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Abstract

Pose estimation models predict multiple interdependent body keypoints, making
them a prototypical example of multi-target tasks in machine learning. While existing
explainable AT (XAI) techniques have advanced our ability to interpret model outputs in
single-target domains, their application to structured outputs remains underdeveloped.
This work investigates how XAI methods can be adapted to explain pose estimation
models, particularly in the context of cricket shot analysis. Guided by three research
questions, we identify key challenges such as capturing inter-keypoint dependencies and
providing interpretable explanations of structured outputs. We analyze both geometric
and heatmap-level behavior of a pretrained pose estimation model to distinguish be-
tween two cricket shots - the pull and the cover drive. Through techniques like cosine
similarity on heatmaps and polynomial trajectory modeling, we reveal how the model
internally differentiates between similar motion patterns. Our framework introduces
novel techniques for inter-keypoint explanation, contributes domain-specific insights
into model behavior, and demonstrates the feasibility of interpretable structured pre-
dictions in high-dimensional, real-world tasks.

1 Introduction

Artificial Intelligence (AI) has made its way into many aspects of modern life - from recom-
mending movies and driving cars to supporting decisions in medicine and finance. Yet, as
these systems grow more powerful, they also become more opaque. Understanding why an
AT model makes a certain prediction has become just as important as the prediction itself.
This is where Explainable AT (XAI) comes in. XAI refers to a set of techniques designed
to make the behavior of complex models interpretable to humans. It helps us trust, debug,
and improve Al systems, especially in high-stakes settings where decisions have real-world
consequences.

So far, most progress in XAI has focused on relatively simple tasks like image classifica-
tion, where the goal is to assign a single label to an image. But many real-world problems
are far more complex. In particular, multi-target tasks, where models make several inter-
dependent predictions at once, pose unique challenges for explanation. One such task is
human pose estimation, which predicts the positions of multiple keypoints (like shoulders,
elbows, and knees) to understand how a person is positioned in space. This has important
applications in areas such as sports analytics, physical rehabilitation, and human-computer
interaction.

Existing XAI methods often produce explanations for each output variable indepen-
dently. However, this approach is insufficient for pose estimation, where the outputs are
inherently interconnected. For example, in a cricket action, a movement in the shoulder
can affect the trajectory of the elbow, wrist, hips, and even the legs. Understanding these
interdependencies is essential for generating explanations that reflect the true reasoning of
the model.

In the healthcare domain, researchers have begun to tackle similar challenges. For multi-
target medical tasks, such as predicting multiple diagnoses or outcomes from multimodal
inputs, XAI techniques for multi-output models and multimodal XAI frameworks have been
effectively employed. These methods enable interpretability by jointly analyzing how input
features contribute to multiple correlated outputs, offering insight into complex decision-
making processes [1, 2.

Parallel developments in computer vision, such as XPose, have introduced group-based
attribution techniques like Group Shapley Value (GSV) and Group-based Keypoint Removal



(GKR) to interpret how clusters of keypoints contribute to pose predictions [3]. These ap-
proaches represent significant progress, but open questions remain about how such methods
can be adapted for domain-specific applications, particularly in sports contexts like cricket,
where biomechanical dependencies play a crucial role.

This research addresses the question: How can XAI methods be adapted for multi-
target tasks like pose estimation? To explore this, the study is guided by three sub-
questions:

1. What are the specific challenges in applying XAI methods to multi-target tasks?
2. How can interdependencies between keypoints be identified and explained?

3. How can XAI be used to understand the behavior of the model in relation to the
estimation of the cricket pose?

The main contributions of this work include a critical evaluation of existing XAI meth-
ods, identification of effective adaptation strategies, and the development of a framework for
generating and assessing multi-target explanations. This framework aims to produce expla-
nations that are not only accurate but also informative for both technical and domain-expert
audiences.

2 Related Work

As Al systems are increasingly used in real-world settings, it’s no longer enough for them to
just make accurate predictions-we also need to understand how and why they arrive at those
decisions. One of the most widely used tools for understanding model behavior is SHAP,
which stands for SHapley Additive exPlanations [4]. SHAP is based on ideas from game
theory and assigns each input feature a score that shows how much it contributes to the
final prediction. However, this technique is not directly applicable to models with structured,
multi-target outputs, such as human pose estimation, where outputs (e.g., keypoints) are
spatially and semantically dependent.

