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Abstract
Validation of travel demand models, although recognised as important, is seldom under-
taken. This study adds to the scarce literature in this field by undertaking an external vali-
dation of a multi-modal transit route choice model. The model was estimated using smart 
card data for the urban transit network of Amsterdam before the introduction of a new 
metro line and is used to predict changes in travel behaviour after the network change. 
To validate, the model was checked for changes in estimated parameters between the two 
time periods, and predictive ability was evaluated at different aggregation levels. Although 
most model parameters were found to be unstable between the two contexts, the predictive 
performance at all levels was similar to the locally estimated model. Moreover, individual 
choices and transit mode-share predictions were found to be close to the observed ones. 
The errors were relatively larger for the link and route-level predictions, some of which 
could be attributed to the assumptions made regarding consideration choice set given as 
input to the model. On comparing alternative model specifications, using generic instead 
of mode-specific travel attributes lead to a strong degradation in predictive performance. 
Conversely, a model incorporating overlap between routes, with a better model fit in the 
base period, did not offer a clear improvement in prediction performance. The study high-
lights the need to validate transit route choice models before using them for deriving policy 
recommendations, especially in this data-rich age in which it can often be undertaken at a 
relatively low additional cost.

Keywords  Route choice · Automated data · Public transport · Model transferability · 
Ex-post model evaluation

Introduction

The last few decades have seen substantial research into discrete choice models of tran-
sit route choice (Bovy and Hoogendoorn-Lanser 2005; Guo and Wilson 2011; Liu et al. 
2010). These models aid in understanding transit riders’ preferences by revealing the 
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relative valuation of various travel attributes, often specifically focusing on service qual-
ity characteristics such as those related to transfers (Garcia-Martinez et al. 2018; Guo and 
Wilson 2011; Nielsen et al. 2021), crowding (Hörcher et al. 2017; Kim et al. 2015; Yap 
et  al. 2020) or reliability (Swierstra et  al. 2017). The relative valuations obtained from 
these models can be used for predicting passenger flows in response to changes in policy, 
enabling the comparison of alternative policy scenarios. When the selected model is close 
to the true representation of reality, the estimated parameters are expected to be stable for a 
reasonable range of temporal and spatial conditions, and the model forecasts are expected 
to resemble the observed demand. However, the process of model validation is only seldom 
undertaken, and model selection is typically made based on goodness-of-fit statistics such 
as log-likelihood and rho-squared (Parady et al. 2021). Although useful in their own right, 
models with high goodness-of-fit may not necessarily be well-specified and hence may not 
be transferable (Koppelman and Wilmot 1982). Issues like overfitting, endogeniety, omis-
sion of variables, measurement errors, incorrect model structure or incorrect theoretical 
assumptions about the travel behaviour could lead to a misspecified model, which may still 
have an acceptable goodness-of-fit statistic.

Model validation can be defined as “the evaluation of generalizability of a statistical 
model” (Parady et  al. 2021) and includes both internal validation or reproducibility and 
external validation or transferability. External validation can be further divided into spatial 
transferability, temporal transferability, and methodological transferability (Parady et  al. 
2021), with the latter referring to the model performance on data collected using different 
methodologies. Although recognised as important, external validation is rarely undertaken 
in the case of travel demand models, probably due to the lack of suitable data. Parady et al. 
(2021) highlight that only 4% of transport academic literature published between 2014 and 
2018 conducted an external validation.

In recent years, revealed preference data in general, and smart card data, in particular, 
has become increasingly available for inferring route choices of transit travellers (see for 
exampleHörcher et  al. 2017; Jánošíkova et  al. 2014; Kim et  al. 2019; Yap et  al. 2020). 
Depending on the penetration rate amongst transit riders, smart card data can provide 
information on almost all journeys made in the network at a highly disaggregated level. 
However, no information is available on the intention of the travellers, their origin location, 
and in many cases the time of arrival at the origin stop. Due to these limitations, several 
assumptions need to be made along the modelling process, specifically regarding the trav-
ellers’ consideration choice set and the perceived level of service values. However, to the 
best of our knowledge, none of the studies that elicits route choice preferences from smart 
card data has attempted to validate their performance. This study aims to address this gap 
in the literature by undertaking an external validation of a transit route choice model using 
smart card data and thereby provide valuable insights on how transferable such models are 
and how we can facilitate their transferability.

A model of transit mode-route choice was developed for the urban transit network of 
Amsterdam, where a new North–South metro line was added to the existing bus, tram, and 
metro network in July 2018. Along with the addition of the new line, significant changes 
were made to the rest of the network (see Brands et  al. (2020) for details). This major 
network change provides an opportunity to perform an ex-post evaluation of the route 
choice model developed based on data before the network change. Two types of validation 
tests are undertaken. First, we compare the model parameters estimated for the transferred 
(‘before’) model with the locally estimated model developed based on the data ‘after’ the 
network change. The two data sets used are ~3 months apart. Second, the demand changes 
estimated using the transferred model are compared with the observed demand after the 



Transportation	

1 3

network change. The results aim to establish the validity of route choice models estimated 
using smart card data for predicting the change in travel behaviour because of a major net-
work change.

The rest of the paper is structured as follows: we start with reviewing the literature on 
"External validation of travel demand models”. Section  "Methods" describes the study 
setting and the various statistical tests used for model validation, along with the model 
specifications. Section "Results and Discussion" presents the results of the validation tests 
undertaken on our data, and Section "Conclusion" discusses the main conclusions.

