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ABSTRACT

The interaction of ocean waves with variable currents and topography in coastal areas can result in in-

homogeneous statistics because of coherent interferences, which affect wave-driven circulation and transport

processes. Stochastic wavemodels, invariably based on some form of the radiative transfer equation (or action

balance), do not account for these effects. The present work develops and discusses a generalization of the

radiative transfer equation that includes the effects of coherent interferences on wave statistics. Using mul-

tiple scales, the study approximates the transport equation for the (complete) second-order wave correlation

matrix. The resulting model transports the coupled-mode spectrum (a form of the Wigner distribution) and

accounts for the generation and propagation of coherent interferences in a variable medium. The authors

validate the model through comparison with analytic solutions and laboratory observations, discuss the dif-

ferences with the radiative transfer equation and the limitations of this approximation, and illustrate its ability

to resolve coherent interference structures in wave fields such as those typically found in refractive focal zones

and around obstacles.

1. Introduction

The dynamics and statistics of ocean waves are impor-

tant, for example, for upper-ocean dynamics (e.g., Craik

and Leibovich 1976; Smith 2006; Aiki and Greatbatch

2011), air–sea interaction (e.g., Janssen 2009), ocean

circulation (e.g., McWilliams and Restrepo 1999), and

wave-driven circulation and transport processes (e.g.,

Hoefel and Elgar 2003; Svendsen 2006). Modern sto-

chastic wavemodels are routinely applied to a wide range

of oceanic scales, both in open-ocean applications and

the near shore, and either as stand-alone wave prediction

models, or as part of coupled ocean–atmosphere models

for global circulation and climate studies (e.g., The

WAMDI Group 1988; Tolman 1991; Komen et al. 1994;

Booij et al. 1999; Wise Group 2007). These so-called

third-generation wave models are invariably based on

some form of the radiative transfer equation (or action

balance)

›tE1 cx � $xE1 ck � $kE5 S , (1)

which describes the evolution of the variance (or action)

density spectrum E(k, x, t) through time t, geographical

space x, and wavenumber space k, with the transport

velocities cx and ck, respectively, and augmented with

(parameterized) source terms S(k, x, t) to account for

nonconservative and nonlinear processes.

Continuing development of these models is generally

through improvements of the source term parameter-

izations on the right side of Eq. (1), but the left side,

the radiative transfer equation (RTE), has not changed

since the early development of these models (e.g., The

WAMDI Group 1988; Komen et al. 1994; Wise Group

2007). The RTE transports wave variance density through

a slowly varyingmedium such that wave energy (or action)

is conserved, while assuming that the wave field is (and

remains) quasi-homogeneous and near-Gaussian. In the

open ocean, where medium variations are generally very

weak, and wave statistics evolve principally through the

action of wind, dissipation (whitecapping) and third-order

nonlinear effects, the assumptions of homogeneity and

Gaussianity are often easily met. However, on continental
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shelves and in coastal regions, where wave fields travel

through shallower water, and medium variations are

stronger (both currents and topography), the wave field

can develop and maintain inhomogeneities that strongly

affect the wave statistics (e.g., Janssen et al. 2008; Janssen

and Herbers 2009). For instance, the refraction over

coastal topography or currents (e.g., Berkhoff et al. 1982;

Vincent and Briggs 1989; Magne et al. 2007; Janssen et al.

2008), or diffraction around obstacles such as breakwa-

ters, reefs, or headlands (e.g., Penney and Price 1952), can

result in relatively fast variations in wave statistics be-

cause of coherent wave interference patterns. The effects

of such coherent structures on the wave statistics are not

accounted for by the RTE (Vincent and Briggs 1989;

O’Reilly and Guza 1991).

To account for the effects of coherent interferences on

the wave statistics, more general transport models for

second-order wave statistics were developed in other

fields, such as optics and quantummechanics (e.g., Wigner

1932; Bremmer 1972; Bastiaans 1979; Cohen 2010). For

ocean waves such models were developed for special

cases, including narrowband waves (e.g., Alber 1978) and

forward-scatteredwaves through aweakly two-dimensional

medium (e.g., Janssen et al. 2008). In the present work,

we apply the ideas developed in optics (e.g., Bremmer

1972; Bastiaans 1979; Cohen 2010) to derive a more

general transport model for ocean wave statistics in the

presence of caustics and coherent interferences, which

includes the RTE as a special case.

Thereto we derive a general transport equation for

the second-order correlation matrix for linear waves in

a slowly varying medium, and—using multiple scales—

derive a consistent, quasi-coherent approximation that

includes coherent interferences (section 2). In section 3,

to illustrate the accuracy of our approximations and the

differences with the RTE, we compare a numerical im-

plementation of the model with an analytic solution for

the evolution of coherent Gaussian wave packets and

compare model simulations with observations of ran-

dom wave propagation over a two-dimensional shoal

(Vincent and Briggs 1989). We discuss (section 4) the

spectral distribution function (the coupled-mode spec-

trum), the limits of the approximation, wave diffraction

in the quasi-coherent approximation, and show that the

quasi-coherent approximation includes earlier results as

special cases (e.g., Alber 1978).

2. Evolution of correlators

To study the generation and propagation of coherent

structures in random ocean wave fields propagating

through a variable medium, we consider the statistics

of the free-surface elevation h(x, t), represented as a

zero-mean random wave variable and a function of the

horizontal coordinates x 5 (x, y) and time t. We define

a complex variable z, such that h 5 Re(z), its real and

imaginary parts form a Hilbert transform pair (see, e.g.,

Mandel and Wolf 1995), and its Fourier transform ẑ is

defined by the transform pair1

z(x, t)5

ð
ẑ(k, t) exp(ik � x) dk and (2a)

ẑ(k, t)5
1

(2p)2

ð
z(x, t) exp(2ik � x) dx . (2b)

We assume that medium variations are relatively slow,

varying O(1) over distances l0/«, with l0 being a charac-

teristic wavelength and « � 1, so that plane wave solu-

tions are admitted and a dispersion relation of the form

v 5 s(k, x) exists locally. The free-surface elevation h

is considered a superposition of slowly varying wave

packets zj, each characterized by its position xj(t),

wavenumber kj(t), and angular frequency vj(t). In the

present work we consider medium variations owing

to variations in depth h(x), so that in absence of currents

[and to O(«)] the dispersion relation is s(k, x)5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh(kh)

p
, where k5 jkj (e.g., Dingemans 1997;Mei

et al. 2005).

