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Abstract

Crossing waterways is crucial to improve transport connections. In particular, new crossing methods are
needed when the distance to be covered increases. Submerged Floating Tunnel (SFT) have been recently
emerging as a cost-effective feasible crossing technique to connect fjords in Norway. However, only very
little research has addressed the vehicle-structure interaction, with attention to the passengers, so far. In the
current thesis, an algorithm was developed to study the Fluid-Structure-Vehicle Interaction (FSVI), where the
tunnel has been modelled as a Euler Bernoulli beam, the train car as a 6DOFs system, the supporting cables
as linear springs, and the fluid by the Morison’s hydrodynamic force expression. The Sperling ride quality and
comfort indices were used to address the human comfort while crossing the tunnel. It is found that, due to
low-frequency hydrodynamic environment, the influence of the FSVI on the Sperling’s indices is limited, i.e.
"just noticeable" from the classification table. Low-frequency flow field may cause motion sickness rather
than cause comfort/discomfort during ride. The illness rating, which is the indicator of the motion sickness,
gave positive outcomes due to the small amplitude of the accelerations, and therefore no illness is expected to
be felt by passengers. This study shows that displacement and acceleration can be controlled and kept inside
the proposed boundaries under storm sea states, and the comfort while crossing can be guaranteed. The
approach here used can be applied to other sea states with higher frequency content to address the comfort
in storm with smaller return period, which may also be important to address the fatigue resistance of the
structure.
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1
Introduction

1.1. The Submerged Floating Tunnel (SFT): a new concept for crossing wa-
terways

Crossing waterways has always been one of the biggest challenges to be overcome by a civil engineer, being
related to the necessity of expansion and development of the countries. In present days, it also relates to the
increasing numbers of commuters who are willing for faster connections.

The risks and uncertainties recurring in the design of such infrastructures increase, as the distance to be
covered increases. As technology evolves providing new construction materials, which are stronger and more
durable, structural engineers pushed themselves in the design of long suspension bridges to cross deep-water
straits or rivers. The longest single span bridge ever constructed is the Akashi Kaikyō Bridge in Japan. This
bridge was constructed during the 90s and it is a stiffened truss suspension bridge with three spans and two
hinges 1, whose main span measures 1991 m. Behind the design decision of the stiffened truss structure, there
is the necessity of providing enough lateral and torsional stiffness to the deck to avoid instability phenomena.
Such problem can be dealt with the implementation of a spatial cable system. Its beneficial effect can be
observed in the application for the pipeline bridges ("Cable Supported Bridges: Concept and Design").

Figure 1.1: Akashi Kaikyō Bridge. Picture taken from Wikipedia, https://en.wikipedia.org/wiki/Akashi_Kaiky\unhbox\voidb@
x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{o\global\mathchardef\accent@spacefactor\spacefactor}\

accent9o\egroup\spacefactor\accent@spacefactor_Bridge.

The use of long single-span suspension bridges is not just a matter of holding a record. In many cases
a single-span is required since no intermediate pillars can be installed due to a very deep seabed. Adding
pillars would cause execution problems due to environmental conditions. This is what happened when, by
the end of the 60s, the project of the Messina Strait crossing moved from just concepts to technically possible
and complete proposal. A worldwide competition was opened by the Italian Ministry of Public Works in 1969
and it attracted more than one hundred design proposals. The two that may be remarkable to highlight are
a single span 3000 m suspension bridge proposed by the Gruppo Ponte Di Messina (GPM) and a road a rail
floating tunnel anchored at the seabed proposed by the Grant JV.

1"Akashi-Kaikyō Bridge". Honshu-Shikoku Bridge Expressway Company Limited. Retrieved 6 April 2009.

1

https://en.wikipedia.org/wiki/Akashi_Kaiky\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 9 o\egroup \spacefactor \accent@spacefactor _Bridge
https://en.wikipedia.org/wiki/Akashi_Kaiky\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 9 o\egroup \spacefactor \accent@spacefactor _Bridge
https://en.wikipedia.org/wiki/Akashi_Kaiky\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 9 o\egroup \spacefactor \accent@spacefactor _Bridge
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The SFT concept was first invented in Norway at the beginning of the XXth century, but the technology at
that time didn’t allow to build such offshore structures. Moreover, in the last decades several immersed tun-
nels have been built, providing a good understanding in dealing with a modular structure and the require-
ment of the waterproof joints. A SFT is a pipe-like structure which is laying at a predefined depth to allow
vessels to navigate without interruption. It is stuck in its position by different anchorage system: cables, ten-
sion legs or piles, that have the anchorage at the seabed, or buoyant islands, that float over the tunnel length.
The tunnel is subjected to two types of permanent loads: self-weight and buoyancy. In most researches, the
tunnel cross-section has been designed such that the residual buoyancy is directed upwards. Depending on
the depth of the seabed one can also prefer the tension legs over the cable since long cables’ shape tend to
modify into a parabola due to the increasing weight. Hence, the use of small tubes in the anchors can pro-
vide an extra buoyancy upwards force. The pretension in the anchors is driven by the amount of the residual
buoyancy and these have also the function to reduce the deflections and stresses caused by the environmen-
tal loads.

The construction of the SFT seems to be still a challenge because no infrastructure of this type has been
built yet. The lack of data on its actual behaviour makes engineers still sceptical of this technology even
though it presents different advantages compared to the other waterway crossings. The construction of a
full-scale prototype seems to be the breakthrough for the spread of this crossing solution.

1.2. Structural Features
1.2.1. Structural requirements
The design of the cross-section’s geometry of the SFT has to comply with some requirements:

1. The internal diameter needs to be assumed in order to be able to accommodate the road or railway
tracks, lateral maintenance corridors and ventilation systems for the fire safety.

2. The thickness of the concrete tube as well as additional internal separation walls must be designed so
that the required structural performances (stiffness, strength, ductility) are met. This has to be valid for
both serviceability and ultimate limit states. Moreover, the designer needs to pay particular attention
to the durability and permeability of the concrete mix to ensure waterproofing of the tunnel.

3. The Buoyancy-to-Weight Ratio (BWR), which is the ratio between the upwards buoyancy force and the
sum of the selfweight and live loads, needs to be larger than a lower bound, e.g. BWR≥1.20. Setting a
lower bound of the residual buoyancy aims to guarantee that no slacking of the cables occurs in work-
ing condition. For the case of the buoyant island, where the SFT results to be heavier than displaced
surrounding fluid, different criteria have to be fulfilled. Moreover, the magnitude of the external diam-
eter of the cross section, which defines both downwards and upwards forces, results to influence the
hydrodynamic actions too, being them proportional to the diameter.

In the first feasibility studies present in literature usually a too large lower bound of the BWR was consid-
ered, e.g. BWR=1.70, being the slackening of the anchorages a scenario to be avoided. A positive feedback
was obtained thanks to numerical studies, which confirmed that larger values of the BWR could improve the
structural performance of the SFT in case of severe environmental loading conditions. To corroborate this
Brancaleoni et al. [2] found that the increase of the BWR from 1.25 to 1.40 can lead to remarkable improve-
ments of the SFT response to rough sea conditions.

Figure 1.2 shows through a flow chart the conceptual procedure applied for the design of the SFT’s cross-
section, as done also in Martire [28]. From the aforementioned design requisites, it is important to satisfy
points 1 and 3 in early-design. Assumed the operative conditions for the chosen crossing, which depend on
the type of infrastructure to be installed in the tunnel, i.e. motorway or railway and the fire exits, and once the
construction materials and the shape of the cross-section are defined, a pre-design can be performed. From
this step, some relevant information can be determined such as the upwards buoyancy force (Fbuoy anc y ) and
the self-weight (GI ). By setting a threshold for the minimum admissible value of the BWR, e.g.α= 1.20−1.40,
it is hence possible to compute the amount of ballast water (GI I ), if required, in order to impose the condition:

BWR =α (1.1)

which will drive the minimum pre-tensioning force of the cables system minimising the permanent stresses
in the tunnel, anchorages and foundations blocks.
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Figure 1.2: Flowchart of the preliminary design procedure, where GI = structural load, GI I = ballast water, Q = live loads

Based on the assumed dimensions, if GI I results to be smaller than 0, it means the structure has a very
limited upwards buoyancy force. Hence, it is necessary to iterate the design calculation applying one or a
combination of the following:

• increase the buoyancy via the external dimensions;

• decrease the self-weight of the tunnel via reduction, where possible, of the dimensions of the internal
clearances (i.e. thickness of the walls and floors);

• decrease the self-weight of the tunnel via the choice of lighter materials.

The iterative design procedure terminates once the combination of cross-sectional dimensions that satisfy
the requirement of the minimum value of the BWR is found. Then, the amount of ballast water to be stored
can be also quantified. To reduce the permanent stresses inside the structure, it would seem appropriate to
set also an upper limit to the BWR, as it has been done for the design of the SFT Prototype in Qiandao Lake,
China, whose cross-section arrangement was made in order to have a BWR in the range of 1.20 and 1.30,
leading to an acceptable performance of the cable system subjected to the environmental loading of waves,
currents or earthquakes Mazzolani et al. [30, 31]. However, the SFT prototype for Qiandao Lake crossing con-
stitutes a particular case since it is a small pedestrian crossing. With more complicated inner arrangements of
the cross-section, required to accommodate the infrastructures, safety corridors and all the other functional
facilities, imposing an upper-bound for the BWR may request more iterations in the design process to obtain
the best combination which also meet this last requirement. So, at the end of the design process showed in
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Figure 1.2 it is additionally asked to check:

BWRmax ≤αmax . (1.2)

In case this condition is not fulfilled, it is necessary perform an additional iteration. A way to reach this goal is
to increase the global dimension of the tunnel. This affects both the amount of upwards buoyancy force and
the weight of the structure, giving the possibility to lay in between the two boundary values. This increase of
the cross-section dimension may be quantified with a scaling factor (SF).

Being the case that at an iteration the resulting BWR was not meeting the limit imposed by (1.2), the
updated ballast water and BWR may be evaluated as a function of SF:

G I I =
Fbuoy anc y −α(G I +Q)

α
(1.3)

RB = Fbuoy anc y − (G I +G I I ) = Fbuoy anc y (1− 1

α
)+Q (1.4)

When scaling the dimensions the Residual Buoyancy (RB) varies according to:

RBnew = SF Fbuoy anc y − (SFG I +G I I ) = SF Fbuoy anc y (1− 1

α
)+Q (1.5)

Thus, the ratio between the two values of residual upwards buoyancy force is:

RBnew

RB
= SF Fbuoy anc y (1− 1

α )+Q

Fbuoy anc y (1− 1
α )+Q

> 1 (1.6)

which can be noted to be greater than one, meaning that respecting both limitation increases both the BWR
and the permanent stresses on the tunnel.

1.2.2. Construction materials
The choice of a construction material is driven by diverse criteria, such as the structural performances of the
tunnel, the resistance to the environmental condition and the construction methods and costs. Regarding
the resistance and duration of the structure it may be applied to main techniques, a composite structure with
a outer steel sheet to increment the corrosion resistance of the internal reinforced concrete structure. The
steel sheet need to be protected with special paintings to resist the chemical attack of chlorides present in
the seawater. Such system may be implemented when regular cross-section shape is applied for the tun-
nel,i.e.circular cross-section, when the steel sheeting can be prefabricated with the requested diameter and
thickness. When the designer opts for articulated shapes, i.e.polygonal shape, the composite structure may
be substituted by ultra-durable concrete mixtures, i.e.alkali activated cementious concrete, or by the new
generation of self-healing concrete 2. From the economic point of view it has been shown that the cost incre-
ment as a function of the crossing length follows a linear trend, Figure 1.3 Minoretti [33], and it appears to be
cost competitive with suspension bridges, especially when long distances need to be covered.

Figure 1.3: Cost Comparison Suspension Bridge and SFT, where the length of the crossing (km) is shown on the abscissa and the costs
are on the ordinate

2Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E. (2010). Application of bacteria as self-healing agent for the devel-
opment of sustainable concrete. Ecological Engineering, Vol. 36, pp. 230-235.
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The materials that appear to fulfil the requirements for the construction of the tunnel prefabricated sec-
tions of a SFT are:

• Steel;

• Reinforced Concrete;

• Prestressed Concrete, for joint waterproofing;

• Rubber foam, for corrosion protecion.

The knowledge acquired in the offshore engineering and immersed tunnels guides to the choice of ordinary
steel and concrete grades. However, to face the limited fatigue resistance of welded connection new steel
types may be used, such the so called Fatigue Crack Arrester (FCA) 3. On the other side, concrete is well liked
when large weight is required to stabilise the structure. In the SFT application downwards force due to self-
weight is vital to control the stresses due to upwards buoyancy. It can also be highlighted the fire resistance
of concrete, making it preferable as internal construction material compared to steel. During building face it
seems reasonable to apply precompression the tunnel segments, increasing the structural performances and
tensile strength of the tunnel and the degree of waterproofing.

1.2.3. SFT module configuration
The modules configuration can be categorised according to their geometrical shape, mainly referring to the
outer shape, being that of relevance when evaluating the cross-sectional properties and the Fluid-Structure
Interaction (FSI). The cross-section shape of a SFT can be as listed here below:

• circular, Figure 1.4;

• polygonal, elongated in the horizontal direction, Figure 1.5;

• circular tubes connected by a truss structure, Figure 1.6.

Circular cross-sections have been considered during the feasibility studies of the Messina Strait (Figure 1.4a;
Bruschi et al. [3]), the Funka Bay’s (Figure 1.4b; Kanie [19]) and the Qiandao Lake (Figure 1.4c; Mazzolani
et al. [32]) crossings. It may be worth noting that a circular cross-section features translational movements
due to wave loading, while rotational force components remain negligible (Brancaleoni et al. [2]). However,
such shape results in more complex construction details and installation procedures when compared with
rectangular shapes (Grantz [15]).

(a) (b) (c)

Figure 1.4: SFT having circular cross-section. (a) Strait of Messina crossing as proposed by ENI, IRI, IMI (Bruschi et al. [3]). (b) Funka Bay
crossing as proposed by the society of SFT research in Hokkaido (Kanie [19]). (c) Qiandao Lake crossing as proposed by Mazzolani et al.
[32]

Cross-sectional shapes featuring more mass placed in the flow direction are suitable for the cases when
current velocities are driving the environmental loading. For this purpose elliptical or polygonal modules are
developed and among the proposals it is worth mentioning the Jintang Strait crossing (Figure 1.5a; Lee [24]).
Such proposed shape, however, might be complicated to fabricate and to overcome this problem it may be
adopted a rectangular cross-section with aerodynamic streamlined inserts, as it is already applied in bridges
such as the Great Belt East crossing (Figure 1.5b; Andersen et al, 2016 4)

3Kazasidis M., 2018. Investigation of metal cored arc welded FCA (Fatigue Crack Arrester) steel in terms of microstructure, toughness
and tensile properties. PhD Thesis. National Technical University of Athens.

4Andersen, J. E., Farreras-Alcover, I., Chryssanthopoulos, M. K. (2016). Data-based models for fatigue reliability of orthotropic steel
bridge decks based on temperature, traffic and strain monitoring. International Journal of Fatigue, Vol. 95, pp. 104-119.
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(a) (b)

Figure 1.5: SFT having polygonal cross-section. (a) Strait of Jintang crossing (Lee et al, 2018). (b) Great Belt East bridge as proposed by
Dissing+Weitling (Andersen et al, 2016)

Another possibility for the modules is the use of more circular tubes connected together via a truss struc-
ture to provide more stiffness to the global system in the flow direction. Such approach have been adopted
by the Norwegian Public Roads Administration in the recent feasibility studies for their big project of the E39
Coastal Highway Route 5. It is worth mentioning the Bjørnafjord (Figure 1.6a; Søreide and Haugerud [38])
and the Sognefjord (Figure 1.6b; Fjeld et al. [12]) crossings.

(a) (b)

Figure 1.6: SFT having circular cross-section and connected with truss. (a) Bjørnafjord crossing as proposed by Statens Vegvesen (Søreide
and Haugerud [38]). (b) Sognefjord crossing as proposed by Statens Vegvesen (Fjeld et al. [12])

1.2.4. Anchoring System
The most versatile material that can be used to design all different type of anchoring systems is steel. It
is used in the offshore engineering application as it can be used for mooring cables design as well as for
tension legs or tethers. In the last decades Fibre Reinforced Polymers (FRP) have made their appearance in
the offshore engineering thanks to the excellent strength-to-weight-ratio and higher stiffness compared to
steel. The most used fibres are Aramid or Carbon. However, FRPs feature an elastic behaviour up to failure
and a relative small hardening branch (Kolstein [20]). Another suitable material is concrete, which becomes
the main design material when designing with buoyant caissons.

The anchoring system is responsible for the counteraction to the residual forces acting on the tunnel and
for the restrain of the displacements of the structure when environmental forces are acting on it. The Residual
Forces (RF) can be of two species and they depend on the designer choice: the upwards RB, or the downwards
Residual Weight (RW). In case the RF are equal to zero, the environmental conditions are favourable and the
length of the crossing is relatively small, the designer may opt for a self-bearing crossing Figure 1.7.d to limit
the stresses inside the structure. If the RF are in the buoyancy direction, the anchoring system requires to be
made of tension members, which can be cable or tethers Figure 1.7.a. Lastly, when the RF are in the weight
direction, the choice of the anchoring system may be driven by the depth of the seabed. Hence, the two
alternatives are the column support Figure 1.7.c or the floating pontoons Figure 1.7.b.

5https://www.vegvesen.no/en/roads/Roads+and+bridges/Road+projects/e39coastalhighwayroute
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Figure 1.7: Supporting system SFT. Figure taken from (Kwark et al. [22])

The tunnel configuration with tension members may be the best choice when it is required to restrain
possible high horizontal displacements due to harsh sea-states. This is thanks to the possibility of arrange
the stabilising cables not only in the vertical direction. These can also be placed under an angle with respect
to the vertical axis in order to provide the required horizontal supporting stiffness.

Hence, the geometrical configuration as well as the diameter of the cables is vital to quantify the stiffness
of the supports. Generally, the adopted configuration is repeated at a prescribed inter-axis to provide a uni-
form stiffness. Different cables arrangement have been studied, Figure 1.8, to understand their influence on
the dynamic response of the tunnel (Mazzolani et al. [31]). A cable setup based on inclined cables appears
to be particularly efficient when earthquake loading is studied (Wahyuni et al. [41]). A supporting system
based on vertical cables exclusively, Figure 1.8b, seems to be valid when the structure experience calm sea
states, since numerical models predict limited horizontal stiffness, (Mazzolani et al. [31]). The alternation of
groups composed of four inclined cables and a couple of vertical cables, Figure 1.8b, is the most effective ar-
rangement, as it provides good stiffness to support the tunnel vertically, horizontally and torsionally, (Martire
[28]).

