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PUeface aQd AcNQRZOedgePeQWV

TKH cRPSOHWLRQ RI WKLV MaVWHU RI ScLHQcH WKHVLV IRU WKH MaVWHU'V dHJUHH LQ THcKQLcaO MHdLcLQH PaUNV
WKH HQd RI QRW RQO\ aQ LQVSLULQJ aQd IaVcLQaWLQJ SURMHcW bXW aOVR RI VHYHQ \HaUV RI VWXd\. RHIOHcWLQJ RQ
WKHVH \HaUV, I VWLOO bHOLHYH THcKQLcaO MHdLcLQH ZaV WKH ULJKW cKRLcH IRU PH. TKURXJKRXW P\ PaVWHU'V
SURJUaP, I Kad WKH SULYLOHJH RI JaLQLQJ YaOXabOH H[SHULHQcHV LQ YaULRXV aUHaV WKaW caSWXUHd P\
LQWHUHVW. FURP ZRUNLQJ RQ aXJPHQWHd UHaOLW\ LQ WUaXPa VXUJHU\ WR aSSOLcaWLRQ dHYHORSPHQW IRU SOaVWLc
VXUJHU\, 3D LPaJLQJ LQ RUaO aQd Pa[LOORIacLaO VXUJHU\, aQd aXWRPaWLc aQaO\VLV RI IXQcWLRQaO MRI LQ
QHXURVXUJHU\, HacK H[SHULHQcH VKaSHd P\ VNLOOV aQd LQWHUHVWV. UOWLPaWHO\, I HQdHd XS aW WKH DaaQ
TKHHXZHV CHQWUH (DTC) LQ WRHUdHQ, cRPbLQHd ZLWK WKH QHXURVXUJHU\ dHSaUWPHQW aW HaaJOaQdHQ
MHdLcaO CHQWUH (HMC), ZKHUH I IRcXVHd RQ LPSOHPHQWLQJ SUHdLcWLRQ PRdHOV IRU \RXQJ adXOWV
VXIIHULQJ IURP AcTXLUHd BUaLQ IQMXU\ (ABI).

AWWHQdLQJ bRWK KRVSLWaO aQd UHKabLOLWaWLRQ VHWWLQJV JaYH PH LQVLJKWV LQWR WKH IXOO caUH SaWKZa\ IRU
\RXQJ adXOWV ZLWK ABI ± IURP cRPSOH[ VXUJHULHV aQd KRVSLWaO caUH WR QHXURUHKabLOLWaWLRQ. TKHVH
H[SHULHQcHV dHHSHQHd P\ XQdHUVWaQdLQJ RI WKH SaWLHQW JURXS aQd WKH ILHOd. CRPbLQHd ZLWK aQ LQ-dHSWK
H[SORUaWLRQ RI SUHdLcWLRQ PRdHOOLQJ, WKLV HTXLSSHd PH ZLWK WKH QHcHVVaU\ VNLOOV aQd NQRZOHdJH WR WaNH
VWHSV WRZaUdV LPSOHPHQWLQJ WKHVH PRdHOV LQ cOLQLcaO caUH aQd adYaQcLQJ PRUH SHUVRQaOLVHd,
daWa-dULYHQ aSSURacKHV. TKLV WKHVLV KROdV a VSHcLaO SOacH IRU PH, aV LW UHOaWHV WR a dHaU IULHQd ZKR ZaV
adPLWWHd WR WKH DTC. I KaYH H[SHULHQcHd WKH XQcHUWaLQW\ WKaW accRPSaQLHV ABI aQd WKH cKaOOHQJHV RI
SUHdLcWLQJ LWV RXWcRPHV aQd PaQaJLQJ H[SHcWaWLRQV aV a cORVH IULHQd. AOWKRXJK P\ ZRUN Pa\ QRW
dLUHcWO\ bHQHILW KHU QRZ, I IHHO HQcRXUaJHd WR cRQWULbXWH WR WKLV ILHOd, NQRZLQJ LW Pa\ KHOS RWKHUV LQ WKH
IXWXUH.

FLUVW, I ZRXOd OLNH WR WKaQN P\ VXSHUYLVRUV: DU MaUVK KRQLJV, PURI DU WLOcR PHXO, aQd DU RXXd YaQ
dHU VHHQ. MaUVK, I aP JUaWHIXO IRU \RXU JXLdaQcH WKURXJKRXW WKHVH PRQWKV. I WUXO\ aSSUHcLaWHd RXU
ZHHNO\ PHHWLQJV, RXU cROOabRUaWLYH ZRUNLQJ VW\OH, aQd KRZ \RX HQcRXUaJHd PH WR WKLQN cULWLcaOO\
abRXW P\ UHVXOWV ZKLOH KHOSLQJ PH QaYLJaWH bRWK cOLQLcaO aQd WHcKQLcaO cKaOOHQJHV. WLOcR, WKaQN \RX
IRU \RXU YaOXabOH LQSXW dXULQJ RXU PHHWLQJV aQd IRU bULdJLQJ WKH JaS bHWZHHQ WKH KRVSLWaO aQd
QHXURUHKabLOLWaWLRQ. YRXU RSHQ-PLQdHdQHVV aQd HQWKXVLaVP PadH RXU dLVcXVVLRQV WUXO\ HQHUJLVLQJ.
RXXd, I aP WKaQNIXO IRU aOZa\V bHLQJ aYaLOabOH WR aQVZHU P\ TXHVWLRQV, IRU \RXU cOHaU H[SOaQaWLRQV RI
WKH ORJLc bHKLQd WKH PRdHOV, aQd IRU XSdaWLQJ WKH daWa ZKHQHYHU I QHHdHd LW²\RXU VXSSRUW ZaV
LQYaOXabOH.

I aOVR ZaQW WR WKaQN WKH PXOWLdLVcLSOLQaU\ WHaP aW WKH DTC IRU WKHLU WLPH aQd IRU JLYLQJ PH aQ LQVLdH
YLHZ RI QHXURUHKabLOLWaWLRQ. SSHcLaO WKaQNV WR SKaQQa IRU RXU LQVLJKWIXO dLVcXVVLRQV RQ LPSOHPHQWLQJ
WHcKQRORJ\ LQ KHaOWKcaUH, aQd WR AQdULHV aQd AP\ IRU SURYLdLQJ IHHdbacN RQ RXU aSSOLcaWLRQ. I aP
JUaWHIXO WR HYHU\RQH aW WKH CHQWUH ZKR WRRN WKH WLPH WR OLVWHQ WR P\ SURJUHVV aQd VKaUH VWRULHV ZLWK PH
abRXW ZRUN aQd bH\RQd. FRU IXUWKHU cOLQLcaO LQVLJKWV, I aP JUaWHIXO WR WKH QHXURVXUJHRQV, SK\VLcLaQ
aVVLVWaQWV, AIOS, aQd ANIOS aW WKH QHXURVXUJHU\ dHSaUWPHQW aW HMC. TKaQN \RX IRU VKRZLQJ PH
HYHU\WKLQJ²IURP WKH ICU WR WKH ZaUdV, IURP LQWHUHVWLQJ VXUJHULHV WR \RXU IaYRXULWH OXQcK VaQdZLcKHV
LQ WKH KRVSLWaO caIHWHULa.

LaVWO\, I ZaQW WR WKaQN P\ IaPLO\ aQd IULHQdV IRU aOO WKHLU ORYH aQd VXSSRUW. I aP HVSHcLaOO\ JUaWHIXO
IRU WKHLU HQcRXUaJHPHQW, ZKLcK KaV bHHQ a cRQVWaQW VRXUcH RI PRWLYaWLRQ dXULQJ P\ VWXdLHV. I
JHQXLQHO\ HQMR\Hd ZRUNLQJ RQ WKLV WKHVLV aQd aP JUaWHIXO IRU WKH RSSRUWXQLW\ WR cRQWULbXWH WR WKLV
ILHOd. WKLOH WKLV LV aQ HQdLQJ I KaYH QRW SaUWLcXOaUO\ ORQJHd IRU, I aP aOVR H[cLWHd abRXW ZKaW OLHV
aKHad aQd ORRN IRUZaUd WR WKH IXWXUH ZLWK JUHaW aQWLcLSaWLRQ.
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Abstract

Introduction
Acquired Brain Injury (ABI) presents a significant public health challenge due to the diverse recovery trajectories resulting from
its heterogeneous nature. Prediction models, derived from structured data collection, offer a more personalised approach to neu-
rorehabilitation. However, a substantial gap remains between the development of these models and their successful implementation
in clinical practice. This study addresses this gap by focusing on two key components: externally validating prediction models
for functional independence in young adults with ABI, and creating a user-friendly interface to support their application in clinical
settings. These efforts represent a crucial step toward advancing precision neurorehabilitation, enabling data-driven, individualised
care tailored to the unique needs of ABI patients.

Design and Methods
Previously, three multivariable prediction models were developed to predict the prognosis of severe ABI in young adults aged
16 to 35 admitted to the Daan Theeuwes Centre, demonstrating promising performance. These models focused on functional
independence, measured by the Barthel Index (BI) at admission, three months later, and the change in independence during this
period. This study focused on the implementation of these prediction models by external validation of these models, and the
development of a web-based tool to facilitate their implementation in clinical practice. Data for the external validation cohort
were sourced from the Measurement Feedback System (MFS). Highly incomplete variables were excluded, and missing data were
handled using Predictive Mean Matching (PMM). Model performance was assessed using Coefficient of Determination (R2), Root
Mean Square (RMSE), and Mean Absolute Error (MAE), alongside calibration and correlation analyses. Additionally, results were
assessed against the 95% Prediction Interval (PI) of the development cohort. A web-based tool was developed simultaneously to
facilitate the practical application of these models in clinical practice, informed by clinician feedback and literature insights.

Results
The validation cohort (n = 21) showed minimal discrepancies compared to the development cohort (n = 100), but external valida-
tion revealed reduced predictive accuracy. The ”Level of Independence at Admission,” ”Level of Independence at Three Months
Post-Admission” and ”Change in Independence over Three Months” models had notable drops in R2 from 65.7% to 42.8%, 59.3%
to 29.7%, and 76.3% to 35.9%, respectively. All models fell outside the 95% Confidence Interval (CI) of R2 for the development
cohort and showed increased RMSE and MAE values. Calibration showed overestimation of lower BI scores and underestimation
of higher scores, with a substantial proportion of predictions falling outside the 95% PI of the development cohort. Correlation
analysis indicated that longer hospital stays and Post-Traumatic Amnesia (PTA) were linked to higher prediction errors, while
higher BI scores at admission and focal injuries in Traumatic Brain Injury (TBI) were associated with lower errors. The web-based
tool included a page for applying the models, one for visualising recovery trajectories via an interactive flow diagram, and another
for accessing detailed model information.

Discussion
The implementation of prediction models involves several key phases, beginning with structured data collection, model devel-
opment, and evaluation. Once the model demonstrates sufficient performance, it can be implemented into clinical practice. To
maintain its relevance, continuous monitoring and updating are essential. In this study, we focused on two main components—
external validation of the prediction models and the practical implementation through the development of a user-friendly tool. By
addressing these, we have taken significant steps towards implementing prediction models into clinical practice. These components
underscore the importance of structured data collection, rigorous validation, and practical application to ensure the models’ effec-
tiveness in real-world settings. By implementing prediction models, we aim to employ a data-driven approach that brings us closer
to precision neurorehabilitation.

Keywords: prediction modelling, multivariable prediction model, external validation, acquired brain injury, tool development,
clinical practice
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1. Introduction
Acquired Brain Injury (ABI) includes a broad spectrum of
mechanisms of brain injury, establishing it as a vastly impor-
tant area in medicine and public health (1). Traumatic Brain
Injury (TBI) and stroke are the two most prevalent forms of
ABI (2), affecting approximately 85 million individuals annu-
ally (3; 4). ABI can result in serious consequences, including
cognitive impairment, physical disability, and emotional dis-
tress, which profoundly impact quality of life (5; 6; 7; 8). Neu-
rorehabilitation focuses on regaining motor function, daily ac-
tivities, cognition, communication and psychosocial factors to
increase the ability to participate in society (9).
ABI patients exhibit significant heterogeneity in terms of
the impairment profile, progression during neurorehabilitation,
and outcomes, driven by factors such as demographics, neu-
ropathology aetiology, and environmental influences (1). This
heterogeneity makes it challenging for healthcare profession-
als to assess rehabilitation potential and establish reliable prog-
noses (10). Consequently, the heterogeneity of ABI compli-
cates the application of standardised treatment protocols, un-
derscoring the need for the development of personalised treat-
ment strategies (11).
Predictive modelling in healthcare involves developing and ap-
plying mathematical algorithms and statistical techniques to
predict various outcomes relevant to patient care, such as prog-
nosis and risk of disease (12). Prediction models in health-
care serve multiple purposes: they help refine our under-
standing of rehabilitation mechanisms, provide a quantitative
framework for setting expectations for both patients and clini-
cians, and aid in optimising treatment plans for individual pa-
tients (13). While stroke rehabilitation models offer meaningful
insights (14), prognostic models for post-acute rehabilitation
in patients with ABI often lack the systematic robustness re-
quired for generalisation beyond the original development set-
ting. This limitation hinders their translation to other environ-
ments, particularly highly specialised settings, highlighting the
need for models that not only perform reliably across diverse
healthcare settings but are also adaptable to the specific needs
of specialised centres (15).
Recent literature indicates that while prediction models show
potential in the prediction of functional rehabilitation outcomes
for post-stroke patients, they require further development, val-
idation, and standardisation to become reliably applicable in
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clinical practice. Researchers stress the importance of rigorous
validation methods, as many of these models still lack sufficient
external validation, limiting their real-world applicability (16).
Recent research across various fields and settings shows that
only 12.8% of developed models underwent external valida-
tion. Even when external validation is sufficient, successful im-
plementation in clinical settings does not automatically follow,
which suggests that the proportion of models actually imple-
mented in clinical practice is even lower (17). This highlights
a substantial gap between model development and implemen-
tation, underscoring the need for prediction models that are ex-
ternally validated and applicable clinical settings.
Next to sufficient performance in external validation, many fac-
tors influence the success of implementing prediction models
in clinical practice. Identifying and understanding these factors
is crucial, as limited focus on how clinicians receive and use
these models often hinders their practicality (18). In a previ-
ously conducted literature review on the barriers and facilita-
tors to implementing clinical prediction models (see Appendix
A), guided by the Consolidated Framework of Implementation
Research (CFIR) (19), several important considerations were
highlighted. In the initial stages, a thorough needs assess-
ment and strong stakeholder engagement are crucial to laying
the groundwork for a smoother development and implementa-
tion process. Co-creation with end-users and continuous feed-
back loops are essential to maintaining stakeholder consensus
and ensuring the model’s practicality. Proper structure and de-
sign, emphasising clinically relevant and statistically significant
variables, along with transparency, comprehensive information
provision, clear data representation, and compliance with reg-
ulatory pathways, significantly enhance user acceptance and
usability. Furthermore, continuous evaluation and regular up-
dates, and adequate resource allocation are necessary to ensure
the model’s ongoing relevance and effectiveness. Altogether,
these factors contribute to more effective approaches for imple-
menting prediction models into clinical workflows (20), helping
to close the implementation gap.
The overarching goal of this study is to facilitate the implemen-
tation of previously developed prediction models for functional
independence in young adults with ABI (21). To achieve this,
we focused on two key steps. First, we evaluated the robustness
of these models in predicting functional outcomes by externally
validating them using a consecutive cohort of newly admitted
patients after the development cohort. Second, to facilitate the
practical implementation of these models, we developed a user-
friendly interface. Informed by insights from our literature re-
view and feedback from clinicians, this interface was designed
to assist healthcare professionals in interpreting and applying
the model’s predictions in real-world settings. The findings of
this study are expected to contribute to the field by advancing
the iterative development of prediction models and taking es-
sential steps toward creating an effective tool that paves the
way for more personalised and effective treatments. Altogether,
these efforts contribute to the advancement of a data-driven ap-
proach in the transition towards precision neurorehabilitation.