Our starting point is the equation of motion for the

transformed free-surface variable ẑ(k, t), which we write

as (e.g., Salmon 1998; Bremmer 1972)

›t ẑ(k, t)52iV(k, i$k)ẑ(k, t) . (3)

Here we use operator correspondence between conju-

gate variables: 2ivj/›t, xj/i$k, and kj/k, to relate

the local dispersion relation to an operator s(kj, xj)/
V(k, i$k), which is defined using the Weyl correspon-

dence rule [see appendix A, and, e.g., Agarwal and

Wolf (1970)]. It can be readily shown that the wave

Eq. (3) describes progressive waves (appendix A), is

exact in a homogeneous medium (appendix A), and is

consistent with WKB theory for slowly varying waves

(appendix B). From the wave Eq. (3), an evolution equa-

tion for the second-order moments hẑ1ẑ2*i is obtained in

the usualway,2 and upon transforming the coordinates to

1Unless made explicit otherwise, integration limits on Fourier

integrals are from 2‘ to 1‘, and the transforms are assumed to

exist in the context of generalized functions (Strichartz 1993).
2Multiply Eq. (3) for ẑ1 5 ẑ(k1, t) by ẑ

2
*5 ẑ(k2, t), and the

equation for ẑ
2
* by ẑ1, sum both relations and ensemble average the

result.
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k5 (k1 1 k2)/2 and u5 k1 2 k2, and Fourier transforming

the result with respect to the difference wavenumber u,

the transport equation for the second-order statistics can

be written as (see e.g., Bremmer 1972; Bastiaans 1997;

Cohen 2010)

›tE52i

�
V

�
k2

i

2
$x, x1

i

2
$k

�

2V

�
k1

i

2
$x, x2

i

2
$k

��
E , (4)

with

E(k, x, t)5 1

2

ð�
ẑ
�
k1

u

2
, t
	
ẑ*
�
k2

u

2
, t
	


exp(iu � x) du .

(5)

Here, the angle brackets h i denote ensemble aver-

aging. The distribution function E represents the

complete second-order statistics and carries the

same information as the two-point correlator hẑ1ẑ2*i,
but with the wavenumber separation exchanged for

a space coordinate. In appearance it is similar to the

widely used variance density spectrum, and likewise, the

local wave variance V(x, t) is found from the marginal

distribution

V(x, t)5
ð
E(k, x, t) dk . (6)

However, the distribution function E is generally not

point-wise positive, and can thus not be interpreted

as a variance density function (see, e.g., Janssen and

Claasen 1985). Only in the limit where the wave field is

quasi-homogeneous is the spectrum E positive every-

where and reduces to a variance density function

(which is thus a special case). To distinguish E, as
defined here, from the widely used variance density

spectrum, we refer to it as a coupled-mode (CM)

spectrum.

The evolution Eq. (4) describes the evolution of the

CM spectrum through a variable medium and is exact in

the WKB sense in that it does not make any assumption

regarding the statistical homogeneity or the scales of

variation of the wave statistics. In other words, although

the wave components themselves are slowly varying (in

accordance with WKB), the statistics can undergo rapid

variations (on the scale of individual wave lengths)

through the development and propagation of cross

correlations in the wave field, either through the in-

teraction with medium variations, or radiated in from

the boundaries.

An approximate transport model for inhomogeneous
wave fields

The transport Eq. (4) governs the evolution of the CM

spectrum within a slowly varying medium, but apart

from certain special cases, the dynamical implications of

the operators in Eq. (4) are not easily understood, and

they cannot be readily numerically evaluated. To derive

a consistent approximation to these operators, we in-

troduce the following coordinate scaling. We define two

(independent) spatial scales: a slow scale Xm associated

with the medium variations, and a scale X that captures

the spatial variations of the spectrum as a result of

the wavenumber mismatches in the cross correlations,

written as

Xm 5 «x and X5mx , (7)

respectively. Here m5Du/k0 ðwhere k0 5 2m/l0Þ, with
Du a representative difference wavenumber for the cross

correlations and k0 a characteristic wavenumber of the

wave field. Because we consider cross correlations de-

veloped through the interaction with a slowly varying

medium, we have m� 1 (and m is generally of the same

order as «), so that X is effectively a slow scale [with

O(1) variations on length scales of l0/m]. To make the

width of the spectrum explicit, we consider the wave-

number scale

K5 d21k , (8)

where d5Dk/k0, with Dk representing a characteristic

width of the spectrum. The d can be thought of as an

inverse correlation length scale so that for a highly co-

herent (narrow band) wave field d � 1 (and K is a fast

scale), whereas for moderate- or wide-band wave fields

d ; O(1). Lastly, we introduce the time scales

Tj 5mjt; j5 1, 2, . . . N 2 Z . (9)

Using these scales, the dependent variable E and the

dispersion relation s become

E5 E(K,X,T1,T2, . . . ,TN) and s5s(k,Xm), (10)

so that, to O(mN), the governing Eq. (4) can be ex-

pressed as

mj›T
j

E52i

�
V

�
k2m

i

2
$X,Xm 1 d

i

2
$K

�

2V

�
k1m

i

2
$X,Xm 2 d

i

2
$K

��
E: (11)
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Here, the summation over repeated indices is understood

(i.e., mj›Tj
5�N

j51m
j›Tj

). To make the magnitude of the

various terms in the operators on the right side of Eq. (11)

explicit, we write the operators V as (see appendix A)

V

�
k7m

i

2
$X,Xm 6 d

i

2
$K

�

5exp

 
6b

i

2
$~X

m

�$K7m
i

2
$~k

�$X

!
s(~k, ~Xm)

�����
~k5k,~X

m
5X

,

(12)

where b 5 «/d. Physically, b thus measures the decor-

relation length scale of the waves (d21) relative to length

scale of the medium variations («21). If b � 1 the wave

field decorrelates over distances short relative to the

bottom variations, so that regions separated by O(1)

medium variations are statistically independent. In fact,

ifO(m)5O(b)5O(«)� 1, Eq. (11) reduces (to lowest

order) to the well-known RTE (Bremmer 1972)

›E
›t

1$ks � $xE2$xs � $kE5 0, (13)

where we dropped the scaling on the coordinates. From

our analysis, we see that the RTE [Eq. (13)] is valid in

a slowly varying medium only if the wave field decorre-

lates on shorter scales than the scale of the medium

variations. In other words, in this limit, cross correlations

induced by medium variations are lost faster than they

are generated so that the wave system retains nomemory

of them and the wave field remains effectively homoge-

neous [i.e., m remains O(«)]. The RTE is thus valid if

the spectrum of the medium variations is mostly confined

to wavenumbers that are smaller than a characteristic

(wavenumber) width of the wave spectrum. Because for

most oceanic conditions this condition is easily satisfied,

Eq. (13) is widely used and—in one form or another—

stands at the heart ofmostmodern, large-scale, stochastic

models for ocean wind waves.

However, in coastal areas exposed to ocean swells, the

interaction of waves with the seafloor topography on

the inner shelf (or coastal currents), or the interaction

of narrowband wave field with coastal structures and

headlands, can result in coherent interferences in the

wave field that are visible even to a casual observer

(e.g., interference in a focal zone induced by currents or

topography). In such regions, the length scales of me-

dium variations and decorrelation length scale of the

waves can be of similar magnitude, so that b 5 O(1),

and the approximations implied in the RTE are not

valid. In this case, a truncated expansion in b is not

a useful approximation, but the general transport

Eq. (11) can be alternatively approximated through

a Fourier integral representation of the operators as in

(see appendix A)

mj›T
j
E(K,X,T1,T2, . . . ,TN)52i

ð
dQ exp(iQ �Xm)

"
exp

 
2
i

2
m$X � $~k

!
ŝ(~k,Q)

#
~k5k

3 mjE(K2bQ/2,X,T1,T2, . . . ,TN)1C.C., (14)

whereQ5 q/« and C.C. denotes the complex conjugate.