(a)

(b)

Figure 1.8: (a) Configurations of SFT. Figure taken from (Wahyuni et al. [41]). (b) Configurations of SFT. Figure taken from (Mazzolani
et al. [31])

As mentioned before, the horizontal deflection that the structure experiences under environmental loads,
i.e. sea currents and waves, is important to be controlled to limit stresses and acceleration in the structure
within acceptable boundaries. The Statens Vegvesen (Søreide and Haugerud [38]) in their feasibility study
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for the Bjørnafjorden Crossing proposed a maximum allowed deflection and acceleration in the structure,
Table 1.1

Total Deflection Acceleration

(m) (m/s2)

Horizontal L
200 0.3

Vertical L
350 0.5

Table 1.1: Limiting Deflection and Acceleration

where L coincides with the cable interaxis.
Moreover, it is important to avoid slackening. This phenomenon may happen when all static loads con-

tributes to minimise the tension in the tether and the dynamic effect of wave loading drives the slack, see
ultimate limit state combination EQU in Figure 1.9. Søreide and Haugerud [38] reported that when happen-
ing, the time when the cable experience negative tension is short and hence, it is not critical.

Figure 1.9: Configurations of SFT. Figure taken from Søreide and Haugerud [38]. Three load combinations are shown in which all loading
sources are summed to identify possible slack in the tethers.

1.3. Traffic Load
The traffic load depends on the final of use of the SFT, which may be railway, roadway or pedestrian crossings
or combination of these. Usually standards, e.g. Eurocode 1, part 3, 1991, provide generalised loading condi-
tions based on statistical data, since traffic has variation of its intensity within a day; these loading schemes
aims to replicate the highest stress conditions produced on the structure. However, few researches are avail-
able in literature on the effect of moving loads, e.g. trains, on the global dynamic response of the SFT.

Tariverdilo et al. [40] studied the vibration of a SFT due to moving loads with two and three dimensional
added masses and investigated the impact of vehicle’s velocity and stiffness of the supporting cable system.
The moving load has a velocity of 90m/s and it is considered as point force and the equally-spaced cables are
simplified by continuous elastic foundation. The results indicate that the difference in the response of the 2D
and 3D added masses models decreases as the cable system is stiffer. Hence, they concluded that in this case
Morison’s expression will yield reasonable results when studying the FSI.

Yuan et al. [44] investigated the influence of the speed of a single moving load on the dynamic response of
the SFT. The SFT tube is simplified as an elastically supported beam with two springs and dashpots at each
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end and the FSI is studied using the Morison’s formula for the case of a steady-still fluid. They concluded that
the dynamic response can be controlled by adjusting the vertical stiffness of cable system.

Jin and Kim [17] analysed the dynamic response of the SFT under moving loads and wave excitation. The
tunnel is modelled with fixed supports at both ends and the analyses are divided in two steps. A first analysis
in still-water is made to evaluate the impact of the BWR and vehicle’s velocity, while the second analysis
focused on the structural global response under both wave and moving loads.

Kwark et al. [22] in their study developed an algorithm for the dynamic FSVI. The tunnel is modelled with
commercial Finite Element Method (FEM) software ABAQUS for the case when the BWR is greater than one
and the vehicle used in the analyses is a Korean KTX high speed train. The FSI has been modelled through the
concept of the added mass and the dynamic interaction analyses are conducted with superposition method
when the KTX is moving along the submerged floating tunnel. The results revealed that the maximum vertical
and lateral displacements occur at the midpoint between the two cables for the central section of the SFT.

Jiang and Liang [16] studied the main influence factors of traffic loads in the dynamic response of the SFT.
Starting from the characteristics of the moving vehicles and the structural parameters of SFT, they proposed a
calculation formula of traffic loads, which takes into account the several influencing factors. The orthogonal
experiment method and the analytic hierarchy process are combined with FEM models to quantify the weight
of each factor. They concluded that the weights of the influence factors vary with the choice of the judge
index: road roughness and vehicle’s speed have the highest weights if the maximum value of traffic loads is the
judge index, whereas wave height and wheels’ static loads if the maximum mid-span vertical displacement is
the judge index.

1.4. Problem Definition
There are not so many researches into the traffic loading analysis regarding the SFT and none of these focus
on the dynamic interaction between all parts of the system, i.e. the structure the vehicle and the water. The
focus of the current thesis will be on the comfort analysis investigating the serviceability limit state of the
structure and the following ride quality under specific storm scenarios. The local environmental conditions
and the design of the tunnel are also important for the global response of the structure, as the location defines
the forces and the cross-section dimensions define the stiffness of the tunnel. The structural stiffness has to
be tuned carefully to let the frequency range characterising the local storm not fell within the range of the
structural natural frequencies. Moreover, it has to provide enough stiffness to limit the deflections, which
determine whether the tunnel can be traversed by the train, and the accelerations, which control the ride
comfort in the train car while crossing the tunnel.

1.5. Scope
The background information available in literature and the problem definition have led to the following re-
search scope: “The study of the degree of importance of the supporting configuration, the sea states, the
suspension characteristics and the rail defect for the definition of the ride quality and comfort. The aim of
this study is to asses the ride comfort and serviceability of the structure for specific environmental conditions
of a SFT.”

From this research objective, a main research question with some subquestions were formulated.
Main question

“Is it safe and comfortable to cross the tunnel under storm conditions?”
Subquestions

• Which load case is the most critical?

• Which system parameter affects most the ride comfort?

• Is the unevenness of the rail critical to the comfort assessment?

The project will investigate the magnitude of the tunnel’s vibrations and displacements induced by the pass-
ing train. The impact of the various tunnel, cable and train parameters will be examined to provide for each
a range that can be used for a future design of the tunnel.

1.6. Approach
The aim of this research, as mentioned above in section 1.5, is to describe how to address the comfort assess-
ment of a train running inside a SFT under storm sea state. A general literature overview has been offered in
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the previous sections to obtain a better understanding of this new crossing solution for tunnel engineering.
A research topic has been selected from this study: the ride comfort assessment.

In chapter 2 the loads acting on the structure are identified and described. Particular emphasis is given to
the environmental load cases, which are also the ones driving the structural integrity.

In chapter 3 it is described the definition of comfort and the criteria commonly used to evaluate it. Here,
the attention is paid to the range of frequencies that regards to the so called whole-body vibrations, 0.5H z <
f < 80H z.

The solution methods used to compute the time-histories of the displacement and acceleration of the
bending vibration and the train car masses are addressed in chapter 4. Different models are implemented
depending on the scope of the simulation and in order to reduce the computational time required.

All the parameters that are implemented and varied during the course of the simulations are identified in
chapter 5. Starting with the cross-section dimensions, whose minimum requirement is the accommodation
of two railway tracks, then the configuration of the supporting system is addressed followed by the structural
modal analysis which allows to approximate the natural frequencies which are helpful when discussing the
global dynamic response. Last sections are, instead, dedicated to the load parameters, i.e. wave and vehicle
characteristics.

The results of the simulations are presented in chapter 6 where they are divided in sections and each of
these refer to a specific scope. The discussion and analysis of the results is separately treated in chapter 7 and
a final overview on the obtained results with attention to the research questions is provided in chapter 8.

1.7. Assumptions
To obtain a solution for the problem, some simplification, valid for both the static and dynamic analysis, are
applied.

• One train running inside the tunnel

• Constant velocity of the train

• Seabed is constant along the tunnel length

• Hinged boundary conditions

• Linear elastic constitutive relation for the cables

• Length of the crossing limited to 1km to avoid long computational time



2
Structural Loads

2.1. Introduction
This chapter summarises all relevant load cases acting on the SFT after construction. For the static analysis
of the structure, all permanent structural and non-structural loads are considered. Among these loads there
are self-weight of the structure, structural elements for the infrastructure and services, buoyancy etc. The
exceptions are traffic loads, which are time dependent and hence, are playing a role for the dynamic response
of the structure.

In the table below is proposed a list of the main loads acting on the structure according to the EN 1990
classification:

Load Classification Load Description
G Structural Weight
G Non-structural Weight
G Buoyancy
Q Weight
Q Current
Q Wave
Q Traffic

Table 2.1: Load Classification

The experience gained with the Immersed Tunnels gives the designer the advice to not forget the influence
of hydrostatic pressure. It takes part in the buoyancy of the SFT and it generates stresses around the cross-
section, which increase with the depth at which the tunnel is placed. The distribution, and so the increase, of
the hydrostatic pressure depends on the density variation of the water.

2.2. Permanent Load
As shown in Table 2.1 the permanent loads comprise three classes, the structural weight, the non-structural
weight and the buoyancy. To these it must be added the variable weight, which consists of the marine growth
which concentrates at the seabed and at the sea surface. The effect o it will be secondary/minor being it
located at an intermediate depth.

The two contributions to the total weight can be evaluated as: the selfweight of the tunnel and and the
additional structural loads.

G =G1 +G2,1. (2.1)

The selfweight, as a function of the wall’s thickness tw all can be evaluated by the expression below.

G1 = ρgπ
D2

exter nal −D2
i nter nal

4
. (2.2)

11



12 2. Structural Loads

where Dexter nal = Di nter nal + 2 tw all .
The non-structural permanent loads are assumed to be in total 100 kN

m , being them divided into:

G2,1 = qr ai l +qser vi ces . (2.3)

Archimedes’ principle states that the upward buoyant force acting on a body immersed in a fluid, is equal
to the weight of the displaced fluid. Hence, the buoyancy force acting on the tunnel can be evaluated as show
in expression below.

G2,2 = ρw gπ
D2

exter nal

4
. (2.4)

2.3. Variable/Functional Load
One class of the variable loads are the functional loads. These vary together with the infrastructure that is
thought to be accommodated in the tunnel’s cross-section, such as roadway, railway, cycling path and/or
pedestrian lanes. Standards, e.g. EN 1991-3, often use statistical data to assess the most unfavourable loading
condition on the structure

2.4. Environmental Load
Under the class of environmental loads, there are the change in the tide levels, waves and currents. The last
two often represent the most important and dangerous environmental actions for a SFT. For this reason it
seems important to study the water-structure interaction.

2.4.1. Tide
The tide effect on the SFT is based on the change of the buoyant forces as well as the hydrostatic pressure on
the tunnel’s cross-section, which will increase or decrease due to the change in water levels. So, this move-
ment can be seen as a vertical current acting on the structure

2.4.2. Current
With current, generally, it is meant the wind generated currents, which are generated via the transportation
of the energy from the wind to the sea surface. The movement in the water particles generated by this type of
current is mainly in the direction of the wind force, e.g. horizontal direction. The magnitude is assumed to be
constant with respect to time, being the changes really small, e.g. quasi-static.

When designing, it is required to collect the data from prescribed depth to model the velocity profile, or
analytical expressions are available in literature, see Martire [28]:

Vc (z) =V0

(
z +d

d

)
. (2.5)

where V0 is the wind-induced current velocity at sea surface level.

2.4.3. Wave
The kinematic of the water particles under wave condition is an oscillatory motion. Waves are started by two
sources:

• wind-driven waves, or surface waves, are created by the friction between wind and surface water. As
wind blows across the surface of the ocean or a lake, the continual disturbance creates a wave crest.
These types of waves are found globally across the open ocean and along the coast1;

• ocean internal waves are waves in the interior of the ocean which are generated when the interface
between layers of different water densities, temperature, salinity is disturbed, usually caused by tidal
flow over shallow bathymetry2.

1NOAA. Why does the ocean have waves? National Ocean Service website, https://oceanservice.noaa.gov/facts/wavesinocean.html,
25/06/18.

2Alpers, W. (2014). Ocean Internal Waves. Encyclopedia of Remote Sensing, pages 433-437.
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There are several theories which describes the wave profile, but they are all approximations of the real
phenomenon. All these have in common the search of a velocity potential that satisfies the Laplace Equation
under the assumption of incompressible fluid. There can be distinguished the Linear, Non-linear and Other
wave theories. A widely used wave theory is the Airy wave theory, see Krogstad and Arntsen [21], commonly
referred to as linear or first order wave theory because of the simplifying assumptions. This theory is appli-
cable when the wave height is small compared to the wavelength and the water depth. In particular, basic
assumptions are:

• homogeneous and incompressible fluid;

• wavelength bigger than 3m, so that allows to neglect capillary waves;

• irrotational flow, so no shear forces are present.

Under this assumption the fluid potential Φ must satisfy the Laplace Equation. By applying the boundary
conditions of impermeability at the seabed and constant pressure at the sea surface, it can be derived the
general expression for the sea surface elevation:

η (x, t ) = a cos(kx −ωt ) . (2.6)

where
a[m] is the wave amplitude
k = 2π

λ [ r ad
m ] is the angular wavenumber

ω= 2π
T = 2πf[ r ad

s ] is the angular frequency
Non-linear waves are characterised by larger amplitude, sharper crests and flatter and larger troughs com-

pared to the sinusoidal wave. The most adopted non-linear wave theory is the Stokes waves theory, which
finds its start point in the Taylor expansion around the mean water elevation of the potential flow, the so-
called perturbation procedure. When using a lower order of the perturbation expansion, e.g. second to fifth
order, Stokes’ wave theory gives accurate results when the wave steepness is moderate and water depth is
from intermediate to deep. Hence, the wave height-to-wavelength ratio needs to be well under one, Hw

λ ¿ 1
and the wavelength less than eight times the water depth, λ < 8.15 d Laitone [23].

To obtain the accuracy in the results in case of shallow waters, the theory to be used is the Cnoidal wave
theory. As shown in Figure 2.1, the wave profile that can be described is characterised by steep crests and
flat troughs. Through this theory is also possible to describe the limit case of the Solitary wave, which has an
infinite wavelength3.

Figure 2.1: Wave profile for different theories. Figure taken from3.

However, in actual sea states the water surface appears to be irregular and hence, it can be described as a
superposition of an infinite number of regular sinusoidal waves. An analytical expression to evaluate the sea
surface elevation ηw for an unidirectional sea state can be formulated as done in Martire [28]:

ηw (x, t ) =
∫ ∞

0

d Hw (ω)

2
cos(kx −ωt +ε)dω (2.7)

where

3Waves, https://www.flow3d.com/modeling-capabilities/waves/
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ω= 2π
Tw

[ r ad
s ] is the angular frequency of the regular wave

k = 2π
λw

[ r ad
m ] is the angular wavenumber related to the wave period Tw through the dispersion relation

d Hw [m] is the regular wave height
ε is the phase which is generally assumed to be a random variable uniformly distributed in

[0,2π]
The water surface elevation is often assumed to be an ergodic Gaussian random process, which is char-

acterised by the stationarity of its mean value and variance. The ergodicity property allows to define the
sea state via the temporal recording, when this is sufficiently long. The power spectral density Sη(ω) can be
defined and it describes the irregular sea state. Several models of energy spectrum, which illustrates uni-
directional waves conditions, can be found in literature. Among these, the most commonly used are the
Pierson-Moskowitz and JONSWAP Spectra and the analytical formulations can be found in DNV [7]. The
Pierson-Moskowitz spectrum SP M (ω) is given by:

SP M (ω) = 5

16
H 2

S ω
4
p ω

−5 exp

(
−5

4

(
ω

ωp

)−4)
(2.8)

where ωP = 2π
TP

is the angular spectral peak frequency.
The JONSWAP spectrum S J (ω) is formulated as:

S J (ω) = Aγ SP M (ω) γ
exp

(
−0.5

(
ω−ωP
σωP

)2
)

(2.9)

where
Aγ = 1−0.287ln

(
γ
)

is a normalizing factor
SP M (ω) is the Pierson-Moskovitz spectrum
ωP is the angular spectral peak frequency
γ non-dimensional peak shape parameter, generally fixed to 3.3
σ spectral width parameter

σ=σa = 0.07 for ω≤ωP

σ=σb = 0.09 for ω>ωP

2.4.4. Hydrodynamic Forces
When computing the forces acting on the structure, one has to take into account the relative motion between
the fluid and the structure. The the most widely used expression to describe the fluid-structure interaction, in
hydraulic and offshore engineering applications, is by means of the Morison’s formula. For flexible structure
the Morison’s equation is in the form:

~F = ρw
πD2

4

[
(C I −CM )

(
~̇V − ẅ (x, t )

)
+CM

~̇V
]
+ 1

2
ρwCD D

(
~V − ẇ (x, t )

) |~V − ẇ (x, t ) | (2.10)

where
ρw is the water density
Dext is the external diameter of the analysed structure, i.e.tunnel or cable
C I , CM , CD are the inertia, added mass and drag coefficient respectively
V̇ , ẅ (x, t ) are the fluid and structure accelerations respectively
V , ẇ (x, t ) are the fluid and structure velocities respectively

The expression is composed by three addends, of which the first one is commonly referred to as the added
mass produced by the presence of the structure in the cross-flow and it is an extra force needed to accelerate
a body immersed in a fluid.

The second addend is the so called Froude–Krylov force, a force generated by the undisturbed waves.
For a cylinder C I = 1+CM , where CM is the added mass coefficient which depends on the geometry of the
cylinder. For a circular cylinder, CM =1.0 and hence, C I =2.04.

The last addend of the Morison’s formula is the drag force, which arises due to the difference in pressure
between upstream and downstream. It is important to study the flow characteristic and the possible tur-
bulence to determine the pressure distribution at the contact between fluid and structure. The factor that

4E. Konstantinidis, A. Dedes, D. Bouris, (2012). Drag and inertia coefficients for a circular cylinder in a steady plus low-amplitude oscil-
latory flow.
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drives the flow characterisation is the Reynolds number (Re), which is defined as the ratio between the prod-
uct of the fluid velocity V and the structure dimension D. Sarpkaya, (Sarpkaya and Isaacson [35]), proposed
a four main classes into which divide the flow, based on several laboratory test on cylinders in cross-flows,
Figure 2.2.

(a) (b)

Figure 2.2: (a) Incompressible flow regimes and their consequences. Figure taken from (Sarpkaya and Isaacson [35], pag. 50). (b) Drag
coefficient function of the Re.

Other studies have pointed out that both CD and C I not only depend on the Re, as shown in Figure 2.2b,
but also on the Keulegan-Carpenter number (KC), defined as KC = Vmax Tw

D , on the ratio between the rough-
ness and the diameter D and on the time. However, the author continues that the time dependence has to be
assigned completely to the force formulation, because it is not possible to derive a time-dependent formu-
lation for the coefficients not even for a very regular flow. The aforementioned KC is a direct parameter for
the categorisation of the forcing regime acting on the submerged structure, hence, the relative importance of
drag and inertia forces. To distinguish these regimes one may work out the ratio of the amplitudes of the drag
and inertia forces, neglecting also the π

2 phase shift between the force components, as presented in Journée
and Massie [18].

Fdr ag

Fi ner t i a
=

1
2ρCD D V |V |
πD2

4 ρ CM ω V

= 2 CD |V |
πCM D ω

.