2. Design and methods
2.1. Study design
This study aims to externally validate and take the first steps to-
wards implementation of multivariable prediction models for
the prognosis in ABI, utilising prospectively and retrospec-
tively collected clinical data from patients admitted to the Daan
Theeuwes Centre (DTC). The DTC is an Intensive Neuroreha-
bilitation Centre for young adults aged 16 to 35 years with se-
vere ABI, undergoing both inpatient and outpatient neuroreha-
bilitation treatments. The previously developed models will be
evaluated on the subsequent consecutive cohort of patients. To
facilitate the implementation of the prediction models in clini-
cal practice, this study will also include the development of a
proof-of-concept tool for clinicians. As highlighted in the pre-
viously conducted literature review the emphasis is on statisti-
cally significant and clinically relevant variables, co-creation,
transparency, comprehensive information provision, clear data
depiction, and compliance with regulatory pathways. Together,
these efforts represent key steps toward the overarching goal:
advancing a data-driven approach in the transition toward pre-
cision neurorehabilitation.
This study is structured according to the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) guidelines (22), providing a framework
for transparent reporting of prediction model development and
validation. However, it is important to note that while this study
describes parts of the model development for context, the focus
is on the external validation and the tool development. The pre-
diction models were developed prior to this study (21).

2.2. Participants
The participants for this study were young adults admitted to
the DTC for Intensive Neurorehabilitation, a level three facility
specialising in the neurorehabilitation of individuals with ABI.
Eligibility criteria for admission to the neurorehabilitation pro-
gram included: (1) young adults between the ages of 16 and
35; (2) severe ABI with complex multifactorial impairment; (3)
sufficient consciousness to understand and follow the program,
indicated by a Post-Acute Level of Consciousness (PALOC)
score of 8 (23); (4) medical stability, with no requirement for
oxygen or a tracheal cannula, although a replaceable bone flap
or PEG tube was not considered a barrier to admission; and
(5) active involvement of the patient’s support system. Ad-
ditionally, patients were preferably admitted directly from the
acute phase to maximise functional recovery through intensive
rehabilitation. Exclusion criteria included (1) patients with neu-
rodegenerative conditions and a poor prognosis, (2) strict iso-
lation requirements, (3) significant psychiatric dysregulation or
aggressive behaviour interfering with effective rehabilitation, as
well as current addiction problems. All patients and/or their le-
gal guardians provided written informed consent for the reuse
of clinical data. The acquisition and storage of the data com-
plied with established guidelines, including the General Data
Protection Regulation (GDPR) for data protection and Good
Clinical Practice (GCP) standards for clinical research. This
study was approved by the medical ethical committee of Am-
sterdam University Medical Centres (ref: W22 122 # 22.162).
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The model development and evaluation did not influence the
treatment course.

2.3. Data
The clinical data for this study were derived from the
Measurement Feedback System (MFS). The MFS systemat-
ically captures structured clinical data at predetermined time
points during both inpatient and outpatient neurorehabilitation
treatments (21). This systematically collected and structured
data provides robust outcome data for prediction models in neu-
rorehabilitation. The development and validation datasets were
collected from the same healthcare setting, with identical eligi-
bility criteria, outcomes, and predictors. The data used for the
development group includes patients who initiated neuroreha-
bilitation between April 2021 and June 2023. The external val-
idation group consists of a temporally distinct cohort of newly
admitted patients who began neurorehabilitation between June
2023 and December 2023.
Comprehensive demographic and medical background infor-
mation was obtained through custom-made questionnaires dis-
tributed to the patient’s primary caregiver via the MFS. The col-
lected demographic data included personal information, such as
age, sex, socio-cultural background, education, participation in
sports, and physical characteristics like dexterity. The medical
background encompassed pre-injury learning disorders, neuro-
logical disorders, psychiatric disorders, and other medical con-
ditions. Additionally, it included information on prior head in-
juries and lifestyle factors. Demographic and medical back-
ground information was prospectively collected through the
MFS, with predefined parameters determined in advance.
The aetiology of ABI and trauma centre data were determined
retrospectively through a detailed review of medical referral let-
ters and subsequently standardised using predefined structured
registration forms. For all patients, the trauma centres where
they were initially admitted were contacted to obtain all rele-
vant medical correspondence and to minimise missing data for
analysis. The data extraction process involved identifying the
cause of injury (TBI, Cerebrovascular Accident (CVA), infec-
tion, or other) and documenting key injury characteristics for
each type. For TBI, this included details such as the presence
of skull fractures, nerve injuries, and intracranial injuries. For
CVA, information was collected on the type and location of the
CVA, such as Subarachnoid Haemorrhage (SAH), intracerebral
bleeding, or occlusions. Additionally, for infections and other
diagnoses, specific details like the type of infection and other
related conditions were recorded.
Subsequently, an extensive dataset regarding hospital admis-
sion and discharge was collected from the trauma centre where
the patient was initially admitted. This included the duration
of hospital stay, period of unconsciousness, mechanical ven-
tilation, and the presence of Post-Traumatic Amnesia (PTA).
Furthermore, physiological parameters recorded at trauma cen-
tre admission were documented, along with details of neuro-
surgical or radiological interventions. Brain injury severity was
assessed using the Glasgow Coma Scale (24), and initial radi-
ology reports regarding CT scans were evaluated based on the
Marshall and Rotterdam CT criteria. Functional impairments

observed at discharge were also recorded. A detailed overview
of the collected data is provided in Table B.1 in Appendix B.
Lastly, the Barthel Index (BI) (25) of all patients was extracted
from the MFS, which is every 6 weeks. The BI is a measure for
the level of independence in daily life activities and is scored
between 0 and 20 (see Table 1). The BI is a highly effective
tool in rehabilitation, including stroke patients, due to its strong
reliability (25; 26) and inter-rater consistency (27). Its sensitiv-
ity to functional improvements in patient independence makes
it particularly useful to track patients over time (28). The BI’s
Minimal Clinically Important Difference (MCID) of 1.85 points
allows for the detection of significant functional changes (29).

Table 1: Barthel Index (BI) Scoring Categories

BI Score Characteristics

20 Fully independent in basic activities of daily
living and mobility

15 − 19 Moderately to highly independent on assistance

10 − 14 Requires assistance but is able to complete
some tasks autonomously

5 − 9 Severely dependent on assistance

0 − 4 Fully dependent on assistance

2.4. Data-preprocessing

To ensure data quality and consistency, several pre-processing
steps were performed before model development and evalua-
tion, ensuring the datasets were both complete and suitable for
further analysis. Predictors with more than 20% missing data
were removed to avoid biases, as excessive missing data can
lead to unreliable results. Missing values in the remaining data
were imputed using the MICE (30) package with Predictive
Mean Matching (PMM), a method that preserves relationships
within the data while minimising the potential loss of infor-
mation. Imputation was performed to avoid the exclusion of
valuable predictors and to reduce the impact of missing data on
model performance.

2.5. Outcomes

The outcome of the developed prediction models is functional
independence, as measured by the BI. Three models are devel-
oped to predict: (1) “Level of Independence at Admission”, (2)
“Level of Independence at Three Months Post-Admission” and
(3) “Change in Level of Independence over Three Months”. Pa-
tients without a baseline BI score were excluded from the study.
For those who discontinued treatment before the three-month
mark, the most recent available BI score was used as the out-
come measurement. If a patient reached the maximum BI score
before three months, that score was carried forward, assuming
their condition remained stable. For patients missing the three-
month outcome but with available measurements at earlier and
later time points, spline interpolation was used to estimate the
missing value.
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2.6. Pre-selection of predictors
The candidate predictors for model development included de-
mographic data, medical background, ABI aetiology, and
trauma centre information. The large number of predictors
compared to a relatively small number of patients led to high
dimensionality in the dataset. To avoid overfitting and refine
the predictor set, a multi-step pre-selection process was per-
formed. First, manual selection of predictors was performed by
experts in the field. Missing data were handled as described
in the data preparation. Further refinements were made by ex-
cluding binary variables with fewer than 10 occurrences, those
with near-zero variance, and variables showing multicollinear-
ity (r > 0.7) or linear combinations. These steps were taken
to prevent the model from being disproportionately influenced
by predictors with limited variability and to enhance its overall
stability and generalisability.

2.7. Sample Size
The final development cohort included 100 patients for the
“Level of Independence at Admission” and “Level of Inde-
pendence at Three Months Post-Admission” models, while
the model for “Change in Level of Independence Over Three
Months” included 70 patients. Further details on the develop-
ment cohort can be found in the article describing the model
development (21). The maximum number of patients assessed
for the external validation cohort was equal to the number of
newly admitted patients at the centre who met the eligibility
criteria.

2.8. Prediction Model Development
The prediction models were developed in a previous study using
the CARET package in R. The preprocessing and pre-selection
process identified 31 predictors, including BI at Admission,
which is only used for the “Change in Level of Independence
over Three Months” model. Subsequently, the number of pre-
dictors was limited using Recursive Feature Elimination (RFE).
The prediction models were trained using a Generalised Linear
Model with stepwise Akaike Information Criterion (AIC). A
four-fold cross-validation with five repetitions was employed
to mitigate overfitting. Bootstrapping with 100 resamples pro-
vided robust estimates of predictive accuracy and confidence
intervals. Performance was evaluated using the Coefficient of
Determination (R2), Root Mean Square (RMSE), and Mean
Absolute Error (MAE). The best-performing sets of predic-
tors were saved. Model performance and predictor sets are
presented in Table 2. Full model-building details are provided
elsewhere (21).

2.9. External Validation
In this study, the previously developed models were validated.
As previously stated, the development and validation datasets
were collected from the same healthcare setting, with identi-
cal eligibility criteria, outcomes, and predictors. The same data
preparation steps regarding missing data and imputation were
applied to the external validation cohort as in the development
phase. Heterogeneity between the development and external
validation datasets was assessed; however, no significant het-
erogeneity was expected, given that both datasets were derived

from the same centre and population. There were no subgroups
or variations that required special handling in the analysis. The
final set of predictors identified during development was se-
lected from the complete external dataset. The saved models
were employed to make predictions, and observed and pre-
dicted values were compared. No recalibration or updates to
the model were performed during the external validation phase.
The model was applied to the validation cohort as originally
developed, and its performance was assessed without modifica-
tion.

