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SUMMARY

In this thesis we have investigated properties of light, with the aim of gaining a deeper
understanding of its behaviour at a fundamental level when confined to two dimensions.
Interestingly, the main focus of this thesis is looking at occasions where there actually is
no light at all. These points of perfect darkness possess some fascinating properties, such
as having a so-called topological charge associated with them, as well as being singulari-
ties of the field. Singularities are points where a certain way of describing a field, such as
light, no longer works properly. For most of this thesis, the parameter that breaks down
is phase: when there is no light, the determination of the phase at that point ceases to
work, and hence we are left with a phase singularity.

In order to observe these singularities we use a special microscope. The singularities, in
two dimensions, are points: they are infinitesimally small, and in order to observe them
we need to be able to look at the light field at very small length scales. The problem with
using a regular microscope is that it is fundamentally limited in its resolution: regardless
of how strong a magnification lens is used, a regular microscope can only tell two objects
apart if they are separated further than a certain limit, which is known as the diffraction
limit. And the behaviour of these singularities occurs at a scale much smaller than this
diffraction limit. As such, the points of darkness would be obscured by the light sur-
rounding them. Furthermore, a regular microscope observes the light that propagates
towards the objective, while we are interested in the light field and its features when it is
confined to a two-dimensional plane in a sample instead. As such, we require a special
microscope in order to observe these entities. This specific microscope is called a near-
field scanning optical microscope (NSOM), and instead of using lenses to collect light,
it relies on a tiny needle-like probe that we bring extremely close to the surface of the
sample. This distance is typically on the order of 20 nanometers, less than a thousandth
of the thickness of a human hair. The probe is able to collect light in the field that is
contained in the tiny region near the surface, which is called the near field, and contains
all the information on the light inside the sample. Since this technique does not rely on
lenses and conventional optics, it is not limited by the diffraction limit, and allows us to
observe the wondrous world of light at extremely small scales. Details on this technique
are found in Chapter 2.

When looking at how the singularities move around, their behaviour appears similar to
that of regular particles. So for the first part of this investigation (Chapters 3 and 4) we
view these phase singularities as if they are regular particles. Through this lens we can
make use of all the regular tools of statistical physics and see if we can analyse their po-
sitions and movements in that way. In Chapter 3 we study their diffusive behaviour,
where we experimentally track their positions in time. Through this we can observe
their movement, which turns out to be in a non linear fashion. Additionally, since we

xi
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can track them from their moment of creation to their moment of "death", we are able
to gather statistics on how long a singularity lives for on average. Furthermore, we show
that splitting the singularities up into two different families, based on how they die, has
a big impact on both their lifetime and diffusion. Chapter 4, while following the same
assumption as Chapter 3, is fully numerical instead. By letting three plane waves inter-
fere with each other in two dimensions, both the amplitude of the resulting field as well
as the phase singularities form an orderly lattice, just like atoms do when the material is
in a solid state, like ice for instance. We investigate if it is possible to have this solid-like
state "melt" into a liquid-like state, like when ice melts and turns into water. Here we
show a method for slowly introducing more waves in a symmetric fashion that result in
a transition from a solid-like state to a liquid-like state.

In Chapter 5 we depart from the direct investigation of phase singularities, and turn to-
wards a different type of singularity instead: flow-field singularities. Here we study the
behaviour of singularities in the 2D Poynting vector field, which describes the flow of
optical energy inside the sample. Singularities of this field signify an absence of in-plane
energy flow: stationary points of the flow-field. Here we go into mathematical detail un-
der which circumstances the singularities arise, and how to classify them through vector
field topology, which dictates the behaviour of the flow around these singularities. We
show that singularities of different origins are linked with their topologies, and how sin-
gularities with different origins are spatially correlated.

And finally in Chapter 6 we push the boundaries of our near-field microscope to new
limits. Normally, the experiments are performed using a continuous wave (CW) laser as
the light source, which illuminates the sample, allowing us to observe the resulting field
in the sample for a single colour. But when the power of the laser is sufficiently increased,
the light can interact with the sample, generating new light that has half the wavelength
of the original light, a process that is called second harmonic generation. This light could
not be detected by the microscope simultaneously with the original light. In this Chap-
ter we show modifications that were made to the setup to allow for the simultaneous
detection of light and its second harmonic. We show that we are able achieve this while
retaining sensitivity to amplitude, phase, and polarization.



SAMENVATTING

In dit proefschrift is er onderzoek gedaan naar de eigenschappen van licht, met het doel
om diepere kennis te vergaren over diens gedrag op een fundamenteel niveau wanneer
het licht beperkt wordt tot twee dimensies. Interessant genoeg ligt de focus van het on-
derzoek op het kijken naar plekken waar er eigenlijk helemaal geen licht is. Deze punten
van perfecte duisternis bezitten een aantal fascinerence eigenschappen, zoals het feit
dat er een zogeheten topologische lading mee geassocieerd is, en dat ze singulariteiten
van het veld zijn. Singulariteiten zijn punten waar een bepaalde manier om het veld
te beschrijven niet langer goed werkt. In deze dissertatie beschouwen we hoofdzakelijk
de fase van het veld: wanneer er geen licht meer is werkt de methode om de fase van
het lichtveld vast te stellen op dat punt niet meer, en hebben we te maken met een fase
singulariteit.

Om deze singulariteiten te observeren gebruiken we een speciale microscoop. De singu-
lariteiten, in twee dimensies, zijn punten: ze zijn infinitesimaal klein, en om ze te kun-
nen observeren moeten we in staat zijn om het licht veld te kunnen zien op hele kleine
lengteschalen. Het probleem met het gebruiken van een gewone microscoop is dat deze
fundamenteel gelimiteerd is in diens resolutie: ongeacht de sterkte van de vergrotings-
factor van het gebruikte objectief, een gewone microscoop kan alleen twee objecten van
elkaar onderscheiden wanneer deze verder uit elkaar liggen dan een bepaalde limiet. Dit
limiet staat bekend als de diffractielimiet. En het gedrag van deze singulariteiten gebeurt
op een lengteschaal die vele malen kleiner is dan deze diffractielimiet. Dus deze punten
van duisternis zullen verhuld worden door het omringende licht. Daarnaast observeert
men door een gewone microscoop alleen het licht dat richting het objectief propageert,
terwijl we eigenlijk geïnteresseerd zijn in het licht veld en diens eigenschappen wanneer
het veld beperkt wordt tot een tweedimensionaal vlak in een preparaat. Om deze rede-
nen hebben we een speciale microscoop nodig om deze singulariteiten te observeren.
Deze specifieke microscoop heet een scannende nabije-veld microscoop, en in plaats
van lenzen gebruiken om licht op te vangen gebruikt het een kleine naald-achtige probe
die we extreem dicht bij het oppervlakte van het preparaat brengen. Een typische afstand
hiervoor is in de orde van 20 nanometer, minder dan een duizendste van een (menseli-
jke) haardikte. De probe is in staat om licht op te vangen van het veld dat gelimiteerd
is tot een minuscule regio in de buurt van het oppervlakte, wat het nabije veld is ge-
noemd, en alle informatie bezit over het licht in het preparaat. Aangezien deze techniek
niet berust op het gebruik van lenzen en conventionele optica is het tevens niet gelimi-
teerd door de diffractielimiet, en stelt het ons in staat om de wonderbaarlijke wereld van
licht op zeer kleine lengteschalen te observeren. De details van deze meettechniek zijn
te vinden in Hoofdstuk 2.

xiii
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Wanneer we kijken naar hoe de singulariteiten bewegen, dan lijkt het wel alsof ze bewe-
gen zoals gewone deeltjes. Dus voor het eerste deel van dit onderzoek (Hoofdstukken 3
en 4) bekijken we deze fase singulariteiten alsof het gewone deeltjes zijn. Op deze manier
beschouwd kunnen we gebruik maken van alle standaard middelen van de statistische
fysica en zien of we hun posities en bewegingen op die manier kunnen analyseren. In
Hoofdstuk 3 bestuderen we hun diffusieve gedrag, waar we experimenteel hun gedrag
in de tijd kunnen volgen. Daarmee kunnen we ook hun bewegingen volgen, die niet
lineair blijken te zijn. En aangezien we ze kunnen volgen vanaf hun moment van cre-
atie tot het moment van hun "dood" zijn we ook in staat om statistisch te bepalen wat
hun gemiddelde levensduur is. Verder laten we zien dat het scheiden van de singular-
iteiten in twee families, gebaseerd op hoe ze sterven, een grote impact heeft op zowel
hun levensduur, alsmede hun diffusie. Hoofdstuk 4 volgt dezelfde lijn der redenatie als
Hoofdstuk 3, maar is volledig numeriek. Wanneer drie vlakke golven met elkaar inter-
fereren in twee dimensies zal het resulterende veld een ordelijk rooster vormen, zowel
voor de amplitude als de fase singulariteiten, net als atomen in een materiaal die zich in
de vaste fase bevindt zoals bijvoorbeeld ijs. We onderzoeken of het mogelijk is om zo’n
vast-achtige staat te laten "smelten" naar een vloeistof-achtige staat, net als wanneer ijs
smelt en water wordt. Hier laten we een methode zien voor het introduceren van meer
golven op een langzame, symmetrische manier die resulteert in een transitie van een
vast-achtige staat naar een vloeistof-achtige staat.

In Hoofdstuk 5 slaan we een andere weg in dan het direct onderzoeken van fase singular-
iteiten en onderzoeken we een andere soort singulariteit: stromingsveld singulariteiten.
Hier onderzoeken we het gedrag van singulariteiten in het 2D Poynting vectorveld die
de stroming van optische energie in het preparaat beschrijft. Singulariteiten van dit veld
betekenen de afwezigheid van stroming in het vlak: stationaire punten van het stro-
mingsveld. Hier gaan we in wiskundig detail in op de omstandigheden waarin deze
singulariteiten ontstaan, en hoe ze te classificeren volgens vectorveld topologie wat het
gedrag van de stroming rondom deze singulariteiten bepaald. We laten zien dat singu-
lariteiten met verschillende oorsprongen verbonden zijn met hun topologieën, en hoe
singulariteiten met verschillende oorsprongen ruimtelijk gecorreleerd zijn.

Als laatste verzetten we de limieten van onze nabije-veld microscoop in Hoofdstuk 6.
Normaal gesproken worden de experimenten uitgevoerd met een continue golf laser die
het preparaat belicht en ons in staat stelt om het resulterende veld in het preparaat te ob-
serveren voor één bepaalde kleur. Maar wanneer het vermogen van de laser voldoende
verhoogt wordt kan het licht interacteren met het preparaat. Als gevolg hiervan kan er
nieuw licht gegenereerd worden met de helft van de golflengte van het originele licht.
Dit proces wordt tweede harmonische generatie genoemd. Dit tweede harmonische
licht kon niet tegelijkertijd met het originele licht gedetecteerd worden door onze mi-
croscoop in de oorspronkelijke opstelling. In dit hoofdstuk laten we de modificaties zien
die we gedaan hebben aan de opstelling om het mogelijk te maken om het originele licht
en de tweede harmonische tegelijkertijd te observeren. We laten zien dat we hier toe in
staat zijn, terwijl we de sensitiviteit voor amplitude, fase, en polarisatie behouden.



1
INTRODUCTION

A wizard is never late, nor is he early.
He arrives precisely when he means to.

Gandalf the Grey - The Fellowship of the Ring1

In this chapter we start with the basics of light fields, introducing Maxwell’s equations of
electromagnetic fields and other basic principles on which this thesis is based. We explain
what singularities are, how they appear in optical fields, and why they are interesting. We
finish the chapter by giving a brief overview of the structure of the entire thesis, including
a brief summary of each chapter.

1
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2 1. INTRODUCTION

1.1. ABOUT LIGHT

Light is one of the fundamental ingredients of life as we know it. It is necessary for ev-
erything we need to stay alive on our planet travelling through space. It allows us to see
the world around us, the (terrestrial) flora uses light for energy through the process of
photosynthesis, and with it allows us humans to thrive on this planet at all.

If there is one thing to be said about humans, it’s that we are a curious bunch. Humanity
has strove to get a better understanding of light since the dawn of ages. From prehistoric
times trying to understand the day-night cycle [1], to cults worshipping the sun [2]. And
as the centuries advanced, so too did our understanding of what light is, and how to
utilize it [3–5]. In modern times, there is barely any piece of technology that does not
utilise light in some form. Your TV remote uses infrared light to send signals to your
TV, we use light to heat up our food in a microwave, and light is essential for GPS. Even
though none of these examples use waves that we can see directly, they are all part of the
electromagnetic spectrum. Only a small part of it is what we can see with our eyes, the
visible spectrum, and which is what we may be used to calling light1. But there is a lot of
potential for applications in all parts of this electromagnetic spectrum [6].

One such application, without which the modern world would quickly cease to function,
is telecommunication. Most pieces of technology are connected with the internet these
days, including many household appliances [7], but the exchange of data does not hap-
pen automatically. This data exchange between different devices is done using light at
a frequency just outside of our range of vision: in the near infrared at a wavelength of
1550 nm, which is called telecom frequency for obvious reasons. This frequency has of
course not been chosen randomly, but rather because the signals are guided using opti-
cal fibres. And for this specific frequency, the losses in the optical fibre are extremely low,
while for other frequencies the fibre starts to absorb more and more of this light instead
[8]. And for long range communication, and especially if you want to send data across
continents, then having the lowest possible losses is essential.

But since human curiosity and innovativity knows no bounds, we are always wondering
how to push our technology to its next limit. With the invention of laser devices came
rapid advancement in light-based applications, also known as photonics, leading to for
instance making chips using lithography and trapping atoms via laser cooling [9], the
development of the latter leading to the 1997 Nobel prize [10]. And in turn the laser
cooling has enabled the creation of an atomic clock with femtosecond (10−15 s) accuracy
[11] and is used in order to define the second [12]. And these clocks in turn paved the
way for applications such as the global positioning system (GPS) [13], and even in high-
frequency trading in financial world [14]. But the invention of the laser also lead to more
mundane applications such as scanning a barcode in the supermarket and being a visual
aid during presentations. The current holy grail of photonics is all-optical switching, in
which the chips are fully controlled using light instead of with electrons [15]. However,
light does not readily interact with other light, and thus a commercially viable all-optical
switch has remained elusive as of yet.

1Even though we apparently also like to call ultraviolet and infrared light as well, despite being invisible to us.
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3

1.2. ELECTROMAGNETIC FIELDS

1.2.1. MAXWELL’S EQUATIONS AND THE WAVE NATURE OF LIGHT

Depending on at which length scale we consider light, there are different ways to de-
scribe it. When looking at large scales, the ray picture of light is a good way to describe
it. In this picture, also known as geometrical optics, light can be regarded as a beam
travelling in a specific direction [16]. When this ray impinges on an interface, it can sub-
sequently undergo refraction or reflection. This picture is an excellent way to describe its
behaviour when the wavelength of the light is much smaller than the objects that the ray
of light encounters. And since the wavelength of visible light is in the order of hundreds
of nanometers, that means that the way visible light interacts with everyday objects such
as lenses and mirrors is well described by geometrical optics.

Theoretically, light fields can be described through two vector fields, namely the elec-
tric field E and the magnetic field B [17]. While these fields might be quickly associated
with charged particles like electrons, and magnets, (classical) optics is also an electro-
magnetic process. And the way to describe these processes is via the famous Maxwell’s
equations, which relate the electric and magnetic field to each other. In vacuum, these
equations are

∇·E = ρ

ϵ0
,

∇·B = 0,

∇×E =−∂t B, and

∇×B =µ0 (J+ϵ0∂t E) ,

(1.1)

where ρ and J are respectively the charge density and charge current, and ϵ0 and µ0 are
respectively the permittivity and vacuum permeability.

Assuming that the medium of propagation is not magnetized or polarized, is linear and
has no free current or charges (meaning ρ = J = 0, which tends to hold for optics), these
equations can be reduced to:

∇·E = 0,

∇·B = 0,

∇×E =−∂t B, and

∇×B =µ0ϵ0∂t E.

(1.2)

Combining these equations with some identities from calculus, we arrive at what is ar-
guably the basis of optics:

∇2E = ϵ0µ0
∂2E

∂t 2 , and

∇2B = ϵ0µ0
∂2B

∂t 2 ,

(1.3)
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which are of the form of a wave equation:

∇2ψ= 1

v2

∂2ψ

∂t 2 . (1.4)

By comparing the wave equation to the formulas for the electric and magnetic field, we
quickly see that in this case v = 1/

p
ϵ0µ0, which is of course the speed of light (in vac-

uum) c. So this shows that electric and magnetic fields actually propagate as waves at
the speed of light and reveals the wave nature of light. Hence light actually has to be
regarded as a wave phenomenon. And with it comes all the properties of waves, such
as interference, and require us to describe light using parameters such as wavelength
(or frequency). Additionally this means that these electromagnetic waves can interfere
with other electromagnetic waves. This wave behaviour is the behaviour that is observed
when looking at the famous double slit experiment [18] for instance, in which light can
be observed at positions on a screen which would be impossible when regarding light as
simple rays.

Finally, the particle-wave duality of quantum mechanics states that every particle has
wave properties, and vice-versa [19]. And this particle nature of light becomes apparent
only when looking at the smallest scales. Here we discover that the energy carried by
light is quantised in the form of photons, which can be seen through processes such as
photoluminescence where a photon is absorbed, exciting an electron to a higher ener-
getic state, which then relaxes to a lower energetic state, emitting a photon once again
[20]. In this thesis, we will only use the wave nature of light, but it is important to keep in
mind that it does not describe everything properly.

1.2.2. PLANE WAVES AND TRANSVERSE MODES

One of the simplest solutions to the wave equation above is the electromagnetic plane
wave. This is a wave that travels in a specific direction and oscillates with a certain fre-
quency, which can be described mathematically as:

ψ(r, t ) = Ae ı(k·r−ωt+φ0), (1.5)

where k is the wave vector indicating the direction in which the wave travels, r is the
spatial position, φ0 its phase offset, A its amplitude, ω the angular frequency of its oscil-
lation, and ı is the imaginary unit. Eqn. 1.5 also introduces the mathematical concept
of a field: it has a value for all spatial positions and time. Since the values are a complex
number everywhere, this is then a complex scalar field.

A simple plane wave just describes a single propagating wave, but generally light fields
consist not of a singular plane wave, but rather a multitude of them. Each of these differ-
ent plane wave can have different amplitudes, phases and frequencies. The superposi-
tion of all of these different plane waves then forms the full electromagnetic field. In this
case the field can then be mathematically described through a summation over all these
different waves:

ψ(r, t ) =∑
k

Ake ı(k·r−ωkt+φk). (1.6)
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Here Ak, ωk and φk are respectively the amplitude, angular frequency and initial phase
for each different plane wave, which can be different for all of them. But when we con-
sider monochromatic waves, i.e. waves with only one frequency, where ωk =ω for all k,
Eqn. 1.6 can be simplified to

ψ(r, t ) =∑
k

Ake ı(k·r−ωt+φk) = e−ıωt
∑

k
Ake ı(k·r+φk) ≡ e−ıωtψ(r). (1.7)

So it is possible to split the time dependence from the spatial dependence. This then
implies that the amplitude of the field remains constant in time, only varying in space.

Using this assumption of monochromaticity, Maxwell’s equations can be written as:

∇·E = 0,

∇·B = 0,

k̂×E = cB, and

k̂×B =−1

c
E.

(1.8)

Note that the third and fourth equations contain k̂ which is the unit vector for the di-
rection of propagation and is defined as k̂ ≡ k/|k|. This is the result of the equations
having been Fourier transformed first. The first two equations simply demonstrate that
there are no sources or sinks for either the electric or magnetic field and therefore imply
energy conservation. The other two relate the direction of propagation to the direction
of the electric and magnetic field. Specifically, by definition the vector resulting from a
cross product will always be perpendicular to both vectors of the cross product. So this
tells us that the electric field, magnetic field, and direction of propagation are all per-
pendicular to one another. This is what is called a transverse electromagnetic wave. For
a plane wave travelling in free space, this will always hold, but this can change when
boundaries and materials become involved.

When light is confined, it is useful to split the light fields into transverse electric (TE)
and/or transverse magnetic (TM) modes. Consider a plane, which could be the plane of
observation or a physical surface. The normal vector and the k-vector of the incoming
plane wave together span a surface. In the case of a TE mode, the electric field will only
have components that are perpendicular to this surface. So there will be no electric field
in the direction of propagation. This usually means that all electric field components
will lie in the plane of observation, excluding the direction of propagation, which can
also have a component in that plane. In the case of TM light, the above holds for the
magnetic field instead. For the electric field this then means that there will be a compo-
nent perpendicular to the plane of observation, and in the direction of the k-vector.

1.2.3. GUIDING LIGHT

For technological applications, and especially for on-chip environments, we will need to
move beyond freely propagating light. We want to be able to control the flow of light and
steer it to where it needs to be. In this section we introduce the concept of a waveguide,
which is used to accomplish this.
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n1
n2
n3

Figure 1.1: Schematic example of a simple slab waveguide, consisting of three layers with each layer having a
different refractive index ni , with n2 > n1 & n3.

PLANAR WAVEGUIDES

In the ray picture of light, when a light ray hits an interface between materials of different
refractive indices, part of the light gets reflected, and part of it get refracted into the new
medium according to Snell’s law. However, when going from a material with refractive
index n1 to a material with refractive index n2, where n1 ≥ n2, a critical angle of incidence
θc = arcsin(n2/n1) exists above which the wave no longer gets refracted, but rather only
reflected: total internal reflection. The result is that it can no longer leave the original
medium as long as the angle of incidence remains above the critical value: a channel is
created through which the light is guided, which is called a waveguide.

There are many different configurations that could accomplish this, but all rely on the
same principle of sandwiching a material with a higher refractive index in between ma-
terials of lower refractive index. By sandwiching a slab of high refractive index material
between two lower index materials, a 2D (planar) waveguide is created. The light is free
to propagate in the plane of the slab, but is prohibited from leaving through the lower
refractive index materials. A simple schematic of such a slab waveguide is shown in Fig.
1.1. Here a slab waveguide with three layers is shown, where the refractive index n2 is
higher than both n1 and n3, allowing for total internal reflection to occur.

MODES

While so far we have treated the waveguide from the ray picture of light, Maxwell’s equa-
tions have shown that the wave picture is the true nature of light. And the plane wave
solutions to Eqn. 1.3 were under the assumption that the light could freely propagate.
But here we have added constraints on the directions of propagation instead. So the so-
lutions to the wave equations will need to be reconsidered under these new boundaries.
Below a quick derivation is shown for solutions for this case. For a more in depth treat-
ment and derivations, the reader is referred to any standard electrodynamics textbook
such as Ref. [17] or Ref. [21].

Only the wave equation for the electric field,

∇2E =µ0ϵ0
∂2E

∂t 2 , (1.9)
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(a) Ridge waveguide (b) Rib waveguide

Figure 1.2: Two schematic examples of on-chip optical waveguides. (a) shows a ridge waveguide, while (b)
shows a rib waveguide.

will be considered, since the solution for the magnetic field is analogous. Assuming a
simple time-harmonic field, this wave equation can be reduced to

∇2E+k2E = 0, (1.10)

where k = nk0 and k0 =ω
p
µ0ϵ0, which is the wave number in vacuum. By convention,

we take the x−y plane to be the unconfined plane, allowing for propagation, and we take
the plane to be infinite. Without loss of generality we can set the direction of propagation
to be the x direction, with a propagation constant of k∥. As a result, we find translational
invariance in the y direction, leading to ∂y E = 0. This then yields

d 2E

d x2 + (k2 −k2
∥ )E = 0, (1.11)

which is a simple second order differential equation for each electric field component
separately.

Under the boundary conditions of a guided mode there is no net transport of energy
through the interface. Using this condition, the solutions to the differential equation are
found to be given by a set of discrete oscillatory solution, very akin to the solutions to the
particle in a box from basic quantum mechanics. These discrete solutions are called the
modes of the field.

Implicitly we have used Ez here, but the same computation can be done for Hz as well.
Here once again a distinction can be made between TE and TM light, with the solu-
tions under both cases leading to these discrete solutions. These TE and TM modes are
labelled by their index with TE0 and TM0 being the fundamental modes of the field. Ad-
ditionally, each mode has its own in-plane propagation constant.



1

8 1. INTRODUCTION

1D OPTICAL WAVEGUIDES

The concept of a slab waveguide can easily be moved to one dimension lower by adding
an additional axis of confinement. One example of this is the ridge waveguide, in which a
rectangular strip of a width w and height h is places on a substrate. This ridge waveguide
is shown in Fig. 1.2 (a). Above the substrate and strip is simply air, which has a refractive
index of nai r ≈ 1 2, which will always3 be lower than the material used for both the ridge
and the substrate. When the material of the ridge is of a refractive index higher than that
of the substrate, a narrow channel for the light is created in which it is confined in all
directions except the direction along the ridge, making this a 1D waveguide. Fig. 1.2 (b)
depicts another type of 1D waveguide, which is the rib waveguide. In this case, the strip
sits not directly on top of the substrate, but rather on a layer of thickness d of the same
material. This type of waveguide will be used in Ch. 6.

Like with the slab waveguide, the 1D waveguide also only supports a discrete set of
modes to propagate. And since an additional axis of confinement is added, there are dis-
crete states in both the confinement directions, which are labeled as T Eab and T Mab ,
with a,b ∈ N. Unlike the case of the slab waveguide, analytical solutions to Maxwell’s
equations in the case of 1D waveguides do not readily exist, and as such the modes that
are supported by the waveguide can only be found numerically.

While in a planar waveguide we lose confinement in one direction when compared with
a 1D waveguide, what is gained is a possible spread in the in-plane k-vectors. While in
a 1D waveguide the light can only propagate in 1 direction, for a 2D waveguide waves
can in principle come from all in-plane directions and interfere with each other. Each
of these interfering waves can additionally have a different amplitude and phase. If we
then have a sufficient amount of these waves coming from all directions, it creates what
is known as a random wave field, or chaotic light [24]. It is here that a lot of interesting
physics arises, since a random wave field is the most generic wave field that one can
create [25]. Any physics we can derive from this random field will hold more generally
for other fields, and as such makes for a fascinating playground for investigating the
behaviour of light at a fundamental level [24, 26–28].

1.3. SINGULARITIES

One thing that has always fascinated physicists and mathematicians alike is the exis-
tence of singularities. Singularities are points where a parameter becomes undefined,
where the mathematical description breaks down [29]. These special points might sound
like they are rare, and that one would have to look hard to catch a glimpse of these elusive
entities. But in reality they are actually extremely common in nature. If you’ve ever sat
on a terrace in the sun with a glass, then you probably noticed the curious pattern that
was formed on the table by the light that passed through the glass. And surely you have
noticed the mesmerizing pattern of dancing lines at the bottom of a swimming pool on a

2The refractive index of vacuum is exactly nvac = 1. The refractive index of air is ever so slightly higher, but so
close to it that it can be taken to be nai r = 1 for all intents and purposes.

3Also not strictly true: for instance metamaterials [22] and plasma’s such as the Earth’s ionosphere [23] can
have n < 1.
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Amplitude Phase

Figure 1.3: Amplitude (left) and phase (right) of a vortex beam of order 1. The amplitude vanishes exactly in
the center, leading to a phase defect, which is observed as a point defect where all possible phase values meet.

sunny day. Both of these examples actually belong a class of singularities known as caus-
tics [30]. They are lines where rays of light all become parallel to one another, and the
intensity at that line diverges: it becomes infinite. At least, if not for the diffraction limit,
which is probably for the best once you consider the implications of infinite brightness.

And along with these everyday life examples of singularities, there exist a multitude
more. Black holes are another well known example, since they contain a singularity of
space-time at their core4. In this thesis we concern ourself mainly with singularities of
the optical field, where one of the describing parameters becomes undefined. Below we
explain a few such types which we can observe.

1.3.1. PHASE SINGULARITIES

When draining a bathtub or sink, undoubtedly you will have noticed the swirling vortex
that arises when the water level gets low enough5. Here the direction of the flow of the
water takes on all possible directions as it circles the drain [35, 36]. In light, something
similar can happen to the phase: points in the light field where the phase takes all pos-
sible values of 0 to 2π around the point. Here the phase at the point itself is undefined,
making the point a phase singularity [37, 38], the study of which garnered a lot of interest
[24, 26, 39–46].

Recall for a monochromatic field for instance that we are able to describe it as

Ei (r, t ) = A(r, t )e ıφ(r,t ), (1.12)

where Ei represents one of the electric field components. In order to reconcile the phase
singularity with this equation, nature then demands that A(r, t ) becomes exactly zero .
In the case of an electric field component, which can be regarded as a complex scalar

4This is not the event horizon, which is a singularity of the Schwarzschild metric, but can be removed via a
coordinate transformation, and is therefore not a true singularity [31–33].

5Contrary to popular belief, the direction of the swirl is not fully dictated by the Coriolis force and hence de-
pendent on the hemisphere it is in; the scale is simply too small for it to have any significant effect, and the
geometry of the vessel is much more important instead [34].
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Phase

Figure 1.4: Two phase singularities of opposite sign. Depending on whether the phase increases or decreases
when we trace it going clockwise we can assign a positive or negative charge to them.

field, these singularities can be found at positions where both the real and imaginary
components vanish independently. In 3D space, there are three degrees of freedom (the
three spatial directions) and two constraints (the real and imaginary part both vanish-
ing). So there are two equations to be satisfied and three parameters, leaving one pa-
rameter free after solving the equations. From this, we see that the solution space is one
dimensional, meaning that the singularities in this case are line defects. In the case of a
2D space, however, we then find that the solution space for the singularities is reduced
to zero dimensions, making it a point defect instead.

A good way to illustrate this principle is by looking at the amplitude and phase of a
Laguerre-Gaussian beam. The profile of the beams are characterised by two parame-
ters, l and p, with l the azimuthal index and p the radial index. A Laguerre-Gaussian
beam with l = 1 is commonly referred to as a vortex or donut beam. In this beam, the
amplitude profile is radial and only depends on distance from the centre of the beam,
and its amplitude is exactly zero in the centre of the beam cross-section. In Fig. 1.3 we
show the amplitude and phase of such a beam. On the left the distinctly donut shape
of the amplitude can be seen that gives the beam its commonly used name, and on the
right the phase is shown. In the phase clearly a point can be observed where all possible
phases meet, which is the phase singularity.