(2.11)

The expression can be manipulated a bit more, noting that the wave-frequency can be expressed as a
function of the wave-period ω= 2π

T

Fdr ag

Fi ner t i a
= 1

π2

CD

CM

V T

D

= 1

π2

CD

CM
KC

(2.12)

Based on the expression in Equation 2.9 there have been proposed ranges of the KC which differentiate
the force regimes:

• For low values of KC, e.g. KC < 3, the inertia force is dominant, the potential flow theory is applicable
and the drag can be neglected.

• For KC ranging between 3 < KC < 15, one may linearise the drag.

• For KC ranging between 15 < KC < 45, one may not avoid using the full Morison equation with the
nonlinear drag.
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• For higher values of KC, e.g. KC > 45, the drag force is dominant, the vortex shedding frequency be-
comes bigger than the wave frequency hence the flow tends to a uniform flow and inertia can be ne-
glected.

Making use of the aforementioned linear wave theory, it is possible to determine a linear dependence of
the KC on the wave height Hw and tunnel diameter D. From Figure 2.3 it can be noticed that for value of the
ratio between wave-height and tunnel diameter smaller than around 10, mass forces, i.e. inertia forces, are
more relevant.

Figure 2.3: Wave loading regimes. Figure taken from (FEHRL [11]).

The environmental conditions allows the use of the Morison expression for the external forces assuming
that the flow does not change the wave attack direction. This assumption results to be applicable for value of
the ratio between the wave-length and the tunnel diameter smaller than 0.2 (DNV [7], MacCamy and Fuchs
[27]). The SFT is in most of the cases a slender structure, being the ratio between its main cross-section
dimension and its length commonly small. However, when looking at serviceability limit state or fatigue,
hence, the wavelength of sea waves is small, e.g. 50-100 m, the ratio D

Lw
may exceed 0.2. This means that the

FSI can not be studied with the Morison equation, but the diffraction theory needs to be applied. The account
of waves diffraction makes the problem more difficult but it has a favourable aspect as the load applied by
the waves on the structure is reduced.

2.4.5. Accidental Load
Among these, one has to mention:

• Earthquakes;

• Tsunami;

• Collision with submarines;

• Internal explosion.

Extensive literature is available regarding seismic loads. (Brancaleoni et al. [2]) analysed and discussed dif-
ferent tunnel type under the seismic and wave excitation. (Martire [28]) investigated the seismic behaviour
of the Messina Strait Crossing SFT for different cable system configuration, concluding that the SFT solution
presents great potential when large spans needs to be crossed. The same authors studied also the propaga-
tion of vertical ground motion, created by fault breaking, in the upper water. It has been observed that the
water and ground move synchronously in the central part of the crossing, while a phase shifted can be no-
ticed to happen close to the shores (Martire et al. [29]). (Su and Sun [39]) focused on the study of the seismic
behaviour of the tether support when also parametric excitation is involved. They concluded that when para-
metric resonance is met, the tether’s transient maximum midspan displacement may be be influenced by the
typology of the seismic wave while the steady-state displacement is kept constant to a precise value.

The tsunami loading scenario has been addressed in (Perotti et al. [34]) noting that the propagation of a
tsunami wave through a sea strait may involve important amplifications of the forces acting on the SFT.
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The event of a collision with submarines has been treated in (Søreide and Haugerud [38]), where it has
been proposed a detailed analysis of this load case with the control of the critical sections for bending mo-
ments and punching shear, concluding that the most critical scenario is when the structure is hit eccentrically,
Figure 2.4.

(a) (b)

Figure 2.4: (a) FEM model of SFT collision with a submarine. (b) Configurations of SFT. Figures taken from (Søreide and Haugerud [38])

Lastly, the study of an internal explosion matters in case of an evacuation for a better planning of escape
routes.





3
Ride Comfort

3.1. Introduction
This chapter summarises the definition of ride comfort and ride quality and presents the evaluation standards
for the railway applications.

Comfort is generally defined as a subjective situation in which one is relaxed and does not have any phys-
ically unpleasant feelings 1. In infrastructure and transportation applications there are several terms asso-
ciated with the sense of well-being: passenger comfort, ride quality, ride comfort, ride index. The sections
below will shortly describe the difference within these terms.

3.2. Ride Quality
Ride quality differs from individual to individual, being it dependent on a person’s physical conditions in
the vehicle environment, under different variables. Among these one has to mention the dynamic variables,
consisting of accelerations in both lateral, longitudinal and vertical directions; the ambient variables which
refer to temperature, pressure, noise and high frequency vibrations; while the spatial variables may refer to
leg space and other seating variables.

The ride quality is generally quantified via the Sperling ride quality index, which measures the stability
of vehicle in motion. The car-body acceleration time-history needs to be analysed and transported to the
frequency domain prior to calculate the Sperling ride quality index. If n frequency components of the car-
body acceleration spectrum in vertical direction are considered, the resultant Sperling ride quality index is:

W = 10

√√√√ n f∑
i=1

W 10
Zi

(3.1)

where each contribution to the sum is defined as follow:

WZi =
10
√

a( fi )3 B( fi )3 (3.2)

where:
a(f) denotes the amplitude of the acceleration response in

[
m
s2

]
of the i th frequency identified by the Fast

Fourier Transform (FFT)
B(f) is the weighting factor which reflects the extent to which vibration causes the undesired effect at each

frequency and for the case of the ride quality index it can be quantified with the following expression:

B( f ) = 1.14

√
[(1−0.056 f 2)2 + (0.645 f )2] 3.55 f 2

[(1−0.252 f 2)2 + (1.547 f −0.00444 f 3)2](1+3.55 f 2)
(3.3)

A classification has been proposed, which relates the index with a corresponding feeling of ride quality. In
this scale the higher is the value of the index WZ , the lower is the ride quality:

1Merriam-Webster dictionary, ® 2019 Merriam-Webster, Incorporated
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Index WZ Ride Quality

1.0 Very good
2.0 Good
3.0 Satisfactory
4.0 Acceptable for running
4.5 Not acceptable for running
5.0 Dangerous

Table 3.1: Ride Quality Scale

3.3. Ride Comfort
Track geometry, i.e. rail alignment, track irregularities, vehicle characteristics and speed generate motions
that are felt by passengers and affect their sense of ride comfort. When studying the ride comfort one has to
look at the frequency of the vibrations because different ranges of frequency correspond to different effect on
the human body. There can be distinguished three categories:

• whole-body vibration

• hand-transmitted vibration

• motion sickness vibration

The whole-body vibrations generally range from 0.5 to 80 Hz. The hand-transmitted vibrations cause harm-
ful effects when their frequency content is greater than 1000 Hz. The motion sickness can be induced by
prolonged low-frequency, e.g. f < 0.5 Hz, translational and/or angular motions.

The Sperling index can be addressed also to the ride comfort when a different weighting factor B(f) is
applied:

B( f ) = k

√
1.911 f 2 + (0.25 f 2)2

(1−0.277 f 2)2 + (1.563 f −0.0368 f 3)2 (3.4)

where k = 0.588 for the car-body vertical vibrations and k = 0.737 for the horizontal vibrations. Figure 3.1

Figure 3.1: Weighting Factors. Picture taken from Dumitriu M. et al. (2015)

presents the trend of the weighting factor for both ride comfort and ride quality indices as a function of the
frequency f . It can be noticed that when evaluating the ride comfort more weight is given to frequencies
associated with the human response, i.e. f > 0.5H z.

As for the ride quality index, it is proposed a classification describing the relation between the ride comfort
index and the responsiveness to the stimuli due to vertical and horizontal vibrations:
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Index WZ Ride comfort

1.0 Just noticeable
2.0 Clearly noticeable
2.5 More pronounced but not unpleasant
3.0 Strong, irregular, but still tolerable
3.5 Very irregular
3.5 Extremely irregular, unpleasant, annoying; prolonged exposure intolerable
4.0 Extremely unpleasant; prolonged exposure harmful

Table 3.2: Ride Comfort Scale

Yang et al. [42] studied the response of train to track irregularity and riding comfort of train varying using
the track classes 4, 5 and 6 designated by the Federal Railroad Administration (FRA), being class 6 the best
quality track. they compared the outcoming accelerations with the limitations suggested by France-SNCF
and Eurocode (1995), a = 0.49m/s2 and a = 1m/s2 respectively.

Dumitriu and Gheti [9] focused on the evaluation of the ride quality and comfort indexes for the vertical
vibrations in railway vehicles generated by the track irregularities, i.e. longitudinal defect. The evaluation
followed the Sperling WZ method. The results showed that the variation of the damping of the secondary
suspension affecs the dynamic behaviour of the vehicle and hence, an appropriate selection of it may increase
the ride quality and comfort.

Long et al. [25] in the final part of their feasibility study for the SFT prototype in Qiandao Lake in China
addressed the problem of the human sense of security inside such submerged structure. They quantified
the Sperling comfort index, which could have been used also for a further optimisation of the BWR in the
structural design of the prototype, see Figure 3.2.

Figure 3.2: Excited frequencies and Sperling comfort index at the mid-span of a SFTP with different BWRs. Picture taken from Long et al.
[25]

Choi et al. [4] studied the interaction between vehicle and structure by use of a full tridimensional train car
system. In their analysis they included also all types of irregularities: longitudinal level Figure 3.3b, alignment
Figure 3.3c and cross level Figure 3.3d. They performed simulations on the effects of derailment coefficients,
lateral loads, bogie acceleration and body acceleration created by track irregularities to evaluate how the track
irregularities affect the safety and ride comfort of Korean KTX high speed train. The results of these simula-
tions indicated that track alignment had a significant impact on running safety while defects at longitudinal
level did not.

Figure 3.3: Type of irregularity. Picture taken from Choi et al. [4]





4
Methodology

4.1. Introduction
The methods to simulate the FSVI will be discussed in this chapter. Different vehicle models will be used in
the analyses depending on the output quantity one is interested to investigate.

4.2. Vehicle Model
4.2.1. Moving Load
The moving load model, Figure 4.1 is the most common model used by researchers when studying the vehicle-
induced structural vibrations. This model allows to describe the main dynamic characteristics of the tunnel
due to the load passage with a good grade of accuracy, but it neglects the Vehicle-Structure Interaction (VSI).
Hence, the moving load model is valid as long as the mass of the vehicle is small compared to that of the
tunnel, and the research does not require a specific vehicle response.

Figure 4.1: Moving load model

Tariverdilo et al. [40], Yuan et al. [44] and Kwark et al. [22] applied this model, being their study aimed to
give insight into the structural response of the SFT due to traffic load.

4.2.2. Moving Mass
Given that the mass of the vehicle is not negligible compared to the mass of the tunnel, a moving mass model,
Figure 4.2, should be adopted instead. However, the linear moving mass model does not consider the contact
loss between the moving mass and the structure. This phenomenon may be significant under the assumption
that the rail presents longitudinal irregularities or when the design speed for the crossing is high.

Figure 4.2: Moving mass model

23
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4.2.3. Moving Sprung Mass
The vehicle model can be improved considering the elastic and damping effects of the suspension systems to
be able to have information about the dynamic response of the mass. The simplest model of this kind is the
1DOF mass-spring-dashpot system, the so-called sprung mass model, Figure 4.3.

Figure 4.3: Moving sprung mass model

These three cases are studied in Frỳba [13], where the structural dynamic response due to vehicle passage
is mainly addressed, through both analytical and numerical solutions.

4.2.4. Moving Train Car
To account for the various dynamic properties of train cars, detailed vehicle models, i.e. 6 DOFs car-boogie
model, have been developed and used by Youcef et al. [43] and Dumitriu [8], Dumitriu and Gheti [9], Dumitriu
and Leu [10], Figure 4.4. All the locomotive components, the car body and the two bogies, were considered to
have 2DOFs to account for the vertical and pitching motions. Different characteristics of suspension systems
are adopted to describe the contact forces between the masses. The primary suspensions, whose constitutive
parameters are kS1 ad cS1, act between the wheels and the bogies, while the secondary suspensions, whose
constitutive parameters are kS2 ad cS2, act between the bogies and the train car. The use of simplified models
can overcome convergence problems and may be used to understand the influence of specific parameters
which are driving the dynamic response of the vehicle.

Figure 4.4: Moving train car model

4.2.5. Moving Train Car with Rail Irregularities
Irregularities in railway tracks may play a significant role in the behaviour of passing trains and large defects
may result in insufficient ride quality and comfort and in special cases derailment. Hence, it seems worth
including the track irregularities in the model developed in subsection 4.2.4, Figure 4.5. The irregularities are
accounted for in the model as part of the vertical displacement, velocity and acceleration of the wheels, as
done in Youcef et al. [43]:

zwk = wk (xk , t )+ r (xk ) k = 1 : 4
żwk = ẇk (xk , t )+V (w ′

k (xk , t )+ r ′(xk )) k = 1 : 4
z̈wk = ẅk (xk , t )+2V ẇ ′

k (xk , t )+V 2(w ′′
k (xk , t )+ r ′′(xk )) k = 1 : 4

where k is the number of wheel, wk (xk , t ) is the deflection of the tunnel at the position of the wheel and V
is the vehicle velocity. The dot and prime in the expressions above refer to the time and spatial derivatives
respectively.
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Figure 4.5: Moving train car model with rail irregularities

4.3. Tunnel Model
4.3.1. Simply Supported SFT
One of the possible configuration of a SFT is a free straight tunnel, connected only at the shores, Figure 1.7d.
For this configuration the structure behaves as a simply supported beam and can be modelled as Euler-
Bernoulli beam, being the cross-section much smaller than the span of tunnel. However, this model will
be used as a benchmark while building the actual SFT model, but all subsequent models will use the same
modal shapes as the simply-supported case, as the boundary conditions will not change. The Partial Dif-
ferential Equation (PDE) that governs the dynamic bending vibrations of the tunnel can be expressed as in
Clough and Penzien [5]:

m
∂2w(x, t )

∂t 2 + E I
∂4w(x, t )

∂x4 = f (x, t ) (4.1)

where: w(x, t ) is the deflection that may be in the horizontal and vertical direction; m is the mass per unit
length which includes the added mass given by the displaced water; EI is the bending stiffness; f(x,t) is the
generalised force acting on the tunnel which comprises the environmental forces and the passage of the
vehicle.

Since the structural response is driven by the forced vibration, it is required to estimate the natural fre-
quencies of the structure to be able to predict amplification or resonance phenomena, as the structure in-
tends to vibrate in the mode whose frequency is equal or close to the forcing frequency. This PDE can be
solved using the separation of variables method with modal superposition, see Appendix A, giving the result-
ing expression:

ωn =
√(nπ

L

)4 E I

m
(4.2)

4.3.2. Cable Supported SFT
The formulation of the dynamic behaviour of the tunnel showed in subsection 4.3.1 is valid when the SFT has
a net buoyancy equal to zero. When this equality is not met, but there is an upward residual buoyancy RB, the
structure can be balanced by providing tensile cables as shown below in Figure 4.6.

Figure 4.6: SFT with tensile cable

The pretension in the cables depends on the amount of residual upwards force, while their disposition
can be vertical, inclined or a combination of the two, Figure 1.8, according to the required stiffness in the two
motion planes. This last characteristic is a function of several parameters among which one can highlight:
angle of inclination θ of the cable with respect to the vertical axis; pretension T0, cable diameter dc , Young’s
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Modulus E of the cable material, cable length lc . Starting from the aforementioned parameters and following
the derivation in Appendix B, it is possible to formulate analytical expressions for the stiffnesses for sway and
heave motions.

For vertical cables in sway motion

Ky = 2 T0

lc
(4.3)

For vertical cables in heave motion

Kz = 2 E A

lc
(4.4)

For inclined cables in sway motion

Ky = 2 E A

lc
sin2θ (4.5)

For inclined cables in heave motion

Kz = 2 E A

lc
cos2θ (4.6)

These analytical expressions can be used to model the SFT as a simply supported beam on elastic supports
BOES. However, no closed-form analytical solution exists for natural frequencies of such model. Sato et al.
[36] studied the mathematical analogy between a BOES and a beam on elastic foundation BOEF. They con-
cluded that the natural frequencies and vibration modes of a BOES and a BOEF are equivalent for Kv being
lower than 0.05 and are still approaching for Kv lower than 0.5, Figure 4.7, where Kv is the so-called "relative
stiffness of the supports" and is defined as:

Kv = kv h3

24 E I
(4.7)

where h is the cable spacing.

Figure 4.7: Comparison of natural frequencies (a) and modal shapes (b) of a BOES and a BOEF. Figures taken from Sato et al. [36].

The governing PDE for the dynamic analysis of a cable-stayed SFT is:

m
∂2w(x, t )

∂t 2 + E I
∂4w(x, t )

∂x4 + k f w(x, t ) = f (x, t ) (4.8)

where k f = kv
h .

Following the derivation in Appendix C, the angular frequencies of free vibrations of a simply supported
BOEF are as follow:

ωn =
√(nπ

L

)4 E I

m
+ k f

m
(4.9)

(4.9) shows that the presence of the elastic foundation increases the natural frequencies of the system. Com-
paring (4.9) with (4.2), the only difference lies in the presence of the second addend under the square root,
which represents the squared angular frequency of free vibration of a string with null bending stiffness.

When the parameter Kv is larger than 0.05 the governing PDE for the dynamic analysis of a cable-stayed
SFT may be rewritten in the form:

m
∂2w(x, t )

∂t 2 + E I
∂4w(x, t )

∂x4 +
nc∑

N=1
kv w(xN , t )δ(x −xN ) = f (x, t ) (4.10)
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where nc and xN are the number of cables and the coordinates of the location of them respectively.

4.4. Fluid-Structure-Vehicle Interaction
According to the different vehicle models described in section 4.2 four FSVI models can be built to study both
the structural and vehicle responses, whose only difference lies in the definition of the vehicle passage. Here
below will be presented the coupled system of PDE that governs the sway and heave motions of the tunnel,
wy (x, t ) and wz (x, t ) respectively, and the rotation around the longitudinal axis, ϕx (x, t ).

m
∂2wy (x, t )

∂t 2 + cy
∂wy (x, t )

∂t
+ E I

∂4wy (x, t )

∂x4 +
nc∑

N=1
ky wy (xN , t )δ(x −xN ) =C Iρw

πD2

4
V̇

+1

2
ρwCD D

(
vy − ẇy (x, t )

) |vy − ẇy (x, t ) |

+
nc∑

N=1

kϕ
R
ϕx (xN , t )δ (x −xN )

m
∂2wz (x, t )

∂t 2 + cz
∂wz (x, t )

∂t
+ E I

∂4wz (x, t )

∂x4 +
nc∑

N=1
kz wz (xN , t )δ(x −xN ) =C Iρw

πD2

4
V̇

+1

2
ρwCD D (vz − ẇz (x, t )) |vz − ẇz (x, t ) |

−
(
P0 +mw

d2zw (V t , t )

dt 2 −Q(t )

)
δ(x −V t )

[
H(t )−H

(
t − L

V

)]
mR2 ∂

2ϕx (x, t )

∂t 2 + cϕ
∂ϕx (x, t )

∂t
+ G J

∂2ϕx (x, t )

∂x2 +
nc∑

N=1
kϕϕx (xN , t )δ(x −xN ) =

+
nc∑

N=1
ky Rwy (xN , t )δ (x −xN )

−
(
P0 +mw

d2zw (V t , t )

dt 2 −Q(t )

)
λδ(x −V t )

[
H(t )−H

(
t − L

V

)]
Q(t ) = kS1(zb(t )−wz (V t , t )−ϕx (V t , t )λ)+ cS1

(
dzb
dt − dwz (V t ,t )

dt − dϕx (V t ,t )
dt λ

)

(4.11)

where
m is the mass per unit length which includes the added mass given by the displaced water
nc is the number of cables
xN are the coordinates of the location of the cables
P0 is the static load of the vehicle
V is the velocity of the vehicle, assumed constant
L is the length of the tunnel
δ(...) is the Dirac function
H is the Heaviside function
zb is the position of the bogie
zw is the position of the wheel.