2.1 Gradient-Based XAI for Structured Outputs

In pose estimation, understanding the interdependence between predicted keypoints is cru-
cial for building meaningful explanations. One of the most relevant works in this domain
is XPose [3], which extends SHAP to structured outputs by introducing Group Shapley
Values (GSV) and Group-based Keypoint Removal (GKR). GSV measures the contribution
of groups of joints (e.g., shoulder-elbow-wrist) to the pose prediction, while GKR evaluates
the model’s sensitivity to their removal. This approach captures spatial dependencies across
joints and makes the attribution process more reflective of human anatomy and movement.
XPose demonstrates that structured, group-level explanations are more informative than
per-keypoint attributions, especially in dynamic activities such as sports or motion analysis.
Building on the idea of spatial attribution, PoselG [5] applies Integrated Gradients to
pose estimation. Instead of grouping keypoints, it focuses on generating individual saliency
maps for each joint prediction. These maps highlight the image regions that most influence
each keypoint, and the authors introduce evaluation metrics to quantify the strength and
consistency of these attributions. It offers a fine-grained view into model reasoning and is
particularly helpful for identifying failure modes such as occluded or mislocalized joints.



While SHAP and Integrated Gradients offer general frameworks, visual domains like
medical imaging often rely on more spatially intuitive methods such as Grad-CAM [6]. Li
et al. [7] employ Grad-CAM in a multi-label retinal disease classification model built from
VGG19 and ResNet50. Grad-CAM heatmaps are used not only to interpret predictions post-
hoc, but also to guide attention-based augmentation—focusing training on relevant lesion
areas. This gradient-based saliency improves both accuracy and interpretability, showing
how visual explanations can be integrated into the model pipeline.

A similar use of gradient-based attribution appears in UnboxAlI by Zhang et al. [2], which
addresses a multimodal, multi-task medical setting. The authors introduce a fusion-aware
framework where gradients from image, text, and time-series inputs are aligned with different
clinical prediction tasks. Saliency maps are used to explain how each modality contributes to
each task, and alignment losses are added to ensure consistency across modalities. This cross-
task interpretability ensures that the model remains transparent even in highly complex
settings involving interrelated outputs.

2.2 Summary and Relevance to This Work

Together, these works demonstrate how XAI methods, especially those leveraging gradient-
based saliency, can be adapted to multi-target and structured prediction tasks. XPose shows
that dependencies between outputs must be made explicit through group-wise attribution,
while PoselG provides a scalable method to assign spatial importance per keypoint. Li
et al. and Zhang et al. highlight the value of gradient-based explanations in improving
interpretability and performance in high-dimensional medical tasks.

Our work builds on these approaches by focusing on pairwise relationships between
predicted keypoints in pose estimation. Unlike XPose, which uses Shapley values over joint
sets, we quantify heatmap similarity across keypoints using cosine similarity. This method
provides a data-driven and computationally efficient way to expose spatial dependencies in
the model’s output space, and offers a novel lens for structured interpretability in tasks such
as cricket pose analysis.

3 Challenges and Methodological Approach

The goal of this research is to investigate how explainable AT (XAI) methods can be ef-
fectively adapted for multi-target tasks such as human pose estimation. Unlike traditional
classification problems that output a single prediction, pose estimation models generate
structured outputs-typically the spatial coordinates of multiple body keypoints. These key-
points are inherently dependent: the position of one joint (e.g., the wrist) often constrains
or predicts the position of others (e.g., the elbow or shoulder). This interdependence is
especially critical in domain-specific contexts like cricket shot analysis, where correct body
alignment and motion dynamics underpin successful performance.

Applying XAI to pose estimation presents unique methodological challenges. Classical
explanation techniques like SHAP and Grad-CAM are typically designed for scalar outputs
and do not natively account for the structured nature or interdependencies of pose keypoints.
Moreover, the outputs of pose models are often not directly interpretable to non-expert
users, limiting the effectiveness of existing saliency or attribution methods in real-world
applications such as coaching or rehabilitation. This section outlines the current limitations,
proposes a framework for modeling keypoint dependencies, and motivates the need for task-
aware XAl in cricket pose analysis.



3.1 Limitations of XAI in Pose estimation

Although recent work has made strides in explaining pose models, several critical limitations
remain. First, many post-hoc attribution methods, such as Integrated Gradients (as in
PoselG [5]) or Group Shapley Values (as in XPose [3]) rely on gradient information or
feature perturbation but do not fully capture the spatial and semantic relationships between
keypoints. These methods often treat each output (keypoint) in isolation, making it difficult
to understand how combinations of joints influence the model’s overall interpretation of a
pose.

Second, most saliency-based techniques focus on visual explanations in the input space
(e.g., highlighting pixels or regions), but in pose estimation, the outputs themselves (coor-
dinates) are the primary interest. As a result, traditional heatmaps can be unintuitive or
insufficient when the goal is to understand model confidence or reasoning in terms of body
structure or biomechanics.

Finally, evaluations of interpretability in this domain remain inconsistent. Few studies
offer quantitative metrics for explanation quality, and most user-facing applications (e.g., fit-
ness or ergonomics) are validated on small datasets or with limited user studies. This makes
it difficult to assess the reliability, robustness, or domain-transferability of XAI methods in
structured output tasks like pose estimation.

