshold Vth,h and Coefficient Window Size 30
4.5 ADR as a function of Upper Threshold Vth,h and Coefficient Window Size 31
4.6 Detection Delay as a function of Upper Threshold Vth,h and Coefficient Window Size . . 32
4.7 All performance metrics as function of Offset for a fixed window size and selected Thresholds-

Vth,h . 33
4.8 Detection performance using golden standard an SWD annotations 34
4.9 Detection triggering example for a seizure interval vs. SWD interval(<1sec) 35
4.10 Pareto front for Sensitivity, Specificity, and Detection Delay. Highlighted are points that

correspond to various window sizes(S=8,40,229) . 36
4.11 Detection performance as a function of τup and τdown 37
4.12 Instruction mix and execution time as a function of Coefficient Window Size (1 loop it-

eration) . 40
4.13 Instruction mix and execution time as a function of number of channels (1 loop iteration) 41
4.14 Multiplication overhead in clock cycles and in executed instructions 41

ix

x LIST OF FIGURES

4.15 Instruction mix without emulation code . 42
4.16 Memory Requirements . 42
4.17 SiMS execution time for different window sizes for 20MHz clock frequency 43
4.18 Energy consumption in uJ per single loop iteration as function of the Coefficient window

size and the number of Channels . 44
4.19 Battery lifetime in weeks as function of the Coefficient window size and the number of

Channels . 44
4.20 Computational overheads of adaptive threshold mechanism in comparison with static

threshold mechanism for various numbers of Channels 45
4.21 Pareto front from 4 objectives (Sensitivity, Specificity, Delay, Energy), highlighted are

sample window sizes(S=8,40,229) . 46
4.22 Battery lifetime and ADR for different Coefficient Window sizes 47
4.23 Battery and Detection Delay for different Coefficient Window sizes 47

A.1 Host-PC Graphical User Interface to control and control the closed-loop prototype . . . 53

D.1 Overview of the system topology used for the experiments: a computer is using MAT-
LAB to generate the sound stimulus and to provide the user with a GUI. The computer
subsequently connects to the stimulation device which synchronizes the electrical stim-
ulation with the audio signal, which are both delivered to the subject. 59

D.2 Graphical User Interface used to control the synchronized audio/electrical stimulation
system. 60

D.3 Flow chart of the software implementation of the stimulation kernel 61
D.4 Sample measurements of arbitrary waveform generator 62

LIST OF TABLES

2.1 BeagleBone white specifications . 5

4.1 Performance Comparison of various real-time seizure detection systems 38

B.1 SiMS ISA . 55
B.2 SiMS Instruction Formats . 56

C.1 Candidate Development Boards . 58

D.1 Profiling statistics of software implementation stimulation kernel on SiMS processor[1]
with respect to different waveform resolutions (Waveform update-times) 60

xi

ACKNOWLEDGEMENTS

There are many people that contributed to completion of this thesis and for whom I wish to express
my thanks.

First and foremost, I would like to express my very great appreciation to my supervisor, Christos Stry-
dis, for his guidance, his invaluable advice, and even for our long disagreements, from which I learned
a great deal. I would also like to offer thanks to Robert Seepers for his constructive feedback, his en-
couragement and the many hours he devoted to improve this report. From this point on, I will always
have a little imaginary demon, called Robert, on my shoulder asking me "why is this?".I am also very
grateful to Marijn van Dongen. Without him none of this would be possible, for it was his idea to use
the wavelet filter and also created all the necessary analog boards for the prototypes. His infectious
enthusiasm and positive attitude were a great motivation.

I also wish to thank Wouter Serdijn for allowing me to graduate in his group and handling all the
necessary procedures. Thanks also go to Freek Hoebeek and his lab members for coming with the
problem of seizure detection and letting me work at their experiments.

I am eternally grateful to all my friends, who continuously provided me with moral support through-
out this thesis and never stop believing in me.

Last but certainly not least, I thank my family for constantly encouraging me and supporting me in
every step. Needless to say, I would never have made it this far without them.

Thank you all.

Athanasios Karapatis
Delft, July 2015

xiii

1
INTRODUCTION

An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive
or synchronous neuronal activity in the brain [2]. Absence seizures are one form of epileptic seizures
which typically last a few (<20) seconds and mostly affect children, although there are cases where
adults are affected [3]. The typical manifestations of absence seizures are a transient impairment of
consciousness (with abrupt onset and offset) accompanied by one or more other symptoms such as
staring, behavioral arrest, eyelid fluttering, or hand/ face automatisms [4]. These problems can result
in self-injury of the patients as well as in cognition issues, including attentional problems, anxiety,
depression, social isolation, and low self-esteem [4, 5] .

Conventional methods of seizure treatment involve medications and resective surgery. However,
the cost of developing these medications is enormously high and large pharmaceutical companies
tend to stop their research efforts [6]. Resective surgery is used for medically intractable epilepsy
cases, however, it comes with a high-risk of leading to complications, such as deficits memory, speech,
visual, sensory, or motor control [7].

In the mean time, a new alternative of treating Central Nervous System (CNS) disorders, such as
epilepsy, has emerged. These treatments focus on interpreting how the brain interacts and try to in-
tervene by restoring its correct behavior using (electrical) stimulation. An example of such a system,
that is actively aware of physiological changes and can stimulate in real-time, is called a closed-loop
system. For epileptic seizures, the current neurostimulation solutions have a symptom’s improvement
rate of 40%-50% in patients and are only applicable to certain types of seizures [8, 9]. Consequently,
there is still room for improvement in better understanding the brain’s functions, creating more effi-
cacious detection techniques, and considering various types of seizures.

As neurostimulation becomes an established therapy for drug-resistant seizures, a new challenge
rises to build effective and efficient implantable devices that can detect and suppress them. Thus, the
need is created to have accurate detections, avoiding over-stimulation that can cause implications,
and to detect them fast enough before the seizure’s symptoms manifest. In addition, low energy over-
heads are required to make such a device viable for implantable applications.

Part of this work also considered the implementation of a neurostimulator prototype for tinnitus
treatment. However, it was not fully evaluated and is briefly presented in Appendix D.

1.1. PROBLEM STATEMENT
A closed-loop system, for seizure treatment, must be capable of rapid detections in order to prevent
the seizure symptoms from manifesting. Additionally, it must have a low implementation complexity

1

2 1. INTRODUCTION

whilst maintaining reasonable accuracy, in order to be applicable for implantable neural prostheses.
Several other works propose closed-loop systems for epilepsy prevention, which employ various

detection techniques and then use electrical or optogenetic stimulation to suppress the development
of a seizure [10], [11], [12]. However, most solutions fail to consider the needs for low power and fast
detection. As a result, these solutions either consume too much energy for implantable application
[13], or high detection delays unfit for seizure treatment (e.g. [14]). As such, we need to propose a
detection mechanism that meets these requirements.

1.2. THESIS OBJECTIVES
The main objective of this thesis is to propose a solution that detects seizures, considering the aspects
of detection delay and applicability for ultra-low power (implantable) applications. While there many
other studies that suggest solutions to the detection problem, few focus on the other two aspects. As
such, we need to answer the following question:

"Can we detect seizures fast and reliably using a seizure-detection system which is suitable for im-
plantable (ultra-low power) application?"

In order to answer this questions, the following steps are undertaken:

1. We propose a detection mechanism which uses a complex Morlet wavelet filter and one of two
threshold mechanisms, static and adaptive;

2. A working prototype of the closed-loop system has been applied in in-vivo experiments, demon-
strating its potential for epilepsy treatment;

3. The detection mechanism We evaluate the detection mechanism in terms of detection perfor-
mance (sensitivity, specificity and delay) considering various filter parameters, such as the filter
order and detection threshold. Additionally, we consider the system’s suitability for implantable
applications by evaluating its computational overheads (execution time, energy consumption)
when executed on the SiMS low-power processor.

1.3. THESIS OUTLINE
The remainder of this thesis is structured as follows: Chapter 2 contains the necessary background de-
tails required to understand this work. This includes the definition of absence seizures. Additionally, it
presents the development platform used to prototype the detection mechanism. Then, it introduces
the SiMS architecture used to evaluate the algorithm’s applicability for ultra-low power architectures.
Finally, it introduces related work in the field of seizure detection. Chapter 3 presents the seizure
detection and suppression system developed in this thesis, as well as the specification and implemen-
tation of the realized prototype. Chapter 4 contains the evaluation of the detection and suppression
system. considering both its detection performance and computational overhead to assess its suit-
ability for ultra-low power (implantable) application. Finally, Chapter 5 summarizes the conclusions
of this work and lists out scientific contributions. In addition, it proposes several direction for future
work.

2
BACKGROUND

This chapter will give a brief overview of the concepts and background knowledge necessary to un-
derstand the work in this thesis. First, we describe the characteristics of absence seizures, after which
we discuss the specifications of the development platform used for our prototype. Continuing, we
introduce the SiMS framework which is used to evaluate the proposed solution for its low-power ap-
plicability. Finally, we discuss the related work on seizure detection techniques.

2.1. ABSENCE SEIZURES
Absence seizures are a form of epileptic seizures characterized by temporary loss and return of con-
sciousness and behavioral arrest. The Electrocorticogram (ECoG) of a typical absence is characterized
by as spike-and-wave discharges (SWDs) that repeat themselves at a certain frequency. The repeat fre-
quency of SWDs in mice is 5 Hz < fe < 8 Hz, where in humans this is 3 Hz < fe < 4.5 Hz. An ictal (seizure)
period is defined as starting at the first ECoG spike of a SWD and ending at the last ECoG spike lasting
for at least 1 second [15]. An interictal period(non-seizure period) is defined as the time in between
SWDs starting 2 seconds after 1 SWD and ending 2 seconds before the next SWD [15]. In Fig. 2.1 we
see an example of a ECoG signal containing ictal activity/seizure period and in the zoomed part we
can see the form of spike and wave discharges.

In the rest of this thesis, we will refer to "absence seizures" by the term "seizures".

2.1.1. STIMULATION TECHNIQUES
In this work we consider a closed-loop system that detects absence seizure and reacts accordingly to
prevent it from further developing. This early termination of a seizure can be achieved by applying
appropriate stimulation techniques, such as electrical stimulation [16] and optogenetic stimulation
[11, 17]. Electrical stimulation works by delivering electrical pulses to either the epileptogenic zone or
to the vagus nerve[18]. Even though this method is effective in stopping seizures and FDA approved
for use in humans, it is not optimal. The drawbacks of electrical stimulation include that it affects
surrounding cells other than the target population and can cause neural damage [19–21]. On the
other side, optogenetic stimulation functions by applying light to genetically modified neurons that
are light-sensitive. While this method provides more localized and cell-specific stimulation without
interfering with other cells, its limiting factor is the introduction of virus transgenes that sensitize
neurons to light, which is not yet approved for use in humans [22]. In this work, we have developed a
system that used optogenetic stimulation on mice models1.

1Described in Section 4.1.1

3

4 2. BACKGROUND

Seizure period

SWD

Figure 2.1: ElectroCorticoGram where part of the seizure period is zoomed in to illustrate the form
Spike-Wave-Discharges(SWD)

2.2. DEVELOPMENT PLATFORM - BEAGLEBONE WHITE
For the requirements of the closed-loop system proposed in this work, we derived a set of constraints
related to execution time, number of input channels, etc. (see Appendix C). Based on these con-
straints, we selected to prototype the system on the BeagleBone White [23], the details of which are
presented in Table 2.1.

The BeagleBone White is a development board created by Texas Instruments[24] and is equipped
with an ARM Cortex-A8 processor [25]. The board comes with a wide range of interfaces and is highly
expandable through market available add-on boards (Capes). In order to utilize a certain set of inter-
faces (pins), the processor needs to be configured (pin multiplexing) at a software level.

For the prototype of this work, the pins are configured to provide access to certain general purpose
input output(GPIO) pins and the ADC pins. The GPIO pins are used to trigger the stimulation mech-
anism and the ADC pins supply the input signals to the system (more details are presented in Section
3.2). From the rest of the board’s specifications, the UART is used for monitoring and configuring the
parameters of the system and the microSD card to store the software executable, which is loaded in
memory during boot-up of the board. In addition, two (2) of the board’s timers are employed, one to
monitor the performance of system and one to trigger the ADC unit at the sampling rate set by the
closed-loop system (see Section 3.2). At a software level, in order to use the BeagleBone bare-metal to
meet the real-time constraints, the Starterware [26] package is utilized. This package includes neces-
sary boot-up code and most of the drivers and libraries for board’s peripherals.

2.3. SINS PROJECT
The work presented in this thesis is part of the SINs (Smart Implantable Neurostimulators) project
[27]. The project is a collaboration between the Dutch Neuroscience Department of the Erasmus Med-
ical Center, the Delft University of Technology and the Belgian BRAI2N group (Brain Research center
Antwerp for Innovative & Interdisciplinary Neuromodulation). The project’s goals are the improve-
ment of the current generation of neurostimulators, by - among other means - the use of significantly
smaller microchips, unbreakable wiring, miniature batteries that are fed by the human body, wireless
monitoring and steering by smartphones. These improvements should result in the creation of new
appliances and solutions that are much more patient-friendly.

In particular, our work address the design of ultra-low power consuming application for seizure
detection and suppression, as explored by SINs-subproject SiMS (Smart Implantable Medical Systems

2.3. SINS PROJECT 5

Board requirements Details

Performance 720MHz DC-powered, 500MHz USB-powered

ADC inputs 4x

ADC resolution 12bit

ADC sample rate 200K samples per second

ADC voltage range 0-1.8V

DAC outputs -Not available-

Data storage microSD card 3.3 V

Wireless -Not available-

UART 4x (1 via USB)

Bare-metal Starterware drivers

Expansion two 46-pin connectors

Support Large Open community

Small size 86.40 mm × 53.3 mm

Power modes Dynamic Voltage Frequency Scaling

Other H/W specifications

SOC TI SITARA AM3358, ARM Cortex-A8

SPI 2x , 48MHz max bitrate

Timers 4x , 32bit with min 40ns resolution

GPIO 65 @ 3.3V

Memory 256MB DDR2-400MHZ

H/W Revision A6b

Table 2.1: BeagleBone white specifications

[27]).

2.3.1. IMD PROCESSOR ARCHITECTURE (SIMS)
Apart from proposing a new algorithm to detect seizures, this work considers the suitability of the de-
tection algorithm for low-power implantable applications with patient-specific configuration. In or-
der to accommodate the different patient characteristics, such as different detection levels, different
stimulation duration needs and different filter parameters, a flexible and customizable implementa-
tion needs to be considered. Therefore, we are investigating a software implementations running on
a low-power processor rather than hardware specific implementations (ASIC). For this purpose, we
select the SiMS processor architecture [1] which targets implantable medical devices(IMD) and in-
corporates all the necessary features for such a device, including dependability, miniature size and
ultra-low power (ULP) consumption. The SiMS processor specifications consist of:

• A 5-stage RISC architecture

• A stall-detection unit

• 16-bit instruction size

6 2. BACKGROUND

• 16x 32-bit registers

• 16-kB (16-bit wide) Instruction Memory (IMEM)

• 16-kB (32-bit wide) Data Memory (DMEM)

• 1078.93 µW average power consumption

• 20Mhz clock frequency

See Appendix B for instruction set.
By executing the seizure detection algorithm on SiMS we can assess various performance aspects,

include software execution statistics (instruction mix, memory usage, execution cycles) and power
consumption, and how these scale with respect to different algorithm parameters. Based on these
results, we estimate on whether it is viable to realize such an algorithm on a IMD.

2.4. RELATED WORK
Numerous studies have proposed various detection algorithms for seizures. Some of these techniques
have been incorporated in hardware implementations and closed-loop systems. Below we present
these studies and present the detection delay where available.

One of the first methods is based on the energy of the EcoG signal as described in Zaveri er al.
[28]. In addition to the standard method of energy calculation, this study also evaluates a modified
version of energy calculation called Taegers’s algorithm or non-linear energy [29], where the input
values are not weighted equally as in the conventional method. Both methods, start by calculating a
baseline average energy based on an interictal interval and then calculate the average energy every 1
second. A seizure is detected when the average energy becomes greater than the baseline value. Using
the Energy method they obtained a sensitivity of 58% and a specificity2 of 78%, while using Teager’s
algorithm they obtained a sensitivity of 53% and a specificity of 100%. The advantage of the energy
based method is its low complexity, however the performance results are relatively low.

A template matching technique is employed in Qu et al. [30], where the method tries to detect a
new seizure that is similar to a given input template. The template is defined by a seizure recording
and a set of background EEG which are given as initial inputs to train the system. Their method yields
a sensitivity of 100%, an average of 0.2 false positive every hour and a detection delay of 9.6s. While
this method has a high detection rate, its detection delay is very high and it will only detect seizures
similar to the template.

The line-length method, which is described in [31], calculates the average running sum of "dis-
tances" between successive values within a fixed window and a seizure is detected when the sum
crosses a pre-defined threshold. The line-length study reports a detection delay of 4.1s, an average
false positive rate per hour of 0.051 and false negatives of zero (0). Similar techniques to the line-length
are the coastline method found in [32] and [33], and the steepness method from [34], where both tech-
niques compute the difference of successive values in a fixed window. Compared to the line-method,
the coastline differs in that it does not average the distance results, while the steepness method uses
the maximum "distance" value over a period of time and then calculate the average of consecutive
sums of "distances". The benefit of these methods is the low complexity of implementing them and
the downside is that they are susceptible to large amplitude noise which can trigger false detections.

The research in White et al. [33] presents an autocorrelation method in combination with a spike
frequency method. In this method the difference of the maximum and minimum values in fixed size
groups is computed, then the sum of those for consecutive groups form the autocorrelation metric
and together with the number of spikes found in the current interval a decision is made. This method

2specificity and sensitivity are described in Section 4.1.1

2.4. RELATED WORK 7

results in a sensitivity of 100% and a specificity of 99.98%. The high detection performance is the
advantage of the method, however the study does not consider its detection delay.

In van Hese et al. [35], a method based on the spectrogram is used to detect absence seizures. The
method consists of the following steps: 1) the spectrogram is computed using a short-time Fourier
transform; 2) an estimation of the background spectrum is made and artifacts are removed with a
median filter, 3) harmonic analysis with continuity analysis is performed to estimate the fundamental
frequency; and 4) seizure classification is based on the percentage of power in the harmonics to the
total power of the spectrum. As a result, the method achieves a maximum sensitivity and specificity
of 96% and 97% respectively. While yielding high detection performance results, the study does not
report on the detection delay and it fails to yield the same performance when EEG signals are more
irregular.

Furthermore, wavelet based methods have also been proposed as a tool to detect seizures. Wavelets
based analysis is localized both in time and frequency and compared to classical analysis (e.g. Fourier
analysis) it provides better information on signals that change substantially [36]. Additionally, wavelets
outperform other types of time-frequency analysis, as they provide better time-frequency decompo-
sition by selecting an appropriate wavelet function. A real time detection algorithm using the level-3
Daubechies D4 tap (or db2) wavelet is presented in [36]. The algorithm consists of a FIR filter ap-
proximation of the wavelet of order 22 followed by a median filter on the square values of the FIR
output over a window of 2s. A seizure is detected when the calculated value remains above the a spec-
ified threshold for a certain amount of time. The algorithm achieves a detection delay of 1.5, with
100% Sensitivity and 0.04 False-Positive-per-seizure rate. The method’s main advantages are its high
detection performance and straightforward implementation, however the need to store a 2s window
of previous FIR output might increase its computational complexity. In another study, Berdakh et
al. [37], wavelets are used to filter the input data which are then fed to a Artificial Neural Network
(ANN) classification algorithm. This study investigates different wavelets, Daubechies (db2, db5) and
Biorthogonal (bior1.3, bior1.5), with the goal to find the optimal wavelets that produces the highest
detection efficacy of the ANN. The study concludes in the Biorthogonal (bior1.3, bior1.5) wavelets as
the best option for which the seizure detection system achieves a detection accuracy of 95.8%. Its
main advantage is the high detection performance, however the use of ANN increase its implemen-
tation complexity. A similar study, Buteneers et al. [13], also uses Artificial Neural Networks based on
Reservoir Computing as classification method where its EEG input is pre-filtered using wavelets ([36]).
This study focuses on real-time absence seizure detection and achieves a detection delay of 0.97s with
a Sensitivity of 96.2% and a Specificity of 98.2%. Moreover, the study states that detection delay can be
improved by reducing detection accuracy. Despite the low detection delay and high detection rates,
the main drawback of this implementation is that it requires a large set of samples to train the ANN so
that it can correctly detect seizures.

Any of the previous detection systems that can provide real-time seizure detection could be in-
corporated in a seizure prevention close-loop systems. A closed-loop system actively monitors the
EEG/ECoG signal and upon seizure detection triggers a stimulation mechanism (electrical or optoge-
netic) with the purpose to suppress the seizure’s activity. The studies that have incorporated some of
these methods in a closed-loop system are presented below.

The system presented in Fanselow et al.[12] uses a simple thresholding method to detect the seizures
and uses electrical stimulation to suppress seizures. The detection is relatively fast as it detects upon
the first EEG spike that crosses the threshold, which in most cases also defines the onset of the seizure.
However, this method is susceptible to artifacts in the EEG as it will trigger to anything that will cross
the threshold. This artifact problem is improved in Berenyi et al.[10], where a band-pass filter is ap-
plied to the input signal cutting off low frequencies being caused by movement. Besides the fact that
the band-pass filter increases detection delay by approximately 200ms, the artifact problem is not fully
resolved. This is because noise with frequency within the range of the band-pass filter can still gen-

8 2. BACKGROUND

erate false triggering. The closed-loop system in Paz et al. [11] employs the line length method from
[31] in combination with optogenetic stimulation. The algorithm is implemented on a programmable
real-time digital signal processor [38] which upon detection triggers the optogenetic stimulation.