The wheel is assumed to be in contact with the structure and its position is thus given by:

zw (V t ) = wz (V t , t )+ϕx (V t , t )λ (4.12)

The presentation of the additional 6DOFs train car model, as used in Youcef et al. [43], is not presented here,
but its derivation is developed in Appendix D and Appendix E. The use of this train car model, will be used to
answer one of the research questions regarding the comfort level into the train car. The previous models have
been used as benchmarks to assess the validity of the train car model when considering all the characteristics
of the FSVI into the model.

4.5. Solution Method
As demonstrated by Martire G. in (Martire [28]) the orthogonality property of the vibration mode is valid also
for a BOEF. Hence, the solution for the displacement may be sought as a summation of infinite number of
modes. The governing equation of the forced bending vibration may be rewritten as:

mẅ(x, t )+ cẇ(x, t )+ E I w
′′′′

(x, t )+ k f w(x, t ) = f (x, t ) (4.13)
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The substitution of w(x, t ) =∑∞
n=1Φn(x)Ψn(t ), withΦn(x) = sin nπ

L x in (4.14) gives:

m
∞∑

n=1
Φn(x)Ψ̈n(t )+ c

∞∑
n=1

Φn(x)Ψ̇n(t )+ E I
∞∑

n=1
Φ

′′′′
n (x)Ψn(t )+ k f

∞∑
n=1

Φn(x)Ψn(t ) = f (x, t ) (4.14)

The pre-multiplication in both sides of (4.15) byΨr (x) and the integration over the tunnel length gives, thanks
to the orthogonality of the modes:

Mr Ψ̈r (t )+ Cr Ψ̇r (t )+ KrΨr (t ) = Fr (t ) (4.15)

where
Mr =

∫ L
0 Φr (x)mΦn(x)d x

Cr =
∫ L

0 Φr (x)cΦn(x)d x

Kr =
∫ L

0 Φr (x)E IΦ
′′′′
n (x)+Φr (x)k f Φn(x)d x

Fr =
∫ L

0 Φr (x) f (x, t )d x

Hence, Mr , Cr , Kr , Fr represents mass, damping and stiffness and load referred to the r th vibration mode.
This procedure allows to transform (4.14) into a set of infinite Ordinary Differential Equation (ODE) in the
unknownsΦn(t ). Each equation in (??) can be solved separately and the total deflection w(x, t ) and bending
moment M(x, t ) can be obtained as the superposition of each modal contribution:

w(x, t ) =
∞∑

n=1
Φn(x)Ψn(t ) (4.16a)

M(x, t ) =−E I
∞∑

n=1
Φ

′′
n(x)Ψn(t ) (4.16b)

The modal analysis can be performed to approximate the natural frequencies of the structure. The pre-
sented model of BOEF is adopted in this calculation and all motions are considered, namely horizontal, verti-
cal and rotational. The sinusoidal function can still be used as a modal shape for the BOEF since the boundary
condition are not varied:

B.C . =


w (x, t )|x=0 = 0
M (x, t )|x=0 = 0
w (x, t )|x=L = 0
M (x, t )|x=L = 0

(4.17)

Hence, the mode shape can be expressed as:

Φ(x) = sin
nπ

L
x (4.18)

Figure 4.8: First 10 Mode Shapes

Using the same method as in (??) a model can be built which takes into account sway and heave motions
as well as the rotation around the tunnel axis, which induced by the eccentrically passing train and by the
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external supporting system, see Figure 5.2.
m ẅy + cy ẇy +ky wy +E I w

′′′′
y − kϕ

R ϕx = 0

m ẅz + cz ẇz +kz wz +E I w
′′′′
z = 0

ma2 ϕ̈x + cϕ ϕ̇x +kϕ ϕx +G Iϕϕ
′′
x −ky R wy = 0

(4.19)

In (4.19) the˙represents the time derivative, while the
′

the spatial derivative. A system of ODEs, which can be
grouped in matrix form, can be built using the modal expansion.

4.6. Simulation Method
The models were implemented in the MATLAB® environment. The single-step solverode45has been utilised,
giving in output a sampling time of d t = 0.01 . Dynamic analyses were carried out considering the variation
of different parameters to provide insights regarding their influence in the ride comfort assessment.
The parameters that have been modified in the different analyses are

• Cable inclination: (15°, 30°, 45°, 60°)

• Vehicle velocity: (50 m
s , 100 m

s )

• Damping cS1 and cS2 of primary and secondary car suspension systems

• Load Cases: two waves and two currents scenarios for a total of possible combinations of eight load
cases

• Amplitude r0 of the longitudinal irregularity

• Wavelength γ0 of the longitudinal irregularity

To compute the Sperling Ride Quality and Comfort indexes the FFT of the acceleration is executed and the
spectrum plot is generated for a frequency interval up to f = 80H z as previously discussed in section 3.3.
To obtain a solution for the problem, whose results are presented in chapter 6, some simplification are ap-
plied.

• One train running inside the tunnel

• Rail track positioned at a distance λ from the middle of the tunnel

• Constant velocity of the train

• Seabed has constant depth of 150m along the tunnel length
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Case Study

5.1. Introduction
In this section the structural parameters of the SFT will be determined by means of a static analysis. These
parameters are the external diameter De , the internal diameter Di , the thickness of the wall of the tunnel
t and the consequent bending stiffness E I . The analysis will be carried out separately for the vertical and
horizontal direction and all static loads will have an equilibrium configuration.

The cables are the only stabilising system and they will affect both the vertical and horizontal force equi-
librium. The vertical component and the gravity should counteract the buoyancy, while the horizontal com-
ponent should balance the current’s force acting on the tunnel. The internal diameter needs to be prede-
termined in order to be able to accommodate two railway tracks, lateral maintenance corridors and ballast
chambers, Figure 5.11. Using characteristic dimensions of twin-track single-bore tunnels an internal diame-
ter Di = 15m seems to be big enough to accommodate the aforementioned systems.

Figure 5.1: Twin-Track Bore Tunnel. Picture taken from 1

5.2. Cross-Section Geometry and Dimension
The adopted shape for the cross-section is circular. The diameters De and Di and the thickness t of the
tunnel section are obtained via a iteration process. The properties of materials used for the analyses have
been summarised in the table below:

1BART Silicon Valley, Phase II Single Bore Tunnel Technical Studies: Executive Summary Report Final April 10, 2017
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Material E ν G Rck

(GPa) (GPa) (MPa)

Concrete 30 0.15 13 50
Steel 210 0.3 81 235
Steel 210 0.3 81 540

Table 5.1: Material Properties

A lower boundary to the BWR is set as a target at which the iterations can be stopped. The results of the
process and hence, the cross-sectional dimensions are reported in the table below:

Di tc ts De Ac As

(m) (m) (m) (m) (m2) (m2)

15.5 1.2 0.05 18 2.82 62.96

Table 5.2: Cross-Section Dimensions

where tc and ts are the thickness of the concrete tunnel and of the external steel tube respectively. With the
given dimensions it is possible to compute the bending and torsional stiffnesses of the tunnel section and the
permanent forces acting on it:

E I G J Weight G1 Buoyancy G3 BWR
(N m2) (N m2) (N /m) (N /m)

9 ·1013 7.6 ·1013 1.69 ·106 2.5 ·106 1.48

Table 5.3: Cross-Section Stiffness and Permanent Loads

5.3. Tunnel Arrangement
The general line arrangement, shown in Figure 5.2, features a straight tube with an alternating cable configu-
ration. Despite the Hainan Strait crossing is 10km long, the total length adopted in the current study is fixed
to L = 1km to limit the computational time. The cables are evenly spaced along the length of the tunnel. Both
vertical and inclined cables feature spacing s = 100m hence, a support is provided every 50m.

Figure 5.2: Tunnel Arrangement

From the forces equilibrium it is found that a diameter of dc = 250mm is required to counteract the resid-
ual buoyancy. Using the expressions derived in Appendix B the value of the stiffness can be computed as a
function of the inclination θ, Figure 5.3.
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Figure 5.3: Cable Stiffness vs. Inclination θ

Being the difference in the vertical and horizontal components in the interval 30° < θ < 60° limited, an optimal
selection may be θ = 45° when referring to the inclined cables. The corresponding value of the stiffness is:

θ Lc ky kz

(deg) (m) (N /m) (N /m)

0 111 8.38 ·105 3.71 ·108

45 156.98 1.31 ·108 1.31 ·108

50 157.49 1.52 ·108 1.01 ·108

Table 5.4: Cable Inclination and Stiffness

Along with the variation of the stiffness, the natural frequencies of the structure shift too. The natural
frequency for heave modes appears to reduce as the inclination increases and vice versa the natural frequency
for sway modes increase, being the supports stiffer. It is expected that for the chosen inclination θ = 45°, the
natural frequency for both heave and sway modes are equal, being the stiffness in horizontal and vertical
direction equals. This is not the case when vertical cables are also present in the model. Using the expression
given in (4.9) the natural frequencies of the structure may be approximated and the results are plotted below
in Figure 5.4.

(a)
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(b)

Figure 5.4: (a) Horizontal Natural Frequency. (b) Vertical Natural Frequency.

It can be noticed that the presence of the supported system increases the natural frequencies, but this
change is relevant for the first modes only. For higher order modes the first addend of (4.9), i.e. the natural
frequency of a simply supported beam, becomes much bigger than the contribution of the external support
and hence, the natural frequency is not much affected by the difference of the inclination θ.

5.3.1. Modal Analysis
Using the procedure presented in section 4.5 it is possible to approximate the natural frequencies of the struc-
ture. Neglecting the damping, the natural frequencies may be evaluated and are presented in Table 5.5 and
Table 5.6 below.

Mode Number 1 2 3 4 5

Mode Shape H H H V V
Natural Frequency [Hz] 0.292 0.305 0.356 0.427 0.436
Mode Number 6 7 8 9 10

Mode Shape H V V H V
Natural Frequency [Hz] 0.467 0.473 0.561 0.640 0.712
Mode Number 11 12 13 14 15

Mode Shape H V H V H
Natural Frequency [Hz] 0.871 0.925 1.155 1.197 1.489
Mode Number 16 17 18 19 20

Mode Shape V H V T H
Natural Frequency [Hz] 1.521 1.871 1.897 2.313 2.312
Mode Number 21 22 23 24 25

Mode Shape V T T T T
Natural Frequency [Hz] 2.318 3.602 5.347 7.104 8.865
Mode Number 26 27 28 29 30

Mode Shape T T T T T
Natural Frequency [Hz] 10.628 12.392 14.157 15.923 17.699

Table 5.5: Wet Natural Frequencies. Where H, V, T stand for horizontal, vertical and torsional mode shape respectively.

Mode Number 1 2 3 4 5

Mode Shape H H H V V
Natural Frequency [Hz] 0.459 0.480 0.560 0.672 0.686
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Mode Number 6 7 8 9 10

Mode Shape H V V H V
Natural Frequency [Hz] 0.735 0.745 0.884 1.008 1.121
Mode Number 11 12 13 14 15

Mode Shape H V H V T
Natural Frequency [Hz] 1.371 1.457 1.818 1.883 1.898
Mode Number 16 17 18 19 20

Mode Shape H V H V T
Natural Frequency [Hz] 2.343 2.394 2.945 2.985 3.602
Mode Number 21 22 23 24 25

Mode Shape H V T T T
Natural Frequency [Hz] 3.640 3.649 5.347 7.104 8.865
Mode Number 26 27 28 29 30

Mode Shape T T T T T
Natural Frequency [Hz] 10.628 12.392 14.157 15.923 17.699

Table 5.6: Dry Natural Frequencies

5.4. Cable Properties

As it has been shown in subsection 4.3.2 the cable system can be modelled as a series of linear springs, with
stiffness that depends on the inclination θ. A picture of the characteristic sections of the cable configurations
can be seen in Figure 5.5. The mechanical properties of the material of the cables are summarised in Table 5.7
below.

Material Density E fck

(kg/m3) (GPa) (MPa)

Steel 7500 210 540
High Strength Carbon Fibre 1440 237 3300

Table 5.7: Cable Material Properties

(a)
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(b)

Figure 5.5: (a) Characteristic Section Vertical Cables. (b) Characteristic Section Inclined Cables.

5.5. Sea Loading
As mentioned in section 4.6 four sea states are considered for the simulations. Rather than the sea surface
condition, one is interested in the calculation of the of the kinematic quantities, e.g. velocity and acceleration
of the fluid particles, at the depth where the tunnel is located. The two wave states are characterised by
different wave steepness S, which is defined as the ratio between the wave height HW to the wavelengthλW,P ,
but it should not be confused for the slope between a wave crest and the near trough, Figure 5.7. Table 5.8
offers a summary of these wave input parameters and Figure 5.6 presents the wave spectra of the two wave
loading conditions.

From the spectrum analysis in Figure 5.6 it can be observed that the energy is concentrated in the fre-
quency range up to 0.3H z. From the modal analysis, presented in subsection 5.3.1, the natural frequencies of
the tunnel have been approximated and when comparing these with the excitation frequency interval, it can
be highlighted that the energy exerted by the waves on the structure is very small, as the structural natural
frequencies are larger.

HW,S TP λw,p ωw,p kw,p S d/λw,p

(m) (s) (m) (rad/s) (rad/m)

5 8 100 0.785 0.063 0.05 1.5
4.5 12 225 0.524 0.028 0.02 0.7

Table 5.8: Wave Parameters

Figure 5.6: Pierson-Moskowitz and JONSWAP Spectra for the two significant wave heights considered



5.5. Sea Loading 37

Figure 5.7: Wave Parameters

Waves can be classified via the water depth-to-wavelength ratio as deep water, transitional water and
shallow water waves, where each interval corresponds to a particular shape of the orbit of the water particles,
circular, oval and elliptical respectively. The numerical boundaries for each interval are:

0 < d
λ < 1

20 Shallow Water
1
2 < d

λ < 1
20 Transitional Water

d
λ > 1

2 Deep Water

According to this classification the presented study deals with deep water waves. Hence, to compute the
kinematic quantities the simplified Airy’s formulas may be used.

Horizontal Particle Velocity Vy =ωaekw,p z sinωt
Vertical Particle Velocity Vz =ωaekw,p z cosωt
Horizontal Particle Acceleration V̇y =ω2aekw,p z cosωt
Vertical Particle Acceleration V̇z =−ω2aekw,p z sinωt

(5.1)

where a is the wave amplitude equal to half of the wave height. In (Martire [28]) it is also discussed, according
to DNV [7], MacCamy and Fuchs [27], the limit of applicability of Morison‘s formulation for describing the
FSI as a function of the diameter to wavelength ratio. The author concluded that the formulation can be
assumed to be valid when Dext

λw,p
≤ 0.2. Regarding this criterion the two analysed scenarios fall within this

limit of applicability, being the ratio respectively:

HW,S D/λw,p

(m)

5 0.18
4.5 0.08

Table 5.9: Applicability of Morison‘s Formulation

Analysing the load case of current flow, it is assumed that the value at sea surface level remains constant
along the depth. Figure 5.8a and Figure 5.8b present the particle velocity for the different separate cases and
Figure 5.8c their possible combinations.
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(a) Current Profile
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(b) Wave Profile



40 5. Case Study

(c) Wave and Current Profile

Figure 5.8: Particle velocity at tunnel location

From Figure 5.8c it can be seen how important is the current flow influence on the horizontal particle
velocity. The reason for that lies in the composition of the flow itself, which is assumed to be purely horizontal,
being the vector of the flow velocity:

~V =
[

vy

0

]
(5.2)

5.6. Train Car Parameters
The vehicle model used in the analyses is a 6DOFs as it can be seen from Figure 5.9. The degrees of freedom
that are considered are the vertical motion and the pitching of the train car and the bogies. These DOFs can
be decomposed in just vertical movements at each suspension system, which characterise the contact forces
between all the different components and can be later combined to show the vertical motion and pitching of
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the single masses. Here in Table 5.10 are reported the parameters of each component of the vehicle:

Car-body Mass mc (kg) 3.4 ·104

Bogie Suspended Mass mb (kg) 3.2 ·103

Wheel Mass mw (kg) 1.5 ·103

Car body pitch inertia moment Jc (kg m2) 2.31 ·106

Bogie body pitch inertia moment Jb (kg m2) 3.12 ·103

Stiffness Secondary Suspension kS2
( N

m

)
1.72 ·106

Damping Secondary Suspension cS2
( N s

m

)
8.82 ·104

Stiffness Primary Suspension kS1
( N

m

)
1.87 ·106

Damping Primary Suspension cS1
( N s

m

)
1.05 ·104

Fixed Wheelbase Lb (m) 2.5

Distance between Bogie Pivot Centres Lc (m) 18.0

Wheel Radius rw (m) 0.4575

Car-body Length Lcar (m) 24.9

Static Load at each Wheel P0 (N) 1.6 ·105

Table 5.10: Train Car Parameters

Figure 5.9: Train Car

The value of damping of the suspension systems cS1 and cS2 will be varied in section 6.7 to address the
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importance of it for the level of comfort in the train car. The analysis of the train car natural frequencies needs
to be addressed to be able to understand the FSVI. Mass, Damping and Stiffness matrices can be assembled
for the 6DOFs system and the eigenvalue problem can be solved assuming the ground motion equal to zero,
see Appendix F. The natural frequencies of the train vertical and pitching movements are obtained and are
reported here below:

Mode Number 1 2 3 4 5 6

Mode Shape V P V V P P

Circular Frequency
[

r ad
s

]
6.69 8.98 41.56 41.56 43.28 43.28

Natural Frequency [Hz] 1.065 1.43 6.62 6.62 6.89 6.89
Vibration Period [s] 0.94 0.70 0.15 0.15 0.145 0.145

Table 5.11: Train Car Natural Frequencies, where V and P refer to the vertical and pitch motions respectively.

