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Preface to the First Edition

While teaching a course on fracture mechanics at Delft University of Technology we
discovered that although there are a few excellent textbooks, their subject matter covers
developments only up to the early 1970s. Consequently there was no systematic treat-
ment of the concepts of elastic-plastic fracture mechanics. Also the description of frac-
ture mechanics characterisation of crack growth needed updating, especially for sus-
tained load fracture and unstable dynamic crack growth.

In the present textbook we have attempted to cover the basic concepts of fracture
mechanics for both the linear elastic and elastic-plastic regimes, and three chapters are
devoted to the fracture mechanics characterisation of crack growth (fatigue crack
growth, sustained load fracture and dynamic crack growth).

There are also two chapters concerning mechanisms of fracture and the ways in
which actual material behaviour influences the fracture mechanics characterisation of
crack growth. The reader will find that this last topic is treated to some way beyond that
of a basic course. This is because to our knowledge there is no reference work that sys-
tematically covers it. A consequence for instructors is that they must be selective here.
However, any inconvenience thereby entailed is, we feel, outweighed by the importance
of the subject matter.

This textbook is intended primarily for engineering students. We hope it will be use-
ful to practising engineers as well, since it provides the background to several new de-
sign methods, criteria for material selection and guidelines for acceptance of weld de-
fects.

Many people helped us during preparation of the manuscript. We wish to thank par-
ticularly J. Zuidema, who made vital contributions to uniform treatment of the energy
balance approach for both the linear elastic and elastic-plastic regimes; R.A.H. Ed-
wards, who assisted with the chapter on sustained load fracture; A.C.F. Hagedorn, who
drew the figures for the first seven chapters; and the team of the VSSD, our publisher,
whose patience was sorely tried but who remained unbelievably co-operative.

Finally, we wish to thank the National Aerospace Laboratory NLR and the Boiler
and Pressure Vessel Authority ‘Dienst voor het Stoomwezen’ for providing us the op-
portunity to finish this book, which was begun at the Delft University of Technology.

H.L. Ewalds
R.J.H. Wanhill

September 1983
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Preface to the Second Edition

In 1991, the fifth reprint of the first edition of the textbook “Fracture Mechanics”, by
H.L. Ewalds and R.J.H. Wanhill, was published. Obviously the field of fracture me-
chanics has developed further since that time. A new edition was needed. The task fell
mainly to the new authors, M. Janssen and J. Zuidema, both in the Department of Mate-
rials Science at Delft University of Technology, with assistance by R.J.H. Wanhill, of
the National Aerospace Laboratory NLR. The original first author, H.L. Ewalds, indi-
cated that he no longer wished to be involved with this textbook. We respect his deci-
sion, and thank him for his major contribution to the First Edition, which has been very
successful.

This second edition is the result of numerous revisions, updates and additions. These
were driven by the ongoing development of fracture mechanics, but also by teaching the
course on fracture mechanics at Delft University of Technology. The fracture mechanics
parameters K, G and J are now treated in a more basic manner. Test methods for J. and
for crack arrest toughness are updated. The development of failure assessment based on
elastic-plastic fracture mechanics is reflected in a comprehensive treatment. On the
subject of subcritical crack growth more attention is paid to the important topic of the
initiation and growth of short fatigue cracks.

Throughout the book some paragraphs are typeset in a smaller font. This text is in-
tended to provide additional background information on certain subjects, but is not con-
sidered essential for a basic understanding.

We would like to acknowledge the assistance of colleagues in preparing this second
edition. With critical reading and profound discussions A.R. Wachters helped consid-
erably in drawing up the part on the J integral. G. Pape did the preparatory work neces-
sary for updating the chapter on dynamic fracture. A. Bakker contributed to the treat-
ment of the R6 failure assessment procedure. Finally, A.H.M. Krom provided useful
comments and suggestions on various subjects.

The authors wish to thank our publisher, J.E. Schievink of the VSSD, for his encour-
agement and co-operation in creating this new edition.

M. Janssen
J. Zuidema
R.J.H. Wanhill

March 2002
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1
An Overview

1.1 About this Course

This course is intended as a basic grounding in fracture mechanics for engineering
use. In order to compile the course we have consulted several textbooks and numerous
research articles. In particular, the following books have been most informative and are
recommended for additional reading:

e D. Broek, “Elementary Engineering Fracture Mechanics”, Martinus Nijhoff (1986)
The Hague;

e J.F. Knott, “Fundamentals of Fracture Mechanics”, Butterworths (1973) London;

e Richard W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Mate-
rials”, John Wiley and Sons (1988) New York;

e T.L. Anderson, “Fracture Mechanics, Fundamentals and Applications”, CRC Press
(1991) Boston.

Four international journals are also recommended:

e Fatigue and Fracture of Engineering Materials and Structures;
¢ International Journal of Fatigue;

e International Journal of Fracture;

e Engineering Fracture Mechanics.

As indicated in the table of contents the course has been divided into five parts. Part
I, consisting of this chapter, is introductory. In Part II the well established subject of
Linear Elastic Fracture Mechanics (LEFM) is treated, and this is followed in Part 111 by
the more recent and still evolving topic of Elastic-Plastic Fracture Mechanics (EPFM).
In Part IV the applicability of fracture mechanics concepts to crack growth behaviour is
discussed: namely subcritical, stable crack growth under cyclic loading (fatigue) or
sustained load, and dynamic crack growth beyond instability. Finally, in Part V the
mechanisms of fracture in actual materials are described together with the influence of
material behaviour on fracture mechanics-related properties.

1.2 Historical Review

Strength failures of load bearing structures can be either of the yielding-dominant or
fracture-dominant types. Defects are important for both types of failure, but those of
primary importance to fracture differ in an extreme way from those influencing yielding
and the resistance to plastic flow. These differences are illustrated schematically in fig-
ure 1.1.
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For yielding-dominant failures the significant defects are those which tend to warp
and interrupt the crystal lattice planes, thus interfering with dislocation glide and pro-
viding a resistance to plastic deformation that is essential to the strength of high strength
metals. Examples of such defects are interstitial and out-of-size substitutional atoms,
grain boundaries, coherent precipitates and dislocation networks. Larger defects like in-
clusions, porosity, surface scratches and small cracks may influence the effective net
section bearing the load, but otherwise have little effect on resistance to yielding.

FAILURE OF STRUCTURES

YIELDING - DOMINANT FRACTURE - DOMINANT

® GENERAL PLASTICITY ® HIGHLY LOCALISED PLASTICITY
® SIGNIFICANT DEFECTS ARE ® SIGNIFICANT DEFECTS ARE

THOSE CONTROLLING ESSENTIALLY MACROSCOPIC,

RESISTANCE TO PLASTIC E.G..

FLOW, E.G.: — WELD FLAWS

— INTERSTITIALS — POROSITY

— GRAIN BOUNDARIES — FORGING LAPS

— PRECIPITATES — FATIGUE AND STRESS

— DISLOCATION NETWORKS CORROSION CRACKS

Figure 1.1. Types of structural failure.

For fracture-dominant failures, i.e. fracture before general yielding of the net section,
the size scale of the defects which are of major significance is essentially macroscopic,
since general plasticity is not involved but only the local stress-strain fields associated
with the defects. The minute lattice-related defects which control resistance to plastic
flow are not of direct concern. They are important insofar as the resistance to plastic
flow is related to the material’s susceptibility to fracture.

Fracture mechanics, which is the subject of this course, is concerned almost entirely
with fracture-dominant failure. The commonly accepted first successful analysis of a
fracture-dominant problem was that of Griffith in 1920, who considered the propagation
of brittle cracks in glass. Griffith formulated the now well-known concept that an exist-
ing crack will propagate if thereby the total energy of the system is lowered, and he as-
sumed that there is a simple energy balance, consisting of a decrease in elastic strain en-
ergy within the stressed body as the crack extends, counteracted by the energy needed to
create the new crack surfaces. His theory allows the estimation of the theoretical
strength of brittle solids and also gives the correct relationship between fracture strength
and defect size.



1. An overview 5

The Griffith concept was first related to brittle fracture of metallic materials by Zener
and Hollomon in 1944. Soon after, [rwin pointed out that the Griffith-type energy bal-
ance must be between (i) the stored strain energy and (ii) the surface energy plus the
work done in plastic deformation. Irwin defined the ‘energy release rate’ or ‘crack
driving force’, G, as the total energy that is released during cracking per unit increase in
crack size. He also recognised that for relatively ductile materials the energy required to
form new crack surfaces is generally insignificant compared to the work done in plastic
deformation.

In the middle 1950s Irwin contributed another major advance by showing that the
energy approach is equivalent to a stress intensity (K) approach, according to which
fracture occurs when a critical stress distribution ahead of the crack tip is reached. The
material property governing fracture may therefore be stated as a critical stress intensity,
K., or in terms of energy as a critical value G..

Demonstration of the equivalence of G and K provided the basis for development of
the discipline of Linear Elastic Fracture Mechanics (LEFM). This is because the form of
the stress distribution around and close to a crack tip is always the same. Thus tests on
suitably shaped and loaded specimens to determine K, make it possible to determine
what cracks or crack-like flaws are tolerable in an actual structure under given condi-
tions. Furthermore, materials can be compared as to their utility in situations where
fracture is possible. It has also been found that the sensitivity of structures to subcritical
cracking such as fatigue crack growth and stress corrosion can, to some extent, be pre-
dicted on the basis of tests using the stress intensity approach.

The beginnings of Elastic-Plastic Fracture Mechanics (EPFM) can be traced to fairly
early in the development of LEFM, notably Wells’ work on Crack Opening Displace-
ment (COD), which was published in 1961. In 1968 Rice introduced an elastic-plastic
fracture parameter with a more theoretical basis: the J integral. Although both COD and
J are now well established concepts, EPFM is still very much an evolving discipline.
The reason is the greater complexity of elastic-plastic analyses. Important topics are:

o the description of stable ductile crack growth (tearing),
o the development of failure assessment methods that combine the effects of plasticity
and fracture.

As opposed to using the above-mentioned global fracture mechanics parameters,
fracture problems are also increasingly being tackled by means of local fracture criteria.
Here the mechanical conditions that actually exist in the crack tip region are being de-
termined and are being related to the material properties.

1.3 The Significance of Fracture Mechanics

In the nineteenth century the Industrial Revolution resulted in an enormous increase
in the use of metals (mainly irons and steels) for structural applications. Unfortunately,
there also occurred many accidents, with loss of life, owing to failure of these struc-
tures. In particular, there were numerous accidents involving steam boiler explosions
and railway equipment.
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Some of these accidents were due to poor design, but it was also gradually discov-
ered that material deficiencies in the form of pre-existing flaws could initiate cracking
and fracture. Prevention of such flaws by better production methods reduced the number
of failures to more acceptable levels.

A new era of accident-prone structures was ushered in by the advent of all-welded
designs, notably the Liberty ships and T-2 tankers of World War II. Out of 2500 Liberty
ships built during the war, 145 broke in two and almost 700 experienced serious fail-
ures. Many bridges and other structures also failed. The failures often occurred under
very low stresses, for example even when a ship was docked, and this anomaly led to
extensive investigations which revealed that the fractures were brittle and that flaws and
stress concentrations were responsible. It was also discovered that brittle fracture in the
types of steel used was promoted by low temperatures. This is depicted in figure 1.2:
above a certain transition temperature the steels behave in a ductile manner and the en-
ergy required for fracture increases greatly.

A

LOW AND MEDIUM STRENGTH
STEELS (AS USED IN WELDED
STRUCTURES)

HIGH STRENGTH STEELS
AND TITANIUM ALLOYS

FRACTURE ENERGY

HIGH STRENGTH ALUMINIUM
ALLOYS

Y

TEMPERATURE

Figure 1.2. Schematic of the general effect of temperature on the fracture energy of structural
metals.

Current manufacturing and design procedures can prevent the intrinsically brittle
fracture of welded steel structures by ensuring that the material has a suitably low tran-
sition temperature and that the welding process does not raise it. Nevertheless, service-
induced embrittlement, for example hydrogen embrittlement in the petrochemical in-
dustries, irradiation effects in nuclear pressure vessels and corrosion fatigue in offshore
platforms, remains a cause for concern.

Looking at the present situation it may be seen from figure 1.3 that since World War
I the use of high strength materials for structural applications has greatly increased.

These materials are often selected to obtain weight savings — aircraft structures are
an obvious example. Additional weight savings have come from refinements in stress
analysis, which have enabled design allowables to be raised. However, it was not recog-
nised until towards the end of the 1950s that although these materials are not intrinsi-
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1930 1940 1950 1960 1970 1980 1990 2000
| | | | | |

| WELDED STEEL STRUCTURES

I HIGH STRENGTH ALUMIN/UM ALLOYS

[ HIGH STRENGTH STEELS

I I
| T/TANIUM ALLOYS

I I I I

Figure 1.3. Introduction of high strength materials for structural applications.

cally brittle, the energy required for fracture is comparatively low, as figure 1.2 shows.
The possibility, and indeed occurrence, of this low energy fracture in high strength ma-
terials stimulated the modern development of fracture mechanics.

The object of fracture mechanics is to provide quantitative answers to specific prob-
lems concerning cracks in structures. As an illustration, consider a structure containing
pre-existing flaws and/or in which cracks initiate in service. The cracks may grow with
time owing to various causes (for example fatigue, stress corrosion, creep) and will gen-
erally grow progressively faster, figure 1.4.a. The residual strength of the structure,
which is the failure strength as a function of crack size, decreases with increasing crack
size, as shown in figure 1.4.b. After a time the residual strength becomes so low that the
structure may fail in service.

————————— @

TIME A

AVAILABLE CRACK PROPAGATION CURVE
FOR CRACK |
DETECTION
MAX. PERMISSIBLE
/& MINIMUM -—
DETECTABLE CRACK SIZE
| CRACK SIZE

STRESS

=]

- 0 o= MATERIAL
TENSILE
STRENGTH

/RESIDUAL STRENGTH CURVE

|
I
|
| CRACK LENGTH
I
|

DESIGN STRESS
LEVEL -+ - — =

CRACK LENGTH
Figure 1.4. The engineering problem of a crack in a structure.

With respect to figure 1.4 fracture mechanics should attempt to provide quantitative
answers to the following questions:

1. What is the residual strength as a function of crack size?

2. What crack size can be tolerated under service loading, i.e. what is the maximum
permissible crack size?

3. How long does it take for a crack to grow from a certain initial size, for example the
minimum detectable crack size, to the maximum permissible crack size?
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4. What is the service life of a structure when a crack-like flaw (e.g. a manufacturing
defect) with a certain size is assumed to exist?

5. During the period available for crack detection how often should the structure be in-
spected for cracks?

This course is intended to show how fracture mechanics concepts can be applied so
that these questions can be answered.

In the remaining sections 1.4 — 1.11 of this introductory chapter an overview of the
basic concepts and applications of LEFM and EPFM are given in preparation for more
detailed treatment in subsequent chapters.

(¢

Figure 1.5. A through-thickness crack in a loaded infinite plate.

1.4 The Griffith Energy Balance Approach

Consider an infinite plate that is subjected to a uniform tensile stress, o, applied at in-
finity (see figure 1.5). Suppose that we introduce a through-thickness crack of length 2a.
In the area directly above and below the crack the stress (in the loading direction) will
decrease significantly and will even become zero along the crack flanks. Hence intro-
duction of the crack changes the elastic strain energy stored in the plate. We can roughly
estimate this change by assuming that in a circle-shaped area of radius @ around the
crack the stress has become zero, while the remainder of the plate experiences the same
stress as before. In this case the elastic energy in the plate has decreased by an amount
equal to the volume of the stress-free material times the original elastic energy per unit
volume, i.e. Y2xstressxstrain. Assuming linear elastic material behaviour, i.e. a Young’s
modulus E, the elastic energy change would be':

1
e (L.1)

Obviously, this is only an approximation because the stress field becomes non-

' In this section we consider two-dimensional geometries only and all energies and forces are defined
per unit thickness.
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homogeneous near the crack, as will be shown in chapter 2. Griffith used a stress analy-
sis developed by Inglis to show that for an infinite plate the elastic energy change is ac-
tually given by

Ua=— E (1.2)

where U,= change in the elastic strain energy of the plate caused by introducing a
crack with length 2a. The minus sign shows this change is a decrease in
elastic energy.

The introduction of a crack will require a certain amount of energy. Griffith assumed
that for ideally brittle materials this is in the form of surface energy. A crack with length
2a in a plate involves the creation of a crack surface area (defined per unit thickness)
equal to 2:(2a) = 4a, leading to an increase in surface energy of

Uy =4ay., (1.3)

where U, = change in surface energy of the plate due to introduction of a crack with
length 2a,
Ye = surface energy per unit area, i.e. the surface tension.

Griffith postulated that a crack will extend when the potential energy decreases. He
considered the surface energy as a part of this potential energy. In practice the energy
involved in creating crack surfaces will not be reversible due to several reasons (oxida-
tion etc.) and strictly speaking is not part of the potential energy. However, as long as
only growing cracks are considered, the irreversibility of the surface energy is not rele-
vant. Here, the potential energy according to Griffith will be referred to as the total en-
ergy.

For a real plate, i.e. one with finite dimensions, the total energy U is that of the plate
and its loading system. When a crack is present the total energy U is composed of

U=U,+ Uy + U,—F, (1.4)

where U, = total energy of the plate and its loading system before introducing a crack
(a constant),
F = work performed by the loading system during the introduction of the crack
= load x displacement.

The combination of plate and loading system is assumed to be isolated from its sur-
roundings, i.e. no work is performed on the plate or on the loading system from outside.
This explains why F must be subtracted in equation (1.4): if the loading system per-
forms work it goes at the expense of the energy content of the loading system and there-
fore lowers the total energy U. A more extensive treatment will be given in section 4.2.
In this introductory chapter we will conveniently assume that no work is done by the
loading system. This is the case if the specimen is loaded by a constant displacement, a
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so-called fixed grip condition. Then the term F' in equation (1.4) will vanish. Introducing
a crack now leads to a decrease in elastic strain energy of the plate, i.e. U, is negative,
because the plate loses stiffness and the load applied by the fixed grips will drop. A
plate with finite dimensions resembles an infinite plate when 2a << W, the plate width.
Consequently, the total energy U of a finite plate loaded with fixed grips and containing
a small crack is approximately

2,2

U=UstUp+Uy=Up— "5+ 4are. (1.5)

Following Griffith, crack extension will occur when U decreases. In order to formu-
late a criterion for crack extension, we consider an increase of the crack length by d(2a).
Since U, is constant, it will not change and dUo/d(za) is zero. Also, since no work is
done by the loading system, the driving force for crack extension can be delivered only
by the decrease in elastic energy dU, due to the crack length increase d(2a). The crack
will extend when the available energy dU, is larger than the energy required dU,. Thus
the criterion for crack extension is

du d ( no’d?
dQa) ~ d(2a) T (U +Uy) <0 or d(2a)( E T 46%) <0. (1.6)

This is illustrated in figure 1.6. Figure 1.6.a schematically represents the two energy
terms in equation (1.6) and their sum as functions of the introduced crack length, 2a.
Figure 1.6.b represents the derivative, dU/d(za). When the elastic energy release due to
a potential increment of crack growth, d(2a), outweighs the demand for surface energy
for the same crack growth, the introduction of a crack will lead to its unstable propaga-
tion.

From the criterion for crack extension, equation (1.6), one obtains

thsza

E > 2%, (1.7)

which can be rearranged to

2Eve

\a> (1.8)

Equation (1.8) indicates that crack extension in ideally brittle materials is governed
by the product of the remotely applied stress and the square root of the crack length and
by material properties. Because E and y. are material properties the right-hand side of
equation (1.8) is equal to a constant value characteristic of a given ideally brittle mate-
rial. Consequently, equation (1.8) indicates that crack extension in such materials occurs
when the product G\/:l attains a certain critical value.
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ENERGY SURFACE ENERGY = 4ay,
A

CHANGE IN TOTAL ENERGY
DUE TO INTRODUCED CRACK

CHANGE IN ELASTIC
STRAIN ENERGY = —-no’a’/E

<«—— INSTABILITY @

>
INTRODUCED
CRACK LENGTH, 2a

Figure 1.6. Energy balance for a small crack in a large plate loaded under fixed grip condi-
tions.

1.5 Irwin’s Modification to the Griffith Theory

Irwin designated the left-hand side of equation (1.7) as the energy release rate, G,
representing the energy per unit new crack area that is available for infinitesimal crack
extension.? The right-hand side of equation (1.7) represents the surface energy increase
per unit new crack area that would occur owing to infinitesimal crack extension and is
designated the crack resistance, R. It follows that G must be larger than R before crack
growth occurs. If R is a constant, this means that G must exceed a critical value G, = R
= constant. Thus fracture occurs when

ncza

E

G= >Go=R=2y,. (1.9)

The critical value G, can be determined by measuring the critical stress o, required to
fracture a plate with a crack of size 2a or by measuring the critical crack size 2a, needed

2 The crack area is defined as the projected area, normal to the crack plane, of the newly formed sur-
faces.
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to fracture a plate loaded by a stress G.

In 1948 Irwin suggested that the Griffith theory for ideally brittle materials could be
modified and applied to both brittle materials and metals that exhibit plastic deforma-
tion. A similar modification was proposed by Orowan. The modification recognised that
a material’s resistance to crack extension is determined by the sum of the surface energy
Ye and the plastic strain work y,, (both per unit crack surface area) that accompany crack
extension. Consequently, in this case the crack resistance is

R=2(ye +7p) - (1.10)

For relatively ductile materials y, >> ye, i.e. R is mainly plastic energy and the surface
energy can be neglected.

Although Irwin’s modification includes a plastic energy term, the energy balance ap-
proach to crack extension is still limited to defining the conditions required for instabil-
ity of an ideally sharp crack. Also, the energy balance approach presents insuperable
problems for many practical situations, especially slow stable crack growth, as for ex-
ample in fatigue and stress corrosion cracking.

The energy balance concept will be treated in more detail in chapter 4.

»

A
\/

2a

Figure 1.7. Stresses at a point ahead of a crack tip.

1.6 The Stress Intensity Approach

Owing to the practical difficulties of the energy approach a major advance was made
by Irwin in the 1950s when he developed the stress intensity approach. First, from linear
elastic theory Irwin showed that the stresses in the vicinity of a crack tip take the form

K
Gij:\/?nrfij(e)-i_-“’ (1.11)

where 7, 0 are the cylindrical polar co-ordinates of a point with respect to the crack tip,
figure 1.7.
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K is a quantity which gives the magnitude of the elastic stress field. It is called the stress
intensity factor.> Dimensional analysis shows that K must be linearly related to stress
and directly related to the square root of a characteristic length. Equation (1.8) from
Griffith’s analysis indicates that this characteristic length is the crack length, and it turns
out that the general form of the stress intensity factor is given by

K=o\lra-fla/w), (1.12)

where f(4/w) is a dimensionless parameter that depends on the geometries of the speci-
men and crack, and o is the (remotely) applied stress. For an infinite plate with a central
crack with length 2a, f{¢/p) =1 and thus K= 0‘\/;1. For this case we also have G =
nolay E, see equation (1.9). Combining the two formulae for K and G yields the relation:
2
G= % , (1.13)
which Irwin showed to be valid for any geometry.

Since K = (7\/;1 for a central crack in an infinite plate, it follows from the result of
Griffith’s energy balance approach, equation (1.8), that crack extension will occur when
K reaches a certain critical value. This value, K, is equal tO\/E or, after applying
Irwin’s modification, \|2E(y, + vp). The criterion for crack extension in terms of K is

K=o\na>K;. (1.14)

The parameter governing fracture may therefore be stated as either a critical energy
release rate, G, or a critical stress intensity, K. For tensile loading the relationships
between G, and K are

K2
Ge="%- (1.15)

The value of the critical stress intensity K. can be determined experimentally by
measuring the fracture stress for a large plate that contains a through-thickness crack of
known length. This value can also be measured by using other specimen geometries, or
else can be used to predict critical combinations of stress and crack length in these other
geometries. This is what makes the stress intensity approach to fracture so powerful,
since values of K for different specimen geometries can be determined from conven-
tional elastic stress analyses: there are several handbooks giving relationships between
the stress intensity factor and many types of cracked bodies with different crack sizes,
orientations and shapes, and loading conditions. Furthermore, the stress intensity factor,
K, is applicable to stable crack extension and does to some extent characterize processes
of subcritical cracking like fatigue and stress corrosion, as will be mentioned in section

1.10 of this chapter and in greater detail in chapters 9 and 10.

3 The stress intensity factor is essentially different from the well-known stress concentration factor. The
latter is a dimensionless ratio that describes the increase in stress level relative to the nominal stress.
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It is the use of the stress intensity factor as the characterizing parameter for crack
extension that is the fundamental principle of Linear Elastic Fracture Mechanics
(LEFM). The theory of Linear Elastic Fracture Mechanics is well developed and will be
discussed in chapter 2.

1.7 Crack Tip Plasticity

The elastic stress distribution in the vicinity of a crack tip, equation (1.11), shows
that as » tends to zero the stresses become infinite, i.e. there is a stress singularity at the
crack tip. Since structural materials deform plastically above the yield stress, there will
in reality be a plastic zone surrounding the crack tip. Thus the elastic solution is not un-
conditionally applicable.

Irwin considered a circular plastic zone to exist at the crack tip under tensile loading.
As will be discussed in chapter 3, he showed that such a circular plastic zone has a di-
ameter 2ry, figure 1.8, with

1 (KY
ry_zn(cysj ’ (1.16)

where oy is the yield stress.

Irwin argued that the occurrence of plasticity makes the crack behave as if it were
longer than its physical size — the displacements are larger and the stiffness is lower
than in the elastic case. He showed that the crack may be viewed as having a notional
tip at a distance ry ahead of the real tip, i.e. in the centre of the circular plastic zone (see
figure 1.8). Beyond the plastic zone the elastic stress distribution is described by the K
corresponding to the notional crack size. As shown in figure 1.8, this elastic stress dis-
tribution takes over from the yield stress at a distance 2ry from the actual crack tip.

Since the same K always gives the same plastic zone size for materials with the same

Oy A

: ELASTIC STRESS DISTRIBUTION
"A/NOTIONAL CRACK

ACTUAL STRESS _| \

DISTRIBUTION \

Oys

ACTUAL
CRACK TIP

N/

NOTIONAL
CRACK TIP

—— CRACK TIP PLASTIC ZONE

2r,

<€ »

Figure 1.8. The crack tip plastic zone according to Irwin.
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yield stress, equation (1.16), the stresses and strains both within and outside the plastic
zone will be determined by K and the stress intensity approach can still be used. In
short, the effect of crack tip plasticity corresponds to an apparent increase of the elastic
crack length by an increment equal to ry.