External validation of travel demand models

External validation of models, or transferability, implies the ability of a model developed 
in one context to be useful in another context. Transferability is implicitly assumed when 
models are used to predict change in demand in response to a policy change. Some of the 
earliest literature on (external) model validation dates back to Atherton and Ben-Akiva 
(1976) and Train (1978). Since then, most work in this area has focused on the temporal 
transferability of models over long time horizons (often more than 10 years) and/or their 
spatial transferability. The primary motivation for such studies was to reduce costs of data 
collection and model development by using an existing model for a comparable region or 
during a different time period for the same region. Parady et al. (2021) provide a compre-
hensive review of the recent literature on the validation of discrete choice models in trans-
portation. Here we narrow our focus to external validation studies, and discuss the main 
issues and corresponding learnings from these studies.

A fundamental theoretical assumption behind any model transferability is the consist-
ency of underlying behavioural theory in both contexts. Koppelman and Wilmot (1982) 
highlight that model transferability is a “property of the estimation and application con-
texts, as well as the specification of the model”. Naturally, a model with highly context-
specific variables will not be transferable to a new context. Sometimes the Alternative Spe-
cific Constants (ASCs) are updated based on the application context to account for average 
changes in unobserved variables between the two contexts (Atherton and Ben-Akiva 1976; 
Badoe and Miller 1995; Sanko and Morikawa 2010). While the updated ASCs capture the 
mean contribution of the unobserved terms, there could also be differences in the vari-
ance of these unobserved terms. Hence, before transferring a model, the scale for the trans-
ferred model needs to be updated to match the scaling differences between the two con-
texts (Swait and Louviere 1993). In cases where the estimation and application contexts are 
widely different, one could implement a partial model transfer with varying transfer scales 
for different sub-groups of variables (Gunn et al. 1985). This is especially applicable when 
some parameters are more transferable than others. For example, Fox et al. (2014) found 
the level of service parameters to be more transferable than cost parameters in their study 
of mode-destination choice models.

Multiple studies have noted that, generally, an improved model specification improves 
transferability (Badoe and Miller 1995; Fox et al. 2014; Rossi and Bhat 2014). However, 
some others also highlight the risk of overfitting which may reduce the transferability of 
models. For example, Fox (2015) found that although incorporating taste heterogeneity in 
time and cost parameters improved model fit for their base data, it did not necessarily result 
in enhanced transferability. Badoe and Miller (1995) also report a similar finding where 
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over-specification led to reduced transferability. Overall, it is noted that a good fit in the 
estimation context may not be sufficient.

Another issue of concern is the ability of a model to capture causal relationships. As 
clearly highlighted by Atherton and Ben-Akiva (1976): “To be transferable, then, it is not 
enough that the model merely fit existing data; it must also explain why travel behaviour 
changes as conditions change. Rather than simply correlating existing travel behaviour 
with socioeconomic characteristics and transportation level of service, the model speci-
fication must represent the causal relationships between these variables. Thus, the causal 
specification of a model is a precondition to its consideration for transferability.” For exam-
ple, Chorus and Kroesen (2014) argue against the transferability of hybrid choice models 
for predicting policy outcomes, as these models (theoretically) cannot capture the causal 
relationship between the latent variable and the travel choice.

The only way to empirically establish whether a model is under/over specified or if it 
captures the causal relations required for transferability is to undertake a posterior analysis 
of transferability. Nonetheless, as Koppelman and Wilmot (1982) note, such posterior anal-
yses of transferability are undertaken with the intent to provide insights that can be helpful 
for (future) prior transferability studies. This study aims to get such insights for the case of 
transit route choice models, specifically the ones estimated based on smart card data.

So far, most validation studies in the literature have been for mode or mode-destination 
choice models. In the case of route choice models, some studies undertake an internal vali-
dation (see for examples Lai and Bierlaire (2015), Mai (2016)), but very few an external 
validation. Bekhor and Prato (2009) were the first to consider the issue of transferability 
of route choice models. They undertook a spatial transferability assessment of traffic route 
choice models based on two independent revealed preference survey data sets, one each for 
Boston and Turin networks. In addition to assessing the transferability of the route choice 
models, they also evaluated the transferability of path generation techniques. In their case, 
the transferability of route choice model parameters could not be verified, partly due to the 
dissimilarity in characteristics between the two networks.

To the best of our knowledge, none of the studies so far have undertaken an external 
validation of a transit route choice model. This study addresses this gap by undertaking 
a transferability analysis across two closely spaced time periods for the same urban area, 
which allows for many exogenous factors to be controlled for, including any major changes 
in the underlying population. Specifically, the following issues are investigated using the 
smart card data from before and after a major network change:

	 (i)	 How transferable are models of transit route choice estimated using smart card data, 
and can they be used for forecasting the changes in demand because of network 
changes?

	 (ii)	 How does omitting/adding relevant variables (determined based on improved good-
ness of fit measures in the base context) impact models’ prediction performance?

Method

Case study context and data preparation

In July 2018, a new metro line (the north–south line) was introduced in the urban tran-
sit network of Amsterdam, the Netherlands, adding significant capacity to the existing 
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network of metro, bus and tram lines. The new metro line runs through the dense historical 
city centre, and connects the northern part of the city with the centre—a connection which 
was made earlier via buses with highly circuitous routes. The opening of the new metro 
line was accompanied by a re-structure of the existing bus and tram network, including the 
addition of new feeder routes and re-routing or removal of duplicate routes. The new metro 
line differs from the existing ones in a few aspects—some of the stations (especially the 
ones in the city centre) are deeper than the existing metro stations implying a longer access 
time to the metro. In addition, the frequency for the new line is higher than the frequencies 
offered on the other metro lines (see Brands et al. (2020) for details).