Interestingly, a charge can be assigned to these points. This charge is based on the wind-
ing number using Cauchy’s integral theorem, which is defined as a closed loop integral
over the phase: ∮

C
dφ= 2πs, (1.13)

where s is the total charge of the singularities that is enclosed. To put this mathemati-
cal statement in visual terms: take any closed loop that can be drawn in the plane. This
loop can be shrunk like contracting a loop made of a rope. But the one caveat is that the
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contour of the loop cannot cross a singularity. Now if it is possible to fully contract the
loop, then that means there is no singularity enclosed, since the loop must have crossed
every point enclosed, and hence the integral evaluates to zero. However, if there is a sin-
gularity enclosed, then the loop cannot be fully contracted, and the integral is non-zero.
The sign of the charge depends on the way the phase wraps around the singular point:
if the phase increases when moving clockwise around the point, then by convention we
call them positive, and if it decreases, then we call them negative instead. This is also
shown in Fig. 1.4, where 2 singularities are depicted with opposite sign. On the left we
see that the phase increases when moving clockwise around the point, making it a nega-
tive singularity, while the opposite holds for the right singularity. Generically, this charge
is s =±1, but can of course be higher if multiple singularities are enclosed, or if a higher
order singularity (charge ≥ 2) is present.

The ±1 charge is not just a simple charge, it is in fact a topological charge, since it is
based on the winding number [47]. And since it is topological, it has to abide by the rules
of topological charges as well. One such rule is that one cannot simply remove one sin-
gularity: charge neutrality needs to be preserved. The only way to remove a singularity
is to have it annihilate with another singularity of the opposite charge. And similarly, the
only way to create a singularity is to create it along with another singularity of opposite
charge. This is know as pair creation/annihilation [42].

Now while the case of a vortex beam might be a specific example in which a single phase
singularity is generated, they are actually a generic feature of random waves [24]. Any-
where in the random wave field where the waves interfere destructively, leading to a zero
in the amplitude, phase singularities arise. One thing to note here is that when consid-
ering the vortex beam example, we are actually looking in the direction of propagation,
as it is a cross-section of a 3D propagating beam. Furthermore, this vortex also carries
orbital angular momentum (OAM), with the direction pointing in the direction of prop-
agation [48].

1.3.2. POLARIZATION AND POLARIZATION SINGULARITIES

The phase singularity is a singularity of a scalar field, and so far we have gotten away with
treating each electric field component as a separate complex scalar field. But light fields
are vectorial in nature, and vector fields can contain singularities too. One such vector
property of light is that of polarization, which describes how the electric field vector be-
haves in time in the plane, for which we consider the x − y plane. Generically this vector
traces an ellipse in time. A useful way to describe the polarization state is through the
Stokes parameters:

S0 = E 2
x +E 2

y ,

S1 = E 2
x −E 2

y ,

S2 = 2ℜ
(
EX E∗

y

)
, and

S3 =−2ℑ
(
EX E∗

y

)
.

(1.14)
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(a) Polarization ellipse (b) Poincaré sphere

Figure 1.5: Schematic illustrations of (a) the polarization ellipse and (b) the Poincaré sphere. (a) shows the
ellipse that the in-plane electric field vector E traces in time. The major and minor axes of the ellipse are
denoted by a and b respectively. (b) illustrates the Poincaré sphere spanned by the Stokes vectors S1−3, with
the radius of the sphere being given by S0. The two angles ψ and χ are illustrated with the blue and red areas
respectively.

Here S0 is the total intensity of the electric field, whereas the other three parameters
describe the polarization state. S1 describes how much of the electric field is linearly po-
larized along the x or y directions, with S2 indicating the same, except for a rotation of 45
degrees with respect to the x-axis. Finally S3 described the amount of circular polariza-
tion. Together, the parameters S1−3 form a sphere with radius S0, known as the Poincaré
sphere, and a point in this sphere uniquely characterizes the polarization state [49]. For
visualization purposes, we tend to normalize the parameters S1−3 to S0, which we denote
as si ≡ Si /S0. When the polarization state does not lie on the surface (

∑3
i=1 s2

i < 1), the
light is designated as not fully polarized. When instead it lies on the surface of the sphere
(
∑3

i=1 s2
i = 1), we call the light fully polarized. Additionally, the polarization state can be

described using two parameters for fully polarized light, ψ and χ, which are analogous
to the polar and azimuthal angles in the spherical coordinate system. Here we shall only
consider fully polarized light.

When the light becomes fully circularly polarized (s3 =±1, χ=±π/4), this polar angle ψ
becomes undefined, leading to a singularity. This happens precisely when s1 = s2 = 0.
Since we consider the system in 2D, and there are 2 equations to be satisfied for circular
polarization to occur, the solutions are zero-dimensional, and hence discrete points in
the plane. These singular points of circular polarization are also called C-points. Return-
ing to viewing the polarization state through the lens of the ellipse that is being traced
by the in-plane electric field vector reveals an intuitive view of the singularity: whereas
an ellipse can be characterized by the angle of its major axis with respect to the x-axis,
having a perfect circle leads to this angle becoming undefined.
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(a) Lennard-Jones simulation.
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Figure 1.6: Comparison of the radial distribution function g (r ) for (a) a molecular dynamics simulation for
a Lennard-Jones liquid with (b) the simulated g (r ) for phase singularities in a random wave field. For the
Lennard-Jones liquid, the radius is plotted in units of the particle radius, while for the random wave field the
radius is plotted in units of the wavelength. The Lennard-Jones liquid has been simulated through software
provided by Ref. [51].

The other occurrence of a polarization singularity is when linear polarization occurs,
and the minor axis of the ellipse becomes zero, and as a result the ratio of the minor and
major axes, the ellipticity, becomes infinite. Since the requirement for this happening
is the vanishing of s3, we have only 1 condition needing to be satisfied, while having 2
free parameters. As such linear polarization doesn’t occur at a single point in space as
C-points do, but rather appear as lines, and are also referred to as L-lines. This dimen-
sionality of the singularities can also be seen when considering the Poincaré sphere once
more: C-points occur only at two discrete points, the poles, while L-lines occur all along
the equator and form a 1D space instead.

One thing to note is that, unlike phase singularities, polarization singularities don’t carry
a charge of ±1, but rather ±1/2 [50]. This difference in charge can be intuitively under-
stood when considering that the shape of an ellipse is mirror symmetric over its major
axis. As such, rotating it by π results in an ellipse that is indistinguishable from its unro-
tated form. As a result, the major axis rotates only by π/2 around a C-point, resulting in
a charge of ±1/2 instead.

Polarization singularities will not be investigated further in this thesis, but serve both as
an introduction to polarization as a concept, as well as an introduction to vector field
singularities, which will be used in Chapter 5.

1.3.3. SINGULARITIES AS PARTICLES

One feature that makes singularities an interesting subject to study is that they tend to
show remarkable similarities to real charged particles [52–56]. Of course they are not
actually real particles, they are simply zeros in intensity of the light field, but it can be
insightful to study in how far they are similar. And importantly, in what ways they are
not similar as well. Understanding the differences and similarities between singularities
and charged particles can lead to a deeper understanding of the behaviour of light.
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For singularities in isotropic random waves, it is known that they behave liquid-like [24],
which has been verified experimentally [25, 43, 57]. One way to appreciate this is by
considering the pair correlation between the singularities. The pair-correlation function,
also referred to as the radial distribution function g (r ), is a measure for how particles
are distributed in space [58]. In particular it gives the probability distribution of finding
another particle at a certain distance r from another particle. It is taken as an ensemble
average over all particles, and can mathematically be defined as

g (r ) = 1

Nρ

〈∑
i ̸= j

δ(r −|ri − r j |)
〉

, (1.15)

where N is the total amount of singularities, ρ is the average singularity density, δ is
the Dirac delta function, ri , j are the spatial positions of two singularities, and 〈· · · 〉 de-
notes the ensemble average. The pair-correlation function g (r ) also gives an insight
into the structure of the field. For instance, for a regular lattice, corresponding to what
can be seen as a solid state of matter, one would expect to find sharp peaks in the pair-
correlation function, since there are discrete distances at which another particle is found.
For an ideal gas however, which is fully disordered, one would find that the distribution
is unity everywhere, since all the positions are uncorrelated: there is no preferential di-
rection at which one can expect to find another particle, they are simply everywhere.
Intermediately one has liquids, which are neither fully disordered like a gas, nor as reg-
ular as a solid, which is also reflected in their correlation function: here we see a peak at
around half a wavelength, after which it oscillates around unity with an amplitude that
decays as the distance increases, eventually becoming uncorrelated at large distances.

In Fig. 1.6 we show a comparison between the pair-correlation function of a Lennard-
Jones liquid (a), and that of phase singularities in a random wave field (b). The Lennard-
Jones liquid describes a liquid of electrically neutral particles where the inter-particle
interactions are governed by the Lennard-Jones potential [59, 60], and is perhaps the
most well-studied potential in existence. This potential is strongly repulsive at an inter-
particle distance smaller than their radius and softly attractive at distances beyond it.
Molecular dynamics simulations using this potential can yield a liquid state, for which
the g (r ) has been plotted in Fig. 1.6 (a). Here we observe that the g (r ) = 0 for a dis-
tance smaller than the particle radius before exhibiting a peak just beyond the particle
radius, indicating a high likelihood of finding another particle close to the reference par-
ticle. Beyond that the g (r ) shows oscillatory behaviour around unity, with the amplitude
decaying as the distance from the reference particle is increased.

The pair-correlation function for the phase singularities displayed in Fig. 1.6 (b) shows
very similar behaviour, but there is one immediate difference between the pair-correlation
function for singularities here and those in a Lennard-Jones liquid: curiously, the g (r ) for
singularities does not go completely to zero for r → 0. This can be explained by consid-
ering the size of the particles under consideration: whereas the Lennard-Jones particles
have a finite size, and cannot approach another particle closer than their diameter, phase
singularities are actually zero dimensional objects. So while real particles have a finite
size, singularities are actually infinitesimally small, and as such are able to approach
each other to arbitrarily small distances [24].
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1.4. LAYOUT OF THIS THESIS

In this thesis the emphasis lies on gaining a deeper understanding of the behaviour of
singularities, using experiment, simulations and theory combined. The first part of this
thesis is devoted to investigating in how far singularities and charged particles show sim-
ilarities by taking a statistical physics approach. We take a look at the diffusive proper-
ties, and at how we can melt a lattice of singularities. After this we look toward the flow
field, identify its singularities and origins thereof. Finally we push the experimental lim-
its by showing that we are able to measure a field at telecom frequencies, as well as its
second harmonic simultaneously.

• In Chapter 2 we introduce all the experimental tools that were used to perform the
near field experiments for studying singularities and more.

• In Chapter 3 we investigate the diffusive properties of singularities by studying
their dynamics in time, as well as their decay rate.

• In Chapter 4 we look at the melting of singularity lattices, and attempting to dis-
cern a mechanism that could act as an analogue to temperature to induce it.

• In Chapter 5 we look at the properties of the time-averaged Poynting vector field
and its singularities.

• In Chapter 6 we present the first experiment in which we are able to measure the
near field of both infrared and visible light simultaneously.

• In Chapter 7 we draw conclusions from the studies presented in this thesis and
give an outlook on further lines of research.
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EXPERIMENTAL SETUP

Where the windows are breathing in the light
Where the rooms are a collection of our lives

This is a place where I don’t feel alone
This is a place that I call my home

That Home - The Cinematic Orchestra2

In this chapter we introduce the tools that are used in order to perform near-field experi-
ments. We start by introducing the diffraction limit, as well as how it’s possible to circum-
vent it. Next we show how we have implemented the near-field microscope as well as the
type of samples that are used in this thesis. This includes how we are able to access the
dynamical properties of 2D light fields, as well as their polarization state. Finally we show
how we are able to detect optical singularities, which are deeply sub-wavelength entities.
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2.1. BEYOND THE DIFFRACTION LIMIT

In a world where technology is ever shrinking, the structures that comprise it necessarily
become smaller and smaller as well. And with it comes the need to be able to understand
and control light at smaller scales as well. Nanophotonics is the field that concerns it-
self with the behaviour of light at the nanoscale, and it studies for instance the optical
response of nanoantennas [61], or the structure of light inside of waveguides [62]. Un-
derstanding this behaviour leads to a plethora of applications, such as precise sensing
[63, 64], better solar cells [65] and finding ways to manipulate and steer light at this scale
[66]. What binds all these different applications and behaviours together is that they
all involve optical effects on a scale much smaller than the optical wavelength used to
induce them. In order to observe these optical effects, a way is needed to observe them.

Unfortunately, conventional microscopy is limited in the resolution that can be achieved
due to the diffraction limit. Such a limit was first determined by Ernst Abbe already in
1873, who approximated the diffraction limit of a microscope to be

d = λ

2NA
, (2.1)

where λ is the wavelength of the light, and NA is the numerical aperture of the objective
[67]. Functionally, this sets the limit at approximately half the wavelength [68]. So regular
microscopy is no longer sufficient when studying the behaviour of light at length scales
below half a wavelength. The diffraction limit describes the ability to resolve two nearby
features and depends on the size of your aperture and the wavelength. The smaller the
wavelength becomes, the smaller features become, and hence they can get closer before
overlapping.

Since conventional microscopes pick up the light propagating through the objective, it
is fundamentally bound the relation for freely propagating light, given by

k2
x +k2

y +k2
z = k2

0 . (2.2)

This relation then also dictates the limit of the spatial frequencies that can be detected.

However, the in-plane momentum vector k∥ = (kx ,ky ) can be larger that that of freely
propagating light such that k2

∥ > k2
0 . This can only happen when k2

z < 0, and thus kz be-
comes a complex number instead. As a result, the out-of-plane contribution to the prop-
agation of such a wave becomes proportional to e−|kz |z , leading to a field that decays ex-
ponentially away from the plane. This decaying field close to the surface is what is called
the evanescent field, from the Latin word evanescere, which means to vanish. An illus-
tration of this evanescent tail of light undergoing total internal reflection is shown in Fig.
2.1. The evanescent field does not propagate or transport energy away from the plane,
but this evanescent does contain the full range of in-plane spatial frequencies, which
can be higher than the frequencies of freely propagating light. Gaining access to this
evanescent field thus allows for a spatial resolution beyond the diffraction limit through
these high in-plane frequencies. This evanescent field can also be seen as a consequence
of boundary conditions imposed by Maxwell’s equations at an interface in combination
with conservation of momentum. When light is confined to two-dimensions by total in-
ternal reflection, such as light propagating through a thin slab of material with a high
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Figure 2.1: Illustration of the evanescent tail of a field. The red beam undergoes total internal reflection, leading
to an evanescent field that decays exponentially away from the surface. The amplitude of the electric field away
from the surface is depicted.

refractive index, laws of physics demands that the electromagnetic fields parallel to the
interface must still be continuous at the interface. Thus the fields are not automatically
zero, but rather are decaying exponentially across the boundary.

What is measured with a conventional microscope is what is also referred to as the far-
field. The light that is collected is comprised solely of light not confined to a structure,
such as light that gets scattered out of a sample, and is allowed to freely propagate. For
this freely propagating light all k-vector components are real valued, and is bound by the
diffraction limit as usual. But being able to detect the evanescent tail of the field, which
is called the near field, allows access to light with imaginary k-vector components. This
results in an increased k∥, and hence allows for a resolution higher than the diffraction
limit.

2.2. NEAR-FIELD MICROSCOPY

One early example of a proposed way to detect the near field is that of Edward Synge,
who in 1928 already proposed the use of an opaque plate with a tiny hole in it [69]. By
placing this plate close to the surface of the to-be-imaged sample, illuminating the sub-
wavelength hole, and then measuring the light transmitted through the sample, one can
measure with an illumination spot that is not limited by diffraction, but rather the size
of the hole that is used. By subsequently scanning this hole over the surface, an image
can be constructed with a resolution much higher than what the diffraction limit would
allow. While at the time of proposal performing this experiment was not feasible due to
the lack of technology to do it, it is still the core of what is currently used in near-field
microscopy.



2

20 2. EXPERIMENTAL SETUP

Light source
PBS

Sample

λ/2
Detectors

PBS

λ/2

Obj.

AOM

+80.04 MHz

AOM

-80.00 MHz

ProbeDelay line

Figure 2.2: Schematic illustration of the near-field microscope used throughout this thesis. The two possible
paths form a Mach-Zehnder interferometer, with the top path denoted as reference, and the bottom path as
signal. The reference branch has its frequency shifted by 40 kHz through the use of the AOM’s. Additionally, an
SEM image of a near-field probe is shown.

In order to get the sub-wavelength resolution with the method proposed by Synge, the
plate with the hole would need to reside extremely close to the surface. And while that
might have been feasible, then additionally having to raster scan this plate over the sam-
ple surface without colliding with it suddenly becomes a monumental task. It would
take over half a century before Synge’s vision was realised and the first optical near-
field microscope was made functional and a patent was filed by Dieter Pohl in 1982
[70]. However, they were not the first ones to show the viability of near-field microscopy,
since Ash and Nicholls already a decade earlier managed to show superresolution us-
ing microwaves in 1972 [71]. In this case Pohl did not use an opaque sheet with a sub-
wavelength hole in it, but rather a quartz crystal that was modified to have a sharp tip,
and coated such that only the tip was transparent. In this way, the tip can be scanned
over the surface, without having to deal with a cumbersome sheet. With this method he
was was able to achieve a resolution ofλ/20 [72]. This revolutionary method is one of the
implementations of scanning probe microscopy, which saw its inception merely a year
earlier in 1981 with the invention of the scanning tunneling microscope (STM) by Bin-
ning and Rohrer, earning them the 1986 Nobel prize [73]. This STM technique paved the
way for a multitude of microscopes operating on the scanning probe principle, allowing
for imaging at the nanoscale [74].

The implementation of Pohl is the first example of an aperture based NSOM, but other
types of NSOM also exist, most prominently scattering type (s-NSOM) [75–77]. In this
case a probe is used that is not hollow, but instead is made as sharp as possible. This
is then put in the evanescent field to scatter light into the far-field where it can then be
detected by a photodiode. In this thesis, we solely make use of an aperture based NSOM,
which has been home-built and improved upon over the years [62, 78–81].
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2.2.1. CAPABILITIES OF THE NEAR-FIELD MICROSCOPE

A near-field microscope is able to detect light fields at a sub-wavelength scale, where the
probe can be used in two ways: collection mode and illumination mode [82]. In illumi-
nation mode, the aperture probe is used to locally illuminate the sample. This technique
is generally used when local excitation is desired, for instance for the excitation of single
molecules. Conversely, in collection mode, the aperture probe is used to locally pick up
the light instead, and is used to map the spatial distribution of a confined field. Through-
out this thesis the focus lies on the investigation of the spatial distribution of fields and
their singularities, and hence only collection mode will be considered. A schematic rep-
resentation of our near-field microscope is shown in Fig. 2.2, and in this section the
function of all its different elements will be explained.

In its most basic form, an aperture-based near-field microscope in collection mode is
able to record the optical field intensity. By raster scanning the probe over the surface,
and recording the light transmitted through the probe on a photodiode, a map of the
intensity can be recorded1 [84]. While this is of course already a useful tool to have, a
lot of information is discarded with this. In order to gain more information on the field,
the incoming laser beam is split into two separate paths, where one goes to the sample
where it then gets picked up by the tip (signal path), while the other bypasses the sam-
ple instead (reference path). The two paths are then recombined after the tip, forming
a Mach-Zehnder interferometer. This then allows for sensitivity to the phase difference
between the two branches. But in order to determine the phase and amplitude of the de-
tected signal separately, the use of heterodyne detection is required in addition. By intro-
ducing a dual-phase lock-in amplifier (LIA), in combination with shifting the frequency
of one of the two branches through the use of an acousto-optic modulator (AOM), we
gain access to both the amplitude |E(x, y)| as well as the phase φ(x, y) of the measured
field separately. This heterodyne detection scheme will be explained in more detail in
Section 2.3.1.

But as has been mentioned before, light is vectorial in nature, and so far in the discus-
sion about detecting light it has been treated as a scalar quantity. Of course access to the
vector components separately is also desired. If the vectorial quantities of light are to be
probed, polarization sensitivity is required as well in order to disentangle the different
field components. By then utilising a pair of detectors, instead of a single detector, and
a polarizing beamsplitter cube that splits the signal based on its polarization it becomes
possible to also selectively detect Ex and Ey separately. Since the polarizing beamsplit-
ter cube splits two orthogonal polarization states, two orthogonal polarization states are
recorded on the two lock-in amplifiers. However, note that this does not immediately
mean Ex and Ey , since the light that is picked up can undergo a rotation of polarization
state before arriving at the beamsplitter and subsequent detectors due to birefringence.
This birefringence can occur through the bends in optical fibres for instance. In order
to compensate for this, adjustable waveplates are introduced in order to rotate the mea-
sured field back to a state where Ex and Ey are properly split on the detectors. Through
this combination of techniques we are able to gain access to sub-wavelength features,
while also gaining phase and polarization information.

1This is a slight simplification, since the magnetic field is also picked up [83].
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2.3. IMPLEMENTATION OF THE NEAR-FIELD MICROSCOPE

In the previous section we have discussed the principles of near-field microscopy and
how it is possible to gain insight into the different components of the electric field, but
not how it is implemented. The initial implementation by Pohl is based on scanning a
tip with a sub-wavelength aperture over the surface, recording the throughput through
that tip. This way is the basis of aperture-based near-field scanning optical microscopes
(a-NSOM) in collection mode. The idea of using a probe was then iterated upon and im-
proved by Betzig [85], where they introduced the use of pulled fibres. Here a single-mode
optical fibre is pulled from two sides, while simultaneously being heated by a CO2 laser,
which under the correct circumstances (such as pulling force and laser power) leads to a
fibre with a sharply tapered end. When we talk about near-field tips, this is what we are
referring to. Additionally this tip can then be coated at the sides with aluminium. This
revolutionary method is still the dominant method for creating tips today, but of course
has since been further refined over the years [86]. The probes that are used in our lab
are pulled fibres, with the pulling parameters chosen such that the end has a dumbbell
shape in order to allow for a large opening angle to increase throughput. These fibres
are then immersed in buffered acid before being coated with a 100 to 200 nm thick layer
of aluminium to prevent light from leaking out of (or entering) the sides of the probe.
Finally, using focused ion beam milling we create an aperture once more through which
the light can enter the tip. For more exact details on the fabrication process, see Ref. [87].

While the idea of raster scanning an aperture probe over the sample sounds quite simple,
one needs to keep in mind that probe needs to reside inside the evanescent field. In prac-
tice this means that the probe is suspended merely a few tens of nanometers above the
sample, which needs to be kept constant during scanning. A constant height above the
surface is maintained through the use of a shear-force feedback mechanism [88, 89]. The
feedback mechanism has to be sensitive, as well as responsive, since tips are extremely
fragile, and hitting the surface spells certain death for that tip. This feedback is achieved
by gluing the probe to one prong of a quartz tuning fork, with the end of the tip sticking
out only a tiny amount (about one fibre diameter). By only having the tip extend a tiny
amount (around one fibre diameter) beyond the end of the prong, the tuning fork and
tip combination forms a rigid system, and the tip does not start oscillating at a different
frequency. This rigid system has a certain resonance frequency associated to it (usually
around 33 kHz), and the system is subsequently also driven at this resonance frequency.
When the tip approaches the surface, the resonance frequency shifts due to interactions
with the surface, and this can be detected as a change in phase and amplitude. By giv-
ing it a desired phase setpoint, which translates to a certain distance to the sample, a
feedback loop is created that aims to keep the distance fixed. This distance is controlled
through a piezoelectric element, which allows for extremely precise movement. In this
way, we are able to achieve a lateral step size of 15±2 nm. Since a fixed distance is main-
tained between the probe and the sample, by recording the voltage on the piezo, which
translates directly into a distance, we also get access to the topographical information. It
acts similar to atomic force microscopy in that sense.
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2.3.1. HETERODYNE DETECTION & GAIN

Additionally, we make use of a heterodyne detection scheme, where the reference path
also goes through two acousto-optic modulators (AOM’s), which shift the frequency of
the light. This is done in such a way that the frequency is shifted by 80.04 MHz by the
first one and 80 MHz by the second one. By making one a positive shift, and the other a
negative shift, the reference path is shifted in frequency with respect to the signal path by
40 kHz. When the signal and reference paths are subsequently recombined, the result-
ing signal will then exhibit a beating of 40 kHz. Through the use of a lock-in amplifier
(LIA), we can efficiently filter on this frequency to significantly improve the signal-to-
noise ration (SNR) by suppressing 1/f noise, and essentially limit the noise to be mainly
shot-noise [90].

An additional benefit of using this heterodyne detection scheme is the so-called hetero-
dyne gain. Since the voltage measured on the detector is proportional to the intensity of
the combination of the electric fields of the signal (Es ) and reference (Er ) branches, we
can write

V ∝ I = [
Es cos(ωs t +φ)+Er cos(ωr t )

]2 , (2.3)

where ωs (ωr ) is the frequency of the signal (reference) branch, and we take φ to be the
phase difference between the two branches. Expanding this product then yields

V ∝|Es |2 +|Er |2 +2|Es ||Er |cos(ωs t +φ)cos(ωr t ). (2.4)

The first two terms represent the DC voltage from the signal and reference branches
separately. By using a LIA, these contributions are filtered out, since they do not vary in
time. Instead we are left with the product of two cosines, which leads to a sum-difference
term, where one varies with the difference frequency, and the other with the sum of the
two frequencies. Since we filter on the difference frequency, the sum frequency is filtered
out as well. The measured voltage after the LIA is then proportional only to the terms
varying with the difference frequency:

V ∝|Es ||Er |cos(φ) = γ|Es |2 cos(φ), (2.5)

where γ≡ |Er |
|Es | . Here we see that the measured voltage is a factor γ higher than when just

measuring the intensity of the signal alone, and as such γ is called the heterodyne gain
factor. By ensuring that |Er | >> |Es |, we can obtain multiple order of magnitude in gain
to boost our usually quite weak signal [91].
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Figure 2.3: Examples of photonic crystals in one and two dimensions. (a) shows a one dimensional PhC, which
is created by alternating layers with differing refractive index. (b) shows a 2D PhC, which is created through a
hexagonal array of air holes (n=1) in a slab of material.

2.4. GENERATION OF 2D LIGHT

With the how of performing near-field microscopy out of the way, we can now turn our
gaze to the what. As alluded to in the introduction of this thesis, light behaves differ-
ently when it is confined to two dimensions, when compared to a 2D cross-section of
3D propagating light. And with the potential applications aimed at on-chip control of
light planted in the back of our minds, we turn towards investigating truly 2D light. In
this section we continue to build upon Section 1.2.3, where we introduced the notion
of waveguides, which gives us a way to confine propagation direction. We start by in-
troducing photonic crystals as a way of selectively restricting propagation based on the
frequency of the light. Afterwards we combine these photonic crystals with the planar
waveguides introduced earlier in order to create a platform for 2D random waves.

2.4.1. PHOTONIC CRYSTALS

Photonic crystals (PhC’s) are most intuitively understood by considering one-dimensional
Bragg stacks. Here, layers of dielectric material with different refractive index are alter-
nated, forming a periodic structure. This periodic modulation of the dielectric constant
also leads to a region of frequencies that are no longer allowed to propagate through the
material [92–94]. This range of forbidden frequencies is known as a stop gap, and is the
optical equivalent of electronic bandgaps, where electron of certain energy ranges are
forbidden from propagating through an atomic lattice. When an electromagnetic wave
with a frequency in the stop gap range impinges on this Bragg stack, it is not allowed to
propagate through the material, and is necessarily reflected instead. In this way it is pos-
sible to create an effective mirror with an extremely high reflectivity. This is an example
of a 1D photonic crystal (see Fig. 2.3 (a)). The period a of the alternating layers and the
refractive indices n1 and n2 determine the frequency range of this stop gap.

The higher-dimensional versions act essentially the same: through periodic variations
in the effective refractive index one creates the conditions for the above to occur in high
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dimensions [95, 96]. The band of frequencies that are allowed to pass through the crystal
are called photonic bands, while the bands of frequencies that are forbidden from prop-
agating through the crystal are called the photonic band gap. Photonic crystals also exist
outside of fabricated materials, and appear in nature as well. The iridescent colours that
can be observed in for instance the wings of morpho butterflies, or the chitin of certain
beetle species, are actually due to naturally occurring photonic crystals [97].

In our case, we make use of a hexagonal array of holes patterned into our silicon slab.
The holes have a refractive index of n = 1, since it contains air, whereas the silicon has a
refractive index of around n = 3.4. This is schematically shown in Fig. 2.3 (b), where the
white blue rectangle signifies the silicon slab, and the inlaid circles indicate the air holes
patterned into the slab. The range of the photonic band gap is determined by the size of
the holes, as well as the distance a between two adjacent holes.

One interesting and useful thing happens when part of the photonic crystal is removed,
for instance one row of holes in the hexagonal lattice.

This configuration allows for the appearance of modes, which can lie inside the photonic
band gap. These modes can then propagate through the channel that has been opened
in the photonic crystal while remaining confined to this channel. This provides a way
to guide the light through the channel in a controlled and low-loss way. And because of
the small size of this channel (about 200nm in width) the mode profile of the light that
propagates is additionally restricted. This channel is what is called a photonic crystal
waveguide, and it’s a promising way of guiding light in on-chip environments [98–100].
These photonic crystal waveguides are usually indicated through the size of holes miss-
ing: a waveguide comprised of one missing row is indicated as a W1 waveguide, and one
where 3 rows are missing a W3 etc.

But besides the single mode PhC waveguide, we can also go bigger and open up a much
wider gap in the photonic crystal and use it not to guide light, but rather trap it in a larger
space instead. This amounts to combining the concept of a planar waveguide with 2D
photonic crystals: the planar waveguide confines the light to 2D space, and then using a
PhC boundaries are implemented at which light of certain frequencies is reflected. This
is simply a way to create a cavity of a larger size than is common for PhC cavities, which
quite often are just a few missing holes in a PhC and used for confining light in a tight
space [101, 102].

2.4.2. A PLAYGROUND FOR RANDOM WAVES

In order to generate the wave chaos that is used throughout the majority of this thesis,
we use what we call a chaotic cavity [103]. A SEM image of one such cavity is shown
in Fig. 2.4. It is a silicon-on-insulator base, with 220 nm thick silicon on 2 µm of sil-
ica. The thickness is such that the slab of silicon only supports the fundamental TE and
TM modes of the used monochromatic light source. The shape and size of the photonic
crystal is chosen such that it forms a photonic band gap for the TE mode of telecom light
(λ = 1550 nm in air). In other words, the TE mode cannot pass through the boundaries
of the cavity and is necessarily reflected, thus the sides act like a mirror. Note however
that this is not the case for the TM mode, for which there is no band gap (for this con-
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Figure 2.4: SEM image of a chaotic photonic crystal cavity. The quarter stadium shape is delimited by the
photonic crystal formed through etching holes into the silicon slab. The inset on the right depicts the input
facet of the cavity and provides a closer look at the photonic crystal structure. Additionally we introduce the
axis label convention that will be used through this thesis here.

figuration of the PhC). Of course there still is some TM light reflected, since it is incident
upon an interface. The shape of this cavity is that of a quarter-stadium, chosen such
that the shape is asymmetric and leads to wave chaos [103]. It strongly resembles the
stadium shape that is also used for microwave billiard experiments [25, 104], but taking
only one quadrant eliminates the 2 symmetry axes that would otherwise be present. The
removal of these symmetry axes also removes potential symmetries of the field, which
could impede the generation of wave chaos.