A plastic zone at the tip of a through-thickness crack will inevitably tend to contract
in the thickness direction along the crack front. If the plate thickness is of the order of
the plastic zone size or smaller, this contraction can occur freely and a plane stress state
will prevail. On the other hand, if the plate thickness is much larger than the plastic zone
size, contraction is constrained by the elastic material surrounding the plastic zone. The
strain in the thickness direction will then be small, meaning that a plane strain state is
present.t

The occurrence at the crack tip of either a plane stress or plane strain state has a large
effect on the plastic behaviour of the material. In plane strain the plastic deformation
occurs only when the stresses amply exceed the yield stress. Actually, equation (1.16) is
valid for a plane stress state only. For plane strain

1( K Y
ry—2n(ccys) ; (1.17)

where C is usually estimated to be about 1.7. Thus in plane strain the plastic zone size is
considerably smaller.

1.8 Fracture Toughness

From sections 1.6 and 1.7 it follows that under conditions of limited crack tip plas-
ticity the parameter governing tensile fracture can be stated as a critical stress intensity,
K.. The value of K, at a particular temperature depends on the amount of thickness con-
straint and thus on specimen thickness. It is customary to write the limiting value of K
for maximum constraint (plane strain) as Ki¢.>

K. can be considered a material property characterizing the crack resistance, and is
therefore called the plane strain fracture toughness. Thus the same value of K, should
be found by testing specimens of the same material with different geometries and with
critical combinations of crack size and shape and fracture stress. Within certain limits
this is indeed the case, and so a knowledge of Kj. obtained under standard conditions
can be used to predict failure for different combinations of stress and crack size and for
different geometries.

K. can also be determined under standard conditions, and the value thus found may
also be used to predict failure, but only for situations with the same material thickness
and constraint.

4 In all formulae up to this point a plane stress state was implicitly assumed.

5 The subscript I refers to the loading mode where the crack flanks are pulled straight apart (see section
2.1). In fracture mechanics it is customary to include this subscript in expressions that contain the
stress intensity factor as a variable, i.e. K;. However, in this introductory chapter this is not yet done.
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As an introductory numerical example of the design application of LEFM, consider the equation for a
through-thickness crack in a wide plate, i.e.

K=o\lna. (1.18)

Assume that the test results show that for a particular steel the K is 66 MPa\/B for the plate thickness
and temperature in service. Using equation (1.18) a residual strength curve for this steel can be con-
structed relating K. and nominal stress and crack size. This is shown in figure 1.9. Also assume that the
design stress is 138 MPa. It follows from equation (1.18) and figure 1.9 that the tolerable crack size
would be about 145 mm. For a design stress of 310 MPa the same material could tolerate a crack size of
only about 28 mm. Note from figure 1.9 that if a steel with a higher fracture toughness is used, for exam-
ple one with a K of 132 MPa\/;), the permissible design stress for a given crack size is significantly in-
creased. Thus a material with a higher fracture toughness permits a longer crack at a given stress or a
higher stress at a given crack length.

RN
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Figure 1.9. Residual strength curves for two steels.

1.9 Elastic-Plastic Fracture Mechanics

Linear Elastic Fracture Mechanics can deal with only limited crack tip plasticity, i.e.
the plastic zone must remain small compared to the crack size and the cracked body as a
whole must still behave in an approximately elastic manner. If this is not the case then
the problem has to be treated elasto-plastically. Due to its complexity the concepts of
Elastic-Plastic Fracture Mechanics (EPFM) are not so well developed as LEFM theory,
a fact that is reflected in the approximate nature of the eventual solutions.

In 1961 Wells introduced the crack opening displacement (COD) approach. This ap-
proach focuses on the strains in the crack tip region instead of the stresses, unlike the
stress intensity approach. In the presence of plasticity a crack tip will blunt when it is
loaded in tension. Wells proposed to use the crack flank displacement at the tip of a
blunting crack, the so-called crack tip opening displacement (CTOD) as a fracture pa-
rameter (see figure 1.10).

Even for tougher materials exhibiting considerable plasticity critical CTOD values
could be defined corresponding to the onset of fracture. Such critical CTOD values
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Figure 1.10. Crack tip opening displacement.

could then be used to qualify the materials concerned for a given application. However,
initially it proved difficult to determine the required CTOD for a given load and ge-
ometry or alternatively to calculate critical crack lengths or loads for a given material.

In 1968 Rice considered the potential energy changes involved in crack growth in
non-linear elastic material. Such non-linear elastic behaviour is a realistic approxima-
tion for plastic behaviour provided no unloading occurs in any part of the material. Rice
derived a fracture parameter called J, a contour integral that can be evaluated along any
arbitrary path enclosing the crack tip, as illustrated in figure 1.11. He showed J to be
equal to the energy release rate for a crack in non-linear elastic material, analogous to G
for linear elastic material.

r

J= (W T-%jd
- ny -1 ox S
r

IS

T

Figure 1.11. J contour integral along arbitrary path I" enclosing a crack tip in non-linear elastic
material. W is strain energy density along TI', n is outward-directed unit vector
normal to T, T is traction acting on T" and u is the displacement along I

For simple geometries and load cases the J integral can be evaluated analytically.
However, in practice finite element calculations are often required. In spite of this J has
found widespread application as a parameter to predict the onset of crack growth in
elastic-plastic problems. Later it was found that J could also be used to describe a lim-
ited amount of stable crack growth.

In chapter 6 the background to the J and COD approaches are discussed, while
chapter 7 deals with the procedures to measure critical values of these parameters in
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Figure 1.12. Stress-cycle parameters in constant amplitude fatigue.

actual materials. In chapter 8 some specific aspects of EPFM are discussed.

1.10 Subcritical Crack Growth

In section 1.7 it was mentioned that the stress intensity factor can still be used when
crack tip plasticity is limited. This latter condition holds for some important kinds of
subcritical crack growth, where most of the crack extension usually takes place at stress
intensities well below K, and K. In particular the stress intensity approach can provide
correlations of data for fatigue crack growth and stress corrosion cracking.

Fatigue

Consider a through-thickness crack in a wide plate subjected to remote stressing that
varies cyclically between constant minimum and maximum values, i.e. a fatigue loading
consisting of constant amplitude stress cycles as in figure 1.12. The stress range Ac =
Omax — Omin, and from equation (1.18) a stress intensity range may be defined:

AK = Kunax — Kmin = Ac\[Tta . (1.19)

The fatigue crack growth rate is defined as the crack extension, Aa, during a small
number of cycles, An, i.e. the growth rate is Ad/A,, which in the limit can be written as
the differential da/qy,. It has been found experimentally that provided the stress ratio, R
= Omin/g,,,, 1S the same then AK correlates fatigue crack growth rates in specimens
with different stress ranges and crack lengths and also correlates crack growth rates in
specimens of different geometry, i.e.

% = fIAK.R) . (1.20)

This correlation is shown schematically in figure 1.13. Note that it is customary to plot
da/g, — AK data on a double logarithmic scale. The data obtained with a high stress
range, Aoy, correspond to a lower critical crack length and commence at relatively high
values of da/g;, and AK. The data for a low stress range, A;, commence at lower values
of da/4,, and AK, but reach the same high values as in the high stress range case. The
data frequently show a sigmoidal trend, and this will be discussed in chapter 9 together
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Figure 1.13. Correlation of fatigue crack propagation data by AK when the stress ratio, R, is
the same.

with additional aspects of fatigue crack growth.

Stress Corrosion

It has also been found that stress corrosion cracking data may be correlated by the stress
intensity approach. Figure 1.14 gives a generalised representation of the stress corrosion
crack growth rate, da/q;, as a function of K, where ¢ is time.

log da/dt 4

KlSCC

Y

Figure 1.14. Stress corrosion crack growth rate as a function of K.
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The crack growth curve consists of three regions. In regions I and III the crack ve-
locity depends strongly on K7, but in region II the velocity is virtually independent of K.
Regions I and II are most characteristic. Region III is often not observed owing to a
fairly abrupt transition from region II to unstable fast fracture. In region I there is a so-
called threshold stress intensity, designated K., below which cracks do not propagate
under sustained load for a given combination of material, temperature and environment.
This threshold stress intensity is an important parameter that can be determined by time-
to-failure tests in which pre-cracked specimens are loaded at various (constant) stress
intensity levels, thereby failing at different times as shown schematically in figure 1.15.

The subject of stress corrosion cracking, under the more general heading of sustained
load fracture, will be examined further in chapter 10.

K A
@® TEST RESULT

fipg s s s e s S

A\

TIME TO FAILURE

Figure 1.15. Schematic time-to-failure curve with K.

1.11 Influence of Material Behaviour

So far, this overview of the use of fracture mechanics to characterize crack extension
has not taken account of actual material behaviour, the influence of which may be con-
siderable. For example, the fracture toughness of a material is much less when crack
extension occurs by cleavage instead of ductile fracture. Cleavage is an intrinsically
brittle mode of fracture involving separation of atomic bonds along well-defined crys-
tallographic planes.

Other examples of material behaviour that affect fracture properties are:

1. Cracking of second phase particles in the metallic matrix and formation of micro-
voids at particle/matrix interfaces.

2. Anisotropic deformation and fracture. This may be intrinsic (crystallographic) as in
the case of cleavage, or may result from material processing (texture).

3. Choice of fracture path, i.e. whether transgranular or intergranular, or a mixture of
both.
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4. Crack blunting and branching.

In fact, fracture often depends on combinations of such types of material behaviour. For
this reason we consider that a basic course in fracture mechanics should include infor-
mation concerning mechanisms of fracture and the influence of material behaviour on

fracture mechanics-related properties. These topics are considered in chapters 12 and
13.
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2
The Elastic Stress
Field Approach

2.1 Introduction

In the overview given in chapter 1 it was stated that the stress intensity factor K de-
scribes the magnitude of the elastic crack tip stress field. Also, K can be used to describe
crack growth and fracture behaviour of materials provided that the crack tip stress field
remains predominantly elastic. This correlating ability makes the stress intensity factor
an extremely important fracture mechanics parameter. For this reason its derivation is
treated in some detail in section 2.2.

All stress systems in the vicinity of a crack tip may be divided into three basic types,
each associated with a local mode of crack surface displacements, figure 2.1. In what
follows the derivation of elastic stress field equations will be limited to mode I, since
this is the predominant mode in many practical cases. Once this derivation is understood
it is possible to obtain a number of useful expressions for stresses and displacements in
the crack tip region. However, use of the stress intensity factor approach for practical
geometries does involve some difficulties. For example, actual cracks may be very ir-
regular in shape as compared to the often highly idealised cracks considered in theoreti-
cal treatments. Moreover, assumptions such as the infinite width of a sheet or plate

w

MODE | MODE Ii MODE Il
OPENING MODE SLIDING MODE TEARING MODE

Figure 2.1. The three modes of crack surface displacements.
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frequently cannot be maintained if an accurate result is required. The consequences of
necessary deviations from the theoretical solutions will also be discussed in this chapter.

2.2 Derivation of the Mode | Elastic Stress Field Equations

This section gives an overview of the derivation of the mode I stress field equations.
More rigorous treatments may be found in references 1 and 2 of the bibliography at the
end of this chapter. The derivation covers the following topics:

o the concepts of plane stress and plane strain;
o the equilibrium equations of stress;

o the compatibility equation of strain;

e Airy stress functions;

e a general introduction to complex functions;
e Westergaard complex stress functions;

o the case of a biaxially loaded plate;

o the mode I stress intensity factor.

Finally, some additional remarks are made concerning the derivation and the stress in-
tensity concept.

Plane Stress - Plane Strain

For an isotropic material the 3-dimensional form of Hooke’s law can be written as:

1 I+v

SXZE' {GX_V(Gy+GZ)} s &y2= " Tyz>
1 I+v

EyZE' {Gy_v(cz+ Gx)} s ExT g T (2.1
1 1+v

&=F {GZ—V(GX+Gy)} , Exy = f Txy-

where oy, Gy, 6, = normal stress components
Tyz Tzx» Txy = shear stress components
&x» &y, &, = normal strain components
€yz, €2x, Exy = shear strain components !
E = Young’s modulus
v = Poisson’s ratio.

Fracture mechanics mostly deals with 2-dimensional problems, in which case no
quantity depends on the z co-ordinate. Two special cases are plane stress and plane
strain conditions, which are respectively defined as:

' Sometimes shear strains are expressed as vy, = Ty2/ etc., where G is the shear modulus. It then follows

that y, = 2¢,,, etc. and G = E/2(1+V)
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Plane stress Plane strain

6, =Ty, =Tx =0, €, =8y, =&x=0. 2.2)

For these conditions the in-plane components of equations (2.1), i.e. those not involving
the z coordinate, can be expanded as:

Plane stress Plane strain
1 1-v2 v

& = E(Gx_vcy) > &~ g CX—EC}, >
1 1—-v2 v

&= f (oy —voy), &= "f (cy - Ecxj s 2.3)
1+v 1+v 1-v2 \Y

Exy =" f Txyo &y~ f W= g 1+E Txy -

From this it can be seen that the strains in the plane strain case can be derived from the
strains in the plane stress case as follows:

E
1) replace E by -2’

2) replace v by % .

The reverse, i.e. transforming from plane strain to plane stress, is also possible. To do
this, we first have to separate a factor E/(l_vz) and replace it by E£. Next, v must be re-
placed by V/(1+V). For example, the transition of v for a plane stress — plane strain —
plane stress cycle reads:

Y Y4y
Voo (=Vv).
=V -V

These transitions apply only to the expressions for the in-plane components. The thick-
ness stress ¢, and thickness strain g, follow from:

Plane stress Plane strain
c,=0, o, = v(oxtoy),
2.4)
v
&= (oxtoy), €,=0.

The plane stress <> plane strain transitions enable the separate expressions for plane
stress and plane strain conditions, equations (2.3), to be written in a concise manner:
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1
& = E (ox— Vlcy) >

1
gy = E (oy—V'oy), 2.5)

’

I+v
Exy = £ Txy »

where E' = E and v’ = v for plane stress,
and £’ = E/(l_VZ) and v’ = V/(]_y) for plane strain.

Equilibrium Equations of Stress
From figure 2.2 it can be seen that there is an equilibrium of forces in the x direction if:
Txz

00y Otxy 0
Oxt o dx|dydz — oxdydz +| Tyy+ o ly| dzdx — txydzdx + Tt g, dz| dxdy — tx,dxdy =0.

Analogous formulae follow from the equilibrium of forces in the y and z directions.

ot
T + —2dz
0z

0oy
+ —dx
T ox

Figure 2.2. The stress components acting in the x direction on an infinitesimal material ele-
ment.

This leads to the equilibrium equations of stress:

acYX a X 6 XZ
Oy O
ox oy Oz ’

doy Oty Oty 2.6)

6y+62+6x ’

2zt Ty O
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If we confine ourselves to the two-dimensional cases of plane stress and plane strain, for
which 1,y = 1,5 = 0 and 0/pz = 0, the equilibrium equations (2.6) reduce to:

Jox Oty
ox oy =0,

2.7
Goy O @7
oy  Ox

Compatibility Equation of Strain

Again we consider only the 2-dimensional case. Small strains in the x-y plane can be
expressed in terms of the displacements in the x and y direction, v and » respectively,
according to:

ou ov (81/ GUJ
== == =yl =
&5 0 & a Exy = 2\ T ) (2.8)
Obviously, the three strain components are determined by only two displacement com-
ponents v and v. Therefore, the three strain components cannot be independent. An extra
relation must exist between them. This relation is the compatibility equation of strain

and is obtained by eliminating v and » through differentiation of equations (2.8):

2 2 2
loni- . Ogy _ O%&xy
oy* T ox? oxoy

2.9)

Using equations (2.5) the compatibility equation can also be expressed in terms of stress
components:

6_2 r 6_2 ’ 2 1 1 @X — 0 2 10
8y2(GX_V Gy) + 8)62(Gy_V Gx) — 2(1+v )axay =V, (2.10)

where again v’ = v for plane stress
V' = V/(1-y) for plane strain

Airy Stress Functions

Any stress field solution for an elastic problem must fulfil both the equilibrium and the
compatibility equations. For this purpose, Airy introduced a way of describing two-
dimensional stress fields using a function ®(x,y):

o> *P oD
Ox = ayZ » Oy~ o Txy __axay . (211)

Straightforward substitution shows that this stress field

o always fulfils the equilibrium equations of stress (2.7);
o only fulfils the compatibility equation (2.10) if the stress function @ is a solution of
the so-called biharmonic equation:
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do o o

- L= _ 2720 = V4D =
ot 2adgrt gr ~0 or ViV =vie=0. (2.12)

A function ®(x,y) that fulfils the biharmonic equation and defines a stress field accord-
ing to equations (2.11) is called an Airy stress function. Both equilibrium of stress as
well as compatibility of strain are guaranteed. Note that Airy stress functions are real
and have the dimension of force.

A General Introduction to Complex Functions

A complex function f{z), where z is a complex variable, is called analytic if its deriva-
tive f'(z) exists. The consequence of this definition is that if a primitive of f{z) exists,
then this primitive is also analytic.

For an analytic function the Cauchy-Riemann equations can be derived. Defining
z =Xx + 1y, we may write:

of _dfoz _df
Gx_dzax_dz_f(z)’
of _dfoz_df

e
and therefore

o Reflz) | Olmfiz)
. oax TV e

f@,

of OR ol
5){: ;;(Z)Jrr rg)]}‘(z):if(z).

Eliminating f'(z), leads to

.(8Re fiz) . olm f(z)) _ORef(z) . olmfiz)
18x+1 x ) oy +1 YR

Now the Cauchy-Riemann equations follow as

ORefiz) _dlmflz)  ORefl)  dlmfiz)

Ox oy ’ oy Ox (2.13)

In the Cauchy-Riemann equations the real or the imaginary part of f{z) can be elimi-
nated. For example, equations (2.13) can be differentiated as follows:

PReflz) *Imfiz) PReflz)  PImAz)
o oxoy R oxoy

(2.14)

Consequently:
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0*Reflz) O*Reflz)
ox? * oy? =0
or
V2Ref(z) = 0. (2.15)

An identical relation can be derived for Imf{z) by eliminating Ref(z). It is said that
Ref(z) and Imf(z) are conjugate harmonic functions. They both satisfy Laplace’s equa-
tion:

V2Ref(z) = V2Imfiz) =0 . (2.16)

Westergaard Complex Stress Functions

Westergaard (reference 1) introduced a specific type of Airy stress function ® using an
analytic complex stress function @z) of which the first and second order integrals are
assumed to exist:

® =Re ¢(z) + yIm §z) (2.17)

where ¢(2), z(z) = first and second order integrals (primitives) of ¢(z) respectively
andz=x+1y.

For @ to qualify as an Airy stress function it must fulfil the biharmonic equation (2.12).
Note that @ has a real value. Because 2(2) is itself an analytic function, it is obvious that
the first part of (2.17), Re g:zﬁ(z), is a harmonic function fulfilling Laplace’s equation
(2.16) and thus also the biharmonic equation (2.12). For the second part of equation
(2.17) we consider the function y-¢, where ¢ is harmonic, i.e. V¢ = 0:

2

2 2
2 07(0r0) M:Q(a)@( aj:a op 09 9 0@
VOO ="32"+"52 ~alax) T\ ® e) Ve Yoy Toy TV a2 2oy

X oy Oy
Thus:
2021 — T2 Q(E: O s _
VV4(y-0) V(Zayj 2ayV(p 0.

Consequently, the function @ defined in terms of the complex stress function ¢(z) intro-
duced by Westergaard does qualify as an Airy stress function.

Now we can express the stress components Gy, Gy and 1xy in terms of the complex
stress function ¢(z). For example oy becomes:

2o
8y2

= %{a—ayReﬂzH %y-lmdz)} = a—i{—a—ilm Hz) + Im dz) + y%Re ¢(z)}

Gx

9§ 1md v 0
= 5{—Im¢(z) +Im #z) + yRe ¢(z)} =Re ¢2) + y-gRe #z)
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=Re Kz) - yIm ¢'(z) . (2.18.a)

Use has been made of the Cauchy-Riemann equations (2.13). The components oy and
Txy can be derived analogously, leading to:

oy =Re@z) +yIm¢'(z), (2.18.b)

Ty =—yRed'(2) . (2.18.c)

These expressions have a general nature, i.e. they give the stress components for any
(Westergaard) complex stress function ¢(z). The stress field solution corresponding to a
particular two-dimensional elastic problem is found by choosing the stress function ¢(z)
in such a way that all boundary conditions are fulfilled. Note that using a Westergaard
complex stress function limits the boundary conditions for problems that can be solved.
From equations (2.18) it is easily seen that for y = 0 it is required that ox = 6y and 14y =
0.

Biaxially Loaded Plate

We will consider an infinite plate containing a crack. The plate is biaxially loaded in
tension by a stress 6., (see figure 2.3). The boundary conditions for this problem are:

1) oy=0 for-a<x<+a and y=0,
2) ox = Gy and Gy —> Gy, for x — too and/or y — too,
3) oy > forx=xa and y=0.

The first condition arises from the fact that the crack flanks are free surfaces. The

G

—» O

oo ! !

Figure 2.3. A biaxially loaded infinite plate containing a crack.
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second condition states that at an infinite distance from the crack the stress will be equal
to the applied stress c.. The last condition accounts for the stress raising effect of a
crack. At a crack tip with zero radius the stress oy becomes singular.

We have to find a function ¢(z) such that o and oy, defined according to equations
(2.18), fulfil the above boundary conditions. A function that does this is:

O
H)=—"T——. (2.19)
A/l -4/
In the following the boundary conditions are checked:

1) If y =0 it follows that z = x and thus:

O . O
SRR P MY vt

Therefore, as |x| < a along the crack flanks, the function ¢(z) is purely imaginary, i.e.
Re ¢(z) = 0. Consequently:

oy =Re@z) +yIm¢p'(z) = 0.

2) For x — *oo and/or y — foo, i.e. |z] — oo, equation (2.19) becomes #z) = 6. Be-
cause now Im ¢(z) = 0, it follows that:

0'X=0'y=Re¢(z)=Gw.
3) For z =ta we obtain ¢(z) — . So at the crack tips (y = 0, thus z = x) we get:

oy =Re@z) — 0.

The Mode | Stress Intensity Factor

It will prove convenient to translate the origin of the co-ordinate system to the crack tip
at z = +a by introducing the variable n = z — a. The complex stress function ¢z) now
becomes:

c cla+n)
= = . 2.20
) \/l - az/(a+n)z \/(a +m)? —a? ( )

Note that the suffix oo is now omitted from c,,. Near the crack tip, i.e. |n| << a, the stress
function may be approximated as:

ca a _y
R = Py . 2.21
#n) J2an 5N 2.21)

. . _ 0 .
In polar co-ordinates, i.e. N =re ~, we may write:
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¢(n) G\[ f‘/z =10 _ l/216 (2.22)
TCI"

In order to calculate the stress components using equations (2.18), the first derivative
@'(z) is required too:

#'(n) = K\/%'—l/zn_% = K\/% (re® " = \/32; A0 (2.23)

Using r ele = r(cosO + i-sinB), the expressions that appear in equations (2.18) may be
written as:

Re ¢(n) = Q\/z—%cose/z ,

Re ¢'(n) = \/—£00s3 ",

Lsm% o\/ma

yIm ¢'(m) = rsind5 \/— \/— sme/z cose/z sm3e/2

After substitution we obtain the three stress components near the tip of a crack in a bi-
axially loaded plate:

Oox = g\/z—@cos e/2(1 —sin 9/2 sin 39/2) ,
nr

\na

Gy = \/Z_mf cos e/2(1 + sin e/2 sin36/2) , (2.24)

Txy = Q\/z_% sin 8% cos 95 cos 395 .
These expressions show that the stress components tend to infinity at the crack tip (» =
0), a so-called 1/\/; singularity. The intensity of this stress singularity is given by the
factor o/ ma, while the remaining parts of equations (2.24) are functions of the geomet-
rical position relative to the crack tip. The intensity of the stress singularity is called the
mode 1 stress intensity factor, Ki. For the configuration considered here, a biaxially
loaded infinite plate, this factor is equal to (Y\/;l, and thus depends only on the remote
stress and the crack length.

Some Additional Remarks

1) The foregoing derivation is only one of the methods for obtaining the stress field
solution. There are several other, more general methods.



2. The Elastic Stress Field Approach 35

2) The case of a plate uniaxially loaded in the y direction cannot be solved using the
complex Westergaard stress function, since then it is required that ox = oy for y = 0,
¢f. equations (2.18). However, Irwin argued that this problem can be solved if the
remote stress o is subtracted from the expression for ok, equation (2.18.a), see refer-
ence 3. Then by using the complex stress function ¢ for the biaxial case, equation
2.19, the boundary conditions for the uniaxial case are satisfied. Thus the stress field
in a uniaxially loaded plate is identical to that in a biaxially loaded plate with the ex-
ception of oy, which is reduced by the remote stress . In the near tip stress field,
equations (2.24), this correction is usually omitted because near the crack tip oy is
much larger than c.

3) Owing to the approximation made in equation (2.21) these equations only apply to
the stress field near the crack tip (r << a). For example, equations (2.24) suggest that
if 7 — oo, the stress components oy and oy approach zero instead of o (the applied
load).

4) The stress in the proximity of the crack tip induced by a mode I load may be written
as the product of a stress intensity factor and a geometrical function. Using the index
notation (see section 6.3) we can write

Gij = Kl'fij(}”,e) . (2.25)

Since in linear elastic material stresses are additive, multiple mode I loads will cause
a total stress equal to:

(Giptotal = (03)1 + (Cij)2 + ... = (KD1:f;5(r,0) + (KD2:fi(7,0) + ... (2.26)

Consequently, as the geometrical functions are identical for all mode I loads, we may
write:

(©ipotal = {(KD1 + (KD + ... } ij(7.0)
or
(Gij)total = (Kl)totalfij(rse) > (2.27)

where (Ki)otal = (K1 + (K12 + ... .

This is the principle of superposition: the total mode I stress intensity can be ob-
tained by simply adding all mode I stress intensities caused by individual loads.

5) The stress field described by equations (2.24) only applies to cracks with infinitely
sharp tips (see 3" boundary condition). For a crack with a finite tip radius p, i.e. a
blunted tip (figure 2.4), Creager and Paris obtained the following expressions by
shifting the origin of the co-ordinate system over a distance of P/ behind tip, see
reference 4:
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Figure 2.4. Crack with a finite tip radius, p.

= \/— cos 6/2(1 ) 51n39/2) \/—( jcos 9%,

Ki . . Ki (p
Oy = _%’ cos e/2(1 + sin 6/2 sin 39/2) + \/2_”(21”) cos 39/2 > (2.28)

K K
Txy = \ﬁ sin e/2 cos e/2 cos 39/2 - \ﬁ (%) sin 39/2 .

At the blunted crack tip itself (6 = 0, » = P/5), it follows that:

e oy =0, which is obvious in view of the fact that the tip is a vertical free surface,

® oy= 2K/, ’2759/2: which is a non-singular (i.e. finite) value.