This significant change in public transport supply provides an opportunity to under-
take a transferability analysis for the transit route choice models developed for the network 
using the two time periods corresponding to before and after the opening of the new metro, 
as shown in Fig. 1. We use 5 weeks of data in the time period before and 6 weeks in the 
time period after the opening of the new metro line. Although the two time periods used 
in this study are very close apart, the major changes to the transit network supply cause 
significant changes to the flow patterns (as shown in Brands et al. (2020)), making this case 
study ideal for undertaking a model transferability analysis.

We use a combination of smart card and Automated Vehicle Location (AVL) data for the 
route choice model estimation and validation analysis (see van Oort et al. (2015) for an overview 
of the Dutch smart card system). The smart card data used includes all the journeys made in the 
network, including those by tourists that could use an unlimited travel ticket for one or more days 
valid for all modes of public transport. These tickets also need to be validated for each public 
transport trip, and are hence recorded in the data. There are no mode-specific season passes in 
the network, and the fare is based on the (network) distance travelled irrespective of the mode 
used. It is also important to note that the same individual may be recorded multiple times, but 
owing to privacy concerns, we cannot track them across days and hence consider them as inde-
pendent observations.

The raw smart card data is processed by undertaking cleaning, destination inference and 
transfer inference to form a journey database (see Dixit et al. (2019) for more details on 
these steps). For undertaking route choice analysis, we use only the morning peak period 
for our model estimation, as it is expected to have a higher share of commuters during 
this time, which are typically more regular travellers making their travel choices more con-
scious (Fox and Hess 2010). The choice set is derived based on the observed routes used 
by all the travellers in the data set. Transit stops in close proximity are clustered together to 

Fig. 1   The time period for validation analysis
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form a more realistic consideration choice set, and a threshold of minimum 20 journeys for 
each route in the before period (and 24 in the after period) is applied to ensure only reason-
able routes are included (see Dixit et al. (2021) for more details on this). After applying 
all filters, a dataset of 382,295 observations for the before period and 563,210 for the after 
period is obtained which is used for estimation and validation of the model, respectively. 
This corresponds to 582 OD pairs in the before period and 593 in the after period.

Model specification

We specify and test three models of transit route choice. We start with an MNL model with 
mode-specific travel attributes, with the deterministic component of utilities as specified in Eq. 1.

where IVTbusandIVTtram are the in-vehicle times by bus and tram in minutes, respectively, 
WTbt is the expected initial waiting time for bus and tram modes, TTmetro is the travel time 
by metro including the initial waiting time at the platform, Transbt , Transbtm and Transm are 
the numbers of transfers made within the bus/tram network (which includes bus-bus, tram-
tram and bus-tram transfers); transfers between metro and bus/tram; and transfers within 
the metro network, respectively, TrT  is the transfer time in minutes, Circ is the circuity of 
the route measured as the ratio of network to Euclidean distance, and  MSCbus,MSCtram and 
MSCmetro are the mode-specific constants for bus, tram and metro, respectively.

It is important to note that the smart card data in Amsterdam contains different informa-
tion for bus and tram versus metro. For buses and trams, the smart card is tapped inside the 
vehicle, whereas for metro, this happens at the station. Hence, the time measured by smart 
card data for metro includes the waiting time at the origin. For buses and trams the time of 
arrival of the passenger at the bus/tram stop is not known. Hence, the effective waiting time 
is derived based on the observed headway at each origin station using the corresponding 
vehicle arrival information available from AVL data. Hence, we use IVTbus/tram for denot-
ing the in-vehicle time (without waiting time) for buses and trams and TTmetro for the travel 
time by metro, which includes waiting time.

Amsterdam public transport network follows a (network) distance-based fare system, 
with the same fare per distance travelled irrespective of the mode(s) used. This makes the 
travel cost directly proportional to circuity for the alternative routes between an origin–des-
tination pair. Hence, travel cost has not been considered as an additional, separate, variable 
in our models.

Next, to analyse the impact of omitting variables, instead of mode-specific in-vehicle 
time and transfer penalties, we use generic ones. The deterministic utility function in this 
case is shown in Eq. 2.

where IVT  corresponds to the in-vehicle time in minutes, and Trans is the number of trans-
fers made within or across modes.

(1)

VMNL_specific
= �ivtbus ∗ IVTbus + �ivttram ∗ IVTtram + �waitbt ∗ WTbt + �ttmetro ∗ TTmetro

+ �transbt ∗ Transbt + �transbt ∗ Transbtm + �transm ∗ Transm

+ �TrT ∗ TrT + �Circ ∗ Circ +MSCBus +MSCTram +MSCMetro

(2)
VMNL_generic

= �ivt ∗ IVT + �waitbt ∗ WTbt + �trans ∗ Trans

+ �TrT ∗ TrT + �Circ ∗ Circ +MSCBus +MSCTram +MSCMetro
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Lastly, we test the model which incorporates the overlap between alternative routes. 
For this, we use a Path Size Correction Logit model which includes overlap of path 
and transfer nodes. The path size correction terms for journey legs ( PSCT

i
 ) and transfer 

nodes ( PSCX
i
 ) are as defined in Dixit et al. (2021), given by.

where tl  = travel time for journey leg l in route i,Ti = total travel time for route i, Γi = set of 
all legs for route i, C = set of all routes between the chosen origin–destination pair, �lj = leg-
route incidence between leg l belonging to alternative route j, Xi = Number of transfer 
nodes in route i,Ki = set of all nodes for route i, and �nj = node-route incidence between 
node n belonging to alternative route j.