5.7. Longitudinal Rail Defect
The adopted vehicle and tunnel models allow to implement the longitudinal defect only. In the current study
it is chosen an harmonic shape of the irregularity. Several simulations are run for values of amplitude r0 and
wavelength γ0 of the irregularity. A characteristic expression of the longitudinal defect at the location of the
load is:

r (x) =−r0 sin
2π

γ0
V t (5.3)

Choi et al. [4] is used as reference for what regards the values to be adopted for the different classes of irregu-
larity and these are:

r0 γ0 f0

(m) (m) (Hz)

7 ·10−3 5 10 20
8 ·10−3 10 5 10
9 ·10−3 30 10

6
10
3

1 ·10−2 50 1 2
1.2 ·10−2 100 0.5 1
1.5 ·10−2

Table 5.12: Amplitude and Wavelength of the Defect as in Choi et al. [4]

where the frequency is computed as the ratio between the velocity of the vehicle V and the wavelength γ0

and the two columns refer to the two design velocity of 50 m
s and 100 m

s respectively.
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Results

6.1. Introduction
The results of the simulations, in which one at a time the parameters are varied, as mentioned in section 4.6,
will be presented in this chapter. In section 6.2, section 6.3 and section 6.4 the focus will be fixed to the
structural response, while in section 6.5, section 6.6, section 6.7 and section 6.8 the attention is moved to the
vehicle response and the comfort evaluation.

6.2. Influence of the Vehicle Model
As it has been presented in chapter 4, several vehicle models have been built in order to study the FSVI at
different levels. A comparison between the vehicle models is presented here in this section. To address pos-
sible differences in the response the focus will be set to the structural response. To better understand this
difference between the models, the environmental load case is taken out of the simulation and the dynamic
midspan vibration are used as output. Figure 6.1 shows the midspan responses in terms of vertical displace-
ment and rotation around the tunnel axis. The latter is caused by the eccentricity of the load application,
being the railway at a distance λ= 4m from the vertical symmetry axis. Two main scenarios are presented in
the plots: the passage of one single train car and and the passage of the whole train, composed by eight cars.
The first thing that can be observed is that the time that the vehicle takes to cross the tunnel depends on the
velocity of the vehicle. In the current simulation, being the velocity V = 50 m

s and V = 100 m
s , the passage time

is:

tLV = L

V
= 1000

50
= 20s (6.1a)

tLV = L

V
= 1000

100
= 10s (6.1b)

where L is the span of the crossing. A small difference in the magnitude of the response can be found for the
cases where the vehicle is modelled as shown in Figure 4.3 and Figure 4.4. This difference, which appears to be
more visible for the rotationϕx ( L

2 , t ) of the cross-section, is quantified to reach a maximum value of 5% com-
pared to the moving load vehicle model. When looking at the midspan vertical displacement in Figure 6.1a
and Figure 6.1b, just two lines are visible. These two lines comprises all four vehicle models respectively, as
the vehicle-structure interaction is negligible.

Starting from the rotation, the additional contribution to the vertical displacement can be computed and
it is found to amount for 10% of the vertical deflection, as the order of magnitude for the rotation is 10−5r ad
and Rext = 9m.

43
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(a) Vertical Displacement at midspan for V = 50 m
s

(b) Vertical Displacement at midspan for V = 100 m
s

(c) Torsional Rotation at midspan for V = 50 m
s
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(d) Torsional Rotation at midspan for V = 100 m
s

Figure 6.1: Midspan Response for Different Vehicle Models, where Full means the entire vehicle composed by eight cars.

Resonance phenomena in the structure can occur for specific values of the vehicle velocity. A pragmatic
estimation of the critical velocities can be evaluated imposing the equality of the forcing frequencyΩn = nπV

L
to the natural frequencies of the structure, presented in (4.9). Such velocity values cannot be accepted as they
are because the adopted modal shapes are taken from the case of a simply-supported beam, but they can
orientate the choice of a design speed. An expression for Vcr can then be found as a function of the modal
shape as:

Vcr =
√( nπ

L

)4 E I
m + k f

m
nπ
L

(6.2)

Figure 6.2 shows that the critical velocity is always bigger than the design velocity of the crossing, so no reso-
nance phenomena are expected to occur.

Figure 6.2: Vehicle Critical Velocity at each mode

Figure 6.3 shows the absolute maximum displacement for the midspan time-history against the velocity
of the train. The train in this case has been modelled as moving load, as the focus is set on the structural
response. Moreover, it has been decided to study the problem avoiding the environmental loading from wave
action, as they are driving the global FSVI, see section 6.4. When excluding the presence of wave action, it has
been also chosen to do not account for the presence of currents flows as well because a flow in just the hori-
zontal direction does not generate noticeable coupling between the sway and heave motion, see Figure 6.9b.
Hence, it is adopted a condition of steady-still fluid around the tunnel to evaluate the critical value of the
running train. From Figure 6.3 it is visible that the critical velocity Vcr for the structural response is around
V = 300 m

s and this value is also in line with the lowest value of critical velocity that has been found with regard
to the equality of the forcing frequency and the natural frequency in (6.2)
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Figure 6.3: Maximum Displacement vs. Velocity at midspan

In Graff [14] the author finds an expression of the critical velocity applicable to beam on elastic foundation
which is

Vcr =
(

4 k E I

ρ2 A2

) 1
4

(6.3)

where k represents the stiffness of the foundation, E I the bending stiffness and ρ and A the mass per unit
length and the cross-sectional area respectively. From Figure 6.4 it is shown that when studying the change
of the critical velocity with the variation of the cable spacing, this follows the behaviour described by Graff
with the expression (6.3). It is found that the critical velocity decrease at the increase of the cable spacing.
The reason is because an increase in the cable spacing cause a reduction in the foundation stiffness, while all
other parameters are not changing, as they are referred to the cross-section of the beam. The two models of
BOES and BOEF show the same behaviour, i.e. the lines find almost perfect overlap, because for each of the
described cable spacing the non-dimensional parameter Kv , defined as (4.7), is still smaller than the upper
bound 0.05 as discussed in Sato et al. [36]. Hence, the variation of the critical velocity is not due to a local
effect at cable-span level.

Figure 6.4: Maximum Displacement vs. Velocity for a BOES and a BOEF

The critical velocity appears also not to be affected by a global effect such as the change of the length of
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the crossing, see Figure 6.5. In fact, it can be observed that the maximum displacement occurs always for a
velocity of V = 300 m

s , as the cable spacing is kept constant when varying the length.

Figure 6.5: Maximum Displacement vs. Velocity for different tunnel length with cable spacing 100m

Figure 6.6: Displacement Envelope for V =Vcr
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However, the obtained results are in contrast with the findings in Dimitrovová and Rodrigues [6], where
the author states that the critical velocity obtained on a finite beam is an upper bound of the critical velocity
of the corresponding infinite beam. In the current study it has been found that the expression (6.3) predicts
a velocity which is 30% higher than the corresponding simulation. It has also been observed that the maxi-
mum displacement occurs close to the right support and develops after the vehicle leaves the structure, see
Figure 6.6. The presence of the support alters the deformed configuration of the beam under the vehicle pas-
sage and causes reflecting waves that interact with the propagating waves. This possible wave-propagation
interaction is addressed as the reason for the difference in the critical velocity.

6.3. Influence of the Cable Inclination
The study of the influence of the cable inclination is crucial when selecting the most preferable supporting
system. Among the loads acting on such structure, waves and currents may dominate the scene. The current
study investigates a single configuration of supporting system for the SFT excited by the environmental load
and traffic load.

(a) Horizontal Displacement at midspan

(b) Vertical and Displacement at midspan

Figure 6.7: Midspan Response for Different Cable Inclination

Looking at Figure 6.7 it can be first noted the initial transient response of the structure that vanishes
after a period of 80s. Focusing on Figure 6.7b, it is noticeable that the inclination of the cables does not
affect the vertical response heavily, being the supporting system made of alternating vertical and inclined
cables, Figure 5.2. However, Figure 6.7a shows a great dependence of the response on the inclination α,
as the environmental loading is composed by waves and currents. For the inclinations of 45° and 60° the
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horizontal midspan time-history results to be almost exactly superimposed as the horizontal stiffness gained
a really small increase, from 6.57x107 N

m to 6.97x107 N
m , see Figure 5.3. The current, which is flowing just in the

horizontal direction, as already discussed in section 5.5, gives an offset in the global response of the structure
due to the constant flow, while the wave gives the oscillatory part of it. It is clear that the horizontal response
decreases dramatically, about 75%, from α= 15° to α= 30°, Figure 6.8. This drop then stops and the steady-
state maximum response stays almost constant for α = 45° and α = 60°. The reason for this reduction is to
be found in the increased stiffness in the horizontal direction which also cause a shift of the fundamental
horizontal natural frequency out of the range of the sea wave frequency, as the latter ones are of the order
0.08H z −0.1H z, see Table 5.8 and the structural natural frequencies are of the order of 0.3H z −2.3H z.

Figure 6.8: Maximum Horizontal Displacement at midspan

6.4. Influence of the Load Case
The study of the influence of the environmental load case is important when dealing with the structural
integrity as waves and currents appears to dominate the global dynamic response even though the run sim-
ulations include both the environmental load and the vehicle passage. The load cases numbered from 1 to 8
represents the combination among the four sea state scenarios and these are:

Load Case 1 HW,S = 5m + Train Car
Load Case 2 HW,S = 4.5m + Train Car
Load Case 3 VC = 1 m

s + Train Car
Load Case 4 VC = 1.5 m

s +Train Car
Load Case 5 HW,S = 5m + VC = 1 m

s + Train Car
Load Case 6 HW,S = 4.5m + VC = 1 m

s + Train Car
Load Case 7 HW,S = 5m + VC = 1.5 m

s + Train Car
Load Case 8 HW,S = 4.5m + VC = 1.5 m

s + Train Car

Table 6.1: Environmental Load Case Specification

(a) Horizontal Displacement at midspan
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(b) Vertical Displacement at midspan

Figure 6.9: Midspan Response for Different Load Cases

From Figure 6.9b it can be noticed that for load cases 3 and 4, which are the ones associated to the current
flow only, the vertical displacement is zero but it becomes non-zero when the vehicle enters the crossing, e.g.
t = 80s. The global response in the vertical direction appears to be less smooth at steady-state because of
the different value of stiffness in the supporting system that alternates every 50m. The account of the com-
bination of both waves and current increase the damping forces in the system as well as external forces. This
is due to the non-linear drag force in the Morison’s expression of the FSI which accounts for the differential
displacement between the fluid and the structure. An analogous behaviour is observed also in the horizontal
direction, see Figure 6.9a. For both degrees of freedom the response is dominated by the fundamental modal
shape and this is confirmed by the variance spectra of the acceleration, see Figure 6.10, in which it is shown
the frequency content of the energy once the structure has reached steady-state response, e.g. t > 80s. The
moving train car also enters the crossing after the transient response has fade out. In particular, Figure 6.10a
presents the variance spectrum of the horizontal accelerations at midspan cross-section for the eight load
cases, as in Table 6.1, and also for the two wave conditions alone. Similarly, Figure 6.10b shows the vertical
accelerations power spectrum but in this direction it is also included the load case when the vehicle is passing
in steady-still water.

(a) Variance Spectrum Horizontal Acceleration at midspan
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(b) Variance Spectrum Vertical Acceleration at midspan

Figure 6.10: Variance Spectrum of Acceleration at midspan for different load cases

When first looking at the graphs it can be noted that the response when just current flow is considered is
dominated by the fundamental modal shape in the sway direction, while more modes are necessary for the
heave motion, due to the passage of the vehicle. For a better understanding for the reader, it seems worth
displaying the graph of vertical motion in two separate plots, each one regarding a specific wave height, see
Figure 6.11.

(a) Midspan Vertical Acceleration Variance Spectrum for HW S = 5m
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(b) Midspan Vertical Acceleration Variance Spectrum for HW S = 4.5m

Figure 6.11: Midspan Vertical Acceleration Variance Spectrum

From the graphs in Figure 6.11 it is noted that for the cases of waves only, the system responds at few
specific frequencies, i.e. sharper peaks are observed in correspondence of the exciting frequency and the
structural natural frequency.. When the passage of the vehicle is added to the wave action, the response is
very similar for both wave heights in terms of magnitude of the response, but the highest peaks occur in
different places, e.g. at the fundamental vertical natural frequency of the tunnel and at the wave frequency,
which is different for the two scenarios. Another observation regards the role of the current flow, which induce
a bigger reduction of the vibrations for the case of HW S = 5m due to the non-linear damping in the Morison
drag force.

6.5. Influence of the Rail Irregularity together with Load Case

In this section it is proposed the result of the FSVI for an assigned environmental load case for smooth and
irregular rail. The aim is to try to determine how track irregularities affect the vehicle response and from that,
applying the criteria presented in chapter 3, quantify the Sperling’s ride quality and comfort indices. Later it
will be varied the wavelength and amplitude of the longitudinal defect of the rail to address also the influence
of these two important parameters of the irregularity. For this analysis the adopted values for the amplitude
r0 and wavelength γ0 of the longitudinal irregularity are:

r0 γ0

(m) (m)

7 ·10−3 100

Table 6.2: Amplitude and Wavelength of the Defect
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(a) Car Displacement for Smooth and Irregular Rail, Load Case 8

(b) Car Variance Spectrum of Displacement with Irregular Rail

Figure 6.12: Variance Spectrum of Displacement for Different Load Cases
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From Figure 6.12a it can be seen that in case the train speed is 50 m
s the response of the vehicle can be

considered as superposition of the smooth rail plus the irregularity, being the difference between the two
time-histories equal to the amplitude r0 as in Table 6.2. It cannot be said the same when the velocity is higher,
e.g. V = 100 m

s , for which the difference of the two time-histories appears to be bigger, around 0.02m, and
hence a small amplification is experienced. This argument can be clarified when looking at the displacement
spectra, Figure 6.12b, from which is clearly visible that the energy lies in the range of 1H z. Figure 6.12b
contains not only one specific environmental load case, but all of them. In fact there can be identified the
natural frequencies of the two wave states, the tunnel vertical fundamental frequency and the frequency of
the irregularity, that can be expressed as:

f0 = V

γ0
(6.4)

where V is the vehicle velocity. From Figure 6.12b it is also visible that for the train crossing at a constant
speed of 50 m

s the response is driven by the wave scenarios as expected, meaning that the vehicle follows the
low-frequency movements of the structure.

6.6. Influence of the Amplitude and Wavelength of the Rail Irregularity

As anticipated in section 6.5, in this section it will be presented the results of the simulations regarding the
influence of the amplitude and wavelength of the rail longitudinal defect, using as input the quantities in
Table 5.12. Looking at Table 5.12 it can be noted that in case of design speed of 50 m

s it is encountered again
the phenomenon of resonance of the train car when the wavelength γ0 = 50m, for which the forcing is 1H z.
From Figure 6.13a it is confirmed that the biggest peak, and hence the majority of the energy, is in correspon-
dence of 1H z. As the amplitude of the longitudinal defect increases, the response shows a second peak at a
frequency of 5H z, which corresponds to a wavelength of the of the irregularity of γ0 = 10m. The amplification
in the response for this value of frequency can be addressed to the fact that the irregularity shape presents a
maximum at the same location where the irregularity shape characterised by γ0 = 50m has a maximum. A
similar behaviour is found for the design speed of 100 m

s . In this case, the peak is smaller because the max-
imum in the irregularity shape is a little shifted from the maximum of γ0 = 100m. For the design speed of
50 m

s the other relevant peaks are at f = 0.5H z, f = 1.67H z, which are also referring to longitudinal defect,
but of different wavelength such that the forcing frequency results to be still close to the fundamental natural
frequency of the train car, or the irregularity shape presents its maximum close to where also γ0 = 50m has a
maximum. When the design speed is 100 m

s the increase of the irregularity amplitude has a uniform increase
in the response along the frequency domain and the unique main peak in the response results to be f = 1H z.

(a) V = 50 m
s
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(b) V = 100 m
s

Figure 6.13: Variance Spectrum of Train Car Acceleration for Different Defect Amplitude and Wavelength

From Figure 6.14 it can be highlighted that the peaks in the response, located at f = 1H z, correspond to a
peak of the WZ index for ride quality and comfort.

Figure 6.14: Ride Quality and Comfort Index vs. Irregularity Amplitude and Wavelength

6.7. Influence of the Damping of the Suspension Systems
In this section it is offered an insight into the influence of the suspension characteristics on the ride quality
and comfort. This study is based on the variation of the damping ratios, which can be expressed as:

ζs1 = 2cs1

2
√

2ks1mb

(6.5a)

ζs2 = 2cs2

2
√

2ks2mc

(6.5b)

In the simulations, the SFT was subjected to both environmental loading condition and train car passage.
The rail irregularity at longitudinal level is also considered, but two different values of the wavelength γ0 have
been used according to the design speed. In particular, these are:

γ0 = 50m f or V = 50 m
s

γ0 = 100m f or V = 100 m
s

The values of the damping ratios have been varied according to Table 6.3 below:
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ζs1 ζs2

0.05 0
0.1 0.05
0.2 0.1
0.3 0.2
0.4 0.3
0.5 0.4

0.5

Table 6.3: Damping Ratios Input

In Figure 6.15 the different energy spectra are presented, where each subfigure corresponds to a design
speed of the crossing and a specific suspension characteristic. As shown in section 6.6, the wavelength of
the rail irregularity has been chosen such to generate amplification in the response due to the closeness of
the fundamental natural frequency of the train car with the forcing frequency induced by the longitudinal
defect. In case of the variation of the characteristic of the primary suspension system, e.g. the suspension
system of the bogies, it is observed that the response of the above train car is not critically affected, thanks
to the presence of the secondary suspension system which may dissipate the energy, see Figure 6.15a and
Figure 6.15b.

(a) V = 50 m
s , Variation of ζs1

(b) V = 100 m
s , Variation of ζs1

This is not the case when the characteristic of the secondary suspension system are modified. In fact,
it can be observed from Figure 6.15c and Figure 6.15d that for small values of damping ratios, the energy of
the motion stays in the train car, especially at higher velocity. On the other hand, when the damping ratio is
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bigger, the peak in the response shifts from the natural frequency of the train car to 1H z, meaning that the
energy is absorbed by the secondary suspension system.

(c) V = 50 m
s , Variation of ζs2

(d) V = 100 m
s , Variation of ζs2

Figure 6.15: Variance Spectrum of Train Car Acceleration for Different Suspension Characteristics

(a) Carbody Centre

When evaluating the ride quaity and ride comfort indices it might be interesting focusing not only at
the response at the centre of the train car but also at the two extremes of it, i.e. above the front and rear
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bogies. The influence of the primary and secondary suspension damping on the ride quality and comfort
indices is depicted in Figure 6.16, considering ζs1 ranging between 0.05 and 0.5, while ζs2 from 0 upto 0.5. A
regular reduction of the ride quality index, associated with an overall higher comfort class, is observed with
the increase of the primary suspension damping. Although, it is not a substantial decrease and a reason for
that can be found in bogie mass whose inertia reduces the damping capacity of the suspension, as it has
already been observed in Dumitriu M. el al (2015). The influence of the increase of the secondary suspension
damping is worth mentioning since an increare of 10 times the damping from 0.05 to 0.5 generates a reduction
of the ride quality and ride comfort indices of aroung 50%.