This analysis directly addresses our first research subquestion: What are the specific
challenges in applying XAI methods to multi-target tasks? The limitations outlined in the
literature review - particularly the lack of inter-keypoint dependency modeling, the mismatch
between input-focused saliency and structured output interpretation, and the absence of
standard evaluation practices - highlight why existing approaches are insufficient for pose
estimation. These challenges motivate the development of more targeted interpretability
tools that explicitly account for the structured, interrelated nature of pose model outputs.

3.2 Identifying Keypoint Dependencies

A central challenge in explaining pose estimation models lies in understanding how predicted
keypoints relate to one another. Since body joints are spatially and biomechanically con-
nected, treating each output independently, as many existing XAI methods do, can obscure
important structural dependencies. To address this, we introduce a keypoint-level analysis
aimed at quantifying interdependencies between outputs in a pose estimation model.

To investigate these relationships, we make use of the heatmap outputs generated by
a pre-trained pose estimation model. For each input image, the model produces a set of
heatmaps, one per keypoint, indicating the predicted spatial probability distribution for
that joint. We then analyze the pairwise overlap between these heatmaps across multiple
samples to assess how strongly the activation for one keypoint correlates with others. This
yields a Keypoint Dependency Heatmap, a symmetric matrix that quantifies how much each
keypoint depends on others in the model’s internal representations.

This method allows us to move beyond per-keypoint saliency and instead build a struc-
tured understanding of the model’s internal pose logic. Keypoints with high mutual de-
pendency values likely reflect strong spatial or functional ties, such as those between the
shoulder and elbow, or the knee and hip. Conversely, weak dependencies may indicate either
true anatomical independence or model uncertainties.

We chose this methodology because standard attribution techniques are designed for
scalar outputs or categorical decisions and do not capture inter-output relationships. Heatmaps,



however, offer a spatial probability view of each joint’s prediction, and analyzing their over-
laps provides a more natural and interpretable way to uncover how the model encodes
structural dependencies. This approach aligns better with the underlying nature of pose
estimation and bridges the gap left by traditional explanation tools.

This analysis directly supports the second research subquestion: how can interdepen-
dencies between keypoints be identified and explained? By visualizing and quantifying these
internal relationships, we lay the foundation for building more structured, context-aware
explanation mechanisms that reflect the true nature of human motion.

3.3 Understanding Pose Estimation in Cricket Shot Analysis

To evaluate how explainable AI methods can support domain-specific interpretation, we
apply our keypoint-based analysis to a focused case study: distinguishing between two
fundamental cricket shots - the pull shot and the cover drive. These actions involve different
biomechanical patterns, particularly in the movement of the arms, which makes them a
suitable testbed for analyzing pose estimation behavior and its interpretability.

This approach begins by examining the dynamic relationship between the wrist and
the shoulder during each shot type. Using the keypoint coordinates generated by the pose
estimation model, we track the relative spatial position of the wrist with respect to the
shoulder over the sequence of frames. This relationship is formalized through mathematical
expressions, which quantify angles or displacements in 2D space. By characterizing these
movement profiles, we establish pose-based descriptors that differentiate the two shot types
based on arm motion alone.

In addition to geometric analysis, we also investigate the internal behavior of the pose
model by comparing the predicted heatmaps for the same keypoints across the two shot
categories. This allows us to observe how confident the model is in predicting certain joint
positions, and whether its attention shifts across different joints depending on the shot. For
instance, we observe whether the model assigns higher spatial probability to the front wrist
in a pull shot compared to a cover drive, or whether certain joints become less localized in
one context versus another.

This methodology was chosen because it aligns closely with the challenges identified in
explaining structured pose outputs. Rather than treating the classification of sports actions
as a black-box outcome, we break down the model’s internal representations into inter-
pretable components - keypoint movement patterns and spatial attention differences. These
insights are not easily accessible through traditional XAI methods, which lack the resolu-
tion or task-awareness to interpret such fine-grained motor behavior. Our approach offers a
domain-relevant pathway for understanding what the model focuses on when distinguishing
between complex physical movements.

By combining coordinate-based motion analysis with heatmap-level interpretation, we
gain insight into how the model internally differentiates between similar but functionally
distinct poses. This analysis reveals not only what the model predicts, but how it arrives at
those predictions, thereby advancing the broader goal of making structured output models
more transparent in task-specific applications like sports pose assessment.

4 Analysis of Keypoint Behavior Across Cricket Shots

This section presents an empirical analysis of how a pose estimation model distinguishes
between two common cricket shots: the pull shot and the cover drive. Building upon the



methods outlined in the previous section, we investigate how different keypoints contribute to
the model’s internal decision-making and whether the spatial configurations and heatmap
activations reveal consistent pose-level differences. Our goal is to interpret the model’s
behavior by focusing on visual and geometric evidence derived from its outputs.