The PSC terms decrease as the amount of overlap between alternative routes increases, with 
a maximum value of 0 for perfectly independent routes and a lower theoretical bound − ∞ for 
perfectly correlated alternatives. These path size correction terms are added to the determinis-
tic utility function with mode-specific travel attributes as defined in Eq. 1.

Validation assessment

We divide the external validation metrics into two categories. The first category relates 
to the stability of estimated parameters, while the second one assesses the predictive 
ability of the model. The second category is further split into measures of disaggregate 
and aggregate predictions. Figure  2 shows this classification, and the sets of metrics 
used for each category. Subsequent sections elaborate on each of the metrics used.

While this study focuses on external validation of route choice models, it should be 
noted that the models used in this study have been validated internally using a cross-val-
idation approach. Readers are referred to Dixit et al. (2021) for more details and results 
of the internal validation exercise.

(3)PSCT
i
= −

∑

l∈Γi

(
tl

Ti
ln
∑

j∈C

�lj

)

and PSCX
i
= −

∑

n∈Ki

(
1

Xi

ln
∑

j∈C

�nj

)

Validation assessment 
measures

Model parameter 
equality

Relative error measure 
(REM) and t-test for each 

parameter

Measures of 
predictive performace

Meaures of disaggregate 
prediction

Transferability test statistic 
(TTS)

First preference recovery 
(FPR)

Brier score (BS)

Measures of aggregate 
prediction

Mean Absolute Error (MAE) 
for route flow prediction

Mean Absolute Error (MAE) 
for link flow prediction

Mean Absolute Percentage 
Error (MAPE) 

for mode-share prediction

Fig. 2   Validation assessment metrics used
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Model parameter equality

The first test of transferability consists of comparing the parameters estimated for the 
base and transfer contexts (the before and after situations in our case). This helps estab-
lish whether some parameters are more transferable than others. Since the two datasets 
are from different time points, we first check for differences in scale parameters between 
the two. For this, the two datasets are pooled together and the scale parameter is esti-
mated relative to the ‘before’ dataset.

After adjusting for scale differences, the parameters estimated for the two cases are 
compared. For each estimated parameter, the relative error measure (REM) is calculated 
as:

where µ is the scale parameter to account for differences in error variance between the two 
cases, �after

k
 is the parameter for attribute ‘k’ estimated for the after case, and �before

k
 is the 

parameter for attribute ‘k’ estimated for the before case.
Next, we check for statistical significance of the differences in each of the model 

parameters by means of a t-test, as described in Fox (2015). The t-statistic, in this case, 
is given by,

The denominator � corresponds to the standard error of the difference in parame-
ters. In our study, although the two datasets were collected a few months apart, we do 
not link individual observations collected in different periods. When the covariance is 
assumed to be zero, and scale � fixed, the standard error of difference is given by,

where (�|||�
after

k

|||
) is the standard error of �after

k
 , and (�|||�

before

k

|||
) is the standard error of �before

k
.

Since model parameters cannot be interpreted directly, we also compare the model 
elasticities between the two time periods. Elasticities capture the sensitivity of a model 
to changes in key input variables such as travel times. The disaggregate point elasticity 
of alternative route ‘r’ for an individual ‘i’ with respect to a variable K is calculated as

The disaggregate elasticity is aggregated by calculating a (probability) weighted 
average across all individuals and alternatives, to arrive at an average elasticity value 
which is compared between the locally estimated and transferred models. Being dimen-
sionless, model elasticities can be compared across different models and time periods 
(Fox 2015).

(4)REM�k
=

��
after

k
− �

before

k

�
before

k

(5)t
(
��

after

k
− �

before

k

)
=

��
after

k
− �

before

k

�

(
��

after

k
− �

before

k

)

(6)�

(
��

after

k
− �

before

k

)
=

√(
��

[
�
after

k

])2

+

(
�

[
�
before

k

])2

(7)E
Pir

K
=

K

Pir

.
�Pir

�k
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Disaggregate measures of predictive ability

Next, we assess how well the transferred model can predict the outcome of the network 
change. For this, the model parameters estimated based on the ‘before’ data are used to 
estimate the probabilities for the ‘after’ situation. The outcomes obtained using the trans-
ferred model are then compared to those from the locally estimated model (i.e. model esti-
mated with same the specification but using the ‘after’ data). In this section, we discuss 
the methods for comparing the performance for individual-level predictions. As there is no 
agreement in the literature on the best metric for this, we use multiple metrics, each provid-
ing a different perspective on it, as described below:

•	 Transferability Test Statistics (TTS): The TTS statistic is similar to a likelihood ratio 
test undertaken between transferred and locally estimated model, both applied to the 
‘after’ data. It is a strict pass/fail test and is chi-squared distributed with degrees of 
freedom equal to the number of model parameters. This has been used by Atherton 
and Ben-Akiva (1976) and Koppelman and Wilmot (1982) among others to test model 
transferability.

where LLafter
(
�before

)
 is the log of the likelihood that the observed ‘after’ data were gener-

ated by the transferred model, and LLbefore(�before) is the log-likelihood of the locally esti-
mated model on the ‘after’ data.