For continuous wave (CW) laser light, the light enters the cavity and reflects off of the
walls. Due to the asymmetric shape of the cavity, the light bounces all around the cav-
ity and fills up the entire phase-space: eventually the resulting field is comprised of a
superposition of plane waves of all possible propagation directions (k-vectors) and ini-
tial phases [103]. This is what we call wave chaos, or random light. The only thing that
remains stable is the magnitude of the k-vector of the light, as that is a fundamental
property of the light in the medium for a given frequency, and as such is independent
of the photonic crystal design. When Fourier transforming this field, we thus find a ring
in k-space, with a radius equal to the magnitude of the k-vector (see for instance the
bottom right image of Fig. 2.5).

2.4.3. TIME-RESOLVED MEASUREMENTS

When using CW light to generate our fields, only a single frequency is present, and hence
it does not evolve in time: we are observing a steady state system where the amplitude
remains constant (See Ch. 1.2.2). However, we would also like to investigate the time
dynamics of light inside our structure. So in order to be able to accomplish that, we need
to broaden our frequency spectrum in order to introduce a field whose amplitude also
varies in space and time. This is done using a pulsed laser system instead of a CW one.
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Figure 2.5: Evolution of a pulse as a function of time inside the chaotic cavity for the Hz field for 250 fs steps.
The top row shows the amplitude images, while the bottom row depicts the k-space evolution. The progression
from a structured field, and corresponding limited range of k-values to a fully chaotic isotropic random wave
field can be clearly observed.

In order to obtain a beating of the two different branches of the interferometer, the
branches now have to have the same length to within the coherence length of the broad-
band light field. This effective temporal overlap is achieved with an accurate delay stage
[90, 105]. The delay stage is also key in providing the time resolution of our measure-
ments. Once pulse overlap has been established, we can use that as a baseline mea-
surement, a reference time. By then shortening the signal branch by a known amount,
the pulse arrives earlier at the structure than it previously did. As such, the pulse has a
longer time to propagate through the structure before the picked up light combines with
the reference pulse. To put it mathematically, the light has ∆t = ∆x

v longer to evolve in
the structure before we measure it on the detector. Here ∆x is the change in effective
path length of the signal branch, equal to twice the distance of the movement of the de-
lay stage. This results in a change in probing time of∆t . Please note that v is the speed of
the light in the medium of propagation, which is different for free space and fibre. Since
the light at the position of the delay stage is in air, the speed of light is simply equal to
c for the computation of ∆t . Using this motorised delay stage, we are able to reach a
temporal step size of around 10 f s in this manner.

By taking measurements between every step of the delay line, it becomes to possible to
observe a pulse of light enter the cavity, and subsequently evolve into a random field as it
has more and more time to fill out the phase space through sequential reflections at the
photonic crystal boundaries. This process is shown in Fig. 2.5, where the evolution of the
field as a function of time is depicted for a temporal step size of 250 fs. The top row shows
the amplitude of the Hz field, while the bottom row depicts the reciprocal space. In the
real space image the evolution from a somewhat ordered field propagating through the
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Figure 2.6: Application of a Jones matrix to experimentally measured data. The top two images show the re-
ciprocal space distribution for the fields as initially detected with the LIA’s. No clear minima of the k-space
distribution is observed. The bottom row depicts the k-space distribution after applying a Jones matrix, lead-
ing to a k-space distribution as expected for the TE mode.

cavity to a fully random wave field can be observed. For t = 250 fs, the pulse has only
just entered the cavity, and at most a few reflections have taken place. For each progres-
sive time-step, more reflections have taken place, and as a result the field becomes more
chaotic. After a picosecond the field has become (almost) fully random. This progres-
sion can be clearly observed in the reciprocal space as well. For t = 250 fs, only two areas
mainly contribute to the field, signifying that the field mainly consists only of the in-
coming pulse, and an initial reflection in the opposite direction. As time progresses, the
k-space distribution becomes more circle like, until an isotropic distribution is reached,
indicating wave chaos.

One thing that needs to be noted here is that of course the measurement will always be
an average over staggeringly many pulses. For the time-resolved measurements in this
thesis a laser with a repetition rate of 80M H z was used, and if a measurement took 15
minutes, which is a typical value, then a good 72 billion pulses will have passed through
the cavity during it. Taking into account that with our typical scan speed of about 500
pixels a second, one pixel still ends up being the average of 16 thousand pulses. The
assumption is that every pulse is identical and evolves in the cavity identically to the
previous one. Since we are able to visualise and track pulses and their evolution, empir-
ically we can confirm this assumption holds: if every pulse would evolve independent
from every other pulse, the effective field formed would simply be uniform.
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2.5. DETERMINING THE POLARIZATION STATE

In Section 2.2.1 we have described how we are able to achieve polarization sensitiv-
ity with a near-field microscope through the use of a polarizing beamsplitter cube and
waveplates to compensate for polarization rotations. However, there is no a-priori way
of knowing which waveplate settings will lead to proper separation of electric field com-
ponents. Instead calibration is required, which will need to be redone every time some-
thing is changed in the measurement, such as a tip replaced, or the incoupling redone.
This separation of electric field components is done instead by exploiting known mode
profiles of a waveguide for instance. By coupling light into a single mode waveguide, for
which one can numerically compute the mode profile, we can measure the fields on the
two detectors, and rotate the waveplates until the desired field distributions are reached.

For a simple waveguide such as a W1 photonic crystal waveguide the available modes
and their profiles are well understood [106–108] and hence forms a suitable candidate
for this calibration. These known modes can then be used for determining the required
waveplate settings in order to be able to split the in-plane electric field components. But
for random fields in the chaotic cavity a different way to achieve a proper component
separation can be used instead. For isotropic monochromatic random waves the ex-
pected fields and especially the fields in k-space are well understood. Since the fields are
isotropic, that means that the waves are coming from all directions, meaning all orien-
tations for the momentum vector are expected. Coupled with monochromaticity, where
the k-space is limited to one radius only, the resulting momentum space has to look like
a circle.

However, this isotropic assumption holds only for the out-of-plane oriented fields. So
when considering the TE mode, this holds for Hz , and when looking at the TM mode
this holds for Ez instead. The cavity is designed to have bandgap for TE light, but not
TM light, and hence the TM light will not be a random wave field. So truly only for Hz

do we expect to find this ring in k-space. But then what would this momentum space
distribution light look like for the in-plane electric field components? Since a TE mode
is considered, the restriction on the propagation direction applies: a transverse mode
cannot have a component in the direction of propagation. In other words, when the
field propagates solely into the x direction, then consequently we must find that Ex (ky =
0) = 0. And similarly Ey (kx = 0) = 0 has to hold. So when looking at the distribution in
k-space, Ex will show a ring, but with its amplitude diminishing the closer to the ky = 0
axis one goes, being exactly zero on the axis, whereas it shows a maximum for the kx = 0
axis. This knowledge can then be used to separate the two electric field components by
making use of virtual waveplates. In order to understand how these virtual waveplates
work, the concept of Jones calculus and Jones matrices will be explained.

Polarized light can be described using Jones calculus, named after R.C. Jones, who for-
malised this in 1941 [109]. A polarization state can be represented using a Jones vector,
and most optical elements can be represented with a Jones matrix, as long as the ele-
ments are linear [109]. The matrices describe the change to the polarization state as the
light with a certain polarization vector propagates through the optical element. The two
fields that are measured on the two lock-in amplifiers are a mix of Ex and Ey , which have
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Filter

Figure 2.7: Example of a Fourier filtering applied to an experimentally determined Hz field, where we filter out
the unwanted frequencies, such as the inner ring, which is the TM mode.

undergone a change in polarization. Hence the relation between the measured fields
and the electric field components can be described with a Jones matrix as:

(
Ex

Ey

)
= J

(
LIA1

LIA2

)
, (2.6)

where J is a generic Jones matrix. Since we are only interested in a polarization transfor-
mation, and not in polarizing the light using a polarizer for instance, we have opted to
employ the most general Jones matrix for a polarization transformation, which is that of
the elliptical phase retarder. This Jones matrix is described as

J = e−
ıη
2

(
cos2θ+e ıη sin2θ (1−e ıη)e−ıφ cosθ sinθ

(1−e ıη)e ıφ cosθ sinθ sin2θ+e ıη cos2θ

)
, (2.7)

where η represents the relative phase retardation between the fast and slow axis of a (vir-
tual) waveplate, θ represents the angle of the fast axis with respect to the horizontal, and
φ represents the circularity. Any polarization transforming element can be described
using this matrix for certain values of those three parameters. For some combination of
the variables, it should be possible to transform the two measured fields into Ex and Ey .
Using the knowledge of what the fields should look like allows us to obtain the optimal
values for these three variables. In Fig. 2.6 we show the Fourier space of the measured
fields on both lock-in amplifiers before any virtual waveplate is applied, and after, where
it is separated into the two in-plane electric field components. The difference here be-
tween before and after is clear: while the fields initially detected on the LIA’s have no
obvious minimum, the fields after applying the Jones matrix exhibits clear minima on
the axes instead. With this method we are able to retrieve the Ex and Ey fields from the
initially detected fields.
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1 2

4 3

Phase

Figure 2.8: Illustration of the algorithm used to determine singularity positions for experimentally measured
data. Image shows a zoomed in section of the measured phase, with the 4 numbered pixels showing the way
the loop is constructed.

2.5.1. FOURIER FILTERING

When measurements are performed, there is still some TM light remaining in the cav-
ity, even though it might not be (efficiently) trapped by the photonic crystal. But we are
interested in random fields, and the TM contribution is decidedly not random. Conse-
quently, it will need to be excluded from the analysis. This remaining TM light can be
observed by considering Fig. 2.7: besides the expected distribution for the TE mode, the
remnants of a second ring with a smaller radius can additionally be observed.

This difference in radius stems from the different propagation constants for the differ-
ent modes: for the TE mode, a propagation constant of kT E = 11.5 µm−1 is found, while
for the TM mode a value of kT M = 7.78 µm−1 is obtained. These propagation constants
can also be given in terms of the effective refractive index for the different modes: the
TE mode has an effective index of ne f f ,T E = 2.84, while the TM sees an effective index of
ne f f ,T M = 1.92. The propagation constants of the TE and TM modes have not been ana-
lytically determined, but rather through the use of a 1D mode solver for slab waveguides,
which looks for solutions to the Maxwell’s equations [110].

It is therefore straightforward to get rid of the unwanted TM light through filtering in
Fourier space, as is depicted in Fig. 2.7. By filtering out all of Fourier space besides a
section around the radius kT E = 11.5 µm−1, we are able to get rid of all the unwanted
frequencies that are unrelated to the TE mode. For this we use a Gaussian profile with a
certain width σ, which serves as a way to soften the filter edges. A typical value for σ of
4 pixels was used in our filter. Subsequently transforming the filtered Fourier space data
back to real space leaves us with only the TE field.
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2.6. DETERMINING SINGULARITY POSITIONS

Now that we have also explained the what part of the near-field microscopy, and how we
are able to measure selective fields, we conclude this chapter with a small part of analy-
sis methods. Since singularities serve as a common object of investigation across most
chapters, we will describe how we detect them experimentally. As described in Chapter
1, phase singularities are effectively 0-dimensional points in space, and are infinitesi-
mally small. Then, one could wonder, how it is possible to see them with our setup
anyway? Even with our sub-wavelength resolution microscope we "only" have a resolu-
tion of around 15nm. For this we can return to Eqn. 1.13, which states that if one takes a
closed loop somewhere in the field and integrates the phase over this loop, the result has
to be equal to 2π time the total topological charge that the loop encloses. So if exactly
one singularity with charge q = +1 is enclosed, then the result of the integral should be
2π. And if the loop contains no singularity, then the result of the integral is simply zero.
So implementing this method for the measured field, we should be able to locate the
singularities: continuously making loops and determining where the integral becomes
non-zero, indicating an enclosed singularity. Of course care needs to be taken to not to
make the loop too big, otherwise it might enclose two singularities with opposite charge.
In that case the integral evaluates to zero, while still enclosing singularities.

Since our measurements do not consist of a continuous map, but rather a grid with pix-
els, all with their own phase value, the above procedure needs to be discretized. Dis-
cretizing this integral to a loop of N pixels yields

s = 1

2π

N∑
i=1
∆φi+1,i , (2.8)

where position N +1 is equal to position 1.

In Fig. 2.8 an example is shown of a 2x2 loop enclosing a singularity. It depicts a (zoomed
in) image of the phase, which was determined experimentally, with a singularity visi-
ble in the middle. The 2x2 grid of pixels that contain this singularity are numbered one
through four. Unfortunately, simply defining∆φi+1,i =

(
φi+1 −φi

)
will not work, and will

simply always result in zero, since all terms cancel each other out. Instead, we need to
ensure that every individual difference in phase stays mapped on the interval [−π,π] (or
[0,2π] of course). This can be understood in the following way: if there is a singularity
present, then clearly the phase field around that point will span the full phase range, and
hence somewhere it has to cross over from −π to π. Then necessarily, one of the ∆φi+1,i

has to cross that threshold, which needs to be taken into account when computing the
phase difference between those two points. In Fig. 2.8, we can observe that between
pixels 3 and 4 a phase difference larger than pi is found. In order to remain in the [−π,π]
interval, the formula can be designed in the following way:

∆φi+1,i =
[
(φi+1 −φi +π) mod 2π

]−π, (2.9)

where first π is added to the phase difference and taking the term modulo 2π in order
to shift it to the interval [0,2π], before subtracting π once more to get it into the desired
interval.
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The above is still defined for a pixel loop of arbitrary size, so how do we pick this size for
our data? Ideally, we would like to take this loop as small as possible, where the smallest
possible loop is 2x2 pixels. For larger loops there exists a risk that we enclose multiple
singularities. Thankfully, singularities are infinitesimally small, and as such are much
smaller than any pixel we can measure, and hence must be contained in a 2x2 loop.
The above operation is then performed for every 2x2 pixel grid in the data, and we then
know that there exists a singularity in that 2x2 pixel grid if the result is not equal to zero.
Unfortunately, there is no way of knowing where exactly the singularity is positioned, so
we define it to be in the upper left pixel of the grid. In this way we can map the positions
and charges of the singularities that are present in the field.





3
DIFFUSION AND LIFETIME OF

PHASE SINGULARITIES

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a straight line.

Benoît Mandelbrot3

In non-monochromatic random light fields, phase singularities move in time. Here we
analyse how they move. By tracking the singularities in time and determining their dif-
fusive properties we show that optical phase singularities in random light fields exhibit
anomalous diffusive behaviour, signifying a deviation from regular Brownian motion. We
also reveal a clear difference between two different families of singularities, affecting both
the diffusion speed, as well as the lifetime of the singularities.

Finally, we investigate one specific model for anomalous diffusion that could give us in-
sight in the physical mechanisms at play.
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Figure 3.1: Simulated instances of 2D random walks. Every coloured trajectory is a different instance of a
random walk.

3.1. INTRODUCTION

Non-monochromatic electromagnetic fields evolve in time, and their phase singularities
will, in general, move as a result. This movement of the singularities can be visualised
and studied by tracking them as they move, and studying their movement. As stated in
Chapter 1, singularities show many parallels to real particles [111], so we can employ
metrics from statistical physics that are normally used to analyse particle behaviour to
analyse the movement of the singularities. One such avenue to explore is to consider
their diffusive behaviour. Diffusion is often taken to mean the movement from a place
of higher concentration to a place of lower concentration. This is what is known as Fick’s
first law [112]. While it is usually used in the context of ions or molecules, it can, for
instance, be also applied to the spreading of ideas [113, 114] or finance [115, 116] as well.

When considering the movement and diffusion of particles, one of the simplest models
that one can use to describe the observed behaviour it is that of random walks. In this
model, a particle simply takes steps in a random direction every time step, and is also
commonly referred to as a drunkard’s walk [117]. The simplest case of a random walk is
a particle on a 1D lattice, where the particle can simply take either a step to the left, or
a step to the right with equal probability. This case is the most basic version of a ran-
dom walk. In 2D you it can take a step in a random direction, with every direction being
equally likely. In Fig. 3.1, we show an example of random walks, where each colour rep-
resents a separate instance of a simulated random walk. These random walks form the
heart of Brownian motion, which describes the behaviour of randomly moving particles
in a medium [118].
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Since the steps are random every time, for every step the particle takes in one direction,
it will on average also take a step in the exact opposite direction. This then immediately
implies that on average, its mean displacement from the starting position is zero. But not
every particle ends up back at the start, of course, since it is all up to chance. Instead,
their positions after a certain amount of steps will form a Gaussian distribution, with
the mean centered on zero. The width of this Gaussian distribution increases with the
amount of steps taken, as the particles are able to move further away from the starting
point.

But while the mean displacement, which is equal to the mean of the Gaussian distri-
bution, might be zero, its square is not. The mean squared displacement (MSD) is not
determined from the mean of the distribution, but rather its variance, which is non-zero
for finite time or number of steps. Since this variance increases as a function of amount
of steps taken, the MSD also increases. In dynamic systems, these steps are taken as time
increases, and can be snapshots at certain times. So the variance, and thus the MSD are
functions of time in these systems. In the case of a purely random walk, the MSD scales
linearly, and can be given as

MSD(t ) = 2dDt , (3.1)

where d is the dimensionality of the random walk, D is the diffusion coefficient, and t is
time [119, 120]. By fitting the gradient of the MSD curve, the diffusion constant D can be
obtained, which depends on the dimensionality of the system. This is a solution to what
is known as Fick’s second law.

However, an interesting situation occurs when the scaling of the MSD in time turns out
to not be linear, a situation called anomalous diffusion. When this happens, the MSD
scaling typically changes to MSD ∝ tτ, with τ ̸= 1. In that case, it can either be sublinear
(subdiffusive, τ< 1) or superlinear (superdiffusive, τ> 1). Sublinear diffusion (τ< 1) can
occur when the particle encounters restrictions on its movement, which can for instance
be a result of crowding effects, or geometric constraints [121]. Superlinear behaviour
(τ> 1) happens when the particle tends to move in the same direction for longer periods
of time, as opposed to moving around randomly. This superlinear diffusion can occur
for instance as a result of active transport [122], or when the step-size distribution has a
heavy tail. The latter case is also called a Levy flight, and happens in nature for instance
when bees are searching for flowers [123, 124]. Here the bee performs a random walk
in a certain area with flowers, and once the bee decides to look elsewhere, they will fly
in a (fairly) straight line towards a next flower patch. Along with the above examples,
anomalous diffusion has been observed in a plethora of systems, including ultra-cold
atoms [125], interstellar medium [126], and optical systems [127]. But the examples are
not limited to physics only, and appear for instance in biology [128–131] and finance
[132–134] as well, making the concept of anomalous diffusion broadly applicable.

In this chapter we investigate the dynamics of phase singularities by tracking them in
both time and space, and show that they do not behave linearly, and hence exhibit anoma-
lous diffusive behaviour. Additionally we investigate the lifetime of phase singularities
to investigate how the singularity population declines as a function of time.
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Figure 3.2: Trajectories of measured phase singularities. Each colour represents the trajectory of one singular-
ity. The starting point of each trajectory has been shifted to the centre of the image.

3.2. TRACKING OF SINGULARITIES

In order to investigate how the singularities move in time, we need access to their tra-
jectories. And to gain access to their trajectories, we are required to be able to track the
singularities in time. This is done by mapping a series of field distributions for increas-
ing time by varying the delay line in the setup (see Section 2.4.3). For each time step the
positions for the singularities are determined (see Section 2.6), and with that we observe
how the topological skeleton1 of the field changes in time as well.

In order to compute dynamic quantities, a tracking algorithm is employed that com-
pares the singularity positions of two consecutive measurements and determines where
each singularity moved to in the second measurement. It takes into account charge (as
charge should not change in time), which pairs have annihilated or have been created.
Additionally, it attempts to resolve conflicts where it might be ambiguous which singu-
larity moved to a certain position when there are multiple candidates. When it really is
unclear which singularity is which, and no consistent resolution is found, the singular-
ities under consideration are removed from the tracking instead. Finally, since we only
have a finite scan range, it is possible for a singularity to move outside the measured area,
or for a singularity to walk into it. These cases are also both removed. In this way, the
data we obtain from the algorithm is kept as clean as possible, where we are confident
that a measured path is indeed the path of an individual singularity.

1Knowing the positions and charges of the singularities can be used to determine the general structure of the
field [135, 136].
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Figure 3.3: Mean square displacement for phase singularities as a function of time since their creation, based
on approximately 2400 individual trajectories. The horizontal dashed black line signifies half the nearest neigh-
bour distance (NND), and the horizontal dashed blue line is the nearest neighbour distance. The vertical
dashed gray line indicates the point where so few singularities are left (<2%) that the statistics are deemed
unreliable. The red slope is the best fit based on an exponential ( f (t ) = at b , with a and b variables). The expo-
nent is found to be b = 0.928±0.007, which is sub-linear, and hence the singularities diffuse anomalously.

3.3. DIFFUSION OF PHASE SINGULARITIES

In order to investigate the diffusion of phase singularities in time, we have performed a
measurement on a 15×15µm area in a chaotic cavity (see Section 2.4.2), using a spatial
step size of 15nm, and a temporal step size of 10 fs, over a temporal range of 1ps. This
measurement area typically contains on the order of 2400 phase singularities. To get an
impression of the behaviour of the phase singularities, we have plotted several singular-
ity trajectories in Fig. 3.2. Curiously, the trajectories exhibit a similar behaviour as the
random walks shown in Fig. 3.1. It is therefore natural to investigate their movement in
the same way as would be done for random walks: by computing their mean squared
displacement.

One curious thing with our time-resolved data is that we are seemingly unable to simul-
taneously resolve both polarizations. We are able to select both the Ex and the Ey field,
which can be inferred from the k-space, but not both at the same time. This is possibly a
result of an elliptical tip, leading to polarization mixing in the fibre. So for the purpose of
this analysis we have computed the Ex and Ey fields separate from each other, and from
this computed the Hz field. While this may not be ideal, there is no reason to assume
that the resulting fields are not the real fields.

Fig 3.3 shows the computed mean squared displacement as a function of time for all
phase singularities combined on a double-log scale. The black dots indicate the data
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points. We observe the MSD increasing as a function of time, with the error bars in-
creasing in time as well, resulting from both the occasional annihilation of singularities
as well as singularities leaving the finite scan range area: since we track singularities
from birth to death in order to compute this curve, only long-lived singularities are left
at high values of time, and hence the population starts decreasing in time, resulting in
less statistics, and hence larger error bars, at higher times. Furthermore, we have in-
troduced two horizontal dashed lines, indicating a diffused distance of half the nearest-
neighbour distance (black) and the nearest-neighbour distance (blue). These values can
be particularly interesting, since half the nearest-neighbour distance (NND) is the aver-
age distance a singularity has to travel before encountering another singularity, possibly
leading to annihilation. The vertical dashed gray line is a cutoff, beyond which the statis-
tics are deemed to be unreliable, because there are too few singularities left alive (< 2%).
While we do show the data points after the cutoff for completion, we will not discuss
the behaviour for these long times, nor will they be taken into consideration for fitting
purposes.

At first glance, the data points appear to form a straight line, which makes it natural to
fit a power law to the data. The sloped red line is the best fit based on a simple power
law function given by atτ, where a is the slope of the curve, and τ the power, which
fulfils the role of diffusion exponent. From the fit we obtain a diffusion exponent of
τ= 0.928±0.007, which shows slightly sub-linear behaviour, indicating a deviation from
regular Brownian motion.

Interestingly, the diffusion shows sublinear behaviour, instead of linear behaviour. Sub-
linear diffusion is indicative of some type of restriction on their movement [137]. Please
note that the nonlinear mean squared displacement curve cannot be explained simply
due to uncertainty in position when determining the position of the infinitesimally small
singularities. While our position determination is indeed limited by the size of our pixels,
we assume that their true position is distributed with a mean centered around the deter-
mined point, since they are distributed isotropically [24]. And even if there were to be a
bias direction, it would not influence the power of the MSD, but only the slope. Hence
we conclude that the sub-diffusive behaviour is inherent to the system of singularities in
a 2D random field.

STEP SIZE ANISOTROPY

Another anomaly that we have found is that there is a discrepancy in the step size of the
singularities in the two spatial directions x and y. We find that the average step in the x-
direction is about 1.5 times larger than those in the y-direction: whereas the average step
size in the x-direction is about 15 nm, the average for the y-direction is only 10 nm, based
on a total of 31791 recorded individual steps. The cause of this is unclear as of yet. Using
the code to analyse simple simulated random walks results in perfectly equal step sizes
in all directions, as it should. Rotating the measured fields by 90 degrees additionally
switches the step sizes accordingly. Furthermore, we have taken care that the pixel sizes
are equal in both directions. As such, we have taken care to exclude that our analysis
code is the cause of this discrepancy.



3.3. DIFFUSION OF PHASE SINGULARITIES

3

41

It is also highly unexpected given that the distribution of the singularities is expected to
be isotropic. We have confirmed that the k-space distribution for Hz is a a perfect circle
with radius k = |k|, and its pair-correlation function shows exactly what is expected of an
isotropic random wave field [24]. So this field is the actual Hz field.

We have also checked if this is possibly introduced due to the drift compensation that is
performed (see supplementary at the end of this chapter), since the drift is anisotropic.
Having compared the anisotropy both with and without drift compensation, we find no
difference between them, concluding that drift compensation is not the origin of this
anisotropy.

Another possible cause for this anisotropy could be stemming from the time evolution
of the field. If we consider the field at a too early time, then the laser pulse in the signal
branch (see Section 2.4.3) is still partially travelling through the cavity from the entrance,
and hence the field is not fully randomized yet at this time. This could be observed from
the k-space distribution, where the k-space distribution would exhibit a non-uniform
amplitude distribution. While we are able to observe this effect for low times (<200 fs),
computing the step sizes for t ≥ 500 fs reveals no change in the observed step sizes: the
anisotropy remains unchanged, while the amplitude in k-space has become uniform. As
such we conclude that the anisotropy is not caused by a not yet fully randomized field.

So with everything indicating this being in the data, and not being introduced by our
analysis, we have to conclude that there is an unknown physical mechanism at play here
causing this anisotropy. The sole thing that could offer an explanation for this is the
sample itself. The chaotic cavity that was used (see Chapter 2) is bigger in one direction
than the other. However, that still raises the question how that could possibly influence
the step size.

A clue to its origin might be found when considering the distribution of the steps, in-
stead of simply the mean. While the steps in the x-direction are larger than those in the
y-direction, there are approximately equal amount of steps in the positive and negative
direction, and the mean step sizes are equal for both positive and negative directions: a
total of 16348 steps were taken in the positive direction, and 15443 in the negative direc-
tion, both with a mean size of approximately 15 nm per step. On the other hand, when
considering the y-direction, the step size is on average smaller, but there is an additional
anisotropy present here: there are more steps in the positive directions, but the steps
themselves are smaller: 18379 steps were taken in the positive direction with a mean
step size of 8.6 nm. Conversely, the negative direction has fewer steps, but larger on av-
erage: only 13412 steps were recorded in the negative direction, but with a mean step
size of 11.8 nm. This results in the average displacement still being equal equal between
the positive and negative directions. When computing the above statistics without drift
correction, we find that the mean step size in the y-direction is once again equal in mag-
nitude (about 10 nm), but the amount of steps are unequal for the two directions, leading
to a net displacement in that spatial direction instead. So while this does not explain the
discrepancy in step sizes, it does hint at there being an underlying mechanism leading
to this anisotropy.
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Figure 3.4: Number of singularities as a function of time since their creation, with a fit of the form n0e−t/τ,
where τ is the average lifetime, and n0 the initial population. The colourbar indicates the fraction of singular-
ities remaining. After the initial decline it seems to overall match an exponential decay model. From a simple
exponential fit to this exponential regime we determine an average lifetime of 142±2 fs.

3.4. LIFETIME OF PHASE SINGULARITIES

Phase singularities are created in pairs, and can subsequently be annihilated in pairs
as well (see Chapter 1). As a result, phase singularities do not live forever, but rather
exist for a finite amount of time. As such, a natural question that arises is "how long
do singularities exist for?". Analogous to Ref. [43], where their persistence as a function
of wavelength shift was measured, we can measure how long they exist by tracking the
decay in population as a function of time.

The way the time dependence of the population is measured is by gathering all the tra-
jectories that started and ended within the measured time range that additionally stayed
within the spatial boundaries of the scan range. From those that existed at earlier or
later times, or left or entered the boundary during their lifetime we cannot determine
how long they ultimately lived, and hence are discarded. In this way, only the trajecto-
ries that we have been able to follow for their entire duration are selected. Finally, we
have also taken into account the finite size of the measurement area. The longer a sin-
gularity lives for, the higher the likelihood of it moving outside of the measurement area,
and hence being discarded. This could then result in the lifetime being biased towards
lower lifetimes. We have employed a box size correction for this as defined on page 48 of
Ref.[138].
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(a)    Faithful singularities (b)    Unfaithful singularities

Figure 3.5: Schematic illustration of the two types of families of singularities. (a) shows faithful singularities,
which are created and annihilated with the same partner. (b) shows unfaithful singularities, which are created
with one partner, but annihilate with another singularity. The green circles indicate a creation event, while the
red crosses indicate an annihilation event.

In Fig. 3.4 we show the phase singularity population as a function of time on a log scale.
The data points are displayed as coloured dots, where the colour of the data points indi-
cates the fraction of singularities left. Here the vertical dashed gray bar indicates a cutoff
value where there is a statistical insignificant amount of singularities left (< 2% of ini-
tial population). A few things stand out immediately: there is a steep drop in singularity
population right at the start (< 30 fs). After this initial decline, the curve turns less steep
and appears to form a straight line, which implies an exponential decay.

Because the region t ≤ 30 fs and the region t > 30 fs have such different slopes, we in-
vestigate them separately. For both an exponential of the form n(t ) = n0e−t/τ has been
fitted, with n(t ) the population as function of time, n0 the initial population and τ the
lifetime. When fitting the first region, an average lifetime of 32±6 fs is found. Fitting the
exponential model to the second part of the curve yields an average lifetime of 140±4
fs instead. This fit to the second region is indicated by the red slope. So it seems that
if the singularities manage to survive the first few steps, their life expectancy increases
drastically afterwards. If we simply fit the single exponential model to the entire dataset,
we find an average lifetime of about 94±5 fs for both regions combined.