4.1 Keypoint Activation Contrast Between Shots

The first axis of analysis focuses on the predicted heatmaps for individual keypoints. By
comparing these heatmaps across the two shot types, we assess how the model allocates
spatial attention and confidence across joints. Each heatmap represents the model’s spatial
probability distribution for a given joint, allowing us to visually inspect where the model
"looks" when predicting joint positions.

We observe that the model exhibits stronger and more focused activations in specific
joints depending on the shot type. For example, in pull shots, the wrist of the dominant
hand often displays a sharper and more localized heatmap, likely due to its extended lateral
movement across the horizontal axis. In contrast, during cover drives, shoulder and elbow
activations tend to be more prominent and stable, reflecting the controlled vertical extension
of the leading arm.

These differences suggest that the model adapts its internal representation depending on
the type of motion, emphasizing keypoints that are most informative for each shot. This
finding supports the idea that pose estimators implicitly encode action-level information
even when not explicitly trained for classification, and that this information can be revealed
through targeted heatmap analysis.

4.2 Geometric Signatures of Arm Movement

In parallel with heatmap analysis, we also explore the geometric patterns of arm motion
by analyzing the spatial relationship between the wrist and the shoulder. For each shot
type, we compute the relative wrist position with respect to the shoulder over a sequence of
frames, using 2D displacement vectors and angle calculations to formalize these movements.

Our analysis shows clear distinctions between the two shots: pull shots typically involve
a wide horizontal sweep of the wrist, often with a lower vertical displacement, while cover
drives exhibit a more diagonal or vertical movement path, consistent with the upward and
outward drive of the bat. These patterns are captured through trajectory plots and angle
measurements, which consistently reveal higher angular elevation in cover drives and wider
horizontal spans in pull shots.

This geometric analysis complements the heatmap-based interpretation by showing how
the model’s predictions correspond to biomechanically meaningful differences in joint move-
ment. By capturing these patterns through interpretable mathematical descriptors, we not
only understand what the model predicts but gain insight into how these predictions align
with real-world motion characteristics. This dual perspective offers a richer view of model
behavior in a sports-specific pose estimation context.

5 Experimental Setup and Results

Having outlined the methodological approach and the motivations behind it, we now turn
to the practical evaluation of these ideas. This section presents the experimental setup
and results obtained through our analysis of pose estimation in multi-target tasks. We



describe the datasets, preprocessing steps, and models used in our experiments, followed
by a detailed presentation of the key findings. The goal is to assess how well the proposed
interpretability techniques reveal structured dependencies between keypoints and explain
the model’s decision-making process, particularly in domain-specific contexts such as cricket
shot recognition.

5.1 Experimental Setup

Datasets

To evaluate the interpretability of pose estimation in multi-target tasks, we conduct
experiments in two settings: general human movement analysis using the JHMDB dataset
and domain-specific sports analysis using the CKT Cricket dataset [8, 9].

The JHMDB dataset consists of short human action video clips and is commonly used
in pose and action recognition research. In our experiments, we use only the raw video
content and do not rely on the original annotations. Our objective is not to evaluate pose
prediction accuracy against ground-truth labels, but rather to study the internal behavior
of a pretrained pose estimation model through keypoint heatmaps and interdependencies.

For the cricket-specific experiments, we use the CKT Cricket dataset, a publicly available
collection of cricket video clips sourced from broadcast footage. This dataset does not contain
pose or action annotations.

Preprocessing

To isolate the batter and reduce background noise, we apply a preprocessing step us-
ing YOLOv8 [10], an efficient object detection model released by Ultralytics, to generate
bounding boxes around the batter as seen in Fig. 1. YOLOvS uses an anchor-free detection
head and advanced backbone architecture, achieving an excellent balance of accuracy and
real-time inference (>50 FPS), making it ideal for cropping batter frames from cricket videos
efficiently and accurately.

Preprocessing Pipeline for Cricket Pose Estimation

Cropped Batter

Original Frame Detected Bounding Box

Figure 1: CRICKET SHOT PREPROCESSING STAGES. Left: original input frame. Center:
YOLOvVS8 detection with bounding box. Right: cropped output used for pose estimation.

Since the batter’s position may shift across frames-due to camera movement or zoom-we
apply this detection and cropping process at regular frame intervals to ensure consistent



localization. Additionally, we manually trim the beginning and end of each cricket video
clip to exclude irrelevant frames and retain only the core action segment. This step ensures
that the pose estimation model focuses exclusively on meaningful motion patterns associated
with the cricket shot.

Model

For pose estimation, we use the pretrained keypointrcnn_resnet50_fpn model from
PyTorch’s torchvision library [11]. This model is built on top of Faster R-CNN with a
ResNet-50 backbone and a Feature Pyramid Network (FPN), and it is trained on the COCO
keypoint dataset. It provides robust multi-scale feature extraction and outputs 17 keypoints
per person, each with an associated heatmap. This architecture is well-suited for human
motion analysis and has demonstrated high accuracy on diverse pose datasets.