Although commonly noted, it has been observed that almost all models fail this strict 
test of transferability (Badoe and Miller 1995; Fox 2015).

•	 First preference recovery (FPR): Also referred to as ‘percentage of correct predic-
tions’, this shows the percentage of choices correctly estimated by the model, given by 
Eq. 8:

where yp
i
 is the predicted choice (route) for an individual ‘i’, and yo

i
 is the observed choice 

(route) for an individual ‘i’, andN is the number of individuals (observations) in the data.
As opposed to TTS, the FPR provides an indication on the degree of transferability and 

can be used to compare alternative models in terms of how well they can predict individual 
choices. It can also be useful when comparing the results with similar studies in the litera-
ture. However, a major limitation of this measure is its inability to differentiate between the 
range of probabilities assigned to the chosen alternatives (de Luca and Cantarella 2016). 
Hence, we look at another measure—Brier score—of disaggregate predictive performance 
that considers the probabilities assigned to the chosen and non-chosen alternatives.

•	 Brier score (BS): Brier score (Brier 1950) is an absolute measure used to quantify the 
accuracy of probabilistic predictions. For each alternative route in each observation, the 
predicted probability of choosing it is subtracted by the actual outcome. The square of 
this value is summed across all alternatives for each observation, and averaged across 
all observations. Mathematically, it is given by:

(8)TTSafter(�before) = −2 ∗ (LLafter(�before) − LLafter(�after))

(9)FPR =
100

N

N∑

i=1

(y
p

i
= yo

i
)
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where Pir is the predicted probability an individual ‘i’ chooses alternative route ‘r’.yir 
is equal to 1 is alternative route ‘r’ is chosen by individual ‘i’ and 0 otherwise,Ri is the 
number of alternative routes available to individual ‘i’, and N is the number of individuals 
(observations) in the data.

The Brier Score has a minimum value of 0 for perfect predictions and a maximum value 
of 2 for the worst possible prediction.

Aggregate measures of predictive ability

From a policy perspective, one is often more interested in aggregate level shares as 
opposed to individual level predictions. Depending on the application under consideration 
and the requirements of the decision maker, different levels of forecasting may be relevant. 
For example, for understanding capacity and infrastructure issues as well as for operational 
planning, link-level forecasts are highly relevant to identify bottlenecks and related capac-
ity needs. On the other hand, for service planning aspects such as fare scheme policies, net-
work design, and frequency setting, mode or route level forecasts may be most relevant for 
assessing overall trends. Hence, in this study, we compare the shares estimated by the mod-
els at each of these levels of aggregation. To do this, individual probabilities are summed 
to calculate the market shares for each alternative route for each OD pair. The aggregate 
predictions are assessed using three metrics addressing the different levels of aggregation, 
as discussed below:

•	 Predictions per route—Mean Absolute Error (MAE): The predicted shares (passen-
ger flows) are compared to the observed ones, and the Mean Absolute Error (MAE) for 
each origin-destination (OD) pair is calculated as:

where Spr is the predicted flows for alternative route ‘r’ for origin–destination pair ‘o-d’,So
r
 

is the observed flows for alternative route ‘r’ for origin–destination pair ‘o-d’, and R is the 
number of available routes for origin–destination pair ‘o-d’.

The MAEod is then averaged across all ODs to get an average MAE per route.

•	 Predictions per link—Mean Absolute Error (MAE): The passenger flows per route 
are aggregated to calculate flows for each link. A link here refers to the path connect-
ing two consecutive transit stops, which may be used by multiple transit routes. Similar 
to the route level, MAE is calculated for each link, and a mean MAE over all links is 
reported. The percentage error in predicting the flow on each link is also visualized to 
identify patterns.

•	 Predicted modal shares—Mean Absolute Percentage Error (MAPE): The predicted 
passenger flows on each route are further aggregated to calculate the market share for 
each mode combination. This is specifically relevant in our case as we would like to 
know how well the model performs when estimating the impact of network change on 
public transport mode-shares. The observed and predicted mode shares are compared, 
and the Mean Absolute Percentage Error (MAPE) is calculated for each mode as:

(10)BS =
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where Pp
m is the predicted mode-share for mode (combination)  ‘m’, Po

m
 is the observed 

mode-share for mode (combination) ‘m’, andM is the number of mode (combinations).

Results and discussion

We first evaluate the validity of the MNL model with mode-specific travel attributes as 
described in Eq. 1. Then, the impact of variable omission is examined by testing the valid-
ity of the two alternate model specifications.

Model parameter equality

We start with examining the stability of the estimated model parameters across the before 
and after time periods. Before comparing the parameters, the two models were checked 
for differences in scale parameters. The scale difference was found to be significant with a 
value of 0.92 for the after model relative to the before model, implying a lower variance in 
the unobserved parameters for the after case.