These values clearly differ from the singular values at a sharp crack tip. On the other
hand, for distances much greater than the tip radius (» >> P/5) the stress values near
the blunted crack approach those for a sharp crack. This means that expressions
(2.24) for an infinitely sharp crack are also valid in the neighbourhood of a blunted
crack.

Note that when we differentiate the first of the equations (2.28) with respect to
for 0 = 0, i.e. along the positive x axis, we find a maximum value for oy at a distance
p from the tip.

6) Using equations (2.28) we can examine the relation between the stress intensity fac-
tor K and the stress concentration factor. The latter describes the increase in stress
level, relative to the nominal stress, owing to a stress concentration. Using the stress
oy at the blunted tip, it follows that:

2K _20\[na - Oy _,. |
Gy = \/— \/— = the stress concentration factor = o 2 . (2.29)

Inglis (reference 5) analysed the case of a small elliptical hole in a large plate loaded
perpendicular to the major axis by a remote tensile stress 6. He derived the stress at
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the tip of the major axis, oyp, as:

2a a
Gip=C (1 + 7) =G (1 + 2\/3 , (2.30)

where 2a, 2b = major and minor axes of the ellipse respectively,

. . . . . . 2
p = radius of curvature of ellipse at the tip of its major axis = b/,,.

An elliptical hole with a minor axis small compared to the major axis resembles a
blunted crack. The radius p is small compared to the major axis. The stress concen-
tration factor may now be approximated by:

oip . [a
5 = 2\/; forp<<a. (2.31)

This is consistent with the expression derived using the stress intensity factor, equa-
tion (2.29).

2.3 Useful Expressions

In this section some useful expressions for stresses and strains in the crack tip region
will be given, namely

e The mode I stress field in terms of principal stresses:
The use of principal stresses is convenient when considering yield criteria in order to
estimate plastic zone sizes, as will be discussed in chapter 3.

e The elastic displacement field:
The elastic displacement field enables calculation of the stored elastic energy (used
in energy balance approaches, chapter 4) and also serves as a basis for displacement
controlled fracture criteria, e.g. COD (chapter 7).

e The stress field for modes II and I1I:
These expressions are required for studying crack problems in which mode II or
mode III loading or combined mode loading apply.

Principal Stresses

Using Mohr’s circle construction (figure 2.5), we can express the in-plane principal
stresses 61 and o5 in terms of the stress components oy, Gy and Tyy:

2
Ox + © Oy — G
Cla="5 (yz "j + 1 (2.32)

Substitution of equations (2.24) gives:

K1
=——"cos%5(1 + sin%~ 2.33.
o1 \/2—nrcos 2( sin 2) ( a)
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K
o = ﬁ cosds(1 —sind%) (2.33.b)

The remaining principal stress normal to the plane, o3, is either 0 for plane stress or
v(oq + o3) for plane strain, i.e.

2VK;
3= COS or plan€ strain. .J5.C
53 == cos®s forpl i 2.33
\2mr

The principal directions follow from:

Txy cos39/2
tan2¢ = =— for6 =0, (2.34)
(6,65 sin395

where ¢ = angle between ;| and y axis.

Straight ahead of the crack (0 = 0) the shear stress 14y = 0, the angle ¢ = 0° and the
principal stresses 61 and o are equal and also equal to oy and oy respectively.

T
A

Figure 2.5. Mohr’s circle construction.

Elastic Displacements

The elastic displacement field around a crack can be derived from the elastic stress field
using the two-dimensional form of Hooke’s law, equations (2.5), valid for either a plane
stress or a plane strain condition. For example, the strain component g4 can be written
as:

1
& = E(GX —V'oy). (2.35)

The displacement in the x direction, v, is obtained by integrating the relation between
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strain and displacement, equations (2.8):

U= J:;de—%j(cx—v'cy)dx. (2.36)

Substituting from equations (2.18), i.e. 65 and oy in terms of the Westergaard complex
stress function ¢(z), leads to:

U=${(1—v') Re kz) -y (1+v)Im g2 } . (2.37.a)
Similarly:
V=é{2lm5(z)—y(l+v’)Re #)} (2.37.b)

For the displacements near the crack tip, the approximate complex stress function
@#(n) defined in equation (2.21) suffices. We have to integrate this function first in order
to obtain the real and imaginary part of ¢(n):

p a - al v 21 149
#n) = J.¢(n)dn = J“\[E” dn = cr\[ggn = o\man\ |7
= 2r 0 — 2r - 0
= Redn)=Kj o Cos 7 5 Imd(n) =Ky - sin .

The real and imaginary parts of @(n) follow in a straightforward manner from its polar
representation in (2.22):

K e o Reg )=£cose/ ; Im )=—£sin9/
\/2_TEI’ " \/2_TEI’ 2> 1 \2mr 2

¢gm) =

After substituting these expressions into (2.37), the elastic displacements v and » are
found. For plane stress

K
U= 2%\/% cos9h(1 +sin? 95 — v-cos?95)

K
y= 251\/% sine/z(l + sin? e/2 — v-cos? e/2) ,

while for plane strain, using E' = E/(l—vz) and v' = V/(1—y),

(2.38)
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K;
u="2(1+v) EI\/;LTC 0059/2(2 —2v — cos? e/2) ,

K [7 (2.39)
y= 2(1+v)f\/2:7C sin95(2 - 2v - cos?95) .

The Crack Flank Displacement

Another useful expression is the displacement » at any position along the crack flank.
Figure 2.6 shows a schematic definition of this crack flank displacement. Expressions
(2.38) or (2.39) cannot be used for this case. The reason is that the approximate stress
function ¢(n) is valid only close to the crack tip. Therefore, we revert to the expression
for the vertical displacement » in terms of the complex stress function ¢(z):

V:é{zlma(z)—y(m')f{e e (2.37.b)

where ¢(z) = complex stress function for biaxially loaded plate (eq. (2.19)) = G/~ f 1_a2/22 .

\ 4

Figure 2.6. Crack flank displacement.

It was found earlier that Re ¢(z) = 0 along the crack flank. To obtain Im ¢(z) we have to
integrate the stress function ¢(z):

¢ dz
" _JﬂZ)&_j\/l faz/ zdz__[\/;z_ azdzz GJA\/ZZZ — 2 G\/zzfa2 )

At the crack flank y = 0 and z = x. Because |x| < a also, it follows that:

a(z)=c\[x2—a2=i' a?-x2 = Ima(z)=6\/a2—x2.

Substitution into equation (2.37.b), using the appropriate expressions for £’ and v’ given
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in equation (2.5), leads to the plane stress crack flank displacement:

(2.40)

and the plane strain crack flank displacement:

2512
V:%. 2.41)

(i8]

The Stress Field Equations for Modes Il and Ill
The stress field equations for mode II and mode III loading may be obtained in a similar
manner to that outlined in section 2.2 for mode I. The results are (reference 6):

—K
Oy = \/2—7ilrsin /7 (2 +cos 9/ cos 39/2)

Mode 11 +Kn .
< oy ="T7—sin9/7 cos 9/ cos 39/ (2.42)
K= T\/Tt—a Y \[ 2nr 2 2 2
+KH

& :\/z—nrcos 0/p (1 —sin9/7 sin 39/2) )

Ty = “Xm sin 0/
Xz
Mode III 4 \’21’[]” (243)
KH[ =T \lna +KIII 0
Tyz = cos9/2
2nr

2.4 Finite Specimen Width

The solution for the stress intensity factor in section 2.2 is strictly valid only for an
infinite plate. The geometry of finite size specimens has an effect on the crack tip stress
field, and so expressions for stress intensity factors have to be modified by the addition
of correction factors to enable their use in practical problems. A general form for such a
modified expression is

Ki=Co\[na - flaiw), (2.44)

where C and f{@/p) have to be determined by stress analysis. There are very few closed
form solutions to equation (2.44). Most expressions are obtained by numerical approxi-
mation methods.

As illustrations of the effect of finite geometry the derivation of modified expres-
sions based on the solution for an infinite, remotely loaded plate will be discussed in
some detail. These expressions concern the centre cracked specimen and the single and
double edge notched specimens. (A compendium of these and additional expressions for
a number of well known specimen geometries is given in section 2.8.)
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Figure 2.7. The finite width centre cracked specimen.

The Centre Cracked Specimen

The specimen geometry is depicted in figure 2.7. For this specimen there are several ex-
pressions for the stress intensity factor, e.g.

Ki=o\ma\ |[— tan( ) (2.45)

Equation (2.45) is the stress intensity factor analytically obtained by Irwin for one of a
row of collinear cracks with interspacing /¥ in an infinite plate (see reference 3). How-
ever, as long as @/py is sufficiently small, this can be considered a good approximation
to a finite width centre cracked specimen: the accuracy is better than 5% for @/ < 0.25.

A virtually exact numerical solution was obtained by Isida. The geometric correction
factor f{a/w) was derived as a 36 term power series! However, Brown found a 4 term
approximation to this power series with 0.5% accuracy for @/ < 0.35. This approxima-

tl()n 1S
]/l/ M/ ]/V ]/]/ ( )

Another, purely empirical, correction factor is due to Feddersen. As an approximation to
Isida’s results he suggested that

Ki=o\[na sec( j (2.47)

This remarkably simple expression is accurate to within 0.3% for @/p < 0.35.
Figure 2.8 compares all the correction factors mentioned above in a graphical repre-
sentation.
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Figure 2.8. Comparison of correction factors for the centre cracked specimen.

Edge Notched Specimens
The geometries of single and double edge notched specimens are given in figure 2.9.

In remark 2 appended to section 2.2 it was stated that the elastic stress field for a uni-
axially loaded plate can be obtained using the complex stress function ¢(z) for a biaxi-
ally loaded plate after subtracting the remote stress ¢ from the expression for oy, equa-
tion (2.18.a). Along the crack flanks, where —a <x <a and y =0, the function #z) is
purely imaginary. Equation (2.18.a) now yields ox = 0 for a biaxially loaded plate and

Figure 2.9. The single and double edge notched specimens.
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thus there are compressive stresses ox = —G acting along the crack flanks in a uniaxially
loaded plate.

These compressive stresses have a closing effect on the crack in a centre cracked
specimen. This closing effect is absent in the case of edge cracks, since oy at the free
edge must be zero. Therefore, for equal crack length a and stress o, the edge crack
shows a larger crack opening at the edge than a central crack does in the middle. Thus
there is a stress raising effect of the free edge. This effect has been estimated to be about
12%, i.e. an increase of ¢ by 12% would be needed to obtain the same crack opening for
a central crack. Thus for an edge crack:

Ki=1.120\[na. (2.48)

For longer cracks the finite geometry results in stress enhancement. Correction fac-
tors have to take both the free edge effect and finite geometry effect into account. This
is reflected in the following very accurate expressions.

o Single edge notched specimen:

a a 2 a
Ki= G\/Ez{l.l22—0.231 (VT/)* 10.550 (V—V) ~21.710 (V—V)

which has an accuracy of 0.5% for @/ < 0.6.
e Double edge notched specimen:

' 130382 (V%,j 4} (2.49)

2 4

a a a)’ a
1.122 - 1‘122(W)_0'820(Wj +3'768(W) —3.040(W)

Ki=o\[na — (2.50)
1w

which is accurate to 0.5% for any a/pp.

TIP B TIP A

< > L

Figure 2.10. Crack-line loading by a point force P.



2. The Elastic Stress Field Approach 45

2.5 Two Additional Important Solutions for Practical Use

Besides the centre cracked and single and double edge notched geometries there are
two other geometries which are important owing to their common occurrence in prac-
tice. These are:

e crack-line loading,
o clliptical cracks, either embedded or intersecting free surfaces. Elliptical cracks at
free surfaces may be semi- or quarter-elliptical in shape.

Crack-line Loading

Consider a crack loaded by a point force as in figure 2.10. This is known as crack-line
loading. Expressions for the stress intensity factors at crack tips A and B can be ob-
tained by an analysis similar to that in section 2.2. The result in terms of the force per
unit thickness, P, 1s:

P la+x P a—x
KIA_'\/;[ a—x’ KIB_'\/;; a+x (2518)

For a centrally located force (x = 0)

P
Ki=—7F—. 2.51b
I \/;1 ( )

Therefore for constant P an increase in crack length results in a decrease in stress inten-
sity.

From equations (2.51.a) a stress intensity factor solution for a crack under internal
pressure can be derived. Redefining P as the internal pressure, the point force per unit
thickness in equation (2.51.a) is equal to Pdx. Integration yields:

a a
P /a+x P [a+x /a—x
KI_’\’T[a Cl—xdx_’\’naj( a—x+ a+xjdx
—a 0

a

P | 2adx 2Pa[ . x|°
:\/;1 \/az—_xz—\/;z[arcsmﬂo—lo\/;z. (2.52)
0

Note that since the pressure P is a force per unit area the result in equation (2.52) is the
same as that obtained by end loading, K| = CY\/EI.
The usefulness of solutions for crack-line loading is twofold:

1) Expressions for point forces can be applied to cracks at loaded holes, e.g. riveted and
bolted plates, provided that the holes are not too large with respect to the crack.
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2) Integration of point force solutions to obtain expressions for cracks under internal
pressure is particularly useful for analysing internal part-through wall thickness
cracks in e.g. pressure vessels and piping. The solutions are also important for
through wall thickness cracks when there is a break in a pressure vessel or a pipe
filled with a gas. At the moment of breakage the full gas pressure must be assumed
to work on the crack flanks.

Elliptical Cracks

Actual cracks often initiate at surface discontinuities or corners in structural compo-
nents. If the components are fairly thick the cracks generally assume semi- or quarter-
elliptical shapes as they grow in the thickness direction, for example as in figure 2.11. A
knowledge of stress intensity factors for these geometries is thus of prime importance
for practical application of LEFM.

Figure 2.11. Semi-elliptical and quarter-elliptical cracks.

As a first step, Irwin derived an expression for the mode I stress intensity factor of an
embedded slit-like elliptical crack. The loading situation is shown schematically in fig-
ure 2.12.

For this situation

5 1
K= G—\c@(sinz(p + % coschj s (2.53)

where the location along the crack front is represented by the parametric angle ¢ de-
fined in figure 2.12 and @ is an elliptic integral of the second kind, i.e.

TE/2
D= J.\ll — sin?a sin?¢ d¢
0

sinZa. = (¢* - 612)/02 and { is a vanishing integration variable. The solution for the inte-
gral is given in the table below for a number of @/, ratios.



2. The Elastic Stress Field Approach 47
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(x,y) X = € COSQ
¢ y = asing
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CRACK FRONT

8 MODE | LOADING DIRECTION

Figure 2.12. An embedded elliptical crack under mode | loading. The location along the crack
front is represented by the parametric angle ¢.

e 0 0.1 02 03 04 05 06 07 038 0.9 1.0
® 1.000 1.016 1.051 1.097 1.151 1.211 1.277 1.345 1.418 1.493 1.571

The integral can also be developed as a series expansion:

2
T 1c-a? 3(P-d®
(D:2 1_4 02 ~ 64 C‘2 R I
Neglecting all terms beyond the second gives an accuracy of better than 5%. And so the
stress intensity factor can be approximated by

1

2
K= f% {sinch + (%j cosztp}4 . (2.54)
R @

K7 varies along the elliptical crack front and has a maximum value cY\/;l/ @ at the
ends of the minor axis, ¢, and a minimum value na’/ ¢/@ at the ends of the major
axis, ¢. The implication is that during crack growth an embedded elliptical crack will
tend to become circular. For an embedded circular crack

2
K :;G\/Ez . (2.55)

In practice elliptical cracks will generally occur as semi-elliptical surface cracks or
quarter-elliptical corner cracks. The presence of free surfaces means that correction
factors must be added to the expressions given for embedded cracks.

For a semi-elliptical surface crack the free front surface is generally accounted for by
adding a correction factor of 1.12. For a quarter-elliptical corner crack, which intersects
two surfaces, a correction factor of 1.2 is used. Besides these factors, corrections for
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Figure 2.13. Stress intensity factor solutions for semi-elliptical surface cracks in a plate of finite
dimensions, according to Raju and Newman (reference 8).

cracks approaching back surfaces (analogous to corrections for finite specimen width,
section 2.4) must be considered. Back surface correction factors have been calculated by
various authors: an overview can be found in reference 7 of the bibliography. The re-
sults are often combined with front free surface and finite width correction factors.

The best solutions available for semi-elliptical surface cracks are those based on the
finite element calculations of Raju and Newman, reference 8 of the bibliography. For
the crack of figure 2.13 Raju and Newman produced stress intensity factor solutions of
the form Ky = Co\ma/q where, for W >> ¢ the value of C depends only on @/, /g and
¢. Values of C are also given in figure 2.13.

Raju and Newman also developed an empirical stress intensity factor equation based
on their finite element results, reference 9 of the bibliography. For tension loading the
solution is reproduced in section 2.8. For combined tension and bending load the reader
is referred to reference 9.

2.6 Superposition of Stress Intensity Factors

In section 2.2 it was shown that in the vicinity of the crack tip the total stress field
due to two or more different mode I loading systems can be obtained by an algebraic
summation of the respective stress intensity factors. This is called the superposition
principle.

It should be noted that the superposition principle is valid only for combinations of
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0

. .

Figure 2.14. The superposition principle for a through crack under internal pressure.

the same mode of loading, i.e. all mode I, all mode II or all mode III. The different
modes give different types of stress intensity factor solutions which cannot be superim-
posed.

By using the superposition principle the stress intensity factor for a number of
seemingly complicated problems can be readily obtained. Two examples are given here.
They are:

1) A through crack under internal pressure (already derived analytically in section 2.5).
2) A semi-elliptical surface crack in a cylindrical pressure vessel.

Through Crack under Internal Pressure

The solution for this problem was already given in equation (2.52). Here the solution is
obtained by the superposition shown in figure 2.14. It is seen from this superposition
that

KIA:KIB :KIC +KID: 0.
Therefore
K]D = —K]C = — na .

Substituting P = —c in case D gives the required result, P\/;l.

Note that this superposition also holds when a correction for finite specimen size is
required. Such a correction, of the form f{d@/p), can thus be applied to a finite width
centre cracked specimen irrespective of whether uniaxial tension is applied to the plate
or the crack is loaded by an internal pressure.

Semi-Elliptical Surface Crack in a Cylindrical Pressure Vessel

A section from a cylindrical pressure vessel with an internal semi-elliptical surface
crack is given in figure 2.15. As long as the wall thickness, B, is small compared to the
vessel radius, R, the hoop stress oy = PR/B. The maximum stress intensity factor will
generally occur at the end of the minor axis of the semi-elliptical surface crack (¢ =
90°). The contribution to this maximum stress intensity factor by the hoop stress is



50 Linear Elastic Fracture Mechanics

Figure 2.15. Cylindrical pressure vessel with internal surface crack.

Ko _ CGH\/na _ CPR\/E (2.56)
I o) B® :

where C can be obtained from figure 2.13 when a and ¢ are known.
Since the crack is in a pressurised vessel the internal pressure will also act on the
crack surfaces, with a contribution to the maximum stress intensity factor of

P_ C na
Ky = D (2.57)
The maximum stress intensity factor is therefore
R
cpP (l + E) \/na
K =K+ K =—————. (2.58)

max

)

2.7 Some Remarks Concerning Stress Intensity Factor Determinations

In attempting to use fracture mechanics it will often be found that there is no stan-
dard stress intensity factor solution for the particular crack shape and structural compo-
nent geometry under consideration. Recourse must be made to one of a number of
methods for obtaining the stress intensity factor. A detailed treatise of these methods is
beyond the scope of this course, but some remarks on the subject will be made here.

Stress intensity factors are now available for many geometrical configurations and so
the first step should always be a literature search. For example, references 6 and 10 of
the bibliography and the indexes of well known journals such as the “International
Journal of Fracture” and “Engineering Fracture Mechanics” can serve as starting points.

If no applicable solution is directly available, the next step is to assess the permissi-
ble effort to solve the problem. This effort depends on the seriousness of the problem,
the desired accuracy, computational costs and how many times the solution will be use-
ful. Limits to the amount of effort that can be justified will frequently rule out the use of
sophisticated and expensive methods such as
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Figure 2.16. Schematic of the fatigue crack growth method for obtaining stress intensity fac-
tors.

¢ finite element calculations,
e boundary integral equations,
e conformal mapping.
The interested reader will find detailed information about these methods in reference 11
of the bibliography. A strong mathematical background is essential for using these
methods.
However, in many cases one of several more straightforward methods can be ap-
plied. These include
o the superposition principle (already discussed in section 2.6) or the very similar
compounding method (reference 12 of the bibliography),
o the experimental fatigue crack growth method,
o the weight function method.

The Experimental Fatigue Crack Growth Method

This method generally gives reliable results. It involves comparing fatigue crack growth
rates in the configuration to be investigated with crack growth rates in standard speci-
mens of the same material fatigued under exactly the same conditions. Constant
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amplitude loading is used, since crack growth rate data are then correlatable by AK, the
stress intensity range, as mentioned in chapter 1.

In order to determine the stress intensity factor the assumption is made that at the
same crack growth rate da/gy, the same AK applies to the standard specimens and the
configuration being considered (similarity or similitude principle). First it is necessary
to experimentally determine a da/qy-a relation for the unknown configuration, as shown
schematically in figure 2.16. Then, by performing a fatigue crack propagation test with
a standard specimen over a certain crack length range, da/q,-AK data must be gener-
ated. Using this, da/q; can simply be eliminated leading to a AK-a relation. K for the
unknown configuration can now be determined knowing both the crack length and the
load.

The Weight Function Method

From expressions for the energy release rate, G, and the relation G = K% E (see chapter
4) it can be shown that the stress intensity factor for a particular stress distribution can
be calculated if the stress intensity factor is known for another stress distribution on the
same configuration of specimen and crack geometries. The proof of this is given in ref-
erence 13 of the bibliography. The result for mode I loading is

2a
K= jH(x,a)-G(x) dx, (2.59)

0

_E 0 (xa)
where H(x,a) = 2KF od
is the weight function; £’ is E for plane stress and E/(1 — v2) for plane strain; K;k is the
known stress intensity factor; v is the displacement at the loading point, x, of the
known solution but in the direction of loading for the stress distribution to be analysed;
and o(x) is a function describing this stress distribution with reference to the stress dis-
tribution for K;k .

A serious difficulty in using equation (2.59) is the part PV*/aa dx which often gives
singularities in the stress field distribution around a crack tip. A better technique is to
use special weight function solutions which give singularities only at the crack tip. Such
special weight functions have been derived by Bueckner and, in a different way, by
Paris. Discussion of these functions, including examples of their use, can be found in
references 2 and 13 of the bibliography to this chapter.

2.8 A Compendium of Well-Known Stress Intensity Factor Solutions

A number of well known and widely used stress intensity factor solutions are pre-
sented here. Some of these solutions have already been discussed in sections 2.4 — 2.6.
Others will be found in subsequent chapters of this course or else are mentioned because
of their practical utility.
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Elementary Solutions

o
444414 Centrecracked plate: Kj = Co‘\/;z

o e Brown (accurate to 0.5% for @/ < 0.35):

I a a)? a)’

) C=1+0.256 (W) -1.152 (Wj +12.200 (Wj
X | e Feddersen (accurate to 0.3% for @/ < 0.35):
EEER

o |  ma

C= sec

o
ttett Single edge notched plate: K; = CCY\/;Z
& e Small cracks: C=1.12
:_:| e Brown (accurate to 0.5% for @/ < 0.6):

w a a)? a a\)*
‘ C=1.122-0.231 (W) +10.550 (W) -21.710 (W) +30.382 (Wj
BEER

o

o
{1444 Doubleedge notched plate: Kj = Co‘\/Ez
a al ® Small cracks: C=1.12
"‘I |"" e Tada (accurate to 0.5% for any a/)
— —

2 3 4
w a a a a
. 1.122-1.122 (W) —-0.820 (Wj +3.768 (W) -3.040 (W)

Ry [ 2

o w

(O]

® MODE | LOAD &

ad>
N

% sse

“————>
K[_g(Y\/;l

2c Circular crack: -

Embedded elliptical or circular slit crack:

2
Elliptical crack:  Kj= ﬁ\% (sin2(p + % coszq)j !

1
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Semi-elliptical surface crack in tension:

w K= Ccy_\lﬂ:a

i
sinZo + < cos? 4
) ¢ 02 ¢

8 MODE | LOAD &

@ 0] :§+§?
mi% o | c {1.12 for shallow cracks

<« > "\ the correction for Kj from figure 2.13

2c

or (reference 9):

KIZ

2
Ql=

a a ¢
F(B’C’ W’ (P)
a) 1.65
Q:1+1.464(E)
a 2 a 4

F= C1+C2(§) +C3(§) f(P C4fw
€y =1.13-0.09%

C

0.89
Cr=—054+ " o
3 1.0 ( gjz“
C3=05 - ges o+ 1410

2
Ci=1+ {0.1 + 0.35@ }(1 — sin @)

5 1
Jo= {sinzq) + (%) cosz(p} !

1
fw={sec(n—V; %}2

8 MODE | LoAD ¢ Quarter-elliptical corner crack in tension:

2 1
_ ﬂ@ s A o |4
mi % Ki C3_1t Ea_2(51n(p+c2coscpj
«—> 8 "8 2
c

c=12

The solutions for corner cracks are not elementary. They are, however, very important
and the reader is referred to references 14, 15 and 16 of the bibliography.
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Solutions for Standard Test Specimens

P
(!) W Compact tension specimen (CT):
P a
Ty | 8 K= E'f(p—y)
B2

f(ij _ (2 - V%) {0.886 +4.64 (V%,) ~1332 (V%) S 4m (V%) " 56 (VEV) 4}

Single edge notched bend specimen (SENB):

w" h‘{a Ky = 2 f (i)

EAN/4
Bw2

o 3(%)%[1.99 —V%(l —V%j {2.15 ~3.93 (V%) +2.7 (V%,j 2H
/(Wj ) 2(1 + 2%,) (1 —V%)%

—O
_LO

i Double cantilever beam specimen (DCB):
P
K= 2\/5 _az (plane stress)
Bh?
N

Ki= 3 (plane strain)
NT=V2

Circumferentially notched bar:

0526 D
1

= 7

over the range 1.2 <D/3<2.1
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= C-shaped specimen

) snsagfror(i B -5} 3
s

1 5 7
a)_ a); a); a); a3 a
[(W)—18.23(Wj —106.2(W) +389.7 j —ssz.o(Wj +369.1(W

w,
Useful Solutions for Practical Applications

K1=

Crack under internal pressure:

p
bttt
e —— K= CP\/E;
R i b where C is the same as for an externally
= loaded centre cracked plate and P is force per
unit area.

Cracks growing from both sides of a loaded

w
P = oW
l hole, where the hole is small with respect to
the crack:
2a
w

o\/na P
Ki=C +
- ! ( 2 2 naj
where C is the same as for an externally
EEEEEERERER loaded centre cracked plate and P is force per
g unit thickness.
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. Through-thickness cracks from one or both sides of
DTRSH dhalh I 6 08 I8 0 a remotely loaded hole:

Ki= (7\/;1 Fl(Ri ) (single crack)

a

A +a
a
@T K= c\/;l Fz(R n a) (double crack)

The solutions for F'; and F, are given in figure 2.17.