In both experimental settings, we aggregate predictions across multiple frames and video
samples to improve result reliability and minimize the effect of temporary occlusions or
outlier frames. For example, when computing keypoint dependencies or visualizing average
heatmap patterns for a specific shot type, we average outputs across several sequences.
This technique produces smoother and more representative insight into the model’s internal
behavior.

This modular pipeline, combining person detection, pose estimation, and post hoc inter-
pretability analysis, is reproducible and adaptable to other structured movement domains
such as sports performance, rehabilitation, or biomechanics.

5.2 Literature Context: XAI in multi-target tasks

The first research subquestion of this work - What are the specific challenges in applying
XAI methods to multi-target tasks? - is grounded in the complexity of explaining models
whose outputs are not only numerous but often highly interdependent. Across domains like
healthcare and computer vision, traditional XAI techniques such as SHAP and Grad-CAM
have shown utility, yet encounter major limitations when applied to structured or multi-
output settings. That is why we should dive deeper into some innovative methods proposed
in these fields to explain the output of models.

Healthcare Domain

In healthcare, for instance, multi-target models frequently predict related diagnoses or
biomarkers. To explain them, recent research has extended SHAP to better accommodate
multi-target settings. For example, in the survey by Tjoa and Guan [1], several adapta-
tions of SHAP are reviewed, including hierarchical SHAP, which distributes contributions
across structured layers (e.g., organ systems or diagnostic categories), and clustered SHAP,
which aggregates attributions over groups of outputs to highlight systemic effects. Simi-
larly, Bhattarai et al. [12] applied Deep-SHAP to map relationships between neuroimaging
biomarkers and cognitive scores in Alzheimer’s disease, offering insight into which brain
regions contribute to multiple cognitive targets.

Visual explanation methods like Grad-CAM offer an alternative by highlighting salient
image regions responsible for predictions. Grad-CAM operates by backpropagating gradients
from a target output through the final convolutional layers of a neural network, generating
heatmaps that localize the spatial regions most influential to a given prediction. Unlike
SHAP, which quantifies feature importance in an abstract input space (e.g., pixel intensity



or lab value), Grad-CAM highlights where in an image the model is "looking" when making
decisions, offering more interpretable insights for visual domains. A recent example by Li et
al. [7] demonstrated the usefulness of Grad-CAM for multi-label retinal disease detection,
integrating it into the model pipeline for interpretability-aware training.

Other works reveal further challenges. Kim et al. [13] and Jin et al. [14] show that while
saliency maps can be extended to multi-label or multimodal tasks, doing so often requires
architectural changes or additional annotations. Moreover, explanations in these settings
tend to prioritize individual targets without contextualizing how decisions for one output
may affect or depend on others.

Multimodal explainability efforts such as Zhang et al. [2] underscore this issue: even
when using gradient-based attention to create cross-modal saliency maps, the complexity of
integrating interpretability across different tasks and data types remains a barrier. Similarly,
works like Badr’e and Pan [15] and Shi [16] attempt to interpret shared latent features across
outputs, yet still face difficulties in surfacing transparent, interpretable relationships between
them.

Computer Vision

In pose estimation, where each output (keypoint) forms part of a coherent spatial struc-
ture, methods like XPose [3] and PoselG [5] have attempted to address this by introducing
group-based Shapley attribution or applying Integrated Gradients at the output level. Com-
plementing XPose, the Pose Tutor system [17] targets the human-in-the-loop aspect of pose
correction. It combines pose prediction with visual and linguistic explanations to guide users
in correcting their posture. Unlike XPose, which focuses on model-centric attribution, Pose
Tutor emphasizes user-facing interpretability. It highlights which keypoints deviate from
expected configurations and offers actionable guidance for correction, making it particularly
suited for real-time sports training and rehabilitation settings.

Beyond these approaches, several recent studies have further explored model-centric
interpretability. TransPose [18] integrates interpretability into the model architecture itself
using a Transformer, where attention weights reveal which image patches contribute to each
keypoint prediction. This method provide valuable diagnostic tools and help uncover failure
modes such as shortcut learning or keypoint misclassification.

Building on user-facing interpretability, CARE [19] formulates pose correction as a
counterfactual reasoning problem, prescribing minimal joint angle adjustments required to
convert an incorrect pose into a correct one. Similarly, Dibenedetto et al. [20] present
a lightweight office posture correction system using post-hoc feature importance to guide
ergonomic feedback. These works emphasize actionable, real-time pose improvement and
extend explainability into practical domains beyond sports.