On account of the slowly varying medium, major con-

tributions to ŝ(k,Q), and thus the integral, are limited to

the domain jQj/k0 #O(1) so that the integral in Eq. (14)

can be efficiently numerically approximated and, toO(mN),

the transport Eq. (14) becomes (in physical coordinates)

›tE(k, x, t)52i

ð
D
V̂

(N)
�
k2

i

2
$x,q

�
E
�
k2

1

2
q, x

�
exp(iq � x) dq1C.C. (15)

Here D denotes the domain of integration such that

jqj/k0 # O(«), and the kernel V̂
(N)

operating on E is de-

fined as

V̂
(N)
�
k2

i

2
$x,q

�
5 �

N

jnj50

1

n!

�
2
i

2

�jnj›nŝ
›kn

›n

›xn
. (16)

The expressions Eq. (15) and Eq. (16) describe the

evolution of the second-order wave statistics while

accounting for the generation and transport of co-

herent structures in the wave field. In this case, cross

correlations can be generated (by medium variations)

faster than they are destroyed, so that they can develop

and persist and affect the wave statistics. Equation (16)

is a central result of this paper, which we will refer to

as the Nth-order quasi-coherent (QC) approximation,

or quasi-coherent approximation if the order of the

approximation is understood. The RTE [Eq. (13)] is
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thus a special case of Eq. (15), where O(b) 5 O(m) 5
O(«) � 1.

3. Evolution of coherent wave structures

To illustrate the implications of the quasi-coherent ap-

proximation [Eq. (15) with Eq. (16)], and the differences

with the RTE [Eq. (13)], we consider two distinct cases

where cross correlations affect wave statistics. The first

example considers the evolution of a group of wave

packets through a homogeneous medium, where the in-

homogeneity is fully determined by the initial condition

and then transported through the domain. The second

example considers the evolution of ocean waves over

a two-dimensional topographic feature (shoal); in this case,

the incident wave field is homogeneous and cross corre-

lations are generated through the interaction with the

variable medium and transported down wave of the shoal.

a. Gaussian packets through a homogenous medium

We consider a wave field consisting of three coherent

Gaussian wave packets propagating in deep water, for

which the surface elevation at some arbitrary initial time

(t 5 0) can be written as

z(x, 0)5 exp(2ajxj2) �
3

j51

Aj exp(ikj � x) . (17)

Here, the Aj are the (complex) packet amplitudes and

kj is the carrier wavenumber. The initial spectrum (at

t 5 0), Ê(k,u, 0), is then given by

Ê(k, u, 0)5 �
3

m51
�
3

n51

hAmAn
*i

32p2a2
exp

�
2

1

2a

����k2 km
2

2
kn
2

����2

2
1

8a
ju2 um 1 unj2

�
. (18)

For a homogeneous medium, and in a reference frame

that moves with the mean group velocity, the dispersion

relations(k)5
ffiffiffiffiffiffiffiffi
gjkjp

1 k � y, wherey5 (1/2)kk21
p

ffiffiffiffiffiffiffiffiffi
g/kp

p
,

and k is the mean carrier wavenumber, so that Eq. (4)

has the exact solution

E(k, x, t)5
ð
Ê(k,u, 0) exp[iu � x2 ivD(k,u)t]du , (19)

with

vD(k, u)5s(k1 u/2)2s(k2 u/2) . (20)

The relations Eqs. (19) and (20) are exact. The Nth-

order QC approximation is obtained by substituting

ŝ(k,q)5 d(q)s(k) in Eq. (15), where d(q) denotes the

Dirac delta function, Fourier transforming with respect

to x, and solving the resulting ordinary differential equa-

tion. On applying the inverse transformwith respect to u,

FIG. 1. Snapshots of normalized wave variance [normalization by (3/2)a2] of three-packet

interference example. (from left to right) Normalized variance is shown at discrete times tI2V ,

starting at tI 5 110Lp/yx increasing in time intervals of Dt5 20l/yx. (a) Evolution for exact

model, (b) the QC approximation, and (c) to the RTE. The x0 and y0 denote the horizontal

coordinates normalized by 6Lp.
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the result is again Eq. (19), but with vD replaced by its

Nth-order Taylor series in u around u 5 0,

v
(N)
D (k,u)5 �

jnj#N

jnj51,3,...

un

n!2jnj21

›ns

›kn
. (21)

In what follows, we consider three coherent packets of

the same energy and carrier wavelength (jAjj5 a, jkjj5 k),

that propagate at angles of 2208, 08, and 208 relative to

the positive x axis. We set a5 (1/36)L22
p , so that a

characteristic length scale of the packets is roughly six

wavelengths (m ’ 1/6), and we consider the evolution

from t 5 2150Tp to t 5 20Tp (with Tp 5Lp/yx a char-

acteristic period). The QC approximation is initialized

at t 5 2150Tp using the exact solution.

Because the simulation time is roughly Tp/m
3, we use

a third-order QC approximation [by truncating Eq. (21)

after the second term]. Each packet is calculated in-

dividually on a discrete equidistant k-mesh centered at

kmn using 30 points in each direction with a mesh size of

Dk5
ffiffiffi
a

p
/5. The Fourier integrals are approximated us-

ing a fast Fourier transform with u1 and u2 discretized

as (231 . . . 31)Du, with Du5
ffiffiffi
a

p
/5, and the result in-

terpolated to a discrete 2413 241 x-mesh centered at the

origin with mesh size Dx 5 Dy 5 Lp/5.

The initial evolution of the wave system is character-

ized by convergence and interference of the wave packets

(Fig. 1a), followed by defocusing and divergence, after

which the packets emerge unchanged and the initial state

is recovered. The QC approximation captures the prin-

cipal dynamics of the wave evolution, including the co-

herent interference (Figs. 1b and 2), which confirms

that the QC approximation accurately represents cross-

correlations in the evolution of random waves associated

with the coherent interference of wave packets traveling

at moderate angles. In contrast, the wave packet evolu-

tion as represented by the RTE (Figs. 1c and 2) is dra-

matically different from the exact result; in particular, the

interference pattern at t5 tIII is not resolved because the

RTE does not account for the transport of cross-variance

contributions (m 6¼ n).

The differences in evolution are apparent also from the

spectra (left panels in Fig. 3). The variance density

spectrum at x0 5 0 (where x0 5 x/Lp) contains a single

positive peak for tI and tIII related to the central packet,

and three peaks at tIII when the three packets have con-

verged (Fig. 3a). Because the CM spectrum accounts for

intermode coupling, it contains additional interference

peaks, which travel along rays midway between the rays

of the autovariance contributions involved in the in-

terference. For the case considered here, at x0 5 0, the

FIG. 2. Cross sections (at x0 5 0) of normalized wave variance of three-packet interference

example. (from left to right) The wave variance is shown at discrete times tI2III , starting at (a) tI
and increasing in time. Comparison between exact model (solid line), the QC approximation

(circle markers), and the RTE (thin line). Normalization of vertical and horizontal scales and

discrete times as in Fig. 1. Note that the horizontal and vertical range can vary among panels.
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cross variance at tI consists of a single interference peak

(Fig. 3b), which represents the coherence between the

outer packets, and travels along the ray y0 5 0. Coherence

between the center and outer packets travels along dif-

ferent rays and only manifests itself at tII and tIII where

these rays cross through y0 5 0. The CM spectrum is the

sum of the interference contributions and (auto)variance

density spectrum (Fig. 3c). The spectral interference

terms capture the rapid spatial oscillations of the wave

statistics as a result of wave interference in the focal zone

(Fig. 1c). This fast-scale variability is also seen in the

spectral domain, when the spectra are evaluated at

a slightly offset location (cf. left and right panels in Fig. 3).