NERRERREN .

1

YRR, o 2.365 .

2o\t *

_II|||||%|2|
. . . .8 .0
l‘llijilll 0 0.2 04‘%:60 1

Figure 2.17. Correction factors for cracks growing from
remotely loaded holes.

For long double cracks with > 0.3 a good approximation is

a
R+a
Ki=Co\[n(R+a),

where C is the same as for a centre cracked plate.

Axial through-thickness crack length 2a in a thin
walled pipe with mean radius R, internal pressure P
and wall thickness #:

KI = GHMf\/;l 5

where oy = PR/t and My is the Folias correction

factor for bulging of the crack flanks:

a2 Cl4
M= 1+1'225E _0‘0135R7t2'

section A-A
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Corner crack in a longitudinal section of a pipe-

vessel intersection in a pressure vessel:

R (P
o\ Ta m RB)>

where oy is the hoop stress in the vessel wall. The
solution for Fy, is given in figure 2.18.

Figure 2.18. Correction factor for a corner crack in a
longitudinal section of a pipe-vessel inter-
section on a pressure vessel.

Note: This is a serious problem in

gg;’ig,%m T" pressure vessel technology.
GEOMETRY The solution given here is by
M.A. Mohamed and .

— 2 L @ : Schroeder, International

Journal of Fracture, Vol. 14,

4 ' p. 605, 1978. It is a first ap-

proximation only, based on
correlation of results from
i_i o ' six different investigations.
— y For detailed problem solving

r Li.l the individual solutions
should be studied to ascer-
tain their relevance.
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3
Crack Tip Plasticity

3.1 Introduction

In chapter 2 the elastic stress field equations for a sharp crack, equations (2.24), were
obtained. These equations result in infinite stresses at the crack tip, i.e. there is a stress
singularity. This solution is for a crack with zero crack tip radius. However, real materi-
als have an atomic structure, and the minimum finite tip radius is about the interatomic
distance. This limits the stresses at the crack tip. More importantly, structural materials
deform plastically above the yield stress and so in reality there will be a plastic zone
surrounding the crack tip.

Along the x-axis 0 = 0 and the expression for oy in equations (2.24) gives

_o\ra__Ki 3.1)

Oy = = .
2nr 2nr

By substituting the yield strength, cys, for oy in equation (3.1) an estimate can be ob-
tained of the distance ry over which the material is plastically deformed ahead of the

crack:
2
1 (K
Y= on (Gysj . (3.2)

Assuming as a first approximation that the plastic zone size along the x-axis, ry,

Sy 4 K
ELASTIC STRESS DISTRIBUTION oy = ==
Tr

STRESS DISTRIBUTION
AFTER LOCAL YIELDING

Gys - \

Iy

<V

CRACK TIP <

»
>

Figure 3.1. A first approximation to the crack tip plastic zone.



62 Linear Elastic Fracture Mechanics

corresponds to the diameter of a circular plastic zone, the distribution of oy ahead of the
crack tip will be as shown in figure 3.1. From this figure it is clear that the assumption
is inaccurate, since part of the stress distribution (shown hatched in the figure) is simply
cut off above oys. Also, there is no a priori reason why the plastic zone should be
circular.

In fact it turns out to be extremely difficult to give a proper description of plastic
zone size and shape. For this reason the models most widely known from the literature
have followed one of two approaches. Either they give a better approximation of the
size but use a selected shape, e.g. the Irwin and Dugdale approaches discussed in sec-
tions 3.2 and 3.3, or they give an impression of the shape but retain the first size ap-
proximation, as in the derivations from classical yield criteria in section 3.4.

Besides these limitations there is the problem that the state of stress, i.e. plane stress
or plane strain, will affect the plastic zone size and shape. It is well known that under
plane strain conditions yielding need not occur until the applied stress is much higher
than Gys, i.e. the plastic zone may be smaller. This and other effects of differing state of
stress will be dealt with in sections 3.5 and 3.6.

Finally, in section 3.7 some remarks will be addressed to advanced methods of de-
termining plastic zone size and shape.

3.2 The Plastic Zone Size According to Irwin

Irwin’s analysis of plastic zone size attempts to account for the fact that the stress
distribution cannot simply be cut off above oy as in figure 3.1. For the analysis to be
straightforward there are several restrictions:

1) The plastic zone shape is considered to be circular: however, circularity is not im-
portant, see restriction 2.

2) Only the situation along the x-axis (6 = 0 in equations (2.24)) is analysed.

3) The material behaviour is considered to be elastic — perfectly plastic, i.e. it is as-
sumed there is no strain hardening.

4) A plane stress state is considered. As will be discussed further in section 3.5, the
material behaviour assumed in restriction 3 now implies that stresses will not exceed
Gys. Note that this restriction is made only for convenience. The analysis can also be
made for a state of plane strain.

Irwin argued that the occurrence of plasticity makes the crack behave as if it were

longer than its physical size — the displacements are longer and the stiffness is lower
than in the elastic case, i.e.

deff=a + Aay ,

where ac is the effective, or notional, crack length and Aq, is the notional crack incre-
ment. This increment must account for redistribution of stresses that were above Gy, in
the elastic case. Aa, behaves as part of the crack, but the stress oy is equal to Gys.



3. Crack Tip Plasticity

63

Oy A

ACTUAL STRESS
DISTRIBUTION AFTER
LOCAL YIELDING

s

p—
—

N ELASTIC STRESS DISTRIBUTION
N\« FOR NOTIONAL CRACK

77,

-

Gys
ACTUAL CRACK TIP,

Ve
X 03
LKA
IIIIIKK

707004

< 4%
3330RRRLILIIIRKRKKKS
fetetetolotototetetetetolotototete et otototete et o to 0 0 e e 0 e

NOTIONAL CRACK TIP

Figure 3.2. Schematic of Irwin’s analysis.

Now consider figure 3.2, which shows the oy distribution that follows from the elas-
tic solution for a crack of length a + Aa, as well as the actual oy distribution after local
yielding. The stresses transmitted by these two distributions should be equal. This will
be the case if area I is equal to area II, i.e.

Ty

OysAay =

or

o\ (a + Aay)

2nr

7= Oys " Ty .

Oys(Aay +ry) =

For a crack of length a + Aa,

(kY &
Yo Oys) 202

which we can use to substitute for o\/a + Aa, in equation (3.4). This gives

Oys(Aay +1y) =

and therefore

Aay +ry=2ry .

m[n(a+Aan)£_2G\/a+Aan\/—
T A A
0

(a+ Aay),

ys

26:153!2”;3!”;.

\2

(3.3)

3.4

(3.5)

(3.6)

Thus the notional crack increment Aa,, is equal to the first approximation for the plastic
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Figure 3.3. The Irwin plastic zone size.

zone size ry.

It follows that Irwin’s analysis results in a plastic zone diameter (Aay + ry) twice that
obtained as a first approximation (ry). Furthermore, this result means that the notional
crack length (a+Aay) = (a + ry) extends to the centre of the circular plastic zone, figure
3.3, with a concomitant shift of the stress distribution over a distance ry with respect to
the elastic case. Note that the elastic stress distribution oy = Ki/a[2 5y takes over from
Oys at a distance 2ry ahead of the actual crack tip. Thus K; determines both the plastic
zone size, equation (3.2), and the stresses and strains outside the plastic zone (cy =
KI/\/Ef). It seems reasonable, therefore, that the stress intensity approach is still appli-
cable for correlating crack growth and fracture behaviour.

Note that the expression used for K| at the notional crack length, i.e.

K[:G’\’Tc(a+ry) ,

is only a first approximation. The reason is that

_L(KY
YT on Gys)

which implies that K; and ry are mutually dependent. For this simple case, where f{4/py) = 1, the problem
can be analytically solved by simple substitution. The result is

9 5! na
K= > (3.7
| _if<
2(03'5)

an expression that approaches the usual K} = cr\/;z for o << ©y,. For more complicated f{4/py), however,
a numerical computation is generally necessary. If K is not too large, only a few iterations are needed to
find a converging result for K. At higher stresses the numerical procedure may lead to a diverging K
value and LEFM is no longer applicable.

A Useful Expression: Crack Tip Opening Displacement (CTOD)

In section 2.3 the crack flank displacement, v, was defined. The expression obtained for
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Figure 3.4. Crack Tip Opening Displacement according to Irwin

plane stress was v = 20\ a®> — x*/E. The total Crack Opening Displacement (COD or &)
is equal to 27, i.e. 8 = 45"\ a? - x*/E. For this purely elastic case the Crack Tip Opening
Displacement (CTOD or &;) would be zero, since x is ta at the tip. As shown in figure
3.4, crack tip plasticity can be accounted for by using Irwin’s proposal for an effective
crack length 2(a +ry), and considering the crack opening displacement at the actual
crack tip, i.e.

4 4
8t=—6 az+2ary+r2 252

y—a R 2ary .
Substitution for y from equation (3.2) gives

4K
- mEGys’

dy (3.9)
which is an approximation for the Crack Tip Opening Displacement (CTOD). This ap-
proximation will be compared in section 3.3 with the more usual expression for CTOD,
which is derived from the Dugdale approach.

Equation (3.8) cannot be used for a situation with varying Kj, as for example in fatigue. Suppose we

want to know & for a value of K < K,,,, the maximum value of K during the fatigue cycle. A derivation
analogous to that leading to equation (3.8) now gives:

_ i KIKmax

t_ .
T EGy

3.3 The Plastic Zone Size According to Dugdale: The Strip Yield Model

Dugdale’s analysis assumes that all plastic deformation concentrates in a strip in
front of the crack, the so-called strip yield model. This type of behaviour does indeed
occur for a number of materials, but certainly not for all. Just as in Irwin’s analysis,
Dugdale argued that the effective crack length is longer than the physical length. The
notional crack increment Aa,, is considered to carry the yield stress as shown in figure
3.5 (here the assumption of elastic — perfectly plastic material behaviour and a state of
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Figure 3.5. Schematic of Dugdale’s analysis.

plane stress is also made). Note that Aa, is not defined the same way as in section 3.2.
Here Aa, is the size of the fotal plastic zone.
The derivation of the Dugdale formula is made in two ways:
o straightforwardly using superposition,
o formally using (complex) stress functions.

Derivation using superposition

The superposition procedure is given in figure 3.6. In a plate with a crack of physical
length 2a and plastic zone size 2Aa, (plate A) the same stresses and displacements are
present as in a plate with a physical crack length 2(a + Aay) where the crack is closed
over the area 2Aa, owing to a pressure Gy on the crack flanks (plate B). The two mode
I stress systems acting on plate B can be split into the separate mode I stress systems
shown in plates C and D. The approach is now that a finite value of oy, i.e. Gys, is re-
quired at the notional crack tip (at @ = a + Aay). In other words oy = KI™"/\[27 is fi-
nite, where K™ = KiB = K€ + KiP. Because r = 0 at the notional tip, 6y would become
singular at that point unless K™ is equal to zero. Using this knowledge, the value of

DUGDALE SUPER-
APPROACH POSITION

EEEEIEEEEE R

\ Oys Oys 4 Oys Oys
E— = H%OH—* = H-%<—_>+-H + e —
<> <> <> <>
2a 2(@+Aa,) 2@+Aa,) 2(@+Aa,)
C

A A A

Figure 3.6. Obtaining the Dugdale formula using superposition.

T
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Aay, may be calculated as follows.
Ki€ can be solved with the formulae for crack-line loading given in section (2.5).
Analogous to equation (2.52), we can write:

a+Aa,
KO P 2(a + Aayp) dx _ 2P(a + Aay)
! \/ m(a + Aay) \/ (a+ Aay)? —x* \/ m(a + Aay)

a

KC=-2 a+ Ady 2 3.9
= [~ = —20ys L arccos A’ 3.9)

where P = —cys was used. K{P follows from:

KPP = o \/n(a + Aay) . (3.10)

Taking K™ = KB = K1€ + K1P = 0 we find:

:| a+Aa,

arcsin
[ a+Aay ],

ife] a o 1 Aa
cos = or sec ==+ (3.11)
20ys  a+Aay 26y o a
cos, _
26ys
Using the series expansion
T a2 for bl <&
secx =145 +5,+.... or|x|<2

and assuming ¢ << Gy, i.e. X = NG/QGYS << T/2, only the first two terms of the expan-
sion need to be considered and we find:

2
K
Aan=w=%£—lj . (3.12)

Note that we cannot find the stress oy (= Gys) at the crack tip from the above derivation
because oy = K1I""/7[2/ becomes indefinite when r goes to zero. We know only that
oy is finite. From the derivation below, using stress functions, it is possible to obtain
more information.

Derivation using (complex) stress functions
The approach proceeds as follows:

1) Obtain a Westergaard-type stress function for a crack of length 2(a + Aa,) with the
origin at the centre of the crack. From section 2.2 a suitable function is known to be

$1(2) = oA[1 - (a + Aay) /2
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2) Since Aay, carries the yield stress, unlike a real crack, the elastic stress function ¢(z)
will overestimate the stress intensity at the notional crack tip. To obtain the correct
estimate use is also made here of the superposition principle. Thus a stress function
that describes the loading condition over the distance Aa, must be found and this
stress function must be subtracted from ¢;(z).

3) From reference 1 of the bibliography to this chapter the stress function ¢(z) corre-
sponding to two point forces P (per unit thickness) acting on both surfaces of a crack
with length 2(a + Aay) at distances +b and —b from the centre is given by:

B 2PA[(a + Aay)? — b 113
P = [2—(a+ Aan) (22 - bY) (3.13)

Choosing a force P that corresponds to the yield stress, i.e. P = cy.db, and by inte-
grating ¢(z), the stress function ¢;(z) can be obtained that describes the loading con-
dition over Aay:

a+Aa,

20ysz \(a + Aay)? - b?

$a(2)= _‘- 71'\/22 —(a + Aap)? Z2-b? db

a

26ys z a
= arccos
T \/ 7% — (a+Aay)? a+Aay

2 _ 2
— arccot {g’\ [%ﬂ. (3.14)

4) The correct stress function ¢u(z) = ¢1(z) — ¢s(2), i.e.

¢ ( ) oz 2Gys z a
z)= - arccos — .
* \/ 22— (a+Aay)? T \/z2 — (a+Aay)? a+Aay

26 a 22 — (a+Aay)?
bt A “ 2/
+— arccot {z A | (@thayy — ] - (3.15)

5) Dugdale continued with the argument that a stress singularity cannot exist at the no-
tional crack tip, since at that point the elastic stress goes no higher than the yield
stress for an elastic — perfectly plastic material. This means that the singular terms in
equation (3.15) must cancel each other, i.e.

oz 2Gys z
> >~ 5 5 arccos =0,
\/z —(a+ Aayp) T \/z —(a+ Aay) a+ Aap
SO
2Gys a
o - arccos =0,
i a+ Aay,
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and
c a a
2645 = arccos - Aa, or cos 26,5 “atAa (3.16)
6) Equation (3.16) is identical to equation (3.11), which led to equation (3.12):
2
2.2 K
n°c‘a 7Kl
Aay = =o|= - 3.12
dan 803;5 8 (Cysj ( )

Remarks

1) The Dugdale plastic zone size, equation (3.12), is

KV
Aay = 0393 |—| .
Gys

This is somewhat larger than the diameter of the plastic zone according to Irwin.
Irwin’s analysis gives a plastic zone diameter 27y, which from equation (3.2) is

1 ( Ky : K :
2, =—|=1| =0318|="| .
7 \Gys Gys

2) The Dugdale approach has been given here in its most general form by using stress
functions. Although this might appear unnecessarily complicated as compared to the
more common treatment in terms of stress intensity factors as given above, there is
an important advantage. Stress intensity factors can be used only as approximations
consisting of singular terms. Thus in step 5) of the analysis, when all singular terms
are required to cancel each other, the misleading impression is given that the stresses
at the notional crack tip (the end of the plastic zone) should be zero. However, equa-
tion (3.15) shows that there is a non-singular term

26ys |22 — (a + Aay)?
#5(z) = _::L arccot {g %} 3.17)

and this gives the elastic stress distribution in (¢ = oys) and beyond the plastic zone.

Equation (3.17) indeed predicts 6, = G in the whole of the Dugdale plastic zone, i.e. a <x < a + Aa,
and y = 0. This can be seen as follows. The Taylor series for the arccot function is: arccot x = T/ — (x —
x3/3 + X 5= ) for |x| < 1. Therefore, the argument of the arccot in equation (3.17) is purely imaginary
within the plastic zone and has a value between 0 (for z = a + Aa,) and i (for z = a). For this case equation
(3.17) may be rewritten as ¢5(z) = 20ys/ arccot(p-i) with 0 < p < 1. From the Taylor series it is clear that
the real part of arccot(pi) = T/, because the other terms in the series have odd powers and will stay
purely imaginary. Thus 6, = Re ¢5(z) = 6y for a <z <a + Aay, as would be expected.

The Dugdale Approach and COD

An important aspect of the Dugdale approach in terms of stress functions is that it en-
ables a basic expression for the COD to be calculated. The crack flank displacement, v,
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in the region between a and a + Aa, can be obtained by substituting the non-singular
term in equation (3.15), i.e. ¢s(z) from equation (3.17), into the plane stress version of
equation (2.37.b), i.e.

1 _
r=2{2Im@z) - y(1 +VIRe g(2) } .

Now y = 0, since the Dugdale plastic zone is a strip yield model along the x-axis. Thus

2 Im @s(z2)
y= E . (3.18)

The solution of equation (3.18) is fairly difficult and beyond the scope of this course.
A full treatment is given in reference 2 of the bibliography. For our purpose it is suffi-
cient to note that an expression for the physical CTOD, &, is obtained by solving equa-
tion (3.18) for » and allowing z to tend to the limit a. Then

8oysa o
_ s _S0ysd
27 = & E In sec 265"

(3.19)

Equation (3.19) is the starting point for many CTOD considerations in the literature.
Further detailed attention is given to the COD concept in chapters 6, 7 and 8 of this
course, but it is here informative to compare the results from Irwin’s and Dugdale’s
analysis. To do this, it is convenient to first rewrite the In sec expression in equation
(3.19). As before, the sec function may be expanded as sec x =1 + X%y +5x%4 +... for
x| < /7. If G/Gys << 1, as is the case for LEFM conditions, the argument of the sec
function in equation (3.19) may expected to be much smaller than unity. Therefore we
can write

S}

2
In(sec x) = ln(l + x?) ~ x?
and thus

85, 1 2 nota Ki

St: ys¢ 1 [ o :TCG a: 1 ' (3.20)
nE 2\20y) Ecys EGys

This value of CTOD is slightly less than that obtained via Irwin’s analysis, equation

(3.8):

Note: Plane Stress and Plane Strain

So far, all expressions in Irwin’s and Dugdale’s analyses have been derived for the state
of plane stress (i.e. 6y = Gy in the plastic zone). Differences that arise owing to plane
strain conditions will be discussed in section 3.5.
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3.4 First Order Approximations of Plastic Zone Shapes

In the introduction to this chapter, section 3.1, it was mentioned that well known
models describing the crack tip plastic zone fall into two categories. Either they estimate
the size of a zone with an assumed shape, or else the shape is determined from a first
order approximation to the size. Having dealt with the first category in sections 3.2 and
3.3, we shall now turn to methods for assessing the plastic zone shape.

The reason that a first order approximation to the plastic zone size is used in well
known models for determining the shape is that the calculations employ classical yield
criteria, e.g. those of Von Mises or Tresca, to give only the boundaries where the mate-
rial starts to yield. No account is taken of the fact that the original elastic stress distribu-
tion above cys must be redistributed and retransmitted. The procedure is similar to that
in section 3.1, but instead of calculating 7y only for 0 = 0, the value of 7y over the range
(—m £ 0 < +n) is determined.

Derivation of the plastic zone shape is thus simply a matter of substituting the appro-
priate stress equations into the yield criterion under consideration. Only the Von Mises
criterion will be employed here, since the Tresca criterion gives similar results. How-
ever, both plane stress and plane strain plastic zone shapes will be analysed. The plane
strain plastic zone shape is included in this section because the procedure for determin-
ing it is the same as for the plane stress case, and the result serves as a good basis for
discussing the problem of differing states of stress in section 3.5.

Plastic Zone Shapes from the Von Mises Yield Criterion

The Von Mises yield criterion states that yielding will occur when
(01— 62)? + (02— 03)* + (03 — 61)? = 2073 , (3.21)

where 61, 6, and o3 are the principal stresses'.
In section 2.3 the mode I stress field equations were derived for a two-dimensional
case in terms of the principal stresses, namely

J%
61 =—==cos 9/ (1 + sin ®/5) (2.33.2)
\2nr
K
6> =—==c0s 8/ (1 - sin 0/5) (2.33.b)
\2mr

and o3 is either 0 (plane stress) or v(c| + G5) for plane strain. Substitution into equation

(3.21) gives for plane stress

K3 3

Z—Tclr(l +3 sin%0 + cos 9) = 207
or

! Note that equation (3.21) describes a circular cylinder in the o}, 6,, 63 space with a radius \’2/3~Gys
around the line 67 = 6, = o3.
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Figure 3.7. Dimensionless plastic zone shapes from the Von Mises yield criterion.

O s = (L] 1+ 3o + oso)
7( )plane stress — 4. Gys + 5 s +cos0]. (3.22)
Equation (3.22) can be made dimensionless by dividing by 7y, i.e. the first order ap-
proximation to the plastic zone size for 0 = 0 (x-axis), equation (3.2). Then

r(0 1 3 1
( )Elir;e stress _ 5 + Z sin20 + E cosO. (3.23)

Note that for 6 = 0 the value of 7(0) is indeed ry and for 6 = /2 (y-axis) the value is

5/4 Ty.
For plane strain, i.e. 63 = v(G| + G3)

K3, ) 52
2|2 S 0+ (1 —2v)“(1 + cos0)[ = 2oy

and

A (e)glane strain

3on L 2
ry 2 Sin 0 +2(1 —2v)“(1 + cos9) . (3.24)

Along the x-axis (0 = 0) the plane strain value of 7(0) is much less than the plane
stress value. Assuming v = 1/3,
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1 1
1(8=0)planc strain = 9 1(0=0)plane stress = 9'y:

Figure 3.7 depicts the shapes of the plane stress and plane strain plastic zones in dimen-
sionless form.

Similar derivations of plastic zone shapes can be obtained for mode II and mode III
loading. Results of such derivations are given in reference 3 of the bibliography to this
chapter.

3.5 The State of Stress in the Crack Tip Region

In section 3.1 it was mentioned that the state of stress, i.e. plane stress or plane strain,
affects the plastic zone size and shape, and figure 3.7 is a good illustration of such ef-
fects. For this reason alone it is of interest to go into some detail concerning the state of
stress in the crack tip region. However, there are additional important effects of stress
state and these will be discussed later in the present section and in section 3.6.

Through-Thickness Plastic Zone Size and Shape

Consider a through-thickness crack in a plate. From equations (2.24) we know that there
is at least a biaxial (plane stress) condition, for which the elastic stresses in the x and y
directions are given by

_ona
Gij_\/Z_Tcr flj((%)) (3.25)

Equation (3.25) shows that for small values of r both 6, and oy will exceed the material
yield stress. Thus a biaxial plastic zone will form at the crack tip. Assuming in the first
instance that there is a uniform state of plane stress and that the plastic zone is circular
as in Irwin’s analysis, then a section through the plate in the plane of the crack gives the
situation shown in figure 3.8. With no strain hardening the material within the plastic
zone should be able to flow freely and contract in the thickness direction: however, the
adjacent (and surrounding) elastic material cannot contract to the same extent. This
phenomenon, called plastic constraint, leads to tensile stresses in the thickness direction

O ® MODE | LOADING

DIRECTION
CRACK PLASTIC ELASTIC MATERIAL
ZONE (LIGAMENT)

Figure 3.8. Schematic section in the crack plane.
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on the plastic zone boundary, i.e. a triaxial stress condition which when unrelieved by
deformation would correspond to plane strain.

In fact there is an interaction of stress states that can be described at best only semi-
quantitatively. At the plate side surface there are no stresses in the thickness direction
and so there is a biaxial condition of plane stress. Proceeding inwards there is an in-
creasing degree of triaxiality that approaches and eventually may correspond to plane
strain. Thus in a first approximation the plastic zone size and shape may be considered
to vary through the thickness of the plate. For a plate of intermediate thickness that is
neither fully in plane stress nor predominantly in plane strain these approximate varia-
tions are considerable, as indicated schematically in figure 3.9. However, the plane
stress surface regions will be more compliant than the plane strain interior, 7.e. the sur-
face regions will give a larger displacement » for the same remote stress G, cf. equations
(2.40) and (2.41). Consequently, load shedding occurs from the surface regions to the
interior. This means that the plane stress and plane strain plastic zone sizes will be re-
spectively smaller and larger than those obtained from a first approximation. Indeed it
has been found by finite element analysis that the through-thickness plastic zone size
variations are much less than those indicated schematically in figure 3.9, see reference 4
of the bibliography.

Simple calculation of the stress state distribution for a certain plate thickness is not
possible. However, there are empirical rules for estimating whether the condition is pre-
dominantly plane stress or plane strain:

1) Full plane stress may be expected if the calculated size of the plane stress plastic

PLANE STRESS
AT SURFACE

PLANE STRAIN

Figure 3.9. Through-thickness plastic zone in a plate of intermediate thickness.



3. Crack Tip Plasticity 75

zone, i.e. 2ry in Irwin’s analysis, is of the order of the plate thickness.

2) Predominantly plane strain may be expected when the calculated size of the plane
stress plastic zone, 2ry (the approximate value at the plate surfaces), is no larger than
one-tenth of the plate thickness.

Through-Thickness Plastic Zone Size and the Plastic Constraint Factor

In chapter 2 the mode I stress field equations were expressed in terms of principal
stresses, equations (2.33). Using these expressions we can derive the relations between
61, 62 and o3 for plane strain conditions:

1-sin 9/

G2=0C1| T . 4

2 1 +5in6/y
2v

63=0C1"_ . a .-

: l(1+sin9/2)

It is readily seen that if 6 = 0, then 6, = 6| and 63 = 2vo;. Assuming elastic conditions
with v = 1/, the Von Mises yield criterion, equation (3.21), can be used to determine the
value of | that is reached before yielding occurs:

2 2
(o1 —01)*+ (o} —501)2 +(301- c1)? =203

and so
61 =02 =30y and 63 =20y;.

This simple analysis suggests that the ratio between o and the yield stress becomes as
high as 3 for plane strain. This ratio is commonly designated as the plastic constraint
factor, C.