(b) Above Front Bogie

(c) Above Rear Bogie

Figure 6.16: Influence of the primary and secondary suspension damping

6.8. Influence of the Whole Train
A conclusive comparison is made between the whole train model that, in the current study, is composed of
eight cars for a total length of 200m, and a single wagon train. The choice of the number of cars in the train
has been driven by real train used in the industry, such as the Korean KTX and the Italian ETR1000 high speed
trains, which both are made of 8 train cars. With this model the aim is to understand if different level of
comfort/discomfort is experienced by the passengers inside the different train cars. To study the FSVI it is
again proposed the power spectrum of the acceleration of the centre of the train car.
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Figure 6.17: Comparison Power Spectra of the Acceleration between Single and Full Train

Figure 6.17 shows the power spectrum of the carbody’s centre acceleration of a single train car passing
the tunnel and the first and last train cars respectively for the model with the full vehicle. From the ampli-
tude spectra of the acceleration it is possible then to quantify the Sperling’s ride quality and comfort indices.
Table 6.4 summarise the values of the indices for the different models:

Model Ride Quality Index Ride Comfort Index

Single Train Car 0.7436 0.6780
First Train Car 0.7435 0.6779
Last Train Car 0.7445 0.6789

Table 6.4: Sperling’s Ride Quality and Comfort Indices

The envelopes of the dynamic displacement and the bending moment in both sway and heave direction
is chosen as a method of comparison between the global structural response of the two simulated models
and these are reported below. From Figure 6.18 it is possible to see that the envelope of the two simulations
are perfectly overlapped. This shows that the structural dynamic response is not much affected by the vehicle
passage, as the driving force for the steady-state response of the structure is the wave.

(a) Sway Direction. Single train car model in red line, whole train model in blue line.
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(b) Heave Direction. Single train car model in red line, whole train model in blue line.

Figure 6.18: Displacement Envelope

The envelope of the bending moments in the vertical direction, see Figure 6.19b, shows that in the central
part of the crossing the model with the whole train has higher moment. Figure 6.18b shows that the negative
displacements are almost constant along the central part of the tunnel, meaning that the curvature in that
region is small. The difference in the inertial load between the two vehicle models, then appears to play an
important role in the definition of the local stresses in the structure, as a small increase in the curvature due
to increased mass of the whole train causes higher moments.

(a) Sway Direction. Single train car model in red line, whole train model in blue line.

(b) Heave Direction. Single train car model in red line, whole train model in blue line.

Figure 6.19: Moment Envelope
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6.9. Concluding remarks
Some concluding observation can be done after the presentation of the run simulations. The dynamic struc-
tural behaviour is governed by the waves scenarios, as the traffic loading contributes for a very small percent-
age to the total response and it is also a transient loading, while the waves define the steady-state response
of the structure. The presence of a longitudinal defect in the railway causes amplification in the vehicle re-
sponse. The biggest amplification occurs when the wavelength of the unevenness has the same magnitude
as the design speed of the train. The damping characteristics of the suspension systems also influence the
amount of vibration transmitted to the train car. For standard values of damping, as shown in Table 5.10, the
system can absorb the majority of the energy and the comfort in the train car is ensured.





7
Discussion of Results

7.1. Introduction

In this chapter it is proposed the discussion of the results presented in chapter 6 with the evaluation of ser-
viceability limit state of the structure and the motion sickness, the comfort/discomfort does not appears to
be governing.

7.2. Structural Behaviour

The SFT supported by tensile cables in configuration as shown in Figure 5.2 is used for the analysis. The struc-
ture is loaded by time-dependent forces and hence a time-history of the global response seems the best mean
for understanding the structural behaviour. In Figure 7.1 and Figure 7.2 the development of the displacement
and bending moment along the tunnel length in the time are showed.

(a) Horizontal Displacement, Load Case 8

63
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(b) Vertical Displacement, Load Case 8

Figure 7.1: Hydrodynamic displacements along the length of the SFT with time

(a) Horizontal Moment, Load Case 8

(b) Vertical Moment, Load Case 8

Figure 7.2: Hydrodynamic bending moments along the length of the SFT with time, Load Case 8

Figure 7.1 depicts the displacement, in both horizontal and vertical planes, along the whole crossing dis-
tance against the time. Figure 7.1a shows that the response is driven by the harmonic regular wave loading
and the SFT oscillates in both positive and negative direction. Figure 7.1b presents the equivalent harmonic
motion of the tunnel, due to the kinematic of the water particles, but only on one side of the vertical axis, as
the structure is loaded by the permanent upwards residual buoyancy. This reflects the condition of the cable
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being in constant tension avoiding the occurrence of slacking. Together with the small oscillations, which are
caused by the initial transient response due to the sudden application of the buoyancy force, it is possible
to see the slower vibration due to the wave force, which in this specific case has a period of TW = 12s. The
configuration adopted for the supporting system cannot be clearly distinguished when looking at Figure 7.2,
as the non-dimensional parameter Kv , as defined in (4.7), results to be smaller than 0.05 making the elastic
supports equivalent to an elastic foundation. Although, the overall shape of the moment distribution in the
horizontal and vertical planes are equivalent, where the main difference lies in the oscillating change of sign
of the moment close to the supports in the horizontal plane due to the vibrations. Regarding the ride safety
and comfort during the storm conditions, deflection and vibration control criteria need to be used to guar-
antee the serviceability. As presented in subsection 1.2.4 the Norwegian government has advised the limiting
values reported in Table 1.1. With a spacing of 50m of the vertical supporting system the maximum allow-
able displacement is 0.14m. Looking at Figure 7.1b it can be noticed that with the current design choices this
criteria might not be met at sections close to the supports, while the differential displacement in the central
part of the crossing does not vary much, meaning that the criteria is met.

Regarding the displacement in the horizontal plane, it is relevant to mention that the dimension of the
structural elements provide the required stiffness. In fact the requirement is always met, as the maximum
displacement is around 0.1m, while the maximum allowable displacement is fixed to an amount of 0.5m,
as the inter-axis between the inclined cable which provide the main external stiffness is 100m. Lwin [26]
treated the deflection and motion problem with the regard of the floating bridges. The author proposed some
boundary values for deflection and motion for normal storm (1-year storm) conditions which may be used
as guidelines. In the presented work the environmental conditions refer to a 100-year storm condition, so
possible failures in meeting the imposed limits are not so reliable. The limit values are reported here below:

Loading Condition Type of Deflection or Motion Maximum Deflection Maximum Motion

Vehicular Load Vertical L
800

Wave
Vertical (heave) ±0.3m 0.5 m

s2

Lateral (sway) ±0.3m 0.5 m
s2

Rotation (roll) ±0.5° 0.05 r ad
s2

Table 7.1: Deflection and Motion Limits. Table taken from Lwin [26]

where L represents the bridge span.

The maximum deflection allowed presented in Lwin M.M. (2000), which is fixed to ±0.3m is verified for
the presented case study, for which sway vibrations oscillate around ±0.1m, while heave vibrations around
0.1m −0.3m

(a) Steady-State Horizontal Acceleration Amplitude Spectrum
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(b) Steady-State Vertical Acceleration Amplitude Spectrum

Figure 7.3: Comparison Steady-State Acceleration Amplitude Spectra at different locations

When looking at the structural acceleration responses in Figure 7.3 it can be noticed that the amplitude of
the sway motion is smaller than the suggested value in Table 7.1. For heave motion the amplitude appears to
be ten times bigger than the boundary value in Table 7.1, but the reason for that lies in the numerical solution
as the buoyancy force is applied as a step-load, which generates big amplitude noise that slowly fades away
and lead the the structure to the static deflection due to residual buoyancy. A second consideration that
needs to be addressed is valid for both sway and heave motions. The amplitude spectra in Figure 7.3 have
been evaluated at three specific location, which corresponds to the maximum in the first three mode shapes,
see Figure 4.8. Despite this, it is noticed that the fundamental mode shape is driving the deformed shape of
the SFT not matter the location of the focus.

7.3. Motion Sickness
When looking at the structural response, one might recognize that the excited frequency range lies outside
the interval of interest regarding the human whole body vibration, but falls in the interval characterised by
the motion sickness. Lawther A. and Griffin M.J. studied deeply this topic and are reference when discussing
this topic. Aykent et al. [1] evaluated the motion sickness through the Motion Sickness Dose Value (MSDV),
which can be defined as:

MSDVZ =
[∫ t

0
a2

zRMS (t )d t

]0.5

(7.1)

where azRMS is the Root Mean Square (RMS) of the vertical acceleration and it can be obtained with:

azRMS =
√

(kz wd az (t ))2 (7.2)

and where kz = 1 and wd = 0.067 are the weighting coefficients to obtain the frequency-weighted RMS ac-
celeration. Based on the MSDV, two parameters can be defined: the Vomiting Incidence (VI) and the Illness
Rating (IR), which are expressed as a percentage of the MSDV through the formulas:

V I = 1

3
MSDVZ (7.3a)

I R = 1

50
MSDVZ (7.3b)

The resulting value of IR is then compared to a rank which is divided in four main intervals:

IR Corresponding Feeling

0 I felt all right
1 I felt slightly unwell
2 I felt quite ill
3 I felt absolutely dreadful

Table 7.2: Illness Rating Rank. Table taken from Aykent et al. (2014)
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Such method has been applied to all the different loading scenarios and the results are summarised here
below:

Load Case IR

Hw = 5m + Vehicle 0.014
Hw = 4.5 + Vehicle 0.013
Vc = 1 m

s + Vehicle 0.012
Vc = 1.5 m

s + Vehicle 0.010
Hw = 5m + Vc = 1 m

s + Vehicle 0.011
Hw = 5m + Vc = 1.5 m

s + Vehicle 0.010
Hw = 4.5m + Vc = 1 m

s + Vehicle 0.010
Hw = 4.5m + Vc = 1.5 m

s + Vehicle 0.010

Table 7.3: Illness Rating Results

Looking at the results it can be noticed that the expected feeling of passengers, while passing through the
crossing in any of the considered sea states, is a non-disturbing condition.

7.4. Comfort and Exposure Limit
It also has to be mentioned that the amount of time required to cross the SFT is between 10s−20s depending
on the design speed. The Standard ISO 2631 (1980) covers the effect of vibrations in the range of 1H z −80H z
providing the exposure limit at the acceleration magnitudes, see Figure 7.4.

Figure 7.4: Standard ISO 2631 (1980) Bounds Vertical Acceleration

When relating the results of section 6.7 with the Standard ISO 2631 (1980) it is found that the exposure
limit is minimum 1hr as the maximum amplitude, which correspond to a frequency of 1H z, reaches the value
of 2.5 m

s . Comparing this exposure limit with the aforementioned time of load passage, it is observed that can
be provided comfort to passengers. In the different simulations that have been performed in the current study
it is found that the presence of the rail irregularity affect the response of the vehicle and the passengers inside
it, see Figure 6.13. Both the wavelength γ0 and the amplitude r0 of the longitudinal defect play a relevant role
in it: the first parameters influence the excitation frequency and hence, the possibility of resonance when
approaching one of the frequencies of the vehicle masses; the latter one generating higher forces contact
forces and acceleration in the vehicle components. The highest peak of the amplitude reaches the value of
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1.2 m
s and the resulting ride quality and comfort indices are pretty low, i.e. lower than one, meaning that the

passengers don’t feel discomfort while crossing the SFT. In fact, as described in chapter 3, the lower the
Sperling’s index WZ is, the better conditions it represents.

A second key parameter for addressing the comfort level in the train carbody is represented by the me-
chanical characteristic of the suspension system. In section 6.7 it has been studied the influence of different
damping of the suspension systems and it has been observed that the carbody response is strongly affected
when the secondary suspension damping is varied. When the primary suspension is varied, most of the en-
ergy of the system is stored in the contact forces between the wheel and the bogies, as the excited frequency
is f = 1H z, which corresponds to the forcing frequency. In the other case, when the secondary suspensions
damping is modified, it can be noticed that for low value of the damping ratio, e.g. ζs2 ∈ [0−0.05], the energy
is stored in the carbody mass, see Figure 6.15, as the excited frequency it appears to be the natural frequency
of the train car, f = 1.065H z.



8
Conclusions and Recommendations

8.1. Conclusions
The current study has presented the dynamic FSVI as part of the 4-year research plan that has been signed by
the China Communications Construction Co., Ltd. (CCCC), the Dutch Tunnel Engineering Consultants (TEC)
and the Delft University of Technology. The scope is to study the feasibility of a SFT to connect the Leizhou
Peninsula, south China, to Hainan Island. The Hainan Strait is characterised by an average width of 30km
and a maximum depth of 120m. The tunnel is assumed to be designed of prefabricated cylindrical tunnel
segment connected in-situ by watertight joints and placed at a depth of 30m below sea surface.

An internal diameter of Di = 15.5m is chosen in order to be able to accommodate two railway tracks. The
supporting system is chosen to be made of alternating vertical and inclined pretensioned cables, where the
latter are attached to the tunnel under a 45° angle. The centre-to-centre distance between the two respective
cable sets is 100m and hence, a support is provided every 50m.

The residual upwards buoyancy causes a global vertical displacement which reaches a maximum of 0.26m
and the orbital movement of the water particles due to wave let this deflection oscillate of ±0.05m around
this static displacement. The horizontal direction is affected by the sea currents, which assume value of VC =
1.0 m

s −1.5 m
s , and by the horizontal component of the orbital velocity of the water particles. The deflection

for sway motion appears to oscillate in the interval ±0.1m.
Based on these environmental conditions, a dynamic interaction analysis with different train models is

carried out to determine the influence of the several input parameters to the ride quality and comfort. The
tunnel is modelled as a Euler-Bernoulli beam with hinged boundary conditions at both ends. The presence
of the water is accounted for by defining the added mass and the relative motion between fluid and structure
in the Morison’s expression. The cables are modelled as linear springs and these can be inclined of 45° or
vertical. The train is assumed to run at a constant velocity of 50 m

s or 100 m
s and it is modelled in different

ways, i.e. moving load, moving mass and train car, depending on the purpose of the simulation.
The dynamic FSVI problem is addressed with the PDE regarding the dynamic bending vibration of the

beam, the definition of contact forces and the dynamic equations of the vehicle masses. By performing the
modal expansion on the tunnel vibrations, a system of ODEs in the modal coordinates and mass displace-
ments can be obtained. This global system of equations can be solved in the time domain using the solver
ode45 already present in the MATLAB® suite, which can handle non-linear problems.

For both design speeds, the global structural response is not affected by the different vehicle models used
to describe the traffic loading. Moreover, when it is account for the actual presence of the water around the
tunnel, the influence of the train passage becomes negligible, as the design speeds appears to be lower than
the critical velocity, V = 300 m

s , that may cause higher displacement of the structure. The inclination of the
cables appears to affect especially the sway motion, as the heave motion can count on the presence of the
additional alternating vertical cables, whose horizontal restraining capacity is really small compared to the
inclined ones. Hence, the 45° inclination is adopted because no remarkable improvements in the structural
horizontal response are observed for higher inclinations.

The presence of the longitudinal unevenness of the railway plays a role only in the vehicle response, as it
generate an additional force to the vehicle. The resonance can be reached for particular values of the irregu-
larity wavelength, γ0 = 50,100m, being the fundamental natural frequency of the train car of the same order,
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f0 = 1H z. Despite the occurrence of resonance, a good level of comfort is predicted while crossing the tunnel
since the simulated sea states exert really low energy on the frequencies that characterise the system as it
has been presented through the wave spectrum analysis. Both the waves and the lowest order modal shapes,
which govern the structural response, are characterised by low frequencies which are lower than the limit of
human perception, i.e. f < 0.5H z. The obtained small vehicle-structure-interaction is valid also when the
entire train made of eight cars is implemented. In fact, the difference between the ride quality and comfort
indices of the single car and the multiple cars models is negligible, i.e. ride quality index 0.7436 against 0.7445
and ride comfort index 0.6780 against 0.6789.

The low-frequency dominated response may be the cause of motion sickness rather than discomfort.
Despite this, the limited amplitude of the structural and vehicle accelerations does not raise warnings of
illness while crossing the SFT.

8.2. Recommendations
There are several points that may be analysed in further work and these can be distinguished in two main
categories. The first category covers improvement applied to the structural model to make it more realistic.
The second category may include the same model of the current work, but applying different load conditions.

Structural model improvements:

• Actual length of the crossing: the tunnel has been modelled with a reduced length to make the com-
putational time in line with the complexity of the problem. Improvements in the code may help in
speeding up the computational time allowing for the analysis with the actual crossing length. The nat-
ural frequencies of the structure will reduce with the increase of the length of the system and so, the
environmental conditions might be characterised by the same range of frequencies.

• Boundary conditions and modal shapes: as most of the deflection appears to occur at the edge of the
tunnel giving free rotation, the use of fixed boundary conditions may control the rotation at the sup-
ports, but increase the stresses at boundary cross-sections. Also the use of different modal shapes is
required when changing boundary conditions.

• Use of 3D finite element modelling to account for more complex analyses as well as for three-dimensional
vehicle modelling to study the horizontal vibrations inside the train car, which was not possible to be
accounted for with the 6DOFs systems.

Following Analyses:

• Irregular wave analysis: it would be interesting to have a complete irregular wave analysis to compare
with the results obtained with the regular wave model implemented, which is based on the significant
wave height and peak period.

• More train passing: it would be interesting to model more trains crossing the tunnel not only one after
the other, but also in the two different travelling directions. This may cause higher deflections of the
structure as well as higher accelerations due to the arriving and leaving of several vehicles, which may
cause discomfort increments.

• Higher frequency waves: it seems interesting to investigate those sea states characterised by a higher
frequency content in order to fall in the same range of the system natural frequencies. The use of the
diffraction hydrodynamic theory will be then necessary as the structure will become a large structure
with respect to the wavelength of the sea state.
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A
Solution of Dynamic Bending Vibration of

Euler-Bernoulli Beam

In this appendix it is offered the derivation of the natural frequencies and modal shapes for a simply-supported
floating tunnel.