Note that the wave packets in this example do not ‘‘in-

teract’’ with each other in the usual sense, and the

coherent interference is completely determined a priori

by the inclusion of interference peaks in the initial con-

dition. No cross correlations are generated (or destroyed)

in the course of the evolution.

b. Coherent interference patterns induced by
topography

To consider the generation and persistence of co-

herent interference patterns through the interaction

with a slowly varying medium, we compare model sim-

ulations with laboratory observations of waves traveling

over a submerged shoal (Vincent and Briggs 1989). In

these experiments, an elliptic shoal with its crest

15.24 cm below still-water level was placed in a wave

basin with a uniform depth of h 5 45.72 cm (see Fig. 4).

FIG. 3. Spectral evolution of the three-packet interference example Eq. (18) evaluated at (left) (x0, y0) 5 0 and

(right) (x0, y0)5 (0, 1/6) for tI2III (times as defined in caption Fig. 1). (a) The autovariance contributions, (b) the cross-

variance contributions, and (c) the resulting CM spectrum (sum of auto- and cross-variance contributions) are shown.

The spectral coordinates k0x and k0y are normalized with kp and spectra are normalized with the peak contribution of

an individual packet (4pa)21.
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We consider a case with monochromatic waves (M2)

and random waves with a TMA spectrum (N4); for the

latter, the peak enhancement factor g 5 20, directional

spreading is approximately 108 [as defined by Kuik et al.

(1988)], and the (significant) wave height and (peak)

period are 2.54 cm and 1.3 s, respectively. For additional

details we refer to Vincent and Briggs (1989).

We compare model simulations with a first-order QC

model and the RTE to the laboratory observations. Be-

cause the observational data is sparse, we also include

a comparison with simulations with the deterministic

hydrodynamical model Simulating Waves Till Shore

(SWASH), which has been independently validated (see

Zijlema et al. 2011).

The spectral models are numerically evaluated on a

rectangular spatial (30m 3 25m) and spectral domain

[4kp 3 3kp, starting at k5 (20.5kp,21.5kp)], uniformly

discretized with mesh sizes Dx 5 Dy 5 12.5 cm and

Dk/kp 5 (18, 20). We use second-order upwind finite-

difference approximations for the spatial (and spectral)

gradients, in combination with an explicit first-order time

stepping. The integral in Eq. (15) is approximated by

a second-order numerical quadrature on the domain D
delimited by jqj , 2kp. At the wave maker, the incident

spectrum is imposed, and periodicity is assumed in the

lateral direction. Combined with a radiation-type bound-

ary condition opposite to the wave maker, the solution is

then marched in time until a steady state is reached.

Over the shoal, the incident monochromatic waves

(case M2) are refracted in different directions, resulting

in fast lateral variations in wave variance behind the

shoal, because of the coherent interference of the cross-

ing wave components. The QC model captures the vari-

ations in wave energy induced by these interferences

and agrees well with observations and the deterministic

model [Eq. (5)]. In contrast, the RTE predicts much

stronger focusing and lower wave heights in the shadow

zone (see Fig. 5), and does not resolve the finescale

structure in wave energy associated with wave coherency.

For the random incident wave field (case N4), because

of the increased dispersion (mostly directional), the

wave field decorrelates faster, resulting in a smoothing

of the wave statistics behind the shoal (see Fig. 6). In this

case, the QC results are qualitatively more similar to the

RTE result, although several differences remain. In the

region directly behind the shoal, wave heights predicted

byQC theory are consistent with observations and those

obtained with the deterministic model, whereas the

wave heights predicted by the RTE are approximately

20% lower. If the directionality (and thus dispersion) is

reduced, say to 38 (N40) a well-defined interference

pattern emerges again and the QC model provides

a much more realistic presentation of the wave statistics

than the RTE.3 These cases, which can represent the

propagation of narrowband swell waves over coastal

topography, show that including coherent effects can be

significant for situations that are of practical interest.

The emergence and persistence of coherent interfer-

ences in narrowband random waves over coastal to-

pography can be important for regional wave statistics

and thus affect wave-driven circulation and transport

processes in such areas.

4. Discussion

Coherent wave interference patterns are common in

the coastal ocean, for instance because of the interaction

with submerged topography, currents, islands, head-

lands, or coastal structures. Statistical models based on

the RTE do not account for such interference patterns,

and this can result in systematic differences between

observed variations in wave statistics and model pre-

dictions. In this work we introduce a new transport

model that we refer to as a CM spectrum, which includes

the effects of coherent interference on the wave statistics.

The concept of a CM spectrum to describe the statistical

evolution of inhomogeneous random processes is not

new, but it has been developed independently across

various fields, such as theWigner distribution in quantum

mechanics and optics (e.g., Bastiaans 1997; Bremmer

1972; Wigner 1932), the concept of generalized radiance

FIG. 4. Plan view of the experimental setup byVincent and Briggs

(1989) including a ray-traced solution (thin gray lines) for unidi-

rectionalmonochromaticwaves (period 1.3 s, incident direction u0 5
08). Depth contours (drawn for 0.15–0.45m, at 0.1-m intervals) are

indicated byblack solid lines; instrumented transects (at y5 0m, x5
12.19m, and x 5 15.24m) are indicated with dash–dot lines.

3 This case was not considered by Vincent and Briggs.
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in radiometry (Walther 1968), and the Wigner–Ville

distribution in signal processing (Ville 1948; Cohen 1989).

Here we apply these ideas to ocean waves traveling

through a variable medium and in the presence of caus-

tics, such as are commonly found in, for example, coastal

areas and other regions characterized by relatively strong

two-dimensional medium variations.

a. Interference terms

Apart from energy (or variance) contributions, the

coupled-mode spectrum carries cross-correlation and

cross-phase information on coherent interferences be-

tween noncolinear wave components in the wave field.

For example, if we revisit the correlated wave packet

example in section 3, and—for convenience—reduce it to

two packets propagating at some equal but opposite an-

gle with respect to the positive x axis, so that k1 5 (8, l),

k2 5 (8, 2l), and Aj 5 aj expifj, with aj 5 jAjj and fj 5
argAj, the CM spectrum can be written as

E(k, x)5 1

2

ð
Ê(k, u) exp(ik � u) du

5
e22ajxj2

4pa
[ha21iG11 1 ha22iG22

1 2ha1a2iG12 cos(2ly1 hf12f2i)] , (22)

FIG. 5. Plan view of modeled (normalized) wave heights for the experimental setup as considered by Vincent and

Briggs (1989) for (top) case M2, (bottom) case N4, and (middle) the additional case N40 considered in the present

work. Comparison between (left) the QC1 approximation and (right) the RTE shows that the QC1 approximation, in

contrast to the RTE, resolves the finescale interference pattern in the focal zone of a topographical lens.
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where the Ê(k, u) is the same as in Eq. (18) and

Gij 5 exp[(1/2a)jk2 (ki/2)2 (kj/2)j2]. The last term in

Eq. (22) is a coupled-mode contribution that represents

the contribution from the coherent interference between

the two packets. This contribution is located midway

between the associated autovariance contributions

(Hlawatsch and Flandrin 1997), can become negative

and, because it does not directly correspond to a field

component, does not carry energy itself.