2.10. Statistical Analysis
All statistical analyses were performed using RStudio version
2022.07.0+548. Descriptive statistics summarised the valida-
tion cohort’s characteristics, which were compared with the de-
velopment cohort to assess baseline similarities across all pre-
dictors. For the continuous predictors, the Shapiro-Wilk test
was first used to assess normality. Normally distributed vari-
ables were compared using an independent two-sample t-test,
while non-normally distributed variables were assessed using
the Wilcoxon rank-sum test (Mann-Whitney U test). For binary
variables, contingency tables were constructed, and the Chi-
square test was used for predictors with expected counts greater
than five observations per category. When expected counts
were less than five per category, Fisher’s exact test was applied.
To control for false discovery rates, Benjamini-Hochberg (BH)
multiple testing correction was applied. A significance level
of p < 0.05 was used to identify statistically significant differ-
ences. Missing data and imputation were evaluated, and differ-
ences in data completeness between the development and vali-
dation cohorts were also assessed. A difference in completeness
of greater than ten percent was deemed notable.
External validation was conducted using the CARET package
in R, which supports prediction model training and evaluation.
To evaluate the performance of the prediction models and com-
pare it to the performance calculated in the development co-
hort, R2, RMSE, and MAE were calculated for each model in
the external validation. R2 was used to assess the fit between
the predicted and observed outcomes, where values closer to
1 indicated better model performance. RMSE measured the
average magnitude of the prediction errors by calculating the
square root of the average squared differences between the pre-
dicted and actual outcomes. This metric gives more weight to
larger errors, making it particularly useful for identifying mod-
els with occasional significant prediction errors. MAE provided
insight into the average absolute difference between predicted
and actual outcomes, providing a more straightforward inter-
pretation of the typical prediction error. For both RMSE and
MAE, values closer to 0 indicated better model performance.
Additionally, a 95% Prediction Interval (PI) was calculated for
the development cohort to provide a range where 95% of future
predictions are expected to fall. While the 95% PI is similar to a
95% Confidence Interval (CI), which estimates the range within
which the true population mean lies, the prediction interval also
accounts for the uncertainty in predicting individual future out-
comes. A narrower interval reflects greater confidence in the
model’s predictions and is therefore more practical for use in
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Table 2: Performance and Predictor Sets for the Prediction Models for Functional Independence

Level of Independence at Admission Level of Independence at Three
Months Post-Admission

Change in Level of Independence
after Three Months

Performance

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE
0.657 4.562 3.489 0.593 4.415 3.167 0.763 3.605 2.614

Predictors

Hospital Length of Stay* Hospital Length of Stay* BI at Rehabilitation Admission*
PTA at Rehabilitation Admission* Discharge to Intermediate Care Facility* Left-handedness*
Discharge to Intermediate Care Facility* Neurosurgery Performed* PTA at Rehabilitation Admission*
Epidural Bleeding on CT Scan* PTA at Rehabilitation Admission* TBI with Focal Intracranial Injury*
Intracerebral Hemorrhage (CVA)* Skull Fracture(s) Subarachnoid Bleeding on CT Scan*
Cranioplasty Epidural Bleeding on CT Scan Placement of ICP Monitor*
Education Level of Parents Age at Rehabilitation Admission Participation in Sports*
Has Children Participation in Sports
Sex (Female)

Abbreviations: R2, Coefficient of Determination; RMSE, Root Mean Square Error; MAE, Mean Absolute Error; PTA, Post Traumatic Amnesia; BI, Barthel Index;
ICP, Intracranial Pressure.
Each model was trained on a sample size of 100 participants. All models were significant and significant predictors are marked with an *.

clinical settings. The predictions for the external validation co-
hort were evaluated to determine whether they fell within the
95% PI.
Additional analyses were performed in the external validation
cohort to further evaluate model performance. Calibration plots
were generated and analysed to assess the agreement between
predicted and observed values, providing a visual assessment of
how well the model predictions aligned with actual outcomes.
These plots were compared across models to evaluate their rel-
ative calibration performance. Furthermore, Pearson’s corre-
lation was used to compare normally distributed continuous
variables, Spearman’s correlation was applied for non-normally
distributed continuous variables, and rank-biserial correlation
was used for binary variables. These correlation coefficients
were calculated between each predictor and the absolute pre-
diction error (i.e., the absolute difference between predicted and
observed values) to identify the predictors that significantly in-
fluenced prediction errors. Given the exploratory nature of this
analysis, multiple testing correction was not applied.
Class imbalance techniques were not deemed necessary, as the
prediction models involve continuous outcomes. Given the rel-
atively small sample size, stratified fairness testing was not per-
formed. Additionally, no subgroups were expected to be dispro-
portionately favoured, as the model is designed for a focused
group. Due to the sensitive nature of patient data, data and
code sharing for this study are not feasible. All patient infor-
mation is protected under privacy regulations; therefore, access
to the dataset is restricted. However, detailed information on
the methodology and analysis is provided within this paper.

2.11. Model Implementation
A web-based tool was designed as a proof of concept to fa-
cilitate the implementation of previously developed prediction
models for functional independence in young adults with ABI.

The design and structure of the tool were informed by key in-
sights from the previously conducted literature review, which
emphasised the importance of statistically significant and clin-
ically relevant variables, co-creation, transparency, compre-
hensive information provision, clear data representation, and
compliance with regulatory pathways. The prediction models
guided the inclusion of statistically significant variables, while
co-creation was employed through multiple feedback sessions
with clinicians to identify and integrate clinically relevant vari-
ables into the tool’s design. Although no formal testing was
conducted, basic adjustments and improvements were made it-
eratively based on clinician feedback to ensure the tool’s func-
tionality and ease of use. The tool was developed using RStudio
version 2022.07.0+548 and the Shiny application builder.

3. Results
3.1. Participants
A total of 25 patients were admitted to the DTC since the devel-
opment phase and considered for inclusion in the external vali-
dation cohort. Four patients were excluded due to missing data:
two patients had not been admitted to a trauma centre but only
attended an outpatient clinic before being referred to the DTC.
Given that a substantial proportion of the predictors are related
to hospital admission, stay, and discharge, this led to excessive
missing data, and these patients were therefore not included in
the analysis. Additionally, two patients lacked a measurement
of BI at admission. For the remaining 21 patients, missing data
at the three-month outcome (n = 2) were interpolated using
earlier and later BI measurements. Three patients achieved the
maximum BI score before the three-month time point, and these
scores were carried forward, assuming that their level of inde-
pendence remained stable over time. Lastly, for the “Change
in Level of Independence Over Three Months” model, seven
patients were excluded because no change in functional inde-
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Assessed for eligibility (n = 25)

Included in Level of
Independence at Admission
Model (n = 21) and Level of

Independence 3 Months Post-
Admission Model (n = 21)

Included in Change in Level of
Independence after 3 Months

Model (n = 14)

 Excluded
No admission to
trauma centre (n = 2)
No BI at admission
available (n = 2)

 Excluded
Maximum score at
admission (n = 7)

Figure 1: Flow chart for inclusion and exclusion of patients.
Abbreviations: BI, Barthel Index.

pendence could be predicted, as they had already reached the
maximum BI score at admission.
The final sample sizes consisted of 21 patients for both the
“Level of Independence at Admission” and “Level of Inde-
pendence at Three Months Post-Admission” models. For the
“Change in Level of Independence Over Three Months” model,
the sample included 14 patients. Figure 1 provides a flow dia-
gram detailing the patient selection process.

3.2. Characteristics
The external validation cohort consisted of patients aged be-
tween 15.3 and 34.8 years at injury onset, with 33.3% female
sex. Most patients (71.4%) were diagnosed with TBI, all of
whom had intracranial injuries (100%), 60% suffered a skull
fracture, and 33.3% had cranial nerve injuries. Stroke ac-
counted for 19.1% of cases, with 25% being intracerebral. The
remaining 9.5% of patients had other ABI causes. Detailed
patient characteristics regarding demographics, medical back-
ground, ABI aetiology, and trauma centre data can be found in
Table B.1 in Appendix B.
In the validation cohort, overall missing data were relatively
low. One important predictor, “PTA at admission to DTC”,
showed a slightly lower completeness rate of 81%. The vari-
able with the lowest completeness was “EMV score at hospital
discharge”, with 71% completeness, though it was not a signif-
icant predictor in the model. All other variables either showed
high completeness (greater than 90%) or were less relevant due
to their specificity.
Six predictors demonstrated a difference of more than 10% in
completeness between the development and validation cohorts,
indicating potential variability in data quality across the two
groups. Specifically, four demographic predictors (“Has Chil-
dren”, “Education Level of Parents”, “Participation in Sports”,
and “Left-Handedness”) exhibited lower completeness in the
validation cohort, ranging from 15% to 21% less than in the de-
velopment cohort. In contrast, two hospital-related predictors
(“Epidural Bleeding on CT Scan” and “Intraventricular or Sub-

arachnoid Bleeding on CT Scan”) showed higher completeness
in the validation cohort by 27% and 31%, respectively.
Comparison of the development cohort and validation cohort
on demographic and clinical characteristics revealed that most
group characteristics did not show statistically significant dif-
ferences. There were no significant differences in demographic
characteristics, medical background, ABI aetiology, or out-
come measures between the cohorts. Among the trauma cen-
tre data, only “Discharge to a Rehabilitation Centre” showed
a statistically significant difference between the two cohorts
(p = 0.033). In the development cohort, 43.3% of patients were
admitted directly to specialised medical rehabilitation after dis-
charge from the trauma centre, compared to a much larger pro-
portion of 85.7% in the validation cohort. These results suggest
that, apart from one variable in the trauma centre data, the de-
velopment and validation cohorts are largely comparable across
the assessed variables. For a detailed overview of the develop-
ment cohort, validation cohort and the comparison, see Table
B.1 in Appendix B.

3.3. Recovery Level of Independence
A significant improvement in the level of independence, as
measured by the BI, was observed over the three-month rehabil-
itation period in the external validation cohort. The Wilcoxon
signed-rank test indicated a statistically significant increase
from admission to three months post-admission (Z = 4.088,
p < 0.001, sum of positive ranks = 104). The effect size, mea-
sured by Cohen’s d, was 1.19 (95% CI: 0.56− 1.82), indicating
a large effect on the recovery of independence. A detailed illus-
tration of the progression in the level of independence is pro-
vided in Figure 2. For a comparison of the progression between
the development and the validation cohort, see Figure B.1 in
Appendix B.

3.4. External validation of the Prediction Models
The performance of all three prediction models was assessed
for the external validation cohort and compared to the develop-
ment cohort. Across all models, a significant drop in perfor-
mance was observed during external validation, as reflected by
a noticeable decrease in R2. Importantly, the R2 values for all
models in the external validation cohort fell outside the 95% CI
of the development cohort, indicating a significant reduction in
predictive accuracy compared to the model development phase.
More specifically, for the “Level of Independence at Admis-
sion” model, performance decreased significantly, with R2

dropping from 0.657 (95% CI: 0.555 − 0.758) in the develop-
ment cohort to 0.428 in the validation cohort. RMSE increased
from 4.6 to 5.9, and MAE rose from 3.5 to 4.8. Similarly,
the “Level of Independence at Three Months Post-Admission”
model experienced a significant reduction in performance, with
R2 dropping from 0.593 (95% CI: 0.465 - 0.695) in the devel-
opment cohort to 0.297 in the validation cohort. The RMSE
increased from 4.4 to 5.6, and the MAE rose from 3.2 to 4.3.
The “Change in Independence Over Three Months” model saw
the greatest decline in performance. In the development cohort,
the model had an R2 of 0.763 (95% CI: 0.609 − 0.850), but this
dropped significantly to 0.359 in the validation cohort. RMSE
rose from 3.6 to 6.4, and MAE increased from 2.6 to 4.8.
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7 (33.3%)

3 (14.3%)

1 (4.8%)

4 (19%)

6 (28.6%)

14 (66.7%)

3 (14.3%)

1 (4.8%)

1 (4.8%)

2 (9.5%)

Complete dependency (<5)

Severe dependency (5−9)

Moderate dependency (10−14)

Slight dependency (15−19)

Fully independent (20)

Figure 2: Flow diagram of the trajectories of all patients in the external valida-
tion cohort.

This drop in accuracy indicates increased variability and uncer-
tainty in the external validation phase compared to the develop-
ment phase. Moreover, none of the error measures approached
the MCID of 1.85 for the BI in stroke patients (29). The perfor-
mance metrics for both the development and external validation
phases are summarised in Table 3.

3.5. Agreement Between Observed and Predicted Values
Calibration analysis was performed to assess the agreement
between the predicted and observed BI scores, identifying
any systematic deviations or biases in the model’s predictions
across different levels of independence. All three models
showed a general positive correlation between predicted and
observed BI scores, following the overall trend of increasing
predicted scores with higher levels of observed independence.
The “Level of Independence at Admission” tends to under-
estimate independence for patients with lower observed BI
scores (0 − 10) and to overestimate for higher scores (11 − 20).
Additionally, only 57.1% (n = 12) of the predicted values in
the validation cohort fell within the 95% PI of 5.9 from the
development cohort (see Figure 3a).
In the “Level of Independence at Three Months Post-
Admission” model, predicted scores were concentrated above
8. There was a also tendency for overestimation at the lower
observed scores (0 − 10) and underestimation at the higher
range (11 − 20), with a grouping of underestimated points at
observed BI scores of 20. In this model, 71.4% (n = 15) of
the predicted values fell within the 95% PI of 6.2 from the
development cohort (see Figure 3b).
For the “Change in Independence Over Three Months” model,
there was greater variability compared to the other models.

Overestimation was common for lower observed changes in
independence (0 − 10), while underestimation occurred for
larger observed changes (above 15). Only 50% (n = 7) of the
predicted values in the validation cohort fell within the 95% PI
of 5.0 from the development cohort (see Figure 3c).

3.6. Predictor Influence on Prediction Error
To explore how individual predictors influence the magnitude
of prediction error, a correlation analysis was performed. It re-
vealed that “PTA at Rehabilitation Admission” is moderately
to strongly associated with the magnitude of prediction error in
the “Level of Independence at Admission” model. This indi-
cates that the presence of PTA complicates accurate predictions
of functional independence. Additionally, patients with longer
hospital stays show larger discrepancies between predicted and
actual outcomes in the “Level of Independence at Three Months
Post-Admission” model. Conversely, in the “Change in Level
of Independence over Three Months” model, a higher BI at ad-
mission and the presence of focal injury are associated with
smaller prediction errors. Tables with all calculated correlations
can be found in Appendix C.

3.7. Implementation
Although external validation has not yet confirmed strong
model performance in temporally external data, the first
step towards implementation has been taken by developing
a proof-of-concept tool to identify potential obstacles and
evaluate its use before full implementation. The development
of the interface and incorporation of clinician feedback ensure
a clear plan is in place once the model’s performance reaches
a level that supports full clinical implementation. The tool
was structured based on key insights from the literature
review, particularly the emphasis on statistically significant
and clinically relevant variables, co-creation, transparency,
comprehensive information provision, clear data depiction, and
compliance with regulatory pathways. These principles guided
the design of three pages: “Decision Support Tools” to generate
predictions, “Patient-Like-Me” depicting an interactive flow di-
agram (see Figure 4b), and “About” for additional information
provision. The full-page visualisations from the developed tool
are provided in Appendix D, as substantial space is required to
clearly depict all features and functionalities.
The first page of the tool (Figure D.1) serves as the primary
interface for the use of the prediction models. For each model,
users enter values for the final set of predictors identified during
development. By linking the data server and user input, the tool
generates real-time predictions using the prediction models.
Additionally, predictors identified as statistically significant
during the development phase (21) were incorporated as filters
in the flow diagram using dropdown menus (see Subfigure 4b
and 4c). The filters allow the flow diagram to adapt, displaying
only patients matching the selected criteria (Figure 5). Making
these significant predictors accessible as filters enhances
clinical interpretability and transparency, allowing clinicians
to explore the factors driving the model’s predictions and
better understand how each predictor influences functional
independence.
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Table 3: Performance metrics of the development and external validation phases for the prediction models.