In summary, current XAI methods struggle with the following challenges in multi-output
settings: (1) capturing interdependencies between outputs; (2) offering human-interpretable
representations of these dependencies; (3) scaling explanations across tasks or modalities;
and (4) providing consistent, robust interpretability without sacrificing model accuracy or
usability. These challenges justify the need for novel, domain-specific approaches, like those
proposed in this project, which aim to model and visualize inter-keypoint dependencies to
provide deeper insight into structured pose estimation models.



6 Results

6.1 Quantifying Keypoint Dependencies with Cosine Similarity

To understand how the model internally relates different body keypoints, we compute pair-
wise similarities between the predicted heatmaps produced by the pose estimation model.
Each heatmap reflects the spatial probability distribution of a keypoint’s location, as shown
in Figure 2 for the right foot. A good similarity measure should capture how similarly two
joints are spatially activated, rather than relying on raw intensity.

Keypoint as Point (Right Foot) Keypoint as Heatmap (Right Foot)

Figure 2: VISUALIZING KEYPOINT REPRESENTATIONS. Left: Right foot keypoint shown as a
detected point. Right: Corresponding heatmap visualization highlighting spatial confidence. This
comparison illustrates how the model represents keypoints not just as coordinates but as spatial
distributions over the input image.

We use cosine similarity, a widely adopted metric in high-dimensional vector analysis,
particularly effective for comparing spatial patterns. It measures the orientation similarity
between two vectors, making it robust to differences in magnitude that commonly occur in
heatmaps across frames or joints. Unlike metrics such as Euclidean distance or Pearson cor-
relation, cosine similarity is scale-invariant, allowing us to focus on the spatial co-activation
patterns.

Given two normalized and flattened heatmaps A and B, the cosine similarity is defined
as:

A-B
Al - [IB]

where A - B is the dot product of the two vectors, and ||A]|, ||B|| denote their Euclidean
norms.

This value lies in the range [0, 1] for non-negative heatmaps, with higher values indicating
greater spatial alignment. By computing this similarity for every pair of keypoints across
multiple frames and multiple videos, we construct a Keypoint Dependency Matriz, which
encodes the degree of interdependence between joints.

cos_sim(A,B) =

10
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Figure 3: KEYPOINT DEPENDENCY MATRIX BASED ON COSINE SIMILARITY. Each cell
quantifies the average spatial co-activation between two keypoints. Darker regions indicate stronger
similarity between the respective heatmaps, suggesting a higher degree of model-level dependency.

As seen in Figure 3, certain keypoints, such as the shoulder and elbow, exhibit strong
mutual dependencies, reflecting expected biomechanical relationships. This analysis provides
a foundation for understanding the internal logic of pose estimation models and supports
structured interpretation of their outputs in both general and task-specific contexts.

6.2 Analysis of Keypoint Behavior Across Cricket Shots

This part presents the results of our domain-specific analysis of pose estimation behavior
in cricket. Building on the methodology described previously, we examine how the model
distinguishes between two common batting techniques: the pull shot and the cover drive.
The analysis is based on two modalities - predicted keypoint heatmaps and coordinate-based
movement signatures - with a focus on the left wrist and shoulder as key indicators of arm
motion.

To ensure consistency, all videos in each shot category were trimmed to include only the
active portion of the movement, thereby removing irrelevant frames. Keypoint predictions
and heatmaps were then aggregated per shot type to support comparative analysis across
multiple video samples.

Geometric Analysis of Batter’s Form

To establish an interpretable baseline for shot comparison, we begin with a purely ge-
ometric analysis of wrist movement relative to the shoulder. This form of analysis mirrors
how a human coach or observer would examine a cricket player’s motion by visually tracking
the arm’s path and shape. Importantly, this offers a human-interpretable counterpart to the
model-based interpretation methods introduced later.
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Figure 4: COMPARISON OF WRIST MOVEMENT DURING A COVER DRIVE. Left: Pose keypoints
detected by the model. Center: Fitted wrist trajectory relative to the shoulder, modeled using
a degree-10 polynomial in 2D space. Right: Radial distance between wrist and shoulder over
time, fitted with a quadratic curve. The motion exhibits a sweeping horizontal arc and increasing
displacement, characteristic of a cover drive.
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Figure 5: COMPARISON OF WRIST MOVEMENT DURING A PULL SHOT. Left: Pose keypoints
detected by the model. Center: Fitted wrist trajectory relative to the shoulder, modeled using
a degree-10 polynomial in 2D space. Right: Radial distance between wrist and shoulder over
time, fitted with a quadratic curve. The motion exhibits a sweeping horizontal arc and increasing
displacement, characteristic of a pull shot.