Instead, this contribution determines how the energy

of the wave field is distributed between kinetic and po-

tential energy. After all, in a statistically homogeneous

(and linear) wave field, the energy is equipartitioned

between potential and kinetic energy so that knowledge

FIG. 6. Shown are normalized wave heights along transects (a) across and (b),(c) behind the shoal (see Fig. 4 for locations) as considered

by Vincent and Briggs (1989) for (top) case M2 , (bottom) case N4, and (middle) the additional case N40 considered in the present work.

Comparison is between the QC approximation (solid black line), observations (circle markers, when available), the deterministic model

SWASH (crosses), and the RTE (dashed red line).

1750 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



of either potential or kinetic energy suffices. On the

other hand, in a wave field that undergoes coherent in-

terference, information on the distribution of potential

and kinetic energy is required to fully characterize the

wave field statistics. This information is provided by the

cross contributions in the coupled-mode spectrum. In

our example [Eq. (22)], the interference results in a co-

herent standing wave motion along the y coordinate

where the wave packets alternately interfere construc-

tively and destructively; the coupled mode thus con-

tributes negatively in the nodes (where more energy is

kinetic) and positively in the antinodes (where more

energy is potential).

b. Aperture limitation on wave interferences

The CM spectrum is a general representation of the

complete second-order statistics, including interferences

between wave component with arbitrary mutual orien-

tation, and without inherent aperture limitation. How-

ever, the QC transport equation, which is based on

a series expansion of ŝ[k6 (u/2), q] in u [Eq. (A6)], is

fundamentally more restricted, and cannot accurately

transport cross correlations between waves that enclose

an angle greater than p/2. This limitation can be un-

derstood from the fact that the kernel V̂
(N)

[Eq. (16)] is

obtained by Fourier transforming (with respect to u) the

series expansion of ŝ[k6 (u/2), q] [Eq. (A6)]. Before

truncation (for N / ‘), this is exact if the series ap-

proximation to ŝ[k6 (u/2),q] converges "u. However,

the dispersion relation for ocean waves depends on jkj,
so that $ks is singular at k 5 0, and the radius of con-

vergence of the series expansion for s(jkj) around k0 is

jk0j. As a consequence, the operators are generally ap-

proximations and, because in the QC approximation the

expansions are in (1/2)u, the maximum enclosed angle is

p/2 [k1 � k2 5 0, k6 5 k6 (u/2)], when both wave com-

ponents are on the circle juj5 2k (see Fig. 7). Therefore,

if k0 is a typical wavenumber, the smallest spatial scale

that can be resolved by theQCapproximation is limited to

p/k0. Such aperture restrictions only apply to the coherent

interference terms; the spectrum of the automode dis-

tributions (variance-carrying contributions) is arbitrary.

c. Wide-angle diffraction

The propagation of ocean waves around thin barriers

and obstructions results in coherent interferences, as-

sociated with diffraction. From a statistical viewpoint,

such diffraction patterns are a coherent interference

pattern originating from the interaction with the barrier.

Although these effects are ignored by the RTE, they can

be readily accounted for in the QC approximation.

To illustrate this, we apply the QC approximation to

the propagation of waves through a gap (extending over

2G1 , y , G2), in an otherwise rigid, but fully ab-

sorbing barrier (situated at x 5 0). Apart from the ob-

stacle, the medium is uniform and the dispersion

relation of the form s5 s(jkj). The incident wave field is
homogeneous, unidirectional, and normally incident on

the barrier with a known variance density spectrum

S0(v). Using the Kirchhoff, or physical optics, approxi-

mation (see appendix C), and a third-order QC ap-

proximation, we obtain the E spectrum just behind the

barrier (x 5 01), E0(k, y).

Behind the barrier, the coupled-mode spectrum is

given by Eq. (19), and for a stationary solution we have

vD(k, u)5 s(jk1 u/2j)2 s(jk2 u/2j)5 0 [see Eq. (20)],

so that jk1 u/2j5 jk2 u/2j and k � u5 0. Therefore we

have Ê(k,u)5 Ê(k, uy)d(ux 1 uykyk
21
x ) for kx . 0 (and

zero elsewhere), and [from Eq. (19)] find that

E(k, x)5
ð
Ê(k, uy) exp(iuyy2 iuykyk

21
x x) duy . (23)

The wave statistics for x . 0, including coherent in-

terferences associated with diffraction, are thus entirely

determined from the boundary condition Ê(k,uy) at x5
0 (the gap). No new information is added as the waves

travel behind the barrier, and the diffraction effects

commonly seen in harbors or from aerial photography

of waves around islands, are—from a statistical point

FIG. 7. Sketch of wave interference geometry on the radius of

convergence. For a dispersion relationV(jkj) (where jkj is singular
at the origin, as indicated in the figure), the radius of convergence

of the QC approximation (for a particular k) is given by j~uj5 2k.

Consequently, components (k1, k2) with averagewavenumber k5
(k1 1 k2)/2, which are located on the limit circle (jk1 2 k2j 5
2jkj), propagate perpendicular to each other, as shown in the figure

(solid black and striped gray lines).
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of view—simply the manifestation of cross correlations

determined by the up-wave boundary conditions, trans-

ported by Eq. (23).

In Figs. 8 and 9 we compare simulation results with

analytic solutions (Penney and Price 1952) for a mono-

chromatic incident wave field impinging on a semi-

infinite breakwater (G1 5Ly/2 and G2 5 0, with Ly the

lateral extent of the domain), and a barrier gap (G1 5
G2 5 2.65Lp � Ly). The QC approximation is in

excellent agreement with the analytic solution for dis-

tances greater than about 4 wavelengths behind the

barrier (x/Lp . 4), which confirms the accuracy of this

approach in the intermediate to far field. Differences in

the near field are principally due to the omission of ev-

anescent modes (especially in the region x/Lp , 1) and

the use of an approximate (Kirchhoff) boundary condi-

tion (see, e.g., Stamnes 1986). These examples illustrate

that the QC approximation, despite its fundamental p/2

aperture restriction on interference terms, can accu-

rately represent wide-angle coherencies resulting from

diffraction, as implied by the good agreement with the

analytic solutions.

d. Relation to other transport equations

In the derivation of the stochastic model Eq. (4) we

started, following Bremmer (1972), from the wave

Eq. (3). This approach is quite general and makes no

explicit assumptions regarding the bandwidth of the

wave field. Alternatively, if we restrict our derivation

to narrowband waves from the outset, we could, follow-

ing Wigner (1932) and Alber (1978), start with specific

evolution equations for a narrowband wave train. To

show that our approach and resulting transport equa-

tions are indeed consistent with earlier results for nar-

rowband waves, we consider the free-surface elevation

z of a zero-mean, narrowband wave field in deep water,

given by z(x, t)5A(x, t) exp(ik0 � x2 iv0t), where k0 5
(k0, 0)