The first order approximation to the plane strain plastic zone size along the x-axis
can now be written as

(&Y 3.26
7y plane strain = 5 C(Yy s (3.26)

S,

which for C = 3 leads to 2

1
T’y plane strain = g T’y -

This result was already obtained in section 3.4. This plane strain value of , must be a
considerable underestimate of the overall through-thickness plastic zone size in a plate,
since at the plate surfaces there is a state of plane stress and the plastic zone size will be

2 Unless stated otherwise, it is implicitly assumed that ry is the first order approximation for the plane
stress plastic zone size.
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ry, i.e. nine times as large. For this reason Irwin proposed that an intermediate value of \/3
be used for C, such that the nominal plane strain value of 7y is

2

Ty plane strain = 67 Oys 3 Ty . :
This value is often quoted in the literature. However, in most work pertaining to the
COD concept a value of C = 2 is used (see also chapter 6 and 7). For this constraint
factor we find 7y plane strain = 7 7y-

Planes of Maximum Shear Stress

Besides plastic zone size and shape the state of stress also influences the locations of the
planes of maximum shear stress in the vicinity of the crack tip. This is shown in figure
3.10 together with Mohr’s circle construction for the principal stresses in plane stress
and plane strain:

1) Plane stress
For a real crack, i.e. with a finite tip radius’, oy > o, for 6 = 0, see equations (2.28).
The principal stresses 61 and o, are oy and oy respectively and o3 = 6, = 0 (it is
customary to take o > o, > G3). As can be seen from figure 3.10.a., the maximum
shear stress, Tmax, acts on 45° planes along the x-axis.

2) Plane strain
For a real crack in plane strain the situation is slightly more complicated. In this case
Gy is also always larger than oy in the vicinity of the crack tip. When we go from the
plane stress area at the surface to the plane strain interior there is a gradual increase
in o, from 0 (plane stress) to v(cy + o) for pure plane strain. Because plastic defor-
mation signifies that there is no change in volume the ‘plastic v’ must have a value
of 0.5 within the plastic zone. Thus &, is also larger than 4. Consequently the ori-
entation of the planes of maximum shear stress changes to 45° along the z-axis, fig-
ure 3.10.b.

Thus in plane stress the principal stresses o1, G,, 63 are equal to Gy, oy, G,, while in
plane strain they are equal to 6y, 6,, ox. Note that the situations depicted in figure 3.10
are valid only within the relatively small region of the plastic zone. The material will
not shear off macroscopically along a plane of maximum shear stress, but will deform in
a more complex manner as will be discussed in section 3.6.

3.6 Stress State Influences on Fracture Behaviour

In this section the effects of stress state on the macroscopic appearance of fracture
and on the fracture toughness will be discussed.

3 Assuming the crack tips to have a finite radius is legitimate since a crack will always show some
blunting due to plastic deformation. If the crack is considered to be slit-shaped with zero crack tip ra-
dius then equations (2.24) will apply and in plane strain 6, =6, = 6, =0, =06, = 0.5 (64 + G,) = O3.
Therefore all principal stresses are equal ahead of a slit crack and there is a hydrostatic stress state in
which 1, is zero. Note that v = 0.5 since stresses within the plastic zone are considered.
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Figure 3.10. Location of the planes of maximum shear stress at the tip of a crack for a) plane
stress and b) plane strain conditions.

Fracture Appearance

If a precracked specimen or component is monotonically loaded to fracture the general
appearance corresponds to that sketched in figure 3.11. Crack extension begins macro-
scopically flat but is immediately accompanied by small ‘shear lips’ at the side surfaces.

45° MODE

TENSILE MODE

PRECRACK FRONT

Figure 3.11. General appearance of monotonic overload fracture from a precrack.
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° &
o
Figure 3.12. Deformation modes a) in plane strain and b) in plane stress.
As the crack extends (which it does very quickly at instability) the shear lips widen to
cover the entire fracture surface, which then becomes fully slanted either as single or
double shear. This behaviour is usually attributed to crack extension under predomi-
nantly plane strain conditions being superseded by fracture under plane stress.
An exact model for this flat-to-slant transition is not available, but it seems obvious
that a change in the planes of maximum shear stress, see figure 3.10, plays an important

role. Experimental studies by Hahn and Rosenfield (reference 5 of the bibliography to
this chapter) indicate that under plane strain conditions a ‘hinge’ type deformation is

TEARING
{

Figure 3.13. Tearing of material between hinge type shear bands.
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Figure 3.14. The development of a single shear fracture (top) and a transition from double to
single shear fracture (bottom right-hand side) during tensile tests on centre
cracked tension specimens.

followed by flat fracture, whereas under plane stress slant fracture occurs by shear after
a hinge type initiation. The two deformation modes are shown in figure 3.12.

The occurrence of slant fracture by shear is reasonably clear from figure 3.12.b.
However, exactly how flat fracture results from hinge type deformation requires further
explanation. According to Hahn and Rosenfield flat fracture occurs by tearing of mate-
rial between the extensively deformed hinge type shear bands, figure 3.13. As to the
possible causes of tearing the reader is referred to the last chapter of this course, section
13.4.

As an illustration, figure 3.14 shows results of tensile tests on centre cracked tension
specimens of aluminium alloy 2024. Single shear fracture occurred in a direction per-
pendicular to the loading direction, while double shear fracture occurred in a signifi-
cantly deviating direction. In the figure a transition from double to single shear can be
seen: the single shear part resumes the original crack growth direction perpendicular to
the load. More about this topic can be found in reference 6.

Fracture Toughness

The critical stress intensity for fracture, K., depends on specimen thickness. A typical
dependence is given in figure 3.15. Note that beyond a certain thickness, when the ma-
terial is predominantly in plane strain and under maximum constraint, the value of K,
tends to a limiting constant value. This value is called the plane strain fracture tough-
ness, Kj., and may be considered a material property.

The behaviour illustrated in figure 3.15 is generally ascribed to the plane stress —
plane strain transition that occurs with increasing specimen thickness. However, a com-
plete explanation for the observed effect of thickness does not exist. Also, the form of
the K. dependence for very thin specimens (less than 1 mm) is not exactly known, hence
the dashed part of the plot. The most satisfactory model of the thickness effect is based
on the energy balance approach and will be described in chapter 4.

Owing to the dependence of fracture toughness on specimen thickness and stress
state it is evident that experimental determination of Kj. will be possible only when
specimens exceed a certain thickness. In turn this thickness will depend on the crack tip



80 Linear Elastic Fracture Mechanics

PLANE TRANSITIONAL PLANE
STRESS BEHAVIOUR STRAIN
40— e ’
Ke 200 | /(m\a

(MPQ/;) 160 — ffl \\

B §—=f— — — K.

80—

40
0 | | | | |
5 10 20 50 100
SPECIMEN THICKNESS (mm)

Figure 3.15. Variation in K; with specimen thickness in a high strength maraging steel.

plastic zone size, as discussed in section 3.5, and therefore on the material yield
strength. These and other aspects of plane strain fracture toughness determination and
also the obtaining of K for thinner specimens will be dealt with in chapter 5, which
concerns LEFM testing.

3.7 Some Additional Remarks on Plastic Zone Size and Shape
Determination

In section 3.1 it was mentioned that it is extremely difficult to properly describe size and
shape of the plastic zone at the same time. A detailed treatise on more advanced meth-
ods that attempt to do this is beyond the scope of this course, but an indication of the re-
sults is considered to be of interest here.

There are two general ways of tackling the problem: the experimental approach and
finite element analysis.

BACK SURFACE

Figure 3.16. Plastic zone appearance on the front surface, back surface and a normal section
of a notched silicon iron specimen in plane stress, reference 9.
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Figure 3.17. Schematic representation of the observations from figure 3.16.

The Experimental Approach

The most widely known work is that of Hahn and Rosenfield (references 5 and 9 of the
bibliography to this chapter). They used specimens of silicon iron, which has the prop-
erty that plastically deformed regions can be selectively etched and made visible. Some
of the results are shown in figures 3.16 and 3.17. The specimen illustrated in figure 3.16
was in plane stress and its plastic zone shape is schematically represented in figure 3.17.
This shape is reasonably approximated by the Dugdale strip yield model. For plane
strain the plastic zones were observed to closely resemble the shape in figure 3.7, which
was derived from the Von Mises yield criterion.

Other experimental techniques include the use of electron microscopy, references 7
and 8 of the bibliography, and optical interferometry. These techniques are used mostly
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Figure 3.18. Comparison of plane strain plastic zone size and shape estimates for an elastic —
perfectly plastic material.
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to study the development of plastic zones during fatigue crack growth in order to obtain
more insight into the mechanisms of crack extension and also to check and refine crack
growth models.

Finite Element Analysis

There are various finite element analyses of plastic zone size and shape, e.g. the work of
Levy et al., reference 10 of the bibliography. Figure 3.18 depicts their estimate for a
plane strain crack tip plastic zone in an elastic — perfectly plastic material together with
the plastic zone derived in section 3.4 using the Von Mises yield criterion. It is seen that
the latter, which is a first order approximation, is significantly smaller than the more ac-
curate estimate provided by finite element analysis.
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4
The Energy Balance
Approach

4.1 Introduction

Besides the elastic stress field (stress intensity factor) approach there is another
method that can be used in LEFM, the energy balance approach mentioned in sections
1.4 and 1.5 of chapter 1. In section 4.2 the equations of energy balance and instability
will be given, together with the definition of the energy release rate, G, which is the pa-
rameter controlling fracture.

In section 4.3 some important relations involving G are derived. One of these is the
relationship between G and the change in compliance (inverse of stiffness) of a cracked
specimen. This relationship has found much practical use and for that reason some ap-
plications of compliance determination are discussed in section 4.4.

In section 4.5 the energy balance interpretation of G is again considered in order to
show its usefulness for materials exhibiting limited but significant plasticity. This leads
to the concept of crack resistance, R, and the phenomenon of slow stable crack growth
characterized by the R-curve, which is discussed in sections 4.6—4.8. The discussion of
crack resistance is of a general nature and includes a possible explanation of R-curve
shape and the effect of specimen thickness on fracture toughness.

The subject of R-curves is important and extensive information on their determina-
tion and use is given in references 1 and 2 of the bibliography at the end of this chapter.
Also, the determination of R-curves is included in chapter 5, which concerns LEFM
testing.

4.2 The Energy Balance Approach

In section 1.4 of the introduction to this course a simple energy balance derivation
has been presented. This was valid only for a specimen loaded by a constant displace-
ment, i.e. a fixed grip condition. Here the energy balance approach will be considered
for an arbitrary loading condition, followed by a more detailed treatment of the energy
release rate, G, as introduced by Irwin.

In the energy balance approach a cracked elastic plate and its loading system are
considered. The combination of plate and loading system is assumed to be isolated from
its surroundings, i.e. exchange of work can only take place between the two. The energy
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content of the plate plus the loading system, denoted as the total energy U, is written as!
U=U,+U,+ Uy~ F, 4.1

where U, = total energy of the plate and its loading system before introducing a crack
(a constant),
U, = change in the elastic energy of the plate caused by introducing a crack,
U, = change in surface energy of the plate due to the introduction of a crack,
F = work performed by the loading system during the introduction of the crack
= load x displacement.

In order to understand why the work /' must be subtracted in equation (4.1), consider a plate placed in
series with a spring between fixed grips, as shown in figure 4.1. The spring loads the plate in tension. This
represents an arbitrary loading condition, since both load and displacement of the plate will change during
the introduction of a crack. Furthermore, it is clear that no work can be performed from outside the com-
bination of spring and plate, since no external displacements are allowed.

S —

Figure 4.1. A cracked elastic plate in series with a spring between fixed grips and loaded in
tension.

When a crack is introduced, the stiffness of the plate is reduced and the plate becomes somewhat longer.
Consequently the spring becomes shorter by the same amount. During this process the spring performs an
amount of work F' on the plate. This happens at the expense of the elastic energy content of the spring,
which thus decreases. Since the elastic energy content of the spring is part of the total energy U, it follows
that /' must be subtracted in equation (4.1).

Potential energy

At this point we define the potential energy of an object. Potential energy is either re-
lated to the position of an object in a conservative power field or due to its state. An
evident example of the first is the potential energy of a mass which is determined by its
position (height) in a gravitational field. Elastic strain energy is an example of potential

I As was already done in section 1.4, we consider two-dimensional geometries only and all loads and all
energies are defined per unit thickness.
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energy which is due to the state of an object. In all cases potential energy is character-
ized by its ability (potential) to perform work.

Only part of the total energy U given by equation 4.1 has the ability to perform work.
This part will be designated as the potential energy, Up, of the elastic plate and its load-
ing system and is equal to?

Up=Us+ Uy~ F. (4.2)
U
A
UO /\
dU/da
A |
STABLE “%_’UNSTABLE

\HALF CRACK LENGTH, a

Figure 4.2. The variation of the total energy of a centre cracked plate, U, as a function of half
crack length a.

Energy balance

In section 1.4 the total energy U of a large centre cracked plate loaded under fixed grip
conditions was considered. In general, for a centre cracked plate under arbitrary loading
conditions U will vary as a function of half crack length, a, according to the schematic
plot shown in figure 4.2. Crack growth instability will occur as soon as U decreases
with the crack length, i.e. after U has reached a maximum value. This condition is given
by

dU

da < 0 (4.3.2)

or since U, is a constant

2 In fact the term U, need not necessarily contain potential energy only. This, however, is an academic
discussion, since we will only consider changes in Uy, and U, is defined as a constant.
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dia(Ua+ U,-F)<0. (4.3.b)
Equation (4.3.b) can be rearranged to give:

d du

G F-Ud>g" 4.4)

Using the potential energy defined in equation (4.2) we can rewrite equation (4.4) as

dU, du
‘E:E>EY‘ (4.5)

The left-hand side of equation (4.5) is the decrease in potential energy if the crack were
to extend by da. During this same crack extension the surface energy would increase by
an amount given by the right-hand side of equation (4.5). In other words, equation (4.5)
states that crack growth will occur when the energy available for crack extension is
larger than the energy required.

Energy release rate and crack resistance

Irwin defined the energy available per increment of crack extension and per unit thick-
ness as the energy release rate, G. When considering a central crack with length 2a, an
increment of crack extension is d(2a) and therefore:

v, d
G= —@2—) = 320 F Vo). (4.6)

Note that for a central crack, with length 2a, G is found by differentiating U, to d(2a), while for an
edge crack, with length a, differentiating to da would be sufficient. In both cases G is found as the nega-
tive derivative of the potential energy with respect to the newly formed crack area d4, where this area is
defined as the projection normal to the crack plane of the newly formed surfaces. This has consequences
for three-dimensional geometries: e.g. (i) an embedded circular crack, where d4 = d(na?) = 2mada, and
(ii) an embedded elliptical crack, where d4 = d(rac) = n(adc + cda). In fact G = -dUp/q4, where the po-
tential energy U, must now be interpreted in an absolute sense, i.e. not per unit thickness, and d4 is the
decrease in the net section area.

The energy required per increment of crack extension is defined as the crack resis-

tance R:

du
R :@YS' (4.7)

Thus equation (4.4) can be rewritten concisely as:

G>R. (4.8)

Elastic energy change in a remotely loaded centre cracked plate

In section 1.4 the expression U, = —75020!2/5 for the change in elastic strain energy
caused by introducing a central crack of length 2a in a plate was given without
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Figure 4.3. A central crack in an infinite plate. The crack flank displacement v is due to the
remote load, o, while the displacement & is due to a closing stress, o, applied to
the flanks.

derivation. At this stage in the course it is possible to check the expression for U, by
considering crack flank displacements, figure 4.3.

In section 2.3, equation (2.40), the plane stress flank displacement of a central crack
with length 2a in an infinite plate remotely loaded by a tensile stress, which will be
temporarily denoted as o, was given as

—x2. (4.9)

Using this, we can find the change in elastic energy of the plate, U,, by considering an
open crack with stress-free crack flanks, and calculating how much work is involved in
closing the crack. The situation of a closed crack resembles that without a crack, since
in both cases a uniform stress field 6., is present. Furthermore, closing the crack in-
creases the elastic energy by an amount equal to the work involved.

Consider a part dx of the crack flank at a distance x from the centre of the crack. To
bring together the facing crack flank parts, each must be displaced over the distance »
given by equation (4.9). Application of a stress, o, will cause a flank displacement, &,
relative to the fully opened crack. For a flank length dx, the work involved in closing the
crack is:

14
1
2dxj.6d§—+2 dxzcooV:stde.
0

In this calculation linear elastic material behaviour is assumed, i.e. when the stress o
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increases from 0 to o, the displacement & increases linearly from O to ». The work in-
volved in closing the whole crack is found by integrating along the crack from —a to +a,
which is the same as integrating twice from 0 to +a. The change in elastic energy, U,,
involved in creating a central crack with length 2a is the negative value of this work and
is given by:

a

a
U,==2 |oxrdx==2 |o 2&\/ 2 _ x2dx
a oV o g a—Xx
0

0
a
@R & x| rode
=-—F 5 +75 arcsin’ 0—— E for plane stress. (4.10)

For plane strain the displacement » is obtained by replacing E by £/1_y? in equation
(4.9). Thus

n o2 a2 .
U, = —(1-v?) 7 for plane strain. 4.11)

From now on we will denote the remote stress again by o, i.e. without the « suffix.

Equations (4.10) and (4.11) are valid for an infinite remotely loaded plate. We will
now consider a plate with finite dimensions. Now it also becomes relevant what the
loading condition is. The loading condition can be described as the dependence of the
specimen load on the displacement and vice versa. Owing to crack extension the stiff-
ness of a specimen always decreases, and so either the load or the displacement, or both,
will change. Next we will consider two extreme loading conditions, namely fixed grip
and constant load.

Fixed Grip and Constant Load Conditions

In a centre cracked plate we have crack extension when, according to equations (4.6) -
(4.8),

d duy,
G=m(F— Ua)>R=@Y3.

A finite plate under fixed grip conditions resembles an infinite plate because no work is
performed by external forces, i.e. F = constant during crack growth. A difference is,
however, that crack extension reduces the plate stiffness and so causes the load to drop.
Knowing this, it is to be expected that for a finite plate under fixed grip conditions
dUa/d(za) is not the same as for an infinite plate. It can be argued that in a finite plate
loaded under fixed grip conditions the change in U, owing to crack extension ap-
proaches that of an infinite plate if the crack size 2a is small compared to the plate’s
dimensions. For such a plate we can write



4. The Energy Balance Approach 89

noe"a")| moTa

d d 2.2 2
G=30qa) CY%* 4024 (* E ) =TE

The surface energy, Uy, is equal to the product of the surface tension of the material, y.,
and the surface area of the crack (two surfaces with length 2a):

U, =2Qay,) . (4.12)

Therefore R = dUY/d(Za) = 2¥,. Thus the criterion for crack extension is

ncza

E

G= >R=2y.. (4.13)
Equation (4.13) is valid for a small central crack in a large plate loaded under fixed grip
conditions.

If instead there is a condition of constant load, then crack extension results in in-
creased displacement owing to decreased stiffness of the plate. The situation is thus
more complicated than that for the fixed grip condition. To deal with this it is conven-
ient to compare crack extension in a specimen under fixed grip and under constant load
conditions. For this we refer to figure 4.4, which shows load-displacement diagrams for
specimens with crack of lengths 2a and 2(a + Aa).

Under fixed grip conditions with a displacement v, the load on the plate will drop
from P to P + AP (i.e. AP < 0) when the crack extends by Aa at both tips. For a constant
load condition with a load P, the same crack extension results in a displacement from »
to v+ Av (i.e. Av > 0). We will now consider the change in the work performed by ex-
ternal forces, AF, and the change in elastic energy, AU,, involved in both cases of crack
extension. These changes are expressed in terms of areas in the load-displacement dia-

LOAD
A
Pl - -
1V
1
1
PHAP vl /
| ‘
)
> :
2 g ST
I
- » DISPLACEMENT
v V+AV

Figure 4.4. Assumed load-displacement diagram for a cracked specimen.
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gram of figure 4.4, as shown in the table below.

Fixed grip Constant load
AF =PAv = 0 I + 1V
AU, = A(V2Pv)= 11— (1+11) = -1 (mr+Ir) - (1+11) = I - 1
ANF-Uy) = I [+1V

If the crack extension Aa — 0, the area IV will become negligibly small compared to
area [ and A(F — U,) will become equal for the two loading conditions. This implies that
because

AF = Ua)

lim —————
A0 AQ2a)

G (F-Uy=

~d(2a)
the energy release rate G is the same for a finite plate loaded under fixed grip conditions
as well as under constant load conditions. Thus for both fixed grip and constant load
conditions the criterion for crack extension in a remotely loaded large plate with a small
crack is

nola

= > R=2y. (4.14)

G=

It is important to note that for constant load and Aa — da we obtain:

dF = Pdr,
dU, = d(V.Pv) = VPdy .

In other words, for constant load the increase in elastic energy, dU,, is equal to half the work performed
by external forces. The remaining other half is the energy available for crack extension. Thus G for con-
stant load can be written as

(7))
% =32a) " 2a)) r~"o2a)) r

For fixed grip conditions dF = 0, and it follows that

B (6Ua)
& =32,

Therefore, since G is the same for constant load and fixed grip conditions, we may write
( oU, ) ( ou, )
G=- =+ .
02a)) v 0(2a)) P

4.3 Relations for Practical Use

G in a Remotely Loaded Centre Cracked Plate

In the previous section it was shown that the energy release rate, G, for infinitesimal
extension of a central crack is equal to dUa/d(za) for constant load and to —dUa/d(za)
for fixed grips. For large plates with small central cracks G may be obtained by differ-
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entiating equations (4.10) and (4.11), which gives:

2

plane stress G= % (4.15.2)
2
plane strain G=(1-v? n% 2 (4.15.b)

The Relation between G and K;

A relation of prime importance is obtained by substituting Kj = (Y\/El, an expression
which also is valid only for a large plate with a small central crack, in the above equa-
tions:

K

plane stress G=7% (4.16.a)
. K

plane strain =7 (1-v? (4.16.b)

This direct relation between G and K} means that under LEFM conditions the prediction
of crack growth and fracture is the same for both the energy balance and elastic stress
field approaches. Irwin already demonstrated this equivalence, as was mentioned in
section 1.6, and showed also that equation (4.16) is geometry-independent.

G and compliance

G has been indicated to be the controlling parameter for fracture according to the energy
balance approach. It was shown that the expression for G is the same for the two most

Figure 4.5. A cracked body loaded by forces P and with total displacement v at the points of
load application.
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extreme loading conditions, i.e. fixed grips and constant load. However, a more general
analysis can be made, notably that of Irwin (reference 3 of the bibliography to this
chapter), by considering the compliance of a cracked body.

Consider the cracked body shown in figure 4.5. For this edge crack the definition for
the energy release rate, G, i.e. the energy available per increment of crack extension and
per unit thickness, leads to:

d
G=g (F-Uy). (4.17)

The body has a thickness B, is loaded by a force P (here not defined per unit thickness)
and exhibits a total displacement ». Both " and U, are defined per unit thickness. Thus
for an infinitesimal crack extension da, the change in F, dF, is equal to (Pd»)/p, while
the change in U,, dU,, is d("2Pr)/g. Thus G becomes

C1(.dv d(%Py)
—B(Pda— » j (4.18)

Introducing the compliance of the body, C, which is the inverse of its stiffness, i.e. C =
V/p, equation (4.18) becomes

c-L (P d(cp) d(cpz)j _P2dc

1
B da 2 da ) 2Bda- (4.19)

It should be clear that G does not depend on the loading system and is the same for
fixed grip, constant load or any arbitrary loading condition. Equation (4.19) gives the
explicit relation between G and the compliance, C. This important relation is the basis,
together with equations (4.16), for using the compliance to determine stress intensity
factors for certain specimen and crack geometries. The compliance technique is an ad-
dition to those methods discussed and listed in chapter 2, section 2.7, and will be illus-
trated in the next section.
Two remarks can be made here:

1) In this section we used the force P, acting on a material thickness B in the derivation
of G. However we earlier defined U, per unit thickness. If the force P were to be de-
fined per unit thickness the formula for G would be

_P2dC
T 2 da

This is easily found by substituting PB for P and C/p for C in equation (4.19).
2) The change of elastic energy of the cracked body, 4Ua/d,, may be written as

AUy 1deaPn_ 1 (,dv dP
da B da _ZB(Pda+Vda)' (4.20)

For the constant load condition, 4P/q, = 0 and thus
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OUa) _ P dv_ P dPC)_PdC 4o
oa), 2Bda 2B da 2Bda- (4.21)

For the other extreme loading condition, fixed grips, where displacement is kept con-
stant, 4¥/4, = 0 and equation (4.20) becomes

0U, __Vd_P_Ld(V/c)_V_Z(dcl d_Cj_ PrdC
(aa )V_ = =28 = (4.22)

2Bda 2B da dC da 2B da -

Equations (4.21) and (4.22) show that for fixed grips the change in elastic energy,
dUa/qg, is the opposite of that for constant load. Comparing these equations with the
expression for G, equation (4.19), it follows that

()&
oa)p \oa), (4.23)
This result was already obtained at the end of section 4.2, based on the load-
displacement diagram.

4.4 Determination of Stress Intensity Factors from Compliance

From equations (4.16) and (4.19) it follows that

2

=E'G= % % (4.24)
where E' = E for plane stress and E/(1 — v2) for plane strain. This general relation en-
ables use of the compliance to determine stress intensity factors for certain specimen
and crack geometries. A well known example is the double cantilever beam specimen
(DCB) already mentioned in section 2.8 and depicted again in figure 4.6. From simple
bending theory (neglecting shear displacements) the displacement » in the load line of
the DCB specimen is given by

_ 2Pa3 _ 8Pa3
"7 3EI T EBW-
Since C="/p,
843 dC  24a*
C=Zmr ™ 4 = Emr
From equation (4.24)

P>dC E' 12P%d?

“EGC=ES5 4" F B3

and
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Figure 4.6. The double cantilever beam specimen (DCB).

P
K= 2\/§ ??/2 for plane stress,
(4.25)

__2\3 Pa

K= ——— for plane strain.
v P

These expressions were given in section 2.8. Note that under elastic conditions (v =
0.33) the factor 1/A[1 — 2 gives a K] value in plane strain only 6% larger than the plane
stress value.

Notes

e For beam-type loaded specimens the crack flank displacements in the load line may
be used instead of the exact displacements of the points of load application (shown
schematically in figures 4.5 and 4.6). This is allowed because the bending displace-
ments are much larger then displacements in the material due to the tensile force.
Another advantage is that we do not need an expensive tensile testing machine, since
crack flank displacements are usually easy to measure.

e For the double cantilever beam specimen we found the crack flank displacement »
proportional to @> and P. It follows that for fixed grip conditions the Ky decreases
with increasing crack length, because K is proportional to P and a. This is an im-
portant example of a test specimen with a decreasing Kj, which has found wide-
spread use in stress corrosion tests to find the threshold stress intensity value, Ky
(see chapter 10).