3.5. FAITHFUL AND UNFAITHFUL SINGULARITIES

It has already been shown that there is an interesting distinction to be made between
types of singularities, besides their charge [44, 139]. This division is based on the way
the singularities are annihilated: specifically, whether they annihilate with the singular-
ity they are created with (faithful), or another singularity (unfaithful) [43]. A schematic
illustration of the two different families is shown in Fig. 3.5. It has already been shown
that these two different families show different behaviour when considering their persis-
tence under wavelength changes [43], so it is natural to assume that this division might
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(a) Faithful singularities.
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(b) Unfaithful singularities.

Figure 3.6: Comparison of the mean square displacement (MSD) between faithful (a) and unfaithful (b) singu-
larities, with a fitted exponent of the form f (t ) = at b . For the faithful singularities we find a fitted exponent
of b = 0.785±0.013, and they seem to not diffuse much further than half the nearest neighbour distance. The
unfaithful singularities clearly diffuse further than half the nearest-neighbour distance a fitted exponent of
b = 1.015±0.010 is found, which is slightly super-linear.

have an effect on their lifetime as well. Since faithful singularities are annihilated with
their birth partner, it is intuitive to assume that they are never separated too far from
their birth partner. The further the two are separated, the higher the chance of them
colliding and annihilating with another singularity, making them unfaithful instead. For
this reason we might also expect faithful singularities to live shorter than their unfaithful
counterparts, using a similar reasoning as above. Unfortunately, this reasoning does not
give an intuitive feeling for the way they diffuse in time. Therefore, we determine the
diffusive properties for both singularity families separately.

3.5.1. DIFFUSION

Access to the individual trajectories of every singularity enables the determination of
whether they are created and annihilated with the same partner or not. In this way we
can divide them into their respective category based on the trajectory data. By dividing
the phase singularities up into two families, we are able investigate their diffusive be-
haviour separately. Fig. 3.6 shows the mean squared displacement curve of faithful and
unfaithful singularities. It is immediately clear that there are qualitative differences be-
tween the two types of singularities. The most striking difference is the maximal mean
squared displacement reached by faithful singularities versus unfaithful ones: the faith-
ful ones only barely reach half the NND before reaching the phase singularity population
cutoff where only few singularities are left. On the other hand, unfaithful singularities are
actually able to reach the NND. Both families of singularities exhibit an MSD described
by a power law in time.
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Figure 3.7: Comparison of lifetimes between faithful (left) and unfaithful (right) singularities, with a fit of the
form n0e−t/τ, where τ is the average lifetime, and n0 the initial population. The faithful singularities show
a rapid drop in the first 20 fs, which then stabilizes briefly before dropping more rapidly again after having
diffused about half the next nearest neighbour distance. We have fitted two separate exponentials (depicted as
red slopes) for both 30 fs ≤ t ≤ 140 fs and 140 fs ≤ t ≤ 250 fs. The first of these fits yields an average lifetime of
126±3 fs, while the second fit yields 62±2 fs instead. The unfaithful singularities show a more steady decline
on the other hand, and is well described by a single exponential, which is also depicted by the red slope. From
the fit we estimate an average lifetime of 170±2 fs.

We can therefore fit a general power law of the form f (x) = axτ, with the proportionality
constant a and power τ as the two free fit parameters and compare the results. Faithful
singularities follow a power law with an exponent of τ= 0.785±0.014. But the unfaithful
singularities follow a power law that is close to linear behaviour τ = 1.015±0.010. Fur-
thermore, there seem to be two regimes for the diffusion here: for about the first 100 fs,
the diffusion is almost linear, even slightly super-linear, with the diffusion clearly slow-
ing down after. Curiously, this slowing down happens right after the average diffused
distance is half the nearest-neighbour distance, at which they should statistically start
coming across other unfaithful singularities more often. So while it is unclear why this
slowing down happens, it seems to be a physical process. We thus find a difference not
only in the diffused distance, but also in the power law for the two different families, with
the unfaithful singularities showing linear, or even slightly super-linear diffusion.

Another clear difference is that the threshold of 2% of the initial singularity population
remaining is clearly reached at different times for the two types of singularities: the cutoff
for the faithful singularities is at a much earlier time than that of unfaithful singularities.
For faithful singularities is around 250 fs, while the cutoff for unfaithful ones lies around
600 fs instead. This already gives an indication that there is a strong difference in the
lifetimes of the two families of singularities as well.
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3.5.2. LIFETIME

Like for the diffusion, we can now also determine the lifetime of the two singularity fam-
ilies separately. Fig. 3.7 displays the singularity population as function of time for (a)
faithful and (b) unfaithful singularities. Here time is the time that has passed since the
creation of a singularity, and not the absolute time. The dots are the data points where
the colours of the dots represent the fraction of singularities that are left after a cer-
tain time since their creation. The black vertical dashed line indicates half the nearest-
neighbour distance. Finally, the red slope is a simple exponential fit of the form n0e−t/τ,
where τ is the average lifetime, and n0 the initial population.

For the unfaithful singularities we observe behaviour that is similar to that of all singu-
larities combined. Only for the first 30 fs do we see a slightly steeper slope than for t > 30
fs, while afterwards the population looks like a straight line. Fitting an exponential decay
model to the data for unfaithful singularities reveals an average lifetime of 170±2 fs.

For faithful singularities, however, the pattern appears to be less straightforward. First
we see a rapid drop in the first 30 fs, where about two-thirds of the initial population
annihilates. Between 30 fs and 120 fs we observe a slower decay, as indicated by the de-
creased slope. And from 120 fs onwards until the cutoff value at approximately 250 fs
the decay rate increases once more. Interestingly, t = 120 also corresponds to half the
nearest-neighbour distance, as indicated by the vertical dashed black line. Both the 30
fs to 120 fs regime, as well as the 120 fs and 250 fs regime have been fitted with an expo-
nential function, which are depicted as red slopes. Fitting the simple single exponential
for the faithful singularities leads to an average lifetime of 70±8 fs, but is strongly influ-
enced by the rapid drop-off at low times. As such, fitting a single exponential is clearly
not representative of the behaviour, and instead an exponential decay model is fitted to
each of the sections individually. Fitting an exponential to the the initial steep decline
from t = 0 fs to t = 30 fs reveals an average lifetime of 20±4 fs. In this time span about
60% of the singularity population has annihilated. Of course it is a bit bold to make an
exponential fit to only three data points, but it still exhibits different behaviour from the
rest of the data points. Furthermore, these data points represent the behaviour for the
majority of the faithful singularities. As such we felt compelled to extract a lifetime for
this group as well. For the region t = 30 fs to t = 120 fs, we find that the average lifetime
is 126±3 fs. Finally, for t > 120 fs we observe that the population decline quickens once
more, for which we determine an average lifetime of 62±2 fs.

The initial steep drop off in lifetime is easily explained, apparently a lot of singularity
pairs that are created then immediately annihilate again the next measurement frame
with their birth partner, leading to most faithful singularities perishing in one or two
frames. The singularities that have not annihilated within this time frame likely sepa-
rated a bit further from their birth partner, leading to a slower decay. The second region
of steep decline, which is from t = 120 fs onwards, seems to start after the MSD of the
singularities is approximately half the nearest-neighbour distance. At this distance dif-
fused you are statistically likely to start encountering singularities from other pairs. A
possible explanation for the population decline to speed up from this point onward is
that the longer the singularities exist here, the higher the chance of recombining with
a singularity of another pair, which would make them unfaithful. As such, the popu-
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lation of faithful singularities could be self-selecting for shorter lived singularities. The
stark difference in lifetime between the two families also immediately explains the dif-
ference in population cutoff times. This is a direct reflection of the difference in lifetime
between the two types, since these cutoff values are determined relative to the starting
population of the family. A lower lifetime means the amount of singularities also drops
below the threshold faster.

We can compare the obtained results of the phase singularity lifetime with the results
found for the persistence as a function of wavelengths as seen in Ref. [44]. Both changes
in time and wavelength lead to an evolution of the electromagnetic field, resulting in
movement of the singularities under change of the parameter. As such, it is natural to
compare the results of both these parameters to each other. When considering all sin-
gularities combined, we observe a similar pattern as for the amount of singularities as
a function of wavelength shift: a quick decline for the first couple steps, followed by a
steady decay strongly resembling simple exponential decay. When considering the two
families of singularities separately, we find a high amount of faithful singularities for low
times, which matches the results for their persistence as well. So the results found for the
lifetime of singularities matches the behaviour found for their persistence under wave-
length shifts.

3.6. ANOMALOUS DIFFUSION

From the analysis above, we have found that phase singularities in a random field diffuse
anomalously. Assuming that they would indeed be physical particles in a liquid, as might
be expected from their liquid-like spatial distribution (see Section 1.3.3), when leaving
charge out of the equation, they should diffuse exactly according to Brownian motion,
i.e. linear diffusion. The raises the question what causes the anomalous diffusion.

When splitting the full ensemble of singularities into faithful and unfaithful, the follow-
ing argument could be made for the found results. When being created, the singularities
will, necessarily, move away from each other. For faithful singularities, they will need to
find their original partner again. This post selection of only faithful singularities there-
fore suggests an effective attraction, which will slow down their MSD curve, leading to
subdiffusive behaviour. In the case of unfaithful singularities, they are not bound to their
original partner, and no such effective attraction exists. In fact, their post selection pro-
hibits a return to their original partner, so that an effective repulsion might result, lead-
ing to super-diffusive behaviour instead. These effective attractions/repulsions are of
course not real, but rather resulting from the selection criteria.

While Brownian motion is no longer able to adequately describe the found results, we
would still like to be able to model the behaviour. There are three main models that are
generally used to describe anomalous diffusion, specifically sub-diffusive behaviour. All
of them release a certain assumption that is made when considering regular Brownian
motion. Continuous time random walks (CTRW) lets go of the assumption that each step
takes the same amount of time and generally works for trapping scenarios. In this case
particles can get stuck for a varying amount of time in between steps, such as in energy
potentials [140]. The second class of models deals with geometric constraints, that can
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Figure 3.8: Examples of 1D trajectories of fractional Brownian motion for three different Hurst parameters. (a)
shows the trajectory for a Hurst parameter of H = 0.2, where subsequent steps are anti-correlated. (b) shows
the case of H = 0.5, which corresponds to regular Brownian motion. Finally (c) shows the trajectory for H = 0.8
where the steps are positively correlated.

limit the motions that are exhibited by the particles, such as in percolation clusters [141]
and random walks on fractal structures [142, 143]. This tends to lead to sub-diffusive
behaviour because dead-ends and other obstacles can frequently force the particle to go
back the way it just came, leading to an anti-correlation in its movements. Finally we
come to fractional Brownian motion, which completely lets go of the assumption that
steps are independent from the previous steps. This type of behaviour can be observed
in more complex, interacting systems exhibiting viscoelastic behaviour [144, 145]. Of
these situations, the latter seems to be the most promising candidate for our data, since
neither trapping events, nor geometric constraints are immediately obvious situations
that would appear for phase singularities.

3.6.1. FRACTIONAL BROWNIAN MOTION

The one core assumption of regular Brownian motion is that every step is completely
independent from every other step. Fractional Brownian motion (fBm), however, is a
model to describe diffusion without that assumption, and as a result steps are allowed to
be correlated. The fractal Brownian motion BH (t ) is a continuous time Gaussian process
and is defined via a Weyl integral, a fractional integral of white noise [146]:

BH (t ) = BH (0)+ 1

Γ(H +1/2)

(∫ 0

−∞
[
(t − s)H−1/2 − (−s)H−1/2]dB(s)+

∫ t

0
(t − s)H−1/2dB(s)

)
.

(3.2)

Here, Γ is the Euler gamma function. H is the so-called Hurst parameter, which is a real
number H ∈ (0,1) and the integrand dB(s) is a white noise measure.

The parameter of interest in this is the Hurst parameter H , which determines the corre-
lation between moves. From the integral defined above, one can easily determine that
H = 1

2 has to be a special case. For this specific value the first integral becomes identical
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zero, and the second integral is just over the measure. This case corresponds to regular
Brownian motion, where the moves are again uncorrelated.

When the Hurst parameter deviates from exactly a half, the behaviour starts to differ
from Brownian motion. When H > 1/2 we find that moves becomes positively corre-
lated. So when the previous step has been in a certain direction, there is a higher likeli-
hood that the next step will be in the same direction as well. Conversely, when H < 1/2
we find a negative auto correlation between steps. So when the previous step was in
one direction, there is a higher chance of the next one being in the opposite direction.
The behaviour of fractional Brownian motion for three sample trajectories with different
Hurst parameters is depicted in Fig. 3.8. Fig. 3.8 (a) shows the case of H = 0.2, where the
steps are anti-correlated, (b) depicts H = 0.5, which is regular Brownian motion and the
steps are uncorrelated, and (c) shows H = 0.8, where the steps are positively correlated.
When comparing (a) and (c) to regular Brownian motion, it is clear that (a) has a much
more rugged appearance, whereas (c) shows a much smoother curve instead. So the
Hurst parameter is also used to describe the ruggedness of a curve, with higher values
leading to a smoother curve.

Fractional Brownian motions have a lot of interesting properties, such as self-similarity(
BH (at ) ≈ |a|H BH (t )

)
, and long-range dependence when H > 1/2, where all steps re-

main correlated to the initial step. Another thing to note is its fractal dimension: it has
been shown that the Hausdorff dimension (a measure of roughness [147]) of the graph
of BH (t ) is equal to 2− H [148], which then immediately implies that a lower Hurst pa-
rameter corresponds to a higher fractal dimension. In fact, when H approaches zero,
its Hausdorff dimension approaches 2, corresponding to a surface. However, this only
holds for the one dimensional case, as it is also known that in 2D, normal Brownian mo-
tion has a Hausdorff dimension almost surely equal to 2, where it has a dimension of 1.5
in the 1D case. This is expected, since 2D random walks, fractional or not, can reach ev-
ery point on a 2D surface, and as such, its graph is simply a 2D surface. So it is expected
that the fractional dimension of a 2D fractional Brownian motion matches its topological
dimension, namely 2.

Fractional Brownian motion trajectories are defined through an integral as defined in
Eqn. 3.2, which cannot readily be evaluated. Since fractional Brownian motion trajecto-
ries are a stochastic process, every instance of it is different, in the same vein that every
instance of normal Brownian motion is different every time. Fortunately, it is possible to
generate discrete instances of fBm through numerical approximations of the fractional
integral. Three of such methods are Hosking’s method [149], the Cholesky method [150],
and the Davies-Harte method [151].

Fractional Brownian motion exhibits anomalous diffusion for values other than H = 1/2.
In fact, it turns out that the diffusion exponent τ scales with the Hurst parameters as
τ = 2H [152]. So for H < 1/2 we find sub-diffusive behaviour, for H = 1/2 we retrieve
linear behaviour, and for H > 1/2 we have super-diffusive behaviour. This also makes
sense when considering what the Hurst parameter actually means. For H < 1/2 the anti-
correlation in consecutive steps leads to a slowing down of movement, and hence sublin-
ear diffusion, similar to the case of geometric constraints. And for H > 1/2, the positive
correlation in consecutive steps leads to the particle moving much quicker into a certain
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(a)    H=0.2 (b)    H=0.8

Figure 3.9: Auto-correlation function as a function of amount of steps taken for simulated fractional Brownian
motion, for two different Hurst parameters. (a) shows the ACF for H = 0.2, which dips below zero for the first
step, indicating a negative correlation, after which it quickly becomes uncorrelated. (b) shows the ACF for
H = 0.8, which slowly drops from one to zero, indicating a much longer correlation length than the H < 0.5
case.

direction than it would if diffusing linearly. This then leads to super-diffusive behaviour.
These two different possible correlations between steps can then also be interpreted in
terms of the singularities under consideration. Unfortunately, for unfaithful singulari-
ties, there does not seem to be a clear interpretation for their behaviour in terms of Hurst
parameters. For faithful singularities, however, a case can be made for them being ex-
periencing an effective attraction towards their birth partner after initially moving away
from each other. If we assume diffusive behaviour baseline, then it can be interpreted as
having a negative correlation with respect to their initial trend, which would correspond
to a Hurst parameter H < 1/2.

3.6.2. AUTO CORRELATION OF TRAJECTORY

A hallmark feature of fractional Brownian motion is the correlation between consecutive
steps. These correlations can be quantified by looking at the auto correlation of the tra-
jectories, where we look at the correlation of steps within one trajectory. This step auto
correlation function (ACF) can be defined as

Ci = 〈si s0〉/〈s2
0〉 , (3.3)

where si are the i th steps taken with respect to s0, and the brackets indicate a sliding
ensemble average. Please note that this sliding ensemble average also averages over all
possible initial steps s0. Of course per definition we find C0 = 1. For a fully random walk,
one expects that all steps are independent of each other, i.e. C0 = 1 and Ci = 0 for all
i ̸= 0. For anomalous diffusion, this no longer has to be the case.

In this section we use the yupi python package in order to compute the auto correlation
function [153]. The package computes the velocity auto correlation function, using the
velocity vector instead of the displacement vector as used in Eqn. 3.3. However, when
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(a)    Faithful singularities (b)    Unfaithful singularities

Figure 3.10: Auto-correlation function as a function of amount of steps taken for experimentally determined
trajectories. (a) shows the ACF for faithful singularities, while (b) shows the ACF for unfaithful singularities.
Neither shows a clear correlation function which matches the fractional Brownian motion case.

the time steps is taken to be unity, this is exactly the same as the step auto correlation as
defined above. In Fig. 3.9 we present the computed auto correlation functions for two
different Hurst parameters H = 0.2 (a) and H = 0.8 (b). They are representative of the be-
haviour of the ACF for the sub-diffusive (H = 0.2) and super-diffusive (H = 0.8) cases. In
the case of a Hurst parameter H < 1

2 (Fig. 3.9 (a)), the ACF dips into the negative values,
signifying a negative correlation between steps, before quickly approaching zero as the
steps increase. So in this case, the auto correlation is short-range negatively correlated,
and increasingly uncorrelated for increasing number of steps. But when the Hurst pa-
rameter is H > 1/2 (Fig. 3.9 (b)), the ACF instead decays to zero over a much longer range.
Thus, the auto correlation is positively correlated over a much longer scale, signifying its
long-range correlated behaviour. In these cases the Hurst parameters are relatively far
removed from H = 1/2, which makes their features in the ACF more pronounced. When
considering values closer to H = 1/2, the ACF will still qualitatively exhibit the same be-
haviour, but less pronounced: for H < 1/2 the initial dip will be less prominent, and for
H > 1/2 the correlation decays more rapidly. Since we know that the diffusion exponent
and Hurst parameter are related as τ = 2H in fractional Brownian motion, and we have
experimentally determined the diffusion exponent for the full ensemble of singularities
to be τ= 0.911, if fBM indeed properly described the motion of the phase singularities, a
Hurst parameter H ≈ 0.45 is expected. This value is much closer to H = 1/2, and as such
we expect the ACF features to not be very pronounced for our data. The behaviour of the
ACF, and not the exact values, being the hallmark for the two different cases is also why
setting our time step size to unity in the determination of the velocity ACF is allowed. Us-
ing this unitary time step, we can determine the ACF for the experimentally determined
singularity trajectories in order to explore the possibility that our data is described by
fractional Brownian motion. Fig. 3.10 shows the auto correlation function for the exper-
imentally determined trajectories, with (a) showing the ACF for faithful singularities, and
(b) showing the ACF for unfaithful singularities. Neither families show a clear correlation
function, with both fluctuating around zero, meaning no clear correlation seems to be
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(a)    H=0.2, simulated

(c)   Faithful singularities

(b)    H=0.8, simulated

(d)    Unfaithful singularities

Figure 3.11: Turning angle distribution for four different cases. (a) shows the distribution for simulated fBM
data with a Hurst parameter of H = 0.2. (b) shows the distribution for simulated fBM data with a Hurst param-
eter of H = 0.8. (c) and (d) show the distribution for the experimentally measured data. (c) depicts the turning
angle distribution for faithful singularities, and (d) the distribution for unfaithful singularities.

present. Unfortunately, the spread around zero is also quite large, orders of magnitude
more than for the simulated data. Because of this large spread, we cannot conclusively
determine whether or not fractional Brownian motion is able to model the system prop-
erly. Thankfully, there are more ways to test the model for compatibility with the exper-
imentally measured data. Once such way is investigating correlation between steps by
considering the relative angle of consecutive steps, referred to as turning angles.

3.6.3. TURNING ANGLES

A more detailed way to investigate the deviation from Brownian motion is by considering
the turning angles of the path. The turning angle is the angle a step takes with respect to
the previous step. So taking a step in the exact direction of the previous step would give a
turning angle of zero degrees, while the exact opposite direction would yield 180 degrees.
It is similar to the ACF that was used before, but here only the angle with respect with the
previous step is considered. When considering a purely random walk, one would expect
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every angle to be equally likely for the next step, and hence the distribution is uniform
over the entire angle range.

In Fig. 3.11 we have plotted the turning angle distribution for the measured trajectories
of our singularities (c & d), as well as a comparison to the different fractional Brownian
motion cases (a & b). Fig. 3.11 (a) shows the turning angles for fractional Brownian mo-
tion with a Hurst parameter of H = 0.2. The anti-correlation in steps is clearly visible as
the majority of the steps are taken at an angle signifying the opposite direction from the
previous step. Fig. 3.11 (b) shows the turning angles for fractional Brownian motion with
a Hurst parameter of H = 0.8 instead, which clearly showcases the positive correlations
in step direction.

In Fig. 3.11 (c) the turning angles for the experimentally measured data for faithful singu-
larities is depicted. What clearly stands out here is that this angle distribution is neither
uniform nor symmetric. There is a clear bias towards angles away from the previous di-
rection, since most angles are between 180◦ and 270◦. This does not seem to fit with
fractional Brownian motion with a Hurst parameter H < 0.5, as the distribution is too
narrowly focused when compared with Fig. 3.11 (a). However, it is consistent with subd-
iffusive behaviour.

Even more curious perhaps is the turning angle distribution for unfaithful singularities,
which has been depicted in Fig. 3.11 (d). While the angle distribution is clearly broader
than the distribution of the faithful singularities, the angles are also indicative of anti-
correlated steps, which would yield subdiffusive behaviour. Interestingly, it looks like
the bias is not evenly spread around 180 degrees, as one would expect it to be in the case
of fractional Brownian motion. We find that there is also a bias towards the bottom right
quadrant.

From the turning angle distributions we conclude that we find a clear deviation from
Brownian motion. However, it also does not match the known distributions from frac-
tional Brownian motion either. Hence from the turning angles we still cannot draw a
clear conclusion with respect to the underlying physics, and more research is warranted.

3.7. CONCLUSIONS

In this chapter we have experimentally measured the non-monochromatic fields inside a
chaotic cavity as a function of time by using a pulsed laser. From these time-dependent
fields we have extracted the singularity positions and tracked them in time in order to
study their dynamics. We have shown that the diffusion is non linear, but is sub-linear
instead. Hence their motion cannot be described with regular Brownian motion.

Furthermore, there is a clear difference in behaviour between faithful and unfaithful
singularities with unfaithful singularities diffusing faster and further than their faithful
counterparts. Additionally, we have measured their lifetime, and found for unfaithful
singularities the distribution of their lifetimes can be described quite accurately with an
exponential decay. On the other hand, faithful singularities show a more complex decay
behaviour.
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As a potential model for the displayed singularity motion we have investigated frac-
tional Brownian motion, which allows for correlations between consecutive steps. While
promising, the computed velocity auto-correlation function does not give us conclusive
evidence for or against the model. And by considering the turning angles, we see that it
does not seem to match fractional Brownian motion either, but does offer more evidence
against regular Brownian motion instead.
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3.8. SUPPLEMENTARY INFORMATION

DRIFT COMPENSATION

One additional factor that could potentially impact the fidelity of the tracking and sub-
sequent determination of the diffusive properties is drift. Since we measure consecutive
frames in order to probe the time dynamics, it can take hours or even days to complete
the entire measurement run. In that time, it is possible that for instance the sample shifts
due to mechanical relaxation of screws, or that the tip does not return exactly to the start-
ing point due to hysteresis. This drift can then influence the mean squared displacement
as well. Consider the case of classical Brownian motion for instance. As noted, the MSD
should be perfectly linear in this case. However, if drift is added on top of the random
walk, then suddenly the walk is biased into a certain direction. This then leads to the
particle moving quicker away from the origin than one would expect from Brownian
motion, resulting in seemingly superdiffusive behaviour.

In order to prevent drift from skewing the determination of the diffusion exponent, we
need to have a method to minimize its impact. In the data this is done by making the
assumption that the mean displacement should remain zero. By then tracking the sin-
gularities in between consecutive frames, we can compute the mean displacement in
between two frames for both spatial directions separately. If this is non-zero, then we
assume that the mean displacement is caused by drift, and we then subtract it from the
positions of the particles in order to determine what their positions should have been
without drift. In this way we attempt to minimize the impact of potential drift in our
measurement on the determination of the diffusion parameters.





4
MELTING OF SINGULARITY

LATTICES

Like reflections on the page
The world’s what you create

Wither - Dream Theater4

In two dimensions, three interfering plane waves with random initial phases always lead
to a hexagonal amplitude pattern containing phase singularities in a regular pattern with
the same symmetry. This ordered lattice of phase singularities subsequently "melts" as the
amount of interfering plane waves is increased. In this chapter we numerically investigate
the melting of these phase singularity lattices. We study this melting without changing the
symmetry inherent to 3 plane waves in two ways. We show that broadening in longitu-
dinal momentum, analogously to increasing temperature in molecular beams, does not
lead to melting behaviour. However, introducing more plane waves in a way that does not
break spatial symmetry abruptly, and simultaneously adding phase noise between these
waves does lead to melting behaviour. We show that phase noise is a critical component
for inducing phase transitions.
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(a) 3 interfering plane waves
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(b) 20 interfering plane waves

Figure 4.1: Comparison of the singularity structure that is formed by different numbers of plane waves with
random initial phases interfering in two dimensions. The plane waves have equal amplitude and are equidis-
tributed in k-space. The phase is plotted in false colour, and the light (dark) gray dots indicate the positions
of positive (negative) singularities. Figure (a) shows three interfering plane waves, leading to a regular trigonal
lattice structure. (b) shows 20 interfering plane waves, showing a disordered, seemingly liquid-like pattern in-
stead.

4.1. INTRODUCTION

Of particular interest throughout all of physics is the phenomenon of phase transitions,
where one state of matter transitions into another state. Especially discovering under
which circumstances this occurs can give a lot of valuable insight into the behaviour of
a system [154–157]. In previous chapters we have indicated that singularities can some-
times be treated as particles. In this chapter we will continue to entertain this notion and
investigate if a phase transition can occur for phase singularity structures. It has already
been shown that an effective interaction potential can be defined for phase singularities
for two-dimensional random light [111]. When an effective interaction potential can be
given, then it might also be possible to form a singularity crystal. As it turns out, three
interfering plane waves with random initial phases in two dimensions will always lead
to a hexagonal field pattern. When taking the singularity charges into account, this re-
sults in a trigonal phase singularity lattice, in fact forming a two-dimensional crystal. An
example of such a trigonal lattice is shown in Fig. 4.1 (a).

Since we can form a lattice of singularities, representing a solid, crystalline state, can
we then also "melt" this crystal to its "liquid" state? If we now consider the singularity
structure that is formed for 20 interfering plane waves with random initial phases, as
shown in Fig. 4.1 (b), the result is clearly not an ordered crystal anymore. So at some
point, when increasing the number of interfering plane waves that interfere, a phase
transition seems to have taken place.

In this chapter we numerically investigate the solid-to-liquid phase transition for singu-
larity structures. We look into which variables are relevant to the occurrence of a phase
transition. The work in this chapter was carried out in collaboration with bachelor stu-
dent Luuk Crooijmans, and part of it was the subject of his bachelor thesis [158].
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4.2. PHASE TRANSITIONS AND ORDER PARAMETERS

A usual way to describe and classify phase transitions is through the use of order param-
eters [159]. An order parameter is a quantity that distinguishes one phase from another:
it is chosen such that it exhibits a sharp change in value at the transition. Additionally,
depending on whether this change in order parameter value is continuous, or discon-
tinuous at the transition point, the transition can be classified as first order (discontin-
uous) or second order (continuous) [160]. An example of such an order parameter is
compressibility for water. When water is in its solid (ice) or liquid (water) state, it can be
regarded as incompressible1. Its volume won’t change when the pressure is increased.
However, in its gaseous state, it becomes compressible again. Hence the compressibility
is an order parameter for the transition to its gaseous state, since it is normally zero, but
becomes non-zero once the phase transition into the gaseous phase takes place. Simi-
larly an order parameter can be defined for the transition from a liquid state to a solid
state. However, for this case it is less straightforward and relies on for example corre-
lations between atomic positions: whereas crystals posses spatial symmetries and the
atoms do not tend to move around, liquids posses no such symmetries and the atoms
are free to move around [163–166].

Generally, order parameters change as a function of a variable. This variable can be any-
thing that affects the state of the system, with some common variables being, e.g., tem-
perature and pressure [159]. A phase transition then occurs when a specific value for the
variable is crossed and the system crosses over into its new state. This value is referred to
as the critical value2. It is at this value that the order parameter shows an abrupt change,
either in its value (first order), or its derivative (second order). Ideally we would like to
define an order parameter for the phase singularity network in order to quantify its phase
transition from a solid lattice state (Fig. 4.1 a) to a liquid state (Fig. 4.1 b).

However, the usual way a phase transition from solid to liquid is quantified is based on
the shear modulus. But since we are considering phase singularities of an electric field,
they do not have a shear modulus to use as order parameter. Furthermore, since we
consider monochromatic fields, we are not able to access dynamic quantities, and are
restricted to snapshots of the field instead (see Chapter 1). This prevents us from using
order parameters based on kinetics, such as those based on the mean-squared displace-
ment [167]. Thankfully there are more tools to study phase transitions with besides order
parameters, such as melting indicators, which are an established tool in condensed-
matter physics [168, 169]. Are number of indicators are available, all of which use a
slightly different criterion derived from different characteristics of the different phases
to determine whether you are in one phase, or the other.

1It’s not completely true, its bulk modulus is just so high that it’s functionally incompressible under normal
circumstances [161, 162].