T is the principal wavenumber, v0 5s(k0) the

angular frequency, and A(x, t) denotes the slowly chang-

ingwave envelope.Assuming that the bandwidthDk/k0 is

FIG. 8. Contours of normalized wave height H0 5
ffiffiffiffiffiffiffiffiffiffiV/V0

p
(where V0 is the variance of the incident waves) behind

(top) a semi-infinite breakwater and (bottom) a breakwater gap. The (left) analytic solution (Penney and Price 1952)

and (right) QC approximation are shown. The incident wave field consists of unidirectional waves, normally incident

onto the breakwater, with a peak angular frequency of vp 5prad/s, kph5 1:2 and a narrowband Gaussian-shaped

frequency distribution with characteristic width ofDv5 (1/100)vp. The horizontal coordinates (x
0, y0) are normalized

with the peak wavelength.
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O(d) and the steepness is small (A0k0 � d, with A0 a

typical wave amplitude), the linear evolution of the

envelope, up to O(d3), is governed by the linear part of

the Dysthe equation (Dysthe 1979)

(
›

›t
1s

(1)
k
0

›

›x
2

i

2
s
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0

›2
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2

i
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s
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›2
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2k20
[k0s
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0
]
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›x›y2
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6
s
(3)
k
0

›3

›x3

)
A5 0. (24)

The procedure for obtaining the evolution equations

for the CM spectrum from the governing Eq. (24) is

essentially the same as that followed in section 2, and

equivalent to the procedure followed by Alber (1978)

and Cohen (2010). We evaluate Eq. (24) at two dif-

ferent locations forA15A(x1, t) andA2*5A*(x2, t); we

multiply the first equation with A2*, the second withA1,

sum the two resulting equations, and ensemble average

the result. After introducing the spatial average and

difference coordinates x 5 (x1 1 x2)/2 and j 5 x1 2 x2,

we obtain an evolution equation for the product

r5 (1/2)hA1A2*i. Upon applying the Fourier transform

with respect to j, we can express (24) in terms of the

CM spectrum

(
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E5 0.

(25)

where we used that E(k, x)5 r̂(k2 k0, x), with r̂ denot-

ing the transform of r with respect to j. The first three

terms inside the brackets on the left side of Eq. (25)

correspond to the linear spectral evolution equation

of Alber (1978). Moreover, Eq. (25) is a narrowband

approximation (around k0) of the third-order QC

approximation in a uniform medium. This can be

seen if we consider the Taylor approximations for

V̂
(3)
[k7 (i/2)$x,q] in k around k0 which, when retain-

ing terms up to O(d3), reads

FIG. 9. Cross sections of normalizedwave heightH0 5
ffiffiffiffiffiffiffiffiffiffiV/V0

p
(where V0 is the variance of the incident waves) along

(left) x0 5 4 and (right) x0 5 15 and behind (top) a semi-infinite breakwater and (bottom) a breakwater gap. Shown

are the analytic solution [solid line from Penney and Price (1952)] and the QC approximation (circle markers).

Incident wave field and coordinates as in Fig. 8.
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If the expression Eq. (26) is substituted in the transport

Eq. (15), Eq. (25) follows, which shows that our results

are consistent with earlier results for narrowband wave

fields and contain the linear part of the Alber equation

as a special case.

5. Conclusions

We have presented a new transport model for the

statistics of inhomogeneous wave fields of arbitrary

bandwidth propagating through a variable medium. The

model accounts for the generation and transport of co-

herent interferences between wave components that

enclose angles smaller than p/2 radians. The theoretical

framework presented here is a natural extension of the

radiative transfer equation, and valid for arbitrary

spectral width. We show that in the limit of narrowband

waves, the transport equation reduces to the linear

Alber equation, which is thus a special case. Moreover,

for homogeneous waves with an arbitrary spectrum, our

result is consistent with the radiative transfer equation

for the transport of the variance (or action) density

spectrum. Comparison with analytic solutions for wave

packet interference, and with observations of random

surface wave propagation over a two-dimensional bot-

tom feature, confirm that the quasi-coherent (QC) ap-

proximation accurately represents both the generation

and transport of cross correlations in the wave field and

resolves the finescale interference patterns associated

with crossing waves. The effects of diffraction on sta-

tistics of waves around and behind obstacles and barriers

can be accurately modeled by including appropriate

boundary conditions on the QC approximation. These

results show that the application of QC theory to ocean

waves can resolve some of the restrictions of quasi-

homogeneous theory (the radiative transfer equation) in

areas characterized by two-dimensional medium varia-

tions and caustics. This is likely to be of particular im-

portance for wave-driven circulation and transport

processes in coastal areas and inlets.
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APPENDIX A

Operator Definition

We assume that the wave field consists of a large

number of progressive wave packets, and each packet

j has a location xj(t), slowly varying wavenumber kj(t),

and angular frequency vj(t), which are related by a dis-

persion relation, vj 5 s(kj, xj). To obtain an evolution

equation for the transformed free-surface variable ẑ(k, t),

we associate the (dependent) wave variables xj, kj, vj

with operators on ẑ(k), that is, kj(t) / k, xj(t) / i$k

and v(t) / i›t. So that the dispersion relation defines

a linear operator V on ẑ, written as

›t ẑ(k, t)52iV(k, i$k)ẑ(k, t) . (A1)

Although Eq. (A1) can be justified by the analogy be-

tween the ray equations of geometric optics and the

canonical equations of Hamilton (e.g., Salmon 1998), the

definition of the operator V requires particular consider-

ation owing to noncommutability of the operators (e.g.,

Torre 2005). Here we follow the Weyl correspondence

rule (e.g., Agarwal and Wolf 1970) to uniquely define the

operator V so that the resulting linear operator is Hermi-

tian with real eigenvalues (i.e., the angular frequencies),

and orthogonal eigenfunctions. Thereto we expand s in

terms of its Fourier integral,

s(k, x)5

ð ð
ŝ(p,q) exp(ip � k1 iq � x) dq dp , (A2)

where ŝ(p, q) denotes the Fourier transform of s(k, x)

with respect to (p, q). After Taylor expanding the expo-

nential function, applying the operator correspondence,

and associating any products with the sumof all its possible

permutations [e.g., kjxj / (i/2)k$k( . . . )1 (i/2)$k(k . . .)],

we have

V(k, i$k)5

ð ð
ŝ(p,q) exp(ip � k2 q � $k) dq dp . (A3)

Here the exponential operator is defined in terms of its

Taylor series expansion
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exp(ip � k2 q � $k)5 �
‘

jnj50

1

n!
(ip � k2 q � $k)

n , (A4)

and n is a multi-index. With these definitions in place,

Eq. (A1) describes periodic and undamped wave

motion over topography and is consistent with WKB

theory (See appendix B). Moreover, for an ocean of

constant depth Eq. (A1) is exact because we have

ŝ(p,q)5s(k)d(p), so that V(k, i$k) reduces to a

Fourier multiplier s(k).

To demonstrate that Eq. (12) and subsequently Eq.

(14) follow from the definition Eq. (A3), we introduce

the sum and difference coordinates k and u in Eq. (A3)

to obtain

V

�
k6

1

2
u, i$u 6

i

2
$k

�
Ê(k, u)5

ð ð
exp(2q � $u)ŝ(p,q) exp

h
ip �
�
k6

u

2

	i
exp

�
7q � 1

2
$k

�
dq dpÊ(k,u)

5

ð
exp(2q � $u)ŝ

�
k6

u

2
, q
	
exp

�
7q � 1

2
$k

�
dqÊ(k,u) . (A5)

We replace ŝ[k6 (u/2),q] by its Taylor series expansion in u around k,

V̂
(‘)
�
k6

u

2
,q
	
5 �

‘

jnj50

1

n!