Level of Independence at
Admission

Level of Independence
after 3 Months

Change in Independence
after 3 Months

Cohort Development Validation Development Validation Development Validation

R2 0.657 0.428 0.593 0.297 0.763 0.359
95% CI 0.555 − 0.758 - 0.465 − 0.695 - 0.609 − 0.850 -
RMSE 4.6 5.9 4.4 5.6 3.6 6.4
MAE 3.5 4.8 3.2 4.3 2.6 4.8
95% PI 5.9 - 6.2 - 5.0 -

Abbreviations: R2, Coefficient of Determination; RMSE, Root Mean Square Error; CI, Confidence Interval; MAE, Mean Absolute Error; PI, Prediction Interval.

(a) Level of Independence at Admission (b) Level of Independence at Three Months Post-Admission (c) Change in Level of Independence over Three Months

Figure 3: Calibration plots for the external validation cohort, showing observed vs. predicted Barthel Index (BI) values. The dashed line represents perfect calibration
(predicted = observed), and the dotted lines show the 95% Prediction Interval (PI) from the development cohort.

To further enhance transparency and provide clear information,
The third tab, titled “About” (Figure D.8), provides compre-
hensive information about the prediction models, including
instructions for use and additional information on the perfor-
mance metrics. This ensures that clinicians have access to
important information about the models’ reliability, promoting
trust in the tool and transparency regarding its development and
function. While no formal feedback mechanism is integrated,
contact information is available for suggestions or issues.
Clear data depiction was achieved through an intuitive layout.
On the first page, input fields were provided for the significant
predictors of each model, accompanied by a colour-coded
button to calculate the prediction (Figure 4a). Predicted values,
displayed alongside a 95% PI, are shown to two decimal
places, allowing clinicians to precisely compare predictions
with the MCID. Additionally, these values are visualised in
a graph, ensuring that the data are presented in a clear and
easily understandable format for clinicians. To comply with
regulatory pathways regarding privacy, such as the GDPR
and GCP, the tool does not store any Personally Identifiable
Information (PII). Patient data are used temporarily for input
and calculations but are not saved or stored at any point.

4. Discussion
4.1. Interpretation of Results
The goal of this study is to contribute to precision neuroreha-
bilitation, where patient-specific treatments are guided by data-
driven insights to enhance functional recovery. Achieving this
ambition requires the successful implementation of prediction
models that help clinicians assess patient outcomes and tailor
treatment to personalised needs. In this study, we aimed to ex-
ternally validate prediction models for functional independence
in young adults with severe ABI during the first three months
of intensive neurorehabilitation and develop a proof-of-concept
tool for the practical application of these models. These efforts
represent an important step toward enabling the implementa-
tion of prediction models in clinical practice. The results of
this study highlight the critical role of structured data collection
as the basis for continuous model improvement and practical
implementation. Additionally, they offered important insights
into the functional recovery trajectories of young adults with se-
vere ABI, stressing the need for further model refinement to im-
prove accuracy. These prediction models must evolve alongside
emerging clinical insights and the collection of patient data.
By applying the prediction models to a subsequent consecu-
tive cohort, we have highlighted the challenges of generalising
models to new patient cohorts and the importance of continu-
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(a) The “Decision Support Tools” page allows clinicians to input predictors. The
output inlcudes the Barthel Index (BI) (black line) with a 95% prediction interval
(PI) (pink bar).

(b) The “Patient-Like-Me” page depicts the trajectories of 100 included patients in
develop- ment between admission and three months Post-Admission.

(c) On the “Patient-Like-Me” page, dropdown menus allow data filtering by categories and
subcategories, such as “Diagnosis” and “Focal Injury”, providing a focused representation.

Figure 4: Some of the Tool’s functionalities.

ous model refinement as previously highlighed by Pommerich
et al. (15). The external validation offered us insights into both
the strengths and limitations of the prediction model. While
the model maintained its predictive capabilities to some extent,
it displayed lower accuracy and generalisability in the external
cohort compared to the development phase . Although a ceil-
ing effect was anticipated due to the capping of predictions at
the maximum score of 20, the actual results revealed a different
trend. Instead of predictions clustering around the maximum
predicted score, high observed BI scores were often underes-
timated. Similarly, lower observed BI scores were frequently
overestimated, following the same trend in reverse. This sug-
gests that the predictors currently used in the model may not
fully capture the factors driving both high and low levels of
functional independence. It underscores the complexity of pre-
dicting functional outcomes in this population and highlights
areas where the model can be improved for more accurate pre-
dictions. Further refinement in future development cycles could
address this issue by utilising larger datasets or more advanced
models to better capture patients’ recovery potential across the
full BI spectrum.
Additionally, the correlation analysis revealed that predic-
tors associated with more challenging rehabilitation trajecto-
ries—such as PTA and long hospital stays—were associated
with a higher prediction error. This aligns with clinical expec-
tations, as these factors are known to indicate more complex
recovery paths, which are inherently more difficult to predict.
Incorporating more nuanced information about these variables
could help improve model accuracy for these difficult cases.
Conversely, a higher BI at admission was linked to smaller pre-
diction errors in the “Change in Level of Independence over
Three Months” model. Although this was also found by Meyer
et al. (14) there is also less room for error with higher initial
independence. Focal injury was also associated with smaller
errors, which may be due to most patients with focal injury
having higher BI scores at admission. Given the small sample
size (two high BI scores in three patients with focal injury), this
finding should be explored further with a larger dataset to deter-
mine if the observed pattern is consistent. Additionally, imple-
menting Out-of-Distribution (OOD) detection could enhance
the model’s robustness by identifying patients whose charac-
teristics fall outside the development data, alerting clinicians to
underrepresented profiles. This would prevent over-reliance on
the model in cases where accuracy may be compromised, im-
proving reliability and clinical utility in complex rehabilitation
cases.
In an effort to bridge the implementation gap, steps were taken
to optimise adoption of the prediction models once they reach
a level suitable for full clinical use. The development of the
web-based tool is grounded in insights from both the literature
review and feedback sessions with clinicians in neurorehabil-
itation settings. One of the tool’s most valuable features for
transparency is the interactive flow diagram. By allowing fil-
tering based on key demographic, medical, and injury-related
factors, it offers clinicians insights into the patient data under-
pinning the prediction model and helps them better understand
recovery trajectories. Although the flow diagram is based on
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(a) Flow diagram of the full sample (n = 100). (b) Flow diagram depicting patients in the sample with TBI.
(n = 62).

(c) Flow diagrams depicting patients in the sample with PTA
at Rehabilitation Admission (n = 49).

Figure 5: The interactive flow diagram allows clinicians to filter on patient data to visualise patients specific recovery trajectories depicted in Barthel Index (BI) and
to offer insights into the data used to derive the prediction models.
Abbreviations: TBI, Traumatic Brain Injury; PTA, Post-Traumatic Amnesia.

the development cohort (n = 100), filtering narrows the dataset
significantly. However, this more focused subset of patients
still provides uniquely valuable insights into the rehabilitation
trajectories of patients with unprecedented representativeness
when compared to data from the literature or other rehabilita-
tion centres.
An essential part of implementing the tool is establishing
clear performance targets for clinical use, such as using the
MCID (29) as a benchmark for individual predictions. While
such targets ensure reliability, the tool can still provide valu-
able insights during development by aligning its goals with the
current level of accuracy. Each iteration offers an opportunity to
reassess its applications, and even if not yet precise enough for
individual outcome predictions, the tool’s predictions—along
with their uncertainty range—remain useful for outlining po-
tential prognostic scenarios. This allows for both refining the
model and delivering practical value in clinical settings as the
tool evolves.
While the current tool focuses on predicting functional inde-
pendence at admission and after three months of rehabilita-
tion, there is potential for expanding its scope. Additional out-
come measures, such as cognitive or physical recovery, could
be integrated to provide a more comprehensive view of pa-
tient progress. Moreover, extending the timeline beyond three
months to include more follow-up points would offer a clearer
picture of a patient’s long-term recovery trajectory. By incor-
porating these features, the tool could become an even more
valuable asset in supporting a data-driven approach to optimis-
ing neurorehabilitation pathways.
The results of this study highlight the critical role of struc-
tured data collection as the basis for continuous model improve-
ment and practical implementation. As Campagnini et al. (16)
found, the implementation of digital infrastructures can effec-
tively support a data-driven clinical environment. In this study,
the MFS provided a solid foundation for both the development
and validation cohorts. By leveraging this system, we achieved
minimal discrepancies between datasets. However, maintaining
this consistency over time is vital. As medical correspondence

varies depending on the source of the data, the terminology in
clinical data can become complex. Inconsistent use of terms
or variables can introduce deviations within a dataset or even
within individual variables. Such small variations can have a
significant impact on model performance, especially when they
affect strong predictors.
The ongoing data collection through the MFS supports the con-
tinuous refinement of the prediction models by expanding the
dataset. As the dataset grows, or more complex models are in-
troduced, an iterative process of alternating between retraining
and validation will continue until the models reach a satisfac-
tory level of predictive accuracy. A first step in this can be found
in Appendix E, where an update of the model including patients
from both cohorts (n = 121) is presented. Once the models
demonstrate sufficient reliability, they will be implemented in
clinical practice and continuously monitored through ongoing
external validation cycles, which will track how shifts in patient
populations may affect predictive accuracy. Model updates or
retraining will only occur when significant changes in the data
or clinical context require it, ensuring that the models remain
relevant and accurate over time. This approach allows for the
dynamic adaptation of the models to reflect evolving clinical
needs and supports their long-term clinical applicability.

4.2. Contribution to the Field

Similar models to those employed in this study have been de-
veloped in fields like orthopaedics (31; 32). While they are
applied in different clinical contexts, these models also high-
light the importance of comprehensive datasets. More closely
related to our field, studies by Meyer et al. (14) and Pommerich
et al. (15), which focused on stroke patients, emphasised the
difficulty of generalising prediction models due to variability in
predictor sets across studies. In their review, Pommerich (15)
et al. examined regression-based prognostic models for func-
tional independence following post-acute brain injury rehabil-
itation. The literature search yielded only six studies with in-
ternally validated multivariable prognostic models, and just two
included external validation—both of which lacked clear proce-
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dures. They emphasised that many current prognostic models
lack the methodological rigour needed for widespread clinical
use. Additionally, Kwakkel et al. (33) underscored the impor-
tance of balancing practicality and precision when developing
clinically relevant and pragmatic models for stroke rehabilita-
tion. While there are similarities between our work and other
models, our prediction model stands out for its specific focus on
neurorehabilitation for young adults with ABI during the cru-
cial early recovery phase. This fills a significant gap in the liter-
ature and offers a tool that could improve patient-specific care
in this population.

4.3. Limitations and Strengths
An important limitation of this study is the variability in data
quality across different sources. As patients were referred from
various trauma centres, the communication of injury and treat-
ment details was not always consistent. This variability im-
pacted the completeness of data in both the development and
validation cohorts, highlighting the need for more standard-
ised documentation practices. However, implementing such
changes may pose challenges due to increased clinician work-
loads and the need for behavioural shifts. Despite not achieving
full completeness, the MFS provided a solid framework for cap-
turing all available data in a structured and usable format and
ensured minimal discrepancies between cohorts.
Additionally, the relatively small sample size limits the gener-
alisability and statistical power of the prediction models, po-
tentially constraining the model’s applicability to new patient
cohorts. However, the continuous nature of data collection
through the MFS at the Daan Theeuwes Centre ensures that
larger, more comprehensive datasets will be accumulated over
time. This ongoing data collection will support further develop-
ment and evaluation cycles, potentially enhancing model per-
formance and allowing for the exploration of more advanced
methods, such as clustering and neural networks, to improve
predictive accuracy and power.
A key strength of this study is the inclusion of an interactive
flow diagram, which enhances transparency and offers insights
into the patient data underlying the prediction models. This
transparency builds clinician trust and supports more informed,
data-driven decision-making regarding patient recovery trajec-
tories. In addition, the parallel development of both the predic-
tion model and the user-friendly tool streamlines the implemen-
tation process, taking important steps towards practical clinical
use as the model continues to evolve and is refined.

4.4. Conclusions
We have taken steps toward implementing prediction models
for functional independence in young adults with ABI through
two main components—external validation of prediction mod-
els and the practical implementation via the development of a
user-friendly tool. Together, these components emphasise the
importance of structured data collection, robust validation, and
practical application to ensure the models’ effectiveness in clin-
ical practice. As the dataset grows, there is potential to ex-
plore more sophisticated modelling techniques, which could
enhance the model’s predictive accuracy and practical utility.
Moving forward, future iterations could expand on the model

by incorporating outcomes such as cognitive and physical re-
covery, while also extending the timeline beyond the current
three-month focus. These ongoing advancements bring the field
closer to a data-driven approach, where neurorehabilitation be-
comes increasingly personalised, tailored to the unique needs
and recovery trajectories of young adults with ABI.
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Abstract

The objective of this study was to systematically review the barriers and facilitators to implementing clinical prediction models
(CPMs) in clinical practice. Despite the extensive development of CPMs, their transition into clinical settings remains limited. This
study aimed to identify key factors influencing adoption across various healthcare settings, synthesise current evidence, and propose
a structured framework for enhancing the implementation of CPMs to advance neurorehabilitation care of acquired brain injury
(ABI). A comprehensive literature review was conducted using Medline and Embase databases. Articles published between 2008
and the present were screened based on inclusion criteria focused on studies examining the implementation of multivariate predictive
models in clinical settings. A total of 18 studies were included after a systematic selection process. Data were extracted and
categorised using the Consolidated Framework for Implementation Research (CFIR), with key barriers and facilitators identified and
translated into actionable steps within a proposed implementation framework. The review identified 20 barriers and 23 facilitators
related to CPM implementation, organised across five CFIR domains: Innovation, Outer Setting, Inner Setting, Characteristics
of Individuals, and Implementation Process. Notably, factors such as model transparency, adaptability, user interface design,
and integration into existing workflows emerged as critical facilitators. Complexity, lack of perceived need, and poor resource
availability were significant barriers. This study provides a comprehensive overview of the barriers and facilitators to implementing
CPMs in clinical practice and proposes a practical framework to guide their integration. Addressing these factors early in the
implementation process is essential for enhancing the adoption of precision medicine approaches, ultimately optimising clinical
workflows and improving patient outcomes in ABI rehabilitation and beyond.