Finally, there are various studies that propose low-power hardware implementations. The are two
studies that present realizations and report their detection delay. First, in Raghunathan et al.[39], a
digital circuit implementation is presented which uses a simple threshold algorithm combined with a
crossing counter. This implementation is capable of detecting a seizure with an average delay 8.5s,
which is relatively high compared to previous methods, a sensitivity of 95.3% and a specificity of
88.9%. Additionally, a power consumption of 350nW is reported. The second low-power system imple-
mentation, presented in Salam et al.[14], achieves a detection delay of 13.5s with a sensitivity of 100%
(specificity results are not reported). The detection method used in this system identifies seizures
that are characterized by their progressive increase of low-voltage fast activity. The work of this study
also presents the fabrication of the system that yields an average power consumption of 44.58nW. The
other two hardware implementations only focus on the power consumption and the detection rate
of their solution. First in Markandeya et al. 2010 [40], a low power system based on the Dauben-
cies D4 wavelet and a threshold value is presented. In this study different hardware optimizations
are explored which minimize power consumption. The presented hardware implementation yields
an average sensitivity of 98% and an average specificity of 95% for different subjects, while different
power consumptions profiles are reported depending on the selected hardware optimization. Second,
in Markandeya et al. 2012 [41], the study presents a seizure detection processor that incorporates mul-
tiple detection algorithms and allows the selection of a patient-specific algorithm. This hardware im-
plementation has a power consumption of 360nW and yields average performance results, in terms of
ADR, between 65% and 98% depending on the subject and the selected algorithm. The only commer-
cially available and FDA approved closed-loop seizure detection and suppression implantable device
to date is the Neuropace RNS system. The system provides three (3) methods to detect a seizure:
1) a bandpass method; 2) a line-length method; and 3) an area method which a similar method to
the energy method. Upon seizure detection, the neurostimulator delivers current-controlled, charge-
balanced biphasic pulses as programmed by the physician. The system has a life-expectancy of 2.5 to
3 years and is the size of a credit card. The system reports 600 to 2000 per day with a cumulative total
of <5mins of stimulation. Clinical tests have shown a reduction of 50% in seizure frequency in patients
in the 2nd year of use [18, 42, 43].

Concluding, most of the aforementioned detection techniques do not discuss extensively perfor-
mance results and only few report the detection delay of the algorithm which is one of the objectives
of our implementation. In this work, the solution presented is based on a wavelet filter (complex Mor-
let) and aims to achieve low detection delays. It differs from the aforementioned wavelet methods as it
uses a low complexity threshold mechanism and it only requires a small sample set (4 seizures) to train
the levels of the thresholds in the case of the adaptive mechanism. Furthermore, in comparison with
the hardware implementations that mainly focus on low-power consumption and detection perfor-
mance, our solution also focuses on flexibility and creating patient-specific solutions that maximize
detection.

3
IMPLEMENTATION

In this chapter, we start by describing the conceptual model of a system that is capable of real-time
detection and closed-loop suppression of absence seizures. For this system, we continue in presenting
a prototype implementation, which is used to detect and suppress seizures in in-vivo measurement
setup.

3.1. CLOSED-LOOP SYSTEM MODEL
An overview of the proposed system and its deployment is depicted in Fig. 3.1. The system consists of
four modules: 1) the inputs of the system, which are Electrocorticogram (ECoG) signals recorded from
live subjects (e.g. mice) using a ECoG recorder; 2) an analog module that filters these signal (Input
filter); 3) a digital module that samples and converts the signal in the digital domain (Digitization),
which then are passed through a Complex Morlet wavelet filter (Feature extraction) and finally, based
on the result of the wavelet-filter, a decision is made on the existence of a seizure event (Decision
making); 4) a stimulator (e.g. Optogenetic1) which is triggered by the decision making part upon a
seizure detection and in turn stop the seizure.

In this thesis work, we have used off-the-shelf modules for the ECoG recorder and the optogenetic
stimulator (modules 1 and 4) and a custom PCB was developed for the analog module (2) to realize
a prototype implementation, the details of which are described in section 3.2. The focus of our work
was on the digital module (3), the implementation of which is described in the following section.

3.1.1. DIGITAL MODULE
The digital module is responsible for seizure detection. It achieves this by using a complex Morlet
wavelet filter and a thresholding mechanism for decision making. We chose to implement the wavelet
filter in the digital domain as this provides a higher level of flexibility and configurability. This allows
us to adjust the parameters and configure the system according to subject specific characteristics.

As shown in Fig. 3.1, in order to perform theses functions the analog input signal is sampled at a
frequency fsample = 100 Hz and converted to the digital domain. The reason for choosing a sampling
frequency of 100 Hz is based on the frequency range we are interested in, which is f ∈ [0,50]H z where
most brain signal activity is observed [44]. Thus, from the Nyquist theorem a sufficient sampling fre-
quency is 2 (or higher) times the highest frequency in our desired range.

In the following sections we describe the wavelet filter and the detection mechanism in more de-
tail.
1Light-triggered stimulation of genetically sensitized neurons

9

10 3. IMPLEMENTATION

Analog Digital

Co Input filter

Figure 3.1: closed-loop epilepsy detection system overview

(a)

20k?
180k?

2.2?F 2.2?F

180k?

20k?

20k?

20k?

100k? 100k?

68nF

68nF

EEG-in

To ADC

Input buffer

Amplifier

High Pass Filter

Offset injection

Low Pass Filter

(b)
Fig. 1. In a) the closed-loop epilepsy detection system is depicted with the analog input filter (PCB) and the digital filter (Beaglebone) highlighted. In b) the
implementation of the analog input filter is depicted that is used to make the recorded input signal suitable for digitization.

in the digital domain on a Beaglebone microprocessor. The
output can be used to enable seizure suppression techniques,
such as for example an optogenetic stimulator. This work
focuses on the detection system itself and does not include the
stimulator yet. In the following sections the implementation of
the proposed system is discussed in detail.

A. Input filter

The recorded EEG signals are first fed through an analog
filter that has four functions: (1) amplification, (2) offset
injection in order to match the signal to the input range of
the Analog to Digital Converter (ADC), (3) artifact removal
by using a second-order 0.4Hz high-pass filter and (4) anti-
aliasing by means of a second-order 23.4Hz low-pass filter.
The filter topology that is used for this application is depicted
in Figure 1(b). The first stage is a buffer to prevent the EEG
signal from being loaded. Subsequently, the amplitude of the
EEG signal is regulated towards Vpeak−peak < 1.8V, which
corresponds to the input range of the ADC. The inverting am-
plifier accommodates both amplification as well as attenuation
in order to handle a large range of input signals. The signal is
then passed through a high pass filter to remove unwanted
offset and artifacts in the EEG signal. By choosing C1 =
2.2μF and R1 = 180 kΩ the cut-off frequency is fc,hpf =
(2π

√
R1R1C1C1)

−1 = 402mHz. Offset injection is necessary
to shift the signal between 0V and 1.8V to accommodate the
ADC input range. Finally a second order anti-aliasing filter is
implemented using C2 = 68nF and R2 = 100kΩ, yielding
a cut-off frequency fc,lpf = (2π

√
R2R2C2C2)

−1 = 23.4Hz.
All operational amplifiers are LF353 and use a +5V/−5V
power supply.

B. Digital Wavelet filter

The wavelet filter is implemented on the commercially
available Beaglebone microprocessor platform. The processor
is an AM335x ARM Cortex-A8 running at 720MHz. The
signal is first converted to the digital domain using the on-
board 12bit ADC from the Beaglebone using a sampling
frequency fs = 100Hz. The signal is subsequently filtered
using a 64th order FIR filter approximating a complex Morlet

Fig. 2. The average output of a continuous time complex Morlet wavelet
filter over 1914 pre-recorded seizures. All seizures have a varying duration,
but were aligned to have their onset at 1 s. The maximum output is obtained
for the wavelet scale of 7Hz. A single seizure is plotted at the top of the
figure for illustrative purposes.

wavelet filter for which the details are given in the subsequent
section. Finally, using an adaptive dual threshold mechanism,
a decision is made whether there is a seizure or not.

1) Complex Morlet for epilepsy detection: In this work the
complex Morlet wavelet (Gabor wavelet) was chosen, because
of the similarity of the wavelet compared to the morphology
of the spikes during a seizure. The complex Morlet is defined
as follows:

Ψσ(t) = cσπ
− 1

4 e−
1
2 t

2 ?
eiσt − κσ

?
(1)

κσ = exp(− 1
2σ

2), cσ =
?

1 + exp(−σ2)− 2 exp(− 3
4σ

2)
−1

and σ determines the scale of the wavelet. To find the optimal
value of σ, the response of an ideal continuous-time Morlet
wavelet filter is obtained over various frequency scales fscale
for each seizure individually using the pre-recorded database.
In Figure 2 the averaged wavelet output is shown during a
seizure. The maximum output is obtained at fscale = 7Hz
and therefore this scale was chosen for the implementation of
the filter.

The ideal wavelet has an infinite time span and therefore
has to be truncated when implemented in a practical FIR

505

Figure 3.2: Average wavelet filter’s response for all seizure events, where each seizure-start is aligned at 1 sec. For illustrative
purposes a single seizure is presented.

WAVELET FILTER

The wavelet filter used in this work for distinguishing seizure behavior is a complex Morlet wavelet.
The reason for selecting wavelet filters is because they are localized in both time and frequency, which
provides frequency information at a certain time. The particular type is chosen because of its mor-
phology resemblance with the ECoG spikes during a seizure [45].
The complex Morlet is defined as follows:

Ψσ(t) = cσπ
− 1

4 e−
1
2 t 2

(e iσt −kσ) (3.1)

where,

kσ = e−
1
2

2

, cσ = (1+e−σ
2 −2e−

3
4σ

2
)−

1
2

and σ=wavelet scale

In our work we select a single wavelet scale so that we can develop a suitable and realizable filter
implementation for distinguishing seizures. In order to determine an optimum wavelet scale value,
we obtain the continuous-time Morlet wavelet filter response over a range of frequency scales for each
seizure event in a pre-recorded ECoG database (the details of which are described in section 4.1.1).
The frequency scales are approximately related to the wavelet scale σ value by [46]:

fσ = fc

σ fs
(3.2)

where,
fc = wavelet center frequency , fs = sampling frequency

and σ=wavelet scale

For each of these frequency scales we average its response to each seizure leading to the scalogram
depicted in Fig. 3.2. The scalogram depicts the power of the filter response for each frequency scale
with respect to time, where the onset of each seizure is aligned at 1 sec. This alignment allows us to

3.1. CLOSED-LOOP SYSTEM MODEL 11

n (samples)
0 50 100 150 200

R
e[

F
IR

]
-0.5

0

0.5

1
Impulse Response

n (samples)
0 50 100 150 200

Im
[F

IR
]

-1

0

1

Figure 3.3: Discretely sampled impulse response of Complex Morlet at fscale = 7 Hz for the max effective support of MATLAB®.

observe the average filter response before and after the onset of a seizure interval, where it is evident
that the average filter response during seizures (after 1 sec) is higher than during non-seizure periods
(before 1 second). Therefore, we estimate that the power of the filter output provides a good indicator
for recognizing seizures. We discover that the maximum response is produced at fσ = 7 Hz, which is
therefore chosen to design a suitable filter implementation. The complex Morlet wavelet is defined on
an infinite and continuous time span, making it unsuitable for practical applications. Thus, in order
to create a practical (digital) implementation, we approximate the wavelet using an FIR filter, where
we truncate and discretely sample the impulse response of the wavelet at the selected frequency scale
[47]. The FIR is defined as follows:

y(n) =
N−1∑
i=0

ci x(n − i) (3.3)

where,
x(n), input signal
y(n), output signal

N , order of the filter (i.e., number of coefficients)
ci , a complex coefficient value of the i-th of the filter-coefficient

The coefficient values of the FIR filter are obtained by sampling the wavelet filter (fσ = 7 Hz) at the
same frequency as our input sampling rate, i.e. fs = 100 Hz. Using the effective support2 in MAT-
LAB® for the initial filter and sampling it at fs = 100 Hz, this results in an accurate approximation of
the continuous complex Morlet wavelet using 229 coefficients for each of the complex parts (both real
and imaginary). In Fig. 3.3 we plot the impulse response of the FIR filter. We previously saw power
can be used for distinguishing seizures. To calculate power from these impulse responses, we do:

Y (n) = PF I R (n) = (
N−1∑
i=0

Re[ci]x(n − i))2 + (
N−1∑
i=0

Im[ci]x(n − i))2 (3.4)

DETECTION MECHANISM

In the previous section, we defined a FIR filter which produces high output values during a seizure.
To capitalize on this increased output, we may detect seizures using a threshold mechanism where a

2Region where the filter is non-zero

12 3. IMPLEMENTATION

0 50 100 150

E
C

o
G

 In
p

u
t

Seizure-Start
Seizure-Stop

Time (s)
0 50 100 150

F
ilt

er
 o

u
tp

u
t

V
th,h

V
th,l

Figure 3.4: Example of an ECoG input (top) and its filter output (bottom) of an ECoG recording, which contains seizures.
Vertical red lines in the ECoG Input mark the seizure periods. Horizontal orange lines in the Filter Output illustrate the dual

thresholding mechanism

(a)

−0.5

0

0.5

1

R
e[

F
IR

]

0 10 20 30 40 50 60
−0.5

0

0.5

1

Im
[F

IR
]

Sample

(b)

Fig. 3. In a) the trade-off between detection delay and wavelet precision
as a function of the FIR truncation is shown. The green line is the detection
delay and the black line shows the accuracy of the wavelet implementation.
The black dotted line shows the chosen truncation setting at 101 samples for
which the complex (i.e. real and imaginairy) impulse response is shown in b)

filter [8]. A trade-off between precision and delay has to be
made: the more the wavelet is truncated at the start of the
FIR, the faster a detection is made, but the less precise the
impulse response approaches the wavelet. To find the optimal
truncation, all 1914 seizures were filtered using a set of FIR
filters with different truncations. When making a truncation, it
was assured that the DC value of the impulse response of the
real and imaginary part were both zero by adding an offset, as
required for a wavelet filter.

For each truncation setting the average response of the FIR
filter was obtained over the dataset. Based on this response
the average delay and precision can be determined. The delay
of the response was determined by the time at which the
maximum in the filter response was reached with respect to
the onset of the seizure. This is depicted with the green line in
Figure 3(a). The accuracy is determined by considering how
well the filter is able to distinguish between ictal and interictal
activity. Therefore the maximum in the averaged response
during a seizure is divided by the average value of the response
during interictal activity. This is depicted using the black line
in Figure 3(a). For each truncation the ?2 norm of the FIR filter
is kept constant:

?? |xi|2 = 1, in which xi are the complex
coefficients of the wavelet filter.

The accuracy of the filter worsens for truncations > 100,
because this is where the impulse response reaches its maxi-
mum value. Based on the results in Figure 3(a), it was chosen
to truncate the filter with 101 samples. The accuracy is close
to the optimal value, while the delay is 490ms. Note that this
is value is not equal to the detection delay of the overall filter,
because this also depends on the decision making strategy that
is used. In Figure 3(b) a plot is shown of the FIR with the
chosen truncation settings.

2) Dual Threshold detection: To minimize the detection
delay, it was chosen not to include a median filter [4] or other
low-pass filters at the output of the wavelet filter. Instead a
dual-thresholding mechanism is used: the output is enabled
upon a positive crossing of the higher threshold Vth,h and is
disabled upon negative crossing of the lower threshold Vth,l.
Because of the large variety in signal amplitudes over subjects,
the value of both thresholds is determined using an adaptive
thresholding technique. Vth,l is the running average of the filter
output: because the ictal time is short compared to the inter-
ictal time, the average will be close to the average of the inter-
ictal period. Vth,h is obtained by low-pass filtering the output
Y (i) of the wavelet filter:

Fig. 4. The input and output of the filter is shown with in the detail the
response during the start of a seizure. The red lines correspond to the dual
thresholds, while the thick red lines indicate when the output of the filter is
enabled.

Vth,h(i) = Vth,h(i− 1) +
Y (i)− Vth,h(i− 1)

τfs
Y (i) > Vth,h(i− 1) → τ = τup
Y (i) < Vth,h(i− 1) → τ = τdown

(2)

This low-pass filtering does not compromise the detection
delay, because it is only used to determine Vth,h and is not
included in the main signal path. By choosing τup small, Vth,h

will increase rapidly during ictal activity when Y (i) > Vth,h,
while a large value of τdown will decrease Vth,h slowly during
inter-ictal time. In this way Vth,h will reach a value somewhat
below the average value during a seizure. In Figure 4 the
response of the filter during a typical seizure is depicted for
illustrative purposes. The effect of the adaptive thresholding is
visible, as well as the detection delay, which is around 620ms
for this particular seizure. Note that the adaptive thresholding
makes the system easy to use compared to systems that need
specific training samples [6]. The proposed system is almost
’plug-and-play’ since the user only needs to wait for a few
seizures before the filter is settled.

III. EVALUATION

The performance of the proposed filter is analyzed over
the complete dataset using various values of τup and τdown.
The raw ECoG data was first processed using a filter with a
response equivalent to the circuit in Figure 1(b). The signal
is subsequently sampled with fs = 100Hz and quantized (12
bits accuracy), corresponding with the ADC. Finally, the output
of the filter was obtained by replicating the FIR filter and the
thresholding mechanism. To allow the values of Vth,l and Vth,h

to settle, the data before the first 4 seizures for each subject
from the set of annotated seizures was used as the training
dataset and therefore discarded.

A False Negative (FN) was defined as the absence of a
detection during an ictal time-stamp from the from the set
of annotated seizures. A False Positive (FP) was defined as
a detection in the absence of one or more SWDs in the
ECoG. SWDs were identified using visual inspection of the
ECoG by a neuroscientist. This definition was chosen, since
upon detection of an SWD it is not yet known whether this
ictal activity will develop into a seizure or not. In Table I

506

Figure 3.5: Generic of adaptive threshold mechanism presenting how the Upper threshold adapts in relation to the Filter
Output and how the Lower threshold maintains a value close to the average of non-seizure periods.

seizure is detected when this threshold is crossed. To exemplify, we depict an both ECoG signal and
its filter output in Fig. 3.4. Note the increased output during seizure intervals. Consequently, these
seizure intervals can be detected using a threshold value (continuous orange line).

Based on the above observation, we define an upper threshold Vth,h which detects this increased
filter output Y (n) and signifies the occurrence of a seizure. It may be observed from Fig. 3.4 that the
filter output is reduced below Vth,h during a seizure interval. Thus, to prevent multiple detections
from occurring within the same seizure event, we employ a low threshold Vth,l which approximates
the end of the seizure interval when Y (n) falls below that value. As such, we get a dual threshold
mechanism.

In this work, we have considered the use of both a static and an adaptive threshold. The static
threshold mechanism consists of fixed values for both Vth,h and Vth,l as depicted in Fig. 3.4. In con-
trast, the adaptive threshold mechanism tries to increase detection accuracy by defining the values of
Vth,l and Vth,h as a function of the filter’s output, an example of which is shown in Fig. 3.5. In this
figure, we observe that the upper threshold (Vth,h) slopes up for high output value (seizure periods)
and gradually decreases for low output values (non-seizure periods). By this means, it attempts to
sustain a sufficiently high value that avoid mis-detections, while it tries to accommodate for seizures
with lower filter output values. The adaptive upper threshold (Vth,h) aims to follow the average value

3.1. CLOSED-LOOP SYSTEM MODEL 13

of the filter output during seizures, and it achieves this by low-pass filtering the output Y (n) of the FIR
filter. As such, the upper threshold is defined by:

Vth,h(n) =Vth,h(n −1)+ Y (n)−Vth,h(n −1)

τ fs
(3.5)

where,
Y (n) >Vth,h(n −1) → τ= τup

Y (n) <Vth,h(n −1) → τ= τdown

This low-pass filtering is only used to define Vth,h and does not interfere with the input signal and
the FIR filter output. The τ values define the rate with which the threshold Vth,h is adapted. Specif-
ically, small τ constant values will result in the threshold value to be more sensitive to changes in
the filter output, while high values will cause the threshold value to change gradually. For instance,
when Y (n) > Vth,h , a small τup will rapidly increase the upper threshold. On the other hand, when
Y (n) < Vth,h , a large τdown will ensure that the upper threshold will decrease at a slower rate (This
trade-off between tau-values for τup and τdown will be fully explored in section 4.2.2).

As for the adaptive lower threshold (Vth,l), we observe in Fig. 3.5 that it maintains a value close to
the average value during non-seizure periods. This is achieved by calculating the (cumulative) run-
ning average of the filter output Y (n) for a window of N samples. It is defined as follows:

Vth,l (n) = (N −1)Vth,l (n −1)+Y (n)

N
(3.6)

The size of the window has to be relatively large so that the duration of ictal periods does not
significantly affect the average value of inter-ictal periods. Based on our experiments, a value of 10,000
seemed to be an appropriate choice for the sample window N. Effectively, as regular inter-ictal activity
ensues after a seizure, Vth,l may be used to approximate the end of a seizure.

14 3. IMPLEMENTATION

(a)

20k?

180k?

2.2?F 2.2?F

180k?

20k?

20k?

20k?

100k? 100k?

68nF

68nF

EEG-in

To ADC

Input buffer

Amplifier

High Pass Filter

Offset injection

Low Pass Filter

(b)

Fig. 1. In a) the closed-loop epilepsy detection system is depicted with the analog input filter (PCB) and the digital filter (Beaglebone) highlighted. In b) the
implementation of the analog input filter is depicted that is used to make the recorded input signal suitable for digitization.

in the digital domain on a Beaglebone microprocessor. The
output can be used to enable seizure suppression techniques,
such as for example an optogenetic stimulator. This work
focuses on the detection system itself and does not include the
stimulator yet. In the following sections the implementation of
the proposed system is discussed in detail.

A. Input filter

The recorded EEG signals are first fed through an analog
filter that has four functions: (1) amplification, (2) offset
injection in order to match the signal to the input range of
the Analog to Digital Converter (ADC), (3) artifact removal
by using a second-order 0.4Hz high-pass filter and (4) anti-
aliasing by means of a second-order 23.4Hz low-pass filter.
The filter topology that is used for this application is depicted
in Figure 1(b). The first stage is a buffer to prevent the EEG
signal from being loaded. Subsequently, the amplitude of the
EEG signal is regulated towards Vpeak−peak < 1.8V, which
corresponds to the input range of the ADC. The inverting am-
plifier accommodates both amplification as well as attenuation
in order to handle a large range of input signals. The signal is
then passed through a high pass filter to remove unwanted
offset and artifacts in the EEG signal. By choosing C1 =

2.2μF and R1 = 180 kΩ the cut-off frequency is fc,hpf =

(2π
√
R1R1C1C1)

−1 = 402mHz. Offset injection is necessary
to shift the signal between 0V and 1.8V to accommodate the
ADC input range. Finally a second order anti-aliasing filter is
implemented using C2 = 68nF and R2 = 100kΩ, yielding
a cut-off frequency fc,lpf = (2π

√
R2R2C2C2)

−1 = 23.4Hz.
All operational amplifiers are LF353 and use a +5V/−5V

power supply.