2This definition is a bit simplistic, as there can exist multiple transitions in the system. In this case the critical
value refers to the point where the system first undergoes a phase transition.
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4.3. MELTING INDICATORS

Melting indicators are, in a sense, similar to order parameters, since they fulfil a similar
role. But unlike order parameters, melting indicators cannot be used to determine the
type of phase transition that takes place. However, melting indicators do show a rapid
change around the point of the phase transition, and as such are helpful indicators for
pinpointing a phase transition. We define the melting indicators, in analogy to order
parameters, based on observables of the singularity structure: the radial distribution
function g (r ) and the angular distribution function c(θ). The radial distribution func-
tion has been used extensively throughout this thesis (see Section 1.3.3). The angular
distribution function can be seen as a direct companion to the radial distribution func-
tion g (r ). Instead of determining at what radial distance from a reference particle it is
most likely to find another particle, this instead looks at which angles with respect to a
reference angle (often the horizontal) it is most likely to find another particle [170]. Like
g (r ), it can give valuable insight into the structure of the field. The angular distribution
function can be defined as

c(θ) = 1

Nρ
〈∑

i ̸= j
δ(θ−|θi −θ j |)〉. (4.1)

In a crystalline state the angles at which a nearby particle is likely to be found are sharp,
since a lattice has a well defined structure. For a liquid on the other hand, there is no
regular structure, and as a result the features are much less defined. From the radial dis-
tribution function and angular distribution function we can derive quantities that act as
the melting indicators, since the the radial distribution function and angular distribution
function give insight into the structure of the singularity network.

Another melting indicator is based on the singularity density. It is known from theory
that in a liquid-like state of singularities, the density of vortices should converge to π

[λ−2] [24]. For atoms it is known that the density of a solid is, in general (water being a
well known exception), higher than the density of a liquid, so for our singularity struc-
tures, we expect the density of the crystalline state to be higher than that of the liquid-like
state as well.

4.3.1. INDICATORS BASED ON g (r )

DIRECT METRICS

To start we consider two metrics that can be directly inferred from the radial distribution
function. The first of these indicators is the position of the first (non-zero) minimum
r (gmi n), which is the first non-zero minimum following the first maximum. Note, how-
ever, that for a solid-like state any minimum between maxima should automatically be
zero on account of the crystalline nature of the singularity distribution. Furthermore,
the g (r ) depends also on the box size of the performed simulation. Were this size to be
infinite, the g (r ) would theoretically consist of a series of delta peaks. Hence the size of
the "valley" of zeroes between peaks also depends on the simulation size. Since we want
to compare simulations with a finite size we pick the minimum here to be the first point
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Figure 4.2: Comparison of the radial distribution function g (r ) for 3 interfering plane waves (a), and 20 in-
terfering plane waves (b), both with random initial phases for all plane waves. (a) Shows a radial distribution
function that resembles that of a crystal, with peaks at well defined distances, indicative of an ordered sys-
tem. (b) Shows a g (r ) that resembles that of a liquid. In both plots the horizontal dashed gray line indicates
g (r ) = 1, corresponding to an uncorrelated spatial distribution of singularities. The arrows indicate the posi-
tion of r (gmi n ).

where g (r ) = 0 after the first peak. This can additionally be justified when considering
the meaning of r (gmi n) as the radius of the first coordination shell. This first coordi-
nation shell contains the nearest neighbours of a lattice site, and in the g (r ) these are
contained within the first peak. As such defining r (gmi n) such that it exactly contains
this first peak is a natural choice.

The second is the ratio between the first minimum and first maximum R ≡ gmi n
gmax

[171].
Fig. 4.2 depicts the radial distribution function g (r ) of the singularity network for both
3 interfering plane waves (Fig. 4.2 a) and 20 interfering plane waves (Fig. 4.2 b), respec-
tively. For 3 plane waves we have a crystalline distribution, while for 20 plane waves the
g (r ) is clearly liquid-like, and hence a phase transition has seemingly occurred as the
amount of plane waves were increased . By considering Fig. 4.2, it is clear that the posi-
tion of the first minimum (indicated with the arrows) shifts to larger radii when melting
has occurred. For the ratio R, in the crystalline phase, we have high maxima and low
minima. In fact, the gmi n is zero in this phase, leading to a value for R of 0. For the
liquid-like regime, we observe a ratio of around 0.5 instead. So both of these indicators
increase when melting occurs.

COORDINATION NUMBER

Another indicator that can be defined based on the pair-correlation function is the coor-
dination number NC . The coordination number is the average number of vortices within
the first coordination shell, which in turn is the area of the circle with radius r (gmi n):

NC = 2π
∫ r (gmi n )

0
r g (r )ρdr, (4.2)

where ρ is the average density of vortices in the field. When a transition from a solid-like
to a liquid-like state is made, we know that the singularity density decreases [24].
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However, since r (gmi n) also increases, the radius of the first coordination shell also in-
creases. Furthermore the g (r ) is consistently non-zero, whereas the g (r ) for a solid is
only non-zero for a specific radius, and hence increases the result of the integral. When
computing the coordination number for the cases of 3 and 20 interfering plane waves,
we obtain a value of around Nc = 3 in the case of 3 waves, and Nc = 7 for the case of
20 waves. So we conclude that the coordination number increases when comparing the
two singularity structures, despite the decreased singularity density.

PAIR EXCESS ENTROPY

Perhaps a less obvious indicator is the pair excess entropy s2. Entropy is a measure for all
the possible microstates (configurations) of a system: the higher the amount of possible
microstates, the higher the entropy of the system, and hence the more information about
the system is required in order to pinpoint the microstate of the system [172, 173]. Excess
entropy is the difference in entropy with respect to an ideal gas, for the same density
and temperature. It can be written as S = S I D + Sexc and thus Sexc is always negative,
since the entropy of an ideal gas is maximal since it has the maximal amount of possible
microstates. The total entropy S thus consists of two contributions: the excess entropy
Sexc , which stems from correlated particle positions, and the entropy of an ideal gas
S I D , which only contains uncorrelated particle positions. Since correlations between
particle positions give information about the state of the system, the amount of possible
microstates decrease, resulting in a decrease of the total entropy.

The general form for the entropy S can be written in the form of a multi-body correlation
expansion, with each of the n-body correlations contributing to the total entropy. The
one-body correlation term then of course being the uncorrelated term leading to the
ideal gas contribution3. Pair excess entropy is the two-body correlation contribution to
the excess entropy, and can be computed from the pair-correlation function as

s2 ∝
∫

{g (r ) ln[g (r )]− g (r )+1}dr⃗ ∝
∫

{g (r ) ln[g (r )]− g (r )+1}r 2dr. (4.3)

Close to phase transitions the pair entropy s2 is the most significant contributor of the
multi-body terms to the excess entropy [174, 175], and thus of the possible multi-body
terms the most reliable indicator of a phase transition. In the limit of infinite tempera-
ture the excess entropy goes to zero, since in the thermal limit everything behaves as an
ideal gas.

4.3.2. INDICATORS BASED ON THE ANGULAR DISTRIBUTION FUNCTION

Next we discuss the indicators based on the angular distribution. Fig. 4.3 depicts the an-
gular distribution functions for the singularity structure formed through (a) 3 interfering
plane waves and (b) 20 interfering plane waves. Fig. 4.3 (a) exhibits 6 well defined peaks,
which is indicative of a 6-fold symmetry. Fig. 4.3 (b) on the other hand shows no clear

3For a more in-depth treatment of (pair) excess entropy, the meaning behind it, and a rough derivation of how
to get from the general formula of entropy to a multi-body correlation expansion, please see the supplemen-
tary at the end of the chapter (4.7.1).
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Figure 4.3: Comparison of the angular distribution function c(θ) for 3 interfering plane wave sources (a), and
20 interfering plane wave sources (b). (a) Shows an angular distribution function that exhibits peaks at 6 well-
defined angles, which is indicative of a lattice with a 6-fold symmetry. (b) Shows a c(θ) with no clear preferential
direction, which fits a disordered liquid-like state.

structure, meaning no clear angles at which you are more likely to find another singular-
ity. This is befitting of a liquid-like state, since the distribution of singularities in a liquid
is isotropic. Below we discuss which melting indicator can be defined from the angular
distribution function.

ROTATIONAL INVARIANTS

This final melting indicator is not a single indicator, but rather a set of related variables,
called rotational invariants:

qn =
〈

1

NC

∣∣∣∣∣ NC∑
j=1

e i nθ j

∣∣∣∣∣
〉

, (4.4)

where NC is the number of nearest neighbours (coordination number) and θ j is the an-
gle of nearest neighbour j with respect to the reference particle. The summation occurs
over all particles within the first coordination shell of the reference particle. The brack-
ets indicate the ensemble average, which is the average of the evaluation of the above
function over every particle in the structure under consideration. Due to the symme-
tries of the function, qn will only be non-zero if the system, on average, is a lattice with
n-fold symmetry. For instance, a hexagonal lattice will have a non-zero q3 and q6, since
it is both three-fold and six-fold symmetric. Of course this is based on an ideal case, so
in general the rotational invariants will not be zero outside of a perfect lattice, but their
value will be significantly lower instead.

The way we use the rotational invariants is by considering the maximum value of qn , in
order to see if there is any symmetry present that could indicate a crystalline state. Since
crystals can not posses a rotational symmetry higher than 6-fold, no value beyond q6 has
to be considered [176]. By looking at the maximum of the set, we do not need to consider
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Figure 4.4: Melting indicators as a function of the number of plane wave sources. Simulated at a wavelength of
λ = 1.55µm. (a) shows the short-range indicators with the maximum of the rotational invariants in blue, and
the coordination number Nc in orange. (b) shows the long-range indicators with the pair excess entropy s2
in green, the location of the first minimum of g (r ) in blue, and the ratio between the first maximum and first
minimum of g (r ) in orange. All of these indicators are consistent in showing that the transition from solid to
liquid happens around 7 sources, with all of them stabilising around 8 sources.

all rotational invariants separately. Instead the maximum value will be sufficient to in-
dicate the presence of a rotational symmetry: in the case of an ordered lattice structure
being present, one of the indicators, and as a result the maximum of the set, will be high.
In the case of a liquid-like state, no rotational symmetry will present, and hence the max-
imum of the set of qn will be a low value instead. A figure of the behaviour of q3−6 for
increasing amount of plane waves for each qn separately can be found in Appendix A.

Please note that the melting indicators can be separated into two sets: those for short-
range order of the angular distribution function and first coordination shell (rotational
invariants and coordination number NC ), and long-range order which is based on the
radial distribution function (s2, R and r (gmi n)) [168].

4.3.3. MELTING INDICATORS FOR INCREASING AMOUNT OF PLANE WAVE

SOURCES

To attain a more intuitive understanding of the melting indicators that were introduced
above, we revisit Fig. 4.1 and compute the melting indicators for increasing number of
plane wave sources. These plane waves are all equidistributed along a circle in reciprocal
space. Considering Fig. 4.1 once more, we can already observe that the singularity den-
sity for (a) is higher than the density for (b). Thus when a transition occurs, we expect to
see the density decrease from a value higher than π/λ−2 to around this value of roughly
π/λ−2.

Fig. 4.4 depicts the behaviour of the indicators as a function of increasing amount of
plane wave sources. Fig. 4.4 (a) depicts the short-range indicators with the maximum
of the rotational invariants depicted in blue, and the coordination number in orange.
Fig. 4.4 (b) presents the long-range indicators, with the ratio between gmi n and gmax

depicted in orange, the position of the first non-zero minimum of the radial distribution
function represented in blue, and the pair excess entropy depicted in green. We observe
that all indicators vary greatly as a function of the number of plane waves that interfere.
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Figure 4.5: Averaged vortex density for different amounts of interfering plane waves. The gray dashed line is
the theoretical value of π that we expect in a true liquid-like state. Of interest is the N = 6 case, which clearly
depicts a higher variance than the rest. This is explained through the fact that it seems to generate a bimodal
distribution between liquid and crystalline states.

For 3 to 6 plane waves we have a solid-like state, i.e. an ordered lattice of singularities:
a high value for the maximum rotational invariant and a low value for the coordination
number for the short-range indicators is observed. Additionally we see that the excess
entropy starts high, and already shows a rapid decline for 5 plane waves, while the other
indicators exhibit a more gradual change as the amount of interfering plane waves are
increased. The ratio R and position of first minimum r (gmi n) both start low, and in-
crease steadily, with r (gmi n) exhibiting a peak at N = 6 waves. Having 6 interfering plane
waves appears to be a special case: there seems to be a bimodal distribution in singu-
larity structures, which explains the large margin of error in the coordination number
at that point [138]. Investigation of this phenomenon is outside the scope of this the-
sis however, but a curious thing to investigate in the future. For 7+ waves we transition
towards the liquid-like regime, and above 10 waves all indicators are starting to stabi-
lize around the values that match with those for a liquid-like state: high coordination
number, low excess entropy and low contrast in g (r ) peaks.

Finally, the average vortex density can be determined for the different number of inter-
fering plane waves. In Fig. 4.5 we have plotted the global vortex density as a function of
number of sources used, with the gray dashed line indicating the theoretical density of
π/λ2 that we expect for a liquid-like state [24]. We observe that for increasing number
of sources, the theoretical value for the density is asymptotically approached. Interest-
ingly, the convergence seems to be slow, and even though the other melting indicators
show that we are in the liquid-like regime for 20 waves, the overall density is not yet at
the theoretical value.
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Δφ

(a)   k-space distribution (b)   phase distribution

Figure 4.6: Schematic illustration of the momentum broadening case for N = 3 symmetry points. The k-values
(a) form a disk rather than a perfect circle. Note that here the 3 arrows do not depict a singular plane wave, but
rather embody an ensemble of waves with different magnitudes in k-space, but launched from the same angle
on the disk towards the center. The gradient shows the amplitudes when waves are launched from that k-value.
Additionally, the red dashed curve shows the amplitude distribution as function of momentum. The phase
difference (b) of each of these waves with respect to the closest source point is also drawn from a Gaussian
distribution with a width of ∆φ.

From the behaviour of the melting indicators we can conclude that increasing the num-
ber of plane waves seems to lead to a phase transition from crystalline-like state to a
liquid-like state. But inherently, changing the number of plane waves causes the un-
derlying symmetry to change accordingly. And from crystallography, it is known that
only certain symmetries can lead to a regular crystal, so perhaps it is not surprising that
this melting occurs when the symmetries no longer support crystalline structures. The
question then arises if it is possible to induce melting through a different method that
preserves this initial spatial symmetry.

4.4. BROADENING IN MOMENTUM

With the melting indicators introduced, we can start exploring ways to induce a phase
transition without breaking the 3-fold spatial symmetry present. Ideally we find a vari-
able that we can tune that acts like an analogue to an effective temperature. When look-
ing for a way to define an effective temperature in our system, we can look towards sim-
ilar systems that also have a temperature, such as molecular beams. Molecular beams
are, as the name implies, beams of molecules travelling in a well defined direction. They
are usually generated by having a source of gas at high pressure, allowing it to expand
through a small opening into another chamber that is kept at a lower, sometimes near-
vacuum, pressure. This leads to a beam of particles that travel at similar velocities, and
with a low collision rate between the particles. These beams can then be used for a va-
riety of goods like fabricating thin films through molecular-beam epitaxy [177], or being
turned into a Bose-Einstein condensate state through slowing the particles via a Stark
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Figure 4.7: Instance of the intensity (a) and the phase (b) of the Ez field for simulated values with a momentum
broadening of∆k = 0.3 and∆φ= 0.4. The phase is plotted in false colour, and the light (dark) gray dots indicate
the positions of positive (negative) singularities. From both the intensity and phase figures we can observe that
the lattice is clearly deformed from its trigonal base, but at its core still resembles the trigonal lattice. Hence
there is no indication that the distribution is liquid-like for these variable values.

or Zeeman slower[178]. We now consider the way temperature is commonly defined for
these beams, which is through the spread of longitudinal velocities [179]. So while the
beam can be highly energetic in the reference frame of the lab, it is not necessarily the
case for the beam in its own frame of reference. In this way, ultracold molecular beams
can be fabricated. The most obvious way to translate this into optics is to introduce a
spread in momentum for light, which means a spread in k-values∆k. Thus we no longer
stick with a ring in k-space that is infinitesimally thin, but rather introduce a disk (more
precisely, an annulus) in k-space, with its centre at k0. However, we do keep ω constant
here in order to preserve monochromaticity (this can of course only be done in simula-
tions). We then introduce a Gaussian envelope for the amplitude of the waves, with the
mean centered on k0, and a full width at half maximum (FWHM) of ∆k. Like the am-
plitudes, the phases of the waves are also variable, and randomly selected from another
Gaussian distribution with a FWHM of ∆φ. See Fig. 4.6 for a schematic illustration.

RESULTS

As an initial test, we have plotted the intensity (a) and phase (b) of one (representative)
instance of the simulated field for ∆k = 0.3 and ∆φ = 0.4, which is shown in Fig. 4.7.
From both Fig. 4.7 (a) and (b) we can infer that the behaviour does not differ strongly
from a lattice, and hence a solid-like state. While the trigonal pattern has been distorted,
it can still clearly be observed, and thus clearly does not exhibit liquid-like behaviour.

To further investigate the possibility of melting through momentum broadening we have
simulated the system for a range of different values for the phase noise∆φ and the spread
in momentum values∆k. The phase noise was varied over a range of∆φ ∈ [0,1.2] in units
of 2π and the momentum spread over a range of ∆k ∈ [0,0.3]k0. It is of note here that
this spread in momentum values is wholly unphysical at this point for the largest values.
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Figure 4.8: Melting indicators as a function of phase noise ∆φ for a momentum spread value of ∆k = 0.3k0. (a)
depicts the short-range indicators, while (b) shows the long-range melting indicators. Both of them show that,
while they do vary over the range of values, neither shows a clear phase transition when looking at the values
over which they vary. Vortex densities with (c) showing the global densities and (d) showing the heat maps of
the local vortex densities. (c) clearly shows that there are almost no spots with global densities that match the
expected densities for a liquid-like state, which would be coloured white. (d) supports this by showing that the
spoke-like pattern does not seem to go away, even for higher values of momentum and phase spread. The area
in (c) that is coloured white is shown in (d) to be a spoke like state, clearly not liquid-like.
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There is no way in which this can be experimentally tested and have bound modes for
all values involved. Despite this, it is still enlightening to know if melting can be induced
through this method.

Fig. 4.8 (a) and (b) shows the computed melting indicators with (a) showing the short-
range indicators and (b) showing the long-range indicators for the largest simulated mo-
mentum spread value, as a function of the phase noise. Considering Fig. 4.8 (a), we ob-
serve that both the maximum of the rotational invariants and the coordination number
both show some variations, but neither get close to what we expect for a liquid-like state.
For the coordination number we observe that it remains around a value of NC = 3, while
for a liquid-like state we would expect values around NC = 7 instead. Likewise for the
maximum of the rotational invariants, the value remains above 0.8, while for a liquid-
like state we would expect values around 0.4 instead.

Similarly we observe in Fig. 4.8 (b) that the values do change, and even seem to transition
around∆φ= 0.2, but looking at the scale over which they change reveals that they do not
get close to the expected values for a liquid-like state: the ratio R changes from about
0.775 to 0.875, which actually is consistent with the value for a liquid-like state as found
in Fig. 4.4. The excess entropy also sharply decreases, signifying a deviation from an
ordered lattice. Finally, the ration R only increases to 0.2, where we expect it to increase
to around 0.5 for a liquid-like state. So it seems like the long-range melting indicators
are not fully in agreement with each other, while the short-range indicators clearly show
a crystalline state.

To further our understanding we additionally look at the local and global singularity den-
sities. The local singularity density is obtained by computing the singularity density over
a limited radius around each pixel of the image, averaged over typically at least 100 it-
erations for each variable combination. In this a heat map can be constructed, which
indicates where the singularities tend to cluster or not. Fig. 4.8 (c) and (d) shows the
vortex densities, with (c) showing the global densities, and (d) depicting the heat map
with local vortex densities for the simulated values. In Fig. 4.8 (c) we clearly observe that
most variable combinations significantly differ from the expected theoretical value of π
for a liquid-state, which is indicated as white on the colour scale. However, looking at
(d) we observe that the variable combinations close to the theoretical value occur in a
region where the spread is clearly not uniform. Instead, it just happens to be that the ar-
eas with vortex concentrations and areas without vortices even out to the global density
of a liquid-like state. So it seems that the lattice gets distorted enough to affect the long-
range order, leading to some long-range melting indicators showing a transition, while
the short-range order remains intact. As such, we have to conclude that this method
of broadening does not lead to the melting of the lattice. So it seems that some spatial
symmetry breaking is required in order for melting to occur.
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Δφ

Δθ

(a)   k-space distribution (b)   phase distribution

Figure 4.9: Schematic illustration of the angular broadening case for N = 3 symmetry points and N = 36
sources. The N sources (a) are given an amplitude An based on their position on the ring in k-space, and
is determined by the angular distance to the nearest symmetry point via a Gaussian distribution with a tune-
able width of ∆θ, which is given by the blue curve in the circle. The phase difference (b) of each of these waves
with respect to the closest symmetry point is also drawn from a Gaussian distribution with a width of ∆φ.

4.5. ANGULAR BROADENING

While broadening the ring in k-space radially to a disk did not lead to a phase transition,
we now investigate broadening tangentially, i.e., along the ring in k-space.

As a baseline, we consider 3 monochromatic plane waves, which have been distributed
equidistantly along the ring in reciprocal space. These three points will be referred to
as the symmetry points. In order to broaden these symmetry points, we introduce more
plane waves, which have also been equally distributed along the ring, but with additional
restrictions on their amplitudes and initial phases. Their amplitudes depend on the dis-
tance to the nearest symmetry point. This amplitude distribution is chosen to be a Gaus-
sian, with its centre at the symmetry point, leading to a decaying amplitude the further
away from the symmetry point you get. The Gaussian amplitude distribution has cer-
tain width ∆θ, which we can tune. By tuning the width of this Gaussian, effectively more
sources are slowly introduced into the system, but as a function of a continuous vari-
able. Like the amplitudes, the initial phases of the waves are also variable, and randomly
selected from another Gaussian distribution of width ∆φ, just like in the momentum
broadening case. This Gaussian is centered around the phase of the symmetry point.
Hence the added waves have a phase that is close to the phase of the symmetry point,
but have a variation dependent on the variable width ∆φ. We refer to this method of
broadening as angular broadening. In Fig. 4.9 we show a schematic illustration of angu-
lar broadening. The left side of the image portrays the effect of the Gaussian envelope on
the amplitude of each source point and how we define ∆θ, illustrated for N = 36 sources
The right side of the figure illuminates how we define the phase spread ∆φ, which is
through the full width at half maximum (FWHM) of the Gaussian distribution.

Since there are two variables that we can tune, namely ∆φ and ∆θ, we can either con-
sider their effects separate, or one can be made dependent on the other. For the initial
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(d)
∆θ=0, ∆φ=0 ∆θ=0.2, ∆φ=1.8& &

Figure 4.10: Comparison of two instances for variable combinations, with (a) and (c) respectively depicting the
intensity and phase for ∆θ = 0, ∆φ = 0. (b) and (d) depict respectively the intensity and phase for ∆θ = 0.2,
∆φ = 1.8. (a) and (c) clearly exhibit an ordered lattice structure for both the intensity and phase singularities,
and is clearly in a solid-like state. (b) and (d) do not exhibit a regular pattern, and are no longer clearly in a
crystalline state.
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  (a)   short-range indicators (b)   long-range indicators
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Figure 4.11: Melting indicators as function of the angular spread ∆θ for 720 sources. (a) shows the short-
range indicators with the maximum rotational invariant in blue and the coordination number depicted in
orange. (b) depicts the long-range indicators with the position of the first minimum of the g (r ) in blue, the
ratio R = gmi n /gmax in orange and the pair excess entropy in green.

investigation of angular broadening, we let ∆φ depend on ∆θ, as well as to the amount
of symmetry points used:

∆φ=∆θN 2
s , (4.5)

where Ns is the amount of symmetry points, which we have fixed at Ns = 3 for this inves-
tigation.

As a first indication as to whether or not a state besides a crystalline-like state can be
obtained, Fig. 4.10 displays a comparison of two instances for different variable combi-
nations. Fig. 4.10 (a) and (c) show the intensity and phase respectively for the variable
values ∆θ = 0, ∆φ = 0 and (b) and (d) depicting the intensity and phase respectively for
the variable values ∆θ = 0.2, ∆φ= 1.8. For Fig. 4.10 (a) and (c) we clearly observe a per-
fectly ordered trigonal lattice structure, indicating a solid-like state. For Fig. 4.10 (b) and
(d) on the other hand, there is no regular structure to be discerned, possibly indicating
a liquid-like state. In order to see if the singularity network shown in Fig. 4.10 (d) is in a
liquid-like state, we compute the melting indicators.

We present the obtained melting indicators in Fig. 4.11, which have been determined
for a value range of ∆θ ∈ [0.0,0.2] in units of 2π, with the phase coupled to it as defined
in Eqn. 4.5. Fig. 4.11 (a) depicts the behaviour of the short-range melting indicators,
while Fig. 4.11 (b) displays the long-range indicators. Based on the short-range indi-
cators, a change clearly happens between ∆θ = 0.06 and ∆θ = 0.07, with both indica-
tors exhibiting an abrupt jump. But based on the long-range indicators, we observe a
more gradual transition, with especially R slowly increasing before finally plateauing at
around ∆θ = 0.12. This discrepancy between the changes in the short-range indicators
and the long-range indicators could indicate that short-range order is lost more quickly
in the transition than long-range order. Despite the differences, both exhibit a transition
from solid-like state to liquid-like state. As such we can conclude that does method of
broadening does lead to a transition from a solid-like state to a liquid-like state. Next we
consider the two variables separately.
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Figure 4.12: (a) coordination number and (b) excess entropy indicators as function of the phase spread∆φ and
amplitude spread ∆θ. Note that the colour scale of the excess entropy is logarithmic due to high values for the
non-liquid-like state that drops off quickly. (c) shows heat maps of local vortex densities, separated by white
straight lines and (d) the global vortex densities, with white indicating the theoretical value for the liquid-like
state. Each block is a separate heat map generated for the variables and shows the distribution of vortices over
the space, averaged over the 100 iterations that were performed. We can identify three regions in this image.
First we see that for ∆θ = 0, we retain the lattice structure, and for low values we stay close to it. At low values
for∆φwe see that we move from a lattice to the spoke-like structure. Finally, at higher values of both we see the
liquid-like state appear. This is also reflected in the global density, as crystalline states have a higher density,
and the spoke states a lower density than a liquid. Finally we see for higher values of both variables that the
density goes towards the expected density for a liquid.
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In order to investigate the effect of the two variables separately, we now no longer assume
that one variable is a function of the other. We have taken a range of [0,0.5] in steps of 0.1
for the two variables, for 720 sources and 100 iterations for each variable combination.
Because it is cumbersome to display all of the melting indicators separately, we have se-
lected one indicator from the short-range and long-range indicators each, alongside the
local and global singularity densities. The selected indicators are representative of the
complete collection of melting indicators. In Fig. 4.12 we show the results for the coor-
dination number Nc (a), the pair excess entropy s2 (b), and the local (c) and global (d)
vortex densities. Note that the colour scaling of the excess entropy is logarithmic due to
high values for the solid-like state, which subsequently diminishes rapidly. Fig. 4.12 (a)
reveals that for both ∆θ = 0 and ∆φ = 0 a low coordination number is observed regard-
less of the other variable. Such a low coordination number is consistent with a solid-like
state. When both variables are increased, we observe that the coordination number in-
creases as well to values that are consistent with a liquid-like state. Considering the pair
excess entropy s2, which is depicted in Fig. 4.12 (b), we observe that this melting indica-
tor displays the same behaviour as the coordination number: for both∆θ = 0 and∆φ= 0
a high excess entropy is found, consistent with a solid-like state, and for both variables
increased we find a sharp decline in the value of s2, consistent with a liquid-like state.

The local vortex density, which is depicted in Fig. 4.12 (c), reveals additional informa-
tion: for ∆θ = 0 we observe that the local density exhibits a pattern that is consistent
with a lattice, revealing that the structured formed through the phase singularities thus
far remains in a solid-like state for all considered values of the variable ∆φ. However, for
∆φ = 0 we notice a spoke-like pattern instead. Only for higher values of ∆φ do we ob-
serve that a transition is made to a state where the local density appears to be uniform,
which is indicative of a liquid-like state. This is reflected in Fig. 4.12 (d): ∆θ = 0 shows a
consistently high global density, which fits a solid-like state, and∆φ= 0 instead has a low
density since the resulting patterns appear to have few singularities overall. Once both
variables are increased, the global density is near the theoretical density of an isotropic
liquid-like state.

Of all these observations, the statements about ∆θ = 0 should not come as a surprise,
as it simply corresponds to no broadening at all. But what does stand out is that for low
values of∆φ, which plays the role of phase noise, no melting behaviour is observed, sug-
gesting that this is a crucial ingredient for melting to occur. What additionally stands
out is that for higher phase spread, the transition into the liquid regime as a function of
angular spread is much sharper as well. However, for low values (0.1) of both the angu-
lar and phase spread, no melting is found either. From this we can conclude that, while
phase noise is a critical ingredient for melting, it does not lead to melting purely on its
own. In other words, having a non-zero phase noise is a necessary, but not a sufficient
requirement for melting to occur. So we conclude that both phase noise and angular
broadening are a requirement. The necessity of phase noise can be understood in the
following way. Assume that the sources would have the exact same phase as the sym-
metry point they are based on. For each symmetry point, the resulting field is mirror
symmetric over the symmetry point, and the result is simply a beam that is focused onto
the middle of the ring. And thus the result of all sources combined is a field comprised of
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Figure 4.13: Instance of the Ez field intensity (a) and the phase (b) for simulated values of∆θ = 0.08 and∆φ= 0.
Figure (a) shows clearly that intensity is concentrated in the centre and a 6-fold symmetric pattern around it,
while (b) shows that the resulting interference leads to singularities only on the axes of the beams.

three beams that are focused onto the center. The final result is still a 3-fold symmetric
field, but instead of a hexagonal structure, we find that the result becomes more circu-
lar with 3 lines of singularities, which cross exactly in the center. We have dubbed this
singularity pattern a spoke-like pattern, as they look akin to spokes on a wheel. One in-
stance of such a field is shown in Fig. 4.13. Fig. 4.13 (a) shows the intensity of the field,
which has most of its intensity focused in the middle. Furthermore a 6-fold symmetric
pattern can be seen around the centre of the image. Fig. 4.13 (b) shows the spoke-like
pattern for the phase singularities that arises. The singularities are confined to the beam
axes, leading to 6 distinct lines radiating outward from the center. Now clearly this no
longer classes as a lattice structure, and as such is no longer a solid as we know it. How-
ever, it is not in a liquid-like state either. It rather becomes a state without clear analogy
to solid-state physics. Furthermore, it seems like in order to get to the liquid-like state
from the solid-like state, this spoke-like state regime has to be crossed first. Unless the
phase noise is strongly increased when increasing the angular spread, this spoke state
will have to be crossed before arriving at the liquid-like state. This can be observed from
Fig. 4.12 (c). Thus it seems that this spoke-like state acts as an intermediate state.