Keywords: prediction modelling, implementation, acquired brain injury, adoption, clinical practice, clinical decision making,
barriers, facilitators
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1. Introduction
Traumatic brain injury (TBI) and stroke are the two most
prevalent forms (1) of acquired brain injury (ABI), a↵ecting
approximately 85 million individuals annually (2; 3). ABI
can result in serious consequences, including cognitive im-
pairment, physical disability, and emotional distress, which
can profoundly impact the quality of life for a↵ected indi-
viduals (4; 5; 6; 7). Neurorehabilitation focuses on regaining
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motor function, daily activities, cognition, communication and
psychosocial factors to increase the ability to participate in
society (8).
A major challenge in successful neurorehabilitation after ABI
is caused by distinct di↵erences in the presentation of ABI
between individuals (9). The complex interaction between a
range of relevant factors, including demographics, aetiology
of the neuropathology and environmental factors, results in
significant heterogeneity in terms of the impairment profile,
progression during neurorehabilitation, and outcomes among
individuals with ABI (9). This heterogeneity limits healthcare
professionals in establishing a prognosis and communicating
reasonable expectations (10). Consequently, this complicates
the development of e↵ective treatment strategies for ABI,
as the diverse presentations require personalised approaches
and can hinder the ability to develop and apply standardised
treatment protocols (11).
The emerging field of precision medicine tailors treatment to
individual characteristics, potentially overcoming challenges
in ABI therapy (12; 13). Detailed information about patient
di↵erences and their influence on outcomes is essential to apply
precision medicine e↵ectively. However, in current clinical
practice, a significant amount of information is assessed sub-
jectively, and personal preferences in the choice of assessment
tools further contribute to variability. As a result, challenges
arise in ensuring the quality and completeness of the data
collected (14; 15). This lack of standardised data collection
obstructs research and the development of e↵ective treatment
strategies. Systematic collection and analysis of clinical data
can improve our understanding of the complex interactions
and enable more precise, individualised treatments for ABI
patients (16). Furthermore, extensive databases enable the
application of predictive analytics techniques to gain valuable
insights into rehabilitation potential and to improve treatment
and outcomes (17; 18).
Prediction modelling in healthcare involves developing and
applying mathematical algorithms and statistical techniques
to predict various outcomes relevant to patient care, such as
prognosis and risk of disease (19). For instance, models have
been developed to predict the occurrence of postoperative
nausea and vomiting (PONV) (20) and sepsis (21). In a notable
study, Boussina et al. (22) demonstrated the impact of a clinical
prediction model (CPM) on sepsis management outcomes.
They developed a real-time deep-learning model implemented
in two emergency departments (EDs) and found that its use
was associated with a reduction in in-hospital sepsis-related
mortality.
Unlike the aforementioned sepsis model, few models have
been successfully integrated into clinical practice. While there
has been a surge in the development of CPMs, a significant
implementation gap persists (23; 24; 25; 26). Although a
substantial number of models have been published, their
transition into routine clinical practice remains remarkably
low. External validation is one of the last steps before actual
implementation, which assesses the model’s performance in
a new, independent dataset. A systematic review of CPM
development articles reveals that while thousands of models

have been published, only a small fraction undergo external
validation (27). Specifically, only 12.8% of these models
underwent external validation, implying that the proportion
of models implemented in clinical settings is likely to be
much lower. This small percentage highlights a substantial
gap between model development and practical application.
Additionally, there is often a need for more focus on how
clinicians receive and use these models, which further limits
their implementation (20).
Implementing prediction models in clinical practice presents a
significant obstacle. It is essential to identify and understand
the factors that influence clinicians’ adoption of prediction
modelling, such as organisational dynamics and individual
preferences of end-users, in addition to the characteristics of
the tool itself (28). Incorporating these factors into developing
implementation strategies leads to more e↵ective strate-
gies (29). Advanced strategies have the potential to increase
the actual implementation of CPMs. These developments
drive the transition towards precision medicine, ultimately
improving patient care and outcomes.
Extensive research has focused on implementing CPMs in
specific settings, such as the emergency room and psychia-
try (30; 31). While these settings may di↵er in context, they
often encounter similar challenges, illustrating that the lessons
learned and strategies developed are broadly applicable across
healthcare settings. Analysing experiences from all these
settings can provide comprehensive insights into developing an
implementation strategy for ABI patients.
This study aims to conduct a thorough literature review to
identify barriers and facilitators of implementing CPMs in
clinical practice. The results will be used to develop a frame-
work that provides clinicians with a comprehensive overview
of barriers and facilitators of these models. Additionally, they
will be translated into actionable steps for guidance during and
adequate focus on certain factors before and during the imple-
mentation of CPMs, ensuring that they are e↵ectively adopted
and used to improve patient outcomes, streamline workflows,
and enhance the precision of clinical decision-making.

2. Design and methods
2.1. Search strategy
A comprehensive search was conducted across two electronic
databases, Medline and Embase, to identify relevant literature.
The search used a combination of keywords and Boolean op-
erators such as ”prediction model,” ”implement,” and ”clini-
cal practice.” The search strategy targeted studies published be-
tween 2008 and the present, written in English, and focusing on
implementing multivariable predictive models in clinical prac-
tice. Additionally, a citation search was performed to identify
any relevant articles missed in the initial database search. The
complete search string can be found in Appendix A.

2.2. Inclusion and Exclusion Criteria
Studies were included if they met the following criteria: (1)
addressed the implementation of prediction modelling in clini-
cal practice; (2) were published in peer-reviewed journals; (3)
were written in English; (4) were published between 2008 and
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the present as this timeframe aligns with major advancements
in multivariable models that occurred towards the end of the
2000s (32). Studies were excluded if they: (1) focused on
model development, performance, or clinical utility measures;
(2) did not systematically outline barriers and facilitators for
implementation; (3) did not involve the implementation of a
multivariable prediction model.

2.3. Study Selection Process
The study selection process consisted of two phases: screening
and data extraction. Initially, titles and abstracts of retrieved ar-
ticles were screened against the inclusion and exclusion criteria.
Full-text articles were then retrieved and assessed for eligibility.

2.4. Data Synthesis and Analysis
Relevant data were extracted from each included study using a
standardised data extraction form. Key information extracted
included study characteristics such as author, publication year,
location, study design, medical field, setting, type of model,
and users. Moreover, factors related to implementing prediction
models in clinical practice were extracted using the Consol-
idated Framework for Implementation Research (CFIR) (28).
The CFIR is a theoretical framework used to understand and
evaluate the implementation of interventions across various set-
tings, including healthcare. It comprises five major domains:
Intervention Characteristics, Outer Setting, Inner Setting, Char-
acteristics of Individuals, and Process. Each domain is further
divided into multiple constructs, as outlined in Table 1.
From each study, the barriers and facilitators identified by the
authors were extracted and categorised into domains and their
constructs outlined by the CFIR. Within constructs, similarities
and di↵erences between articles were presented to o↵er a com-
plete overview of the implementation factors observed across
studies. All constructs that were initially not directly associated
with barriers and facilitators found in the included articles were
analysed to detect any overlooked or misclassified data to en-
sure thorough coverage. If necessary, constructs were merged,
renamed or added to fit the study context. The barriers and fa-
cilitators were translated into actionable steps and divided into
four key phases: Problem Definition and Planning, Model De-
velopment and Evaluation, Training and Deployment and Eval-
uation and Updating. This structured approach allows for the
planning of specific focus required at each stage, ensuring that
all potential issues are addressed timely and systematically.

3. Results
3.1. Literature Search
A search of electronic databases yielded 979 articles. After re-
moving duplicates, 538 articles remained for title and abstract
screening. Following this initial screening, 34 articles under-
went full-text review. Ultimately, ten studies met the inclusion
and exclusion criteria. Additionally, eight studies were identi-
fied and included through citation search, resulting in 18 studies
in the qualitative synthesis. Figure 1 presents a PRISMA dia-
gram outlining the study selection process.

3.2. Overview of Included Studies
The included studies were published between 2014 and 2023
and represented global research from sites across various coun-

tries such as the United States (n=10, 55,6%), the Netherlands
(n=3, 16.7%), Canada (n=2, 11.1%), Japan (n=1, 5.6%), Sin-
gapore (n=1, 5.6%) and Sweden (n=1, 5.6%). Of the 18 in-
cluded studies, nine (50,0%) included data from multiple cen-
tres, while nine (50,0%) included data from a single centre.
Among the studies involving multiple centres, four (44,4%)
conducted their research in non-hospital care facilities, three
(33,3%) in a combination of care facilities, one (11,1%) exclu-
sively in academic hospitals, and one (11,1%) in non-academic
hospitals. Regarding the monocentre studies, six (66,7%) were
conducted in academic hospitals, two (22,2%) in non-academic
and one (11,1%) in a non-hospital care facility.
Di↵erent types of prediction models were implemented. Seven
(38,9%) articles discussed barriers and facilitators regarding
multiple models, six (33,3%) implemented a type of multivari-
ate regression model, and five (27,8%) implemented machine
learning (ML) models, of which one (5,6%) implemented an
XGBoost model, one (5,6%) implemented a deep learning (DL)
model and three (16,7%) machine learning models were un-
specified.
The included studies encompassed a diverse range of method-
ologies to investigate what factors lead to success of imple-
mentation, including a mixed methods approach (n=5, 27,8%),
combining interviews, surveys, focus groups and question-
naires, (semi-structured) interviews (n=5, 27,8%), opinion arti-
cles (n=3, 16,7%), surveys (n=2, 11,1%), a focus group (n=1,
5.6%), a review (n=1, 5.6%), and a case example (n=1, 5.6%).
The outcomes from these methodologies, such as interview re-
sponses, survey data, and writer comments, were systematically
analysed and translated into barriers and facilitators. These
findings were then structured into a framework that can be used
as a guide during implementation. An overview of the included
studies can be found in Appendix B.

3.3. Factors Influencing the Implementation of Prediction
Models in Clinical Practice

Our search found 20 barriers and 23 facilitators organised by
22 CFIR constructs. Figure 2 summarises the CFIR and corre-
sponding constructs, barriers and facilitators. Figure 3 depicts
the number of the included studies reporting each construct, and
Table 2 presents an overview of all barriers and facilitators iden-
tified within their respective constructs.

3.3.1. Innovation Domain
Of the included studies, 77,8% (n=14) reported barriers and/or
facilitators related to six constructs within the Innovation do-
main: Transparency, Relative Advantage, Design, Complexity,
Evidence-Based and Adaptability.

Transparency
Mentioned at the highest frequency (n=9, 50,0%) within the in-
novation domain is the Transparency construct (20; 33; 34; 35;
36; 37; 38; 39; 40). Healthcare professionals expressed the de-
sire to be able to view and understand the inner workings of the
prediction models in order to trust them. They want to be able
to assess the performance metrics of the CPM, such as false
positives and negatives. Furthermore, they want to know each
contributing parameter and its significance in the model to inter-
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Table 1: Overview of domains of the Consolidated Framework of Implementation Research (CFIR).

Domain Contents

Innovation Constructs specific to the implemented prediction models, such as their complexity,
adaptability, and evidence base.

Outer Setting External factors that may influence implementation, such as regulatory requirements and
local attitudes.

Inner Setting Organisational context in which the prediction models are being implemented, including
culture, infrastructure, and availability of resources and training.

Individuals Characteristics of healthcare providers and other stakeholders involved in the
implementation process, including attitudes, beliefs, and comfort with technology.

Implementation Process Planning, assessing needs, and evaluating the implementation e↵ort.

Figure 1: PRISMA Flow Diagram

pret results e↵ectively (33; 37; 39; 40; 41). This transparency is
essential for confidently using the model in clinical practice and
communicating results with colleagues and patients (33; 39).

Relative Advantage
The other most reported barriers and facilitators were related to
the relative advantage of the model. Nine (50,0%) articles em-
phasised the model’s actionability in aiding clinical decision-
making. This actionability involved the model’s ability to pro-
pose actionable options (20; 34; 35; 37; 38; 39; 42; 43; 44),
such as intervention suggestions (34; 43; 38), additional ques-
tions to ask the patient, and additional diagnostic tests to per-
form (34; 37). However, in one (5,6%) study, it was slightly
more often argued that it would not be desirable for a CPM to
suggest interventions (37). Another study (5,6%) added that a
CPM could add value by helping focus on important aspects,
serving as a reminder, ensuring continuity, providing a second
opinion, or making judgement visible to others (34). Addition-

ally, clinicians highlighted that the model is expected to serve
as a complementary tool that enhances, rather than replaces,
clinical judgement (34; 37).

Design
Seven (38.9%) articles discussed the design of a CPM. Fre-
quently discussed topics included clear user interface (34; 37;
38; 40) and understandable and interpretable data depiction us-
ing graphs, timelines and colours (34; 37; 38) as they signif-
icantly contribute to model understanding and interpretation.
Moreover, accessibility emerged as an important topic, with
preferences depending on the application. While one (5,6%)
study noted a positive experience with web apps and mobile
device apps due to the mobility of the app (33)], other studies
(n=5, 27,8%) stressed the need for Electronic Health Record
(EHR) integration for the centralisation of information and ac-
cessibility reasons (20; 34; 35; 39; 44). One (5,6%) study sug-
gested that model adoption could be improved by presenting
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Figure 2: A visual overview of the constructs identified per domain in the included literature.

Figure 3: Number of studies discussing each construct coloured by domain; Innovation (orange), Outer Setting (green), Inner Setting (blue), Individuals (purple),
Implementation Process (yellow).
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Table 2: Overview of barriers and facilitators of the implementation of prediction models in clinical practice.