B. Digital Wavelet filter

The wavelet filter is implemented on the commercially
available Beaglebone microprocessor platform. The processor
is an AM335x ARM Cortex-A8 running at 720MHz. The
signal is first converted to the digital domain using the on-
board 12bit ADC from the Beaglebone using a sampling
frequency fs = 100Hz. The signal is subsequently filtered
using a 64th order FIR filter approximating a complex Morlet

Fig. 2. The average output of a continuous time complex Morlet wavelet
filter over 1914 pre-recorded seizures. All seizures have a varying duration,
but were aligned to have their onset at 1 s. The maximum output is obtained
for the wavelet scale of 7Hz. A single seizure is plotted at the top of the
figure for illustrative purposes.

wavelet filter for which the details are given in the subsequent
section. Finally, using an adaptive dual threshold mechanism,
a decision is made whether there is a seizure or not.

1) Complex Morlet for epilepsy detection: In this work the
complex Morlet wavelet (Gabor wavelet) was chosen, because
of the similarity of the wavelet compared to the morphology
of the spikes during a seizure. The complex Morlet is defined
as follows:

Ψσ(t) = cσπ
−

1

4 e
−

1

2
t
2 ?

e
iσt

− κσ

?
(1)

κσ = exp(−
1

2
σ
2
), cσ =

?

1 + exp(−σ2)− 2 exp(−
3

4
σ2)

−1

and σ determines the scale of the wavelet. To find the optimal
value of σ, the response of an ideal continuous-time Morlet
wavelet filter is obtained over various frequency scales fscale
for each seizure individually using the pre-recorded database.
In Figure 2 the averaged wavelet output is shown during a
seizure. The maximum output is obtained at fscale = 7Hz

and therefore this scale was chosen for the implementation of
the filter.

The ideal wavelet has an infinite time span and therefore
has to be truncated when implemented in a practical FIR

505

Co

Figure 3.6: Prototype overview
(a)

20k?
180k?

2.2?F 2.2?F

180k?

20k?

20k?

20k?

100k? 100k?

68nF

68nF

EEG-in

To ADC

Input buffer

Amplifier

High Pass Filter

Offset injection

Low Pass Filter

(b)
Fig. 1. In a) the closed-loop epilepsy detection system is depicted with the analog input filter (PCB) and the digital filter (Beaglebone) highlighted. In b) the
implementation of the analog input filter is depicted that is used to make the recorded input signal suitable for digitization.

in the digital domain on a Beaglebone microprocessor. The
output can be used to enable seizure suppression techniques,
such as for example an optogenetic stimulator. This work
focuses on the detection system itself and does not include the
stimulator yet. In the following sections the implementation of
the proposed system is discussed in detail.

A. Input filter

The recorded EEG signals are first fed through an analog
filter that has four functions: (1) amplification, (2) offset
injection in order to match the signal to the input range of
the Analog to Digital Converter (ADC), (3) artifact removal
by using a second-order 0.4Hz high-pass filter and (4) anti-
aliasing by means of a second-order 23.4Hz low-pass filter.
The filter topology that is used for this application is depicted
in Figure 1(b). The first stage is a buffer to prevent the EEG
signal from being loaded. Subsequently, the amplitude of the
EEG signal is regulated towards Vpeak−peak < 1.8V, which
corresponds to the input range of the ADC. The inverting am-
plifier accommodates both amplification as well as attenuation
in order to handle a large range of input signals. The signal is
then passed through a high pass filter to remove unwanted
offset and artifacts in the EEG signal. By choosing C1 =
2.2μF and R1 = 180 kΩ the cut-off frequency is fc,hpf =
(2π

√
R1R1C1C1)

−1 = 402mHz. Offset injection is necessary
to shift the signal between 0V and 1.8V to accommodate the
ADC input range. Finally a second order anti-aliasing filter is
implemented using C2 = 68nF and R2 = 100kΩ, yielding
a cut-off frequency fc,lpf = (2π

√
R2R2C2C2)

−1 = 23.4Hz.
All operational amplifiers are LF353 and use a +5V/−5V
power supply.

B. Digital Wavelet filter

The wavelet filter is implemented on the commercially
available Beaglebone microprocessor platform. The processor
is an AM335x ARM Cortex-A8 running at 720MHz. The
signal is first converted to the digital domain using the on-
board 12bit ADC from the Beaglebone using a sampling
frequency fs = 100Hz. The signal is subsequently filtered
using a 64th order FIR filter approximating a complex Morlet

Fig. 2. The average output of a continuous time complex Morlet wavelet
filter over 1914 pre-recorded seizures. All seizures have a varying duration,
but were aligned to have their onset at 1 s. The maximum output is obtained
for the wavelet scale of 7Hz. A single seizure is plotted at the top of the
figure for illustrative purposes.

wavelet filter for which the details are given in the subsequent
section. Finally, using an adaptive dual threshold mechanism,
a decision is made whether there is a seizure or not.

1) Complex Morlet for epilepsy detection: In this work the
complex Morlet wavelet (Gabor wavelet) was chosen, because
of the similarity of the wavelet compared to the morphology
of the spikes during a seizure. The complex Morlet is defined
as follows:

Ψσ(t) = cσπ
− 1

4 e−
1
2 t

2 ?
eiσt − κσ

?
(1)

κσ = exp(− 1
2σ

2), cσ =
?

1 + exp(−σ2)− 2 exp(− 3
4σ

2)
−1

and σ determines the scale of the wavelet. To find the optimal
value of σ, the response of an ideal continuous-time Morlet
wavelet filter is obtained over various frequency scales fscale
for each seizure individually using the pre-recorded database.
In Figure 2 the averaged wavelet output is shown during a
seizure. The maximum output is obtained at fscale = 7Hz
and therefore this scale was chosen for the implementation of
the filter.

The ideal wavelet has an infinite time span and therefore
has to be truncated when implemented in a practical FIR

505

Figure 3.7: Schematic of the analog input filter implementation

3.2. PROTOTYPE SPECIFICATIONS
In this section, we present the implementation details of a prototype setup that realizes the real-time
seizure detection and suppression system, part of which has been published in [45]. Additionally, we
briefly present the in-vino measurement results.

A detailed overview of the prototype (and its deployment in in-vivo experiments) is presented in
Fig. 3.6. As the prototype fully implements the seizure detection and suppression system from the pre-
vious section, it consists of an ECoG recorder module, an analog module (implemented on a custom
PCB), a digital module (executed on the BeagleBone development platform [23]), and an optogenetic
stimulator. In this thesis, we have used off-the-self components for the ECoG recorder responsible for
providing input values to the system and the optogenetic stimulator which suppresses seizure behav-
ior. The ECoG recorder is a Cyberamp amplifier [48] and the optogenetic stimulator is an optical fiber
with a LED source at one end [49].

Our work for the prototype focused on the realization of the digital module, which is extensively
discussed in 3.2.2. In addition, as part of the prototype an analog module was also developed, which
is briefly discussed in 3.2.1.

3.2.1. ANALOG MODULE

The ECoG signal that comes from the ECoG recorded needs to adjusted before it is fed to the digital
module. Therefore, the analog module performs two main functions(signal conditioning, voltage ad-
justment) and is implemented on a custom PCB, the design of which has been originally presented in
[45]. In Fig. 3.7 we depict the circuit implementation of the analog module.

The preconditioning function involves an input filter that removes unwanted artifacts from the
ECoG input signal (e.g. equipment imperfections, external movement etc.) and performs signal anti-
aliasing which restricts the bandwidth of the input signal. In detail, unwanted artifacts are removed by
a second-order 0.4Hz high-pass filter cutting off all low-frequencies that are usually caused by move-
ment. Signal anti-aliasing is performed by means of a second-order 23.4Hz low-pass filter cutting-off
all frequencies above 23.4Hz and allowing only the desired frequency range to pass, as it was shown in
section 3.1.1 most seizure activity was found in the frequency range of [0-20Hz].

The other function is responsible to adjust the voltage range of the ECoG signal in order to meet the

3.2. PROTOTYPE SPECIFICATIONS 15

(a)

−0.5

0

0.5

1

R
e[

F
IR

]

0 10 20 30 40 50 60
−0.5

0

0.5

1

Im
[F

IR
]

Sample

(b)

Fig. 3. In a) the trade-off between detection delay and wavelet precision
as a function of the FIR truncation is shown. The green line is the detection
delay and the black line shows the accuracy of the wavelet implementation.
The black dotted line shows the chosen truncation setting at 101 samples for
which the complex (i.e. real and imaginairy) impulse response is shown in b)

filter [8]. A trade-off between precision and delay has to be
made: the more the wavelet is truncated at the start of the
FIR, the faster a detection is made, but the less precise the
impulse response approaches the wavelet. To find the optimal
truncation, all 1914 seizures were filtered using a set of FIR
filters with different truncations. When making a truncation, it
was assured that the DC value of the impulse response of the
real and imaginary part were both zero by adding an offset, as
required for a wavelet filter.

For each truncation setting the average response of the FIR
filter was obtained over the dataset. Based on this response
the average delay and precision can be determined. The delay
of the response was determined by the time at which the
maximum in the filter response was reached with respect to
the onset of the seizure. This is depicted with the green line in
Figure 3(a). The accuracy is determined by considering how
well the filter is able to distinguish between ictal and interictal
activity. Therefore the maximum in the averaged response
during a seizure is divided by the average value of the response
during interictal activity. This is depicted using the black line
in Figure 3(a). For each truncation the ?2 norm of the FIR filter
is kept constant:

?? |xi|2 = 1, in which xi are the complex
coefficients of the wavelet filter.

The accuracy of the filter worsens for truncations > 100,
because this is where the impulse response reaches its maxi-
mum value. Based on the results in Figure 3(a), it was chosen
to truncate the filter with 101 samples. The accuracy is close
to the optimal value, while the delay is 490ms. Note that this
is value is not equal to the detection delay of the overall filter,
because this also depends on the decision making strategy that
is used. In Figure 3(b) a plot is shown of the FIR with the
chosen truncation settings.

2) Dual Threshold detection: To minimize the detection
delay, it was chosen not to include a median filter [4] or other
low-pass filters at the output of the wavelet filter. Instead a
dual-thresholding mechanism is used: the output is enabled
upon a positive crossing of the higher threshold Vth,h and is
disabled upon negative crossing of the lower threshold Vth,l.
Because of the large variety in signal amplitudes over subjects,
the value of both thresholds is determined using an adaptive
thresholding technique. Vth,l is the running average of the filter
output: because the ictal time is short compared to the inter-
ictal time, the average will be close to the average of the inter-
ictal period. Vth,h is obtained by low-pass filtering the output
Y (i) of the wavelet filter:

Fig. 4. The input and output of the filter is shown with in the detail the
response during the start of a seizure. The red lines correspond to the dual
thresholds, while the thick red lines indicate when the output of the filter is
enabled.

Vth,h(i) = Vth,h(i− 1) +
Y (i)− Vth,h(i− 1)

τfs
Y (i) > Vth,h(i− 1) → τ = τup
Y (i) < Vth,h(i− 1) → τ = τdown

(2)

This low-pass filtering does not compromise the detection
delay, because it is only used to determine Vth,h and is not
included in the main signal path. By choosing τup small, Vth,h

will increase rapidly during ictal activity when Y (i) > Vth,h,
while a large value of τdown will decrease Vth,h slowly during
inter-ictal time. In this way Vth,h will reach a value somewhat
below the average value during a seizure. In Figure 4 the
response of the filter during a typical seizure is depicted for
illustrative purposes. The effect of the adaptive thresholding is
visible, as well as the detection delay, which is around 620ms
for this particular seizure. Note that the adaptive thresholding
makes the system easy to use compared to systems that need
specific training samples [6]. The proposed system is almost
’plug-and-play’ since the user only needs to wait for a few
seizures before the filter is settled.

III. EVALUATION

The performance of the proposed filter is analyzed over
the complete dataset using various values of τup and τdown.
The raw ECoG data was first processed using a filter with a
response equivalent to the circuit in Figure 1(b). The signal
is subsequently sampled with fs = 100Hz and quantized (12
bits accuracy), corresponding with the ADC. Finally, the output
of the filter was obtained by replicating the FIR filter and the
thresholding mechanism. To allow the values of Vth,l and Vth,h

to settle, the data before the first 4 seizures for each subject
from the set of annotated seizures was used as the training
dataset and therefore discarded.

A False Negative (FN) was defined as the absence of a
detection during an ictal time-stamp from the from the set
of annotated seizures. A False Positive (FP) was defined as
a detection in the absence of one or more SWDs in the
ECoG. SWDs were identified using visual inspection of the
ECoG by a neuroscientist. This definition was chosen, since
upon detection of an SWD it is not yet known whether this
ictal activity will develop into a seizure or not. In Table I

506

Figure 3.8: Filter precision and response delay trade-off for different truncations

requirements of the A/D converter (ADC) on the Beagleblone. So, the ECoG signal’s voltage amplitude
is regulated and a positive offset is injected to match the ADC’s voltage accepted range of Vi n ∈ [0−
1.8V].

3.2.2. DIGITAL MODULE
The digital module of the closed-loop system is implemented on the BeagleBone Rev.A6a develop-
ment platform and consists of three components (as discussed in 3.1.1): 1) Digitization, 2) Feature
Extraction and, 3) Decision making.

In the digitization component, the input signal that comes from the analog circuit is converted
using the on-board 12bit ADC of the BeagleBone at a frequency fs = 100 Hz. Then, the feature ex-
traction component computes the FIR approximation of the complex Morlet wavelet. The FIR filter is
responsible to produce increased output values during seizure intervals. Finally, the decision making
component uses a the static thresholding mechanism to detect the increased output values (seizure)
and trigger the optogenetic stimulator.

In the following sections we present the implementation details of our FIR filter and the software
setup of the components on the Beaglebone White.

FIR FILTER

In this section we describe the design procedure to map the FIR filter on the Beaglebone White. First,
we present how we truncate the FIR impulse response to minimize delay. Subsequently, we investigate
the appropriate amount of scaling for the coefficients and the signal inputs.

The FIR filter implemented on the BeagleBone is a truncated version of the initial FIR filter pre-
sented in section 3.1.1. By truncating the FIR filter, we strive to decrease detection delay, which is
caused by the large amount of near-zero values at its start (see Fig. 3.3). This section presents a pre-
liminary evaluation on the best truncation point for the prototype implementation. In Chapter 4, we
do a thorough investigation on different parameters and how these affect performance.

For the prototype implementation, in order to find an optimum truncation point we start by fil-
tering all the seizure periods from the pre-recorded ECoG database3 using different truncations. For a
wavelet filter it is required to keep the DC value of the FIR impulse response to zero (see [47]). There-
fore, for each truncation we add an offset on both the real and imaginary part to ensure a zero DC
offset. The filter precision of each truncation is evaluated by the ratio of the averaged response dur-
ing seizure to the average response of interictal activity. This ratio is represented by the black line in
Fig. 3.8. Then, an approximation of the filter’s response delay is defined as the time from the onset of
a seizure event to the maximum filter’s response during the seizure duration. The average response
delay of all seizures in relation to the truncation value is represented by the green line in Fig. 3.8.

From Fig. 3.8 we can observe that for truncations > 100 the precision starts to deteriorate. This
demonstrates that the average filters response for interictal activity becomes comparable to the value

3The database is described in section 4.1.1

16 3. IMPLEMENTATION

n (samples)
0 10 20 30 40 50 60

R
e[

F
IR

]
-0.5

0

0.5

1
Impulse Response

n (samples)
0 10 20 30 40 50 60

Im
[F

IR
]

-1

0

1

Figure 3.9: Truncated impulse response for the FIR filter implemented in the prototype (64th order filter)

of the average response of the seizures and in turn losing the advantage of using the filter. Based on
the results presented in the figure we choose to truncate 101 samples from the filter and use a total
of 64 coefficients (64-order FIR filter). The truncated version of the FIR impulse response is shown in
Fig. 3.9. From the results we find that precision is close to the optimal value and the response delay
(max response value) is 490 ms.

The ideal parameters of the FIR filter, i.e. the input and coefficients, have infinite precision. To
make this filter suitable for the digital domain which operates using finite precision, we map the
parameters of the FIR implementation to fixed-point arithmetic values. Compared to floating-point
arithmetic, this ensures a fast execution on modern architectures and minimizes computational com-
plexity.

The operations responsible for the filter response output are targeted to fit in 32-bit integers. One
of the reasons this is done, is because the selected development platform has a 32-bit architecture
(ARM cortex-A8), which means that basic 32-bit arithmetic integer operations are executed in one
clock cycle. In addition, many other ultra low power architectures (such as the SiMS processor [1] or
the ARM Cortex-M [50]) also provide 32-bit hardware and hence favoring a choice of 32-bit values.

To map floating precision values to fixed precision, we scale input values and coefficients using kx

and kc respectively. To derive these values, we start from the initial FIR description (Eq. 3.4):

Y [n] = (
N−1∑
i=0

Re[ci]x[n − i])2 + (
N−1∑
i=0

Im[ci]x[n − i])2 (3.7)

Then we introduce the scaling factors:

Y [n] = (
kc

kx
)2

{
(

N−1∑
i=0

kc Re[ci]
1

kx
x[n − i])2 + (

N−1∑
i=0

kc Im[ci]
1

kx
x[n − i])2

}
(3.8)

kc = Coefficient scaling factor
kx = Input scaling factor

In order to avoid costly multiplication and division operations, only powers of 2 were considered for
the scaling factors. Hence, parameters scaling can be implemented with arithmetic shift operations.

3.2. PROTOTYPE SPECIFICATIONS 17

Subsequently, we truncate the parameters to integer values (floor function on each value), which in-
troduces an error to the output:

Y [n] = K (
N−1∑
i=0

Re[c∗i]x∗[n − i])2 + (
N−1∑
i=0

Im[c∗i]x∗[n − i]))2 +ε (3.9)

c∗ = bkc ci c, scaled coefficient value
x∗ = b 1

kx
x[n − i]c, scaled input value

ε= Truncation error, K (kx
kc

)2

The FIR value Y ′[n] calculated with the scaled values is the following

Y ′[n] = (
N−1∑
i=0

Re[c∗i]x∗[n − i])2 + (
N−1∑
i=0

Im[c∗i]x∗[n − i]))2 (3.10)

which is related to the initial description as follows,

Y [n] = K Y ′[n]+ε

The criterion to determine the kc ,kx values is that the Y ′[n] value fits in 31 bits for any input with the
minimum rounding error ε.

dlog2(Y ′[n])e ≤ 31

31 bits are considered as we have incorporated 32-bit signed integers in our software implementation,
therefore the max positive integer has a length of 31 bits. Using signed integers is done as a safety mea-
sure to detect potential overflows in the calculation of Y ′[n] (a negative Y ′[n] indicates the resulting
sum did not fit in 31bits)
Using samples from the pre-recorded ECoG database (described in section 4.1.1) and testing different
values for the scaling factor, we found the values kc = 64 and kx = 16 to best match our criteria. This
means that coefficients become integers in the range [-64,64], thus needing 7-bits to represent them.
The input values, from an initial range of [0-4096], can scaled down to [0-255] and fit in a 8-bit value.

SOFTWARE SETUP

The software setup consists of an overview of the software implementation and the software tools that
were used to realize the system on the BeagleBone White. The flow diagram of Fig. 3.10 depicts the
main components of the software implementation, these include: 1) the startup code and variable
initialization component (Initialization); 2) the ADC value storage component (Store sample); 3) the
FIR filter calculation component (FIR kernel) computation; 4) the decision making component (De-
tection) mechanism;and 5) a component responsible for the device control via a host-PC (PC-comm)
.

Besides the Initialization component, which is executed one time, the software implementation is
an infinite loop which every time for a new sample value to arrive. The main body of the infinite loop
is composed by the Store sample, the FIR kernel, and the Detection components. These components
are responsible for the implementation of the detection mechanism and their computation have a
real-time constrain of 10 ms given the input data sampling frequency. The loop also contains a PC
comm component, which is used to monitor and configure the device’s parameters at run-time.

Initialization: This component is responsible to configure the BeagleBone hardware peripherals which
are used by the software implementation and initialize software variables. These peripherals include

18 3. IMPLEMENTATION

New
Sample?

Store sample

FIR kernel

Detection

ADC output

LED enable

N

Y

PC Comm

Main body

Initialization

Figure 3.10: Seizure Detection SW flow chart

the ADC unit responsible for sampling the input signals and hardware timers that monitor the perfor-
mance.

Store sample: A circular history buffer responsible for storing the current and maintaining previous
samples. The point where the new sample is inserted is point zero of the FIR filter and going backwards
in the buffer for the previous samples. The size of each buffer is 64 elements which correspond to
number of coefficients and are required for the FIR calculation. Each element’s size is defined as a
16-bit signed integer and stores the 12-bit values that arrive from the ADC peripheral which in turn
are shifted right to 8-bit values, as defined in 3.2.2.

FIR kernel: This part computes a 64 order FIR filter output, as presented in 3.2.2.

Detection: The dual threshold mechanism described in section 3.1.1 is applied to the value calculated
in the FIR kernel. Upon seizure detection, the optogenetic stimulator is enabled for a specified dura-
tion.

PC comm: This component is responsible for the communication of a host-PC with the BeagleBone.
This communication interface is used to monitor and configure various parameters of the system.
Configurating the system includes setting threshold levels, adjusting stimulation duration time, and
enabling monitoring channels. Monitoring the system involves the BeagleBone sending telemetry
data back to the host-PC to monitor, such as filter input and output information. This component
is mainly used for debugging, setting parameters at run-time and monitoring the system and can
be omitted if the system is proven to work. A screenshot of the host-PC graphical user interface is
presented in Appendix A.