Table 1 shows the parameters estimated from the two models after scaling, and the cor-
responding REM and t-test statistic for each. The relative error measure is the highest for 
the mode-specific constants, implying a significant difference in the average effect of unob-
served (excluded) variables specific to each mode between the two contexts. This could 
include attributes like comfort, safety, cleanliness, reliability, weather protection at sta-
tions, availability of information, ease-of-navigation or any other inherent (dis)preference 
for a particular (public transport) mode. Some of these attributes are expected to change 
after the introduction of the new line. For example, deeper stations of the new metro line 
may reduce the attractiveness of the mode. On the other hand, the higher frequency and 
more options for travel may lead to it being more attractive. Amongst the rest of the param-
eters, circuity is found to have the highest change (an increase of 45% in magnitude), fol-
lowed by the number of transfers within the metro which is found to decrease in magnitude 
by 19%. Although the REM values for all other parameters are approximately 10% or less, 
the null hypothesis of the parameters being identical across the two cases is rejected for 
most of them (with a 95% confidence interval). Only the travel time by metro, number of 
transfers between bus and tram, and the transfer time are found to be stable across the two 
time periods as per the t-statistic. It should be noted though that for both transferred and 
locally estimated models, the parameters are precisely estimated with relatively low stand-
ard errors (t-ratios of > 20), which is often the case for models estimated with large scale 
data sources such as the smart card. Because of this, the null hypothesis of the parameters 
being identical across the two contexts is more likely to be rejected.

Next, we compare the model elasticities. Table  2 shows the elasticities for the trans-
ferred and locally estimated models. For both contexts, the (absolute) elasticity values are 
the highest for bus in-vehicle time, followed closely by the waiting time for bus and trams. 
The (absolute) elasticity values are found to be higher for the locally estimated model com-
pared to the transferred model, implying the transferred model estimates the demand to be 
more inelastic that the locally estimated model.

(12)MAPEmodes =
1

M

M∑

m=1

||P
p
m
− Po

m
||
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There could be several reasons for the differences in estimated parameters and elastici-
ties between the two contexts. Firstly, there could be contextual factors that are not cap-
tured by the observed variables that could differ between the two contexts. Secondly, the 
underlying population may have changed—some travellers may have stopped using tran-
sit after the network change while other new travellers may have been added. Also, some 
existing travellers may have reduced/increased their travel frequencies. A related point is 
the possible presence of endogeniety, especially since our study is based on observational 
data. The models assume the explanatory variables to be exogenous, which may not be 
true. This could be due to multiple reasons, including omitted variables. For example, the 
new metro line has newer, cleaner and more aesthetically pleasing trains and stations—
contributing toward comfort, which is not included in our model(s). Concurrently, the new 
metro line provides direct routes with lower circuity values compared to the rest, making 

Table 1   Model parameter comparison between models estimated on ‘before’ and ‘after’ datasets

*p < 0.01 for all estimates
**the reported estimates are after adjusting for scale differences
a includes in-vehicle time and origin waiting times
b includes bus-bus, tram-tram and bus-tram transfers

Parameter* Before After** REM t-statistic Signifi-
cantly dif-
ferent?

Mode-specific constant for bus < fixed >  0.00 0.00 – – –
Mode-specific constant for tram 0.49 0.25 −48.5% −13.90 Yes
Mode-specific constant for metro 0.84 0.37 −56.0% 15.04 Yes
Bus in-vehicle time (mins) −0.11 −0.12 10.4% 4.97 Yes
Tram in-vehicle time (mins) −0.09 −0.10 11.1% 6.54 Yes
Effective wait time bus/trams (mins) −0.19 −0.20 5.6% 4.48 Yes
Metro timea (mins) −0.09 −0.10 3.6% 1.22 No
Number of transfers between bus & tramb −1.24 −1.21 −3.1% 0.80 No
Number of transfers between metro and bus/tram −2.38 −2.19 −9.0% 6.83 Yes
Number of transfers within metro −1.50 −1.22 −19.3% 6.30 Yes
Transfer time (mins) −0.25 −0.25 0.2% 0.07 No
Circuity −0.43 −0.63 45.1% 9.17 Yes

Table 2   Direct model elasticities for locally estimated and transferred model

Elasticity Locally estimated 
model

Transferred model Transferred/
Locally esti-
mated

Bus in-vehicle time (mins) −0.49 −0.43 0.88
Tram in-vehicle time (mins) −0.38 −0.32 0.85
Effective wait time bus/trams (mins) −0.48 −0.43 0.90
Metro time (mins) −0.31 −0.28 0.92
Transfer time (mins) −0.35 −0.33 0.95
Circuity −0.33 −0.22 0.66
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the circuity correlated with the unobserved attribute of comfort. When using a model to 
predict the demand in response to changes in policy, it is important to have a model captur-
ing the causal relationship between them. The smart card data used for this study does not 
provide the origin (home) location of the travellers. The missing attributes (such as access/
egress distance or time, comfort levels, reliability, and accessibility of modes among oth-
ers) and/or endogeniety may hamper the establishment of a causal relationship. Lastly, one 
cannot theoretically rule out that our model may have been misspecified (wrong model 
structure or non-linear relationships between variables), or that the behavioural theory is 
altogether inconsistent with the observed behaviour. Irrespective of the reasons behind the 
instability of model parameter values, our results imply that one should be cautious when 
making inferences on the relative valuation of travel time or service quality attributes from 
such models, specifically if they have not been thoroughly validated. We also note that 
since we do not track the individuals across days, we are not able to capture the impact of 
panel structure of the data in our model. This may have resulted in an underestimation of 
the standard errors of parameters for both transfer and locally estimated models. This fur-
ther motivates us to analyse the predictive performance of our model to establish its useful-
ness for applications.