Each video frame is processed using a pose estimation model, which outputs 17 body
joint keypoints. For our analysis, we isolate the left wrist (2, y.) and left shoulder (zs,ys)
in normalized image coordinates [0,1]. To eliminate the effects of global movement and
camera panning, we compute relative wrist coordinates:

Al‘(t) = Tw (t) — Ts (t)v Ay(t) = yu (t) —Ys (t)

This centers all motion on the shoulder, allowing us to study only the articulation of the
arm during the shot.
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Then we fit a continuous 2D curve to the wrist trajectory relative to the shoulder using
a polynomial model:

d d
Az(t) =Y ait', Ay(t)~ Y bit'
i=0 i=0
Polynomials were selected for their smoothness, differentiability, and analytical tractabil-
ity. Unlike splines or piecewise models, polynomials offer global control of curve shape, which
is especially useful in motion capture where acceleration and velocity trends are of interest.
The choice of polynomial degree d = 10 was empirically determined. Lower-degree
polynomials (d < 4) underfit, failing to capture complex wrist behavior such as the sweeping
arcs in cover drives or sharp inflections in pull shots. Conversely, degrees beyond 10 tended
to overfit and amplify high-frequency noise. Degree 10 provided the best trade-off between
expressiveness and robustness, capturing up to two or three distinct changes in motion
direction, as illustrated in figures 4 and 5.
To complement the 2D spatial analysis, we further evaluate the radial distance of the
wrist from the shoulder as a function of time:

r(t) =/ Ax(t)? + Ay(t)?

This scalar quantity captures the extension or contraction of the arm during the stroke. A
quadratic function was used to model r(t), as this shape generally reflects the biomechanics
of a controlled limb motion - an initial rise (extension), peak, and fall (retraction). This
fits the cricket context well, where the wrist typically moves outward with the bat and then
returns to a neutral position post-contact.

This geometric modeling approach serves multiple purposes:

e It provides a human-understandable abstraction of complex limb motion.

e It serves as a reference point against which the model’s internal attention or uncer-
tainty can be evaluated.

e It reveals clear shot-specific movement patterns, suggesting potential for weakly-
supervised or unsupervised classification based on motion alone.

By embedding these fitted descriptors into a structured analysis pipeline, we create
a bridge between raw model outputs and interpretable biomechanical behaviors. These
insights lay the foundation for deeper explanation analysis using heatmaps and attribution
metrics in the subsequent sections.

Model Attention Patterns of Batter’s form

To investigate how the pose estimation model internally attends to different keypoints
across distinct shot types, we perform a heatmap-level analysis centered on the relationship
between the left wrist and the left shoulder. Rather than relying solely on the predicted
coordinates, this analysis examines the raw joint heatmaps - spatial probability distributions
generated by the model for each keypoint.

For each frame within a temporally aligned clip, we compute the cosine similarity between
the flattened heatmaps of the left wrist and the left shoulder. This metric serves as a proxy
for joint-level correlation, revealing whether the model’s attention toward one joint spatially
overlaps or aligns with the other. We track these correlation scores across the time dimension
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of both shot types as seen in Fig. 6. Given that the initial stance is visually similar in
each case, our analysis focuses on how the model’s internal representation begins to diverge
as the shot motion initiates, revealing whether it can distinguish between the two actions
based on movement dynamics.

Heatmap-based Cosine Similarity: Keypoints 5 & 9
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Figure 6: Cosine similarity of predicted heatmaps for keypoints 5 (left wrist) and 9 (left
shoulder) across frames. The similarity reflects how similarly the model attends to both
keypoints over time for the pull shot and cover drive.

This heatmap correlation analysis bridges the gap between visual joint tracking and
latent model behavior, offering a task-relevant lens into how structured pose estimators
distribute spatial focus across related outputs in dynamic settings.

7 Responsible Research

This project aims to improve the interpretability of pose estimation models in multi-target
tasks by analyzing the relationships between predicted keypoints and their behavior in
domain-specific contexts, such as cricket shot analysis. In pursuing this objective, we have
paid careful attention to issues of ethical responsibility, data transparency, and reproducibil-
ity.

7.1 Ethical Considerations

All data used in this study comes from publicly available video datasets: the JHMDB
dataset for general human movement [8], and the CKT Cricket dataset [9] for sports-specific
analysis. These datasets consist of publicly broadcast videos and contain no personal or
sensitive information, ensuring compliance with ethical data use standards.

Additionally, we avoid training new models from scratch or on private human subject
data, thereby minimizing computational costs and the associated environmental impact of
deep learning research. The project focuses solely on the interpretability of existing models
rather than expanding predictive capabilities, ensuring that no new biases are introduced in
model behavior.
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7.2 Reproducibility and Model Transparency

All methods used in this research are built on openly available tools and pretrained mod-
els. The pose estimation component is powered by the Keypoint R-CNN model with a
ResNet-50-FPN backbone [21], available through PyTorch’s torchvision library. Similarly,
YOLOVS8 [10], used for cropping the batter from cricket videos, is an open-source object
detector known for its high accuracy and speed.