The software implementation is written in C software language and is compiled using the GNU
bare-metal toolchain of version 4.7-2013-q3. The executable is running without the support of an
Operating System (OS), i.e. bare-metal. The use of an OS was avoided because of the real-time re-
quirements of the implementation. Additionally relying on OS operations, it would the porting ability

3.2. PROTOTYPE SPECIFICATIONS 19

of G SW D -modu lated neurons in the IN and LC N w ere

h igher (7 3 % and 44%,re sp ec ti v el y).E x ce ptfo r an an a-

t o m icalev al ua ti o n of th e lo calde ns it y of la rg e an d sm all

s o m a- d iam et erCN n eu ro nsin the mo useb ra in
52

and

c o m p u t at io n alst u d ieson th e c lu st er in g an a ly s isof CN

n eu ro n alac t io n po te n t ialf r in g intg
,
5 3 ,54

fe w ex pe ri m en-

t ald at a ar e av a il a b le th atal lo w us to un eq u iv oc al ly pi n-

p o intthe ty p e(s)of CN ne ur o nsre sp on s ib lefor

m odifca tio n ofG SW D ac ti v it y.W it h re sp ectto the

e x t r ac e llu larre co rd in gs,we pr es um ab ly re co rd ed m os tly

F IG UR E 4: M od u la tio n ofp hase -lo c ke d ce re b e lla r n uclei(C N)ne u ro n al(C NN)activ ity sto ps general ized spike -and-w ave d is-

c harg es (G SW Ds) in C3 H /H eO uJ m ice. (A) S im u ltan eo usly re co rd ed prim ary mo to r (M 1) an d se nso ry (S 1) co rtex e le ctro co rtico-

g ram s (EC oG s)an d CN N ac ti v it y.(B)Raste r p lot and peri– stim u lus tim e h istog ram of s ing le CNN activ ity (t
5

0 in d ic at e s ea ch

E C oG sp ike). AP
5

ac ti o n po te n ti a l; SWD
5

sp ike -and -w ave d isch arg e. (C) Su m m ary bar p lo ts re p re se n ting th e m ean d ife re nces

i n frin g pa tte rn pa ra m e te rs be tw ee n in te ric talan d ic talpe ri o ds (n
5

28).** *p
<

0 . 0 0 1 (r e p e a t ed m e a s u r e s a n a ly si s o f v a r ia n ce

[A N O V A]w ith B onfer ro nico rr e ct io ns;se e Ta b le 6).(D) Re p res en tativ e M1 ECoG before and after m usc i molin je ct io n an d (E)

c o rre sp on d in g no rm a l ized se izu re occu rren ce an d du ratio n.*p
<

0 .0 5 (F ri e dm an AN OV A;se e Ta b le 6).(F –H)O p e n -loo p (to p)

a nd c lo se d - lo op (b o tto m) op to ge ne tic stim u la tio n sto ps GS W Ds as sh ow n by : (F) ty p ic al ex am p le trac e; (G) EC oG w av e l et sp ec-

t ro g ra m a v e ra g e d o v e r a llb il a te r alop en-loo p (n
5

11; to p pa ne l)st im u liin a s in g le m ou se an d ov er a llun il a te ralc lo se d -l o op

s t im u li(n
5

18 ; bo tt o m pa ne l) in an o th er m ou s e; an d (H) EC oG th e ta -b an d po we r be fo re an d af te r op ti c als t im u la ti o n f o r b il a t-

e ralop en -l o op st im u li(n
5

3 m ic e,
n5

19 st im u la ti o ns;to p le ft pa ne l),un il a te ralop en -l o op st im u li(n
5

3 m ic e,
n5

19 st im u la-

t io n s),b il a te ralc lo se d-lo op st im u li(n
5

3 m ic e,
n5

4 6 stim u latio ns),an d un il a te ralc lo se d - lo o p stim u li(n
5

3 m ic e,
n5

30

s tim u latio ns). *p
<

0 .0 5, **p
<

0 .0 1 ** *p
<

0 .001 (re pe ate d m easu re s A N CO V A; see Tab le 6).

1 042 Vo lu m e 77,No.
6

E
C

o
G

 s
ig

n
a

l
Optogenetic stimulation

Figure 3.11: ECoG behavior during optogenetic stimulation during ictal-activity using the close-loop prototype and
suppressing ictal-activity

to other platforms. Therefore, the only software components used is the StarterWare4, which provided
basic hardware drivers support and bootup code.

3.2.3. IN-VIVO RESULTS
The closed-loop prototype has been deployed on live subjects (mice), where its correct functionality in
detecting and suppressing seizures was validated [15]. In-vivo measurement showed that When ictal-
activity was detected, the optogenetic stimulator was triggered which in turn suppressed the seizure.
On average, seizures were detected and stopped within 500 ms. An illustration of the optogenetic
stimulation moment (blue line) and its effect on the ECoG (termination of ictal-activity) is depicted in
Fig. 3.11.

4See details in section 2.2

4
EVALUATION

In this chapter, we evaluate the seizure-detection mechanism in terms of detection performance and
software execution costs. We start with presenting the setup of our evaluation in section 4.1. Continu-
ing in section 4.2, we analyze the results of the detection performance quantified in terms of accurate
detections (sensitivity, specificity) and the detection delay. Then in section 4.3, we analyze the re-
sults for the computational costs of implementing the filter on a ultra-low power processor in order
to assess the complexity of the mechanism. Finally in section 4.4, we present the trade-offs between
seizure-detection performance and computational costs.

4.1. EVALUATION METHOD
Before we present the results of the evaluation, we need to explain the methods of evaluating the De-
tection mechanism. First, we introduce the parameters and the evaluation procedure of the detection
performance. Next, we present the evaluation procedure for a software implementation of the de-
tection filter on SiMS (ultra-low power processor). Finally, we show how we are combining these two
performance aspects.

4.1.1. DETECTION PERFORMANCE
The Detection performance specifies how apt is the detection mechanism in detecting seizures and is
determined by the FIR filter and decision mechanism. In this section we explain the setup of our eval-
uation. First, we define the metrics that quantify the performance, after which we list the parameters
of the FIR filter and decision mechanism that affect it. Then, we describe the input values we varied to
evaluate the detection performance. In the end, we present the procedure of evaluating the detection
performance of the two decision mechanisms, one that is based on a static thresholding mechanism
and one on a adaptive thresholding mechanism.

PERFORMANCE METRICS

The performance metrics of the detection mechanism include the Specificity, Sensitivity and Detec-
tion Delay as detailed next.

Sensitivity is a value that signifies the percentage of correctly classified seizures in a given input
(ECoG database). It quantifies how sensitive is the detection-filter in detecting seizures. A high sen-
sitivity indicates that the closed-loop system prevents a high amount of seizures from manifesting in
the subject. Sensitivity is defined as:

Sensi t i vi t y = T P

F N +T P

21

22 4. EVALUATION

where,

TP = number of True Positives. A true positive is defined as a detection during an ictal timestamp from
the annotations in the ECoG database.

FN = number of False Negatives. A false negative is classified as the absence of detection during an ictal
timestamp from the annotations in the ECoG database.

Specificity is a value that signifies the percentage of correctly classified inter-ictal intervals in a
given input. It quantifies how accurate is the detection-filter in only detecting seizures and not other
events. A high specificity indicates that the closed-loop system will not stimulate when not necessary,
minimizing the adverse effects of stimulation. It is be calculated by the following definition:

Speci f i ci t y = T N

F P +T N

where,

TN = number of True Negatives. A true negative is defined as the absence of a detection during an inter-
ictal timestamp from the annotations in the ECoG database (correct behavior).

FP = number of False Positives. A false positive is defined as a detection during an inter-ictal timestamp
from the annotations in the ECoG database (wrong detection).

ADR is a compound metric and describes the Average Detection Rate performance of the detection
filter. It is the mean value of Sensitivity and Specificity and provides a single value to classify the
detection performance

ADR = Sensi t i vi t y +Speci f i ci t y

2

Detection Delay is the average detection delay of all detected seizures from the ECoG database.
The detection delay of a seizure is defined as the time between its onset, annotated time-stamp in the
ECoG database, and the detection time of the detection filter. An example illustration of a seizure’s
Detection Delay is shown in Fig. 4.1. A small detection delay signifies that the closed-loop system is
able to detect and suppress ictal-activity fast enough before it develops into a seizure that would affect
the subject.

INPUT PARAMETERS/INPUT SPACE

The detection mechanism’s input space comprises the coefficient window, which is divided in the
coefficient window size and coefficient window offset, and the threshold values. These parameters are
varied with the purpose of quantifying the various performance results as described in the previous
section.

Coefficient Window In order to create a low complexity and efficacious FIR filter in terms of detec-
tion accuracy and delay, we consider different truncations of the initial impulse response (described
in section 3.2.2). Therefore, we define the Coefficient Window parameter as the set of coefficients
(both imaginary and real) that remain after truncating the impulse response on both sides. The Co-
efficient Window is characterized by its length in coefficient values and its location within the initial
impulse response. An example of coefficient window, as projected on the real component of the im-
pulse response, is depicted In Fig. 4.2. The first attribute, the Coefficient Window Size, describes the
total number of coefficient found in the window and represents the order of the newly formed filter.
We vary different size values to evaluate different performance results. While smaller sizes will reduce
computational complexity, we expect that they will reduce detection performance. As for the second

4.1. EVALUATION METHOD 23

Upper Threshold

Lower ThresholdDetection Delay

Figure 4.1: Detailed example of static threshold mechanism presenting the detection moment, the re-enabling of the
mechanism and the Detection Delay of a thresholding mechanism.

Impulse Response center Coefficient window center

Coefficient window offset Coefficient window size

Coefficient window

Figure 4.2: Coefficient Window Size and Offset illustration on real component of FIR impulse response

attribute , the Coefficient Window Offset, it quantifies the shifting amount of the coefficient window
center with respect to the middle of the initial FIR impulse response. An zero offset means that the
coefficient window is centered to the initial FIR impulse response. A positive offset, as seen in Fig. 4.2,
means that the coefficient window is shifted to right in relation to the center, and a negative offset that
it is shifted to left. We vary the window offset as to see whether different parts of the impulse response
can produce faster responses and affect detection accuracy of seizure intervals. We chose to select
window offset values that always include the center of the initial impulse response in the coefficient
window. This center contains the most significant component of the impulse response from which we
expect the best output values.

Threshold values The threshold values are involved in determining filter output values that belong
to seizure intervals. We vary these values because they affect detection performance. It may be ex-
pected that higher values will prevent from false detections in inter-ictal intervals and lower values
will allow more ictal intervals detections. In this work, the threshold values are specified with two
methods, static and adaptive as discussed in section 3.1.1.

For the static mechanism, which uses fixed values for its thresholds, we vary the values for the
upper threshold Vth,h . However, it is unfair to use the same absolute values to compare between filters,
as we expect that different filter instances (i.e different Coefficient Window) have different maximum
absolute outputs, . Therefore, we evaluate the upper threshold value as relative to the maximum filter
output during seizure intervals, to do so, we consider 70% as least-required detected seizures. So we
want to vary a range of Vth,h values between a minimum and maximum level. The maximum Vth,h is

24 4. EVALUATION

set as the value that detects 70% of all annotated seizure intervals. The minimum Vth,h is set at a value
that is 75% of the highest Vth,h value that detects 100% of all annotated seizure interval level. In this
threshold range we consider 64 steps to test different Vth,h values. Because the lower threshold V th, l
is only used as safety mechanism to prevent multiple detections in the same seizure interval, we used
a single value close to the average value of non-seizure interval.

On the other hand, the adaptive mechanism uses Vth,h values that are dependent on the filter’s
output. Specifically, two τ values, τup and τdown , determine how the threshold value is adapted, in-
creasing and decreasing respectively (as described in section 3.1.1), and in turn they affect detection
performance. Therefore, we vary the τ values as follows:

τup = j , j ∈ [1,30]
τdown = i ∗10 , i ∈ [1,150]

Our evaluation showed that larger τ values did not further improve detection performance, so we
consider the above set representative. The V th, l , which is defined by the running average, is again not
varied for the same reason as in the static mechanism. The window size of the of the running average
is set to N=10,000. In our evaluation, we observed that this window size allowed the V th, l to sustain
a value close to the values of inter-ictal periods.

ECOG DATABASE

The ECoG Database used in this thesis’ work was obtained from 24 awake tottering mutant mice that
exhibit absence seizures. The mice were connected with Teflon coated silver ball tip electrodes (di-
ameter 0.2 mm, [51]) which were bilaterally placed above the primary motor cortices and primary
sensory cortices. The ECoG signals were amplified using a Cyberamp amplifier [48] and recorded with
Multiclamp 700A [48]. These recordings were made by neuroscientists at Erasmus MC.

The total duration length of the database is 29.75 hours and was divided in sets of 15 minutes. The
database contains 1914 annotated seizures time-stamps which were created by an offline algorithm.
The algorithm uses peak detection to find SWDs that exhibit a repetition rate of at least 5Hz and the
interval of those that last more than 1 second are marked as seizures. The outcome of the algorithm
was validated visually by a neuroscientist. In the following sections these annotations will be referred
as golden standard annotations.

However, neuroscientists remain uncertain whether SWDs intervals of less than 1 second are not
a seizure. Therefore, the initial annotations were extended manually by trained neuroscientists to
include ictal-activity that contained at least 3 SWDs. In the following sections, these additional anno-
tations will be referred as SWD annotations.

EVALUATION PROCEDURE

The evaluation of the detection-filter performance is conducted using MATLAB®[52]. As our inter-
est lies primarily with digital domain, we emulate the analog module functionality the parameters of
which are fixed and sample the input values at the sampling frequency of the closed-loop system. We
subsequently vary the aforementioned input parameters and evaluate the detection mechanism on
the performance metrics described above in order to derive appropriate solutions for an efficacious
system implementation. In our evaluation we consider the static and adaptive mechanism and eval-
uate each with different parameters as described below.

For the Static threshold mechanism case, we assess the detection performance varying the Upper
Threshold Vth,h and the Coefficient Window input parameters. The performance results are com-
puted using both golden standard annotations and SWD annotations. We conclude the mechanism’s
evaluation by considering all the performance metrics derived from the golden annotations as opti-
mization objectives and compute which are Pareto optimal. Subsequently, we approximate the Pareto
front that is formed by these points.

4.1. EVALUATION METHOD 25

For the Adaptive threshold mechanism case, we evaluate the detection performance for different
values of τup and τdown . In order to do so, we select the FIR filter implementation that derived from
our preliminary study for the prototype implementation (section 3.2). The performance results were
computed using SWD annotations as these results are close to the performance results of a closed-loop
system. Additionally, in order to obtain sufficiently stable values for the thresholds (Vth,h and Vth,l),
the adaptive mechanism needs to be initialized. In the evaluation process, we allowed the thresholds
to settle with ECoG input values that contained a set of 4 seizures per subject.

Finally, we select single representative instances from both mechanisms and compare their per-
formance results with other existing closed-loop implementations.

4.1.2. COMPUTATIONAL OVERHEADS
In this section we present the evaluation setup for the computational overheads. First, we describe
the platform that is used to calculate the overheads and the details of the ported software implemen-
tation. Then, we define the profiling statistics that quantify the overheads and finally we analyze the
procedure we follow to simulate and evaluate these costs.

PLATFORM AND SOFTWARE IMPLEMENTATION

The computational overheads for the software implementation of the closed-loop system are mea-
sured by executing it on the SiMS architecture processor [1], which is an ultra low power architecture.
The architecture details of this processor are described in section 2.3.1, runs at a frequency of 20 MHz,
and has an average power consumption of 1078.93 µW ([53],[1]). The implemented processor targets
implantable biomedical implants, which is also the intended target of our closed-loop system.

In order to port the software implementation to SiMS, we created a version by stripping the Bea-
glebone software implementation discussed in section 3.2.2. More importantly, the ported version
is more representative of an actual application, as it contains no extra functionality other than the
detection and triggering mechanism. In detail, the simulated components involve waiting for a new
sample to arrive, computing the FIR filter’s response, and deciding on the existence of a seizure (de-
tection mechanism).

To emulate sensory input, ECoG sample values are stored in the source code in global arrays and
are given as input during execution. All data read and data writes to peripherals are modeled by per-
forming a memory operation of 1 clock cycle. The stimulator activation is modeled by writing the
value of 1 to a pre-defined memory address. Also, the circular history buffer was initialized with input
samples in order to get a correct filter outputs at the first loop iteration without having to wait for the
buffer to fill by incoming values.

The software application was compiled using the SiMS core compiler with O2 level optimization
enabled. Then the binary’s execution was simulated with ModelSim [54]

PROFILING STATISTICS

The profiling results generated from simulating the code on SiMS architecture in ModelSim, include
the following metrics:

The Instruction mix specifies the percentages of the different types of instructions that are exe-
cuted. The instructions of the ISA are grouped in 4 categories:1) ALU- arithmetic instructions and
instructions, 2) BRA- conditional instructions, 3) MEM- load/store instructions. JUMP- jumping in-
structions. We calculate the instruction mix by analyzing the instruction trace of the simulated execu-
tion. The percentage identifies which of the instruction types are mostly used in our implementation
and allows to identify the most prominent candidates for improvements.

The Total instructions describe the number of instructions committed during a single main loop
iteration of the software application. It is computed from the instruction trace generated by simulating
the software implementation and quantify the execution size of the application.

26 4. EVALUATION

The Execution cycles are the number of cycles required to execute a single main loop iteration for
the software implementation. This value is computed from the binary simulation on Modelsim. Using
this value we can compute its execution time for a given clock period. The execution time allows us to
estimate on Energy consumption (discussed below) and timing requirements of the implementation,
that is in this case 10 ms per loop iteration.

The IPC metric specifies the average Instruction Per Cycle and is one of the performance metrics
used for quantifying processor architectures performance. A higher IPC value means that the proces-
sor architecture is more efficient in executing instructions.

The Multiplication overhead is the overhead introduced by the emulation code for a multiplication
as the SiMS processor architecture lacks a dedicated hardware multiplier unit. We compute the over-
heads by detecting the emulation blocks in the instruction trace. The overhead shows how it affects
total performance and allows us to estimate the improvement which could be obtained, in terms of
execution cycles and total instructions, by using a dedicated multiplier.

Memory usage comprises Instruction Memory (IMEM) and Data Memory (DMEM) usage by the
software implementation. IMEM is determined by the executable binary size of the software imple-
mentation. DMEM usage is determined by the size of static data, global arrays, and maximal stack
size during execution. Memory usage is important as the size of the memory unit greatly affects total
power consumption [1]. Thus, by defining the minimum memory requirements of the implementa-
tion we can keep power consumption spent on memory to the minimum.

The Energy consumption is the energy required to execute a single iteration of the main loop on the
SiMS processor. In order to calculate the Energy consumption, we first compute the execution time by
multiplying the execution cycles with the cycle period of (1

20 ns). Then, we multiply the average power
consumption(1078.93 µW) with the execution time. Energy consumption enable us to estimate the
costs required for a system realization that deploys this algorithm and how it will scale in relation to
various parameters.

The Battery-powered system lifespan involves the estimation on the durability of a system that uses
a battery with a capacity of 0.1Wh. The battery capacity of 0.1Wh was chosen as a reference because
it is close to the capacity of a battery used in a wristwatch [55] which is relatively small in size. In
order to calculate the lifespan, we first calculate the total number of loop iterations that can executed
for this capacity with the pre-calculated energy consumption per loop. Then, using the main loop’s
execution frequency(sampling period fsample =10 ms), we calculate the expected battery lifetime. We
assume that after the main loop completes its execution, the system is powered down with a zero
power consumption until the next iteration.

EVALUATION PROCEDURE

In this section, first we present the different parameters used to calculated the profiling statistics, after
which, we explain how we obtain our profiling statistics. Finally, we present how we are going to assess
the software implementation of the two detection mechanism (i.e. static and adaptive).

The detection mechanism’s input parameters used to evaluate the computational cost is the coef-
ficient window size (filter order) as the rest of the parameters do not affect the execution. The coef-
ficient window size, determines how many multiplications and additions of the FIR filter need to be
calculated. Therefore, we experiment with window sizes in a logarithmic scale from 1 to 64. In future
implementations, we might require to analyze ECoG signals from multiple locations with the purpose
of increasing detection accuracy (e.g stimulate only when seizure detected in all locations). Therefore,
we consider how different numbers of input channels affect software execution and computational
costs. The number of channels affect the total number of FIR kernels and the total number of buffers
required to store all necessary data. In the evaluation process, we experiment with different number
of channels in a logarithmic scale from 1 to 32. For each of the parameters a new binary was compiled
and simulated.

4.1. EVALUATION METHOD 27

The software code section that is profiled is only the main loop; initialization and boot-up code are
excluded. The reason these parts are not included, is that they contain code only required for simula-
tion which does not contribute to the actual runtime execution. Multiple loop iterations are executed
to eliminate the effects of startup code and the results for the computational overheads represent the
average values for a single iteration. Additionally, in order to measure IMEM usage we profiled a soft-
ware implementation where emulated input is excluded. The software implementations for both the
static and adaptive threshold mechanism are evaluated as follows:

In the case of the static threshold, we evaluate all the above metrics as a function of different coef-
ficient window sizes and number of channels. First, we present how the selected parameters affect the
average instruction profiling statistics per loop iteration. These include instruction-mix results, total
instructions committed number, execution cycles and multiplication overheads. As for the multipli-
cation overheads, these are computed for a software implementation with 1 (one) monitoring channel
and a coefficient window size of 64. Then, we report on the memory requirements for each parameter,
after which we evaluate which of the software implementations, in relation to the coefficient window
size, meet the real-time constraint of 10 ms (sampling period of the ECoG input signals). In the end,
we report on the Energy consumption requirements of the software implementation in relation to its
input parameters where we also discuss the lifespan of a battery powered system.

In the case of the adaptive threshold mechanism, we evaluate the extra computational overheads
that are introduced in comparison to the static threshold mechanism. The additional costs of the
adaptive mechanism derive from the extra instructions and the additional variables required to store
intermediate results and threshold values per channel. Since each channel requires its own threshold
mechanism and the threshold calculation is not affected by the coefficient window size, the only pa-
rameter that affects the computational overheads is the number of monitoring channels. Therefore,
in the evaluation results we present the additional clock cycles caused by the extra instructions, and
the memory usage increase caused by the additional variables, in relation to the number of different
channels.

4.1.3. DETECTION PERFORMANCE VS. COMPUTATIONAL OVERHEADS
In order to evaluate the overall performance of a low power architecture utilizing the presented closed-
loop system, we first want to find the pseudo-optimal solutions and then see the trade-offs between
detection performance and energy consumption. In both cases, we consider the results produced by
the static threshold mechanism.