A Constant K; Specimen: The Tapered DCB

An interesting application of equation (4.25) is that a constant stress intensity factor
may be obtained by keeping @/p or @/j3/2 constant. The first possibility results in ta-
pered thickness, which is not very useful since there will be a gradual change in stress
state during crack growth until full plane strain is reached, equation (4.25). However,
keeping a@/j3/2 constant or, still better, accounting for shear displacements by keeping
(3a*> + h?)/j3 constant, results in a constant K specimen, the tapered double cantilever
beam (TDCB). This specimen, which is shown in figure 4.7, has been used particularly
in stress corrosion testing and will be mentioned again in chapter 10. The side grooves
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Figure 4.7. The tapered double cantilever beam specimen (TDCB).
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are needed to keep crack growth perpendicular to the loading direction. A detailed dis-
cussion of the TDCB specimen is given in reference 4 of the bibliography to the present
chapter.

Experimental Determination of C and K;

Values of C and dC/g, may be obtained experimentally as well as from theory. Load-
displacement diagrams are made for a particular type of specimen containing cracks of
different lengths, figure 4.8.a. The cracks may be extended artificially, e.g. a sawcut, or
by fatigue loading. The compliance for different crack lengths is simply ¥/p, so that it is
possible to construct a compliance versus crack length calibration diagram as in figure
4.8.b. From this diagram dC/q, may be obtained and K; may be calculated via equation
(4.24), i.e.

E'P?dC

2 _&=2 2

KT = 2B da-

y o I &
LOAD, a COMPLIANCE,

P c |
|
| |
[ |
| | :

I |
I I | |
[ I Lo
| | L
INCREASING | : : :

CRACK LENGTH, a '
» I I I |
B] 32 33 a‘
DISPLACEMENT, v CRACK LENGTH, a

Figure 4.8. Experimental determination of compliance.
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4.5 The Energy Balance for More Ductile Materials

The expressions and methods dealt with in sections 4.3 and 4.4 are all based on G
being the controlling parameter for predicting fracture. However, G represents only the
left-hand side of equation (4.4). The right-hand side of this equation, R = dUy/4g, repre-
sents the surface energy increase owing to infinitesimal crack extension and is thus in
the first instance to be considered as identical to the crack resistance. However, R is
equal to the surface energy increase rate only for ideally brittle materials like glasses,
ceramics, rocks and ice, which obey the original Griffith criterion. Reformulated in the
manner suggested by Irwin (see also section 1.5) this criterion is:

ncza

£ > G¢ =2y, =R = a constant. (4.26)

G=

In 1948 Irwin and Orowan independently pointed out that the Griffith theory could
be modified and applied to both brittle materials and metals that exhibit plastic defor-
mation. The modification recognised that R is equal to the sum of the surface energy, ve,
and the plastic strain work, y,, accompanying crack extension. Consequently, equation
(4.26), being the condition for crack extension, was changed to

noa
G= E >GC=2(ye+yp)=R. 4.27)

For relatively ductile materials y, >> 7., i.e. R is mainly plastic energy and the surface
energy can be neglected. Also, it is no longer certain that instability and fracture will
occur at a constant value of G, since R need not be a constant. In fact R, and hence G,
are constant only for the condition of plane strain. In this case it is customary to write R
= (Y, in an analogous way to the plane strain fracture toughness K. discussed in sec-
tion 3.6. Thus the plane strain criterion for crack extension, i.e. instability, is given by

2
G=(1-v)"=4> Gy (4.28)

As is shown in figure 4.9, this condition can be represented graphically in a plot of G
and R as a function of crack length. The left-hand side of inequality (4.28), G, corre-
sponds to a straight line with a slope depending on the applied stress c. Since the criti-
cal plane strain G value, Gy, is a constant, the crack resistance, R, is represented as a
horizontal line. Instability occurs if the combination of crack length and applied stress
gives rise to a G value that exceeds R.

From equation (4.28) a critical stress, o, can be calculated for a certain crack length

Ge™ (1 -v3na’ (4.29)

or alternatively a critical crack length can be calculated for a certain applied stress:
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Figure 4.9. Graphical representation of the instability condition for plane strain.

EGy

= (1 -v)no?"

(4.30)
It is clear from the foregoing relations that higher stresses result in instability at shorter
crack lengths or longer cracks result in instability at lower applied stresses.

4.6 Slow Stable Crack Growth and the R-Curve Concept

As was mentioned in section 4.5, a constant value of R, i.e. R independent of the
crack length, is obtained only for the condition of plane strain. For plane stress and in-
termediate plane stress — plane strain conditions it turns out that R is no longer constant.
Loading a relatively thin (predominantly in plane stress) specimen containing a crack
results in the behaviour shown schematically in figure 4.10. The initial crack of length
a, begins to extend at a certain stress oj. However, if the stress is maintained at o; no
further crack growth occurs, indicating that a small increase in crack length at this stress
would result in G < R. However, a slight increase in the stress results in additional crack
extension, but the situation remains stable. The process of increasing stress accompa-
nied by stable crack growth continues until a critical combination of stress, o, and
crack length, ac, is reached, at which point instability occurs. Note that in the crack
length area between a, and a. G has to be equal to R, because otherwise crack arrest or
crack instability would occur.

Instability is thus preceded by a certain amount of slow stable crack growth in
specimens under full or predominantly plane stress. In terms of the energy balance ap-
proach this situation can be described as in figure 4.11. The value of R is depicted as a
rising curve with a vertical segment corresponding to no crack extension at low stress
(and G) levels. At a stress G; crack extension begins but R remains equal to G since the
situation is stable. This is indicated by the fact that G intersects the R-curve (then G =
R) but further crack growth cannot occur at c; because G, then becomes less than R.
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Figure 4.10. Slow stable crack growth in plane stress.

The stable condition (i.e. G = R) is maintained until o, and a. are reached. Beyond this
point G becomes greater than R, as indicated by the G;_ line, and instability occurs.

Figure 4.11 shows that for instability to occur in plane stress it is not only necessary
to have at least a situation with G > R, but also the tangency condition 9G/g, > OR/5,
should be fulfilled. This second condition is a consequence of assuming a rising R-
curve. This assumption has been verified experimentally, but there is no definitive ex-
planation as to why the R-curve rises: a possible explanation will be discussed in section
4.7. Meanwhile another important property of R-curves, their invariance with respect to
initial crack length a,, will be dealt with here.

R-Curve Invariance with Initial Crack Length

In Irwin’s analysis R was considered to be independent of the total crack length a (= a,

A

Go, R—CURVE

G,R

’

ofb-——————

a8y a.
CRACK LENGTH, a

Figure 4.11. The rising R-curve.
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+ Aa). This is true only for the plane strain condition, as illustrated in figure 4.9. If we
now consider the crack resistance for a thin sheet, it is reasonable to assume that the
very beginning of slow stable crack growth occurs in the middle of the specimen thick-
ness at a relatively low G value. Therefore, this growth will be under plane strain con-
ditions and will be independent of crack length. In addition, many tests have shown that
the form of the rising part of the R-curve is also independent of crack length. Thus we
may expect R-curves to be independent of the initial crack length a,, i.e. an invariant R-
curve may be placed anywhere along the horizontal axis of a (G,R)-crack length dia-
gram, as in figure 4.12.

A
G,R
GZ =R2 ——————————————————
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CRACK LENGTH, a
Figure 4.12. Invariant R-curves and the points of instability.

Figure 4.12 shows, however, that a shift of the complete R-curve along the crack
length axis changes the point at which instability occurs, i.e. the tangency at which G =
R and 0G/g, = OR/g,. Hence the point of instability will depend on the initial crack
length a,. In summary, an invariant R-curve has the following consequences:

1) Crack initiation is independent of initial crack length a,,.

2) Instability depends on a,. A longer a, results in more stable crack growth and a
higher G value at instability. In comparison with the plane strain situation it may
thus be stated that instability definitely depends on total crack length a (= a, + Aa).

4.7 A Possible Explanation for the Rising R-Curve

A working hypothesis of the rising R-curve has been given by Krafft, Sullivan and
Boyle (reference 5 of the bibliography). This hypothesis models the R-curve behaviour
under intermediate plane stress — plane strain conditions.

Krafft et al. assume that in plane strain the plastic deformation energy necessary for
crack extension is related to the area of newly created crack surface, but in plane stress
the plastic energy is related to the volume contained by plane stress (45°) crack surfaces
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Figure 4.13. Model of Krafft et al. for explaining the development of crack resistance.

and their mirror images, as shown in figure 4.13. In this figure a specimen of thickness
B is considered to crack with a fraction S of the thickness in plane stress and the re-
maining fraction 1 — S in plane strain. For a crack growth increment da the energy con-
sumption depends on the crack resistance R according to

dws dW, B2Ss?
Bda R="g; B(1 - S)da+ g7 — da, (4.31)

where dWs/q4 = energy consumption per unit crack area (for plane strain)
dWy/qy = energy consumption per unit volume of plastically deformed
material (for plane stress)

Therefore
dws dW, BS?
R:H(I_S)JFWET’ (4.32)

Experimentally it has been found that B-dWp/qp >> dWs/q4, so that from equation
(4.32) it is evident that as soon as shear lips (slant fracture) start to form the value of R
will show a sharp increase, i.e. R becomes approximately proportional to S2. In section
3.6 it was shown that monotonically loading to fracture generally results in a change
from flat to slant fracture. This being so, the generality of the rising R-curve is con-
firmed.

An Explanation for the Effect of Specimen Thickness on Fracture Toughness

The effect of specimen thickness on fracture toughness was mentioned in section 3.6
and illustrated by figure 3.13. The model of Krafft ef al. provides an explanation of this
effect (for all but the thinnest specimens) in terms of the influence of specimen thick-
ness on G, which is related to the critical stress intensity for fracture via equation
(4.16), i.e. K. =~|E'G..

Knott (reference 6 of the bibliography) made the assumption that the absolute thick-
ness of shear lips in a material is approximately constant, i.e. the fraction S in equation
(4.32) decreases with increasing specimen thickness. On this basis he analysed data of
Krafft et al. for the aluminium alloy 7075-T6, assuming a constant shear lip thickness
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of 2 mm. For a specimen 2 mm thick, i.e. S = 1, G, had been found to be 200 kJ/,2. In
terms of equation (4.32) this means that

dW, B
R=G, :F/EEZ 200 kJ/p2 .
On the other hand a value of 20 kJ/;2 was estimated for dWs/q4. Thus for this specific
alloy equation (4.32) could be reduced to

G.=20(1 — S) +2008% kJ/m2.

Figure 4.14 shows the result of using this equation as compared to experimental data for
the 7075-T6 alloy. The agreement is excellent and is strong evidence for the validity of
the model of Krafft ez al.

Note that a material giving shear lips was used both in the theory and example. However, many mate-
rials show no shear lips, but do have a rising R curve. For these materials the explanation can be the same
as mentioned above. When the crack grows, the plane stress plastic zone grows while the plane strain

zone decreases (compare with figure 3.9). Thus the crack resistance will increase during crack growth
since B-dWy/qp >> AWs/q 4, cf equation (4.32).

4.8 Crack Resistance: a Complete Description

In sections 4.5 — 4.7 the concept of crack resistance, R, for more ductile materials has
been developed. It was indicated that under plane strain conditions fracture takes place
at a constant value of R and G, = Gy, irrespective of the crack length. However, for
plane stress and intermediate plane stress — plane strain conditions a rising R-curve de-
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Figure 4.14. Knott’s analysis of the model of Krafft et al. for the aluminium alloy 7075-T6.
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velops and G, is no longer constant but depends on the amount of crack extension. Fi-
nally it was shown that the R-curve behaviour can be fairly well explained by the model
of Krafft ez al.

At this point it is desirable to give a complete description of the R-curve concept, but
first it is necessary to discuss a change in notation. In the literature and in practice the R-
curve is no longer considered in terms of G and R. Instead the stress intensity factors Kg
and KR are used. This is because the stress intensity factor concept has found wide-
spread application and the energy balance parameters G and R may be simply converted
to stress intensities via the relation K; =\ E'G.

The reason for not adopting this notational conversion in previous sections of this
chapter is that the R-curve concept is based on energy balance principles and can be ex-
plained best in those terms. However, now it is convenient to describe the crack resis-
tance behaviour in terms compatible with current practice.

The R-Curve in Terms of Stress Intensity Factors

A schematic R-curve in terms of Kg and KR is presented in figure 4.15.
In this diagram there are three important points:

1) K;is the point of initial crack extension.

2) K. is the critical stress intensity (instability point).

3) Kplat is the plateau level of the Kr-curve. (Note that in figure 4.15 the plateau is be-
yond instability.)

K; has been found by means of complicated experimental techniques to be independ-
ent of specimen thickness and to have a constant value for a particular material. The
reason for this behaviour may be that even in relatively thin specimens the initial crack
extension takes place in plane strain, as was assumed in section 4.6.

Kg (= CRACK DRIVING FORCE CURVE)

Ks, Kr Ke

Kr (= CRACK RESISTANCE CURVE)

CRACK LENGTH, a

Figure 4.15. The R-curve in terms of stress intensity factor notation.
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For K., however, there is a strong effect of specimen thickness: thinner specimens
give higher K, values and consequently exhibit more slow stable crack growth, since K;
remains constant. A possible explanation for this behaviour was given in section 4.7. It
should be noted that a sufficiently thick specimen will result in full plane strain and K,
will then be equal to K;.

Kpiat also depends strongly on specimen thickness. This parameter is not a generally
accepted feature of the Kr-curve. A number of authors consider the existence of Kpja to
be due to specimen finite geometry effects and that the Kg-curve for very wide panels
would attain a constant non-zero slope rather than a plateau level.

Figure 4.16 shows an example of experimentally determined values of Kj, K. and
Kpar as functions of specimen thickness. The data for Ky (beyond instability) were
obtained by a special testing technique to be described in the next chapter, section 5.4.
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Figure 4.16. Experimental data for K, K; and K, from reference 1 of the bibliography to this
chapter.

Effect of Specimen Thickness on Kg-Curve Shape

From the observed dependence of Kj, K. and Kpj,c on specimen thickness it is possible
to indicate the general shapes of Kr-curves as functions of specimen thickness, figure
4.17. This figure demonstrates that a family of Kr-curves can be presented and that the
curve for plane strain need not be considered as a separate case: it is simply a curve
which does not show stable crack growth. In this respect the plane strain Kg-curve is
analogous to the original (G,R) representation of instability, figure 4.9, since it is to be
remembered that R-curves (and hence Kr-curves) are independent of the initial crack
length, a,. This analogy is schematically depicted in figure 4.18.

Crack Resistance and K¢ Testing
Although the procedure for Kj. testing will be fully discussed in chapter 5, some re-
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Figure 4.17. Kg-curves as functions of specimen thickness, B.

marks about the standard test method are appropriate here. This is because crack resis-
tance test results, like those in figure 4.16, shed some light on problems in determining
K.

It has been remarked several times that there is a thickness effect on fracture tough-
ness, and that only above a certain specimen thickness more or less constant values (i.e.
Kjc) are obtained. The minimum required thickness for Kj, determination has been
found experimentally to be 2'5(Kl°/0ys)2' This thickness is indicated as a line in figure
4.16. It is seen that although Kj is constant, K is still decreasing out to greater thickness.

Note that the standard test method, described in some detail in the next chapter, de-
fines K| as K either after a ‘pop-in’, which is a small amount of audible unstable crack

A

Kg = \/E'G,c ORIGINAL
[ T — - — _V__>____ CONCEPT

[ K CURVES FOR PLANE STRAIN

Y

CRACK LENGTH, a

Figure 4.18. Comparison of the original and current representation of plane strain crack resis-
tance.
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Figure 4.19. Effect on initial crack length a, on K.

growth followed by crack arrest, or after 2% crack extension. From figure 4.16 it is
clear that Kj does not depend on specimen thickness, while K. does: a 2% stable crack
extension can cause a significant increase in stress intensity. Now the question arises
whether this definition of Kj, might lead to inconsistent results, especially for thick-
nesses near the minimum required thickness.

Furthermore, assuming that the representation of Kg-curves as in figure 4.17 is cor-
rect, then stable crack growth should have a small but consistent effect on the value of
K. when specimens of widely differing initial crack length are used. This effect is dem-
onstrated schematically in figure 4.19 and has indeed been observed.

It might be thought that the foregoing problems could readily be avoided by using K;
instead of Kj., but as mentioned earlier Kj has to be found by means of complicated ex-
perimental techniques. This makes its determination unsuitable for a standard test.
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S5
LEFM Testing

5.1 Introduction

In chapter 2 a number of analytical relationships were given for the determination of
stress intensity factors in elastic specimens with different crack geometries. These stress
intensity factors (K, Ky or Kyyp for the opening, edge-sliding or tearing modes of crack
extension, figure 2.1) are functions of load, crack size and specimen geometry.

Ideally a critical stress intensity factor, K., can be used to predict the fracture behav-
iour in an actual structure. However, K. depends on test temperature, specimen thick-
ness and constraint. A typical dependence is shown in figure 5.1. The form of this de-
pendence has been discussed in section 3.6 and reasonably well explained in section 4.7.

PLANE TRANSITIONAL PLANE
STRESS BEHAVIOUR STRAIN
up[E e
Ke 200 ,%/Q\ro

(MPG/;) 160 [— ’fl \

B 8 —=f— — K.

80 —

40 -
S | | | | |
5 10 20 50 100
SPECIMEN THICKNESS {mm)

Figure 5.1. Effect of thickness on K. behaviour for a high strength maraging steel.

Beyond a certain thickness, when the material is predominantly in plane strain and
under maximum constraint, the value of K, tends to a constant lower limit, K., the
plane strain fracture toughness. Kj. may be considered a material property, but does de-
pend on the test temperature and loading rate. After considerable study and experimen-
tal verification the American Society for Testing and Materials (ASTM) published a
standard method for K|, testing (last revision is ASTM E 399-90). This method will be
described in section 5.2.

Of more general interest is the establishment of a test methodology for K determi-
nation, since the operating temperatures, loading rates and thicknesses of most materials
used in actual structures are generally such that transitional plane strain-to-plane stress
or fully plane stress conditions exist in service. Several engineering approaches to the
problem of plane stress and transitional behaviour have been proposed. Only one, the
Feddersen method, has the versatility required for structural design. This approach is the
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subject of section 5.3.

Considerable effort bas been devoted towards R-curve testing and analysis. A “Ten-
tative Recommended Practice” for R-curve determination was issued by the ASTM in
1976 and this was followed by a standard in 1981 (last revision is ASTM E 561-94) .
The determination of R-curves is discussed in section 5.4.

In section 5.5 a simple engineering approximation (Anderson’s model) to account for
the effects of yield strength and specimen thickness on fracture toughness will be given.
Finally, in section 5.6 the practical use of K, Kj. and R-curve data is summarised.

5.2 Plane Strain Fracture Toughness (K|c) Testing

During the period in which fracture toughness testing developed (late 1950s and the
1960s) the most suitable analyses for characterizing the resistance to unstable crack
growth were those of LEFM. Although it was recognised that most structural materials
do not behave in a purely elastic manner on fracturing, it was hoped that provided crack
tip plasticity was very limited small specimens could be used to describe the situation of
unstable crack growth occurring in a large structure.

Data like those in figure 5.1 showed that a fairly constant minimum value of K, was
obtained under plane strain conditions, i.e. Kj.. This value appeared to be a material
property. Thus it was decided to try and establish K. values for various structural mate-
rials, in an analogous way to the establishment of mechanical properties like yield stress
and ultimate tensile strength.

Under the supervision of the ASTM E-24 Fracture Committee numerous specimen
designs and test methods for K} determination were considered. During the 1960s vari-
ous parameters, e.g. notch acuity, plate thickness, fracture appearance and stress levels
during fatigue precracking were investigated and resulted in the development of a stan-
dardized, plane strain K. test method using either of two standard specimens, namely
the single edge notched bend (SENB or SE(B) in the last revision) and compact tension
(CT or C(T) in the last revision) specimens. Later also the Arc-shaped Tension, Disc-
shaped Compact and the Arc-shaped Bend specimens were introduced. The method was
first published in 1970 and is listed in its latest (1990, ASTM E 399-90 under jurisdic-
tion of committee E-8 on Fatigue and Fracture) version as reference 1 of the bibliogra-
phy to this chapter.

The Standard K, Specimens

The original recommended standard K7, specimens are illustrated in figures 5.2 and 5.3.
For the other specimens that are allowed the reader should consult reference 1. Round
robin test programmes have shown that the standard specimens enable K, values to be
reproducible to within about 15% by different laboratories.

The stress intensity factors for these standard specimens are as follows:

o Single edge notched bend specimen (SENB)
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Experiments have shown that it is impractical to obtain a reproducible sharp, narrow
machined notch that will simulate a natural crack well enough. Therefore the specimens
must be fatigue precracked. To ensure that cracking occurs correctly the specimens
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Figure 5.3. ASTM standard compact tension specimen (CT).
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contain starter notches. Several possibilities are listed in the ASTM standard, but the
most frequently used is a chevron notch, figure 5.4, owing to its good reproducibility of
symmetrical in-plane fatigue crack fronts.

The chevron notch forces fatigue cracking to initiate at the centre of the specimen
thickness and thereby increases the probability of a symmetric crack front. After frac-
ture toughness testing the length of the fatigue precrack, a, at positions ay, as, az and at
the side surfaces is measured. For the value of a the mean of a;, a; and a3 is used. As-
suming that other test requirements have been met the test is considered a valid K re-
sult if the difference between any two of the three crack length measurements does not
exceed 10% of the average and if the surface crack lengths ag are within 10% of a.

120°

max.

Figure 5.4. Chevron notch crack starter.

Specimen Size Requirement

The accuracy with which Kj. describes the fracture behaviour depends on how well the
stress intensity factor characterizes the conditions of stress and strain immediately ahead
of the tip of the fatigue precrack, since it is here that unstable crack extension would
originate. In establishing the specimen size requirements for K| tests the specimen di-
mensions must be large enough compared with the plastic zone size, ry. This ensures an
overall elastic behaviour of the specimen, so the stress intensity approach is still appro-
priate. Furthermore a predominantly plane strain state will be present at the crack tip.
The relevant dimensions (see figures 5.2 and 5.3) are:
1) The crack length, a.
2) The specimen thickness, B.
3) The remaining uncracked ligament length, W — a.

After considerable experimental work the following minimum specimen size re-
quirements were established:
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(5.3)

where oy is the yield strength. Note that, since for the test specimens
0.45 < a/py < 0.55, the size of the remaining ligament, W — a, will more or less satisfy
the same minimum value as given in equations (5.3).

Now in chapter 3 (section 3.5) it was stated that there are empirical rules for esti-
mating whether a specimen will be mainly in plane strain or plane stress: predominantly
plane strain behaviour may be expected when the calculated size of the plane stress
plastic zone, i.e. the diameter 2ry in Irwin’s analysis, is no larger than one-tenth of the
specimen thickness. According to Irwin, for plane stress

2
1 (K
Yo (GYJ ' (54)

For K1 = K], the substitution of equation (5.4) in equation (5.3) shows that the minimum
thickness, B, is only about 8 times the plane stress plastic zone size, 2ry. The empirical
rule is therefore slightly conservative (a factor 10 instead of 8).

It is important to note that the specification of a, B and W (and all the other specimen
dimensions) requires that the K, value to be obtained must already be known or at least
estimated. There are three general ways of sizing test specimens before the required Ki
is actually obtained:

1) Overestimate K. on the basis of experience with similar materials and empirical cor-
relation with other types of notch toughness test, for example the Charpy impact test.

2) Use specimens that have as large a thickness as possible.

3) For high strength materials the ratio of (Oys/E) can be used according to the follow-
ing table, which was drawn up by the ASTM.

Oys/E minimum values of
a and B (mm)
0.0050 - 0.0057 75.0
0.0057 - 0.0062 63.0
0.0062 - 0.0065 50.0
0.0065 — 0.0068 44.0
0.0068 — 0.0071 38.0
0.0071 - 0.0075 32.0
0.0075 - 0.0080 25.0
0.0080 — 0.0085 20.0
0.0085 - 0.0100 12.5

>0.0100 6.5
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Kic Test Procedure
The steps involved in setting up and conducting a K. test are:

1) Determine the critical dimensions of the specimen (a, B, W).

2) Select a specimen type (notch bend or compact tension) and prepare shop drawings,
e.g. specifying a chevron notch crack starter, figure 5.4.

3) Specimen manufacture.

4) Fatigue precracking.

5) Obtain test fixtures and clip gauge for crack opening displacement measurement.

6) Testing.

7) Analysis of load-displacement records.

8) Calculation of conditional K. (Kq).

9) Final check for K| validity.

At least three replicate tests should be done for every material. Steps 1 — 3 will not
be discussed further. Steps 4 — 6 will now be concisely reviewed, since full details may
be found in reference 1 of the bibliography. The last three steps 7 — 9 are considered un-
der the next subheadings in this section.

The purpose of notching and fatigue precracking the test specimen is to simulate an
ideal plane crack with essentially zero tip radius to agree with the assumptions made in
stress intensity analyses. There are several requirements pertaining to fatigue loading.
The most important is that the maximum stress intensity K,y during the final stage of
fatigue cycling shall not exceed 60% of the subsequently determined K, if this is to
qualify as a valid Ky result.

Recommended test fixtures for notch bend and compact tension specimen testing are
described in the ASTM standard. These fixtures were developed to minimise friction
and have been used successfully by many laboratories. Other fixtures may be used pro-
vided good alignment is maintained and frictional errors are minimised.

An essential part of a K| test is accurate measurement of the crack mouth opening
displacement (CMOD) as a function of applied load. The displacement is measured with
a so-called clip gauge which is seated on integral or attachable knife edges on the
specimen, as shown in figure 5.5. Electrical resistance strain gauges are bonded to the
clip gauge arms and are connected up to form a Wheatstone Bridge circuit, as indicated.

In carrying out the test there are requirements for specimen alignment in the test fix-
tures, the loading rate, test records and post-test measurements on the specimen. The
loading rate should be such that the rate of increase of stress intensity is within the range
0.55-2.75 MPa\/r_n/s_ This is arbitrarily defined as ‘static’ loading. It should be noted
that the ASTM standard does allow higher rates to be used. In this case the test time
should be at least 1 millisecond and the test record should meet additional requirements
concerning linearity.

Each test record consists of a plot of the output of a load-sensing transducer versus
the clip gauge output. It is conventional to plot load along the y-axis, displacement
along the x-axis. The record is continued until the specimen is no longer able to sustain
a further increase in load. The maximum load must be determinable with an accuracy of
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Figure 5.5. Clip gauge and its attachment to the specimen.

+1%. Post-test measurements of the specimen dimensions, B, W, S, and fatigue precrack
lengths a1, ay, a3, a, (see figures 5.2 — 5.4) must be made to calculate Kq and check its
qualification as a valid K.