Barriers Facilitators

I. Innovation Domain

Model Transparency Poor transparency
Model Relative Advantage Model outperforms clinical judgement

Assist clinical decision-making
Not a substitute for clinical judgement

Model Design Poor accessibility Clear user-interface
Not a multimodal package Understandable and interpretable data depiction

Web-app and/or mobile app
Model Evidence-Based Poor performance Clinically and statistically important factors
Model Complexity High complexity
Model Adaptability Fit local context and needs

II. Outer setting

Policies & Laws Liability Regulatory compliance
Local Attitudes Ethics Availablility to clinicians and patients

III. Inner setting

Mission Alignment Potential (psychological) harm Model fits purpose
Improves care, comfort, or costs

Work Infrastructure Complex and time-consuming factors Quick, easy and user friendly
Alert fatigue and timing Standardised workflow and documentation

Access to Knowledge Systematic training before use
Information available about the model

Compatibility Not integrated in EHR
Available resources Lack of input resources

Lack of output resources
Low data quality in EHR
Personnel
Funding

Communications Expectation management

IV. Individuals

Characteristics

Need Lack of perceived need
Capability Intuitive vs. analytical approach Only use of familiar and capable

Roles

Opinion Leaders Recommended by expert in the field
Implementation Leads Key stakeholders oversee and guide use

V. Implementation process

Reflecting & Evaluating Evaluation, updating and maintenance
Assessing Needs Unclear consensus among stakeholders Co-creation: developers and clinicians
Engaging Outreach local clinicians and prompts
Planning Identifiable leads and endpoints

EHR, Electronic Health Record
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the model as a multimodal package (45), meaning that various
tools can be accessed through the same application.

Evidence-Based
The main topic in this construct, which was discussed in seven
(38.9%) articles, was the barrier of poor performance (33; 36;
38; 42; 43), with one (5,6%) study mentioning the importance
of adequate sample size and su�cient performance in external
validation to enhance the reliability and acceptability of predic-
tion models (33). Doubts about the model’s validity were found
to be a strong barrier to clinical implementation (38). Addi-
tionally, one (5,6%) study highlighted the significance of utility
studies in measuring the impact on clinical care and patient out-
comes, noting that a CPM is not valuable if it does not change
behaviour or is too generalised (33). Another study (5.6%) un-
derscored that demonstrating the safety of CPMs serves as a
strong justification for their use (42). Furthermore, incorporat-
ing clinically and statistically important parameters ensures a
clinically valuable outcome (33; 38; 40; 45).

Complexity
Three (16.7%) articles expressed concerns about the complex-
ity of prediction models in clinical practice (35; 36; 40). One
(5.6%) article highlighted that while transparency in CPMs is
beneficial, it can also add complexity. Even when all param-
eters and performance metrics are available, understanding the
inner workings and results of the model can remain di�cult due
to the numerous variables involved. This complexity can be
challenging for clinicians, underscoring the need for clear and
concise explanations to aid their interpretation and application
of the model’s outputs (35).

Adaptability
Three (16.7%) studies noted that a model needs to be adaptable
to a specific setting regarding input parameters used, necessary
output parameters, actionable options available in the depart-
ment, and the threshold at which action is required by the treat-
ing clinician to be e↵ective across multiple settings (36; 37; 40).

3.3.2. Outer Setting Domain
Identified within the Outer Setting domain, 38,9% (n=7) of the
included studies reported barriers and/or facilitators related to
two constructs: Policies and laws and Local Attitudes.

Policies and Laws
Six (33,3%) articles, of which five (27,8%) in the US, expressed
concerns about compliance with the law and regulatory path-
ways and the liability of using prediction modelling in clinical
practice. Compliance with laws and regulatory pathways re-
lating to the innovation is crucial to mitigate legal risks and
enhance the acceptance of prediction models in clinical prac-
tice (39; 41; 42). Concerns were raised about the potential
for malpractice risk and liability exposure due to the use, mis-
use, or non-use of prediction models in clinical practice (42).
Clear guidelines and legal protections regarding liability were
deemed essential to implement prediction models in clinical
settings safely (39; 41).

Local Attitudes
In addition to regulatory responsibility, there is a strong ethical

responsibility for using CPMs. Four (22.2%) articles identified
ethics as a significant factor in implementing CPMs. Ethical
considerations include the ethics of risk communication (36),
ensuring that patients have the autonomy to consent to or opt
out of data use (41), and clarifying who will have access to risk
information (37; 41), how it will be displayed or stored in the
EHR (41), and who will be expected to respond (36). There is a
risk of inappropriate treatment, especially if prediction models
are used without adequate training or not for the intended pur-
pose (41). Institutional leadership, procedural infrastructure,
and regulatory oversight are essential to ensure that prediction
models are used safely and e↵ectively, considering all ethical
guidelines and responsibilities (42).

3.3.3. Inner Setting Domain
Reported by 72,2% (n=13) of the included studies, barriers
and/or facilitators related to seven constructs within the Inner
Setting domain included Mission Alignment, Work Infrastruc-
ture, Access to Knowledge, Compatibility, Available resources,
Culture and Communications.

Mission Alignment
The most discussed topic (n=10, 55.6%) highlighted the im-
portance of mission alignment in implementing CPMs. Most
articles suggest that a CPM is valuable if it leads to one of
the following outcomes: improved patient outcomes, enhanced
patient understanding, increased physician satisfaction, or re-
duced health system costs (35; 37; 43; 44). However, one arti-
cle (5.6%) emphasised that merely improving process metrics
without impacting clinical outcomes is insu�cient, arguing that
true added value lies only in improved patient outcomes (35).

Work Infrastructure
Seven (38.9%) articles addressed the need for CPMs to fit the
work infrastructure to facilitate implementation. To fit high-
pressure environments with limited resources and time, CPMs
should be quick, easy, and user-friendly (33; 38; 40; 43). Mod-
els that include too many complex parameters, especially those
that are time-consuming to obtain or require additional re-
sources, can hinder their applicability in clinical settings. De-
spite their significant contribution to prediction, including less
easily measured variables restricts a model’s practical use in
these environments (33; 43; 45). Alert fatigue (35; 37; 39; 40)
was also highlighted multiple times, with one (5,6%) study un-
derscoring the relevance of delivering the message in a struc-
tured manner to the right person at a relevant and convenient
time. Standardised workflows for using CPMs can facilitate
their integration into clinical practice and prevent confusion re-
garding their application (37; 39; 40). Proper documentation is
essential to report the role of CPMs within the workflow and
explain decision-making processes (37).

Access to Knowledge
Five (27.8%) articles highlighted the importance of access to
knowledge in understanding and e↵ectively using CPMs and
their workflows. Whether mandatory or not, systematic train-
ing before the clinical use of CPMs is crucial for ensuring that
healthcare professionals are adequately prepared (34; 37; 39;
40). Furthermore, detailed information about the algorithm, key
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test characteristics such as accuracy and sensitivity, and how to
integrate the tool into clinical care plans and practices should
always be available for reference (34; 37; 39). Additionally,
clinicians must be well-trained in their field to understand when
and when not to use CPMs and e↵ectively communicate results
with patients (39).

Compatibility
The inconvenience of the lack of integration into existing EHR
systems was discussed by five (27.8%) studies (20; 34; 35; 39;
44). Relevant information should be available in a consolidated
place within the EHR to ensure accessibility for those who need
it and that all patient data is saved in one central location (39).

Available resources
Three (16.7%) articles stressed the necessity of adequate avail-
able resources to enable the use of CPMs. The accuracy of
CPMs based on EHR data heavily depends on the quality of
the EHR input data. Inaccurate, noisy, biased, unsystemati-
cally recorded, or incomplete EHR data leads to insu�cient
performance of the CPM (35; 37; 41). Additionally, the health-
care facility must be able to provide the model’s output, such
as increased hospitalisation rates in resource-limited settings.
This can lead to over-hospitalisation and diminished care qual-
ity (37). Furthermore, ongoing development and maintenance
of CPMs require dedicated personnel and expertise to ensure
their continued e↵ectiveness (37). This requirement for ongo-
ing support is further challenged by a lack of funding, partic-
ularly for personnel and the technical specifications necessary
for integrating and expanding models in clinical settings (35).

Communications
One (5.6%) study noted managing expectations as a barrier to
the clinical implementation of these models, as enthusiasm of-
ten led to unrealistic expectations among clinicians (35).

3.3.4. Individuals Domain
Barriers and/or facilitators related to four constructs were re-
ported within the Individuals Domain by 44,4% (n=8) of the
included studies, including Need, Capability, Implementation
Leaders and Opinion Leaders.

Need
A lack of perceived need for CPMs was discussed in four
(22.2%) articles (34; 35; 38; 44). Clinicians felt they did
not require additional tools like CPMs alongside their clini-
cal judgement (34). Furthermore, they were uncertain about
the necessity of new tools in general and expressed concerns
about alert and change fatigue (39). Even in one study (5.6%),
where research suggested that clinical judgement often overes-
timated the score, a lack of perceived need for the CPM was
observed (44).

Capability
Four (22.2%) articles highlighted factors related to the capa-
bility of end-users of CPMs (20; 35; 39; 40). Clinicians, who
often rely on an intuitive approach to care and decision-making,
may find it challenging to adapt to CPMs based on an analyti-
cal approach (20; 40). The values used for evaluating prediction
models are less familiar to most clinicians, leading to a lack of

knowledge and understanding to assess machine learning mod-
els’ validity (35; 40). Clinicians emphasised the importance of
having the necessary capabilities and skills to use CPMs e↵ec-
tively and feeling familiar with the system to ensure successful
implementation (39; 40).

Implementation Leaders
One (5.6%) study highlighted the need for organisational lead-
ership. The setup should involve key stakeholders who can
guide the appropriate clinical application of prediction models.
These leaders are crucial for promoting the e↵ective and safe
implementation of CPMs across various settings (42).

Opinion Leaders
One (5.6%) study highlighted the significant influence of rec-
ommendations and clinical practice guidelines from experts in
the field. This support is an important facilitator as it enables
clinicians to e↵ectively integrate prediction models into their
practice, ensure proper application, and communicate results to
patients with confidence (33).

3.3.5. Implementation Process Domain
For five constructs within the implementation process domain,
33,3% (n=6) of the included studies reported barriers and/or fa-
cilitators, encompassing Assessing Needs, Reflecting and Eval-
uating, Engaging and Planning.

Reflecting and Evaluating
Four (22,2%) studies emphasised the necessity of continuous
evaluation, updating, and maintenance to keep CPMs relevant
and e↵ective (34; 35; 41; 42). Regular updates ensure the model
remains applicable and accurate with the latest data (42).

Assessing Needs
Three (16.7%) studies emphasised the importance of thor-
oughly assessing the needs that a CPM should address (35;
39; 42). Co-creation between developers, clinicians, and other
stakeholders was identified as a strong facilitator (35; 39; 42).
Clinicians expressed the need to be involved in discussions,
planning, training, and making system requests throughout the
process, from identifying clinical needs and informing devel-
opment to determining optimal intervention points and defining
questions and interventions. This involvement enhances accep-
tance and minimises workflow disruption (39). However, one
(5.6%) study noted the challenge of building consensus among
stakeholders, which was a barrier (35).

Engaging
Two (11.1%) studies discussed the importance of outreach and
prompts as facilitators for engaging clinicians with CPMs (37;
41). These studies noted that clinicians preferred receiving
notifications over opening an extra tool on their own initia-
tive (37; 41). However, they also acknowledged this approach’s
risk of alert fatigue (37).

Planning
One (5.6%) study emphasised the importance of having identi-
fiable leads and clear endpoints in the planning process for the
implementation of CPMs (35). This approach is particularly
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beneficial for smaller institutions and those with less experi-
ence in the clinical use of models, as it brings clarity and can
help reduce costs (35).

3.4. Implementation strategy
The identified factors are translated into actionable steps and
divided into four specific phases: Problem Definition and Plan-
ning, Model Development and Evaluation, Training and De-
ployment, and Evaluation and Updating. This phased approach
clarifies which barriers and facilitators must be addressed at
each process stage. Many barriers and facilitators are defined
early in the process, well before the actual implementation
phase. By organising these factors according to the imple-
mentation phases, we can ensure that the appropriate focus is
given to each aspect of the process at the right time, thereby en-
hancing the overall e↵ectiveness and success of implementing
CPMs. The phases and corresponding actions are provided in
Appendix C.

4. Discussion
The primary aim of this study was to evaluate the barriers and
facilitators of implementing CPMs in clinical practice, focusing
on their application in ABI patients. From 18 articles, 20 barri-
ers and 23 facilitators were identified across five domains con-
taining 22 constructs, providing comprehensive insights into
the factors influencing CPM implementation. The main con-
tribution of this study is a review of the current literature on
implementing CPMs in clinical practice across various health-
care settings. Based on this evidence, a framework has been
developed to identify and structure barriers and facilitators us-
ing the CFIR. Furthermore, this framework has been translated
into an actionable guide for clinicians to e↵ectively integrate
CPMs, thereby advancing the adoption of precision medicine
and ultimately improving patient outcomes.