At first, we consider the all the detection performance metrics (i.e. Sensitivity, Specificity, and De-
tection Delay) together with energy consumption as optimization objectives. From these objectives
we compute which are Pareto-optimal and construct the Pareto front where we can assess the perfor-
mance of the system. Next, we compare in terms of ADR, energy consumption, and Detection Delay
for various coefficient window sizes. This is done to estimate the costs of various solutions and how
we trade-off detection accuracy for extended lifespan.

28 4. EVALUATION

4.2. DETECTION PERFORMANCE RESULTS
In this section we present the performance results of the detection filter using the methods described
in section 4.1. First, we describe the results of a full exploration on the selected input parameters of
the detection system using a static threshold, after which we present the performance results of the
adaptive threshold mechanism. Finally, we compare our work to other existing solutions.

4.2.1. STATIC THRESHOLD
In this section, we first present the results of each metric as a function of the input parameters. We do
this for both golden standard and SWD annotations. Following, we describe the Pareto front defined
by the Pareto optimal performance metric values.

PERFORMANCE METRICS

The performance metrics consists of the Sensitivity, Specificity, and Detection Delay as functions of
the input parameters, i.e. coefficient window(size and offset) and threshold value Vth,h . Given the
complexity to study the effects of individual parameters on detection performance (3 inputs,3 out-
puts), we select a single value for one of the inputs and describe the effects of the remaining inputs.
We start by selecting coefficient window offset 0 (symmetric impulse response) and demonstrate the
effects of the threshold Vth,h and coefficient window size. Subsequently, we select a coefficient win-
dow size of 40 and present the effects of the coefficient window offset.

Threshold Vth,h & Window size In this section, we present the effects of different threshold Vth,h and
window size values on the performance metrics by setting the coefficient window offset fixed at 0 and
using the golden annotations (seizure>1sec). We present each of the performance metric separately
starting from Sensitivity, then Specificity and moving on to the combination of two in the ADR metric.
In the end we explain the results of Detection Delay.

Sensitivity results are presented in Fig. 4.3, where Fig 4.3a shows the 3D view of the Sensitivity as
function of Vth,h and Window size, Fig 4.3b/4.3c depict the 2D aspects as a function of one parameter
(Vth,h and Window size respectively) while using representative values for the other. First, let us see
the effect of Vth,h on Sensitivity for a given window size, as depicted in 4.3b. Starting at Vth,h = 1 and
up to Vth,h = 25, we find that Sensitivity is 100% for a given window size, which means all seizures peri-
ods in the ECoG database are detected. This is also seen in 4.3b where all indicative window sizes have
a Sensitivity of 100% and in 4.3c where for Vth,h = 25 Sensitivity is fixed at 100%. For these threshold
values all seizures are detected, as we select the starting point of the threshold levels (Vth,h = 1) at a
value that is guaranteed to contain no False Negatives (FN). It is evident that we remain within that
range up to Vth,h = 25 . For increasing values of threshold level above 25, Sensitivity starts dropping,
which means that the threshold level exceed filter outputs of certain seizure intervals leading to False
Negatives (FN). Finally, at the maximum Vth,h = 64 we see that sensitivity gets as low as 70% for all win-
dow sizes, Fig. 4.3c. This is because our max threshold level is such that will miss 30% of all seizures,
recall from section 4.1.1. Finally, we observe that different values for window size have no effect on
Sensitivity, as is evident from the monotonous lines in Fig. 4.3c. Although different windows sizes do
affect the filter’s output range, Sensitivity is not affected as a function of the threshold levels relative to
this filter’s output.

Specificity results are presented in Fig. 4.4, where Fig 4.4a shows the 3D view of the Specificity as
function of Vth,h and Window size, Fig 4.4b/4.4c depict the 2D aspects as a function of one parameter
(Vth,h and Window size respectively) while using representative values for the other. First, let us con-
sider the effect of Vth,h on Specificity as a function of the threshold level for a given window size (Fig.
4.4b). Starting at Vth,h = 1, we notice that Specificity varies between 0% and 10% for window sizes 1
and 229 respectively. This can be seen in 4.4a by the increasing Specificity for different window sizes

4.2. DETECTION PERFORMANCE RESULTS 29

Window size

200150100

Sensitivity

5020V
th,h

40
60

75

80

100

95

90

85

%

(a) 3D plot of Sensitivity as a function of Threshold-Vth,h and Window
size

V
th,h

1 20 40 60

%

65

70

75

80

85

90

95

100
Sensitivity

S=229
S=40
S=8

(b) Sensitivity as a function of Threshold-Vth,h for selected window sizes

%

65

70

75

80

85

90

95

100

Window size
50 100 150 200

Sensitivity

V
th,h

=64

V
th,h

=44

V
th,h

=25

(c) Sensitivity as function of Window Size for selected Thresholds-Vth,h

Figure 4.3: Sensitivity as a function of Upper Threshold Vth,h and Coefficient Window Size

at Vth,h = 1 and in 4.4b by the Specificity values for the 3 window sizes. This low Specificity is caused
by the fact that low threshold values are very close to the average filter response during inter-ictal pe-
riods and even small increases in the filter response can trigger the detection mechanism, i.e. high
False Positive (FP) and low True Negative (TN) numbers. As the filter more accurately approximates
the complex Morlet wavelet for larger windows sizes, the filter’s output is higher for seizures periods
than inter-ictal periods. As a result, Specificity is increased for window size 229. For increasing values
of Vth,h , we observe in 4.4b that Specificity increases for all 3 window sizes, which results from reduced
False Positives as the threshold values are high enough and don’t detect at low filter outputs. Finally,
for max Vth,h = 64, we find a Specificity over 87% for the all 3 window sizes, as seen in Fig. 4.4b. Even
though we have set a significantly high threshold value, the results are affected by ECoG events that
cause the filter’s response to cross the max threshold level. These events may include SWD, SWD-like
behavior and various artifacts (ECoG problems during recording).

Let us now consider Specificity as a function of window size for a given threshold value Vth,h (Fig.
4.4c). We find that different window sizes slightly affect Specificity, most noticeably for smaller win-
dow sizes (s<16), Fig. 4.3c. This is because the filter’s seizure-detection capabilities are greatly reduced
resulting in low True Negatives and high False Positives, when truncating the initial FIR impulse re-

30 4. EVALUATION

Window size

200150100

Specificity

5020V
th,h

40
60

80

60

40

20

%

(a) 3D plot of Specificity as a function of Threshold-Vth,h and Window
size

V
th,h

1 20 40 60

%

0

20

40

60

80

100
Specificity

S=229
S=40
S=8

(b) Specificity as a function of Thresholds-Vth,h for selected Window
Sizes

%

0

20

40

60

80

100

Window size
50 100 150 200

Specificity

V
th,h

=64

V
th,h

=44

V
th,h

=25

(c) Specificity as a function of Window sizes for selected
Thresholds-Vth,h

Figure 4.4: Specificity as a function of Upper Threshold Vth,h and Coefficient Window Size

sponse. For increasing the window sizes (>16), we find that Specificity is improving. Finally, for max
window size (S=229) we find that the maximum Specificity is reached for each of the threshold values.

We observe from the previous results that Sensitivity and Specificity have opposite behavior in
relation to threshold levels, while window size only affects Specificity. While Sensitivity decreases
when threshold levels are raised, Specificity is increasing. In Fig. 4.5 we present the results for ADR
which quantifies the average of the two metrics. We find that for Vth,h = 1 ADR is at its lowest values
between 50% and 55% , as seen in Fig. 4.5b and attributed to the Sensitivity of 100% and Specificity of
0%. Increasing threshold levels also increases ADR, this is because Specificity improves at a higher rate
than the decrease rate of Sensitivity. Between threshold levels Vth,h = 42 and Vth,h = 46 we have the
maximum ADR for each of the selected windows, yielding ADR values up to 85%. Further increasing
threshold values results in decreasing the ADR as a result of the decreasing values of Sensitivity for
higher threshold values while Specificity increases at smaller rate .

For different window sizes (Fig. 4.5c), we find that ADR follows the same trends as Specificity which
is expected as Sensitivity remains constant for different window sizes. In this sub-figure (Fig. 4.5c), we
find again that the in-between threshold of Vth,h = 44 has better ADR results than the other Vth,h = 64

4.2. DETECTION PERFORMANCE RESULTS 31

Window size

20015010050

ADR

20V
th,h

40
60

60

70

80

%

(a) 3D plot of ADR as a function of Threshold-Vth,h and Window size

V
th,h

1 20 40 60

%

50

60

70

80

90
ADR

S=229
S=40
S=8

(b) ADR as a function of Threshold-Vth,h for selected Window Size

%

50

60

70

80

90

Window size
50 100 150 200

ADR

V
th,h

=64

V
th,h

=44

V
th,h

=25

(c) ADR as a function of Window sizes for selected Threshold-Vth,h

Figure 4.5: ADR as a function of Upper Threshold Vth,h and Coefficient Window Size

and Vth,h = 25, something which is also seen above where maximum levels of ADR are found around
thresholds of Vth,h = 42.

We now present Detection Delay results as seen in Fig. 4.6, where Fig 4.6a shows the 3D view of
the Detection Delay as function of Vth,h and Window size and Fig 4.6b/4.6c depict the 2D aspects as a
function of one parameter (Vth,h and Window size respectively) while using representative values for
the other.

First, let us consider the effect of Vth,h on Detection Delay as a function of threshold for a given
window size (Fig. 4.6b). Starting from Vth,h = 1, we find that detection delay varies from 198 ms to
729 ms for window sizes S=8 and S=229 respectively. This can be seen in Fig. 4.6a by the increasing
Detection Delay for various window sizes at Vth,h = 1 and in Fig. 4.6b for the depicted windows. This
is because a low threshold value triggers a detection at filter outputs that are closer to the onset of a
seizure period (recall from Fig. 4.1). For increasing values of threshold levels detection delay increases,
which is a result of detecting at a higher filter response which happens is at a later time than the
seizure’s onset. Finally, at the maximum Vth,h = 64, we find the maximum detection delay for each
of the selected window. The large difference in detection delay for S=229 and other window sizes at
maximum Vth,h , is because the maximum window size contains many near-zero values in its start
that delay high filter output values (see Fig. 3.3). While smaller window sizes include less, to none,

32 4. EVALUATION

Window size

20015010050

Delay

20V
th,h

40
60

1.5

1

0.5

se
c

(a) 3D plot of Delay as a function of Threshold-Vth,h and Window size

V
th,h

20 40 60

se
c

0

0.5

1

1.5

2
Delay

S=229
S=40
S=8

(b) Detection Delay as a function of Window Size for selected
Thresholds-Vth,h

Window size
50 100 150 200

S
ec

0.5

1

1.5

2
Delay

V
th,h

=64

V
th,h

=44

V
th,h

=25

(c) Detection Delay as a function of Threshold-Vth,h for selected
Window Sizes

Figure 4.6: Detection Delay as a function of Upper Threshold Vth,h and Coefficient Window Size

near-zero coefficient values the Detection delay results are relatively similar.
Let us now consider Detection Delay as a function of window size for a given threshold value Vth,h

(Fig. 4.6c) We observe that different window sizes affect detection delay results in a linear manner for
each of the selected threshold values, as seen in Fig. 4.6c. Smaller window sizes contain less near-zero
coefficients and produce faster a high response value compared to larger window sizes. Subsequently,
increasing values of window size increase Detection Delay, where for all selected thresholds we ob-
serve an increase of 1 second in the Detection Delay when increasing from window size 1 to window
size 229.

Summing up the trends for different values of threshold levels and window sizes that the biggest ef-
fect is caused by the threshold levels. Specifically, we find that increasing the threshold levels improves
Specificity, lowers Sensitivity and increases the Detection delay. On the other hand, we observe that
increasing window sizes mainly affect and worsen the Detection Delay results. Additionally increasing
window sizes slightly improve Specificity, while having a minimal impact on Sensitivity.

Window Offset In the previous section, we kept the window offset at 0, while varying the other two
parameters (i.e. window size and threshold). Let us now consider shifting the window offset, where

4.2. DETECTION PERFORMANCE RESULTS 33

S
en

si
ti

vi
ty

 (
%

)

50

60

70

80

90

100

Offset
-20 -10 0 10 20

Sensitivity

V
th,h

=64

V
th,h

=44

V
th,h

=25

(a) Sensitivity as function of Offset with selected Thresholds-Vth,h

S
p

ec
if

ic
it

y
(%

)

40

50

60

70

80

90

Offset
-20 -10 0 10 20

Specificity

V
th,h

=64

V
th,h

=44

V
th,h

=25

(b) Specificity as function of Offset with selected Thresholds-Vth,h

A
D

R
 (

%
)

72

74

76

78

80

82

84

86

Offset
-20 -10 0 10 20

ADR

(c) ADR as function of Offset with selected Thresholds-Vth,h

Offset
-20 -10 0 10 20

D
el

ay
 (

se
c)

0.4

0.6

0.8

1

1.2
Delay

V
th,h

=64

V
th,h

=44

V
th,h

=25

(d) Detection Delay as function of Offset with selected Thresholds-Vth,h

Figure 4.7: All performance metrics as function of Offset for a fixed window size and selected Thresholds-Vth,h

a negative offset means that the coefficient window is shifted to the left and a positive offset that it is
shifted to the right (recall from figure 4.2). In doing so, we hope to achieve better Detection Delay by
shifting the "significant peak" closer to the start of the FIR filter. In Fig. 4.7 we present performance
metrics as a function of the offset for 3 indicative threshold levels (25,44,64) and a coefficient window
size of 40. We consider a window size of 40 representative as we observed similar trends for other
window sizes and it was also highlighted in our previous results.

We find that Sensitivity (4.7a), Specificity (Fig. 4.7b), and ADR Fig. 4.7c are not substantially af-
fected by various offset values. This results from the fact that we maintain the center of the initial
impulse response, which contains most significant coefficients values. Hence, by shifting the coeffi-
cient window the FIR filter output range is slightly affected.

In Fig. 4.7d, we present the Detection Delay performance as a function of the window offset. Start-
ing at an Offset O=-18 we find the highest Detection Delay for each of the 3 threshold levels. This is
because shifting the coefficient window to the left the appearance "singificant peak" of the impulse
response is delayed. Shifting the window to the right, towards positive values, we find that Detection
delay is decreasing, which results from bringing the significant peak closer to the start of the FIR filter.
At the max offset considered O=18, we find the smallest Detection Delay and the improvement gained
in Detection Delay by shifting from the leftmost to rightmost offset is approximately 200 ms for a given
threshold.

34 4. EVALUATION

10 20 30 40 50 60

%

70
80
90

100
Sensitivity

10 20 30 40 50 60

%

0

50

100
Specificity

S=229
S=40
S=8

V
th,h

10 20 30 40 50 60

%

60

80

100
ADR

(a) SWD annotations

10 20 30 40 50 60

%

70
80
90

100
Sensitivity

10 20 30 40 50 60

%

0

50

100
Specificity

S=229
S=40
S=8

V
th,h

10 20 30 40 50 60

%

60

80

100
ADR

(b) Golden standard annotations

Figure 4.8: Detection performance using golden standard an SWD annotations

SWD annotations So far, we have considered the performance metrics using the golden standard
annotations. In this section we discuss the results with SWD annotations in place. As mentioned in the
evaluation setup, with these annotations SWD intervals that trigger a detection are classified as True
Positives which in turn reduces the number of False Positives. In Fig. 4.8 we present the performance
results for SWD annotations as a function of the threshold level (Fig. 4.8a) and as a comparison we
include the previous results next to them (Fig. 4.8b).

We find that Sensitivity results for SWD annotations compared to the results for golden annota-
tions are relatively similar, as seen in In Fig. 4.8. This is because SWD intervals have on average the
same filter output range(max value) of filter output values as seizure intervals. In the example Fig. 4.9
we observe that both filter output within the intervals is roughly the same, seizure interval in Fig. 4.9a
and SWD interval in Fig. 4.9b. Hence, the number of detected intervals (seizure and SWD) depends
on the threshold values, where we find that the average Sensitivity results do not change.

On the other hand, Specificity results are increased compared to the golden annotation results, as
it is noticed in Fig. 4.8. The improved Specificity results from not counting detections during SWD
intervals as False Positives but as True Positives. Starting Vth,h=1 we find that Specificity varies from
0% to 14.9% for SWD annotations compared to 0% and 10% for golden annotations. For increasing
values of threshold levels, we observe that Specificity increases in the same manner, where the values
obtained using the SWD annotations are slightly improved. For max Vth,h=64 we see that Specificity
for reaches values up to 96.5% compared to 90% of the golden standard annotations.

Since Specificity is increased, subsequently this also affects ADR values. In the bottom graph of
Fig. 4.8a, we find that the maximum ADR values reach 92%, whereas in the golden annotations4.8b
we have values up 85%, an increase of 7% for the same threshold region.

Finally Detection delay results do not change from the new annotations. This is because in the
golden annotation, we have found that a detection is triggered after a few SWDs, usually after 3 SWDs
(e.g. Fig. 4.9a) depending on the threshold level, and therefore, also SWD intervals containing 3 or
more SWDs and have similar filter output values will also be detected at the same. An example of such
an SWD interval is depicted in Fig.4.9b.

PARETO FRONT

Carrying out an evaluation where we vary 3 input parameters and obtain 3 output/metric values, we
may derive a set of pseudo-optimal solutions (Pareto points), as depicted in Fig. 4.10a.

4.2. DETECTION PERFORMANCE RESULTS 35

1043 ms (1,04 s)

(a) SWD-interval>1sec

560ms

(b) SWD-interval <1sec

Figure 4.9: Detection triggering example for a seizure interval vs. SWD interval(<1sec)

As was done in the previous sections, we highlight Pareto points that correspond to a certain win-
dow size (S) from the input parameters (green asterisks S=8, red asterisks S=40 and blue asterisks
S=229) to illustrate the various trends in each output-value (objective). In the rest of the subfigures of
Fig. 4.10 we present the relations between each combination of metrics.

First, we see the relation between Sensitivity and Detection Delay in Fig. 4.10b, where we observe
that for each represented window as Sensitivity decreases, the Detection Delay increases, that is worse.
This is because of the effect of increasing threshold levels which deteriorates both metrics. Comparing
between different window size we can get "free" improvement in delay as for similar Sensitivity values
we can chose smaller window size that produce better Detection delay results.

Next, we see the relation of Specificity and Sensitivity in Fig. 4.10c, where we observe the coun-
teractive behavior of the two metrics, while one improves the other worsens. This is because where
Sensitivity is favored by low threshold values, Specificity is reduced. Nevertheless, we discover that
for different window sizes there are Pareto points that have similar performance for Sensitivity and
Specificity, which results from the small impact of different window sizes on the results of the 2 (two)
metrics. This allows us to choose smaller windows without significant reduction in detection accuracy.

Lastly, in Fig. 4.10d, we see the relation of Specificity with Detection Delay, where we observe that
as Specificity improves(increases), Detection Delay worsens(increases). We note, as in the Sensitivity
case, that for same Specificity we can obtain a Pareto point that has a significant smaller Detection
Delay by using a smaller window size. Even though for a smaller window size S=40 we achieve a max
Specificity of 89.23%, the difference is very small compared to the maximum Specificity 90.25% (1%
difference) obtained for a window size S=229.

SUMMARY - STATIC THRESHOLD MECHANISM

In this section we evaluated the role of window size, window offset, and threshold level in the seizure-
detection performance of the filter. We have shown that large window sizes increase detection delay
but improve Specificity results, while Sensitivity remains unaffected. Low threshold provide better
Detection Delay and Sensitivity, but worse Specificity. An average best solution (based on ADR) may
be found for threshold levels Vth,h=44 irrespective of window size. In addition, we saw that positive
window offsets decrease detection delay while having minimal impact on Sensitivity and Specificity.
Finally, from all the output parameters we calculated the Pareto optimal points which provide different
options for creating an optimal filter. This study has revealed that even for small window sizes (S=8) we
can achieve comparable detection accuracy to the max attainable accuracy (S=229) with a difference
of 3% in the ADR values. What is more, for smaller window sizes we achieve better detection delay

36 4. EVALUATION

1.5

Delay (s)

1
0.5

70
80

Sens (%)

90

80

60

40

20

100

S
p

ec
 (

%
)

S=229
S=40
S=8

(a) Pareto front approximation

Delay (s)
0 0.5 1 1.5 2

S
en

s
(%

)

65

70

75

80

85

90

95

100 S=229
S=40
S=8

(b) Sensitivity vs. Detection Delay

S
p

ec
 (

%
)

0

20

40

60

80

100

Sens (%)
60708090100

S=229
S=40
S=8

(c) Specificity vs. Sensitivity

S
p

ec
 (

%
)

0

20

40

60

80

100

Delay (s)
0 0.5 1 1.5 2

S=229
S=40
S=8

(d) Sensitivity vs. Detection Delay

Figure 4.10: Pareto front for Sensitivity, Specificity, and Detection Delay. Highlighted are points that correspond to various
window sizes(S=8,40,229)

results that are approximately 600ms for maximum ADR values.

4.2.2. ADAPTIVE THRESHOLD

In this section we evaluate the filter’s performance on various τ values (τup and τdown) for the adaptive
threshold mechanism. Recall from section 3.1.1), the τup parameter defines the increase rate of the
threshold value in response to high filter output values (Y (n) > Vth,h), and τdown defines the drop
rate of the threshold when low filter output occur. In this evaluation process we selected a single
FIR instance (window size=64, window offset=18), which derived from our preliminary study for the
prototype implementation (Section 3.2.2) .

Sensitivity results are presented in Fig. 4.11a. First, we examine the effect of τup for a given τdown

value. Starting at τup = 1, we find that Sensitivity drops from 95% to 66% for τdown values of 1 and
1500 respectively. This drop is explained by the the small τup value rapidly which rapidly ramps up
that the threshold value and in combination with a large τdown the threshold maintains high level
resulting in many False Negatives. For increasing values of τup , we observe that for large τdown(>200s)
values Sensitivity also increases, while for small τdown(<200s) values a maximum Sensitivity of 95% is
obtained. Large τup and τdown value signify that the threshold levels adapt at a smaller rate and thus
maintain a relatively low level to detect more seizure intervals. Finally, for τup above 7 we find that
Sensitivity attains values above 95%. Next, we consider Sensitivity as a function of τdown for a given

4.2. DETECTION PERFORMANCE RESULTS 37

(a) Sensitivity (b) Specificity

(c) ADR (d) Detection Delay

Figure 4.11: Detection performance as a function of τup and τdown

τup value. At τdown = 1, we find that Sensitivity has values above 95% for all τup
1. This is because

small τdown values ensure the threshold drops quickly for low filter outputs and thus creating low
threshold values that detect most increased filter outputs. For increasing values of τdown , we observe
that Sensitivity drops when τup <7. This is because larger τdown values only gradually decrease the
threshold value and subsequently not reaching a level that will allow it to detect seizure intervals with
low filter outputs.