4.5.1. CONVERGENCE AS FUNCTION OF SOURCES

So far a fixed value for the number of source points N has been used. One thing that
should be investigated is the behaviour of the system as N is varied. We have computed
the melting indicators as a function of ∆φ for a fixed value of angular broadening ∆θ =
0.08 in order to investigate if the system converges to a common value of ∆φ for which
the phase transition can be observed. Fig. 4.14 depicts the behaviour of the coordination
number Nc for increasing amount of sources up to N = 1440. It is clear that even for
a large number of points, the behaviour does not seem to converge. Simulating even
more points than that starts to become computationally prohibitively expensive. While
the behaviour for only one melting indicator is shown here, the behaviour is consistent
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Figure 4.14: Behaviour of the coordination number Nc as a function of the phase spread∆φ for the continuous
broadening case, with a fixed∆θ = 0.08. The different coloured lines indicate different amount of sources used
to simulate the fields as indicated in the legend. It is clear that for increasing number of sources the phase
spread needs to be increased in order to achieve the same effect on the coordination number, indicating that
the system has not converged, even for a large amount of sources.

across all of the other indicators as well, and figures for the remaining indicators can be
found in Appendix A. One possible explanation for this is that for increasing number of
points, the points start to lie close together, making them effectively one point with a
summation of their phases. It is possible that then we need to increase the phase spread
to make up for that behaviour once more. Please note that while this may highlight a
potential flaw in the model, it does not alter the conclusions that can be drawn from
our investigation: while the values of the used variables might change depending on the
amount of sources used, the behaviour remains consistent. For further investigation we
recommend looking into different models. One such model of highlighted in Appendix
A.
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4.6. CONCLUSIONS

It is clear that melting singularity lattices is a complicated process. We have identified
two variables that are able to change the system in a continuous way, yet neither of them
is able to explain melting simply by them self. Simply introducing more waves into the
system via the continuous broadening case, but not changing the phase of them with
respect to the nearest symmetry point will simply focus the three beams instead due to
symmetry. Changing the phase alone does not do anything to alter the three-fold sym-
metry that creates the hexagonal lattice, since their relative phases do not matter here.
Unfortunately, this reasonably simple model strongly depends on the number of sources
that are added, and we have found no indication of it converging at a significant rate. At-
tempting to broaden in momentum space as a more direct analogue to the temperature
of molecular beams also does nothing to break the symmetry, even with the added phase
distributions and hence cannot explain the observed melting behaviour.

The interesting part here is that a clear deviation from molecular beam behaviour is ob-
served. Where normally temperature can be defined through a Boltzmann distribution,
which can be related with momentum, here we have observed that increasing momen-
tum spread does not lead to melting. And in fact, broadening the beams in either mo-
mentum or angle alone also does not suffice. It seems that phase noise is a required
component of the puzzle here, because without it, no melting is observed. It alone can
also not induce melting, however, so the phase noise by itself cannot break the symme-
try of the system. So while a clear effective temperature analogue remains elusive, we
can conclude that phase noise is required.
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4.7. SUPPLEMENTARY INFORMATION

4.7.1. ENTROPY AND EXCESS ENTROPY

This section is based on ref [180], and follows its line of reasoning to qualitatively show
how the multi-body correlation expansion of the entropy is derived. For a more in-depth
treatment and derivation the reader is referred to ref. [180].

In the statistical definition it is related to the amount of microstates the system can take.
Given a distribution of discrete states i , which system can be in with probability pi , the
entropy of the system can be calculated as

S =−kB
∑

i
pi ln(pi ). (4.6)

As such, the entropy increases with the amount of possible microstates. In essence this
represents a measure for the amount of information that is required in order to pinpoint
the state the system is in: the more microstates are available, the more information is
required in order to pinpoint the exact microstate being occupied.

Now discrete states are mainly relevant when considering quantum states, but we can
take this into the classical realm by taking a Boltzmann distribution for the state proba-
bilities, given as

pi = e−Ei /(kB T )/Z , (4.7)

where Ei is the energy of that state, and Z is the partition function, which normalizes
the probability distribution. By taking the high-temperature limit, and the canonical
ensemble, where we have a fixed volume V and amount of particles N , we can compute
the entropy as

SN /kB =− 1

N !

∫ ∏
i

fN ln(h3N fN )dr⃗i d p⃗i , (4.8)

where h is the Planck’s constant, fN (⃗r1, p⃗1, · · · , r⃗N , p⃗N ) is the probability density as func-
tion of positions r⃗i and momenta p⃗i .

The above equation can then be refactored in terms of n-body distribution functions g (n)
N

as

SN /kB = s1 + s2 + s3 +·· · , (4.9)

where each successive term takes into account higher-order position correlations, so
that s1 only takes into accounts itself, s2 the pair correlations, s3 the three-body correla-
tions etc. Working out these terms, we find that

s1 = 3

2
− ln(ρΛ3), (4.10)



4.7. SUPPLEMENTARY INFORMATION

4

79

whereΛ is the de Broglie wavelength, and ρ the particle density. And the pair correlation
term equates to

s2 =−ρ
2

∫
g (2)

N ln(g (2)
N )dr⃗ . (4.11)

The entropy for an ideal gas can be computed to be

Si d /kB = 5

2
− ln(ρΛ3) = s1 +1 (4.12)

The discrepancy of the 1-body term with the ideal gas stems from the 1
N ! series that is

added to the higher order terms. In order to reconcile this, we can simply add 1 to s1,
and subtract 1 from the rest of the terms combined:

SN /kB = Si d /kB + (s2 −1/2)+ (s3 −1/6)+·· · (4.13)

At this point it is natural to introduce the term excess entropy, which is simply the differ-
ence between the total entropy and the contribution of the entropy from an ideal gas

Sex ≡ Stot −Si d = (s2 −1/2)+ (s3 −1/6)+·· · (4.14)

By recasting the expressions above in the grand canonical ensemble, the canonical cor-
relation functions g (2)

N can be exchanged for radial distribution functions g (r ). Finally,
the excess entropy contribution from 2-body correlations can be found to be

s2 ∝
∫

{g (r ) ln[g (r )]− g (r )+1}dr⃗ ∝
∫

{g (r ) ln[g (r )]− g (r )+1}r 2dr. (4.15)

Now going back to what entropy means, we see that it gives a measure of disorder and
(lack of) information about the system. The higher the entropy, the less we know about
the exact microstate the system is in. From here it is easy to see that the excess entropy
has to be a negative quantity. Indeed, an ideal gas is the most disordered a system is go-
ing to get, meaning the least amount of information about the system is available, and
hence the entropy is maximized in this case. What the excess entropy tells us is how
much information is gained due to correlations between particle positions. And infor-
mation gained means entropy lost, since it restricts the amount of possible microstates.

Now investigating the integrand a little further, two different terms can be distinguished:
g (r ) ln(g (r )) and g (r )−1. The first of these terms is reminiscent of the original expression
for entropy, and indeed represents the information about the state that is stored in the
pair-correlations. The second of these arises when we moved to the grand canonical
ensemble and stems from the fluctuation in number of atoms. This latter term is actually
always positive, since fluctuations in particle number leads to more uncertainty, and
hence less information about the system.





5
FLOW FIELD SINGULARITIES

Even the tiniest, blandest, simplest light holds a wonderful secret.

Emily - Stardew Valley5

In this chapter we investigate, both theoretically and experimentally, the singularities that
appear in the in-plane Poynting vector field of random waves. We show that there is a re-
striction on the types of critical points allowed in the flow-field, impacting the allowed
topological structures of the field. We find that there are three types of singularities that
can arise in the transverse flow-field, namely magnetic, electric, and polarization types, of
which electric type is shown to be a special case of the polarization type. Next, we give a
mathematical proof that magnetic type singularities only exist as positively charged sin-
gularities in the flow-field, and reveal the mechanism by which they can still annihilate
with another magnetic type singularity, while still abiding charge conservation of singu-
larities in the magnetic field itself. Finally we consider the imaginary part of the Poynting
vector, and show that its behaviour is fundamentally different from its real counterpart.

Parts of this chapter have been published in Optics Letters 45, 9: 2600-2603 (2020) [181].
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5.1. THE POYNTING VECTOR AND ITS SINGULARITIES

Besides considering the electric and magnetic fields by themselves as separate entities,
one can also look at entities that are comprised of a combination of both fields at the
same time. One such quantity is the Poynting vector, which describes the power flow of
the electromagnetic field, and can be defined as

S = E×H, (5.1)

with E the electric field and H the auxiliary magnetic field [182, 183]. This specific form
is the one introduced in the original paper by Poynting published in 1884 [184]. Specifi-
cally, it is an expression of the energy flux density transported by the fields. To increase
our understanding of the behaviour of light in structures, we want to also understand
the behaviour of its flow via this Poynting vector. It is known that light in 2D shows a
fundamental difference in the behaviour of its generic singularities from those present
in a paraxial beam [43, 56]. It can be presumed, that such a confinement not only has
consequences for singularities in the complex vectorial electromagnetic fields, but also
for the singular behaviour exhibited by other physical observables, such as the energy
flow, which is known to contain vortices, for example in the vicinity of the focus of a light
beam [185] or near sub-wavelength apertures [45]. Since the Poynting vector is directly
related to the optical momentum, potential applications could be utilizing the in-plane
optical momentum present in many photonic systems for enhanced particle manipula-
tion schemes [186].

Since optical cycles are extremely short1, for most practical applications the instanta-
neous power is irrelevant, since its the average over many cycles that is observed. Hence
another common form of the Poynting vector is the time-averaged version. Consider-
ing telecom frequency light, and an average measuring time per pixel in our near-field
microscope of 2 milliseconds, we collect roughly 4 ·1011 cycles at every measured pixel.
So clearly for our experimental work, the time averaged form is the one that is natural
to consider. Assuming that the fields are time-harmonic and the medium in which it
resides is linear, the time-averaged Poynting vector can be computed as

S = 1

2
ℜ(E×H∗), (5.2)

where the factor of 1/2 stems from the integration of the time-harmonic field over one
period [88].

In this chapter we once again consider two-dimensional random waves as the basis of
our investigation, and thus we will consider the in-plane Poynting vector only. This 2D
projection of the Poynting vector onto the plane is called the transverse flow-field [38].
As with any 2D vector field, the flow field can exhibit singularities as well, which occur
when the Poynting vector at a point in the light field vanishes, meaning there is no flow
of energy at that point.

1The frequency of visible light is generally hundreds of terahertz, resulting in a single cycle on the order of
femtoseconds.
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Once more we investigate TE slab mode, confined in a chaotic cavity. For a TE slab mode
the out-of-plane component of the electric field is zero, and the cross product from Eqn.
5.2 can be expanded:

S ∝ℜ{(Ey H∗
z ,−Ex H∗

z ,Ex H∗
y −Ey H∗

x )}. (5.3)

Additionally, for a TE mode the real part of the magnetic field is oriented only out-of-
plane, and as such the in plane components will be fully imaginary. This can be seen
considering that for a 2D TE mode, Ez = 0, and through the Maxwell’s equations we find

Hx ∝−kz Ey ,

Hy ∝ kz Ex ,

with kz purely imaginary for a bound mode. As a result, the out-of-plane part of the
Poynting vector is purely imaginary. The absence of a real part of the Poynting vector out-
of-plane is just a manifestation of the fact that the evanescent field does not transport
energy. The in-plane components are then the energy flow inside the chaotic cavity itself:

S∥,TE =ℜ{H∗
z (Ey ,−Ex )}. (5.4)

In order to experimentally determine the positions of singularities in the S∥ field a com-
plex scalar field can be artificially constructed out of the two real vector components of
the transverse flow-field:

ξ= Sx + ıSy , (5.5)

where ı is the imaginary unit. This is similar to the construction of a complex Stokes
field to locate polarization singularities [50, 187]. The mapping (Sx ,Sy ) 7→ Sx + ıSy is
a homeomorphism between R2 and C, meaning that the topological properties of the
constructed field are identical to that of the original vector field [188]. After constructing
this complex scalar field, the positions of its singularities can be determined in the ex-
act same way that has been done in the previous chapters for phase singularities in the
magnetic field.

5.2. ORIGINS OF THE SINGULARITIES

Now that we have determined how the positions of singularities in the transverse flow-
field can be located, we can investigate under which circumstances the singularities
arise. By looking at the formula for the Poynting vector, there appear to be three ways
in which the Poynting vector can vanish identically. Either the out-of-plane magnetic
field vanishes (Hz = 0), the in-plane electric field vanishes (Ex = Ey = 0), or the real part
of the cross product vanishes, with neither the electric field nor the magnetic field being
zero.
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The first type can then be easily identified as being phase singularities of the magnetic
field, and we call those magnetic type singularities. Similarly, the singularities that arise
from zeros of the electric field are called electric type singularities. Both of these types
can occur in a generic TE field [43, 189]. However, since the electric types require two
field components to be zero, as opposed to only one for the magnetic types, they are
expected to occur only rarely (comprising about 1% of singularities) [189].

Finally we can investigate the conditions in which ℜ(E×H∗) = 0, where we demand that
E ̸= 0 and H ̸= 0. Under these conditions the inner product of the Poynting vector with
the electric field can be taken:

ℜ(E×H∗) ·E = 1

2

(
E×H∗+E∗×H

) ·E = 0.

Discarding the factor of a half and using the commutation rules for the cross product,
this can be rewritten as

(E×E) ·H∗+ (E×E∗) ·H = (E×E∗) ·H = 0. (5.6)

Since (E×E∗) and H are always parallel and out-of-plane, and Hz ̸= 0 by our set condi-
tion, we require that (E×E∗) = 0. Computing the cross product, we find that the condi-
tion is set by

Ex E∗
y −E∗

x Ey = 2ℑ(Ex E∗
y ) =−S3 = 0, (5.7)

where we introduce the Stokes parameter S3, which gives the degree of circular polariza-
tion [190].

Physically speaking, S3 = 0 means that the electric field is linearly polarized. However,
since the parameter space is two-dimensional, two conditions are required to be met in
order to find singularities, which are zero-dimensional entities. The second condition
can be found by considering the expression for the components of the Poynting vector.
When the condition for linear polarization is valid, it can be rewritten as

Ex = E∗
x Ey

|Ey |2
Ey =αEy , α ∈R, (5.8)

given that Ey ̸= 0. From here it can be deduced that

Sy =−Ex H∗
z =−αEy H∗

z =−αSx . (5.9)

So the two components are linearly related, and the second condition can simply be
found by looking for occurrences where one of the two components vanishes, which
happens when

Sx =ℜ(Ey H∗
z ) = 0, (5.10)
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(b)(a) (d)(c)

q = -1 q = +1q = +1 q = +1

Figure 5.1: Generic critical points with charge q = ±1 of a 2D field. (a): Centre. (b): Saddle point. (c): Focus.
(d): Node. (See [191])

which occurs only when the two fields are π/2 out of phase with each other.

So these types of singularities arise when the electric field is linearly polarized, and the
magnetic field is then π/2 out of phase with the electric field, but under the condition
that neither components of the electric field are equal to zero.

5.3. RESTRICTIONS ON THE TYPES OF CRITICAL POINTS

We now know under which circumstances the singularities arise, so a next logical step is
to look at what these singularities look like in the vector field. In order to do this, we first
investigate the allowed topological structures of the field based on the divergence and
rotation of the field.

To start the investigation, we first show that the Helmholtz relation is satisfied to allow
simplifications of the equations. In case of isotropic monochromatic random waves, it
is easy to show that Hz satisfies the Helmholtz relation:

∇2ψ+k2ψ= 0, (5.11)

where ψ is a generic (complex) scalar function For a plane wave this scalar field can be
written as ψ = ae ı(k·r+φ), where k is the momentum vector, ı the imaginary unit, r the
position vector and φ a generic phase offset.

For this plane wave field it holds that the gradient is

∇ψ= ıkψ. (5.12)

We can then generalize the field ψ to an isotropic random wave field, where we have a
sum of plane waves. Each of the components can have different k-vector directions kn ,
a different amplitude an , and phase offset φn , with all vectors having same magnitude:

ψ=∑
n

ane ı(kn ·r+φn ), |kn | = k. (5.13)
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Computing the gradient is straightforward, and yields

∇ψ= ı
∑
n

an kne ı(kn ·r+φn ). (5.14)

Finally, the Laplacian is given by

∇2ψ=∇·∇ψ
= ı

∑
n

an kn ·∇e ı(kn ·r+φn )

= ı
∑
n

an kn · (ıkn)e ı(kn ·r+φn )

=−∑
n

an |kn |2e ı(kn ·r+φn )

=−k2
∑
n

ane ı(kn ·r+φn )

=−k2ψ,

proving that the Helmholtz equation is satisfied for a scalar field consisting of isotropic
random waves, which Hz is known to be [43].

Since a perfect 2D TE-mode is considered, we can write the in-plane electric field com-
ponents in terms of the out-of-plane magnetic field Hz . By using the Maxwell’s equations
and the fact that the electric field components are time-harmonic, we find

∂x Hz = ıωϵEy ,

∂y Hz =−ıωϵEx .

Using the found relation between the electric field components and spatial derivatives
of Hz , the equation for the Poynting vector can be rewritten as

S ∝ℑ(H∗
z ∇Hz ), (5.15)

where we have additionally made use of the identify ℜ(−ı f ) =ℑ( f ), for a complex func-
tion f . Since the Helmholtz relation holds for Hz , it follows that

∇·S∥ =∇·ℑ(H∗
z ∇Hz )

=ℑ(∇H∗
z ·∇Hz +H∗

z ∇2Hz
)

=ℑ(|∇Hz |2 −k2|Hz |2
)

= 0
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So the in-plane divergence has to be zero everywhere.

Similarly, the rotation of the field can be computed:

∇×S∥ = 2ℑ(∂x H∗
z ∂y Hz ) (5.16)

The above deduction has some important consequences for the singularities of the field.
Since the time-averaged Poynting vector is computed via the real part, looking at the
real parts of the above yields two conclusions: the rotation is not necessarily zero, but
the divergence is always zero.

Fig. 5.1 shows the four generic topological configurations that can exist in a general two-
dimensional vector field. By looking at the types of critical points of 2D vector fields, we
can immediately conclude that only saddle points and centre points are allowed to exist,
since nodes and foci have a non-zero divergence [24, 135, 192]. Considering this from a
physical point of view, instead of a mathematical one, the reason for this conclusion is
immediately obvious. If the divergence at some point would not be zero, it would mean
that there are regions where there is a net flow of energy into or out of that region. So for
a region with a positive divergence, there would be a net flow of energy out of that region,
meaning it has to contain a source of energy. And the opposite holds for regions with a
negative divergence. So requiring zero divergence is, in essence, simply a statement of
conservation of energy, and since there are no sources or sinks of energy in the system
under consideration, only saddles and centre points exist.

5.4. RELATION BETWEEN SINGULARITY TYPE AND CHARGE

Since the transverse flow-field is a real 2D vector field, its singularities are mathemat-
ically speaking critical points of the field [193]. The study of critical points and their
classification in vector fields, where the field vanishes, such as the ones shown in Fig. 5.1
is the domain of vector field topology.

The Jacobian matrix, which is the matrix of partial derivatives and essentially a general-
ization of the gradient, is a way to approximate the local velocity field in a linear fashion.
For the flow field S the matrix is defined as

J =∇S =
[
∂x Sx ∂y Sx

∂x Sy ∂y Sy

]
. (5.17)

This Jacobian matrix is then evaluated at a critical point in order to gather information
about the local structure of the field. The Jacobian matrix is a square matrix, and as
such has two (in two dimensions) eigenvectors and eigenvalues associated with it. These
eigenvectors constitute a somewhat abstract way of stating that locally, when you move
in the field along on of those eigenvectors, you will find that the velocity of the field will
be oriented along this eigenvector. And the way you move along these vectors is deter-
mined by the eigenvalues of the Jacobian matrix. For instance, a positive and real valued
eigenvalue λ1 would indicate that moving away from the critical point along eigenvector
1, the velocity is found to be oriented in the direction of the movement, meaning away
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from the critical point. And a negative real value means that the flow is oriented towards
the critical point instead. But eigenvalues are not necessarily real; they can also be a
complex number. In the case where the eigenvalue is a complex number, the real part
retains its properties as defined above, and the imaginary part describes the movement
perpendicular to the eigenvector instead, indicating an element of rotation.

Since the eigenvalues are determined by finding the roots of a second order polynomial
for a 2D field, they can either be both real values, or a pair of complex conjugated values.
In the case of two real valued eigenvalues a distinction can be made between both eigen-
values having the same sign, or opposite sign. When the eigenvalues have the same sign,
that means the vector field is either oriented towards (negative), or away from (positive)
the critical point along both eigenvectors, leading to a node of the field, since locally all
flow is either directed away from, or towards the point. If the signs are opposite instead,
then the vectors are oriented towards the critical point along one axis, but away from it
along the other, leading to a saddle point of the field.

In the case of a complex pair, a distinction has to be made between having a real part, or
not having a real part. In the case of a real part being present, the real parts will always
have the same sign, but their imaginary parts will be opposite in sign. The real parts then
imply a flow either away from, or towards the critical point, just like in the case of a node,
but the complex part leads to an element of rotation in addition. This type of critical
point is a focus. But if the real part is zero, then only the rotational part remains. Then
close to the critical point, there is no flow towards, or away from the point, and only pure
rotation remains, leading to a centre point. It should also be noted here that we make a
distinction between 4 different cases, while in literature often 6 cases are treated instead.
In that case they make the additional distinction between attractive and repulsive nodes
and foci. For our purpose this extra distinction is unnecessary and is thus omitted for
simplicity.

In order to investigate how charge and singularity type are related, we look at the eigen-
values of Eqn. 5.4 at points where magnetic type singularities occur. For this we have
to look at the determinant of the Jacobian matrix of the flow field at the singular points.
Using the definition for the time-averaged Poynting vector, the first term is is found to
be given by

∂x Sx = ∂x (ℜ(Ey H∗
z ))

= 1

2
∂x (Ey H∗

z +E∗
y Hz )

= 1

2

(
Ey∂x H∗

z +H∗
z ∂x Ey +E∗

y ∂x Hz +Hz∂x E∗
y

)
.

Because magnetic type singularities are considered, we can set Hz = H∗
z = 0. However,

derivatives of these terms are not necessarily zero. Using once more that the fields are
monochromatic and time harmonic, this can then be rewritten as
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∂x Sx = 1

2

(−ıω|Ey |2 + ıω|Ey |2
)

= 0.

In a similar way the other thee components for the Jacobian matrix can be computed.
By additionally making use of the definition of the Stokes parameter S3 once more, the
Jacobian matrix is computed to be:

J =
[

0 −ωϵ
2 S3

ωϵ
2 S3 0

]
. (5.18)

Hence we find the determinant of the Jacobian matrix to be

Det (J ) = ω2ϵ2

4
S2

3 ≥ 0, (5.19)

which indicates that the determinant of the Jacobian matrix at a magnetic type singu-
larity is always greater than, or equal to zero. A determinant of zero is a special case
and will only occur during a saddle-node bifurcation event [193], where singularities are
created or annihilated. So for all other cases, we find that it will always have a positive
determinant. Since the determinant of a matrix is equal to the product of its eigenvalues,
saddle points are the only type where the product of its eigenvalues is a negative num-
ber, because their eigenvalues are real valued and with opposite sign. All other possible
eigenvalue pairs lead to a positive number when multiplied. Thus we can conclude that
all magnetic type singularities are centre points of the transverse flow field, and hence
the saddle points have to be comprised of polarization type singularities.

As a corollary of this proof, we can conclude that all magnetic singularities are positively
charged in the flow field. However, recall that magnetic type singularities are simulta-
neously phase singularities of the magnetic field Hz . So they necessarily have to annihi-
late in pairs of magnetic type singularities in order to conserve topological charge in the
magnetic field itself. But topological charge in the flow field is also required to be con-
served, and hence two magnetic singularities cannot simply annihilate with each other,
as they carry the same charge in the flow field. This seemingly impossible dilemma is
solved by considering the criteria of having a zero determinant, which occurs when a
creation/annihilation event takes place. From Eq. 5.4 we see that the determinant only
vanishes when S3 = 0, so when the electric field is exactly linearly polarized. This linear
polarization is also a requirement for polarization type singularities, so by having two
magnetic singularities meet at a point where S3 = 0, we also satisfy the relation for hav-
ing a polarization type singularity. By having two negatively charged polarization type
singularities meet at that point as well, all four can be annihilated without changing the
net topological charge of the flow-field [194].
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3λ

Figure 5.2: Measured topological structure, with the phase of the constructed complex scalar field ξ shown
in false colour. The phase corresponds to the direction of the Poynting vector, with zero being the positive x
direction. Red (Blue) dots are magnetic (polarization) type singularities. A white (black) outline of the dots
corresponds to a positive (negative) charge q .

5.5. EXPERIMENTAL MEASUREMENTS OF THE POYNTING FIELD

In order to experimentally investigate the singularities of the Poynting field, we have per-
formed near-field measurements on the chaotic cavity sample (see Chapter 2) in order to
generate isotropic and monochromatic random waves. We once again use light at free-
space wavelength of 1550 nm, and perform a raster scan over a central 17µm×17µm area
of the cavity with a lateral step-size of (17±2) nm. Fig. 5.2 shows a section of the experi-
mentally determined Poynting field, with the phase of the complex scalar field shown in
false colour. It is of note here that the phase of the complex scalar field is directly related
to the flow direction: the phase represents the angle of the transverse Poynting vector
with respect to the positive x direction (horizontal), and hence represents the direction
of the flow of energy. Furthermore we have plotted the singularities present in this field
with the dots. Here red dots are magnetic type singularities and blue dots are the polar-
ization type singularities, with the white (black) outline indicating a positive (negative)
charge. The black curves (streamlines) serve as a visualization of the flow pattern of
the field. The streamlines reveal the topological structure around the critical points by
showing how the Poynting vector is oriented. For the positive singularities (magnetic
type) we observe that the Poynting vector is oriented in a circle, which correspond to
centre points of the field. For the negative singularities (polarization type) we observe
that from two directions the Poynting vector is oriented towards the singularities, while
in the other two directions it is oriented away from the singularity, which is indicative of
a saddle point.

To gain further insight into the spatial distribution of the singularities that comprise the
general structure of the flow-field, we then determine their pair correlation function
g (r ). Fig. 5.3 (a) shows the pair correlations for all singularities found in our experi-
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(a) (b)

Figure 5.3: Pair correlations for a field confined to the plane. (a) The spatial distribution of magnetic-type
singularities (red) and the overall correlations between all singularities (green). Points are experimental data,
and the solid lines are from numerical calculations. The gray dashed curve depicts the theoretical distribution
for scalar isotropic random waves [24]. Distance is given in units of effective in-plane wavelength λ∥. (b) The
pair correlation g (r ) of the polarization types (blue) and the cross-correlation χ(r ) between the magnetic and
polarization types (orange).

mentally determined flow-field (depicted as green dots) and for only the magnetic-type
singularities with themselves (depicted as red dots). Additionally, the theoretical g (r ) for
isotropic scalar random waves is plotted as a dashed gray curve. The magnetic type sin-
gularities exhibit a clear liquid-like behaviour, consistent with isotropic scalar random
waves. On the other hand, when taking all singularities into account, the overall corre-
lation appears to be much weaker. The correlation only deviates slightly from unity at
short distances, after which it rapidly approaches unity, where unity signifies uncorre-
lated behaviour.

Fig. 5.3 (b) shows the pair correlation of only polarization types with themselves (de-
picted as blue dots) and the cross-correlationχ(r ) of the magnetic and polarization types
(depicted as orange dots), where we consider the pair correlations between two singular-
ities of opposite type. The polarization-type singularities, like the magnetic type, exhibit
a liquid-like correlation, but with a smaller first-peak amplitude. This damped oscilla-
tory behaviour was already observed from the approximate model for the pair correla-
tions of random waves [57]. Such striking difference with the isotropic wave model hints
at a deeper physical distinction between the singularity types. The cross-correlation, in
contrast, shows a strong anti-correlation. Distances where there is a higher probability
to find a singularity of the same type have a lower probability to find one of the opposite
type and vice-versa. This explains why each type exhibits a clear correlation amongst
themselves, while the overall ensemble of singularities does not. We were not directly
able discern a deeper physical mechanism for this weakly correlated behaviour. But,
since the two types of singularities are oppositely charged, it could be some kind of indi-
cation of charge screening for instance [24]. Furthermore, looking at the flow field pat-
terns surrounding the singularities, a case could be made to explain the charge screening
as well. It has been shown in Ref. [135] that all centre points are separated by an arm of
a saddle point. This suggests that it is more likely for a saddle point to be in between two
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x

y

Figure 5.4: Generation of an electric type singularity. The Stokes parameter S3, which is the degree of circular
polarization, is plotted for three different wavelengths. Red dots indicate magnetic type singularities of the
Poynting field, blue dots indicate polarization types and green indicates electric types. The black curves give
the contours where S3 = 0, which is linear polarization. We see that two S3 = 0 curves cross at the point of a
polarization type singularity, leading to an electric type, before splitting again.

centre points. This translates to a polarization type singularity separating two magnetic
type singularities and hence a higher chance of being closer to an oppositely charged
singularity, than a same charged one.

In addition to experimental data we have performed numerical simulations of the flow
field by performing random wave simulations. The simulations generate a random Hz

field, from which we can then compute the associated Poynting vector field for compari-
son with the experimental data. In Fig. 5.3 the numerical results are indicated with lines,
and we observe extremely good agreement between the numerical and experimental re-
sults.