›nŝ

›kn
(6u)n

2jnj
, (A6)

so that, upon Fourier transforming with respect to u, (A5) can be written as

V6E(k, x)5
ð
exp(iq � x)V̂(‘)

�
k7

i

2
$x,q

�
exp

�
7q � 1

2
$k

�
dqE(k, x) , (A7)

where we used V6 5V[k7 (i/2)$x, x6 (i/2)$k]. If ŝ[k6
(u/2),q] is analytic, the Taylor series approxima-

tion Eq. (A6) converges and Eq. (A7) is exact. If the

series only converges on some subdomain of u, Eq.

(A7) formally only applies to contributions to E that

originate from contributions in Ê on that domain; the

implications of this in the context of ocean waves are

considered in section 4b.

After integration with respect to q, Eq. (A7) can be

written in the form of Eq. (12), written here as

V6E(k, x)5 exp

�
6

i

2
$~x � $k

�
V(‘)

 
~k7

i

2
$x, ~x

!�����
~k5k,~x5x

E(k, x)5
"
exp

 
6

i

2
$~x � $k 7

i

2
$~k � $x

!
s(~k, ~x)

#�����
~k5k,~x5x

E(k, x) .

(A8)

Alternatively, if we observe that exp[2(1/2)q � $k] operating on E is equivalent to a Taylor series of E[k2 (1/2)q, x],

we can write Eq. (A7) as

V6E(k, x)5
ð
dq

"
exp(iq � x) exp

 
7
i

2
$~k � $x

!
ŝ(~k, q)

#
~k5k

E
�
k2

1

2
q, x

�
, (A9)

which is the operator in Eq. (14).

APPENDIX B

Relation to Geometric Optics

To show that the wave Eq. (3) [or Eq. (A1)], com-

bined with the definition Eq. (A3), is consistent with

WKB theory [toO(«)], and describes progressive ocean

waves in a slowly varying medium, we rewrite Eq. (A1)

in the spatial domain, as

›tz(x, t)52iV(2i$x, x)z(x, t) . (B1)

We assume that the wave field is characterized by

a carrier wavenumber k0, and frequency s0(k0, x0), and

write the operator V as
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V(2i$x, x)5

ð ð
ŝ(p,q) exp(2p � $x1 iq � x) dq dp5

ð ð
ŝ(p, q) exp

�
2
i

2
p � q

�
exp(iq � x) exp(2ip � $x) dq dp

5 exp
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i

2
$~k � $~x

!
exp[2i$~k � ($x2 k0)]s(
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�����
~k5k

0
,~x5x

, (B2)

where the extra factor exp[2(i/2)p � q] in the second

line appears because the products in the arguments of

the exponentials do not commute, that is, $x(x . . .) 6¼
x � $x(. . .) (see, e.g., Mesiah 1961, p. 442). We intro-

duce the slow coordinates T 5 «t, X 5 ex, substitute

the ansatz z(X, T)5A(X, t) exp[iS(X, T)] in Eq. (B1),

and assume that the amplitude and phase are real and

can be expanded asA5A01 «A11 . . . and S5 «21S01
S1 1 . . ., respectively. On expanding the exponential

operators in a Taylor series and retaining terms up

to O(«), while dropping the scaling of the coor-

dinates, we obtain the eikonal equation for the phase

function

›tS052 �
‘

jnj50

1

n!
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ns(k, x)jk
0
,x

52s($xS0, x) . (B3)

Similarly, the amplitude evolution equation becomes
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jnj50

1

n!
[($xS02 k0) � $k]

n

�
$xA01

1

2
A0=

2
xS0=

2
k 1

1

2
A0$x � $k

�
s(k, x)

����
k
0
,x

52

�
$ks � $x 1

1

2
$k � $xs

�
A0 , (B4)

where the derivatives of s are evaluated at ($xS0, x). If

we multiply Eq. (B4) by rgA0, with r the density, and

define the wave energy as E5 (1/2)rgA2
0, we find

›tE1$x � ($ksE)5 0. (B5)

Equations (B3) and (B5) are the usual geometric optics

approximations for waves in a slowly varying medium

(e.g., Dingemans 1997; Mei et al. 2005), which shows

that the wave Eq. (3) is consistent with WKB theory (to

the order considered).

APPENDIX C

Boundary Condition for Wide-Angle Diffraction

To derive a boundary condition for the diffraction

example, we use the expression derived by Janssen et al.

(2008), based on a forward-scattering assumption and

a Kirchhoff approximation (e.g., Born and Wolf 1999,

p. 422). To transform the mutual spectrum used by

Janssen et al. (2008) to Ê(k, uy) used in Eq. (23), we

express the frequency as a function of both k and u,

that is, v 5 v(k, u). In a homogeneous medium (this

case), this can be done by noting that each contribu-

tion to the CM spectrum E involves two coherent

waves z6 5 ẑ(k6) exp(2iv6t), with wavenumbers k6 5
k 6 u/2 and frequencies v6 5 s(k6). Associated with

these components we then have a beat frequency v1 2
v2, related to the slow scale changes in time of the var-

iance, and a mean frequency v1/2 1 v2/2, associated

with the fast-scale oscillations; the former corresponds

to vD(k, u) whereas the latter serves as our definition of

v(k, u). To obtain a consistent QC approximation, we

replace (as before) v(k, u) with its Taylor approxima-

tion, so that

v(N)(k, u)5 �
jnj#N

jnj50,2,...

un

n!2jnj11

›ns

›kn
. (C1)

Using a third-order approximation, the CM spectrum

becomes Ê(k,uy)5Sjdv(3)/dkxj, for kx . 0 (and zero

elsewhere), where

S[v(3),kx,uy]5
1

p2
S0[v

(3)] exp(2iuyGD)
jkj2 1u2y(11 k2yk

22
x )

k2x2
1

4
k22
x k2yu

2
y

sin[(2ky2 uy/2)Gm]

(ky1 uy/2)

sin[(2ky1 uy/2)Gm]

(ky2 uy/2)
, (C2)

1756 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



with S0(v) the incident, unidirectional frequency spec-

trum, and GD 5 (G2 2 G1)/2, Gm 5 (G1 1 G2)/2.

To approximate Eq. (23) numerically, we consider

the solution on an equidistant Cartesian grid with

horizontal resolution Dx5Dy5 (1/10)Lp (where Lp is

the peak wavelength), and define the k-mesh as ki,j 5
(i, j)Dk, with i 5 1 . . . 100, j 5 2200 . . . 200 and Dk 5
0.011kp (where kp 5 2p/Lp). For each wavenumber

ki,j the Fourier integral in Eq. (23) is approximated

using a fast Fourier transform on an equidistant dis-

crete array [2N . . . N]Du for uy with mesh size

Du5 2pL21
y and Ly 5 (2N 1 1)Dx. Because the accu-

racy of the approximate transformation deteriorates

for u/k . 1.5 the contributions for these high wave-

numbers are set to zero.