Similarly, Specificity results are presented in Fig. 4.11b. We start by discussing the effect of τup for
a given τdown value. At τup = 1, we find that Specificity varies from 66% to 98% for τdown values of
1 and 1500 respectively. The increase for different τdown is due slower drop rate of threshold which
help it maintain a high value and subsequently avoiding False Positives. Increasing values of τup re-
duce Specificity for specific τdown values. This is because at high τup the threshold follows at lesser
magnitude high filter outputs and hence remains relatively low producing high False Positives. In the
following step, we consider Sensitivity as a function of τdown for a given τup value. At τdown = 1, we
find the lowest Specificity for all τup , which results from the small τdown that allow the threshold to
rapidly drop at low filter outputs and generate high False Positives. For increasing τdown , we observe
that Sensitivity improves for a selected τup , as higher τdown values prevent the threshold from drop-
ping too quickly which would lead to incorrect detections. At maximum τdown we find the highest
Specificity ranging from 98% to 76% for τup of 1 to 30 respectively.

The mean value of Sensitivity and Specificity is depicted in the ADR plot of Fig. 4.11c. We start again

1The small reduction in Sensitivity for τup >15 is an artifact of our analysis scripts for low thresholds. Pre-onset seizure detec-
tions together with the safety mechanism of the low threshold cause certain seizures to be considered as False Negatives.

38 4. EVALUATION

References Line-length [31]
Daubechies
wavelet [36]

Wavelet with
ANN [13]

Adaptive Static

Detection Delay 4.1s 1.5s 0.97s 0.492s 0.670s

FPPS 1.44 0.040 0.091 0.090 0.210

FNPS 0.0023 0 0.065 0.040 0.046

Specificity N/A N/A 98.2% 93.60% 88.60%

Sensitivity N/A 100% 96.2% 96.03% 95.54%

ADR N/A N/A 97.2% 94.81% 92.07%

Table 4.1: Performance Comparison of various real-time seizure detection systems

by looking at the effect of τup for a given τdown value. At τup = 1, we find that ADR varies between 71%
and 93% with its maximum at τdown=170s, this is because Sensitivity drops for larger τdown while
Specificity increases. For increasing τup values we notice that ADR peaks at 94% around τup =7 for
various τdown values and then deteriorates following the same trends as in Specificity. This is because
Sensitivity reaches its maximum value around τup =7 while Specificity continues to decrease.

Next, we consider ADR as a function of τdown for a given τup value. At τdown = 1, we find the lowest
ADR values (around 70%) as dictated by the Specifity value. For increasing τdown , we notice that ADR
also improves at a given window except for τup < 2, which is again a result of the Specificity values
whereas Sensitivity remains approximately constant for most values.

Finally, we present the results for Detection Delay in Fig. 4.11d. We first consider the effect of τup

for a given τdown value. At τup = 1, we find that Detection Delay varies from 380ms to 900ms for τdown

of 1 to 1500 respectively. As seen in previous metrics, a small τup and τdown values make the threshold
follow the filter output keeping at relatively low values hence the low detection delay, for large τdown

the increased threshold values drop slowly keeping the threshold high which results in a high Detec-
tion Delay. For increasing τup values we notice that Detection delay is improves, which is a result of
the slower increase rate of the threshold which keeps it at low levels and thus shorten the Detection
Delay. For values of τup above 13 for all the τdown values, we observe a Detection Delay of 300 ms.
Next, we consider Detection Delay as a function of τdown for a given τup value. At τdown = 1, we find
a Detection Delay of 300ms irrespectively of the τup value and is caused by the high downwards rate
which keep the threshold at low values. For increasing τdown , we notice that Detection Delay dete-
riorates in the cases of τup <13. This is because higher values of τdown keep the threshold relatively
high and high threshold values increase Detection Delay. At maximum τdown Detection Delay various
between 900ms for the lowest τup and 320ms for the highest τup .

SUMMARY - ADAPTIVE THRESHOLD MECHANISM

In conclusion, small τ values make the threshold level more sensitive to changes, while large values
will cause the threshold value to change more gradually. We observed that the two constants (τup

and τdown) differ significantly in magnitude, as was proved that it is preferred for threshold levels to
increase rapidly at high filter outputs and gradually decrease when filter’s outputs are low. This study
has revealed the efficacy of the adaptive mechanism, which is capable of obtaining high performance
results (up to ADR=94%) along with low Detection Delay (down to 300ms)

4.2.3. COMPARISON WITH RELATED WORK
In this section, we want to compare our detection system with other existing implementations of real-
time seizure detection systems(Section 2.4). While the results in the previous sections for our detec-

4.2. DETECTION PERFORMANCE RESULTS 39

tion system have shown many possibilities, we restrict our output by requiring a minimum Sensitivity
of 95% while obtaining the maximum ADR. These values were selected as we want to ensure that we
detect at least 95% of the all the seizures while keeping False positives to a minimum. Using these
constraints we derive the performance results for a the detection system using the adaptive and static
threshold mechanism and are compared to related work in Table. 4.1. In this table we only present
systems that achieve an average delay of less than 5 seconds. Adding to the previous metrics, two extra
are also calculated, FPPS and FNPS:

• FPPS, False-Positive-Per-Seizure rate is the number of False positives divided by the total num-
ber of seizures.

• FNPS, False-Negative-Per-Seizure rate is the number of False negatives divided by the total num-
ber of seizures.

Comparing the two thresholding mechanisms presented in this work, we find that the adaptive
threshold outperforms the static threshold in all aspects. This is because the adaptive threshold is
able to approximate the average values occurring in seizure intervals and provide better detections.
On the other hand, the inability of the static mechanism to accommodate for filter output values,
reduces its detection performance. In detail, the adaptive mechanism’s higher sensitivity, compared
to the static mechanism, is attributed to its capability to drop Vth,h for lower filter outputs, hence
reducing the number of false negatives. As for the increased specificity of the adaptive mechanism,
this is because it slopes up when higher values are encountered. By this means, it is able to yield
higher levels avoiding many false detections. Furthermore, detection delay is lower in the adaptive
mechanism, as it gradually drops between detections that allow it to detect at a lower levels, hence
detecting faster. Adding to the adaptive mechanism’s performance advantage is its ability to tune its
levels automatically if the signals levels change over time, whereas the static mechanism would require
re-adjustment.

In Table 4.1, we find that both the adaptive and static mechanisms have better detection delays
compared to other solutions. For instance, delay is lower by 500 ms (adaptive) and 320 ms(static) com-
pared to the next best solution [13]. Looking at each solution separately, the overall improved results
compared to the line-length method [31] derive from the finely tuned wavelet filter, which enables
us to better distinguish seizure intervals. Concerning the other two methods [13, 36], which are also
based on wavelets, our solution is faster as it utilizes a simple thresholding mechanism. Specifically,
in [13] the use of a complex Artificial Neural Network increases the detection delay, but it provides
better specificity. However, the main drawback of this solution is that the Artificial Neural Network
requires an extensive training set (several hours), while the adaptive mechanism only needs a small
training set (e.g. set containing 4 seizures). In the other wavelet based solution, Daubechies wavelet
[36], the detection mechanism is based on the average value of successive filter outputs to improve
detection accuracy (sensitivity of 100%). However, calculating an average delays the occurrence of
high values, that trigger a detection, and in turn increases detection delay. Overall, the main benefit
of our detection mechanism is its low implementation complexity.

40 4. EVALUATION

0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64

C
LO

C
K

 C
YC

LE
S

 (
X

1
00

0
)

IN
ST

R
U

C
TI

O
N

 C
O

U
N

T
 (

X
1

03
)

COEFFICIENT WINDOW SIZE

ALU MEM BRA JUMP Clock cycles Total instructions

Figure 4.12: Instruction mix and execution time as a function of Coefficient Window Size (1 loop iteration)

4.3. COMPUTATIONAL OVERHEADS
In this section we present the profiling results of executing the software implementation on the SiMS
architecture. First, we demonstrate the profiling results for the implementation with a static thresh-
old mechanism discussing the instruction mix results, the real-time constraints, the memory require-
ments, and energy requirements. Secondly, we present the additional overheads which are introduced
by using the adaptive threshold mechanism.

4.3.1. STATIC THRESHOLD
For the static threshold mechanism, we present all the execution costs of the software implementa-
tion as a function of different coefficient window sizes and different numbers of channels. We start
by presenting the instruction-mix results and analyze the impacts of the multiplication emulation
code, after which we discuss whether the software implementation meets the real-time constraints.
Finally, we evaluate the memory requirements followed by the energy consumption estimation. In the
following section instructions, we refer to the assembly instructions executed on the SiMS processor
architecture as instructions.

INSTRUCTION-MIX RESULTS

Fig. 4.12 depicts the instruction mix and clock cycles as a function of different coefficient window
sizes. Starting at a coefficient window size of 1, we find a total of 1,577 instructions being executed
in 3,100 clock cycles. For increasing numbers of window size, we observe that the total number of
instructions and execution cycles roughly double (2x) with the coefficient window size2 Finally, at
the max window size of 64 the total instruction count is 45,640 which are executed in 85,524 clock
cycles. Based on the clock cycles of the execution and the instruction count, we calculate an average
performance of 0.54 instruction per cycle for the SiMS architecture for a given window size.

Looking at the instruction mix of the execution trace, we notice that all different types of instruc-
tions follow the same linear increase as the total instructions. The percentage of each type remain,
on average, the same for different window sizes. ALU instructions dictate the types of executed in-
structions at an average percentage of 70%. This is expected as the FIR algorithm consists mainly of
arithmetic calculations. BRA instructions type with an average percentage 19%. Even though we ob-
serve a relatively high percentage of branching instructions, this is a result of the emulation code for

2Increasing window size from 2 to 4 does not double the results as a result of compiler optimizations.

4.3. COMPUTATIONAL OVERHEADS 41

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

C
LO

C
K

 C
YC

LE
S

 (
X

1
0

6)

IN
ST

R
U

C
TI

O
N

 C
O

U
N

T
 (

X
1

0
6)

CHANNEL #

ALU MEM BRA JUMP Clock Cycles Total instructions

Figure 4.13: Instruction mix and execution time as a function of number of channels (1 loop iteration)

MUL_Index
3.10%

MUL_FIR
69.84%

Other
27.06%

MUL_Index

MUL_FIR

Other

(a) Percentage of total clock cycles

0

1

2

3

4

5

6

Total
instruction

ALU MEM BRA JUMP

IN
ST

R
U

C
TI

O
N

 C
O

U
N

T
(x

1
0

4
)

INSTRUCTION TYPE

OTHER MUL (FIR+Index)

(b) Percentage in instruction mix

Figure 4.14: Multiplication overhead in clock cycles and in executed instructions

multiplication and will be examined in a following section. The emulation code also affects JUMP in-
structions where in average they take 9% of the executed instruction. Finally, MEM instructions are in
average 2% of the executed code. For larger coefficient window sizes (>64), we expect that the linear
increase will continue in the same manner.

Next we consider the instruction mix and clock cycles as a function of different numbers of chan-
nels, the results of which are depicted in Fig. 4.13. Starting for 1 channel we find a total instruction
count of 45,640 which are executed in 85,524 clock cycles. For increasing values of channels we ob-
serve a linear increase of 2 in the executed instructions for every doubling of channel numbers. For
the maximum number of channels (32) we observe a total instruction count of 1.48*106 which are ex-
ecuted in 2.72*106 clock cycles. These results demonstrate how execution is affected if more channels
are required to read inputs from multiple electrodes. Subsequently, we can estimate on the capabili-
ties and limitations of a given platform.

Let us now see how instruction mix and execution cycles could behave with a dedicated multiplier.
Assuming a software implementation with 1 (one) monitoring channel and a coefficient window size
of 64. In Fig. 4.14 we depict the percentage of clock cycles (Fig. 4.14a) and the percentage of each in-
struction type (Fig. 4.14b) that are occupied by the multiplication emulation code. In these results, we
have split the multiplication types in MU Li ndex and MU LF I R to distinguish the operations between
the ones that are instantiated indirectly for array indexing and the ones for the filter implementa-
tion. Array indexing multiplication MU Li ndex are used to compute the memory addresses of array
elements and can be avoided by optimizing the software implementation. Fig. 4.14a clearly shows

42 4. EVALUATION

ALU
85.16%

MEM
12.81%

BRA
1.34%

JUMP
0.69%

ALU

MEM

BRA

JUMP

Figure 4.15: Instruction mix without emulation code

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64

K
B

yt
e

s

Coefficient Window size

DMEM IMEM Total

(a) Memory usage as a function of Coefficient Window Size

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32

K
B

yt
e

s

Channel #

DMEM IMEM Total

(b) Memory usage as a function of the number of Channels

Figure 4.16: Memory Requirements

that multiplication-related instructions occupy a large percentage of the execution time (73% of total),
while Fig. 4.14b shows that over 80% of the total instructions are used for multiplication emulation.
Moreover, we find that the majority of the BRA and JUMP instruction types are only instantiated by
the multiplication emulation code.

Execution-time wise, these results motivate the use of a dedicated multiplier instead of emulating
the multiplication. In Fig. 4.15 we estimate the resulting instruction mix if such a multiplier were
employed. In these results we see that from a total of 10,222 instruction committed, 85.25% are ALU
operations , 12.73% are memory operations (MEM), 1.33% are branch operations (BRA), and 0.69%
are jump operations (JUMP). Note that branch and jump types now occupy only a small percentage
in the instructions executed.

Based on this change in instruction mix we estimate execution time would also improve. In terms
of timing performance, introducing a multiplier we could yield a reduction of 73% in execution time;
assuming that the multiplier unit has a latency of 1 cycle and no data hazards occur. But even if we
assume a shift and accumulate multiplier of 32 cycles and no data hazards, this would improve the
number of cycles by 68.6% (down to 32 clock cycles from 530). In addition, the use of a dedicated mul-
tiplier unit will reduce the size of the executable binary and the amount of total executed instructions.

REAL-TIME CONSTRAINT

In the closed-loop system, ECoG input signals are sampled every 10 ms. This event introduces a real-
time constraint where all calculations are required to finish within a time window of 10ms. Using the
number of clock cycles presented in the previous section and dividing these values with the frequency
of 20MHz (frequency of the low power implementation of SIMS as presented in [1]), we calculate the
execution time for different Coefficient window sizes. These values are depicted in Fig. 4.17 along with
the execution upper-limit (dashed red line). From the figure, we find that for coefficient window size
up to 149 the execution time remains within the window of 10ms.

4.3. COMPUTATIONAL OVERHEADS 43

0

2

4

6

8

10

12

14

16

18

1 21 41 61 81 101 121 141 161 181 201 221

Ti
m

e
 (

m
s)

Coefficient Window Size

Execution time Real-time constraint

149

Figure 4.17: SiMS execution time for different window sizes for 20MHz clock frequency

MEMORY REQUIREMENTS

In Fig. 4.16 we present memory usage statistics, IMEM and DMEM, for different coefficient window
sizes and different number of monitoring channels.

For the IMEM usage, we present how the it scales for different window sizes in Fig. 4.16a. Start-
ing at window size 1 we find the smallest value, this is because no actual iteration occur for the filter
calculation, hence we estimate loop instructions are eliminated and hence the number of the instruc-
tions in the executable are reduced. For increasing window sizes the IMEM memory usage remains
constant, except for window size 4 where compiler optimizations take place and reduce the size of
the executable. As for different number of channels we find that IMEM is not affected, as shown in
Fig. 4.16b. In both cases, we observe that it maintains the same value 2,5KBytes across different pa-
rameters (Figures 4.16a and 4.16b). The reason it remains the same is because the parameters are
hard-coded values and only determine the amount of loop iterations executed in various parts of the
software implementation which do not affect executable size. The size of the executable would only
change if loop unrolling optimization was used.

Next, DMEM memory usage comprises static data, global data, and the stack, hence it is more
dynamically defined. In the global data region we have the array structures that store the FIR filter’s
coefficient values and they scale linearly with respect to coefficient window size. In the stack section,
we find all the function call stack allocations which include the data structures responsible for each
channel’s information, as they are declared in the body of the main function which scale with the
number of channels. In detail, in Fig. 4.16a we depict the effects of different window sizes on DMEM
usage. Starting at 260 bytes for window size 1 it increases to 576 bytes for window size 64. This is
mainly attributed to global data that contain the arrays for the coefficient values and hence increase
as the window size increases. As for the stack size we observe that its size remains constant up to
window size 32, this is probably because of a minimum stack allocation policy of 256 bytes. In Fig.
4.16b we observe a significant impact of different numbers of channels on DMEM usage. For a single
monitoring channel we have a DMEM usage of 572 bytes which increases to 4,532 bytes for 32 moni-
toring channels. Breaking down DMEM usage we have: 1) global data which are constant at 256bytes
(coefficient arrays), 2) a "dynamic" part of the stack data which contains the data structures for each
monitoring channel, 136 bytes per channel, and 3) a constant part of the stack data of 184 bytes which
contains the rest of the variables. Therefore, only the "dynamic" part changes which is linear to the
increase of the channels size.

44 4. EVALUATION

0.17 0.35 0.38
0.76

1.31

2.41

4.61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64

En
er

gy
 (

u
J)

Coefficient window size

(a) Energy consumption as a function of the Coefficient Window Size

4.61 9.20
18.37

36.71

73.40

146.79

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

En
e

rg
y

(u
J)

Channel #

(b) Energy consumption as a function of the number of Channels

Figure 4.18: Energy consumption in uJ per single loop iteration as function of the Coefficient window size and the number of
Channels

35.59

16.96 15.86

7.80
4.54

2.47 1.29

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 4 8 16 32 64

W
e

e
k

#

Coefficient window size

(a) Battey lifetime as a function of Coefficient Window Size

1.29

0.65

0.32

0.16
0.08 0.04

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 8 16 32
W

e
e

k
#

Channel #

(b) Battey lifetime as a function of number of Channels

Figure 4.19: Battery lifetime in weeks as function of the Coefficient window size and the number of Channels

ENERGY REQUIREMENTS

In this section, we present the energy requirements of the software implementation and the expected
lifetime of such a system on a battery of 0.1Wh, as described in section 4.1.2. In Fig. 4.18 we de-
pict the Energy consumption of a single single loop iteration for different values of the parameters.
Energy consumption is calculated by the product of the executed clock cycles and a constant power
consumption. Accordingly, we observe the same increasing behavior as in the instruction mix section.
The Energy consumption for a single channel varies between of 0.167µJ and 4.613µJ for window size 1
and 64 respectively. For the maximum number of channels 32, with 64 coefficients for each channels,
we find an Energy consumption of 146.79µJ.

Given the energy consumption for a single iteration, in Fig. 4.19 we depict the expected battery
lifetime in weeks for different values of the parameters, where we assume no energy is consumed when
not calculating. For a coefficient window size 1 we find a lifespan of 35.59 weeks which decreases to
1.29 weeks for 64 coefficient window size. Obviously lifetime decreases when energy consumption is
increased for different window sizes. This also applies to battery lifetime in relation to the number
of channels, where the lifetime decreases by 2 for every doubling in the number of channels. For the
maximum number of channels 32, we find a life expectancy of 0.04 weeks.

4.3.2. ADAPTIVE THRESHOLD

So far we have considered the computational overheads of the static threshold mechanism. We now
briefly consider the additional overhead imposed using the adaptive threshold mechanism in Fig.
4.20. First, in the clock cycles overheads graph (Fig. 4.20a), it can be noticed that the overhead is
relatively insignificant compared to the execution time of the static mechanism. For all the different

4.4. DETECTION PERFORMANCE VS. COMPUTATIONAL OVERHEADS 45

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

C
LO

C
K

 C
YC

LE
S

 (
X

1
0

6
)

Channels #

Static Adaptive

s
(a) Clock cycles overheads

 1 2 4 8 16 32

0

1

2

3

4

5

6

7

8

9

Channel #

K
b

yt
e

s

DMEM static IMEM static DMEM adapt IMEM adapt

(b) Memory usage overhead

Figure 4.20: Computational overheads of adaptive threshold mechanism in comparison with static threshold mechanism for
various numbers of Channels

numbers of channels we observe in the adaptive case an additional 1.5% clock cycles to the static case.
For example, for the static case we find 2.72*106 clock cycles for the maximum number of channels
and for the adaptive case we have 2.76*106 clock cycles. This is expected as the Detection(3.10) is only
a minor component relative to the FIR kernel.

In the memory usage overhead graph (Fig. 4.20b), we present the increase in DMEM and IMEM
usage for the adaptive mechanism. We find the largest impact is seen in IMEM usage. While the exe-
cution time is hardly increased, code for the adaptive does have to be stored, resulting in an increase in
IMEM of 23.2%.. However, IMEM remains constant across different numbers of channels. In contrast,
DMEM memory usage portrays the same usage behavior as the static mechanism; due to requiring
only 2 extra variables per channel that store the upper and lower threshold values.

4.4. DETECTION PERFORMANCE VS. COMPUTATIONAL OVERHEADS
In this section, we combine the results of the filter’s performance and the computational cost to eval-
uate the overall performance of the implementation on a low power processor. First, we consider a
new Pareto front which includes both Energy and Pareto points from the Detection Performance, af-
ter which we look at particular optimizations (in terms of lifetime, ADR, and delay) that may be made
in relation to the coefficient window size.

4.4.1. PARETO FRONT

In Fig. 4.21 we present the Pareto front defined by the Pareto point for each combination of the opti-
mization objective, that is: 1) maximum Specificity, 2) maximum Sensitivity, 3) minimum Delay, and
4) minimum Energy consumption. In each of the perspectives we highlight the Pareto points that
correspond to window sizes S=8,40 and 229.