Despite relying on these public tools, pose estimation pipelines often behave as black
boxes due to their complex multi-stage architectures. While popular explanation techniques
like Grad-CAM [6] are effective in many image-based tasks, adapting them to pose estima-
tion is challenging. Many pretrained pose models are not designed to expose intermediate
gradients in a manner compatible with Grad-CAM, and retraining a custom architecture
to facilitate such access is infeasible in this context due to limited data, annotations, and
computational resources.

As an alternative, this project focuses on interpreting model outputs directly, specifically,
the heatmaps associated with keypoint predictions. These heatmaps provide a natural and
meaningful representation of the model’s spatial belief for each joint. By quantifying spatial
dependencies through cosine similarity across these heatmaps, we provide an interpretable
view of how the model perceives structural relationships in human pose, without needing
model modifications or retraining.

7.3 Code Availability

To support transparency and reproducibility, all code used in this study, including data
preprocessing, keypoint extraction, heatmap generation, and dependency analysis, will be
made publicly available in a dedicated repository. This will allow other researchers to
replicate the experiments, verify results, and adapt the methodology to related domains
such as rehabilitation, fitness tracking, or sports analytics.

8 Discussion

The frame-wise cosine similarity between the predicted heatmaps of the left wrist and shoul-
der, as visualized in Figure 6, exhibits patterns that align closely with the radial trajectory
profiles observed earlier through polynomial and quadratic fitting. For both shot types, the
cosine similarity increases as the shot motion progresses, mirroring the parabolic or rising
trend in the radial distance from the wrist to the shoulder over time. This alignment suggests
that as the batter transitions from stance to execution, not only does the geometric sepa-
ration between joints become more pronounced, but the model’s focus on those joints also
becomes more coordinated, reflecting stronger functional coupling during dynamic motion.

This relationship between geometric displacement and model-based heatmap correlation
indicates that the pose estimator internalizes meaningful kinematic dependencies between
joints as they become more active in the context of the shot. The increasing similarity can
be interpreted as the model reinforcing the biomechanical link between wrist and shoulder
as the arm extends and rotates. Interestingly, the correlation peak typically coincides with
the frames where the radial movement is at its maximum or inflection, suggesting that the
model may rely on such moments to anchor its prediction confidence.

Beyond confirming our earlier trajectory-based findings, this analysis offers further in-
terpretability: it demonstrates that internal saliency patterns in deep pose models reflect
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not only the spatial configuration of joints but also their temporal coordination. This opens
new possibilities for interpreting model behavior in time-sensitive domains such as sports or
rehabilitation, where dynamic joint interaction is critical. Moreover, it highlights the poten-
tial for using correlation tracking as an explainability signal to identify critical movement
phases or diagnose failure modes in model predictions.

9 Conclusions and Future Work

This research addressed the overarching question: How can explainable AT (XAI) meth-
ods be adapted for multi-target tasks like pose estimation? In doing so, we explored three
subquestions focused on (1) the specific challenges in applying XAI to multi-target tasks,
(2) identifying and explaining inter-keypoint dependencies, and (3) understanding model
behavior in structured pose tasks like cricket action analysis.

Our findings revealed several critical limitations of traditional XAI methods when used
in structured output settings. Specifically, we showed that approaches like SHAP, Grad-
CAM, and Integrated Gradients often fail to capture the spatial and functional dependencies
among predicted keypoints. To address this, we proposed and implemented a heatmap-based
dependency analysis using cosine similarity, offering a more natural and spatially aware
measure of joint correlations.

In addition, we introduced a geometric analysis technique based on polynomial modeling
of wrist-shoulder trajectories, enabling us to distinguish between cricket shots based on joint
motion patterns. This dual approach - combining coordinate-level motion analysis with
heatmap similarity - yielded interpretable and task-relevant insights into model behavior.

Key contributions include:

e A novel heatmap-based dependency matrix revealing inter-keypoint relationships.

e A comparative framework for analyzing different action classes using both visual
(heatmap) and geometric (trajectory) evidence.

e Domain-specific analysis demonstrating how pose models attend to different joints
depending on task context.

Future work can extend this study in several impactful directions. First, while our
analysis focused on the relationship between the left wrist and left shoulder, examining
dependencies among other keypoints, such as between the hips and knees, or across con-
tralateral limbs, could reveal additional biomechanical patterns and further generalize the
framework to a wider range of movements and sports contexts. Also, integrating tempo-
ral modeling into the interpretability process would allow for the analysis of evolving joint
dependencies over the course of an action, potentially uncovering transition dynamics that
static analysis cannot capture.

In conclusion, this research demonstrates that adapting XAI to multi-target structured
prediction is not only feasible but necessary for understanding complex models in real-world
tasks. By aligning explanations with domain-specific patterns and interdependencies, we
bring model transparency closer to human reasoning.
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