Analysis of Load-Displacement Records and Determination of Conditional Kic (Kg)

Plots of load versus displacement may have different shapes. The principal types of dia-
gram obtained are shown schematically in figure 5.6. Initially the displacement in-
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Figure 5.6. Principal types of load-displacement plots obtained during K. testing.
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creases linearly with load, P. In many cases there is either a gradually increasing non-
linearity, figure 5.6.a, or sudden crack extension and arrest (called ‘pop-in’) followed by
nonlinearity, figure 5.6.b. Nonlinearity is caused by plastic deformation and stable crack
growth before fast fracture. If a material behaves almost perfectly elastically (as is
rarely the case) a diagram like that in figure 5.6.c is obtained.

As shown in figure 5.6, the general types of P-r curves exhibit different degrees of
nonlinearity. Various criteria to establish the load corresponding to Kj. have been con-
sidered. After considerable experimentation a 5% secant offset was chosen to define Kj
as the stress intensity factor at which the crack reaches an effective length about 2%
greater than at the beginning of the test. Although this definition is apparently arbitrary,
it turns out that for the standard SENB and CT specimens the effects of plasticity and
stable crack growth are more or less accounted for by assuming an effective length in-
crease of 2%. (Note, however, that some more detailed remarks about the effect of sta-
ble crack growth on Kj. were made in section 4.8.)

To establish whether a valid K|, can be obtained from the test it is first necessary to
calculate a candidate value, Kq. In order to determine the load, Pg, corresponding to
this candidate value a secant line is drawn from the origin O, with a slope 0.95 of that of
the tangent OA to the (initial) linear part of the test record. The load Pg is the load at the
intersection of the secant line with the test record, figure 5.7.

Pq is then defined according to the following procedure. If the load at every point on
the P-displacement record which precedes Pg is lower than Pg, then Pq is Ps (Type 1,
figure 5.7). However, if there is a maximum load preceding Pg that is larger than Pg,
then this maximum load is Pq (Types II and III, figure 5.7). In order to prevent accep-
tance of a test record for a specimen in which excessive stable crack growth occurred or
in which the stress state is not sufficiently plane strain, it is required at this stage of the
analysis that Pmax/ P be less than 1.10. The value of this ratio is based on experience.

LOAD, P

TYPE Il TYPE I

v

DISPLACEMENT, v

Figure 5.7. Types of load-displacement curves illustrating determination of Pg and Pq,.
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Check for K¢ validity

After determining Pq the value of K is calculated using the appropriate stress inten-
sity factor expression, i.e. equations (5.1) or (5.2) for the SENB or CT specimens re-
spectively. Then it is determined whether this K is consistent with the specimen size
and material yield strength according to equations (5.3), i.e. the quantity 2.5 (KQ/csys)2
must be less than the thickness, B, and the crack length, a, of the specimen. Finally, a
check is made whether the crack front symmetry requirements mentioned in the discus-
sion to figure 5.4 are met.

If these requirements are not all met the test must be declared invalid and the result
may be used only to estimate the fracture toughness: it is not an ASTM standard value.

5.3 Plane Stress Fracture Toughness (K;) Testing: the Feddersen
Approach

There is no standard method of plane stress fracture toughness (K.) testing. In what
follows, the engineering approach of Feddersen, which is a good method suited to prac-
tical use besides R-curve testing, will be described. The original description is given in
reference 2 of the bibliography to this chapter.

Consider a thin plate under plane stress with a central crack 2a, loaded in tension,
figure 5.8. On reaching a stress o; the crack will begin to extend by slow stable crack
growth. In order to maintain crack growth the stress has to be increased further: the
crack will stop growing if the load is kept constant.

Slow crack growth continues until a critical crack size 2ac is reached at a stress c..

STRESS,
c

SLOW GROWTH

=— INSTABILITY =» FRACTURE

== — RESIDUAL STRENGTH AS A
FUNCTION OF INITIAL
CRACK SIZE

INITIATION OF CRACK GROWTH

|
|
|
260 2aC o >

CRACK LENGTH, 2a

Figure 5.8. Residual strength behaviour in plane stress.
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Then the crack becomes unstable and fracture occurs. If the initial crack is longer, for
example 4a,, stable crack growth starts at a lower stress, the amount of slow crack
growth is larger, but G, is lower.

If it is assumed that all events in crack propagation and fracture are governed by the
stress intensity factor, particular stress intensity factors can be attributed to each event
as follows:

Ki=o; \/Tf_aof (p%/)
ko= o \rac{35) 53)
Ke= o \rau (1)

where K is the critical stress intensity for the onset of (stable) crack growth and K is
the critical stress intensity for fracture. K, is an apparent stress intensity, since it relates
the initial crack size to the fracture stress: it has an engineering significance because ir-
respective of whether slow stable crack growth subsequently occurs the value of K, de-
fines the residual strength of a plate containing a crack of a given initial size.

Instead of using actual crack sizes, a, in equations (5.5) the effective crack sizes a + ry could be used,
as in Irwin’s analysis in section 3.2. However, this is not necessary in the Feddersen approach, since in
calculating stress intensity factors to obtain the residual strength diagram and the reverse operation of us-
ing the diagram to calculate the fracture stress or initial crack size the contribution of ry cancels out.

Tests have shown that Kj, K. and K, are not material constants with general validity
like Kj.. However, they are approximately constant for a given thickness and a limited
range of crack length-to-specimen width ratio, @/ . For a given material with an appar-

A

Gys

STRESS,
o O-c]
O-c2

A\

INITIAL CRACK LENGTH, 2a,

Figure 5.9. The residual strength diagram.
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ent toughness, K., the relation between the residual strength and initial crack size of a
(large) centre cracked panel is given ideally by the curve o, = Ke/ Ta,, s shown in
figure 5.9.

However, for small crack sizes o, tends to infinity, but the residual strength at a, = 0
cannot be larger than the yield stress. On the other hand, as 2a, tends towards W, the re-
sidual strength approaches zero. At these two extremes net section yield occurs. Fedder-
sen proposed the construction of two tangents to the curve (this was also based on ex-
perimental results), one from the stress axis at 6ys and the other from the crack length
axis at W. In the region between the points of tangency K. is approximately constant:
this part of the curve plus the two tangents constitute the residual strength diagram.

Now a tangent to the K curve at any point is

dsd Ke ) o 56
dQao) ~ 4Cag) \\nay) 440 (5-6)
For the tangent from (0,6ys) equation (5.6) gives, see figure 5.9,
Ocl Gys — O¢] 2c s
T = y2a01 , OF G| :—3},— (5.7)

and so the left-hand tangency point is always at 20ys/3.
Also from figure 5.9, the tangent from (/,0) is defined by

G2 O¢2
4(102 W — 26102 ’

w
or 2ay = ER (5.8)

Thus the right-hand tangency point is always at /#/3.
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Figure 5.10. The Feddersen approach for K;, K, and K.



118 Linear Elastic Fracture Mechanics
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Figure 5.11. Residual strength for various panel widths.

The same construction can be made for Kj and K., see figure 5.10. Summarising, the
screening criteria for valid plane stress fracture toughness testing are

and (5.9)

where oy stands for G; or 6 and 2ay stands for 2qa, or 2a., depending on whether K, K.
or K, is considered, cf- equations (5.5).

It has been found that the Feddersen approach represents experimental data quite
well. This being so, the approach is useful because the complete residual strength dia-
gram can be constructed for any panel size if 6ys and either K;, K, or K, are known.
Furthermore, one can easily determine the minimum panel size for valid plane stress
fracture toughness testing. Consider the construction for K, as a function of panel width,
figure 5.11.

The minimum panel size for valid K, determination is where the two tangency points
coincide. Wi and W, are sufficient, but W3 is too narrow because the failure stress lies
along the line joining (0,0ys) to (W3 ,0) and is given by

W3 - 26103j

Gc3 = Oys ( 2 (5.10)

i.e. failure always occurs at net section yield in the case of Wj3: it is no longer a fracture
mechanics problem, but a yielding dominant problem.
From K, = o\ g, the left-hand point of tangency is given by
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20 9 (K 2
S €
Ke=—3L\/na0, or 2“°:E(c_ysj . (5.11)

The two tangency points coincide when Wmin/3 = 2a,. Thus from equation (5.11)

2
27 (Ke
Winin =5 (Gysj . (5.12)

Similarly, the value of Wy, can be found for K or for K.

Note that equation (5.12) cannot be used as a screening criterion. This is because
violation of one of the criteria of equation (5.9) would lead to a lower apparent K value
(on a tangent rather than the residual strength curve) and substitution of this K value in
equation (5.11) would give too small a value of Wy, i.e. an invalid test could be de-
clared valid.

Some Experimental Considerations for K. Testing

Actual test conditions for K. determination are not rigorously defined as in standard
tests. However, there are a number of guidelines and remarks:

1) It is obvious from what has previously been discussed that K. tests should be con-
ducted for material thicknesses representative of actual applications.

2) The tests should preferably be done with centre cracked panels, for which the stress
intensity factors are well defined and the problems of secondary bending and buck-
ling are minimised (but see point 5 below).

3) Fatigue precracking is advisable, but not necessary if the notch is sharp enough to
start slow crack growth well before fracture.

4) The maximum load in the test should be taken as the fracture load. Only if K, is to be
determined should slow crack growth be measured, and then a load-time record syn-
chronised with the crack growth record must be made.

5) Under the subheading “Edge Notched Specimens” in section 2.4 it was argued that
compressive stresses oy = —G are present along the flanks of a central crack in a uni-
axially loaded plate. Especially in thin sheets these compressive stresses can cause
local buckling near the crack, and for long cracks buckling occurs well before the
specimen is ready to fail and may significantly affect the residual strength. If such
buckling would be restrained in service (by structural reinforcements) then anti-
buckling guides must be used in the specimen test. On the other hand, anti-buckling
guides should not be used to prevent buckling that could occur in service.

6) In figure 5.9 the ideal fracture mechanics curve (o, = Ke/\/n_ao) is shown dotted. This
formula is valid only for a large plate with a small crack, i.e. the right-hand part of
the curve where 2a — W is incorrect. Instead the f{@/py) corrections given in sections
(2.4) or (2.8) should be used.
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Figure 5.12. Crack growth resistance and crack driving force curves for a load controlled test.

5.4 The Determination of R-Curves

A limitation of K testing is that the effect of slow stable crack growth is not properly
characterized. If we restrict ourselves to the apparent fracture toughness K, this is not a
problem, because then only the initial crack length is used. However if the K. value is
needed, it is obtainable from R-curves, as has been discussed in sections 4.6 — 4.8.

An R-curve is a plot of crack-extension resistance as a function of stable crack exten-
sion, Aa. The crack growth resistance may be expressed in the same units as G or, as is
now customary, in terms of stress intensity factors, i.e. Kg = \/FG, Kr =\/E'R.

R-curves can be determined by either of two experimental techniques: load control or
displacement control. The crack grows owing to increments of increased load or dis-
placement. The load control method involves rising load tests with crack driving force
(Kg) curves like those shown in figure 5.12. Under rising load conditions (P < P, < P3
< Py) the crack extends gradually to a maximum of Aa, where unstable crack growth
occurs at Kg = K.. This point is determined as the tangency point between the Kr-curve
and one of the lines representing a crack driving force curve, Kg = f(P,\/:z,a/ W), in this
case the Kg-curve corresponding to load P4. During the slow stable fracturing, the de-
veloping crack growth resistance KR is equal to the applied Kg. Clearly, this testing
method is capable only of obtaining that portion of the R-curve up to Kr = K., when in-
stability occurs.

Under displacement control a suitable specimen results in negatively sloped crack
driving force curves, as shown in figure 5.13.

In order to understand the conditions for which the slope of the crack driving force becomes negative
it is convenient to consider K as a function of displacement, 7, and crack length, a, i.e. K; = Ki(v,a). We

can write
da ~ Ba GV Lda”

The derivative (aKI/aV)a is always positive, while d¥/q, is either zero (fixed grip) or positive (constant
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Figure 5.13. Crack growth resistance and crack driving force curves for a displacement con-
trolled test.

load). A negatively sloped crack driving force curve, i.e. dKi/q, < 0, can be obtained by using fixed grip
conditions and a specimen configuration such that (9K1/a,), is negative. Specimen configurations of this
kind are widely available and will be discussed later on in the present section. In fact the only case for
which a fixed grip condition does not ensure a negative dKi/q, is a remotely loaded centre cracked plate.
It should be noted that even under constant load conditions dK1/4, can be negative, albeit for a limited
number of specimen configurations. One example is the crack-line loading case for a central crack men-
tioned in section 2.5.

Under displacement control the specimen can be loaded by a wedge, which must be
progressively further inserted in order to obtain greater displacements (1] < 1, < r3) and
further crack growth. For each displacement the crack arrests when the crack driving
force curve intersects the R-curve. Because there can be no tangency to the developing
crack growth resistance, Kg, the crack tends to remain stable up to a plateau level, i.e.
the entire R-curve can be obtained.

Relation Between R-Curve and K. Testing

In section 4.6 it was indicated that R-curves are invariant, i.e. independent of initial
crack length, a,. However, K, is approximately constant for only a limited range of
crack lengths. The relation between R-curve and K testing is summarised schematically
in figure 5.14. The shape of the K -a, curve in figure 5.14.b is due to two effects which
partly oppose each other. First, moving the R-curve along the a axis tends to raise the
(G,R) and hence (Kg,KR) tangency points. Second, the Kg line becomes markedly
curved for longer initial crack lengths, figure 5.14.a, owing to the influence of finite
specimen width on the stress intensity factor, as discussed in section 2.4. Increasing
curvature of the K lines tends to lower the (Kg,Kr) tangency points.

For given test and material conditions a K. value (obtained by rising load testing)
represents only a single point on an R-curve. But since R-curves are invariant, with the
R-curve approach the complete variation of K, with changes in initial crack length can
be described. Thus an R-curve is equivalent to a large number of direct K, tests con-
ducted with various initial crack lengths. In practice, however, this is not too important
in view of the success of the Feddersen approach, i.e. the tangency constructions to ob-
tain the complete residual strength diagram. It is only when the estimation of the
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Figure 5.14. Use of R-curves for determining K, as a function of initial crack length.

amount of stable crack growth is important that R-curve testing must be done.

Recommended Specimens for R-Curve Testing

In 1976 the ASTM published a recommended practice for R-curve determination, fol-
lowed in 1981 by a standard (the last revision of the standard was made in 1994: ASTM
E 561-94, reference 3 of the bibliography). The ASTM method will be concisely dis-
cussed in what follows. In general the specimens will have a thickness representative of
plates considered for actual service. The ASTM recommends three types of specimens:

1) The centre cracked tension specimen (CCT or also called M(T), the middle-cracked
tension specimen in the last revision of the standard).

2) The compact specimen (CS or C(T) in the last revision). These are the same as com-
pact tension specimens (CT) used for Kj. testing except that they may be of any
thickness.

3) The crack-line wedge-loaded specimen (CLWL or C(W) in the last revision).

The first two types of specimen are tested under load control (rising Kg curves),
while the CLWL specimen may be used for displacement control tests. The specimens
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are illustrated in figures 5.15 — 5.17. In figure 5.17 V| and V; refer to locations at which
displacements are measured in order to determine compliance and hence effective crack
length. The same locations can be used for the CS specimen.

| ‘
Vg 7t
}CLAM'PING g

L 4

Figure 5.15. Centre cracked tension specimen (CCT or M(T)).
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Figure 5.16. Compact specimen (CS or (C(T)).
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Figure 5.17. Crack-line wedge-loaded specimen (CLWL or C(W)).
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The specimens must be fatigue precracked unless it can be shown that the machined
notch root radius effectively simulates the sharpness of a fatigue precrack. For the CCT
specimen the machined notch must be 30 — 35% of W with fatigue cracks not less than
1.3 mm in length. For the CS and CLWL specimens the starter notch configuration is
basically similar to that required for K. testing, but owing to the lesser thickness a
chevron notch crack starter (figure 5.4) may not be necessary to obtain a symmetrical
crack front, i.e. a straight through electric discharge machined (EDM) slot will often
suffice. The initial crack length must be between 35 — 45% of W.

Specimen Size

Specimen size is based solely on the requirement that the uncracked ligaments (W — 2a)
or (W — a) must be predominantly elastic at all values of applied load. More precisely,
for the CCT specimen the net section stress based on the effective crack size (which is
the physical crack size augmented for the effects of crack-tip plastic deformation, 2(a, +
Aa + ry)) must be less than the yield stress. The radius ry of the plastic zone is given by
Irwin’s analysis in section 3.2. Addition of 7y to the physical crack size is necessary be-
cause under plane stress conditions the plastic zone size is relatively large and has a sig-
nificant effect on the specimen stiffness. For the CS and CLWL specimens the condition
that the uncracked ligaments must be predominantly elastic is given by the more or less
empirical relation

Ko\
W—(a0+Aa+ry)2%(ﬁj : (5.13)
where Koy 1s the maximum stress intensity level in the test. Equation (5.13) amounts to
the requirement that the remaining uncracked ligament be at least equal to 87y max.

It is worth noting here that incorporation of a plastic zone size correction will result
in K, values consistently slightly higher than those obtained by the Feddersen approach
(although there is no fundamental objection to using a plastic zone size correction for
the latter, see section 5.3).

R-Curve Test Procedure

Broadly speaking, the procedure in R-curve testing is similar to steps 1 — 7 for K test-
ing, section 5.2. However, for R-curve testing the initial step is choice of testing tech-
nique (load control or displacement control) and specimen type. The advantage of the
displacement control technique in enabling determination of the entire R-curve is
somewhat offset by the more complicated test machine operation. However, most labo-
ratories are nowadays equipped with computer-controlled test machines and more or
less standard software packages.

Additional experimental requirements are that the effective crack length must be de-
termined and buckling prevented. The physical crack length can be measured using e.g.
optical microscopy or the electrical potential method, and subsequently the measured
crack length can be adjusted by the addition of ry. Alternatively, the effective crack
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length can be determined directly by means of compliance measurements: the procedure
for this is fully described in the ASTM standard practice. Use of compliance instru-
mentation also makes it possible to determine whether the specimen develops undesir-
able buckling despite the presence of anti-buckling guides.

All types of specimen must be loaded incrementally, allowing time between steps for
the crack to stabilise before measuring load and crack length, except if autographic in-
strumentation is used. In the latter case the load versus crack extension can be moni-
tored continuously, but the loading rate must be slow enough not to introduce strain rate
effects into the R-curve. To develop an R-curve the load versus crack extension data (a,
+ Aa + ry) can be used to calculate the crack driving force Kg, and hence KR, using one
of the two following expressions for the stress intensity factor:

e CCT specimen

LOAD
K= BW Ta sec(n—V;) (5.14)
or
LOAD 2a 2
Ki= BV {1 77 - 0177(Wj+177(l/;) } (5.15)

e (S and CLWL specimens

_LOAD(2+V£V){O.886+4.64(W) 13. 32() +1472(j —5.6(%,)4}

, (5.16)

where B is the material thickness and W the specimen width measured from the load
line. Note further that for the CLWL specimen the load is indirectly obtained from a
load-displacement calibration curve. The procedure for obtaining such curves is given in
the ASTM standard practice.

5.5 An Engineering Approximation to Account for the Effects of Yield
Strength and Specimen Thickness on Fracture Toughness:
Anderson’s Model

Figure 5.1. shows that the value of K depends on thickness, decreasing gradually to
a limiting lower value of K|.. The effect of sheet thickness is related to the gradual tran-
sition from plane stress to plane strain, and this transition is strongly influenced by the
yield strength, as shown schematically in figure 5.18. A higher yield strength signifies a
smaller plastic zone, so that there is more material in plane strain and the fracture
toughness in the transition region is lower. It is also found that K and Kj. generally de-
crease with increasing yield strength.
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Figure 5.18. Schematic of the effects of yield strength and specimen thickness on K.

Although the qualitative trend shown in figure 5.18 is well established, there is no
generally accepted quantitative model of the thickness effect. The simplest and also the
most readily usable model is that of Anderson, figure 5.19.
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Figure 5.19. The thickness effect according to Anderson (reference 4 of the bibliography to this
chapter).
The model is empirical. With knowledge of the two ‘basic’ fracture toughness values
K¢ max and K. a line is drawn between the points A and C, which can be obtained from
the following empirical relations:

1) Point A is given by

2
1 K¢, max
B —3n( - j . (5.17)

2) Point C is obtained from the limit of the ASTM condition for nominal plane strain
behaviour (see section 5.2), i.e.
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2
ch
By=25|—|. (5.18)
Gys

The simplicity of Anderson’s model makes it useful in an engineering sense, i.e. es-
timating fracture toughness for a practical sheet thickness when a full range of data are
not available.

5.6 Practical Use of K., K. and R-Curve Data

K. data can be useful in two general ways. First, they may be used directly for
choosing between materials for a particular application, especially high strength aero-
space materials. More generally, since it is desirable (if possible) to avoid plane
strain/low energy fracture, K. values may be used as a basis for a screening criterion to
ensure plane stress/high energy fracture. Several criteria have been proposed. One of the
simplest is the through-thickness yielding criterion

Kic> 6y \B, (5.19)

which gives the desired increase in toughness with increasing yield strength and sheet
thickness in order to obtain plane stress fracture. This criterion is useful when oy and
Kj of a material are known. In this case the thickness B has to be less than or equal to
(KIC/GYS)Z in order to avoid low energy fracture. A full derivation of this criterion is
given in reference 5 of the bibliography.

Use of the through-thickness yield criterion can be demonstrated with the help of

K. for EQUIVALENT
€/%ys| SHEET THICKNESS, B
300 - (Vm) (mm)
———] 0.055 3
K| (MPay/m) —-—| 0.113 12.7 °
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./ TITANIUM ALLOY

ALUMINIUM ALLOY _ - beta C
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Figure 5.20. lllustration of the use of the through-thickness yielding criterion.
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figure 5.20, which shows K. — oy data for various materials, together with lines corre-
sponding to different ratios of KIC/GyS' From equation (5.19) it is seen that these ratio
lines have the dimension A/LENGTH. Thus each line may be considered to correspond to
a particular sheet thickness, B, as indicated in the table in figure 5.20.

The lines give minimum values of ch/(;yS necessary for through-thickness yielding
to occur in a sheet of given thickness, e.g. for a sheet 3 mm thick the minimum value of
ch/gys is 0.055. Comparison of actual Kj. — oys data with the ratio lines in figure 5.20
shows the following.

1) The titanium alloy beta C has high strength but low toughness. However, the alloy
can still meet the through-thickness yielding criterion, equation (5.19), for sheet
thicknesses up to 3 mm.

2) 7475 aluminium alloy and Ti-6Al-4V titanium alloy meet the through-thickness
yielding criterion for sheet thicknesses up to at least 12.7 mm.

3) 10 Ni steel combines high toughness with high strength and meets the through-
thickness yielding criterion for heavy sections approaching 50 mm thickness.

Clearly, if it is required to meet the through-thickness yielding criterion in practice, then
10 Ni steel would be selected for heavy sections. On the other hand it would be possible
to use beta C titanium alloy in thin sheet applications, thereby taking advantage of the
lower density of titanium as compared to steel. Also, it should be noted that other mate-
rials can be plotted on diagrams like figure 5.20, and that actual selection of materials
has to take into account many other factors, some or most of which are unrelated to
fracture mechanics considerations.

Intermediate plane stress — plane strain and fully plane stress fracture toughness data
are primarily of interest for determining the residual strengths of actual structures using
materials of the same thickness. Here again the materials may be compared, as in the
introductory example given in chapter 1, section 1.8. For the majority of situations
where LEFM can be applied there is little incentive to use R-curves instead of the rela-
tively straightforward engineering approach of Feddersen. Only when the characteriza-
tion of slow stable crack growth is important will R-curve data be required, for example
in thin sheet stiffened structures like aircraft fuselages, reference 6 of the bibliography.

At this point in the course we come to the end of Part II, which has been concerned
with LEFM. It is appropriate to note that the inability to account properly for plasticity
is often a major limitation. Many engineering materials combine high toughness with
low yield strength, so that the required thickness for a valid Kj. test may reach the order
of magnitude of a metre! Obviously, K. tests on such materials are neither practical nor
useful, if only because the materials would never be used in such thicknesses (see also
section 7.5). Also, excessive plasticity in these materials will rule out K, testing of
plates with thicknesses representative for actual structures. Resort has then to be made
to Elastic Plastic Fracture Mechanics (EPFM) characterization of the crack resistance or
to a plastic collapse analysis. The subject of EPFM is treated in chapters 6 — 8, which
comprise Part I1I of the course. Since it is not a fracture-dominant failure mode (see also
section 1.2), plastic collapse will only be mentioned shortly in chapter 6. In chapter 8
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some attention is paid to failure due to the combination of fracture and plasticity.
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6

Basic Aspects of
Elastic-Plastic
Fracture Mechanics

6.1 Introduction

Linear Elastic Fracture Mechanics (LEFM) was originally developed to describe
crack growth and fracture under essentially elastic conditions, as the name implies. In
this case plasticity is confined to a very small region surrounding the crack tip. How-
ever, such conditions are met only for plane strain fracture of high strength metallic
materials and for fracture of intrinsically brittle materials like glasses, ceramics, rocks
and ice.

Later it was shown that LEFM concepts could be slightly altered in order to cope
with limited plasticity in the crack tip region. In this category falls the treatment of
fracture problems in plane stress, e.g. the R-curve concept discussed in chapter 4. Nev-
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Figure 6.1. Ranges of applicability of LEFM and EPFM for describing fracture behaviour.
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ertheless, there are many important classes of materials that are too ductile to permit de-
scription of their behaviour by LEFM: the crack tip plastic zone is simply too large. For
these cases other methods must be found.

In this part of the course we shall discuss methods in the category of Elastic-Plastic
Fracture Mechanics (EPFM). These methods significantly extend the description of
fracture behaviour beyond the elastic regime, but they too are limited. Thus EPFM can-
not treat the occurrence of general yield leading to so-called plastic collapse. Figure 6.1
gives a schematic indication of the ranges of applicability of LEFM and EPFM in the
various regimes of fracture behaviour.

Since this course concerns fracture mechanics concepts, no further attention will be
paid to plastic collapse, which is a yielding-dominant failure mode (see section 1.2).
Discussion is confined to cases A, B, C and sometimes D of figure 6.1, i.e. the fracture-
dominant failure modes. The LEFM concepts applicable to cases A and B have been
treated in the previous chapters 2 — 5. Here and in chapters 7 and 8 the principles of
EPFM, which are applicable to cases B, C and D, will be given.

Note that the ranges of applicability of LEFM and EPFM overlap in figure 6.1. Be-
fore proceeding to the development of EPFM it is worthwhile to discuss these ranges of
applicability in some more detail. This will be done with the help of figure 6.2.