4.1. Interpretation of Results
Barriers and facilitators were observed in all five domains of
the CFIR, with a significant concentration in the Innovation
Domain and the Inner Setting Domain. This concentration is
likely due to the early development stage of CPMs. Implemen-
tation di�culties are often caused by challenges earlier in the
process, which should be addressed at that stage. To provide
practical guidance, the adapted CFIR framework was reorgan-
ised into phased, actionable steps, supporting the process from
initial development to implementation. This section presents
findings according to these phases, highlighting key actions and
their corresponding impact on implementing a CPM.
The success of a CPM in clinical practice heavily depends
on the first phase: Project Definition and Planning. Research
underscores that co-creation is crucial in healthcare innova-
tion (46). Clinicians should express their specific needs, and
model developers and institutional bodies should clearly de-
fine the range of possibilities and restrictions throughout the
full process (47).
A thorough needs assessment involves identifying the clinical
problem and tailoring the CPM to the local context, which may
reduce the lack of perceived need during implementation and
ensure a smooth integration of the CPM into the local work-
flow. As supported by Davis et al. (48), ensuring the system is

perceived as useful and easy to use can significantly enhance
user acceptance and integration into clinical practice. Further-
more, Engelhardt et al. (49) showed that perceived need can be
a strong facilitator, as clinicians used a CPM in consultations,
not for its original intended purpose, but because it conveniently
aided in patient explanations and understanding.
Key characteristics of the model should be determined. Input
parameters should be limited in number, clinically relevant, sta-
tistically significant, and easy and quick to retrieve. The most
convenient source of input data is directly from EHRs, but this
data must be systematically collected and evaluated to ensure it
is suitable for model incorporation (50). Depending on the ap-
plication of a CPM and end-users, output parameters should be
actionable or not, based on preference, and their consequences
should be considered within the given context. As Kline-Simon
et al. (51) found, CPMs can cause a significant increase in work-
load. Furthermore, careful evaluation of who should and should
not have access is necessary for security and ethical reasons, en-
suring safe data use while maximising potential care improve-
ments. Additionally, human resources are crucial for successful
implementation. A committee should oversee the process, plan,
secure milestones, and ensure consensus among stakeholders.
Involving an expert can drive progress and manage expectations
by clearly communicating goals. Identifying and allocating per-
sonnel with the right expertise and securing su�cient funding
is essential to support all phases, including technological and
personnel costs.
During Model Development and Evaluation, the second phase,
co-creation should continue through a feedback loop to main-
tain stakeholder consensus. The most important precondition
for successful implementation, which can be facilitated during
development, is achieving su�cient performance metrics and
the ability to outperform clinical judgement (52). Compliance
with medical device regulations is crucial to ensure the CPM
meets legal and safety standards. Furthermore, developers must
consider the environment in which the model will be used and
ensure it operates e�ciently under the time pressure users face.
Next to the technical requirements of a CPM, the tool’s design
is crucial to address barriers to implementation. In the CPM,
the included parameters and their significance should be avail-
able for comparison with one’s judgement for making well-
considered decisions. Moreover, comprehensive information
and instructions about the model should be readily available to
ensure proper usage. The balance between necessary notifica-
tions must be carefully managed to avoid alert fatigue. Studies
have shown that while clinicians appreciate reminders, exces-
sive alerts can lead to desensitisation and reduced e↵ectiveness.
For instance, Ancker et al. (53) found that high workloads and
complex work environments significantly contribute to alert fa-
tigue, diminishing the overall e↵ectiveness of clinical decision
support systems. Therefore, optimising the alert system to sup-
port clinical workflow without overwhelming clinicians is cru-
cial.
The design should reflect decisions from the planning phase,
such as whether the model will be web-based, a mobile appli-
cation, or integrated with the EHR. As Mohammed et al. (54)
showed, it is important to tailor the application to the environ-
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ment and resources available. User-friendliness, including in-
tuitive interfaces and clear data depiction, is essential to facili-
tate ease of use and quick interpretation. A standardised work-
flow for model usage and proper documentation ensures ethical
use and compliance with regulatory standards. The TRIPOD
(Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis) guidelines were developed
to ensure that studies on prediction models are reported trans-
parently and comprehensively, improving their reproducibility
and reliability (55).
The third phase, Training and Deployment, focuses on suf-
ficient education and standardised workflows. Before imple-
menting the CPM in the clinical environment, end-users must
undergo thorough training to ensure they are fully capable and
confident in using the model e↵ectively. The complexity of a
model may not always be reducible, but proper education can
mitigate confusion and help clinicians understand the logic be-
hind the model. This training allows clinicians to compare their
intuitive approaches with the model’s analytical output, enhanc-
ing acceptance and perceived need. Training should cover the
standardised workflow and emphasise the importance of proper
documentation.
The last phase, Evaluation and Updating, focuses on keeping
the model relevant and e↵ective. Binuya et al. (56) provide
methodological guidance for evaluating and updating clinical
prediction models, emphasising the importance of systematic
reviews and structured approaches to maintain model accuracy
and applicability over time (56). Continuous impact measure-
ment is essential to assess whether the CPM improves clini-
cal care and process metrics. Additionally, out-of-distribution
analysis can identify when the model encounters data that dif-
fer significantly from the training data, helping to detect when
predictions might be less reliable. Co-creation remains vital
throughout all phases to ensure feedback is incorporated, align-
ing the model with clinical practice and increasing its adoption.
Overall, the key findings of this study can be structured to pro-
vide a framework and guidance in all stages of implementation
of a CPM. Implementation research reveals that the proportion
of implemented models is extremely low relative to developed
models. Barriers and facilitators should be addressed in the
early stages to ensure that steps can be taken towards imple-
mentation. Addressing barriers and leveraging facilitators in
the initial stages, particularly through needs assessment, stake-
holder engagement, and resource allocation, lays the ground-
work for a smoother development and implementation pro-
cess. Co-creation and continuous feedback loops are essential
throughout the development phase to maintain stakeholder con-
sensus and ensure the model’s practicality and compliance with
regulatory standards. Proper design and user training are vital
to mitigate potential barriers such as alert fatigue and to en-
hance user acceptance and usability. Finally, continuous evalu-
ation, updating, and resource allocation are necessary to ensure
the model’s ongoing relevance, e↵ectiveness, and integration
into clinical practice, ultimately improving patient outcomes
and streamlining workflows.

4.2. Limitations and strengths
The terminology describing prediction modelling in the liter-
ature can be quite varied, often leading to the identification
of many articles when setting up a search. Due to time con-
straints, concessions were made regarding the search terms to
obtain a manageable number of articles for review. Expanding
the search terms might have resulted in a more extensive selec-
tion of articles. Despite this, the identified factors are likely
representative and reflect the same ratio found in a broader
search. Furthermore, a citation search was applied to identify
additional studies. Another limitation is the reliance on self-
reported data from clinicians, which is subject to subjectivity
and can introduce bias. Nonetheless, the various approaches,
such as the mixed methods approach, incorporating interviews,
focus groups, and surveys, provide multiple ways to capture
subjective data, reducing this issue. Additionally, the included
studies varied in design and quality, which may a↵ect the con-
sistency and comparability of the findings. Lastly, one limita-
tion of this study is the potential bias due to the number of stud-
ies conducted in the United States, which may restrict the gen-
eralisability of the findings to other healthcare settings. How-
ever, the other studies represent various countries, enhancing
the robustness and applicability of the conclusions across dif-
ferent healthcare systems.
A major strength of this study is the systematic approach to
identifying and categorising barriers and facilitators using the
CFIR framework. This structured method ensures that our find-
ings are organised within a well-established theoretical model,
providing a comprehensive approach that minimises the po-
tential of overlooking important factors. Developing a practi-
cal and actionable overview based on these findings also of-
fers a valuable tool for clinicians and healthcare administrators.
Lastly, incorporating all healthcare settings enabled the collec-
tion of more valuable data across various settings.

4.3. Contribution to the field
Our findings significantly contribute to advancing precision
medicine for ABI patients and other settings by providing a
structured pathway for implementing CPMs. This pathway can
be used to develop and integrate more personalised treatment
strategies. Furthermore, the developed framework and guide
can be applied to research in broader healthcare contexts, sup-
porting overall healthcare improvements and stimulating inno-
vation.

4.4. Future directions
Future research should focus on the impact of data quality
on CPMs. Studies focusing on enhancing data collection are
necessary, emphasising fully leveraging EHR integration as it
remains central to patient data management. In addition to
addressing existing challenges, user design should prioritise
transparency in data and models, with experiments exploring
how data depiction influences clinical reasoning and decision-
making. Moreover, medical students should be familiarised
with CPMs early to understand the advantages and pitfalls. Fi-
nally, a continuous impact measurement framework should be
established to ensure CPMs remain aligned with their primary
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goal of improving healthcare as they become more widely im-
plemented.

5. Conclusion
This study systematically identified and categorised barriers
and facilitators to implementing CPMs in clinical practice using
the CFIR framework. The primary finding is that the success-
ful implementation of CPMs is dependent on addressing key
factors across all five CFIR domains: Innovation, Outer Set-
ting, Inner Setting, Individuals, and Implementation Process.
The significant concentration of barriers and facilitators within
the Innovation Domain and Inner Setting Domain highlights the
need for mitigating obstacles early in the process. By translat-
ing barriers and facilitators into an actionable guide for clini-
cians, this study facilitates the e↵ective adoption of CPMs in
rehabilitation for ABI patients and contributes to the broader
field of precision medicine. Ultimately, this approach aims to
enhance patient outcomes, streamline clinical workflows, and
support the development of more accurate and personalised
treatment strategies and other healthcare innovations.
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Appendix A. Literature Search
Appendix A.1. Search strings
Medline
((prediction*-model*).ti.) AND ((implement* OR clinical-pract* OR integrat* OR adopt* OR usefulness* OR evaluat*).ti.) NOT
(news OR congres* OR abstract* OR book* OR chapter* OR dissertation abstract*).pt. NOT (exp animals/ NOT humans/) AND
2008:2030.(sa year)

Embase
(’prediction model’/exp/mj OR (prediction*-model*):ti) AND (’implementation’/de/mj OR ’clinical practice’/exp/mj OR (im-
plement* OR clinical-pract* OR integrat* OR adopt* OR usefulness* OR evaluat*):ti) NOT ([Conference Abstract]/lim OR
[preprint]/lim) NOT ((animal/exp OR animal*:de OR nonhuman/de) NOT (’human’/exp)) AND ([2008-2030]/py)

Appendix A.2. Results literature search

Table A.3: Literature search

Database Platform Years of coverage Records
Medline Ovid 1946 - Present 498
Embase Embase.com 1971 - Present 481
Total 979
Total after duplicates removed 538
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Appendix B. Included Articles

Author Year Country Study Design Setting Care facilty Model Type

Baker et al. 2017 Sweden Opinion article Multicentre Combination Multiple models
Bentley et al. 2022 United States Focus Group Study Monocentre Non-academic hospital ML model (unspecified)

Cao et al. 2020 United States Review Monocentre Academic hospital Multiple models
Chowdhury et al. 2020 Canada Opinion articles Monocentre Academic hospital MVR model

Dorajoo et al. 2018 Singapore Opinion article Monocentre Academic hospital Multiple models
Dowding et al. 2021 United Kingdom (Semi-)structured interviews Monocentre Non-hospital care MVR model

Engelhardt et al. 2015 the Netherlands Mixed methods Multicentre Combination MVR model
Fujimori et al. 2022 Japan Mixed methods Multicentre Non-academic hospital XGBoost model

Ho et al. 2023 United States (Semi-)structured interviews Monocentre Academic hospital ML model (unspecified)
Kappen et al. 2016 the Netherlands Mixed methods Monocentre Academic hospital MVR model

Park et al. 2021 United States Survey study Multicentre Combination Multiple models
Reger et al. 2019 United States Case example Monocentre Non-academic hospital MVR model

Sandhu et al. 2020 United States (Semi-)structured interviews Monocentre Academic hospital DL model
van Oort et al. 2014 the Netherlands Mixed methods Multicentre Non-hospital care MVR model
Wachtler et al. 2018 Australia Survey Multicentre Non-hospital care Multiple models
Watson et al. 2019 United States (Semi-)structured interviews Multicentre Academic hospital ML model (unspecified)

Yarborough et al. 2023 United States Mixed methods Multicentre Non-hospital care Multiple models
Yarborough et al. 2022 United States Interviews Multicentre Non-hospital care Multiple models

ML, Machine Learning; MVR, Multivariable regression; DL, Deep Learning

Table B.4: Characteristics of the included studies.

15

29



Appendix C. Checklist
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3. Training and Deployment

1.1.1 Conduct a thorough needs assessment to
identify the clinical problem and ensure the CPM fits
the local context and workflow.

1.1.2 Define specific needs, possibilities, and
restrictions collaboratively with clinicians, model
developers, and institutional bodies throughout the
entire implementation process.

1.1.3 Determine if the system should be in the EHR or
available as web-app

1.1.4 Evaluate access carefully for security and ethical
reasons to ensure safe data use while maximizing
potential care improvements.

1.1.5 Limit input parameters to those that are
clinically relevant, statistically significant, and easy
and quick to retrieve.

1.1.6 Ensure output parameters are actionable, and
consider their consequences within the given context.

1.1 Needs Assessment

1.2.1 Establish a committee to oversee the process,
plan, secure milestones, and ensure stakeholder
consensus. Assign identifiable leads and establish
clear endpoints in the planning process.

1.2.2 Involve an expert to drive progress and manage
expectations by clearly communicating goals.

1.2 Team 

1.3.1 Systematically collect and evaluate EHR data to
ensure suitability for model incorporation.

1.3.2 Identify and allocate personnel with the right
expertise and secure sufficient funding to support all
phases, including technological and personnel costs.

1.3 Resources

2.1.1 Ensure the model achieves sufficient
performance metrics and outperforms clinical
judgment.

2.1.2 Comply with medical device regulations to meet
legal and safety standards.

2.1.3 Develop the model to operate efficiently under
the time pressures faced by users.

2.1 Model

2.2.1 Make included parameters and their significance
available for comparison with clinical judgment.

2.2.2 Ensure accessibility by establishing compatibility
with current systems and convenient access to the
model in the clinical context.

2.2 Design

2.2.3 Manage the balance between necessary
notifications and alert fatigue to maintain
effectiveness.

2.2.4 Ensure user-friendliness with intuitive interfaces
and clear data depiction for quick interpretation and
transparency.

3.1.1 Educate clinicians to understand the model’s
logic, enhancing acceptance and perceived need.

3.1.2 Ensure end-users are well-trained before and
during implementation, building necessary
capabilities and confidence.

3.1 Education

3.2.1 Establish a standardized workflow and proper
documentation to ensure ethical use and compliance
with regulatory standards.

3.2.2 Guarantee CPMs are used for their intended
purpose and in an ethical manner.

3.2 Workflow

4.1.1 Conduct continuous evaluation, updating, and
maintenance to ensure the model remains relevant
and effective.

4.1.2 Perform continuous impact measurement to
assess whether the CPM improves clinical care and
process metrics.

4.1 Performance and Impact

4.2.1 Ensure information on the model is always
available for reference.

4.2.2 Provide refresher courses to maintain user
competency and confidence.

4.2 Information

1. Project Definition and Planning

2. Model Development

4. Evaluation and updating

Implementation Clinical Prediction Model - Checklist

31



Appendix B. Data Characteristics

Table B.1: Characteristics of the development and validation cohorts including p-values and effect sizes.