The governing partial differential equation for a simply-supported floating tunnel modelled as a Euler-
Bernoulli beam is given in Spijkers et al. [37]:

m
∂2w(x, t )

∂t 2 + E I
∂4w(x, t )

∂x4 = f (x, t ) (A.1)

To study the dynamic response of the structure it is necessary to solve the carry out the modal analysis and
determine the natural frequencies. When dealing with the free vibration analysis, the right side of (A.1) is
set to zero. Using the method of separation of variables with the modal expansion, the PDE is reduced to a
system of ODEs, whose only unknown variable is the time. The solution w(x, t ) can be assumed of the form

w(x, t ) =
∞∑

n=1
Φn(x)Ψn(t ) (A.2)

Substituting the solution into (A.1) one gets:

m
∞∑

n=1
Φn(x)Ψ̈n(t )+ E I

∞∑
n=1

Φ
′′′′
n (x)Ψn(t ) = 0 (A.3)

General solution forΦn(x) is:

Φn(x) = A coshβx +B sinhβx +C cosβx +D sinβx (A.4)

where

β= 4

√
m

E I
ω2

n (A.5)

Substituting of the displacement into the boundary conditions, which are:
Φ(0) = 0

E IΦ
′′

(0) = 0

Φ(L) = 0

E IΦ
′′

(L) = 0
gives a system of 4 linear algebraic equations with respect to A, B, C, D. By setting the determinant of the

coefficient matrix of the system of equations to zero, one can define the frequency equation. The solution of
frequency equation provides a value for β which determines the natural frequencies.

βn = nπ

L
(A.6a)
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ωn =
(nπ

L

)2
√

E I

m
(A.6b)

Finding the ratios A/D, B/D, C/D and substituting the natural frequencies into (A.4) gives the normal modes,
that for a simply-supported tunnel are:

Φn(x) = sin
nπ

L
x (A.7)



B
Determination of cable stiffness

In this appendix it is offered the derivation of the stiffness of the supporting cable system, valid when small
displacements, δy and/or δz, occur to the tunnel. Generalised geometrical and and mechanical properties
will be adopted in the derivation, e.g. cable’s length L, cross-sectional area A, Young’s modulus E , inclination
angle α and pretension T0.

B.1. Vertical Cables Stiffness in Sway Motion
The change in the tension force in the vertical cable due to a horizontal displacement, as shown in Figure B.1,
can be expressed by:

∆Ty = E A

L

(√
δy2 +L2 −L

)
(B.1)

Figure B.1: Vertical Cable Sway Motion

The equilibrium of forces in the horizontal direction states:

kyδy = 2
(
T0 +∆Ty

)
sinβ (B.2)

where

sinβ= δy√
δy2 +L2

(B.3)

Using (B.1) and (B.3), (B.2) can be rearranged to obtain the expression for the horizontal stiffness kx :

ky = 2T0√
δy2 +L2

+ 2E A

L

(
1− L√

δy2 +L2

)
(B.4)
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For small values of δy the second term of the summation becomes negligible and the expression of the hori-
zontal stiffness can be rewritten as:

ky = 2T0

L
(B.5)

B.2. Vertical Cables Stiffness in Heave Motion
The change in the tension force in the vertical cable due to a vertical displacement, as shown in Figure B.2,
can be expressed by:

∆Tz = E A

L
δz (B.6)

Figure B.2: Vertical Cable Heave Motion

The equilibrium of forces in the vertical direction states:

kzδz = 2(T0 +∆Tz )−2T0 (B.7)

Inserting the expression of (B.6) in (B.7) the expression for the vertical stiffness can be derived:

kz = 2E A

L
(B.8)

B.3. Inclined Cables Stiffness in Sway Motion
The change in the tension force in the inclined cable due to a horizontal displacement, as shown in Figure B.3,
can be expressed by:

∆Ty = AE

L
∆L (B.9)

where

∆L = δy sinθ (B.10)

and θ is the increment in the inclination.



B.4. Inclined Cables Stiffness in Heave Motion 79

Figure B.3: Inclined Cable Sway Motion

The equilibrium of forces in the horizontal direction states:

kyδy = (
T0 +∆Ty

)
sinθ− (

T0 −∆Ty
)

sinθ (B.11)

Using (B.9) and (B.10), (B.11) can be rearranged to obtain the expression for the horizontal stiffness ky :

ky = 2AE

L
sin2θ (B.12)

B.4. Inclined Cables Stiffness in Heave Motion
The change in the tension force in the inclined cable due to a vertical displacement, as shown in Figure B.4,
can be expressed by:

∆Tz = E A

L
∆L (B.13)

where
∆L = δz cosθ (B.14)

and θ is the reduction in the inclination.

Figure B.4: Inclined Cable Heave Motion

The equilibrium of forces in the vertical direction states:

kzδz = 2(T0 +∆Tz )cosθ−2T0 cosθ (B.15)

Using (B.13) and (B.14), (B.15) can be rearranged to obtain the expression for the vertical stiffness kz :

kz = 2AE

L
cos2θ (B.16)





C
Solution of Dynamic Bending Vibration of

BOEF

In this appendix it is offered the derivation of the natural frequencies of the SFT modelled as a BOEF. The
modal expansion method is applied as it has been proved by Martire [28], Sato et al. [36] that is still valid.

The governing PDE for the dynamic analysis of a cable-stayed SFT modelled as a BOEF is:

m
∂2w(x, t )

∂t 2 + E I
∂4w(x, t )

∂x4 + k f w(x, t ) = f (x, t ) (C.1)

where
m is the mass per unit length of the tunel plus the added mass
E I is the bending stiffness of the tunnel

k f = kv
h is the distributed support system.

As previously determined in Appendix A the adopted solution method is the modal expansion method
with a modal shape that, again, is the sine function, as it still satisfies the boundary conditions. So, the dis-
placement can be expressed as:

w(x, t ) =
∞∑

n=1
Φn(x)Ψn(t ) =

∞∑
n=1

sin
nπ

L
x Ψn(t ) (C.2)

Substituting (C.2) into (C.1), one obtains:

m
∞∑

n=1
sin

nπ

L
x Ψ̈n(t )+ E I

∞∑
n=1

(nπ

L

)4
sin

nπ

L
x Ψn(t )+ k f

∞∑
n=1

sin
nπ

L
x Ψn(t ) = f (x, t ) (C.3)

Premultiplying both sides of (C.3) by sin mπ
L x and integrating over the tunnel length, thanks to the orthogo-

nality of the modes, the terms of the equation gives:∫ L

0
sin

mπ

L
x m sin

nπ

L
x d x = m

L

2
(C.4a)

∫ L

0
sin

mπ

L
x E I

(nπ

L

)4
sin

nπ

L
x + sin

mπ

L
x k f sin

nπ

L
x d x =

((nπ

L

)4
E I +m

)
L

2
(C.4b)∫ L

0
sin

mπ

L
x f (x, t ) d x (C.4c)

The PDE has been transformed into a infinite system of ODEs, which are:

m
L

2
Ψ̈n(t )+

((nπ

L

)4
E I +m

)
L

2
Ψn(t ) =

∫ L

0
sin

nπ

L
x f (x, t ) d x (C.5)

The natural frequencies of the nth mode can be evaluated dividing each term of (C.5) by m L
2 :

Ψ̈n(t )+ ω2
nΨn(t ) = 2

mL

∫ L

0
sin

nπ

L
x f (x, t ) d x (C.6)
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where

ωn =
√(nπ

L

)4 E I

m
+ k f

m
(C.7)



D
FSVI using the BOES model

In this appendix it is offered the derivation of the system of ODEs that has been implemented in the ode45

solver present in the MATLAB® suite. The SFT is modelled as a BOES and the modal expansion method is
applied.

The governing PDE for the dynamic analysis of a cable-stayed SFT modelled as a BOEF is:

m
∂2wy (x, t )

∂t 2 + cy
∂wy (x, t )

∂t
+ E I

∂4wy (x, t )

∂x4 +
nc∑

N=1
ky wy (xN , t )δ(x −xN ) =C Iρw

πD2

4
V̇

+1

2
ρwCD D

(
vy − ẇy (x, t )

) |vy − ẇy (x, t ) |

+
nc∑

N=1

kϕ
R
ϕx (xN , t )δ (x −xN )

m
∂2wz (x, t )

∂t 2 + cz
∂wz (x, t )

∂t
+ E I

∂4wz (x, t )

∂x4 +
nc∑

N=1
kz wz (xN , t )δ(x −xN ) =C Iρw

πD2

4
V̇

+1

2
ρwCD D (vz − ẇz (x, t )) |vz − ẇz (x, t ) |

−
(
P0 +mw

d2zw (V t , t )

dt 2 −Q(t )

)
δ(x −V t )

[
H(t )−H

(
t − L

V

)]
mR2 ∂

2ϕx (x, t )

∂t 2 + cϕ
∂ϕx (x, t )

∂t
+ G J

∂2ϕx (x, t )

∂x2 +
nc∑

N=1
kϕϕx (xN , t )δ(x −xN ) =

+
nc∑

N=1
ky Rwy (xN , t )δ (x −xN )

−
(
P0 +mw

d2zw (V t , t )

dt 2 −Q(t )

)
λδ(x −V t )

[
H(t )−H

(
t − L

V

)]
Q(t ) = kS1(zb(t )−wz (V t , t )−ϕx (V t , t )λ)+ cS1

(
dzb
dt − dwz (V t ,t )

dt − dϕx (V t ,t )
dt λ

)

(D.1)

where zb is the position of the upper bogie and zw is the wheel position, which is constant contact with the
structure, and is thus given by:

zw (V t ) = wz (V t , t )+ϕx (V t , t )λ (D.2)

Moreover, dzw (V t ,t )
dt and d2zw (V t ,t )

dt 2 are the total derivatives which are equal to:

dzw (V t , t )

dt
= ∂wz (V t , t )

∂t
+V

∂wz (V t , t )

∂x
+ ∂ϕx (V t , t )

∂t
λ+V

∂ϕx (V t , t )

∂x
λ (D.3a)

d2zw (V t , t )

dt 2 = ∂2wz (V t , t )

∂t 2 +2V
∂2wz (V t , t )

∂x∂t
+V 2 ∂

2wz (V t , t )

∂x2 + ∂
2ϕx (V t , t )

∂t 2 λ+2V
∂2ϕx (V t , t )

∂x∂t
+V 2 ∂

2ϕx (V t , t )

∂x2

(D.3b)
The solution is given in the form:

wy (x, t ) =
∞∑

n=1
Φn(x)qybn (t ) =

∞∑
n=1

sin
nπ

L
qybn (t ) (D.4a)
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wz (x, t ) =
∞∑

n=1
Φn(x)qzbn (t ) =

∞∑
n=1

sin
nπ

L
qzbn (t ) (D.4b)

ϕx (x, t ) =
∞∑

n=1
Φn(x)qϕbn (t ) =

∞∑
n=1

sin
nπ

L
qϕbn (t ) (D.4c)

The application of the orthogonality property to each equation composing the system to analyse the FSVI is
reported in the sections below.

D.1. Orthogonality in y-direction

m
∂2wy (x, t )

∂t 2 →
∫ L

0
Φm(x)m

∞∑
n=1

Φn(x)q̈ybn (t )d x = m
L

2
q̈ybn (t ) (D.5a)

cy
∂wy (x, t )

∂t
→

∫ L

0
Φm(x)cy

∞∑
n=1

Φn(x)q̇ybn (t )d x = cy
L

2
q̇ybn (t ) (D.5b)

E I
∂4wy (x, t )

∂x4 →
∫ L

0
Φm(x)E I

∞∑
n=1

Φ
′′′′
n (x)qybn (t )d x =

(nπ

L

)4
E I

L

2
qybn (t ) (D.5c)

nc∑
N=1

ky wy (xN , t )δ (x −xN ) →∫ L

0
Φm(x)ky

nc∑
N=1

∞∑
n=1

Φn (xN ) qybn (t )δ (x −xN )d x =

ky

nc∑
N=1

Φm (xN )
∞∑

n=1
Φn (xN ) qybn (t )

(D.5d)

Caρ f π
D2

4
v̇y →

∫ L

0
Caρ f π

D2

4
v̇yΦn(x)d x (D.5e)

1

2
ρ f CD D

(
vy − ẇy (x, t )

) |vy − ẇy (x, t ) |→
∫ L

0

1

2
CDρ f DΦm(x)

(
vy −

∞∑
n=1

Φn(x)q̇ybn (t )

)√√√√(
vy −

∞∑
n=1

Φn(x)q̇ybn (t )

)2

+
(

vz −
∞∑

n=1
Φn(x)q̇zbn (t )

)2

d x

(D.5f)

nc∑
N=1

kϕ
R
ϕx (xN , t )δ (x −xN ) →∫ L

0
Φm(x)

kϕ
R

nc∑
N=1

∞∑
n=1

Φn (xN ) qϕbn (t )δ (x −xN )d x =

kϕ
R

nc∑
N=1

Φm (xN )
∞∑

n=1
Φn (xN ) qϕbn (t )

(D.5g)

D.2. Orthogonality in z-direction

m
∂2wz (x, t )

∂t 2 →
∫ L

0
Φm(x)m

∞∑
n=1

Φn(x)q̈zbn (t )d x = m
L

2
q̈zbn (t ) (D.6a)

cz
∂wz (x, t )

∂t
→

∫ L

0
Φm(x)cz

∞∑
n=1

Φn(x)q̇zbn (t )d x = cz
L

2
q̇zbn (t ) (D.6b)

E I
∂4wz (x, t )

∂x4 →
∫ L

0
Φm(x)E I

∞∑
n=1

Φ
′′′′
n (x)qzbn (t )d x =

(nπ

L

)4
E I

L

2
qzbn (t ) (D.6c)

nc∑
N=1

kz wz (xN , t )δ (x −xN ) →∫ L

0
Φm(x)kz

nc∑
N=1

∞∑
n=1

Φn (xN ) qzbn (t )δ (x −xN )d x =

kz

nc∑
N=1

Φm (xN )
∞∑

n=1
Φn (xN ) qzbn (t )

(D.6d)
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Caρ f π
D2

4
v̇z →

∫ L

0
Caρ f π

D2

4
v̇zΦn(x)d x (D.6e)

1

2
ρ f CD D (vz − ẇz (x, t )) |vz − ẇz (x, t ) |→

∫ L

0

1

2
CDρ f DΦm(x)

(
vz −

∞∑
n=1

Φn(x)q̇zbn (t )

)√√√√(
vy −

∞∑
n=1

Φn(x)q̇ybn (t )

)2

+
(

vz −
∞∑

n=1
Φn(x)q̇zbn (t )

)2

d x

(D.6f)

mw
∂2wz (V t , t )

∂t 2 δ (x −V t ) Ht →∫ L

0
Φm(x)mw

∞∑
n=1

Φn(V t )q̈zbn (t ) (x −V t ) Ht d x =

mwΦm(V t )Φn(V t )q̈zbn (t )Ht

(D.6g)

mw 2V
∂2wz (V t , t )

∂x∂t
δ (x −V t ) Ht →∫ L

0
Φm(x)mw 2V

∞∑
n=1

Φ
′
n(V t )q̇zbn (t ) (x −V t ) Ht d x =

mw 2VΦm(V t )
nπ

L
Φ

′
n(V t )q̇zbn (t )Ht

(D.6h)

mw V 2 ∂
2wz (V t , t )

∂x2 δ (x −V t ) Ht →∫ L

0
Φm(x)mw V 2

∞∑
n=1

Φ
′′
n(V t )qzbn (t ) (x −V t ) Ht d x =

mw V 2Φm(V t )
(nπ

L

)2
Φ

′′
n(V t )qzbn (t )Ht

(D.6i)

cS1
∂wz (V t , t )

∂t
δ (x −V t ) Ht →∫ L

0
Φm(x)cS1

∞∑
n=1

Φn(V t )q̇zbn (t ) (x −V t ) Ht d x =

cS1Φm(V t )Φn(V t )q̇zbn (t )Ht

(D.6j)

cS1V
∂wz (V t , t )

∂x
δ (x −V t ) Ht →∫ L

0
Φm(x)cS1V

∞∑
n=1

Φ
′
n(V t )qzbn (t ) (x −V t ) Ht d x =

cS1VΦm(V t )
nπ

L
Φ

′
n(V t )qzbn (t )Ht

(D.6k)

kS1wz (V t , t )δ (x −V t ) Ht →∫ L

0
Φm(x)kS1

∞∑
n=1

Φn(V t )qzbn (t ) (x −V t ) Ht d x =

kS1Φm(V t )Φn(V t )qzbn (t )Ht

(D.6l)

D.3. Orthogonality in φ-direction

mR2 ∂
2ϕx (x, t )

∂t 2 →
∫ L

0
Φm(x)mR2

∞∑
n=1

Φn(x)q̈ϕbn (t )d x = mR2 L

2
q̈ϕbn (t ) (D.7a)

cϕ
∂ϕx (x, t )

∂t
→

∫ L

0
Φm(x)cz

∞∑
n=1

Φn(x)q̇ϕbn (t )d x = cϕ
L

2
q̇ϕbn (t ) (D.7b)

G J
∂2ϕx (x, t )

∂x2 →
∫ L

0
Φm(x)G J

∞∑
n=1

Φ
′′
n(x)qϕbn (t )d x =

(nπ

L

)2
G J

L

2
qϕbn (t ) (D.7c)
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nc∑
N=1

kϕϕx (xN , t )δ (x −xN ) →∫ L

0
Φm(x)kϕ

nc∑
N=1

∞∑
n=1

Φn (xN ) qϕbn (t )δ (x −xN )d x =

kϕ
nc∑

N=1
Φm (xN )

∞∑
n=1

Φn (xN ) qϕbn (t )

(D.7d)

nc∑
N=1

ky Rwy (xN , t )δ (x −xN ) →∫ L

0
Φm(x)ky R

nc∑
N=1

∞∑
n=1

Φn (xN ) qybn (t )δ (x −xN )d x =

ky R
nc∑

N=1
Φm (xN )

∞∑
n=1

Φn (xN ) qybn (t )

(D.7e)

mwλ
2 ∂

2ϕx (V t , t )

∂t 2 δ (x −V t ) Ht →∫ L

0
Φm(x)mwλ

2
∞∑

n=1
Φn(V t )q̈ϕbn (t ) (x −V t ) Ht d x =

mwλ
2Φm(V t )Φn(V t )q̈ϕbn (t )Ht

(D.7f)

mwλ
22V

∂2ϕx (V t , t )

∂x∂t
δ (x −V t ) Ht →∫ L

0
Φm(x)mwλ

22V
∞∑

n=1
Φ

′
n(V t )q̇ϕbn (t ) (x −V t ) Ht d x =

mwλ
22VΦm(V t )

nπ

L
Φ

′
n(V t )q̇ϕbn (t )Ht

(D.7g)

mwλ
2V 2 ∂

2ϕx (V t , t )

∂x2 δ (x −V t ) Ht →∫ L

0
Φm(x)mwλ

2V 2
∞∑

n=1
Φ

′′
n(V t )qϕbn (t ) (x −V t ) Ht d x =

mwλ
2V 2Φm(V t )

(nπ

L

)2
Φ

′′
n(V t )qϕbn (t )Ht

(D.7h)

cS1λ
2 ∂ϕx (V t , t )

∂t
δ (x −V t ) Ht →∫ L

0
Φm(x)cS1λ

2
∞∑

n=1
Φn(V t )q̇ϕbn (t ) (x −V t ) Ht d x =

cS1λ
2Φm(V t )Φn(V t )q̇ϕbn (t )Ht

(D.7i)

cS1λ
2V

∂ϕx (V t , t )

∂x
δ (x −V t ) Ht →∫ L

0
Φm(x)cS1λ

2V
∞∑

n=1
Φ

′
n(V t )qϕbn (t ) (x −V t ) Ht d x =

cS1λ
2VΦm(V t )

nπ

L
Φ

′
n(V t )qϕbn (t )Ht

(D.7j)

kS1λ
2ϕx (V t , t )δ (x −V t ) Ht →∫ L

0
Φm(x)kS1λ

2
∞∑

n=1
Φn(V t )qϕbn (t ) (x −V t ) Ht d x =

kS1λ
2Φm(V t )Φn(V t )qϕbn (t )Ht

(D.7k)
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D.4. Matrix Assembling
The global mass, damping and stiffness matrices are described as:

M =


My 0 0 0 0

0 Mz 0 0 0
0 0 Mϕ 0 0
0 0 0 Mb 0
0 0 0 0 Mc



C =


Cy 0 0 0 0
0 Cz Czϕ Czb 0
0 Cϕz Cϕ Cϕb 0
0 Cbz Cbϕ Cb Cbc
0 0 0 Cc b Cc



K =


Ky 0 Kyϕ 0 0
0 Kz Kzϕ Kzb 0

Kϕy Kϕz Kϕ Kϕb 0
0 Kbz Kbϕ Kb Kbc
0 0 0 Kc b Kc


where

My =


m L

2 0 0

0
. . . 0

0 0 m L
2



Mz =



m L
2 + . . .

mwΦ1(V t )Φ1(V t )Ht mwΦn (V t )Φ1(V t )Ht
...