When considering the circumstances under which singularities exist in the flow field,
electric types have been treated as a distinct class. It turns out that they will always
be created and annihilated as polarization types instead Precisely, the electric types are
found where at the point of a polarization type two S3 = 0 curves cross each other. This
can be seen in the following way. As stated in the introduction, locations of linear polar-
ization occur as lines, since they have a one dimensional solution space. When two such
lines cross, the only way to satisfy the requirement for linear polarization to occur along
both curves is by having the electric field vanish identically, leading to the electric type
singularity discussed here. As such they are actually a subset of polarization types with
additional restrictions. In Fig. 5.4 we have plotted the Stokes parameter S3, along with
the singularities of the Poynting field for three separate wavelengths. The black curves
indicate contours where S3 = 0, meaning linear polarization. We can clearly see that over
the course of the three measured wavelengths that two S3 = 0 contours merge, changing
the polarization type (blue dots) into an electric type (green dots), before splitting again
and returning to the polarization type once more.
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(b)

(d)(c)

(a)

Figure 5.5: Simulated instance for fields with varying in-plane wavenumber, which are either inside (k∥ ≤ k0),
or outside (k∥ > k0) the light cone. (a) and (c) show the topological behaviour, with the phase of the scalar field
shown in false colour. Red (Blue) dots are magnetic (polarization) type singularities. A white (black) outline of
the dots are positive (negative) charged singularities. The white arrows in (c) highlight examples of topological
behaviour that was not allowed in (a). (b) and (d) show the spatial distribution of magnetic-type singularities
(red curve) and the cross-correlation (orange curve). The gray curve shows the theoretical distribution for
isotropic random waves. Distance is given in units of effective in-plane wavelength.
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5.5.1. VARYING THE IN-PLANE WAVENUMBER

To further explore the pair-correlation strength, we study the effect of easing the restric-
tion of a discrete in-plane wavenumber numerically. By allowing for a range of in-plane
wavenumbers to build up the field, kz also has to vary. Therefore, the field is in general
no longer invariant along the z-axis, meaning the out-of-plane divergence is not zero
everywhere, which necessitates a non-zero in-plane divergence. Thus, the transverse
flow-field may exhibit singularities with a topology differing from centers and saddles. If
we were to ease the restriction of no divergence, we could expect to find foci and nodes as
well for positive singularities. All negative singularities are still going to be saddle points.

Fig. 5.5 (a) and (c) depict simulations of the transverse flow field for different in-plane
wavenumber ranges, utilizing the same false colour map and streamlines as in Fig. 5.2.
Simulations are done by performing random wave simulations where we additionally al-
low the ensemble of momentum vectors which are used to initialize the plane waves to
have a spread in magnitude in addition to their direction. The presented regions of the
flow field are representative for the global field, the difference in apparent singularity
density is coincidental. Fig. 5.5 (a) shows the field for a range of in-plane wavenum-
bers of 1.35 ≤ k∥/k0 ≤ 1.55, which still lie outside the light cone and hence still rep-
resent bound modes. By observing the streamlines (depicted as the black curves) we
see that they still trace a circle around positive singularities, indicating a centre point,
and saddles around negative singularities. Hence we observe no significant deviations
from centre points and saddle points for the simulated range of wavenumbers, which
is easily explained by looking at the allowed kz values. Even though the magnitudes of
kz are not restricted to a single value, because k∥ > k0, kz has to remain imaginary ev-
erywhere, leading only to evanescently decaying fields, which we know not to transport
energy away from the surface. Hence the real part of Sz remains zero everywhere, and
as a consequence the restriction of ∇∥ ·S∥ = 0 is still fulfilled. When we consider the case
of k∥ ≤ k0, the situation changes drastically. Fig. 5.5 (c) clearly shows that the field struc-
ture around magnetic-type singularities can now also be foci and nodes (recall Fig. 5.1
for their topological structure), with two such points highlighted in the field with white
arrows.

Fig. 5.5 (b) and (d) show the pair correlation function for the magnetic-type singular-
ities (depicted in red), the cross-correlation (depicted in orange), and the theory for
isotropic scalar random waves (gray dashed curve). The fulfilment of ∇∥ · S∥ = 0 for
1.35 ≤ k∥/k0 ≤ 1.55 is reflected clearly when considering Fig. 5.5 (b), where we see that
the correlation for magnetic-type singularities still exhibits a liquid-like behaviour. How-
ever, its oscillations around unity decay more rapidly as compared to isotropic random
wave theory, making for an effectively shorter correlation length given by the size of the
chosen wavenumber spread.

Fig. 5.5 (d) depicts the correlations for k∥ ≤ k0. The correlations rapidly approaches
unity, and do not exhibit any clear oscillations after approximately one wavelength in
distance. Thus, we deduce that the singularities only exhibit extremely short nearest-
neighbour correlations in the k∥ ≤ k0 regime. Since k∥ ≤ k0, kz is real-valued, and hence
∂z Sz ̸= 0. And since the full flow-field is required to be divergence-free due to energy
conservation, we now necessarily have ∇∥ ·S∥ ̸= 0, leading to the topological restrictions
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on the in-plane Poynting vector being lifted. It is also worth mentioning here that since
kz is now real, the field is no longer bound to the plane, and hence we are now looking
at a 2D slice of a 3D field again instead of a 2D field, again highlighting the difference
between a 2D slice of a 3D field and a 2D field.

One thing of note here is that the full range of topological behaviours is only found when
the z-invariance is broken, regardless of confinement. If we assume that the field is z-
invariant, such as in the case of a perfect Bessel beam, then despite having a real valued
kz , we still find ∂z Sz = 0. And as a result, the in-plane Poynting field remains divergence-
free, with the topological restrictions that follow from this.

5.6. CONCLUSIONS

In conclusion, we have investigated the topological properties and spatial distributions
of singularities in the transverse flow-field of random waves, using theory, simulations
and experimental data. Specifically, we demonstrated experimentally that by confin-
ing the wave field to two dimensions, the topological structure of the flow-field is re-
stricted to saddle and centre type singularities. The topological restriction holds for any
z-invariant light field and manifests itself in a liquid-like pair correlation of the magnetic-
type singularities of the flow-field, as well as a distinct cross-correlation between all sin-
gularity sub-species. When loosening the restriction of a single transverse wavenumber,
a significant difference occurs between fields originating from wavevectors fully outside
or inside the light cone. For propagating beams such as a paraxial or non-perfect Bessel
beam, the full range of possible 2D topological behaviour is found. The found results
were corroborated by the change in the pair correlation function of the singularities
for the two different cases. For a propagating field, no pronounced pair correlation is
present. Conversely, the pair correlation function of any confined field is reminiscent
of a liquid-like state, but with the amplitude of the oscillations around unity decaying
faster than in the case of isotropic random waves.





6
MEASURING THE OPTICAL NEAR

FIELD IN DUAL COLOUR

Small things were important. Seconds were small things, and if you heaped enough of
those on top of one another, they became a man’s life.

Towers of Midnight - Robert Jordan6

In this chapter we describe the experimental progress that was made to measure the near
field simultaneously at near infrared frequency and its second harmonic. We show the ad-
justments that have been made to the near-field microscope in order to accommodate two
highly different frequencies, and our choice of optical fibre to use for fabricating near-field
probes. Furthermore, we present the first results of measurements where we have simul-
taneously mapped both IR and visible light in the near field. We show that amplitude,
phase and polarization resolution is maintained for both frequencies. Finally, we end
with a proposed future experiment and recommendations for measuring a fundamental
and its second harmonic in the near field.
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6.1. INTRODUCTION

In our normal day to day life, optics and light is fairly intuitive, especially as long as we
restrict ourselves to the ray optics picture of light. Light propagates and may be reflected
or refracted at an interface (as described by Snell’s law), which is easy to visualize (but
not per se easy to compute [195]). However, as tends to be common in physics, when
we push something to an extreme, this simple view rapidly breaks down [196, 197]. For
instance when we consider small length scales, the ray optics picture of light no longer
holds [18]. Instead, we need to start regarding light as a wave phenomenon. In a similar
vein, this intuitive understanding starts breaking down when the intensity of the light is
significantly increased [198, 199]. At sufficiently high intensities, the light starts modify-
ing the optical properties of the medium in which it propagates, which in turn affects the
propagation of the light [200]. When this occurs we have entered the realm of nonlinear
optics [201].

In general the optical response of a material to an applied electric field can be described
through the polarization P as a power series in the electric field strength E :

P =χ(1)E +χ(2)E 2 +χ(3)E 3 +·· · , (6.1)

where χ(i ) are constants of proportionality and χ(i ) >> χ(i+1). These χ are known as the
nonlinear susceptibilities and are a material property. Under normal circumstances all
terms beyond χ(1)E are negligible in comparison, leaving us with a linear system. Only
when the field strength becomes sufficiently large do nonlinear terms become relevant,
and each progressive term comes with its own possibilities for nonlinear effects. With
the realization of the laser in 1960 by Maiman [202], high electric fields became readily
accessible, and probing nonlinear effects became viable along with it. This in turn has
lead to the Nobel Prize in physics for Bloembergen, Schawlow and Siegbahn for the de-
velopment of laser spectroscopy in 1981 [203]. And many more Nobel prizes have been
awarded for research made possible by lasers such as the realization of Bose-Einstein
condensates (2001) and atomic clocks (1989). The χ(2) term describes effects which in-
volves two photons, and can lead to second harmonic generation (SHG), optical rec-
tification (OR), sum-frequency generation (SFG), and its brother difference-frequency
generation (DFG). These are all the combinations that can occur with two photon pro-
cesses. It is easy to see that from here the amount of possible combinations starts to
increase rapidly when considering more than 2 photons. For 3 photons, effects arise
such as third harmonic generation (THG), four-wave mixing (FWM) and the optical Kerr
effect [201], in which the refractive index of the medium becomes intensity dependent,
leading to self-focusing of the light [200]. Thankfully, more than 3 terms rarely need to
be considered.

Now while theoretically the χ(2) is the first nonlinear term to become relevant, symmetry
may force it to be zero instead. In systems with inversion symmetry, all even-order terms
of nonlinear susceptibilities have to vanish identically [201]. So for instance a simple W1
waveguide, which is just a 2D photonic crystal with one row of holes missing (see Sec-
tion 2.4.1), has a mirror symmetry axis through the centre of the waveguide, and hence
second order nonlinear effects can be discounted.
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(a) SMF28E fibre (b) SM980 fibre

Figure 6.1: Comparison of the throughput of infrared light through two different pulled fibres. (a) shows the
light transmitted through an SMF28E fibre which is single mode for telecom frequencies. (b) shows the light
transmitted through a SM980 fibre, which is single mode for visible frequencies. Both images were taken at
1 ms exposure time and at the same laser power in order to serve as a direct comparison for the throughput
amounts in both fibre types.

But the statement above holds for the structure as a whole, but not necessarily at the
local scale, or at interfaces where this inversion symmetry is broken [204, 205]. Local
differences in structure can break this inversion symmetry on the local scale, allowing
for even-ordered nonlinear effects to occur locally, as long as they add up to zero overall.
For instance in a W1 waveguide, just considering the right hand side of the waveguide
we find no such inversion symmetry, and hence χ(2) effects are not forbidden when only
considering this part. The same then holds for the other half of the waveguide. But when
the two halves are combined, they necessarily add up to zero, as the generated SHG of
each half of space is exactly in counter-phase with each other.

In this chapter we lay the foundation for an experiment that allows us to probe these
local nonlinear effects by measuring a field and its second harmonic at the same time
in the near field in order to investigate where and how these second-harmonic fields are
generated in the sample. We will be showing the results of a proof-of-concept measure-
ment, where we succeeded in measuring both IR and visible light simultaneously. With
that, we prove that it is indeed possible in our system to probe the near field of both
the fundamental and its second harmonic in the same measurement, without having to
make adjustments to accommodate either frequency. Furthermore, we show that we are
able to collect both colours simultaneously, while retaining amplitude, phase and polar-
ization resolution. We include an extensive analysis of the measurement technique, as
well as its limitations. Finally we conclude the chapter with an outline of the experiment
for measuring a pulse and its second harmonic, and how to perform it in the future.
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Figure 6.2: Schematic of the setup used for dual-colour NSOM. Here we make use of two different lasers, that
are coupled into the sample at the same time, and are picked up by the same tip. Afterwards they are split again
via a dichroic mirror and are recombined with their reference paths, and finally sent to their respective detec-
tors. Green lines represent visible light only, red lines represent infrared light only and yellow lines represent
combined visible and infrared light. The labels A, B and C highlight a few important elements for measuring
dual colour, with C being the crucial addition to facilitate it.

6.2. MODIFICATIONS TO THE NEAR-FIELD MICROSCOPE

As a first step towards measuring dual-colour, we need to set the parameters of the ex-
periment, and adjust the near-field microscope to accommodate the collection of two
colours simultaneously. As stated, the ultimate goal is to measure both the fundamental
and second harmonic of a pulse of infrared light at the same time. To this end we want to
demonstrate that we are capable of measuring the fundamental frequency at 1550 nm,
as well as its frequency doubled part at 775 nm simultaneously in the near field. For our
proof-of-concept experiment, we have opted to use two CW lasers. For the IR laser a
Santec tunable semiconductor laser (1480 nm - 1640 nm in air) has been used and as a
visible laser a HeNe laser (632.8 nm in air). Since the wavelength of the HeNe is smaller
than what we ultimately need to measure in the visible, if we can show sensitivity to both
of these wavelengths, then it is clear that 775 nm in air is well within our range as well.

The choice of optical fibre from which the near-field probes are fabricated is crucial. No
commercial fibre is designed to be single mode, and optimised for both IR and visible at
the same time. While there are techniques to extend the single-mode regime to include
both colours of interest, without sacrificing significant throughput, it is in practice hard
to do [206]. Therefore we either utilise a fibre that is optimized for IR, or a fibre opti-
mized for visible. The drawback of choosing the IR fibre is that the core diameter is large
enough to facilitate multiple modes in the visible. As a result of this, the measured elec-
tromagnetic field gets projected onto the multiple modes that are allowed to propagate
through the fibre, instead of only the fundamental. Only under very specific (and un-
realistic) circumstances are we then able to retrieve phase and polarization information
from this signal. On the other hand, when choosing a fibre designed for visible light, the
core diameter is small enough to significantly attenuate the IR signal instead.
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So ideally both colours can be transmitted through the fibre single-mode. To start, we
have investigated the transmission of IR light through a probe made with a fibre designed
for visible light. We have based our choice of optical fibre on the graphs presented in
Figure 2 of ref. [206], where the transmission as function of wavelength and bending
radius is shown for several types of optical fibre. Both 780HP (Fig. 2 (c)) and SM980
(Fig. 2 (d)) are shown to provide throughput across the desired frequency range, while
remaining single mode making them promising candidates. We have opted to use SM980
fibres, since it shows comparable behaviour to the HP780 in the visible range, but is less
strongly attenuated in the infrared regime.

To check that the transmission of IR light through this fibre is sufficient, we couple light
in from the back of the tip (illumination mode), and measure the transmission through
the apex of the tip with a camera setup. In Fig. 6.1 (a) and (b) we show the transmission
of IR light through respectively an SMF28E fibre, which is optimized for 1550 nm, and an
SM980 fibre. Both images were taken at 1 ms exposure time and the same laser power in
order to allow for a fair comparison. From the figure it is clear that the both types of fibre
are able to transmit IR light.

After this verification that our SM980 probes are able to transmit both visible light as well
as IR light with the same probe, the next step is to utilise them to measure both colours
at the same time in the near field. For this experiment modifications to the setup need
to be made to accommodate this feature. Fig. 6.2 shows a schematic of the setup used
to measure in dual-colour, with some areas labelled to refer to in this section. This can
be compared with Fig. 2.2, which shows the near-field microscope setup at its core for
a single colour. With the presence of a dichroic mirror (A), the light is automatically fil-
tered into their respective reference paths at the point where the split between signal and
reference paths is made. So this already made it possible to have two reference branches
active at the same time. The signal path for the two different colours is briefly sepa-
rated to allow for adjustments via waveplates, before being subsequently recombined
and being sent to the sample (B). Both (A) and (B) were already present in the setup, and
hence coupling two different beams into a sample was also already possible. However,
we encounter a challenge when the light gets picked up with the probe: after the tip two
fully disjointed paths are necessary that lead to either the IR or visible detectors. The
pigtailed1 fibre end of the probe can be connected to either the fibre coupler that goes
to the IR detectors, or the fibre coupler that goes to the visible detectors, but not both
simultaneously. So in order to be able to measure both at the same time, the optical
signals of the different frequencies need to be de-multiplexed.

We de-multiplex the signal with a box, consisting of 3 fibre couplers on 3 of the 4 sides,
and a dichroic mirror in the centre (C). With the dichroic mirror after the tip fibre, we can
split the collected light into a visible and an IR channel once again with their respective
detectors. While this is an effective way to re-split the different colours, the resulting
loss in efficiency in the signal path is a disadvantage of this method. Measurements of
incoming and outgoing power indicate both branches having a coupling efficiency of
around 50%.

1Pigtails are a type of connector that we use to couple optical fibres to either another optical fibre or to a fibre
coupler to couple free space light into, or out of the fibre.
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(a)  Microscope image (b)   Near-�eld image

25 um

Figure 6.3: Images of a SiN rib waveguide that is 5 microns across. Figure (a) shows an optical microscope
image of a waveguide taken with an objective at 50 times magnification. (b) shows a waveguide as measured
on the topography channel in our near-field microscope. The lighter region around the centre of the image
signifies the waveguide. Increased voltage means increased height.

Having made the necessary adjustments to the near-field microscope itself, we can now
investigate compatibility with the electronics used to read out the detected signals. Since
both signals are split into two detectors to allow for the detection of the individual elec-
tric field components, four detectors are simultaneously read out. We employ three lock-
in amplifiers from Stanford Research systems (type SR830 DSP), and in addition we em-
ploy one lock-in amplifier from Zurich Instruments (type HF2LI). Unfortunately, that
does mean that either IR or visible has to be read out using two different lock-in ampli-
fiers. In Section 6.5.1 below, we have performed an analysis where we compare the two
different types for both IR and visible light. We have opted to use a separate digital Zurich
Instruments lock-in (type MFLI) for the visible instead of the third Stanford lock-in. So
the IR signal is measured using 2 analogue lock-in amplifiers, while the visible signal is
measured using two digital lock-in amplifiers.

Finally, we require enough data acquisition (DAQ) card slots for all the lock-in output
channels. Ideally, we want to be able to record all possible information on the computer,
but there were not enough slots available to accomplish this. By opting to not store the
DC signals of the detectors we have reduced the amount of required channels to a num-
ber compatible with our DAQ card setup. In order to prevent this necessity of choice in
the future, we make two separate recommendations. Currently we read out both the X
and Y channels of the lock-in, as well as the amplitude channel. By computing the am-
plitude channel in software instead, it no longer needs to be read out directly, freeing up
channels. Alternatively, adding an additional DAQ card circumvents this entirely.
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(a) (b)

(c) (d)

Figure 6.4: Measured amplitude and phase of both IR and visible light simultaneously on one of the detectors
for a SiN waveguide that is 5 microns in width. a (b) shows the measured amplitude of the IR (visible) field
over a length of 15 microns along the waveguide, and 8 microns in the transverse directions. c (d) shows the
measured phase of the IR (visible) field for the same spatial map. The black circles highlight the position of a
phase singularity in each of the phase maps.

6.3. SIMULTANEOUS OBSERVATION OF TWO COLOURS OF LIGHT

IN THE NEAR FIELD

To test the capabilities of our near-field microscope to simultaneously detect light of two
different colours, we make use of a model system. A silicon nitride (Si3N4) rib waveguide
is an ideal candidate for this, because it is transparent for both the desired colours, and
can readily be simulated in order to compare the measured fields with simulations. The
silicon nitride rib waveguide, consisting of a 300 nm thick layer of Si3N4, with the rib
protruding 20 nm above the surface. The Si N has a refractive index of n = 2.04 (2.00)
at λ = 632.8 (1550) nm. This layer sits on a glass substrate with a refractive index of
n = 1.46(1.44) at λ= 632.8(1550) nm. An image of the sample is shown in Fig. 6.3, where
(a) shows an image taken with a regular microscope with an objective at 50 times magni-
fication, and (b) shows what a waveguide looks like in the near field instead. The colour
bar on the near-field image indicates the measured voltage, which corresponds to the tip
position in the direction perpendicular to the surface of the sample, with higher voltage
meaning tip further retracted. Since the tip maintains a constant tip-sample distance,
this map translates to a height topography map: the waveguide can be observed as a
horizontal band of higher voltage in the centre of the image. The width of the rib waveg-
uides on our sample varies between 5 microns for the larger ones (pictured in Fig. 6.3),
to less than 2 microns for the smaller ones. These rib waveguides are able to support
guided modes in both the IR and visible regimes, which we have verified with mode sim-
ulations. These simulations are performed using a 2D mode solver, using a variational
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effective index approximation [207]. For the initial experiment we are interested mainly
in showing the viability of measuring the near field in dual-colour. As such we have opted
to select the larger waveguide size of about 5 microns, which allows for more light to be
coupled into the waveguide and hence provides more signal to be picked up. Since we
are trying to couple beams of two different frequencies into the same waveguide using
the same objective, we are going to encounter chromatic aberrations: the distances from
the objective at which the beam is focused is going to be different for the two colours as
a result of the refractive index of the objective being frequency dependent. Thus we will
never be able to focus both beams onto the waveguide entrance perfectly. The question
is how badly this affects our ability to couple to the sample, which needs to be answered
experimentally.

In Fig. 6.4 we show the results of a measurement, where (a) shows the measured ampli-
tude for one of the lock-in amplifiers for IR light, and (b) shows the measured amplitude
for one of the lock-in amplifiers for the visible light. Fig. 6.4 (c) and (d) show the mea-
sured phase for the same field for respectively IR and visible. One striking feature for the
amplitude images is that for both IR and visible, the highest amplitude is measured to-
wards the sides of the waveguide. This can be understood when considering the modes
that are supported by the waveguide. From the mode simulations, we expect to find the
TE00 and TE01 for both colours, which then form a spatial beating pattern together due to
their slightly different k-values. Since they lie close together in k-space, the wavelength
of the beating pattern will be long range, since the wavelength of the beating is given
by λ = 2π

∆k , with ∆k the difference in k-values of the mode. And indeed, if we measure
over a much longer range along the waveguide, we observe the amplitude shifting from
one side of the waveguide to the other. In the phase images it is also possible to discover
phase singularities once again, showing that we have retained the phase resolution nec-
essary to observe them as well.

This long-range shift of the amplitude between the sides of the waveguide is shown in
Fig. 6.5, where we have measured the fields along the wavelength over a range of 180µm.
While the interference pattern between the TE00 and TE01 modes is the most clear, more
spatial beating patterns can additionally be observed here, most notably a fairly high
spatial frequency beating in the visible measurement. This higher spatial frequency is
indicative of a larger difference in k-values of the mode, which likely stems from inter-
ference between a TE0x and TE1x mode.

The question of how badly chromatic aberrations affect our ability to couple to the sam-
ple has now been answered experimentally: since we are able to observe both frequen-
cies of light in the same waveguide, chromatic aberrations are clearly not strong enough
to meaningfully affect the quality of the signal.

In Figures 6.6 and 6.7 we have plotted the power spectral density of the reciprocal space
at ky = 0 for respectively IR and visible light for a scan range of 60µm along the direc-
tion of propagation. We have taken the ky = 0 cross section, since the x direction is the
direction of propagation in our measurements. As a result kx is the main contributor to
the k-value of the modes. In these plots the light cone is indicated by a vertical dashed
line, and peaks in the spectrum with a black dot. In these graphs, we have filtered out
everything below the light cone, as these cannot be attributed to guided modes.
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Figure 6.5: Measured amplitude both IR and visible light over a length of 180 µm along the waveguide, which
is 5 microns in width. For both we can clearly observe the beating pattern between the TE00 and TE01 modes,
leading to a slow shift of amplitude between the top and bottom of the waveguide. Please note that the colour-
bar indicates a normalized amplitude and that both images are normalized with respect to themselves only,
and no relative amplitude information can be inferred here.

Each peak corresponds to a mode in the measured field. The attribution of the modes
(see labels) has been achieved through mode simulations. Due to the high density of
modes in the reciprocal space for this geometry, especially for the visible light, it is im-
possible to properly resolve all the individual modes in this measurement. For IR we
expect to find 4 modes, whereas we are only able to discern two peaks in the power spec-
trum of Fig. 6.6. In the visible regime, we expect to find 16 modes, while in Fig. 6.7 we are
only able to discern 4 peaks. Finally, in Fig. 6.6 we see signal at positions not indicated by
modes. Since we do not expect to find guided modes there as supported by simulations,
we attribute this to noise.

Caution needs to be taken when drawing conclusions from this graph: if the measure-
ment has not been performed perfectly along the direction of propagation, the modes
will not be exactly at ky = 0 in the Fourier transformed data. Furthermore, modes that
have a transverse profile that is not at a maximum in the centre of the waveguide, such
as the TE01 mode, will not have a peak at ky = 0, and hence might not be detected in this
way. In fact, in a perfect measurement, the TE01 should be zero on the ky = 0 axis and
should not be detected at all in this way. To properly judge a Fourier spectrum and de-
termine its modes, one will always need to consider a 2D selection of reciprocal space,
rather than a 1D slice. But this slice is still useful to gauge where in the k-space the
modes lie, and hence where we can zoom in to properly investigate. And more impor-
tantly, these plots show us that all the modes that we can find lie outside of the light cone.
In other words, this is proof that what we have measured are actually bound modes, and
not free space light. With this measurement we demonstrate our ability to measure both
amplitude and phase for both colours at the same time in the near field on a waveguide
of 5µm in width.
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TE00+TE01

TM00+TM01

Figure 6.6: Power density of the k-space at cross-section ky = 0 for the measured infrared electromagnetic
field on one lock-in amplifier. Measurement has been performed on a waveguide 5 microns across, and for
a scan range of 60 microns along the waveguide. Modes can be clearly seen that lie outside of the light cone,
indicating guided modes. Peaks are too close to resolve, but from the mode simulations we know which modes
are expected to occur.
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Figure 6.7: Power spectral density of the k-space at cross-section ky = 0 for the measured visible electromag-
netic field on the lock-in amplifier. Measurement has been performed on a waveguide 5 microns across, and
for a scan range of 60 microns along the waveguide. The TE0x modes are barely separable, while the TE1x
are simply too close together to be able to resolve them individually. From mode simulations we know which
modes are possibly present, and the peaks are labelled to indicate them. Note that we have denoted the in-
dices of the mode for combined peaks using a comma solely for visual clarity when denoting the range for the
second index.
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6.4. SEPARATION OF THE IN-PLANE ELECTRIC FIELD COMPO-
NENTS

(b)

(c) (d)

(a)

Figure 6.8: Amplitudes of the TE00 modes for IR fields measured and rotated using a Jones matrix for an ellipti-
cal phase retarded for optimal split into Ex and Ey compared with the fields of the simulated mode structure.
a (b) shows the measured (simulated) Ex field, while c (d) shows the measured (simulated) Ey field. Note that
the measured fields are in units of the measured voltage, and the scale differs greatly between the two fields.
For ease of view we have opted to scale the colours along with them. The simulated fields are in arbitrary units
instead.

Having coated probes ideally also allows us to discern the two in-plane electric field
components [62]. By rotating a λ/2 waveplate along with polarizing beamsplitter cube,
it is possible to redistribute the signal over the two detectors according to their polariza-
tion. This allows us to then also separate the measured fields into Ex and Ey (see Section
2.5). In order to check that we are indeed able to separate Ex and Ey , we want to com-
pare the measured fields with the performed mode simulations. For this, we need access
to the individual modes of the measured field. In order to select an individual mode, we
Fourier transform the data and look for peaks in the k-spectrum, which correspond to
the modes of the field. The k-values of the detected peaks are compared to mode simu-
lations of the system in order to discern which peak corresponds to which mode. Then
by selecting only the part of Fourier space corresponding to that particular mode and
performing an inverse Fourier transform on that selection, we retrieve only that mode in
real space.

To aid in this endeavour, zero-padding is used on the data by padding our data array
with additional zeroes around the outside, and serves to more easily distinguish features
from each other in Fourier space. It is a common data analysis tool used in image visual-
isation, and is used in many fields such as biomedical imaging [208, 209]. By introducing
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(b)

(c) (d)

(a)

Figure 6.9: Amplitudes of the TE00 modes for visible fields measured and rotated using the Jones matrix for
optimal split into Ex and Ey compared with the fields for the simulated mode structure. Measurement has
been performed on a waveguide approximately 1.6 microns across. a (b) shows the measured (simulated) Ex
field, while c (d) shows the measured (simulated) Ey field. Note that the measured fields are in units of the
measured voltage, and the scale differs greatly between the two fields. For ease of view we have opted to scale
the colours along with them. The simulated fields are in arbitrary units instead.

more pixels on which to perform a Fourier transform, the pixel size in Fourier space is
lowered, meaning smaller frequency bins. Please note that it is not a way to arbitrarily
improve the k-space resolution of your data. If two frequencies are too close together
to be resolved in the original image that is Fourier transformed, they won’t be resolved
using this technique, as it does not add any data. But it does allow for two peaks that are
already resolvable to be more easily separated.

In addition, a windowing function is needed to avoid a step function when going from
data to zeroes, which would introduce unwanted frequencies in Fourier space Window-
ing functions are generally bell-curve shaped, with highest value in the center, and ta-
pering towards the edge. This function gets multiplied with the data before the zero-
padding occurs, as it should be applied to the data, not the padding. In this way the
amplitude of the data gets reduced towards the edge for a more gradual transition. Two
functions that are most commonly used are Hann and Hamming windows. These two
windows are almost identical, except that Hamming window does not go completely
to zero at the edge, while the Hann window does. We have chosen to use a Hamming
window for our analysis. For an overview and more in depth treatment of windowing
functions, see ref. [210].

The trade-off with using a waveguide 5 micron in width is that allows us to couple more
light into it, but supports many more modes. Additionally, the modes are closer together
in reciprocal space, making them more difficult or even impossible to resolve, and with
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Visible (632.6 nm)
Mode k (µm−1) ne f f

TE00 18.98 1.91
TE01 18.89 1.90
TM00 18.43 1.86
TM01 18.31 1.84
TE10 15.28 1.54
TE11 15.07 1.52

Infrared (1550 nm)
Mode k (µm−1) ne f f

TE00 6.62 1.63
TM00 5.97 1.47

Table 6.1: Overview of all the modes expected for a waveguide 1.6µm in width, with their propagation con-
stants k and effective refractive index ne f f .

it complicates our ability to separate the in-plane electric field components. In order to
reduce the amount of modes present, and allow for better k-space separation, we opt to
measure on a smaller waveguide, which is 1.6µm across instead. For IR this means that
we only have the TE00 and TM00 modes, and for the visible we have also greatly reduced
the multitude of modes present from 16 down to 6. A full overview of all the modes that
we expect to occur in this waveguide can be found in Table 6.1. By utilizing the full scan
range of the system along the propagation direction of 180µm, we maximize our k-space
resolution in order to attempt to resolve all the individual modes. From here we can then
attempt to further reconstruct the Ex and Ey fields based on the known mode profile.