Development Cohort Validation Cohort Comparison

Frequency (%),
Mean (SD)1 or
Median (IQR)2

Range Data
Com-
pleteness
(%)

Frequency (%),
Mean (SD)1 or
Median (IQR)2

Range Data
Com-
pleteness
(%)

p-values (t-test1

or Wilcoxon2 or
Fisher’s Exact 3

or Chi square 4)

Adjusted
p-values
(Benjamini-
Hochberg)

Effect Size
(Cohen’s
d1 or Rank
Biserial2)

Demographic Characteristics and Medical Background

Sex (Female) 38.0% - 100% 33.3% - 100% 0.8784 1.0 -
Age at Injury Onset (Years) 24.4 (5.6)1 15.5 - 35.2 100% 24.6 (5.9)1 15.3 - 34.8 100% 0.5121 1.0 −0.161

Age at Rehabilitation Admission
(Years)

24.7 (4.5)1 16.0 - 35.4 100% 25.0 (5.8)1 16.5 - 35.0 100% 0.4991 1.0 −0.161

Time since Injury (Days) 71 (24 – 206.5)2 6 - 2069 100% 59 (25 – 165)2 8 - 1114 100% 0.7742 1.0 0.042

Left-handedness 12.1% - 83% 14.3% - 100% 0.7234 1.0 -
Immigration Background 22.9% - 83% 38.1% - 100% 0.2544 1.0 -
Has Children 7.2% - 83% 9.5% - 100% 0.6613 1.0 -
Participation in Sports 67.1% - 82% 66.7% - 100% 1.04 1.0 -
Presence of Learning Disorders 21.5% - 79% 15.0% - 95% 1.0 -
Presence of Neurological Disorders 7.8% - 77% 0.0% - 95% 0.3403 1.0 -
Presence of Psychiatric Disorders 22.1% - 77% 15.0% - 95% 0.7573 1.0 -
Presence of Other Disorders 3.9% - 77% 5.0% - 95% 1.03 1.0 -
Current Educational Enrollment 54.2% - 83% 52.4% - 100% 1.0 -

ABI Etiology

Traumatic Brain Injury (TBI) 62.0% - 100% 71.4% - 100% 0.5714 1.0 -
- Skull Fractures 69.2% - 100% 60.0% - 100% 1.04 1.0 -
- Cranial Nerve Injuries 15.4% - 100% 33.3% - 100% 0.1204 1.0 -
- Intracranial Injuries 100% - 100% 100% - 100% 0.5714 1.0 -
Cerebrovascular Accident (CVA) 24.0% - 100% 19.1% - 100% 0.7803 1.0 -
- Subarachnoid Hemorrhage 11.1% - 100% 0.0% - 100% 1.03 1.0 -
- Intracerebral Hemorrhage 38.9% - 100% 24.9% - 100% 0.6893 1.0 -
- Subdural Hemorrhage 5.5% - 100% 0.0% - 100% 1.03 1.0 -
- Extra-/Epidural Hemorrhage 0.0% - 100% 0.0% - 100% 1.03 1.0 -
- Cerebral Infarction 33.3% - 100% 74.8% - 100% 0.3753 1.0 -
- Occlusion of Pre-cerebral Arteries 5.5% - 100% 24.9% - 100% 0.3183 1.0 -
- Other Cerebrovascular Diseases 17.6% - 100% 24.9% - 100% 1.03 1.0 -
Infectious Causes 6.0% - 100% 0.0% - 100% 0.6043 1.0 -

Continued on next page
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Development Cohort Validation Cohort Comparison

Frequency (%),
Mean (SD)1 or
Median (IQR)2

Range Data
Com-
pleteness
(%)

Frequency (%),
Mean (SD)1 or
Median (IQR)2

Range Data
Com-
pleteness
(%)

p-values (t-test1

or Wilcoxon2 or
Fisher’s Exact 3

or Chi square 4)

Adjusted
p-values
(Benjamini-
Hochberg)

Effect Size
(Cohen’s
d1 or Rank
Biserial2)

Hydrocephalus 0.0% - 100% 4.8% - 100% 0.1743 1.0 -
Toxic Encephalopathy 1.2% - 100% 9.5% - 100% 0.07753 1.0 -
Other Brain Diseases 8.4% - 100% 4.8% - 100% 1.03 1.0 -

Trauma Centre Data

Hospital Length of Stay 35 (16-61)2 4 - 120 95% 35 (24–66)2 8 - 99 100% - 1.0 0.152

EMV score (total) at hospital ad-
mission

3 (3-5)2 3 - 15 68% 5 (3–9)2 3 - 15 90% - 1.0 0.362

EMV score (total) at hospital dis-
charge

14 (11-15)2 6 - 15 85% 15 (14–15)2 11 - 15 71% - 1.0 0.612

Abnormal pupil size at admission 52.4% - 59% 64.7% - 81% 0.5414 1.0 -
CT Marshall category 2 (2-5)2 1 - 6 65% 2 (2–5)2 2 - 6 95% - 1.0 0.262

Neurosurgery 62.4% - 93% 52.4% - 100% 0.5504 1.0 -
- Hematoma Relieve 40.9% - 93% 28.6% - 100% 0.4264 1.0 -
- Craniectomy 34.4% - 93% 28.6% - 100% 0.7984 1.0 -
- Craniotomy 16.1% - 93% 0.0% - 100% 0.0693 1.0 -
- Cranioplasty 29.0% - 93% 19.1% - 100% 0.4263 1.0 -
- Placement ICP - - - 38.1% - 100% 0.7244 1.0 -
- Placement of External Drain 17.2% - 93% 14.3% - 100% - 1.0 -
- Placement of VPD 8.6% - 93% 0.0% - 100% - 1.0 -
- Placement of LPD 4.3% - 93% 0.0% - 100% - 1.0 -
- Third Ventriculostomy 0.0% - 93% 0.0% - 100% - 1.0 -
- Surgical treatment of CSF leakage 0.0% - 93% 4.8% - 100% - 1.0 -
- Other Neurosurgery 9.68% - 93% 4.8% - 100% 0.6863 1.0 -
Discharge to an intermediate care
facility

20.6% - 97% 14.3% - 100% 0.7623 1.0 -

Discharge to a rehabilitation centre 43.3% - 97% 85.7% - 100% <0.0013 0.033 -
PTA at admission 63.0% - 81% 76.5% - 81% 0.2783 1.0 -

Outcome Data

Barthel Index on admission 11.4 (7.4)1 0 - 20 100% 11.6 (8.0)1 0 - 20 100% 0.9361 1.0 −0.021

Barthel Index at 3 months 15.9 (5.5)1 0 - 20 100% 16.8 (6.0)1 1 - 20 100% 0.3011 1.0 −0.251

SD: Standard Deviation, IQR: Interquartile Range, ABI: Acquired Brain Injury, TBI: Traumatic Brain Injury, CVA: Cerebrovascular Accident, EMV: Eye, Motor, Verbal score, PTA: Post-Traumatic Amnesia, CT: Computed
Tomography, VPD: Ventriculoperitoneal Drain, LPD: Lumboperitoneal Drain, CSF: Cerebrospinal Fluid, BI: Barthel Index.
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(a) Development Cohort (n=100)
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Figure B.1: Level of Independence Trajectories in Barthel Index (BI).
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Appendix C. Correlation

Table C.1: Correlation coefficients and p-values between predictors and absolute error in the “Level of Independence
at Admission” model.

Correlation Coefficient P-value

PTA at Rehabilitation Admission 0.539 0.012
Education Level of Parents 0.313 0.167
Hospital Length of Stay 0.203 0.378
Sex (Female) 0.140 0.544
Intracerebral Hemorrhage (CVA) 0.088 0.706
Discharge to an Intermediate Care Facility 0.076 0.743
Cranioplasty −0.019 0.935
Discharge to a Rehabilitation Centre −0.076 0.743
Epidural bleeding on CT scan −0.080 0.730
Has Children −0.257 0.260
Abbreviations: PTA: Post Traumatic Amnesia, , CVA: cerebrovascular Accident.
Correlation is calculated between each predictor and the prediction error (absolute difference between observed and predicted
Barthel Index scores). Correlation Coefficients >0.5 and with a p- value <0.05 are depicted in bold.

Table C.2: Correlation coefficients and p-values between predictors and absolute error in the “Level of Independence
at Three Months Post-Admission” Model.

Correlation Coefficient P-value

Hospital Length of Stay 0.753 < 0.0001
PTA at Rehabilitation Admission 0.434 0.049
Age at Admission 0.284 0.212
Neurosurgery Performed 0.111 0.631
Epidural bleeding on CT scan −0.075 0.745
Skull Fracture(s) −0.181 0.433
Discharge to a Rehabilitation Centre −0.197 0.391
Participation in Sports −0.199 0.388
Abbreviations: PTA, Post Traumatic Amnesia.
Correlation is calculated between each predictor and the prediction error (absolute difference between observed and predicted
Barthel Index scores). Correlation Coefficients >0.5 and with a p- value <0.05 are depicted in bold.

Table C.3: Correlation coefficients and p-values between predictors and absolute error in the “Change in Level of
Independence over Three Months” Model.

Correlation Coefficient P-value

PTA at Rehabilitation Admission 0.363 0.203
Subarachnoid Bleeding (TBI) −0.011 0.970
Placement of ICP monitor −0.018 0.952
Intraventricular or Subarachnoid Bleeding on CT scan −0.099 0.736
Left Handedness −0.284 0.325
Participation in Sports −0.468 0.091
Barthel Index at Rehabilitation Admission −0.557 0.039
Focal Injury (TBI) −0.579 0.030
Abbreviations: PTA, Post Traumatic Amnesia; TBI, Traumatic Brain Injury; ICP, Intracranial Pressure.
Correlation is calculated between each predictor and the prediction error (absolute difference between observed and predicted
Barthel Index scores). Correlation Coefficients >0.5 and with a p- value <0.05 are depicted in bold.

35



Appendix D. Tool Visualisations
In this Appendix, the visualisations of the tool can be found. For each of the three pages, important parts of the tool are highlighted.

Figure D.1: The “Decision Support Tools” page requires clinician’s input and uses prediction models to provide predictions of the Barthel Index (BI) for young
adults with acquired brain injury (ABI).
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Figure D.2: The ToolBox features a navigation bar with all included pages. On the “Decision Support Tools” page, after input is provided for each model, users
can click buttons to generate Barthel Index (BI) predictions. Below the prediction models, additional information is provided on how to use the models and details
about the Barthel Index as the outcome measure.
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Figure D.3: On the “Decision Support Tools” page, after input is provided for each model and the predictions are made, the models provide the Barthel Index (BI),
a 95% prediction interval (PI) and a graph depicting the outcomes.

38



Figure D.4: The “Patient-Like-Me” page depicts the trajectories of 100 included patients in development between admission and three months Post-Admission.

Figure D.5: In the “Patient-Like-Me” page the Barthel Index (BI) is divided in 5 categories: “Fully dependent”, “Severely dependent”, “Requires assistance”,
“Moderately to highly independent”, “Fully independent”. To provide additional information on the sample size, the “Patient-Like-Me” page provides information
on how many patients are left in the sample after filtering.
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Figure D.6: The “Patient-Like-Me” page incorporates filters that allow users to adapt the graph to reflect patients with specific characteristics, such as demographic
characteristics, diagnose, hospital-related characteristics and rehabilitation admission information.

Figure D.7: Some filters in the “Patient-Like-Me” page incorporate subcategories, such as “Focal Injury” in “Diagnosis”.
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Figure D.8: The “About” page was added to provide more information on the models and the predictors. It provides detailed information on the predictors, including
their definitions, how they relate to the outcome measure, and guidance on how to input the data correctly.
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Appendix E. Model Updating

Table E.1: Updated prediction models for the level of independence for young adults with acquired brain injury.

Predictors Coefficient (β) Standard Error t-value p-value
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PTA at Rehabilitation Admission −8.1425 1.0135 −8.034 <0.001
Discharge to Intermediate Care Facility −5.8974 1.4182 −4.159 <0.001
Nerve Injury 4.7550 1.6148 2.945 0.004
Epidural bleeding on CT scan 3.9125 1.3907 2.813 0.006
Neurosurgery Performed −2.9793 1.1094 −2.686 0.008
Education Level of Parents 0.8965 0.3688 2.431 0.017
Left Handedness −3.2003 1.5104 −2.119 0.036
Presence of Psychological Disorder −2.4484 1.2246 −1.999 0.048
Intracerebral Bleeding (CVA) −3.4146 1.7521 −1.949 0.054
Sex (Female) −1.6936 1.0646 −1.591 0.115

R2 0.562
RMSE 5.156
MAE 4.068
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Hospital Length of Stay −0.10956 0.01855 −5.906 <0.001
Discharge to Intermediate Care Facility −4.46025 1.23171 −3.621 <0.001
Epidural bleeding on CT scan 4.10369 1.41553 2.899 0.005
PTA at Rehabilitation Admission −2.24337 0.96780 −2.318 0.022
Education Level of Parents 0.66931 0.32732 2.045 0.043
Participation in Sports 1.90983 0.95119 2.008 0.047
Skull Fracture(s) 1.62774 0.94716 1.719 0.089
Neurosurgery Performed −1.95323 1.19147 −1.639 0.104
Hematoma Relieve −2.11758 1.42427 −1.487 0.140
Other Neurosurgery Performed 2.59607 1.83543 1.414 0.160

R2 0.567
RMSE 4.500
MAE 3.256

C
ha

ng
e

in
L

ev
el

of
In

de
pe

nd
en

ce
ov

er
T

hr
ee

M
on

th
s

(n
=

12
1)

Barthel Index at Rehabilitation Admission 0.72746 0.08668 8.393 <0.001
Hospital Length of Stay −0.05024 0.02065 −2.433 0.017
Discharge to Intermediate Care Facility −3.01021 1.31403 −2.291 0.025
Participation in Sports 2.19143 0.97484 2.248 0.028
Neurosurgery Performed −2.13257 1.09224 −1.952 0.055
Presence of Psychological Disorder 1.93577 1.15651 1.674 0.098
Axonal Intracranial Injury (TBI) 1.73275 1.04616 1.656 0.102
Edema (TBI) 2.10809 1.37305 1.535 0.129

R2 0.727
RMSE 3.885
MAE 2.877

Abbreviations: R2, Coefficient of Determination; RMSE, Root Mean Square Error; MAE, Mean Absolute Error; PTA,
Post-Traumatic Amnesia; CVA, Cerebrovascular Accident; TBI, Traumatic Brain Injury.
Significant predictors are depicted in bold.
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