. . .
...

m L
2 +

mwΦ1(V t )Φn (V t )Ht . . . mwΦn (V t )Φn (V t )Ht



Mϕ =



mR2 L
2 + . . .

mwλ
2Φ1(V t )Φ1(V t )Ht mwλ

2Φn (V t )Φ1(V t )Ht
...

. . .
...

mR2 L
2 +

mwλ
2Φ1(V t )Φn (V t )Ht . . . mwλ

2Φn (V t )Φn (V t )Ht



Cy =


cy

L
2 0 0

0
. . . 0

0 0 cy
L
2



Cz =



cz
L
2 +

mw 2VΦ1(V t ) 1π
L Φ

′
1(V t )Ht+ . . . mw 2VΦn (V t ) 1π

L Φ
′
1(V t )Ht+

cS1Φ1(V t )Φ1(V t )Ht cS1Φn (V t )Φ1(V t )Ht
...

. . .
...

cz
L
2

mw 2VΦ1(V t ) nπ
L Φ

′
n (V t )Ht+ . . . mw 2VΦn (V t ) nπ

L Φ
′
n (V t )Ht+

cS1Φ1(V t )Φn (V t )Ht cS1Φn (V t )Φn (V t )Ht



Cϕ =



cϕ
L
2 +

mwλ
22VΦ1(V t ) 1π

L Φ
′
1(V t )Ht+ . . . mwλ

22VΦn (V t ) 1π
L Φ

′
1(V t )Ht+

cS1λ
2Φ1(V t )Φ1(V t )Ht cS1λ

2Φn (V t )Φ1(V t )Ht
...

. . .
...

m L
2 +

mwλ
22VΦ1(V t ) nπ

L Φ
′
n (V t )Ht+ . . . mwλ

22VΦn (V t ) nπ
L Φ

′
n (V t )Ht+

cS1λ
2Φ1(V t )Φn (V t )Ht cS1λ

2Φn (V t )Φn (V t )Ht


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Ky =



(
1π
L

)4
E I L

2 + . . .

ky
∑nc

N=1Φ1
(
xN

)
Φ1

(
xN

)
ky

∑nc
N=1Φn

(
xN

)
Φ1

(
xN

)
...

. . .
...( nπ

L

)4 E I L
2 +

ky
∑nc

N=1Φ1
(
xN

)
Φn

(
xN

)
. . . ky

∑nc
N=1Φn

(
xN

)
Φn

(
xN

)



Kz =



(
1π
L

)4
E I L

2 +
kz

∑nc
N=1Φ1

(
xN

)
Φ1

(
xN

)+ kz
∑nc

N=1Φn
(
xN

)
Φ1

(
xN

)+
mw V 2Φ1(V t ) 1π

L Φ
′′
1 (V t )Ht+ . . . mw V 2Φn (V t ) 1π

L Φ
′
1(V t )Ht+

kS1Φ1(V t )Φ1(V t )Ht+ kS1Φn (V t )Φ1(V t )Ht+
cS1VΦ1(V t )Φ

′
1(V t )Ht cS1VΦn (V t )Φ

′
1(V t )Ht

...
. . .

...( nπ
L

)4 E I L
2 +

kz
∑nc

N=1Φ1
(
xN

)
Φn

(
xN

)+ kz
∑nc

N=1Φn
(
xN

)
Φn

(
xN

)+
mw V 2Φ1(V t ) nπ

L Φ
′
n (V t )Ht+ . . . mw V 2Φn (V t ) nπ

L Φ
′
n (V t )

kS1Φ1(V t )Φn (V t )Ht+ kS1Φn (V t )Φn (V t )+
cS1VΦ1(V t )Φ

′
n (V t )Ht cS1VΦn (V t )Φ

′
n (V t )Ht



Kϕ =



(
1π
L

)2
G J L

2 +
kz

∑nc
N=1Φ1

(
xN

)
Φ1

(
xN

)+ kz
∑nc

N=1Φn
(
xN

)
Φ1

(
xN

)+
mwλ

2V 2Φ1(V t ) 1π
L Φ

′′
1 (V t )Ht+ . . . mwλ

2V 2Φn (V t ) 1π
L Φ

′
1(V t )Ht+

kS1λ
2Φ1(V t )Φ1(V t )Ht+ kS1λ

2Φn (V t )Φ1(V t )Ht+
cS1λ

2VΦ1(V t )Φ
′
1(V t )Ht cS1λ

2VΦn (V t )Φ
′
1(V t )Ht

...
. . .

...( nπ
L

)2 G J L
2 +

kz
∑nc

N=1Φ1
(
xN

)
Φn

(
xN

)+ kz
∑nc

N=1Φn
(
xN

)
Φn

(
xN

)+
mwλ

2V 2Φ1(V t ) nπ
L Φ

′
n (V t )Ht+ . . . mwλ

2V 2Φn (V t ) nπ
L Φ

′
n (V t )+

kS1λ
2Φ1(V t )Φn (V t )Ht+ kS1λ

2Φn (V t )Φn (V t )+
cS1λ

2VΦ1(V t )Φ
′
n (V t )Ht cS1λ

2VΦn (V t )Φ
′
n (V t )Ht



Czϕ =



mwλ2VΦ1(V t ) 1π
L Φ

′
1(V t )Ht+ . . . mwλ2VΦn (V t ) 1π

L Φ
′
1(V t )Ht+

cS1λΦ1(V t )Φ1(V t )Ht cS1λΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλ2VΦ1(V t ) nπ
L Φ

′
n (V t )Ht+ mwλ2VΦn (V t ) nπ

L Φ
′
n (V t )Ht+

cS1λΦ1(V t )Φn (V t )Ht . . . cS1λΦn (V t )Φn (V t )Ht


Cϕz =C T

zϕ

Czb =C T
bz =



mwλ2VΦ1(V t ) 1π
L Φ

′
1(V t )Ht+ . . . mwλ2VΦn (V t ) 1π

L Φ
′
1(V t )Ht+

cS1λΦ1(V t )Φ1(V t )Ht cS1λΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλ2VΦ1(V t ) nπ
L Φ

′
n (V t )Ht+ mwλ2VΦn (V t ) nπ

L Φ
′
n (V t )Ht+

cS1λΦ1(V t )Φn (V t )Ht . . . cS1λΦn (V t )Φn (V t )Ht


Cbz =C T

zb

Cϕb =C T
bϕ =



mwλ2VΦ1(V t ) 1π
L Φ

′
1(V t )Ht+ . . . mwλ2VΦn (V t ) 1π

L Φ
′
1(V t )Ht+

cS1λΦ1(V t )Φ1(V t )Ht cS1λΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλ2VΦ1(V t ) nπ
L Φ

′
n (V t )Ht+ mwλ2VΦn (V t ) nπ

L Φ
′
n (V t )Ht+

cS1λΦ1(V t )Φn (V t )Ht . . . cS1λΦn (V t )Φn (V t )Ht


Cbϕ =C T

ϕb

Kyϕ =


kϕ
R

∑nc
N=1Φ1

(
xN

)
Φ1

(
xN

)
. . .

kϕ
R

∑nc
N=1Φn

(
xN

)
Φ1

(
xN

)
...

. . .
...

kϕ
R

∑nc
N=1Φ1

(
xN

)
Φn

(
xN

)
. . .

kϕ
R

∑nc
N=1Φn

(
xN

)
Φn

(
xN

)

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Kϕy = K T
yϕ

Kzϕ =



mwλV 2Φ1(V t )
(

1π
L

)2
Φ

′′
1 (V t )Ht+ . . . mwλV 2Φn (V t )

(
1π
L

)2
Φ

′′
1 (V t )Ht+

kS1λΦ1(V t )Φ1(V t )Ht kS1λΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλV 2Φ1(V t )
( nπ

L

)2
Φ

′′
n (V t )Ht+ mwλV 2Φn (V t )

( nπ
L

)2
Φ

′′
n (V t )Ht+

kS1λΦ1(V t )Φn (V t )Ht . . . kS1λΦn (V t )Φn (V t )Ht


Kϕz = K T

zϕ

Kzb =



mwλV 2Φ1(V t )
(

1π
L

)2
Φ

′′
1 (V t )Ht+ . . . mwλV 2Φn (V t )

(
1π
L

)2
Φ

′′
1 (V t )Ht+

kS1λVΦ1(V t )Φ1(V t )Ht kS1λVΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλV 2Φ1(V t )
( nπ

L

)2
Φ

′′
n (V t )Ht+ mwλV 2Φn (V t )

( nπ
L

)2
Φ

′′
n (V t )Ht+

kS1λVΦ1(V t )Φn (V t )Ht . . . kS1λVΦn (V t )Φn (V t )Ht


Kbz = K T

zb

Kϕb =



mwλ2VΦ1(V t ) 1π
L Φ

′
1(V t )Ht+ . . . mwλ2VΦn (V t ) 1π

L Φ
′
1(V t )Ht+

cS1λΦ1(V t )Φ1(V t )Ht cS1λΦn (V t )Φ1(V t )Ht
...

. . .
...

mwλ2VΦ1(V t ) nπ
L Φ

′
n (V t )Ht+ mwλ2VΦn (V t ) nπ

L Φ
′
n (V t )Ht+

cS1λΦ1(V t )Φn (V t )Ht . . . cS1λΦn (V t )Φn (V t )Ht


Kbϕ = K T

ϕb
The remaining matrices, that have not been presented in this section, will be shown in the separate deriva-

tion in Appendix E. The right-hand-side of the system, i.e. the force vector, is composed by the terms related
to the fluid-structure-interaction and to the weight of the vehicle.





E
Train car model derivation

In this appendix it is presented the derivation of the vehicle-structure-interaction with the use of the contact
forces as done in Youcef et al. [43]. Figure E.1 depicts the contact forces and the the DOFs used in the current
derivation.

Figure E.1: Horizontal Displacement

The contact forces between the train car and the bogies are:

Fcb1 = kS2 (zcR − zb1)+ cS2 (żcR − żb1) (E.1a)

Fcb2 = kS2 (zcL − zb2)+ cS2 (żcL − żb2) (E.1b)

91
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The contact forces between the bogies and the wheels are:

Fbw1 = kS1 (zb1R − zw1)+ cS1 (żb1R − żw1) (E.2a)

Fbw2 = kS1 (zb1L − zw2)+ cS1 (żb1L − żw2) (E.2b)

Fbw3 = kS1 (zb2R − zw3)+ cS1 (żb2R − żw3) (E.2c)

Fbw4 = kS1 (zb2L − zw4)+ cS1 (żb2L − żw4) (E.2d)

The equations of motions of the masses derived from the equilibrium of the forces are:

mcar
Lc

2
z̈c + JC ϕ̈c +Fcb1Lc = 0 (E.3a)

mcar
Lc

2
z̈c − JC ϕ̈c +Fcb2Lc = 0 (E.3b)

mb
Lb

2
¨zb1 + Jb ¨ϕb1 −Fcb1

Lb

2
+Fbw1Lb = 0 (E.3c)

mb
Lb

2
¨zb1 − Jb ¨ϕb1 −Fcb1

Lb

2
+Fbw2Lb = 0 (E.3d)

mb
Lb

2
¨zb2 + Jb ¨ϕb2 −Fcb2

Lb

2
+Fbw3Lb = 0 (E.3e)

mb
Lb

2
¨zb2 − Jb ¨ϕb2 −Fcb2

Lb

2
+Fbw4Lb = 0 (E.3f)

where

zc = zcR + zcL

2
(E.4a)

ϕc = zcR − zcL

2
(E.4b)

zb1 =
zb1R + zb1L

2
(E.4c)

ϕb1 =
zb1R − zb1L

2
(E.4d)

zb2 =
zb2R + zb2L

2
(E.4e)

ϕb2 =
zb2R − zb2L

2
(E.4f)

and zw and its derivatives can be computed as Equations (D.2) to (D.3b). Substituting Equations (E.1a)
to (E.1b), Equations (E.2a) to (E.2d) and Equations (E.4a) to (E.4f) into Equations (E.3a) to (E.3f) it can be
obtained the system of equations that will be used in the algorithm.

mcar
Lc

4
(z̈cR + z̈cL)+ Jc

Lc
(z̈cR − z̈cL)+

cS2Lc

(
żcR − żb1R + żb1L

2

)
+kS2Lc

(
zcR − zb1R + zb1L

2

)
= 0

(E.5a)

mcar
Lc

4
(z̈cR + z̈cL)− Jc

Lc
(z̈cR − z̈cL)+

cS2Lc

(
żcL − żb2R + żb2L

2

)
+kS2Lc

(
zcL − zb2R + zb2L

2

)
= 0

(E.5b)

mb
Lb

4
(z̈b1R + z̈b1L)+ Jb

Lb
(z̈b1R − z̈b1L)−

cS2Lc

(
żcR − żb2R + żb2L

2

)
−kS2Lc

(
zcR − zb2R + zb2L

2

)
+

cS1Lb

(
żb1R − ẇz −V w

′
z −λϕ̇x −V λϕ

′
x

)
+kS1Lb

(
zb1R −wz −λϕx

)= 0

(E.5c)



93

mb
Lb

4
(z̈b1R + z̈b1L)+ Jb

Lb
(z̈b1R − z̈b1L)−

cS2Lc

(
żcR − żb2R + żb2L

2

)
−kS2Lc

(
zcR − zb2R + zb2L

2

)
+

cS1Lb

(
żb1L − ẇz −V w

′
z −λϕ̇x −V λϕ

′
x

)
+kS1Lb

(
zb1L −wz −λϕx

)= 0

(E.5d)

mb
Lb

4
(z̈b2R + z̈b2L)+ Jb

Lb
(z̈b2R − z̈b2L)−

cS2Lc

(
żcR − żb2R + żb2L

2

)
−kS2Lc

(
zcR − zb2R + zb2L

2

)
+

cS1Lb

(
żb2R − ẇz −V w

′
z −λϕ̇x −V λϕ

′
x

)
+kS1Lb

(
zb2R −wz −λϕx

)= 0

(E.5e)

mb
Lb

4
(z̈b2R + z̈b2L)+ Jb

Lb
(z̈b2R − z̈b2L)−

cS2Lc

(
żcR − żb2R + żb2L

2

)
−kS2Lc

(
zcR − zb2R + zb2L

2

)
+

cS1Lb

(
żb2L − ẇz −V w

′
z −λϕ̇x −V λϕ

′
x

)
+kS1Lb

(
zb2L −wz −λϕx

)= 0

(E.5f)

The mass, damping and stiffness matrices can be assembled as:

M =



mb
4 + Jb

L2
b

mb
4 − Jb

L2
b

0 0 0 0
mb

4 − Jb

L2
b

mb
4 + Jb

L2
b

0 0 0 0

0 0 mb
4 + Jb

L2
b

mb
4 − Jb

L2
b

0 0

0 0 mb
4 − Jb

L2
b

mb
4 + Jb

L2
b

0 0

0 0 0 0 mc
4 + Jc

L2
c

mc
4 − Jc

L2
c

0 0 0 0 mc
4 − Jc

L2
c

mc
4 + Jc

L2
c



C =



cS1 + cS2
4

cS2
4 0 0 − cS2

2 0
cS2

4 cS1 + cS2
4 0 0 − cS2

2 0
0 0 cS1 + cS2

4
cS2

4 0 − cS2
2

0 0 cS2
4 cS1 + cS2

4 0 − cS2
2

− cS2
2 − cS2

2 0 0 cS2 0
0 0 − cS2

2 − cS2
2 0 cS2



K =



kS1 + kS2
4

kS2
4 0 0 − kS2

2 0
kS2

4 kS1 + kS2
4 0 0 − kS2

2 0

0 0 kS1 + kS2
4

kS2
4 0 − kS2

2

0 0 kS2
4 kS1 + kS2

4 0 − kS2
2

− kS2
2 − kS2

2 0 0 kS2 0

0 0 − kS2
2 − kS2

2 0 kS2







F
Train car eigenvalue problem

In this appendix it is presented the eigenvalue problem of the vehicle. The mass, damping and stiffness
matrices can be assembled as:

M =



mc 0 0 0 0 0
0 Jc 0 0 0 0
0 0 mb 0 0 0
0 0 0 Jb 0 0
0 0 0 0 mb 0
0 0 0 0 0 Jb



C =



2cS2 0 −cS2 0 −cS2 0

0 2cS2
L2

c
4 −cS2

Lc
2 0 cS2

Lc
2 0

−cS2 −cS2
Lc
2 2cS1 + cS2 0 0 0

0 0 0 2cS1
L2

b
4 0 0

−cS2 −cS2
Lc
2 0 0 2cS1 + cS2 0

0 0 0 0 0 2cS1
L2

b
4



C =



2kS2 0 −kS2 0 −kS2 0

0 2kS2
L2

c
4 −kS2

Lc
2 0 kS2

Lc
2 0

−kS2 −kS2
Lc
2 2kS1 +kS2 0 0 0

0 0 0 2kS1
L2

b
4 0 0

−kS2 −kS2
Lc
2 0 0 2kS1 +kS2 0

0 0 0 0 0 2kS1
L2

b
4


The governing equation of the motion of the train car is then:

M z̈ +C ż +K z = 0 (F.1)

The damping is not considered when evaluating the eigenfrequencies and these can be found setting the
determinant of the coefficients equal to zero and solving for ω:

det
(−ω2M +K

)= 0 (F.2)
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