We start with the simplest mode, which is the TE00 mode, for which we know that we
mostly have an electric field whose in-plane component is perpendicular to the direc-
tion of propagation. Since ∇·E = 0 for a TE mode, we expect most of the amplitude to be
perpendicular to the direction of propagation (Ey ), with little light in Ex [211]. In Fig. 6.8
and 6.9 we show the results of rotating the data using the Jones matrix for an elliptical
phase retarder (see Section 2.5) for the selected TE00 mode for respectively IR and visible
fields. For both the IR and the visible measurements (a & c) we observe that Ey is a uni-
form band with the maximum of amplitude at the centre of the waveguide, whereas the
Ex field has a minimum at the centre of the waveguide instead. Please also note the dif-
ference in amplitude between |Ex | and |Ey |. As it should be, the majority of amplitude is
in the |Ey | channel. A clear difference between IR and visible is their lateral confinement,
with visible light being much tighter confined to the waveguide than the IR light is. The
simulated data (b & d) is again generated using a 2D mode solver [207], and the values
that are plotted are at 20 nm above the surface of the sample, which is roughly the height
of the tip during measurements. Keep in mind that in the simulations the waveguide is a
perfect step in height, and hence shows a sharp transition between waveguide and slab,
while in the experiment the measurement does not allow for such a perfect step. This
explains why the amplitude exhibits such a sharp feature at the waveguide edge for the
simulations, which is smoother in the measured data.

By showing that we indeed are able to separate the Ex and Ey fields, we show that in addi-
tion to amplitude and phase resolution, we have also maintained polarization resolution
when performing these dual colour measurements.
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(b)

(c) (d)

(a)

Figure 6.10: Comparison of the amplitudes for the TE11 mode. Measurement has been performed on a waveg-
uide approximately 1.6 microns across. (a) and (b) show respectively the Ex and Ey fields when the Jones
matrix is optimized for this mode. (c) and (d) show respectively the Ex and Ey fields when the Jones matrix is
optimized for the TE00 mode instead. A clear difference can be observed between the two Ex fields.

6.4.1. LIMITATIONS OF THE SEPARATING THE FIELD COMPONENTS

Even though we have shown that we are able to resolve the in-plane electric field com-
ponents, we have found that there are limitations to this. We have found the values for
the parameters used for the Jones matrix that allows us to split the TE00 mode into Ex

and Ey as we expect from simulations. However, while it also works well for TE01, using
the same parameter values do not lead to proper splitting for the TE10 and TE11 modes in
the visible. It is, however, possible to find a different set of parameter values for the TE10

and TE11 mode, that do allow us to split those modes nicely into the expected Ex and Ey .
If our system was able to separate the fields perfectly, we should find one singular set of
values with which we are able to split all modes simultaneously. The fact that this is not
the case means that we are not able to resolve the fields perfectly.

Fig. 6.10 shows the difference between the best split we are able to achieve by a Jones
matrix operation, and using the same matrix as for the TE00 mode for the TE11 mode of
the visible field. Fig. 6.10 (a) and (b) show the result when using the same parameter
values for the Jones matrix used to split the TE00 mode optimally, while 6.10 (c) and (d)
show the result when using the same parameter values for the Jones matrix used to split
the TE11 mode instead. While from (b) and (d) little difference can be observed in the
field for |Ey |, a clear difference can be observed between (a) and (c) for the |Ex | field
instead. In (a) we find a stripe of high intensity in the center, as we expect for the TE11

mode, which is notably absent in (c). This shows that we are able to separate the electric
field components, but are not able to perfectly split them using only one Jones matrix
operation for all the modes.
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There are multiple factors that could lead to an imperfect split in electric field compo-
nents. For instance, the aperture of the tip that we use is not perfectly circular, which
means the two polarization orientations will not be detected equally. We know that, be-
sides the electric field, we additionally detect the magnetic field, where there is a linear
relation between Ex(y) and Hy(x) [81]. From the performed mode simulations we can ad-
ditionally extract the constant of proportionality between the components, which turns
out to be different for different modes: we find Hx = 0.005Ey for T00, whereas we find
Hx = 0.004Ey for T10 instead. This difference in proportionality in combination with
a slightly elliptical aperture of the near-field probe could offer an explanation for the
observed difference in Jones matrix parameters required for the separation of the field
components. Furthermore, if we cannot perfectly separate the modes through Fourier
filtering, then there can be a little mixing from the TE11 into the TE10 mode for instance,
making it impossible to reconstruct a perfect TE10 mode.

6.5. TECHNICAL ANALYSIS

In this section we will be going through some more detailed analysis of the technique
we used to measure two colours at the same time in order to probe how well it performs
compared to normal near-field microscopy, and where its limitations lie.

6.5.1. COMPARISON OF LOCK-IN AMPLIFIERS

We have used two different types of lock-in amplifiers for the measurements presented
in this chapter. We have used three lock-in amplifiers from Stanford Research Instru-
ments (type SR830 DSP) and used the remaining channel on our Zurich Instruments
lock-in amplifier (type HF2LI) for our fourth channel. The other channel on the Zurich
Instruments lock-in amplifier is used for the tuning fork feedback loop, leaving the other
free for the second visible detector. This situation provided a good opportunity to com-
pare the two types of lock-in amplifiers and see if there are differences in the quality of
the measured signal. First of all, while the Stanford instruments are dual-phase analog
lock-in amplifiers, the Zurich Instruments lock-in amplifier is a digital lock-in amplifier
instead. In order to test the difference, we have put the output of the same detector on
both a Stanford and Zurich at the same time, so they receive the exact same signal. Fur-
thermore we ensured that the filter strength and their integration time are equal, so any
difference in output from the lock-in amplifiers is purely due to the lock-ins themselves.

Fig. 6.11 shows the comparison of the two different lock-in amplifiers. Considering fig-
ures 6.11 (a) and (c), we observe that for the IR measurements the difference is negligible,
and both types of lock-in amplifier gave virtually the same output. While there is a dif-
ference in measured voltage between the two, the results are qualitatively the same. As
such, there is no reason to choose one type over the other. However, considering Figures
6.11 (b) and (d) for the visible measurements, we see that there is a significant difference
in the quality of the data that was output from the lock-in amplifier, with the Zurich be-
ing clearly superior. The higher measured voltage in the Stanford LIA is mainly due to
the high intensity events that can be observed as horizontal lines of higher amplitude.
We suspect that this occurs due to the HeNe laser introducing unexpected frequencies
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(a) (b)

(c) (d)

Figure 6.11: Comparison between Stanford instruments and Zurich instruments lock-in amplifiers. Measure-
ment has been performed on a waveguide 5 microns across. (a) and (b) show the measured amplitude fields
for respectively the IR and visible fields with the Stanford LIA. (c) and (d) show the same IR and visible fields for
the Zurich LIA instead. Comparing (a) to (c) we find little difference. However, (b) and (d) show a significant
difference, with the Zurich LIA performing significantly better.

around the lock-in frequency, which additionally are not stable in, but rather change fre-
quency. When this noise overlaps with the lock-in frequency, the noise is detected as
signal, leading to the high intensity events in the measurement. These events are, due
to their unstable nature, not predictable, but on average interfere with the measurement
around 5 times for a measurement of half an hour. The digital nature of the Zurich lock-
in amplifier is better able to filter out these events. We hypothesise this is the case be-
cause there is noise clearly present in the data that gets output from the Stanford that is
not present in the data that is output from the Zurich. As such, we recommend to switch
to a digital lock-in amplifier for further experiments with this type of HeNe laser. From
here on, we have switched out the third analogue lock-in amplifier for another digital
one.

6.5.2. SIGNAL-TO-NOISE RATIO & CROSSTALK

We additionally want to investigate the noise present in the performed measurements.
Specifically we look at noise from the lasers themselves, as well as noise introduced by
the measurements techniques such as background noise on the detectors and electronic
noise. Furthermore we investigate if there is any crosstalk as a result of one frequency of
light being picked up by the detectors meant for the other frequency.

In order to investigate the noise levels in both colour branches, we have repeated the
measurements of the fields, but additionally switched off one of the lasers. This serves
the purpose of determining if there is any IR light being picked up by the visible branch
and vice versa. Finally we have done one measurement with both lasers off, in order to
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Figure 6.12: Line traces of the real part of the field through the centre along the entire length of the waveguide,
and with a zoomed in section. Top shows the trace for the infrared field, and the bottom shows the trace for
the visible field. Both clearly show oscillatory behaviour as the dominant contribution to the measured signal.

measure the background noise level without any crosstalk possibilities. Furthermore,
out of contact measurements were performed in order to see if any free space light could
potentially be picked up. Predictably, some IR light could be detected further away from
the surface, while no visible was picked up. This is easily explained by the fact that the
evanescent tail of the IR light is much larger than that of the visible light, and hence can
be more easily probed from further away.

In order to investigate the possibility of crosstalk between the IR and visible branches,
we have compared measurements where both lasers were switched off with a measure-
ment of only the laser on for the other colour. In this way we can compare a measure-
ment of the "wrong" colour, with the measured background. The dichroic mirrors that
were used are of the type DMLP950T (950 nm cutoff longpass), which reflect visible light,
while transmitting IR light. In the visible regime the dichroic mirror reflects over 99.5%
of the light, but also reflects approximately 2% of the IR light in addition, leading to some
IR light entering the visible branch. And the visible light that gets transmitted through
the dichroic mirror additionally enters the IR branch. For the reference branch of the
setup, the AOM’s are expected to filter out most of that light due to the difference in an-
gles at which light of different frequencies get modulated. In the signal branch however,
the dichroic mirror is what splits the two colours into their respective branches, and
bleed-through light goes straight to the detectors instead. Due to the heterodyne detec-
tion scheme, we expect that this light will subsequently be mostly filtered by the lock-in
amplifiers. Indeed, when we compare the measurements without laser and with the
"wrong" laser only, no significant difference in signal or even noise is found. So we can
conclude from this that our measurements contain no significant contributions from the
opposite colour.
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Ideally we would like to put a number on the signal-to-noise ratio, however, it has proven
to be difficult to do so in practice. So instead we will consider it in a more qualitative way.
By taking a line-trace through the centre of the waveguide, we can investigate the struc-
ture of the measured field. For the IR field, we know that we only expect the fundamental
TE and TM modes, of which the TE mode is dominant. So when looking at the real part
of the measured field, we expect to mainly see a cosine with a certain amplitude and a
well defined frequency. For the visible field, we know that there are a lot more modes
that interfere, and hence the pattern should be more complex as a result. Still we expect
to see mainly cosine behaviour of the fundamental frequency, but with more beating
patterns occurring as a result of the amount of modes.

In Fig. 6.12 we have plotted the line trace for both the IR and the visible field for the full
length of the waveguide, as well as a zoomed in section of the last 15 microns of the mea-
surement to more clearly show the structure on a smaller scale. For the IR field (top), we
clearly see a well-defined cosine behaviour, but with quite a bit of modulation in ampli-
tude. Fitting a cosine to this pattern indeed reveals a main spatial frequency matching
the expected TE00 mode. All the fluctuations on top of it can be attributed to noise. While
the noise is clearly present, the signal is still the most dominant feature present. For the
visible (bottom), we clearly also see cosine behaviour, but with the amplitudes fluctu-
ating more rapidly, which again is not unexpected due to the mode structure. Fitting a
cosine to the clearest pattern indeed reveals that it matches the frequency for the TE10

mode, which we know from the mode analysis to be the dominant mode in the field.
Here again we find that the signal is clearly the dominant contribution to the field, per-
haps even more so than for the infrared. So even though we did not manage to assign a
value to the signal-to-noise directly, it is clear that in both cases the contribution from
the bound modes are the most dominant contributions to the measured fields.

While a clear signal-to-noise ratio cannot readily be determined from this, we can make
an estimate of the noise. The main contribution to the signal is the oscillations from the
mode profile, with the highest frequency being the TE00 mode. So any contributions with
higher frequencies cannot be from a mode, and as such have to be noise contributions.
By considering the fluctuations on top of the oscillation due to this fundamental mode,
we can estimate an amount of noise in the system. For IR, we can clearly observe these
fluctuations, giving us an estimate of a couple percent. For visible, on the other hand,
there is next to no fluctuations detectable on top of the cosine behaviour of the modes,
leading to an estimate of noise being far less than a percent. This difference in noise
amounts between the two colours is also reflected in Fig. 6.6 and 6.7, where we can
consider the contributions to the power spectrum outside of the mode positions: for IR
we observe fluctuations at lower values of kx than expected for modes, which have to be
noise contributions. For visible, while some fluctuations are observable, they are much
lower in amplitude with respect to the mode peaks.
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Figure 6.13: Schematic for the suggested setup for a nonlinear experiment. A high-power pulsed laser at tele-
com frequency is used. Using a BBO a part gets converted to the second harmonic in order to generate a
reference beam. The pulse gets sent via a variable delay stage. Afterwards the picked up fundamental and
its second harmonic are split again via a dichroic mirror and are recombined with their reference paths, and
finally sent to their respective detectors. Green lines represent visible light only, red lines represent infrared
light only and yellow lines represent combined visible and infrared light.

6.6. OUTLOOK

As a final part of this chapter we propose follow-up research to be done to put this dual-
colour technique to use as described earlier, and provide an experimental guide to per-
form this experiment. The goal of this proposed experiment is to couple pulsed light
with centre frequency at telecom wavelength into the waveguide, while also being able
to measure its second harmonic at the same time, allowing us to observe the generation
of second harmonic, alongside its fundamental frequency. This allows us to study where
the second harmonic light is generated, and correlate the second harmonic fields and
their singularities with the optical structure of the fundamental field.

For this experiment, we propose the use of a pulsed laser system with a centre frequency
at telecom frequency. We aim at a repetition rate of around 120 kHz in order to have
enough peak power to induce non-linearities in the sample. Neutral density filters can
be placed to reduce this power if necessary. This pulse is then sent into a simple rib
waveguide, where we are then able to measure the fundamental field and the second
harmonic that is generated inside of the sample at the same time, with time resolution.
For the sample, we prefer to use something that can support both IR and visible fre-
quencies. For this reason we propose a SiN rib waveguide, similar to what was used in
the initial experiment. Because it is transparent for both the fundamental and its second
harmonic, as well as the ridges of the waveguide locally breaking the inversion symme-
try, it makes for a good candidate to perform the experiment. However, as a follow-up
to this, one can think of more intricate structures, such as topological structures or plas-
monic nanowires for further investigation.
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Now in order to detect both colours at the same time, we need to have a reference pulse
for both the IR and the visible, that additionally arrive at the same moment as well. In
order to make this happen, we send the initial pulse through a barium borate (BBO)
crystal, which is able to efficiently convert a part of the pulse into a frequency doubled
pulse, which we can use for the visible part of the reference branch. The BBO for dual
colour reference generation is another reason that a higher peak power for the pulse is
desirable. This allows us to have light in both the IR and visible branches of the refer-
ence paths, while retaining the coherence of the pulse, which is needed to employ our
heterodyne detection scheme in order to detect light at both frequencies. The second
harmonic then gets filtered out of the signal path by simply blocking the path the visible
light would take into the signal branch. This can be accomplished by either introducing
a physical block in the path between where the visible section is split to reference and
where it gets recombined with the IR signal path, or by introducing a filter such as a 1
µm longpass filter in the signal path. A schematic for the proposed setup is shown in
Fig. 6.13. The main changes with regard to the previous schematic is the addition of a
second delay stage, the BBO crystal and the box after the tip to separate the two colours.

An additional benefit of the pulsed laser setup is that it also enables us to measure with
time resolution, allowing us to follow the evolution of the fields in time. In order to do
this, one needs to take care that the path lengths of signal and references are equal to
within the coherence time of the laser used, including taking into account that the ef-
fective path length of free space and fibre are different. This is paramount, as the pulses
that travel through reference and signal need to have coherent overlap in order to gener-
ate the beating necessary for heterodyne detection. Normally (see Chapter 3) we ensure
that we can create overlap between signal and reference via a variable delay stage. How-
ever, in order to compare the fundamental field and its second harmonic, we ideally
would like to compare them with respect to the same reference time. In other words, at
a relative delay of zero with respect to each other. This can only be accomplished if we
introduce a tunable path length in either one of the reference branches. Up until now it
has been sufficient to tune only the signal path in order to get it equal to the reference
path, but since both reference branches are now in use simultaneously, they need to be
equal to the other reference branch as well, and for this a tunable length needs to be in-
troduced. We recommend to carefully measure the lengths of both reference branches
individually to determine the best candidate for an additional tunable length. In the
schematic the delay stage is added to the visible reference path, but that is for illustra-
tive purposes, not meant as a direct recommendation. Alternatively, simple glass blocks
can also be introduced into a branch in order to generate more effective path lengths,
as needed. Keep in mind that the introduction of the splitter box also introduces more
length on the signal side, thus the setup as is will have more length in signal compared
to the reference branches. The recommendation is to place the splitter box in a way that
the lengths from tip to box, and box to detectors is kept to a minimum.
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6.7. CONCLUSION

We have modified our near-field microscope setup to allow for measuring two colours at
the same time by utilising a box with a dichroic mirror to split the two different colours
that are picked up by our near-field probe. By picking a suitable fibre, which is single
mode for both colours, from which to craft our near-field probes, we are able to collect
the light of both frequencies with the same probe. With this, we are able to measure both
the amplitude and phase of both colours simultaneously. Then by filtering for individual
modes in Fourier space, and using a Jones matrix to correct the polarization rotation, we
are able to show that polarization resolution is also maintained, to a certain extent. Fur-
thermore, there seems to be little to no crosstalk between the two colours. This means
that, at the cost of some throughput, we are able to perform a near-field measurement
in the two-colour regime without having to sacrifice information.
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CONCLUSIONS

As a child I considered such unknowns sinister. Now, though, I understand that they bear
no ill will. The universe is, and we are.

Solanum - The Outer Wilds7

In this concluding chapter we highlight once more all the main results of the thesis. In
addition, we also show the findings that are not yet understood and would make for in-
teresting follow-up research. Finally, for all chapters we make recommendation of what
topics could be explored next.
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This thesis investigates the world of optics at the sub-wavelength scale, with a focus on
understanding the behaviour of singularities that can arise in the electromagnetic field.
Chapters 3, 4, and 5 have been fully devoted to deepening our understanding of these
infinitesimally small entities, which occur generically in structured 2D light. Chapter
6 does not directly concern itself with singularities, being centered around improving
the capabilities of the near-field microscope instead. However, the end game for this
novel technique lends itself well for more research into singularities as well. It includes
measurements of both varying the frequency of the used light (Chapter 5), as well as
time-resolved measurements in order to observe the time dynamics of the singularities
(Chapter 3). The experimental studies of singularities are supplemented with a chapter
fully devoted to a numerical study (Chapter 4). Here we summarize the main results
obtained in this thesis, as well as for each subject highlight some lines of potential follow-
up research.

In Chapter 3 we have further explored the analogy between optical phase singularities
and real charged particles. By utilising non-monochromatic field, we are able to observe
the evolution of a two-dimensional random light field in time, and track the phase sin-
gularities in time as well. And with it, we are able to investigate their movement and
their diffusive properties. We have revealed that phase singularities in random light do
not diffuse linearly, but rather exhibit anomalous diffusion, specifically sub-diffusive be-
haviour. Additionally, this diffusive behaviour is different when considering faithful or
unfaithful singularities. Furthermore, the lifetime of the phase singularities can exhibit
a complex decay pattern, which differs from a simple exponential decay. Again this de-
cay is different for faithful and unfaithful singularities. In this thesis we have restricted
the investigation to the diffusion and lifetime of phase singularities of the out-of-plane
magnetic field component. For future research it would be interesting to extend this
investigating to the diffusive behaviour of other types of singularities as well, such as
C-points or the Poynting singularities discussed in Chapter 5.

In Chapter 4 we have numerically investigated the melting of optical phase singularity
lattices. Having three plane waves interfering in two dimensions will always lead to a
trigonal lattice structure (when accounting for singularity charge). By introducing more
sources in a continuous way, we have shown that we can melt this lattice structure, while
keeping the spatial symmetries intact. We show that this can only happen when the
phase of the additional waves is allowed to fluctuate. However, the model that was used
has also shown a non-trivial dependence on the number of sources that were introduced,
and this dependence is as of yet not well understood. This warrants more research into
the model, as well as other potential models that can be used such as the stochastic
broadening model discussed briefly in Appendix A. Additionally, we have restricted our-
selves to investigating the case of three-fold symmetry only. For future investigations,
we recommend considering the case of four through seven initial wave positions, as it
fundamentally changes the symmetry inherent to the system.

In Chapter 5 we have investigated the optical singularities that can appear in the trans-
verse Poynting vector field. Since the Poynting vector is comprised of both electric and
magnetic field components, the origin of the singularities is more complex than for a
complex scalar field. We have shown that the singularities arise from either zeros of
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the out-of-plane magnetic field component, or from the in-plane Poynting vector be-
coming fully imaginary. The magnetic type singularities exhibit a liquid-like correlation,
whereas the full ensemble of singularities exhibits a near-isotropic distribution instead.
One result that remains unexplained in this study is the occurrence of the dampening be-
haviour for the g (r ) of the polarization-type singularities and warrants further research.
As a future objective here it would be interesting to perform the same analysis done for
time-resolved data instead. While we do not expect different topological structures in
this case, perhaps other unforeseen changes with respect to monochromatic light could
occur. In addition, this could be combined with a study of the diffusive behaviour of
singularities of the flow field as well, connecting different investigations of this thesis.

In Chapter 6 we have pushed the capabilities of the near-field microscope, by enabling
the simultaneous observation of telecom frequency light and visible light in the near
field. We have shown that we are capable of performing this measurement without hav-
ing to sacrifice either phase or polarization resolution. In the future, this will allow us
investigate local non linear effects by being able to observe the fundamental field, as
well as its second harmonic simultaneously. In this way we can study how and where
the second harmonic light is generated inside of a sample. For future research, we pro-
posed an experiment that would allow for investigating this with time-resolution. In this
experiment, by using a simple silicon nitride rib waveguide, we want to observe the lo-
cal generation of second harmonic light. Since the waveguide is mirror symmetric, the
global second harmonic light is zero, but not necessarily locally. In addition, this allows
us to further study optical singularities by investigating if there is a relation between the
singularities in the fundamental field and the singularities in the second harmonic field
that are (locally) created.

The main motivation for the performed research is one of curiosity, rather than appli-
cation driven, with the main aim being to increase our understanding of the behaviour
of light and its singularities at the nanoscale. But despite it being fundamental research,
there is still potential for applications. Obtaining a better understanding of the spatial
distribution of singularities and how to manipulate it allows for the engineering of singu-
larity structures, such as the lattices discussed in Chapter 4. Especially since phase sin-
gularities are associated with orbital angular momentum of light. Being able to control
the distribution of singularities becomes even more exciting when extending the tech-
niques to for instance C-points. Since C-points carry spin angular momentum [212],
they could potentially be using in particle trapping schemes for chiral particles [213].
Having an on-chip way to trap, and possible manipulate these chiral particles by only
using light could pave the way for novel biosensing applications [214].





A
SUPPLEMENTARY INFORMATION TO

CHAPTER 4

A.1. STOCHASTIC BROADENING

Besides the angular broadening case discussed in Ch. 4, there are more possible ways
of introducing this broadening. And in order to further our understanding of the melt-
ing of singularity lattices more options should be investigated. One such different way is
what we have dubbed stochastic broadening. This method is analogous to the angular
broadening case one, but introduces additional variables. The Gaussian envelopes for
the phase and amplitudes with a FWHM of respectively ∆θa and ∆φ remain. But now
instead of the N sources being equally distributed around the ring in reciprocal space,
their positions are additionally randomly selected from a Gaussian distribution with a
width of ∆θp . Furthermore, we introduce Nd points per symmetry point. In this way,
the likelihood of the additional sources being close in space to the original symmetry
point is high, and the chance of finding a point diminishes further away from the sym-
metry points. As a result, we break the symmetry that is inherent to the grid method of
the angular broadening case. If symmetry is not a significant factor for the results that
were obtained from the angular broadening case, then we expect that the angular and
stochastic broadening give the same results when taking enough samples for certain re-
gions of parameter space.

Analogously to the angular broadening results, we now consider the results for the stochas-
tic broadening case. We look for the different zones that were identified before, and see
if the same results as for the angular broadening case can be observed. If the two meth-
ods are indeed compatible, we expect to roughly find the same structure. In Fig. A.2 we
again show the heat map for the local vortex density, similar to the angular broadening
case shown in Fig. 4.12. We show a grid of heat maps generated for the fixed values
∆θp = 0.3 and Nd = 720, and variable ∆θA and ∆φ. Again we observe a similar structure
as with the angular broadening case before, and the three different zones of solid-like,
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Δφ

Δθa

(a)   k-space distribution (b)   phase distribution

Δθp

Figure A.1: Schematic illustration of the stochastic broadening case for N = 3 symmetry points and Nd = 8
waves per symmetry point. The position of these waves is randomly selected from a Gaussian distribution
with FWHM ∆θp . This distribution is indicated by the dashed curves. The Nd waves are given an amplitude
An based on their position on the circle, and is determined by the angular distance to a source point via a
Gaussian distribution with a tune able FWHM of ∆θA , which is given by the blue curve in the circle. The
phase difference of each of these waves with respect to the closest source point is also drawn from a Gaussian
distribution with a FWHM of ∆φ.

liquid-like and spoke-like appear at roughly the same positions as before: the spoke pat-
terns emerging for low values of phase and angular broadening, the lattice being kept
intact without angular broadening, and melting occurring when both values are suffi-
ciently large. As such, we observe qualitatively the same behaviour for both methods of
broadening. Furthermore, the spoke pattern is not an artefact of the method, since it
appears in both methods.

A.1.1. CONVERGENCE AND DEPENDENCE ON Nd

For angular broadening we have observed that the amount of sources that is used has
a non-trivial effect on the state of the system. Furthermore, it seems that for increasing
number of sources the state did not converge for the simulated amount of waves. So this
also warrants checking with stochastic broadening if the system does seem to converge.
As such, it is natural to investigate the effect of increasing number of points Nd on the
melting indicators for this method of broadening.

We have fixed the values of ∆θa = 0.6 and ∆θp = 0.3 and determined the melting indi-
cators as a function of ∆φ for varying values of Nd in order to observe the influence of
this parameter on the melting indicators. In Fig. A.3 the behaviour of the coordination
number NC is depicted. We clearly observe that the melting indicator does appear to
converge to a common behaviour where the value of the melting indicator no longer de-
pends on Nd . We see that the behaviour still continuously changes for Nd ≤ 500, after
which it becomes consistent. The only exception here appears to be Nd = 800 at the
∆φ= 0.2 data point.
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Figure A.2: Heat maps of local vortex densities, separated by white straight lines for the stochastic broadening
case. Each block is a separate heat map generated for the parameters. Each heat map has a constant value of
Nd = 720 waves per source point and a probability width of ∆θp = 0.3 and is averaged over 100 iterations.
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Figure A.3: Behaviour of the coordination number Nc as a function of the phase spread ∆φ for the stochastic
broadening case, with a fixed ∆θp = 0.3 and ∆θa = 0.6. The different coloured lines indicate different amount
of waves used to simulate the fields as indicated in the legend. We can see that for increasing number of waves
launched per source the transition converges to a certain value of the phase spread, indicating that this system
does converge.
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Figure A.4: Comparison of the heat maps for the local vortex density between (a) angular broadening with
Nθ = 720 and (b) stochastic broadening with Nd = 240 and a uniform distribution signifying the limiting case
of ∆θp >> 1.

A.1.2. CONSISTENCY WITH ANGULAR BROADENING

We consider different models in order to explore different aspects of melting and what
seems to induce it. But at their core, they are based on the same principle of broaden-
ing a single source in a continuous manner. The assumption is that for certain regions
in the parameter space for angular and stochastic broadening, they should converge to
the same behaviour. For instance, if we take the amplitude and probability distribution
exactly equal for stochastic broadening, we should find the same behaviour for large
enough grid points and source points. And if we restrict the amplitude distribution while
simultaneously letting the probability distribution converge to a uniform one, we should
retrieve angular broadening once again. After all, it is the amplitude distribution that de-
termines which region of k-space is accessible. Here we investigate if the two methods
of broadening are indeed compatible when considering these edge cases.

We consider the case where ∆θa >> 1, which is functionally a uniform distribution. In
this case, we expect that the waves will be launched fairly uniformly around the ring.
Taken enough iterations, this should average to be the same case as having them equidis-
tributed over the ring. But since we still have the amplitude envelope, we expect that the
distribution will be similar to that of the angular broadening case, since that method re-
lies on a uniform distribution around the ring. In order to investigate this case, we have
set the distribution to be uniform over the circle.

Since the angular broadening case has been evaluated using 720 sources, and we launch
N∗ND = 3∗ND waves total with the stochastic method, we have opted to run the simula-
tion using ND = 240 waves, as an attempt at reproducing the angular broadening case as
closely as possible. In Fig. A.4 we compare the heat maps for the local vortex density for
the (a) angular and (b) stochastic cases. There are immediately obvious differences, such
as the spoke pattern being much less pronounced in the stochastic case, and the upper
left quadrant staying more spoke-like for the stochastic case for slightly higher values
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of ∆φ. Nevertheless, the progression of the zones is qualitatively similar in both cases
and the difference between the obvious spoke pattern for continuous and less obvious
for stochastic can reasonably be explained through the symmetry that is inherent to the
angular broadening case, which is exactly what we attempt to avoid using the stochastic
case.

So while the two methods may not be an exact match, the general structure is highly
similar, over the same scales of the variables. Furthermore, we also do not expect them
to be exactly the same. The conversion between equidistributed grid points for the an-
gular broadening case, and the randomly selected positions for the stochastic case do
not immediately mean a one-to-one conversion between the amount of sources in both
methods. Furthermore, we have already observed that the amount of sources for the
angular broadening case matters. As such we conclude from this that while we cannot
readily reproduce the angular broadening case from the stochastic case exactly, we con-
clude that the two methods are compatible.

A.2. CONVERGENCE OF THE MELTING INDICATORS AS FUNC-
TION OF AMOUNT OF SOURCES FOR ANGULAR BROADEN-
ING

In Section 4.5.1 we have observed that the coordination number does not appear to con-
verge for increasing amount of waves N within the simulated range. For completion, we
show here the behaviour for the remaining melting indicators as well.
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Figure A.5: Behaviour of the excess entropy s2 as a function of the phase spread∆φ for the angular broadening
case, with a fixed ∆θ = 0.08.
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Figure A.6: Behaviour of the position of the first (non-zero) minimum r (gmi n ) as a function of the phase spread
∆φ for the angular broadening case, with a fixed ∆θ = 0.08.
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Figure A.7: Behaviour of the ratio R as a function of the phase spread ∆φ for the angular broadening case, with
a fixed ∆θ = 0.08.
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Figure A.8: Behaviour of the rotational invariants qn as a function of the phase spread ∆φ for the angular
broadening case, with a fixed ∆θ = 0.08.
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