REFERENCES

Agarwal, G. S., and E. Wolf, 1970: Calculus for functions of non-

commuting operators and general phase–space methods in

quantum mechanics. I. Mapping theorems and ordering of

functions of noncommuting operators. Phys. Rev., 2D, 2161–

2186.

Aiki, H., and R. Greatbatch, 2011: Thickness-weighted mean the-

ory for the effect of surface gravity waves on mean flows in the

upper ocean. J. Phys. Oceanogr., 42, 725–747.

Alber, I. E., 1978: The effects of randomness on the stability of two-

dimensional surface wavetrains. Proc. Roy. Soc. London,

A363, 525–546.
Bastiaans, M. J., 1979: Transport equations for the Wigner distri-

bution function. Int. J. Opt., 26, 1265–1272.

——, 1997: Application of the Wigner distribution function in

optics. The Wigner Distribution—Theory and Applications in

Signal Processing, W. Mecklenbrauker and F. Hlawatsch,

Eds., Elsevier Science, 375–426.

Berkhoff, J., N. Booy, and A. Radder, 1982: Verification of nu-

merical wave propagation models for simple harmonic linear

water waves. Coastal Eng., 6, 255–279.

Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-

generation wave model for coastal regions. 1. Model

description and validation. J. Geophys. Res., 104 (C4), 7649–

7666.

Born, M., and E. Wolf, 1999: Principles of Optics. 7th ed. Cam-

bridge University Press, 836 pp.

Bremmer, H., 1972: General remarks concerning theories dealing

with scattering and diffraction in randommedia. Radio Sci., 8,

511–534.

Cohen, L., 1989: Time-frequency distributions—A review. Proc.

IEEE, 77, 941–981.

——, 2010: Phase-space differential equations for modes. Pseudo-

Differential Operators: Complex Analysis and Partial Differential

Equations, B. Schulze and M. W. Wong, Eds., Birkh€auser Basel,

235–250.

Craik, A. D. D., and S. Leibovich, 1976: A rational model for

Langmuir circulations. J. Fluid Mech., 73, 401–426.

Dingemans, M., 1997: Water Wave Propagation over Uneven Bot-

toms. Advanced Series on Ocean Engineering, Vol. 23, World

Scientific, 471 pp.

Dysthe, K. B., 1979: Note on a modification to the nonlinear

schrodinger equation for application to deep water waves.

Proc. Roy. Soc. London, A369, 105–114.

Hlawatsch, F., and P. Flandrin, 1997: The interference structure

of the wigner distribution and related time–frequency signal

representations. The Wigner Distribution—Theory and Ap-

plications in Signal Processing, W. Mecklenbrauker and

F. Hlawatsch, Eds., Elsevier, 59–133.

Hoefel, F., and S. Elgar, 2003: Wave-induced sediment transport

and sandbar migration. Science, 299, 1885–1887.

Janssen, A., and T. Claasen, 1985: On positivity of time–frequency

distributions. IEEE Trans. Acoust. Speech Signal Process., 33,

1029–1032.

Janssen, P., 2009: The Interaction of Ocean Waves and Wind.

Cambridge University Press, 300 pp.

Janssen, T. T., and T.H. C.Herbers, 2009: Nonlinear wave statistics

in a focal zone. J. Phys. Oceanogr., 39, 1948–1964.

——, ——, and J. A. Battjes, 2008: Evolution of ocean wave

statistics in shallow water: Refraction and diffraction over

seafloor topography. J. Geophys. Res., 113, C03024, doi:10.1029/

2007JC004410.

Komen, G., L. Cavaleri,M.Donelan, K.Hasselmann, S. Hasselmann,

and P. Janssen, 1994:Dynamics and Modelling of Ocean Waves.

Cambridge University Press, 532 pp.

Kuik, A., G. van Vledder, and L. Holthuijsen, 1988: A method for

the routine analysis of pitch-and-roll buoy wave data. J. Phys.

Oceanogr., 18, 1020–1034.

Magne, R., K. A. Belibassakis, T. H. C. Herbers, F. Ardhuin,W. C.

O’Reilly, andV. Rey, 2007: Evolution of surface gravity waves

over a submarine canyon. J. Geophys. Res., 112, C01002,

doi:10.1029/2005JC003035.

Mandel, L., and E. Wolf, 1995: Optical Coherence and Quantum

Optics. Cambridge University Press, 1166 pp.

McWilliams, J. C., and J. M. Restrepo, 1999: The wave-

driven ocean circulation. J. Phys. Oceanogr., 29, 2523–

2540.

Mei, C.,M. Stiassnie, andD. Yue, 2005:Theory andApplications of

Ocean Surface Waves. Advanced Series on Ocean Engineer-

ing, Vol. 21, World Scientific, 503 pp.

Mesiah, A., 1961: Quantum Mechanics: Vol. I. North-Holland

Publishing Company, 1136 pp.

O’Reilly, W. C., and R. T. Guza, 1991: Comparison of spectral

refraction and refraction–diffraction wave models. J. Waterw.

Port Coastal Ocean Eng., 117, 199–215.

Penney, W. G., and A. T. Price, 1952: The diffraction theory of sea

waves and the shelter afforded by breakwaters. Part I. Proc.

Roy. Soc. London, A244, 236–253.
Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Ox-

ford University Press, 400 pp.

Smith, J. A., 2006: Observed variability of ocean wave Stokes drift,

and the Eulerian response to passing groups. J. Phys. Ocean-

ogr., 36, 1381–1402.

Stamnes, J., 1986: Waves in Focal Regions: Propagation, Diffrac-

tion, and Focusing of Light, Sound, and Water Waves.

A. Hilger, 618 pp.

Strichartz, R., 1993: A Guide to Distribution Theory and Fourier

Transforms. CRC Press, 224 pp.

Svendsen, I. A., 2006: Introduction to Nearshore Hydrodynamics.

Advanced Series on Ocean Engineering, Vol. 24, World Sci-

entific, 744 pp.

TheWAMDIGroup, 1988: TheWAMmodel—A third generation

ocean wave prediction model. J. Phys. Oceanogr., 18, 1775–

1810.

AUGUST 2013 SM I T AND JANS SEN 1757



Tolman, H. L., 1991: A third-generation model for wind waves on

slowly varying, unsteady, and inhomogeneous depths and

currents. J. Phys. Oceanogr., 21, 782–797.

Torre, A., 2005: Linear Ray and Wave Optics in Phase Space: Bridging

Ray andWaveOptics via theWignerPhase-Space.Elsevier, 540pp.

Ville, J., 1948: Thorie et applications de la notion de signal analy-

tique. Cables Transm., 2A, 61–74.

Vincent, C. L., and M. J. Briggs, 1989: Refraction–diffraction of

irregular waves over a mound. J. Waterw. Port Coastal Ocean

Eng., 115, 269–284.

Walther, A., 1968: Radiometry and coherence. J. Opt. Soc. Amer.,

58, 1256–1259.

Wigner, E., 1932: On the quantum correction for thermodynamic

equilibrium. Phys. Rev., 40, 749–759.
Wise Group, 2007: Wave modeling—The state of the art. Prog.

Oceanogr., 75, 603–674.

Zijlema, M., G. Stelling, and P. Smit, 2011: SWASH: An opera-

tional public domain code for simulating wave fields and

rapidly varied flows in coastal waters. Coastal Eng., 58, 992–

1012.

1758 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43