Predictive performance

Disaggregate measures

Next, we test the predictive ability of the model by forecasting the impact of the network 
change at an individual, route, link and mode level. The predictions are compared with the 
predictions from a locally estimated model (i.e. model estimated with same the specifica-
tion but using the ‘after’ data) to benchmark the performance. We start with the measures 
of predictive performance at a disaggregate level, which are shown in Table 3. The TTS, 
compared against the chi-squared distribution for 11 degrees of freedom, strongly rejects 
the hypothesis that the two sets of parameters are equal. However, as many other stud-
ies note, most models fail this test of model transferability, but may still be good in their 
predictive abilities (see for example Badoe and Miller (1995); Forsey et  al. (2014); Fox 
(2015)). In most cases, following the results from a strict pass/fail test such as the TTS 
blindly may not be a wise decision. While the TTS is useful to inform the modeler of the 
two models being different, as Parady et al. (2021) highlight, it is important to assess the 
extent to which they differ. To understand the extent of these differences in our case, we 
evaluate other disaggregate and aggregate level measures as discussed below.

Table 3   Disaggregate measures of predictive ability for locally estimated and transferred models

Statistic Locally estimated 
model

Transferred model Difference

Log-likelihood −328,646 −330,299 0.5%
TTS – 3,306
First preference recovery 71.7% 71.5% −0.3%
Brier score 0.370 0.372 0.7%
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The FPR of over 70% is found to be rather high compared to values reported for other 
route choice models in the literature, where this percentage ranges between 51 and 73% for 
some of the recent studies (Parady et al. 2021). Moreover, both FPR and the Brier score 
of the transferred models are found to be very close to the locally estimated models (< 1% 
difference), with the FPR being marginally lower and the Brier score slightly higher in the 
case of transferred models. Hence, although many of the parameter estimates differ for the 
two periods, the predicted choice probabilities of the transferred model at an individual 
level are found to be close to the locally estimated model.

Aggregate measures

Disaggregate measures like FPR and Brier score are often used for assessing the models 
in terms of their ability to predict individual-level choices in the new context. However, 
in most applications, one is more interested in the predictions at the mode, route, or link 
levels. Hence, we analyse the performance of the transferred model to predict the market 
shares at each of these levels.

First, we use the MAE to compare the local and transferred models in terms of their pre-
dictions at the route level (Table 4). The MAE for the transferred model shows an average 
error of 45 journeys per route for the transferred model as compared to 43 for the locally 
estimated model. Examining the predicted flows at a link level, we observe an MAE of 328 
passengers per link over the entire morning peak period when predicted using the trans-
ferred model, ~8.6% higher than that those obtained by the locally estimated model.

Figures 3 and 4 show the error in flow prediction at the link level by the local and 
transferred models, respectively. The width of the lines corresponds to the observed 
flow on the link. A positive error implies that the model overestimated the flow on the 
link, while a negative error means an underestimate of observed flow. The maps show 
that the link-level flow predictions using the two models are similar overall, implying 
that using the ‘before’ data set for estimation of the model is not a problem per-se, com-
pared to the inherent estimation errors when using such a model. The maps can give an 
indication of the possible causes of such errors. For example, close to the central sta-
tion, there are two parallel tram routes with one showing an underestimation while the 
other an overestimation of flows. These parallel tram lines are highlighted with a red 
circle in the maps and enlarged in the top right corner of both the figures. The errors 
in estimation could be attributed to the assumptions made regarding the consideration 
choice set for the model. The smart card data does not provide information on the origin 
(home) location of the travellers. Hence, stops within a maximum distance of 500  m 
were clustered together to form the consideration choice set for travellers (for more 
details on the clustering process see Dixit et  al. (2021)). In the absence of the actual 
origin location, all routes between the origin–destination stop-clusters are assumed to 
be equally accessible for the travellers. However, for the origin–destination pairs such 

Table 4   Aggregate measures of predictive ability for locally estimated and transferred models

Statistic Locally estimated 
model

Transferred model Difference

MAE per route 43.2 45.4 5.0%
MAE per link (AM peak) 302.2 328.2 8.6%
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Fig. 3   Percentage error in prediction per link for the locally estimated model

Fig. 4   Percentage error in prediction per link for the transferred model
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as the one highlighted where the distance travelled is very short, travellers are likely to 
choose the transit stop closest to them as opposed to the one with the shortest general-
ized cost that is predicted by the model. Hence, in such cases the link-level predictions 
can be erroneous, and should be used with caution.

Next, we compare the market shares of each transit mode combination in the data 
(Table 5). The predicted and observed shares are found to be close to each other with a 
difference of less than 1 percent for most mode combinations for both local and transferred 
models. As expected, the MAPE is found to be slightly higher for the transferred model 
than for the local model. Overall, the transferred model is found to perform close to the 
local model in terms of mode-share predictions as well.

Impact of omitted variables

In this section, we analyse the impact of omitting/adding one or more variables on the 
model’s predictive performance (Table 6). We test two scenarios:

Table 5   Observed and predicted mode shares

Mode combination Observed share Predicted share Error

Local model Transferred model Local model Transferred model

Bus only 18.4% 18.6% 18.1% 0.2% −0.3%
Tram only 31.8% 31.6% 31.4% −0.2% −0.4%
Metro only 37.8% 37.8% 37.7% 0.0% −0.1%
Bus + tram 0.4% 0.4% 0.4% 0.0% 0.0%
Bus + metro 3.3% 3.1% 3.1% −0.2% −0.2%
Tram + metro 8.2% 8.4% 9.3% 0.2% 1.1%
All modes 0.0% 0.0% 0.0% 0.0% 0.0%
MAPE 0.1% 0.3%

Table 6   Predictive measures of transferability for alternate transferred model specifications

Statistic Generic MNL Mode-specific MNL Including 
overlap 
(PSCL)

Local model 
(Mode-specific 
MNL)

Number of parameters 7 11 13 11
Log-likelihood of estimation 

(‘before’ context)
−234,899 −233,892 −233,473 –

Log-likelihood of prediction 
(‘after context’)

−335,470 −330,299 −330,598 −328,646

First preference recovery 71.2% 71.5% 71.6% 71.7%
Brier score 0.379 0.372 0.372 0.370
MAE per route 48.2 45.4 45.2 43.2
MAPE (mode-share) 0.60% 0.30% 0.34% 0.14%
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1.	 Generic MNL: Generic travel time and transfer parameters as opposed to mode-specific 
ones as specified in Eq. 2.