To represent 4-dimensions in 3-dimensions we take four (4) 3d plots. In Fig. 4.21a we depict the
Pareto front of Sensitivity, Specifity and Detection Delay. We find that front is the same as the Pareto
front in the filter performance Fig. 4.10a. This is expected, as the Pareto points will increase only by
including points that have worse performance in these metrics but better Energy consumption. Thus
the optimal points defined by these 3 will not change.

In Fig. 4.21b we depict the Pareto front of Sensitivity, Detection Delay and Energy consumption.
We find that for smaller windows sizes we have Pareto points with equal Sensitivity for less Energy
consumption and a smaller Detection Delay. This is because, as we have shown in previous sections,
window size does not affect Sensitivity, but affects Detection Delay and Energy consumption. Detec-
tion delay is increased as larger coefficient window sizes cause a delay in the filter response. Addi-
tionally, Energy consumption is increased as larger coefficient window sizes require longer execution
time.

46 4. EVALUATION

Delay (s)

1.5
1

0.5
80

Sens (%)

90

80

60

40

20

100

S
p

ec
 (

%
)

S=229
S=40
S=8

(a) Pareto front: Sensitivity-Specificity-Detection delay

20

Energy (uJ)

10

070
80

Sens (%)

90

1.5

0

0.5

1

2

100

D
el

ay
 (

s)

S=229
S=40
S=8

(b) Pareto front: Sensitivity-Energy Consumption-Detection delay

20

Energy (uJ)

10

00

50

Spec (%)

2

1.5

1

0.5

0
100

D
el

ay
 (

s)

S=229
S=40
S=8

(c) Pareto front: Energy Consumption-Specificity-Detection delay

20

Energy (uJ)

10

00

50

Spec (%)

110

100

90

80

70
100

S
en

s
(%

)

S=229
S=40
S=8

(d) Pareto front: Sensitivity-Specificity-Energy Consumption

Figure 4.21: Pareto front from 4 objectives (Sensitivity, Specificity, Delay, Energy), highlighted are sample window
sizes(S=8,40,229)

In Fig. 4.21c we depict the Pareto front in Specificity, Detection Delay and Energy consumption.
We discover that for equal Specificity, there are Pareto points with a smaller Detection delay and
smaller Energy consumption for smaller window sizes. As in the case for Sensitivity, Detection De-
lay and Energy consumption is directly affected by the window size. For Specificity, the Specificity
might drop for smaller window size but only insignificantly. For example, the window size S=40 has a
Specificity of 89.23% while a window size S=229 has a Specificity of 90.25%.

In Fig. 4.21d we depict the Pareto front in Sensitivity, Specificity and Energy consumption. In this
last figure, we observe the same behavior in Sensitivity and Specificity for different windows, as seen
in the previous figures where window size marginally impacts these values. Additionally, we see again
the high Energy expenditure when selecting a large window size.

4.4.2. BATTERY LIFETIME VS. FILTER PERFORMANCE

One of the most interesting comparisons is that of the estimated battery lifetime and filter perfor-
mance in relation to coefficient window size, as we can evaluate the trade-offs between the two values.

In Fig. 4.22 we illustrate how different coefficient window sizes affect battery lifetime and ADR.
From the graph we observe that the maximum ADR performance achieved is 84.25% and for a close
to maximum ADR value of 84% battery lifetime is 1.2 weeks (70 coefficients). Decreasing ADR per-

4.4. DETECTION PERFORMANCE VS. COMPUTATIONAL OVERHEADS 47

11.80

4.35

1.18

80.03

83.07

84.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

77.00

78.00

79.00

80.00

81.00

82.00

83.00

84.00

85.00

B
A

T
TE

R
Y

 L
IF

ET
IM

E
(#

W
EE

K
S)

COEFFICIENT WINDOW SIZE

A
V

ER
A

G
E

D
ET

EC
T

IO
N

 R
A

TE
 (

%
)

Battery lifetime (weeks) ADR (%)

Figure 4.22: Battery lifetime and ADR for different Coefficient Window sizes

11.80

4.35

1.18

0.49 0.52

0.71

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

7

1
2

1
7

2
2

2
7

3
2

3
7

4
2

4
7

5
2

5
7

6
2

6
7

7
2

7
7

8
2

8
7

9
2

9
7

1
0

2

1
0

7

1
1

2

1
1

7

1
2

2

1
2

7

1
3

2

1
3

7

1
4

2

1
4

7

0

0.2

0.4

0.6

0.8

1

1.2

B
A

T
TE

R
Y

 L
IF

ET
IM

E
(#

W
EE

K
S)

COEFFICIENT WINDOW SIZE

D
ET

EC
TI

O
N

 D
EL

A
Y

 (
S)

Battery lifetime (weeks) Detection delay

Figure 4.23: Battery and Detection Delay for different Coefficient Window sizes

formance improves battery lifetime significantly as a result of a smaller coefficient window size. More
specifically, for decreasing ADR by ~1% (using 19 coefficients) , battery lifetime is extended 4 times (up
to 4.4 weeks). Even further, reducing performance to 80% (7 coefficients), the lifespan of the battery
reaches 11.8 weeks, increasing duration by a factor of 10.

In Fig. 4.23 we illustrate how different coefficient window sizes affect battery lifetime and Detec-
tion Delay. In the figure we find that both values are favored by small window size values, as it reduces
execution time and filter’s response delay. However while Detection Delay reaches a minimum of
values around 500ms, for the Delay battery lifetime can still improve from 4.35 to 11.80 weeks. In
comparison with Fig. 4.23 we find that by reducing ADR by 1% we also achieve an improvement in
Detection delay of 200ms along with extended battery lifetime (increased by 4 times) .

In general, depending on the levels of tolerance for performance we can trade-off significantly the
durability performance of the system. A performance reduction of 1% does not statistically increase
by a significant amount the number of un-detected seizures, whereas it yields considerable increased
lifespan of a battery powered system.

5
CONCLUSIONS AND FUTURE WORK

In this Chapter we present the conclusion and a summary of this thesis’ work. Continuing, we high-
light our main scientific contributions and, finally, we propose various directions in which this work
could be extended.

5.1. SUMMARY
In this thesis, we presented and evaluated a novel approach in seizure detection and suppression. Our
approach uses a complex Morlet wavelet filter with a thresholding mechanism to distinguish seizures
from non-seizure intervals, for which we demonstrated a low detection delay, a high detection ac-
curacy, and low computational overheads. Additionally, it was shown that various trade-offs can be
made where by reducing detection accuracy the detection delay and the computational overheads are
improved. Finally, a prototype has shown the feasibility of detecting and suppressing seizures in living
subjects.

In Chapter 2 we presented the characteristics of absence seizures for which we designed the auto-
matic detection system. Then, we listed the specifications of the BeagleBone White which was used
as our prototyping platform. Furthermore, we described the SiMS processor architecture, which has
served as a platform to quantify our seizure-detection algorithm for ultra-low power architectures.
Finally, we discussed related work and implementations on seizure detection and specified the differ-
ences between this work and previous ones.

In Chapter 3, we defined the different modules that comprise the proposed detection system. Our
work focused on the digital module, where we implemented a Complex Morlet wavelet and a thresh-
old mechanism. We presented a practical FIR filter implementation of the Complex Morlet wavelet
which produces high filter output values in seizure intervals. Subsequently, to decompose the input
signal in seizure and non-seizure components, we use one of the two thresholding mechanisms (one
static with fixed values and one adaptive based on the filter output). Both these mechanisms consist
of an upper threshold to denote the detected event and a lower threshold to approximate the end of
the seizure. Besides the conceptual model of the system, we presented our specific design choices
in order to incorporate the system into a prototype, capable of real-time detection and stimulation
triggering. We performed a preliminary analysis where we defined the amount of truncation for the
FIR filter that minimizes the detection delay whilst maintaining relative high detection rate. In addi-
tion, a prototype implementation of the closed-loop system has successfully been applied in in-vivo
experiments, demonstrating its potential for epilepsy treatment.

In Chapter 4, we analyzed different aspects of our solution in terms of detection performance

49

50 5. CONCLUSIONS AND FUTURE WORK

quantified by sensitivity, specificity, and detection delay, and computational overheads quantified
by execution time and energy consumption. In our analysis, we studied the effects of different pa-
rameters of the system, including the coefficient window size, coefficient window offset and different
threshold levels when using a static threshold mechanism. Specifically, we found that lowering the
coefficient window size mostly reduces detection delay, while having a minor impact on sensitivity
and specificity. In addition, shifting the coefficient window demonstrated again an improvement in
detection delay, while causing minimal effects on sensitivity and specificity. For the last parameter,
the threshold, we saw that larger values increase sensitivity, but worsen sensitivity and detection de-
lay. Then, we evaluated the detection performance of the adaptive threshold mechanism, which is a
function of the filter output based on τup and τdown values. Specifically, we examined how different
τup and τdown values affect sensitivity, specificity, and detection delay. We found that smaller τup val-
ues favor specificity, but worsen sensitivity and detection delay. As for τdown , we found the opposite
behavior where larger values improve specificity and worsen the other two metrics. Using the adap-
tive threshold mechanism we obtain an improvement of 3% in average detection rate along with a
200ms reduction in detection delay. Regarding the computational overheads, the coefficient window
size makes the execution time and energy consumption go up. Effectively, this allows us to trade-off
between seizure detection accuracy and computational costs. For instance, we found that by reducing
the average detection performance by just 1%, using a smaller coefficient window size, we can obtain
an improvement of up to 3.7x times in the life-expectancy of a battery-powered detection system.

5.1.1. THESIS QUESTION
"Can we detect seizures fast and reliably using a seizure-detection system which is suitable for im-
plantable (ultra-low power) application?"

In our evaluation results, we have presented a wide range of possible solutions for the seizure-
detection system, which include both low detection delays, high detection rates and in between. For
example, a solution that achieves a high sensitivity of 98% has a detection delay of 380ms and a speci-
ficity of 87%, and lowering sensitivity (down to 70%) yields a detection delay of 850ms and a speci-
ficity of 98%. In our solutions, we have observed that increasing the size of the coefficient window
raises detection accuracy at the cost of a higher detection delay and higher energy consumption. In
general, we have shown that we can trade-off between detection accuracy, detection delay and energy
consumption, where for a small decrease in accuracy we substantial huge improvements in energy
consumption and detection delay. As for implantable application suitability, we have proven that exe-
cution on a ultra-low power processor is capable of meeting the real-time constraints of the detection-
system. Finally, comparing this system with other existing implementations, we saw that we provide
improved detection delay (492ms over 970ms), while having similar sensitivity and comparable speci-
ficity results. As such, we consider that our solution achieves its purpose to detect seizures in a fast
and reliable manner, while respecting the constraints set for an implantable application.

5.2. THESIS CONTRIBUTIONS
The main contributions of this thesis’ work are the following:

• Novel seizure detection and suppression system
We have designed a novel seizure detection and suppression system, which uses a complex Mor-
let Wavelet and a thresholding mechanism. This system was chosen because of morphology re-
semblance between the Spike-Wave-Discharges and the particular wavelet and because of the
low complexity detection mechanism.

• Prototype realization
An actual prototype realization of the detection and suppression system was developed with

5.3. FUTURE WORK 51

cheap and readily available off-the-self components consisting of a custom PCB together with
a software implementation on the Beaglebone development platform. In-vivo measurements
proved that the system is capable of detecting real-time ictal activity and suppressing an ongo-
ing seizure using an optogenetic stimulator.

• Full exploration on seizure detection system’s performance and complexity
The seizure detection system has been fully explored and evaluated in terms of detection per-
formance and computational complexity. Detection performance, which is defined by the sen-
sitivity, specificity, and detection delay, was considered by varying the coefficient window size,
coefficient window offset and threshold. Computational complexity was evaluated, for various
filter instances, considering the execution costs of the system running on an ultra-low power
processor(SiMS).

– Implantable suitability
We have shown the feasibility of the SiMS implementation to meet the real-time con-
straints of system and hence its suitability for implantable (ultra-low power) application.

– Energy vs. Detection performance trade-off
Considering the overall performance of the seizure detection system and its SiMS imple-
mentation, we demonstrated several trade-offs between detection accuracy and energy
consumption.

5.3. FUTURE WORK
In this thesis we have fully explored a novel solution for a seizure detection system. Both the de-
tection performance and the suitability for Implantable Medical Devices of the solution were consid-
ered. Based on these results, we have found certain interesting areas which could be further extended.
These are:

• Evaluating other types of Wavelets for seizure detection. The current selection of a Wavelet filter
was based on the morphology resemblance, however a different type of Wavelet could produce
better filter response values for seizure periods over non-seizure periods. This could lead to
better detections and less false positives, hence avoiding unnecessary stimulation. A thorough
evaluation could take place comparing many different types from which the optimum is chosen.

• Enhancing adaptive threshold mechanism so that it stops decreasing when a certain minimum
is reached. The current mechanism will constantly decrease when no seizure events occur,
which will possibly result in an increased number false detections if it gets too low. Therefore, a
method to define this minimum value needs to be developed and evaluated.

• Extending SiMS architecture to accommodate the needs of the seizure detection algorithm with
dedicated hardware units and evaluate the new energy costs. This includes introducing a mul-
tiplier unit to replace the emulation instructions. Additionally, a multiply and accumulate unit
can also reduce the number of instructions. This is because the calculation of the FIR filter re-
quires multiplication of input values with the coefficients and then added to a sum. Finally,
SIMD (Single Instruction Multiple Data) can also benefit the instructions executed. In general,
less executed instructions results in a smaller execution time and hence less energy consump-
tion. However, the trade-offs between execution time and area/power overheads need to be
evaluated.

• Developing a custom ASIC(Application-Specific Integrated Circuit) that implements the detec-
tion mechanism. Even though ASIC designs are not easily customizable, they are very power

52 5. CONCLUSIONS AND FUTURE WORK

efficient. Thus, by selecting a set parameters from the current evaluation, a digital design can be
developed and compared with the implementation on SiMS. The design could be designed to
be configurable in its threshold parameters and coefficient values. This implementation could
also serve as a co-processor in collaboration with a microcontroller in order to create a com-
plete IMD(implantable medical device). The microcontroller would then only be responsible
for configuration, communication and telemetry functions.

A
GUI EPILEPSY

Figure A.1: Host-PC Graphical User Interface to control and control the closed-loop prototype

53

B
SIMS INSTRUCTION SET

name format assembly action

jr rr jr rd branch to addr in rd

and rr and rd,rs rd ← rd and rs

lw rr lw rd,rs rd ← mem[rs]

sw rr sw rd,rs mem[rs] ← rd

mov rr mov rd,rs rd ← rs

not rr not rd,rs rd ← not rs

or rr or rd,rs rd ← rd or rs

xor rr xor rd,rs rd ← rd xor rs

sub rr sub rd,rs rd ← rd-rs

add rr add rd,rs rd ← rd+rs

lb rr lb rd,rs rd ← mem[rs] (byte)

se rr se rd,rs if(rd==rs) then rd← 1 else rd← 0

sgt rr sgt rd,rs if(rd>rs) then rd← 1 else rd← 0(sgn)

sgtu rr sgtu rd,rs if(rd>rs) then rd← 1 else rd← 0(uns)

beqz rr beqz rd,rs if(rd==0) then branch to Imem[rs2]

subi ri subi rd,imm rd←rd - imm

addi ri addi rd,imm rd←rd + imm

li ri li rd,rs rd ←imm

sftl ri sftl rd,rs rd←rd < < imm

sftr ri sftr rd,rs rd←rd > > imm(sign extension)

sftru ri sftru rd,rs rd←rd > > imm(zero extension)

cb rrr cb rd,rs1,rs2 exchanges the rs2th - byte of rd by the LSB of rs1

j jump j imm branch to Imem[imm]

jal jump jal imm branch to Imem[imm] and r15 ← PC+1

Table B.1: SiMS ISA

55

56 B. SIMS INSTRUCTION SET

Baseline Formats

Formats:

rrr_type opcode rd rs1 rs2

rr_type opcode rd rs funct

ri_type opcode rd imm

jump_type opcode imm

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rr_type:

beqz 0 0 0 1 rd rs 0 0 1 1

sgtu 0 0 0 1 rd rs 1 1 1 1

sgt 0 0 0 1 rd rs 1 1 1 0

se 0 0 0 1 rd rs 1 1 0 1

lb 0 0 0 1 rd rs 1 0 1 1

jr 0 0 0 1 rd rs 1 0 1 0

and 0 0 0 1 rd rs 0 0 1 0

lw 0 0 0 1 rd rs 1 0 0 0

mov 0 0 0 1 rd rs 0 1 1 1

not 0 0 0 1 rd rs 0 1 0 0

or 0 0 0 1 rd rs 0 1 0 1

sw 0 0 0 1 rd rs 1 0 0 1

xor 0 0 0 1 rd rs 0 1 1 0

sub 0 0 0 1 rd rs 0 0 0 1

add 0 0 0 1 rd rs 0 0 0 0

ri_type:

subi 0 1 1 1 rd imm

addi 0 1 1 0 rd imm

li 0 1 0 0 rd imm

sftru 0 1 0 1 rd imm

sftl 0 0 1 1 rd imm

sftr 0 0 1 0 rd imm

rrr_type:

cb 1 1 0 1 rd rs1 rs2

jump_type:

jal 1 0 0 1 imm

j 1 0 0 0 imm

Table B.2: SiMS Instruction Formats

C
DEVELOPMENT PLATFORM SELECTION

In this appendix, first we define the criteria set for selecting an appropriate development platform to
create the prototype presented in Chapter3, after which we present the various platforms that were
considered. The prototype realizes the closed-loop seizure detection and suppression mechanism
and will serve as proof of the mechanism’s correct functionality. Additionally, in this work we also
considered the development of a prototype for tinnitus treatment(briefly desribed in Appendix D), for
which the the same platform was also used.

In order to select an appropriate platform for both prototypes, we have defined a number of re-
quirements.

Perfomance - The performance of the platform must be greater of equal than that of ARDUINO Due
(84Mhz)[56]. This requirement is based on the tinnitus treatment project(Appendix D) were older
ARDUINO models were shown to be inadequate.

ADC inputs - In order to record various EEG/ECoG input signals from multiple, the platform should
provide at least 4 ADC inputs, one for each of the 4 channels of the seizure closed-loop system. The
ADC inputs should be able to sample data at a frequency of 1KHz and with a resolution of 8 bits.
Although most brain signal information is found within the frequencies 1-50 Hz[44], a larger frequency
range is defined to accommodate future implementations where we need to look into higher ranger
that 1-50Hz. As for the ADC resolution, this is because in our analysis in Section 3.2.2 we concluded
to a maximum value of 8bit for the inputs.

DAC outputs - The board should provide a minimum of 2 DAC outputs to be able to drive stimulation
electrodes, one for the anode and one for the cathode. The resolution of the DAC should be 8-bit and
have a sample frequency of 1KHz. This requirement is defined to accommodate future implementa-
tions where electrical stimulation is used. To date, most existing electrical stimulation implementa-
tions deliver pulses of frequencies up to 333Hz [18].

Local data storage - The platform should have non-volatile memory (i.e SD-card or flash memory) in
order to be able to store EEG data for offline inspection on the efficacy of the implementation by physi-
cians and researchers. In addition, various configurations settings should be able to be stored, such
stimulation patterns for tinnitus treatment or coefficient values for the closed-loop seizure detection
mechanism.

Wireless communication - Bluetooth (or ad-hoc wifi) support for future connectivity should be possi-
ble in order to send telemetry data or be able to control via smartphones, tablets etc.

57

58 C. DEVELOPMENT PLATFORM SELECTION

Model
BeagleBone
Black[57]

BeagleBone
White[23]

OLIMEX
STM32-H407[58]

Zedboard[59] Arduino DUE[56]

Performance Y Y Y Y Y

ADC inputs Y Y Y Y Y

DAC outputs N N Y N Y

Data storage Y Y Y Y N

Wireless N N N N N

UART Y Y Y Y Y

Bare-metal Y Y Y Y Y

Expansion Y Y Y Y Y

Support Y Y Y Y Y

Small size Y Y Y N Y

Power modes Y Y Y Y N

Y=Requirement is met, N=Requirement not met.

Table C.1: Candidate Development Boards

UART ports - 2 UART ports should be available on the platform, one for serial communication ports
necessary for debugging and controlling the device, and one for future extensions, such as an external
Bluetooth module if not available on board.

Bare-metal - The platform should be able to run without using an Operating System (OS). Thus the
platform should provide drivers for its peripherals. The main reasons bare-metal is required are:
1)Easier to port on platforms without an OS; 2) no power overhead due to running OS and additional
processes; 3) Inherently real-time as a single program is executed on the processor; and 4) no extra
overhead from OS abstraction layers.

Expansion - A wide range of modules that extend the functionality of the platform should be available
to minimize effort of implementing new features. Such modules should provide additional periph-
erals such as memories, DACs, ADCs, wireless connection, port expandability, LED display, sensors,
actuators etc.

Support - The platform should have sufficient development support, either through a active manu-
facturer’s forum or an Open community. This is required to minimize development time.

Small size - The size of the platform should be relatively small so that a portable system can be realized
in the case where it is experimentally deployed on patients. Therefore, we require that it has the size
of a credit-card which is small enough to be carried around.

Power operation modes - The CPU should have power operation modes such as Dynamic Frequency
Voltage Scaling. This can enable us to explore energy aware features for our solution.

Based on the aforementioned requirements a number of candidates were considered. In the Table.C.1
we present the most prominent candidates and which of the requirements they meet.

D
TINNNITUS TREATMENT PROTOTYPE

This appendix provides a brief overview on the realized tinnitus treatment prototype and its deploy-
ment setup, which is also described in [60]. The prototype device is capable of producing arbitrary
waveform stimuluation pulses (see example Fig. D.4) and can synchronize its stimulation with an au-
dio signal, as depicted in Fig. D.1. In Fig .D.2 we present the interface that controls the device and
generates audio signals. In Fig. D.3 we depict the software flow chart of the stimulation kernel that
produces the waveforms, its components are:

INIT Initialize hardware peripherals
PLAY Updates voltage value to produce waveform. In charge phase it updates the voltage un-

til complete pulse is played, in cancellation phase it updates voltage untill tissue is dis-
charged or complete pulse is played (whichever comes first)

ISI Inter-pulse delay, time between charge and cancellation phase
FIN Finalize operation on hardware peripherals
DEL Appropriate delay between states

In Fig. D.1 we present the profiling statistics of the software implementation for different waveform
resolutions (number of voltage updates). The software implementation is presented in Listing D.1.