2.	 Including overlap: Path size correction logit (PSCL) model including path size correc-
tion terms as defined in Eq. 3 to incorporate the impact of overlap between alternate 
routes

Both in the estimation (before) and the prediction (after) contexts, the model with 
generic travel time and transfer parameters has the worst fit for the data, as shown by the 
respective log-likelihood values (even when adjusted for the number of parameters). The 
predictive performance is also found to suffer significantly when generic attributes are 
used. Conversely, when overlap is incorporated, the model fit is improved significantly in 
the estimation context (Likelihood ratio statistic of 838.6 exceeding the critical χ2 value 
of 9.2 at 1% significance level (df = 2)), but the log-likelihood for the prediction context is 
found to be lower than the mode-specific MNL model. In terms of predictions, there is a 
marginal improvement in the FPR and MAE for route-level prediction. However, the Brier 
score and the predictions at mode level are slightly worse.

When inferring route choice using revealed preference data sources in general, and 
smart card data in particular, the analyst does not have any ‘direct’ information on which 
attributes were considered by the decision-maker when making the choice. Hence, the 
selection of attributes to be included in the model depends heavily on the judgement of 
the analyst, and often data availability. It is known that the omission of a relevant variable 
can impact the model transferability (Koppelman and Wilmot 1986), especially when the 
missing variable is a confounding one. Conversely, if a simple model with fewer variables 
can perform just as well, then excluding variables can make the data collection as well as 
estimation easier. In our case, generic travel time and transfer parameters negatively impact 
the predictive ability of the transferred models. In contrast, including overlap does not offer 
a clear improvement in the predictive ability. In the end, the optimal selection of attributes 
depends on the purpose for which it is intended to be used. For predicting passenger flows 
in the regions where the tram was replaced by the new metro line, all attributes that dis-
tinguish a metro from a tram should ideally be included in the model. The mode-specific 
MNL shows that the travel time and transfer parameters are different for different modes. 
Hence, using generic travel time and transfer parameters impacts the predictive perfor-
mance of the model significantly. On the other hand, correcting for route overlap typically 
leads to an improvement in model fit in the case of route choice models (like in our case 
for the estimation context). However, our results seem to suggest that it may not necessarily 
increase the transferability of the models, and the overlap term(s) may be context-specific 
and hence not as transferable.

Conclusion

This study adds to the scarce literature on the validation of travel demand models and is 
the first to undertake an external validation for a transit route choice model. The model 
was developed based on smart card data for the urban transit network of Amsterdam and 
was used to predict the impact of a significant network change (i.e. the introduction of 
a new metro line) on the route choice behaviour of travellers. Validation was conducted 
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by comparing the parameter values and a series of statistical performance indicators for 
the predictions with the observed behaviour after the network change.

Our results are overall in agreement with existing literature: the conclusion regard-
ing model transferability depends on the (statistical) test used (Koppelman and Wil-
mot 1982). In our case, model parameter equality failed for most attributes, implying 
care should be taken in directly inferring behavioural insights from the parameter val-
ues from models such as those used in this study, specifically if they have not been 
thoroughly validated. However, the predictive performance of the transferred model was 
found to be close to the locally estimated model. When compared with the observed 
choices at an individual level, the model performed satisfactorily with a First Preference 
Recovery of 71.5%. Moreover, the predicted mode-shares were close to the observed 
ones, with a MAPE of 0.3%. When used for route and link level predictions, the errors 
were relatively larger, but the performance of the transferred model was similar to the 
local model (less than 10% error increase). We also investigated the impact of omit-
ting relevant variables on predictive performance. When the mode-specific travel time 
and transfer parameters were replaced by generic ones, the performance suffered sig-
nificantly. Conversely, including overlap in the model specification did not offer a clear 
improvement in model predictions, even though it had a better fit for the base data. This 
suggests that overlap definition may be context specific and could perhaps be excluded 
when using a route choice model for predictions in favour of a parsimonious model.

When using smart card data for travel demand modelling, several assumptions are 
made regarding travellers’ consideration choice set and perceived travel attributes. Visu-
alizing link-level prediction errors can help indicate potential causes of errors. In our 
case, the assumption regarding consideration choice set may be responsible for some of 
the prediction errors, which are consistent between local and transferred models.

“All models are wrong, but some are useful” (Box 1976). To establish how wrong 
a model needs to be to stop being useful, we need more studies undertaking validation 
analysis for different networks and policy scenarios. Guidelines and standards on what 
is considered acceptable in terms of the various transferability statistics remain yet to 
be defined. In the past, the cost of undertaking model validation was high primarily due 
to data collection costs. The abundance of passively collected data such as the smart 
card provides an opportunity to validate transit route choice and assignment models at 
relatively low additional costs. Hence, validation must become an integral part of the 
development process for such models, and should be considered non-negotiable when 
using them for deriving any policy recommendations.
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