6

88 6. DESIGN OF AN ARBITRARY WAVEFORM CHARGE BALANCED STIMULATOR

Figure 6.17: Overview of the system topology used for the experiments: a computer is usingmatlab to generate
the sound stimulus and to provide the userwith aGUI. The computer subsequently connects to the stimulation
device which synchronizes the electrical stimulation with the audio signal, which are both delivered to the
subject.

was decided to equip the stimulator with 8 electrode contacts, from which an arbitrary
number can be selected to be the anode and another arbitrary number to be the cathode
(as discussed in Section 6.3).

The stimulation settings were already outlined in Table 6.1. On top of that, the stimu-
lator needs to be able to deliver burst stimulation: this means that a number of stimula-
tion cycles (typically 5) are repeated shortly after each other. Two different burst modes
exist: either a complete stimulation cycle (including the charge balancing phase) is re-
peated, or only the first stimulation cycle is repeated (like the waveform from Figure
6.16(b)). In the first realization only the first option is implemented, but thanks to the
arbitrary waveform capabilities, the second option can be implemented relatively easily
in future realizations.

The audio presentation should be either single tone or noise-like. When single tone
mode is used, the electrical stimulation is adjusted based on whether the frequency of
the tone falls in- or outside the tinnitus range. When noise is used, the frequency con-
tents of the noise are filtered based on the frequency of the tinnitus.

The complete system that is able to meet the electrical and auditory requirements
discussed above is depicted in Figure 6.17. The arbitrary waveform stimulation as dis-
cussed in Section 6.3 is used to construct a neural stimulator device that is able to syn-
chronize, i.e. pair an auditory stimulus with the electrical stimulation. The system is
controlled using a PC or laptop that is galvanically isolated from the ground for safety
reasons.

The computer sends the stimulation settings to the stimulator device using a serial
connection. When a stimulation cycle is initiated, the PC will first generate the audi-
tory stimulus. The audio signal is synchronized with the electrical stimulation by the
microprocessor that will close the switch (ADG621) simultaneously with the start of the
electrical stimulation.

Using a Graphical User Interface (GUI) as depicted in Figure 6.18, the user can adjust
all the necessary parameters for stimulation. In this realization two stimulation patterns
can be generated. Pattern 1 combines auditory stimulation with electrical stimulation
and is used to stimulate the Nucleus Accumbens while a non-tinnitus frequency is pre-
sented to the subject. Pattern 2 uses auditory stimulation exclusively and can be used to

Figure D.1: Overview of the system topology used for the experiments: a computer is using MATLAB to generate the sound
stimulus and to provide the user with a GUI. The computer subsequently connects to the stimulation device which

synchronizes the electrical stimulation with the audio signal, which are both delivered to the subject.

59

60 D. TINNNITUS TREATMENT PROTOTYPE

6.4. APPLICATION: MULTIMODAL STIMULATION FOR THE REDUCTION OF TINNITUS

6

89

Figure 6.18: Graphical User Interface used to control the synchronized audio/electrical stimulation system.

present tinnitus frequencies to the subject. In the future the capabilities of this GUI can
be extended to include another independent electrical stimulation for Pattern 2.

6.4.2. RESULTS
At the time of writing of this dissertation the actual animal experiments were still in
preparation at theUniversity of Otago, New Zealand. The stimulator system as described
in this section was transferred to the neuroscientists and the first results are expected to
arrive shortly.

Figure D.2: Graphical User Interface used to control the synchronized audio/electrical stimulation system.

Waveform update-times 1 2 4 8 16 32 64

Instructions committed 1896.37 2378.37 3342.37 5270.37 9126.37 16838.37 32262.37

ALU 1523.45 1896.45 2642.45 4134.45 7118.45 13086.45 25022.45

MEM 134.97 179.97 269.97 449.97 809.97 1529.97 2969.97

BRA 54.99 68.99 96.99 152.99 264.99 488.99 936.99

JUMP 182.96 232.96 332.96 532.96 932.96 1732.96 3332.96

Execution cycles 4635.3 5827.3 8211.3 12979.3 22515.3 41587.3 79731.3

Table D.1: Profiling statistics of software implementation stimulation kernel on SiMS processor[1] with respect to different
waveform resolutions (Waveform update-times)

61

FIN

INIT
DELAY

PLAY
DELAY

ISI
DELAY

INIT
DELAY

PLAY
DELAY

update_times

update_times

Stimulate

Charge
phage

Cancellation
phase

Figure D.3: Flow chart of the software implementation of the stimulation kernel

62 D. TINNNITUS TREATMENT PROTOTYPE

−1

0

1

S
ti

m
u

la
ti

o
n

C
u

rr
e

n
t

(m
A

)
−5

0

5

10

S
ti

m
u

la
to

r
V

o
lt

a
g

e
 (

V
)

0

1

2

3

C
a
p

a
c

it
o

r
V

o
lt

a
g

e
 (

V
)

0 1 2 3 4
0

0.5

1

1.5

In
te

g
ra

to
r

V
o

lt
a
g

e
 (

V
)

Time (ms)

Figure D.4: Sample measurements of arbitrary waveform generator

1 void stimulate () {
2 i n t done = 0 ;
3 st im_st_t STIM_status = INIT ;
4 uint16_t playSample =0;
5 v o l a t i l e uint16_t SAMPLE_PERIOD=0;
6 v o l a t i l e uint16_t INIT_SAMPLE=0;
7 uint32_t isiTime ;
8

9 // inter−Pulse Delay
10 isiTime = uStim_getISI () ;
11

12 // I n i t i l i a z e values
13 INIT_SAMPLE = Waves_getSamplePeriod () ;
14 i f (INIT_SAMPLE < PLAY_OVERHEAD+DELAY_OVERHEAD) {
15 SAMPLE_PERIOD = 0 ;
16 } e lse {
17 SAMPLE_PERIOD = INIT_SAMPLE − (PLAY_OVERHEAD + DELAY_OVERHEAD) ;
18 }
19

20 // I n i t i a l i z e H/W to 1 s t phase
21 uStim_setPhase (CHARGE) ;
22

23 while (done != 1) {
24 switch (STIM_status) {
25

26 case INIT :
27 //===
28

29 // Get voltage value and send i t to the DAC

63

30 playSample = Waves_nxtSample () ;
31 uStim_setPlayVoltage (playSample) ;
32

33 // Check s t a t e and set voltages accordingly
34 i f (uStim_getPhase () == CHARGE) {
35 // [Charge phase] l e t stimulation play pulse in i t s whole
36 // set VREF as high as possible
37 uStim_setVref (VDD) ;
38 uStim_setChargeDIR () ;
39 } e lse {
40 // [Cancel phase] play pulse t i l l voltage reaches Vcap
41 // set VREF to voltage at end of charge pulse
42 uStim_setVref (uStim_getVcap ()) ;
43 uStim_setCancelationDIR () ;
44 }
45

46 // H/W operations
47 uStim_enableSTIM () ;
48

49 // Delay time
50 delayMicros (INIT_SAMPLE) ;
51

52 STIM_status = PLAY ; //FSM next s t a t e
53

54 break ;
55

56 case PLAY :
57 //===
58 // In t h i s s t a t e the consecutive values
59 // of the wave are loaded and played
60

61 i f (uStim_getPhase () == CHARGE && Waves_completed ()) {
62 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 // Check i f play wave(pulse) i s completed in charge phase
64 // I S I s t a t e
65 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66

67 // H/W operations
68 uStim_disableSTIM () ;
69 uStim_readVcap () ;
70 uStim_isolateTissue () ;
71 uStim_rstCAPS () ;
72 uStim_setPhase (CANCELATION) ;
73

74 STIM_status = INIT ; // FSM next s t a t e
75

76 // I S I delay
77 delayMicros (isiTime) ;
78

79 } e lse i f (uStim_getPhase () == CANCELATION && (uStim_chrgThreshReach () | |
80 Waves_completedXTimes ())
81) {
82 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 // Check i f phase reached Voltage Threshold or
84 // wave(pulsed) has i t e r a t e d for X times
85 // FINISH s t a t e
86 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87

88 // Used to denote the s t a r t period
89 uStim_setStimStartRestTm () ;
90

91 // H/W operations

64 D. TINNNITUS TREATMENT PROTOTYPE

92 uStim_shortTissue () ;
93 uStim_disableSTIM () ;
94 uStim_rstCAPS () ;
95 uStim_setVref (0) ;
96 uStim_setPlayVoltage (0) ;
97

98 STIM_status = INIT ; // FSM next s t a t e
99

100 // E x i t stimulation loop
101 done = 1 ;
102

103 } e lse {
104 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 // Voltage of wave(pulse) i s played
106 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107

108 uStim_setPlayVoltage (Waves_nxtSample ()) ;
109 i f (uStim_getPhase () == CHARGE) {
110 // Delay for update period
111 delayMicros (SAMPLE_PERIOD) ;
112 }
113 else {
114 // Just in case check Thres PIN
115 // i f voltage has been reached
116 delayMicrosPIN (SAMPLE_PERIOD, THRESH_PIN) ;
117 }
118 }
119 break ;
120

121 default :
122 //===
123 // rese t STIM
124 uStim_setVref (0) ;
125 uStim_isolateTissue () ;
126 uStim_setPlayVoltage (0) ;
127 done = 1 ;
128 break ;
129

130 }
131 }
132 }

Listing D.1: Software implementation of stimulation kernel

BIBLIOGRAPHY

[1] R. M. Seepers, C. Strydis, and G. N. Gaydadjiev, Architecture-level fault-tolerance for biomedi-
cal implants, in Embedded Computer Systems (SAMOS), 2012 International Conference on (IEEE,
2012) pp. 104–112.

[2] R. S. Fisher, W. v. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel, Epileptic seizures
and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the
international bureau for epilepsy (IBE), Epilepsia 46, 470 (2005).

[3] C. P. Panayiotopoulos, Typical absence seizures and related epileptic syndromes: assessment of
current state and directions for future research, Epilepsia 49, 2131 (2008).

[4] J. R. Tenney and T. A. Glauser, The current state of absence epilepsy: can we have your attention?
Epilepsy Currents 13, 135 (2013).

[5] L. M. Frank, T. Enlow, G. L. Holmes, P. Manasco, S. Concannon, C. Chen, G. Womble, and E. J.
Casale, Lamictal (lamotrigine) monotherapy for typical absence seizures in children, Epilepsia 40,
973 (1999).

[6] A. Abbott, Novartis to shut brain research facility, Nature 480, 161 (2011).

[7] J. Engel, S. Wiebe, J. French, M. Sperling, P. Williamson, D. Spencer, R. Gumnit, C. Zahn, E. West-
brook, and B. Enos, Practice parameter: Temporal lobe and localized neocortical resections for
epilepsy report of the quality standards subcommittee of the american academy of neurology, in
association with the american epilepsy society and the american association of neurological sur-
geons, Neurology 60, 538 (2003).

[8] D. J. Englot, E. F. Chang, and K. I. Auguste, Vagus nerve stimulation for epilepsy: a meta-analysis
of efficacy and predictors of response: a review, Journal of neurosurgery 115, 1248 (2011).

[9] M. Sprengers, K. Vonck, E. Carrette, A. G. Marson, and P. Boon, Deep brain and cortical stimula-
tion for epilepsy, The Cochrane Library (2014).

[10] A. Berényi, M. Belluscio, D. Mao, and G. Buzsáki, Closed-loop control of epilepsy by transcranial
electrical stimulation, Science 337, 735 (2012).

[11] J. T. Paz, T. J. Davidson, E. S. Frechette, B. Delord, I. Parada, K. Peng, K. Deisseroth, and J. R.
Huguenard, Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after
cortical injury, Nature neuroscience 16, 64 (2013).

[12] E. E. Fanselow, A. P. Reid, and M. A. Nicolelis, Reduction of pentylenetetrazole-induced seizure ac-
tivity in awake rats by seizure-triggered trigeminal nerve stimulation, The Journal of Neuroscience
20, 8160 (2000).

[13] P. Buteneers, D. Verstraeten, B. Van Nieuwenhuyse, D. Stroobandt, R. Raedt, K. Vonck, P. Boon,
and B. Schrauwen, Real-time detection of epileptic seizures in animal models using reservoir com-
puting, Epilepsy research 103, 124 (2013).

65

http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x

66 BIBLIOGRAPHY

[14] M. T. Salam, M. Sawan, and D. K. Nguyen, A novel low-power-implantable epileptic seizure-onset
detector, Biomedical Circuits and Systems, IEEE Transactions on 5, 568 (2011).

[15] L. Kros, O. H. Eelkman Rooda, J. K. Spanke, P. Alva, M. N. Dongen, A. Karapatis, E. A. Tolner,
C. Strydis, N. Davey, B. H. Winkelman, et al., Cerebellar output controls generalized spike-and-
wave discharge occurrence, Annals of neurology 77, 1027 (2015).

[16] G. K. Bergey, Neurostimulation in the treatment of epilepsy, Experimental neurology 244, 87
(2013).

[17] J. Tønnesen, A. T. Sørensen, K. Deisseroth, C. Lundberg, and M. Kokaia, Optogenetic control of
epileptiform activity, Proceedings of the National Academy of Sciences 106, 12162 (2009).

[18] F. T. Sun and M. J. Morrell, Closed-loop neurostimulation: the clinical experience, Neurotherapeu-
tics 11, 553 (2014).

[19] W. Agnew, D. McCreery, T. Yuen, and L. Bullara, Local anaesthetic block protects against
electrically-induced damage in peripheral nerve, Journal of biomedical engineering 12, 301
(1990).

[20] V. G. Udo Jonas, New Perspectives in Sacral Nerve Stimulation: For Control of Lower Urinary Tract
Dysfunction (Martin Dunitz Ltd., 2002).

[21] M. N. Van Dongen, A versatile output stage for implantable neural stimulators, Master’s thesis,
Delft University of Technology (2009).

[22] J.-P. Yao, W.-S. Hou, and Z.-Q. Yin, Optogenetics: a novel optical manipulation tool for medical
investigation, International journal of ophthalmology 5, 517 (2012).

[23] Beaglebone white: Microprocessor low-cost community-supported development platform based
on am335x 720mhz (arm cortex-a8), http://beagleboard.org/bone, accessed: 01-07-2015.

[24] Texas instruments, http://www.ti.com/, accessed: 01-07-2015.

[25] ARM cortex-a8, http://www.arm.com/products/processors/cortex-a/cortex-a8.php (), accessed:
01-07-2015.

[26] Starterware, http://www.ti.com/tool/starterware-sitara, accessed: 01-07-2015.

[27] SINs (smart implantable neurostimulators) project, http://braininnovations.nl/engels.php, ac-
cessed: 01-07-2015.

[28] H. P. Zaveri, W. J. Williams, and J. C. Sackellares, Energy based detection of seizures, in Engineering
in Medicine and Biology Society, 1993. Proceedings of the 15th Annual International Conference of
the IEEE (IEEE, 1993) pp. 363–364.

[29] J. F. Kaiser, On a simple algorithm to calculate theenergy’of a signal, in Acoustics, Speech, and
Signal Processing, 1988. ICASSP-88., 1988 International Conference on (1990) pp. 381–384.

[30] H. Qu and J. Gotman, A seizure warning system for long-term epilepsy monitoring, Neurology 45,
2250 (1995).

[31] R. Esteller, J. Echauz, T. Tcheng, B. Litt, and B. Pless, Line length: an efficient feature for seizure
onset detection, in Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd An-
nual International Conference of the IEEE, Vol. 2 (IEEE, 2001) pp. 1707–1710.

BIBLIOGRAPHY 67

[32] S. J. Korn, J. L. Giacchino, N. L. Chamberlin, and R. Dingledine, Epileptiform burst activity in-
duced by potassium in the hippocampus and its regulation by gaba-mediated inhibition, Journal
of Neurophysiology 57, 325 (1987).

[33] A. M. White, P. A. Williams, D. J. Ferraro, S. Clark, S. D. Kadam, F. E. Dudek, and K. J. Staley,
Efficient unsupervised algorithms for the detection of seizures in continuous eeg recordings from
rats after brain injury, Journal of neuroscience methods 152, 255 (2006).

[34] F. Westerhuis, W. Van Schaijk, and G. Van Luijtelaar, Automatic detection of spike-wave discharges
in the cortical eeg of rats, in Measuring behavior, Vol. 96 (Noldus Information Technology Wa-
geningen, 1996) pp. 109–110.

[35] P. Van Hese, J.-P. Martens, L. Waterschoot, P. Boon, and I. Lemahieu, Automatic detection of spike
and wave discharges in the eeg of genetic absence epilepsy rats from strasbourg, Biomedical Engi-
neering, IEEE Transactions on 56, 706 (2009).

[36] I. Osorio, M. G. Frei, and S. B. Wilkinson, Real-time automated detection and quantitative analy-
sis of seizures and short-term prediction of clinical onset, Epilepsia 39, 615 (1998).

[37] A. Berdakh and S. H. Don, Epileptic seizures detection using continuous time wavelet based artifi-
cial neural networks, in Information Technology: New Generations, 2009. ITNG’09. Sixth Interna-
tional Conference on (IEEE, 2009) pp. 1456–1461.

[38] Rp2.1, tucker-davis technologies, http://www.tdt.com/rp2.1-real-time-processor.html, accessed:
01-07-2015.

[39] S. Raghunathan, S. K. Gupta, M. P. Ward, R. M. Worth, K. Roy, and P. P. Irazoqui, The design and
hardware implementation of a low-power real-time seizure detection algorithm, Journal of neural
engineering 6, 056005 (2009).

[40] H. Markandeya, G. Karakonstantis, S. Raghunathan, P. Irazoqui, and K. Roy, Low-power dwt-
based quasi-averaging algorithm and architecture for epileptic seizure detection, in Proceedings of
the 16th ACM/IEEE international symposium on Low power electronics and design (ACM, 2010)
pp. 301–306.

[41] H. S. Markandeya, S. Raghunathan, P. P. Irazoqui, and K. Roy, A low-power near-threshold epilep-
tic seizure detection processor with multiple algorithm programmability, in Proceedings of the
2012 ACM/IEEE international symposium on Low power electronics and design (ACM, 2012) pp.
285–290.

[42] F. T. Sun, M. J. Morrell, and R. E. Wharen, Responsive cortical stimulation for the treatment of
epilepsy, Neurotherapeutics 5, 68 (2008).

[43] M. J. Morrell, Responsive cortical stimulation for the treatment of medically intractable partial
epilepsy, Neurology 77, 1295 (2011).

[44] W. O. Tatum, Ellen r. grass lecture: Extraordinary eeg, The Neurodiagnostic Journal 54, 3 (2014).

[45] M. van Dongen, A. Karapatis, L. Kros, O. Eelkman Rooda, R. Seepers, C. Strydis, C. De Zeeuw,
F. Hoebeek, and W. Serdijn, An implementation of a wavelet-based seizure detection filter suitable
for realtime closed-loop epileptic seizure suppression, in Biomedical Circuits and Systems Confer-
ence (BioCAS), 2014 IEEE (IEEE, 2014) pp. 504–507.

[46] P. Abry, Multirésolutions, algorithmes de décomposition, invariance d’échelles, diderot edition,
Ondelettes et turbulence. Paris.[Links] (1997).

68 BIBLIOGRAPHY

[47] J. M. Karel, S. A. Haddad, S. Hiseni, R. L. Westra, W. Serdijn, R. L. Peeters, et al., Implementing
wavelets in continuous-time analog circuits with dynamic range optimization, Circuits and Sys-
tems I: Regular Papers, IEEE Transactions on 59, 229 (2012).

[48] Molecular devices llc., axon instruments, sunnyvale, ca, usa, .

[49] Thor labs (newton, nj, usa). .

[50] Arm cortex-m processor family, http://www.arm.com/products/processors/cortex-m/ (), ac-
cessed: 01-07-2015.

[51] Advent research materials, eynsham, oxford, uk, .

[52] Matlab, http://mathworks.com/products/matlab/, accessed: 01-07-2015.

[53] R. M. Seepers, Architecture-Level FaultTolerance Techniques for Biomedical Implants, Master’s
thesis, Delft University of Technology (2011).

[54] Modelsim, http://www.mentor.com/products/fv/modelsim/, accessed: 01-07-2015.

[55] Cr2032 battery, capacity 225mah, 3.0v, http://cr2032.co/.

[56] Arduino due board: Microcontroller low-cost community-supported development-board based
on atmel sam3x8e (arm cortex-m3 cpu), http://www.arduino.cc/en/Main/ArduinoBoardDue, ac-
cessed: 01-07-2015.

[57] Beaglebone black: Microprocessor low-cost community-supported development platform based on
am335x 1ghz (arm cortex-a8), http://beagleboard.org/black, accessed: 01-07-2015.

[58] STM32-H407: Microcontroller low-cost development board based on stm32f407zgt6 cortex-
m4 microcontroller, https://www.olimex.com/Products/ARM/ST/STM32-H407/open-source-
hardware, accessed: 01-07-2015.

[59] Zedboard: Microprocessor and fpga hybrid development board based on xilinx zynq-7000 soc,
http://zedboard.org/product/zedboard, accessed: 01-07-2015.

[60] M. N. Van Dongen, Design of efficient and safe neural stimulators: a multidisciplinary approach,
Ph.D. thesis, Electrical Engineering, Mathematics and Computer Science (2015).

	Front Matter
	Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Problem statement
	Thesis Objectives
	Thesis Outline

	Background
	Absence seizures
	Stimulation techniques

	Development platform - BeagleBone White
	SINs Project
	IMD Processor Architecture (SiMS)

	Related Work

	Implementation
	Closed-loop system model
	Digital module

	Prototype specifications
	Analog module
	Digital module
	In-vivo results

	Evaluation
	Evaluation method
	Detection performance
	Computational overheads
	Detection performance vs. Computational overheads

	Detection performance results
	Static threshold
	Adaptive threshold
	Comparison with Related Work

	Computational overheads
	Static threshold
	Adaptive threshold

	Detection Performance vs. Computational Overheads
	Pareto front
	Battery lifetime vs. Filter performance

	Conclusions and Future Work
	Summary
	Thesis Question

	Thesis Contributions
	Future Work

	Appendices
	GUI epilepsy
	SiMS Instruction Set
	Development platform selection
	Tinnnitus treatment prototype

	Back Matter
	Bibliography