Figure 6.2.a gives a schematic residual strength diagram for a relatively brittle mate-
rial in terms of the dimensionless crack length, 2a/p (W = panel width), of a centre
cracked panel. Except for very short cracks the residual strength is determined by the
stress intensity factor, since the K. curve lies well below the line representing net sec-
tion yield (and hence plasticity induced failure) of the uncracked ligaments. Thus LEFM
is applicable for most cases. However, for very short cracks the plastic zone size is no
longer relatively small, and EPFM concepts will have to be used.
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Figure 6.2. Schematic residual strength diagrams for (a) relatively brittle and (b) relatively
ductile materials.
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Figure 6.2.b gives a residual strength diagram for a relatively ductile material.
Clearly the unconstrained yield stress, Gys, will be reached in the uncracked ligaments
well before the critical stress o, = Kc/\/n_ac because the critical stress intensity factor,
K., is high in ductile materials. The fracture behaviour is therefore likely to be con-
trolled by general yielding, i.e. neither LEFM or EPFM are applicable. However, in
situations of high constraint, e.g. cracks in thick sections, the effective yield stress will
increase to Coys where C is the plastic constraint factor discussed in section 3.5. The K
curve may then predict a failure stress, o, of the same order of magnitude as that given
by the net section yield line: this is shown for a fairly wide range of 24/ in figure
6.2.b. In such situations EPFM can be used to predict fracture behaviour. LEFM cannot
be applied because o, will be too large a fraction of the effective yield stress and the
plastic zone size will be too large.

It might be thought that situations of high constraint are rather special cases. In fact
they are of prime importance with respect to practical applications. In the power gener-
ating and chemical processing industries most cracks occur in high pressure parts,
which are of course thick-walled vessels and pipes. Also, the offshore industry has to
cope with cracks in very large thick-sectioned welded structures. Seen in this light it is
therefore not surprising that most contributions to the development of EPFM have come
from these industries. In contrast LEFM is principally applied in the aerospace industry,
where weight savings are at a premium and high strength, relatively brittle materials
must be used.

6.2 Development of Elastic-Plastic Fracture Mechanics

Within the context of EPFM two general ways of trying to solve fracture problems
can be identified:

1) A search for characterizing parameters (cf. K, G, R in LEFM).
2) Attempts to describe the elastic-plastic deformation field in detail, in order to find a
criterion for local failure.

It is now generally accepted that a proper description of elastic-plastic fracture behav-
iour, which usually involves stable crack growth, is not possible by means of a straight-
forward, single parameter concept. Numerous detailed studies are being made of local
failure criteria and elastic-plastic crack tip stress fields, but these are unlikely to give re-
sults suitable for practical use in the near future.

So far a notable success of EPFM for practical applications, however, is the ability to
describe the initiation of crack growth and also a limited amount of actual growth using
one or two parameters. Of the concepts developed for this purpose two have found a
fairly general acceptance: the J integral and the Crack Opening Displacement (COD)
approaches. Besides these concepts a number of others exist, but none have received
widespread recognition.

Since this course is intended to provide a basic knowledge of fracture mechanics the
discussion of EPFM concepts will be limited to the generally accepted J integral and
COD approaches, which are treated in sections 6.3 — 6.5 and in section 6.6 respectively.
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In section 6.8 the relation between J and COD is discussed. This is of itself interest-
ing, but it is also helpful for illustrating the equivalence of J and G in the LEFM regime
and that J is compatible with LEFM principles.

6.3 The JIntegral

The J integral concept was first introduced by Rice, references 1 and 2 of the biblio-
graphy. Based on an energy approach Rice formulated J as a path-independent line inte-
gral with a value equal to the decrease in potential energy per increment of crack exten-
sion in linear or nonlinear elastic material. Its path independence implies that J can be
seen as a measure for the intensity of stresses and strains at the tips of notches and
cracks (see also section 6.5). Therefore the J integral can be viewed both as an energy
parameter, comparable to G, and as a stress intensity parameter comparable to K.

In this section the energy description of J, i.e. as a nonlinear elastic energy release
rate, will be considered first. Then a derivation is given that expresses this energy re-
lease rate as a line integral and it will be shown that this integral is path independent.
Finally the usefulness of the J integral concept is discussed.

Energy Description of J

In section 4.2 the total energy of an elastic cracked plate and its loading system was
given as!

U=Uy+ U, +U,—F. “.1)

In chapter 4 we have considered only linear elastic behaviour. However, there is no rea-
son why equation (4.1) should not be valid for elastic material behaviour that is nonlin-
ear: the essence is that the behaviour is elastic. A load-displacement diagram for a non-
linear elastic body is shown schematically in figure 6.3.a.

An important consequence of the extended validity of equation (4.1) is that under
certain restrictions nonlinear elastic behaviour can be used to model plastic behaviour of
a material. This is known as the deformation theory of plasticity. The main restriction is
that no unloading may occur in any part of a body since for actual plastic behaviour the
plastic part of the deformation is irreversible. The difference in unloading behaviour of
bodies made of nonlinear elastic or plastic material is illustrated by comparing figures
6.3.aand 6.3.b.

In section 4.2 a part U, of the total energy U of a cracked plate and its loading sys-
tem was regarded as potential energy, i.e.

Up=Us+ Uy~ F (4.2)

The energy available in linear elastic material per unit of new crack area was derived
and designated as the energy release rate G. In equation (4.6) G was defined for a cen-

' As before, we consider two-dimensional geometries only, and all loads and energies are defined per
unit thickness.



6. Basic Aspects of Elastic-Plastic Fracture Mechanics 137

A @ A IE

LOAD, P
LOAD, P

\/
\/

DISPLACEMENT, V DISPLACEMENT, V

Figure 6.3. Load-displacement diagrams for bodies of (a) nonlinear elastic material and (b)
plastically deformable material.

tral crack. Here we will consider an edge crack and define a nonlinear elastic equivalent
accordingly:

U, d
J==g, =35 F~Ua). 6.1

da ~
Equation (6.1) gives the energy definition of J. Note that for linear elastic material be-
haviour J = G by definition (see also remark 4 in section 6.8).

Concepts Necessary for Deriving J as a Line Integral

For the derivation of an expression for J as a line integral a two-dimensional situation is
assumed, ie. there is no dependence of relevant quantities upon the thickness co-
ordinate. This simplifies the analysis but does have consequences for its generality, as
will be mentioned in section 6.4.

To understand the derivation the reader should be familiar with the following:

e Index notation

In this derivation it is more convenient to use an index notation instead of the engi-
neering notation used until now. In the index notation the coordinate axes are no
longer x, y and z, but x; with the index i ranging from 1 to 3. The components of an
arbitrary vector v are v; and the components of the stress and strain tensors are cjj and
&ij-

For the current two-dimensional analysis the indices take only the values 1 or 2. The
matrix representations of stress and strain are

Ox Txy Gi1 O12 Ex &y €11 €12
[oii] = = and [g] = = :
Tyx Oy G21 OG22 Eyx &y €21 €22
As is customary with the index notation, the summation convention will be used, im-
plying a summation with respect to symbol indices that are the same for the compo-
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nents of a term, see for example equation (6.2).

e Strain energy density
For an elastic material a strain energy density W, i.e. an elastic strain energy per unit
volume, can be defined. The infinitesimal strain energy density dW is the work per
unit volume done by the stress ojj during an infinitesimal strain increment dej;. It is
given by

dW=011de1; + 021dey; + o1pdegn + o2pdeyy = Gij dSij . (6.2)

The strain energy density for a total strain gy is obtained by integration, i.e.

€kl |
W= W(ey) = IdW:jGij dejj . (6.3)
0 0

This means that the strain energy density W can be calculated if the strain, g, is
known as well as the (linear or nonlinear) elastic relation between stress and strain,
i.e. Gjj as a function of g;;.

e Traction
The traction vector T is a force per unit area acting on some plane in a stressed mate-
rial. It can be expressed in terms of the stress tensor ¢ according to:

|:T1i| { G11 O12 Hnl} {011’11 + c512"21

Ti= Cijnj = = = . (6.4)

I, 621 O22 [[n2] [O21m +02ny
where n1 and n, are the components of the unit vector n normal to the plane on which
T acts. Note that the dimension of T is force per unit area.

e Principle of virtual work
When solving problems of elasticity it is often convenient to use the principle of
virtual work (see reference 3 of the bibliography). In the case of a particle this prin-
ciple states that if such a particle is in equilibrium, the total work of all real forces
acting on the particle in any virtual displacement vanishes. For a deformable body
we have to deal with internal stresses and strains too. The principle now states that
the body is in a state of equilibrium if for any virtual displacement field the total
virtual work done by all real external forces is equal to the total virtual work done by
all real internal stresses, i.e.

total external virtual work = total internal virtual work.

Equilibrium in a two-dimensional body, or even part of a body, can therefore also be
expressed in terms of the virtual work equation
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J‘Ti SUi ds :jcij 88ij d4 , (6.5)

r A

where I', 4 = perimeter and area of the two-dimensional body respectively,
ds = increment along perimeter I,
T; = traction acting on perimeter,
du; = any suitable virtual displacement field,
dg;; = virtual strain field corresponding to du;.

A suitable virtual displacement field is any field of small displacements that is kine-
matically admissible, i.e. it must be (i) differentiable and (ii) compatible with im-
posed conditions at the surface of the body. Virtual strain is related to virtual dis-
placement according to

0 0
L= =8u + U
de; =" (6)(1-&/‘ axiSUJ) . (6.6)
For an elastic material, i.e. stress and strain are uniquely related, the virtual work
equation can also be written in terms of the virtual strain energy density 3/ = oj; d¢j;:

jﬂawm=jsw¢m 6.7)

r A

Potential Energy of an Elastic Body and its Loading System

Consider the two-dimensional cracked body consisting of nonlinear elastic material
shown in figure 6.4. The body has a surface 4™ and a perimeter I'*. The crack flanks are
not considered to be part of the perimeter. Tractions 7; are prescribed along a part I't of
the perimeter, while along another part displacements may be prescribed. It is assumed
that the crack flanks are traction free, i.e. they are not in any way mechanically loaded.
Consequently the loading system can perform work only along I'T.

Recall that the potential energy of an elastic body and its loading system was found
as

Up=Us+ U, ~F. (4.2)

The purpose of this equation was to express the potential energy change owing to the
introduction of a crack. The term U, represents the potential energy for the uncracked
configuration, and therefore can be considered as the elastic strain energy of the body
minus the work performed by the loading system, both before a crack is present. There-
fore the terms in equation (4.2) can be rearranged by combining the strain energy parts
and the work parts. Expressing the strain energy as an integral of the strain energy den-
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Ti

Figure 6.4. A two-dimensional cracked body consisting of nonlinear elastic material.

sity, W, over the whole area of the body and expressing the work as the traction 7; times
the displacement u; integrated along the part of the body perimeter I'T, we obtain the
following expression for the potential energy, U:

Up= deA—jTi u; ds . (6.8)
A" e

Potential Energy Change Owing to Crack Growth

Consider the difference in potential energy, AU, between two cases where the crack
length in the body differs by an amount Aa. The prescribed loads, i.e. tractions along I't
and possibly displacements along some other part of I'", are identical for the two cases
considered. Using equation (6.8), while denoting the displacement and strain energy
density differences between the two cases by Av; and AW respectively, we obtain

A" It A r
Note that in the latter expression the line integral is conveniently evaluated along the
whole body perimeter I'* instead of along I't only. This is permitted because either T} or
Au; vanishes along the part of I'* not belonging to I'T.
Using equation (6.9), the decrease in potential energy per increment of crack growth,
—dUp/4q, can be expressed in terms of the following limit:

du, AU, 1 .
_- — : _- — 1 —_ " o —
da Aléglo Aa Alalgo Aa J. T; Au; ds AW d4 |. (6.10)

e *

A
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T

Figure 6.5. Elastic body in which an arbitrary area A is defined embedding the crack tip.

The integration domains used in equation (6.10) refer to the elastic body as a whole.
To show that this is not strictly necessary, consider an arbitrary part of the body which
however still includes the crack tip, as shown in figure 6.5. This part of the body has an
area 4 and a perimeter I'. As before, the crack flanks are not assumed to be part of the
perimeter, so in fact I is a contour surrounding the crack tip starting and ending some-
where on the respective crack flanks.

For the part of the body 4"—A the decrease in potential energy per increment of crack
growth can be expressed as

dy, du;
(——Ej =7 ds- ¥ 14 , (6.11)
da ) - a da
A4
I A4

where the limit of equation (6.10) is now expressed in terms of derivatives, and I'° is the
curve bounding the area A*—4. We will now apply the principle of virtual work to the
area A"—A. The virtual work equation (6.7) must hold for any kinematically admissible
virtual displacement field dv;. Here we choose the displacement field resulting from a
virtual crack extension da, i.e.

du;
6Ui:a8a. (6.12)

This displacement field is kinematically admissible because the area 4"-4 does not
contain the crack tip singularity caused by crack growth.

Although for an infinitely sharp crack both displacement and stress can be expected to become singu-
lar at the tip, these singularities will disappear in the case of a blunted crack tip (see for example equation
(2.28) derived for the linear elastic case). When considering crack growth, however, the situation is inher-
ently different. The reason is that new traction-free surface is created at material points which previously
were loaded to some finite extent. Therefore the displacement field involved in crack growth (equation
6.12) will be singular at the tip, even if the tip is blunted.

The strain energy density field, 3, corresponding to the virtual displacement du; of
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equation (6.12) can be calculated using equations (6.6) and (6.3), and can be written as
dW/44-8a. By substitution into the virtual work equation (6.7), it follows that

i faw
jTidads— 4, 44=0, (6.13)

re A"-A4
and therefore the area 4"—4 has no contribution to —~dUp/q,, the decrease in potential
energy of the whole body and its loading system per increment of crack growth. Conse-
quently, equation (6.10) can be evaluated by considering only an arbitrary but finite part
of the body in which the crack tip is embedded, i.e.?

dU, 1
=P _ g A de —
da AlalmOAa j‘TlAUlds J.AWdA . (6.14)

r A

A Moving Coordinate System

Until now the usual coordinate system has been used, i.e. the coordinates of a given
material point were fixed. At this stage it is convenient to introduce a ‘moving’ coordi-
nate system with its origin at the crack tip irrespective of the crack length a. Relative to
a fixed system x1,x,, of which the x; axis is chosen parallel to the crack, the moving co-
ordinates X;,X, are

Xi=x1—a,

(6.15)
X2 =X2.

Consider an arbitrary quantity fthat depends on position as well as crack length. This
quantity can be expressed as a function of either the fixed coordinate x; or the moving
coordinate Xj, i.e. f=flx|,xp,a) or f= 7’(X 1,X2,a). For a given material point the total de-
rivative of f'with respect to the crack length a is

o d_sian g o .
da “da_aX, da Tax, da T oa- (6.16)

The coordinates x| and x; of the point considered are independent of the crack length.
Thus

¥, _dxi—a)

da da -1, (6.17)

2 In the derivation of the ./ integral it will prove more convenient to use the limit form rather than writing
this expression in terms of derivatives.
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dx, dx;

da " da "0 (6.18)
and furthermore, because of equation (6.15), we may write

o _of

X, ox” (6.19)
Applying equations (6.17) — (6.19) to equation (6.16) gives

q ~

& _of o (6.20)

da 0a ox1°

The first term of the right-hand part of this expression is the change in the quantity f for a point with
constant moving coordinates X;, thus having a fixed position relative to the crack tip. The second term
represents the correction that becomes necessary because the X| coordinate of a material point decreases
(becomes more negative) due to the crack growth.

J as a Line Integral

Using equation (6.20) the line integral term in equation (6.14) can be written as
L d du_ou
Aggo Aa T; Avi ds = Tida =T a " oxy ds. (6.21)
r r r

where ©j is the displacement expressed as a function of the moving coordinates X;.

The area integral of the strain energy density difference in equation (6.14) could also be expanded in
an analogous manner. In order to express J in the form of a line integral, a conversion would then be re-
quired of the area integral of aW/ax1 to a line integral. However, in the case of an infinitely sharp crack
such a conversion is not possible since the integrand is singular at the tip. The way in which Rice deals
with this problem, reference 2 of the bibliography, is described in the following.

The area integral of equation (6.14) should be evaluated over an area 4. Obviously
the position of this area is not affected by crack growth. However, straightforward
evaluation of an area integral in terms of the moving coordinate system X; would in-
volve an integration area that moves with the growing crack. Therefore a correction of
the integration area becomes necessary. Figure 6.6 schematically shows the principle.
Denoting the strain energy density for the initial crack length, a, as W°, the area integral
of equation (6.14) can be expanded as

1 1
lim — JAWdA= lim — WP+AW) dx1dx, — WP dx1dx, & .(6.22
Ad30 Aa Ad30 Aa j_[( W) dridry I 1dv2 ¢ (6:22)
4 4

A

The second integral refers to the initial crack length a. In this case the relation between
moving coordinates X and fixed coordinates x; (equation 6.15) is independent of the
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Figure 6.6. Correction of the integration area necessary because of use of the moving coor-
dinate system X,.

crack length difference Aa. Therefore, the integration area for this integral is not af-
fected by the use of moving coordinates and remains equal to area 4. For the first inte-
gral, however, the crack length is a+Aa. If we were to integrate over the area 4 while
using moving coordinates, we would refer to the original area 4 moved in the positive
X direction over a distance Aa. To correct for this an integration area A4, with a width
Aa, must be added on the left side of area 4 and likewise an area AAgr must be sub-
tracted on the right side. Thus, using moving coordinates X; and denoting the strain en-
ergy density as a function of the moving coordinates as /¥, equation (6.22) can be re-
written and further expanded as

1 1 L -
lim —jAWM= lim — J](W%AW) X dx, — jWo dxdx,

Aa—0 Aa Aa—s0 Aa
A A+AA;—AAg A

1 - o ) P
= lim — jAWXmdXer lim — | {(7°+A) dxdx,
A

Aa—0 Aa Aa—0 Aa i
A4 ~Adg
O @dA li L Wo+AW) dX,dX: Wo+AW) dX,dX:
= g3+ Jim .( w)dxidXx; — | |( w)dXxidXx;
A Ady, Ady
2 aVNV o o
(=) a_dA-‘r Wdx, — | Wdxp
a
3 ~ d
& %—ZVdA— Wdx, . (6.23)
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The steps (1) — (3) in this expansion require some additional explanation:

1) The first limit is to be evaluated for a point having a fixed position relative to the
crack tip. Therefore this expression is converted to the partial derivative OW/g,, i.e.
keeping the moving coordinates Xj constant.

Note that until now this type of limit expression was converted to a total derivative (cf. equations
(6.11) and (6.21)). However, in this conversion it was implicitly assumed that material points were
considered, i.e. the fixed coordinates x; remained constant. For this case the total derivative with re-
spect to crack length is equivalent to the partial derivative.

2) The areas AAp and AA4R both have a width (in the X; direction) of Aa. Therefore, in
the limit of Aa — 0, the integral of WP+AW over this width is equal to Aa x WP, since
AW = 0. Thus in the limit the area integrals are converted to line integrals along the
contour parts corresponding to the areas A4y and A4g. These contour parts are de-
noted as ['p and I['r respectively. At the same time Aa in the denominator cancels out.
Furthermore, a transition is made from moving coordinate X, to fixed coordinate x;
and J#° is written as W.

3) Since the line integrals along 'L and I'r should yield a positive value, they must both
be evaluated in the positive x; direction. Consequently, the two integrals can be re-
placed by a single line integral along I', evaluated in a counterclockwise direction.

Substituting equations (6.21) and (6.23) in equation (6.14), the decrease in potential
energy per increment of crack growth can be expressed as

du, ‘ .
_E
T aa 1 ax dd+ | wdx,. (6.24)

The virtual work equation (6.7) will be applied once more using the virtual dis-
placement field

o,
8Ui =5

=, da. (6.25)

Note that this displacement field is different from the one described by equation (6.12). The latter field
described the displacement of points with constant fixed coordinates x;, i.e. actual material points. The
current field, however, describes the displacement of points with constant moving coordinates X;, i.e.
points with a fixed position relative to the crack tip. The consequence is that this field is kinematically
admissible throughout the entire body, since it represents the infinitesimal displacement change owing to
an infinitesimal increase in crack length, a value which is not singular even at the (moving) crack tip.

The strain energy density field, 6/, corresponding to the virtual displacement field of
equation (6.25) can be written as OW/5,-8a. Substituting Su; and 8W in the virtual work
equation (6.7), we obtain®

3 Note that for evaluating the line integral in the virtual work equation (6.7) the crack flanks need not be
considered since they are assumed traction-free. Therefore the current definition of I' is compatible
with that used in equation (6.7).
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Ti oa oa

r A

aU
j- —ds= aWdA (6.26)

It turns out that the first and the third term in equation (6.24) cancel each other. Thus we
can finally write ~dUp/4, in terms of a single line integral. In view of the energy defini-
tion of J given in equation (6.1), this also leads to the expression for the J integral, i.e.

au,
J= —H de)Q— Ti dsj (6.27)

Thus for a crack with the tip pointing in the positive x| direction, this expression enables
J, or the decrease in potential energy per increment of crack growth, to be evaluated as a
line integral along an arbitrary path surrounding the crack tip, starting somewhere on the
lower crack flank and ending somewhere on the upper crack flank. The integration
should be performed in a counterclockwise direction.

Note that the fact that an arbitrary integration path may be used implies that the J in-
tegral is path independent.

Alternative Expression for the J Integral

Equation (6.27) is often written differently. Consider an increment ds along the contour
I. If ds = (dx,dxy) is the vector coinciding with this part of the contour, then

dx; = —mds and dx, = nyds (6.28)

where n = (n1,n,) is the outward-directed unit vector normal to the contour.

Equation (6.28) can be derived as follows. The scalar product of the vectors ds = (dx;,dx,) and
n = (ny,n,) is zero because n is perpendicular to ds. Thus ndx;+n,dx, = 0. The vector product n x ds is
perpendicular to both n and ds and has the value (0,0,n;dx,—n,dx;). The absolute value (length) of this
vector, n X ds, is |n||ds|sin(90°) = ds, because the absolute value of the unit vector |z = 1, while the length
of vector ds is defined as ds. The length of n x ds is also equal to n;dx,—n,dx;. We now have two equa-
tions for the two unknown variables dx; and dx,: ds = nydx,—n,dx; and n;dx;+n,dx, = 0. Solving these two
equations for dx; and dx, leads to the result of equation (6.28).

Substituting equation (6.28) for dx; in equation (6.27) we obtain:

an
J=|wny - Tia_xl ds . (6.29)

r

Usefulness of the J Integral Concept

In this section a path-independent integral expression has been derived for J, represent-
ing a nonlinear elastic energy release rate. Two observations are made:
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e Under certain restrictions this nonlinear elastic energy release rate can be used as an
elastic-plastic energy release rate. This is interesting because in LEFM there is a
critical value for the energy release rate, G, which predicts the onset of crack exten-
sion.

o Path independence of the J integral allows the contour I' to be chosen just as small as
the crack tip area. This illustrates that J is in fact a measure for the stresses and
strains at the very tip (see also section 6.5). It seems reasonable to assume that the
onset of crack extension is determined by these stresses and strains.

Both observations suggest that there is a critical J value, J., at which crack growth is
initiated. By analogy with G, in LEFM, for a loaded cracked component calculated J
values can be compared to the critical value, J., characteristic for a given material. Thus
a fracture mechanics analysis can be carried out: J must remain less than J.

Note that path independence of J also allows calculation along a contour remote from the crack tip.
Such a contour can be chosen to contain only elastic loads and displacements. Thus an elastic-plastic en-

ergy release rate can be obtained from an elastic calculation along a contour for which loads and dis-
placements are known.

6.4 Remarks Concerning the J Integral Concept

The J integral concept is not easy to understand. However, the concept is undeniably
useful, and so at this point it is also worthwhile to direct some remarks to the derivation,
applications and restrictions of J:

1) At the beginning of section 6.3 it was stated that J would be derived assuming the
deformation behaviour to be nonlinear elastic and therefore reversible. But plastic
deformation is not reversible, and the energy dissipated cannot be transformed into
other kinds of energy. Thus strictly speaking, concepts such as strain energy density
and potential energy are not legitimately usable with true plastic deformation.

2) It was also stated that the assumption of nonlinear elasticity is compatible with actual
deformation behaviour only if no unloading occurs in any part of the material. But
during crack growth the newly formed crack flanks are completely unloaded from
stresses as high as o, (or even higher in the case of plane strain and/or work hard-
ening). Therefore J is in principle applicable only up to the beginning of crack exten-
sion and not for crack growth. However, under certain restrictions J can be used to
characterize crack growth. This will be discussed further in section 8.3.

3) The controlling parameters in the derivation of J are the stress and strain fields in the
cracked body. In order to simplify the analysis, the derivation was limited to a two-
dimensional configuration. Stresses and strains in the thickness direction were not
taken into account, although they obviously affect the assumed nonlinear relation
between the in-plane stresses and strains. Full plane strain or plane stress conditions
can indeed be described two-dimensionally. For intermediate conditions the effect of
thickness stress and strain will vary as a function of the thickness coordinate and the
question arises whether J can be used in such cases. However the J integral concept
can be fully extended to three-dimensional crack geometries, see reference 4. J then
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has a local value that varies along the crack front, but loses its meaning as a path-
independent line integral.

4) By definition, J for the linear elastic case is equal to G and we may write

KZ
J=G= T (6.30)
where £’ = E for plane stress and £’ = E/(1 — v2) for plane strain. Thus the J integral
concept is compatible with LEFM.
Note that by analogy with G the dimensions of J are [ENERGY]/[p engTH] per unit
thickness of material, i.e. Joules/m? or N/m.

5) As stated before, it is to be expected that there is a critical material parameter, J,
which predicts the onset of crack extension. Methods for measuring J, will be pre-
sented in chapter 7.

6) Obtaining solutions for the J integral in actual specimens or components turns out to
be difficult. It is generally necessary to use finite element techniques. However,
some simple expressions have been developed for standard specimens. They will
also be presented in chapter 7.

7) The J integral concept has been developed mainly in the USA as a fracture criterion
for materials used in the power generating industry, particularly nuclear installations.
In this area of application high level technology and costly production techniques are
generally used and no large differences are to be expected for material behaviour in
laboratory specimens and actual structures. For instance: local differences in behav-
iour of welded joints are not normally accounted for. This contrasts with the COD
approach, which will be discussed in section 6.6. This concept was developed in the
UK at the Welding Institute and is obviously more directed to the design of welded
structures (see section 6.7).

6.5 J as a Stress Intensity Parameter

From work done by Hutchinson (references 5 and 6) and independently by Rice and
Rosengren (reference 7) the crack tip stresses and strains can be expressed in terms of J
according to the so-called HRR solution:

1

E il _
Gi=0Co| 5 - c;i(0,n
ij O(QG%IHV 1_](’)9

n
So( E  J\ntl_
gj=ag (oc o2 Ini) &j(0,n) .

They assumed a power-law hardening material, i.e. the relation between the uniaxial

(6.31)

stress ¢ and strain € is given by the so-called Ramberg-Osgood relation

i_gm(gj”’ (6.32)

€ Op Oo
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where a is a dimensionless constant, £, = Oo/E with 6, usually equal to the yield stress,
and # is the strain hardening exponent. [, in equations (6.31) is a dimensionless constant
depending on the strain hardening exponent n and the stress state (plane stress or plane
strain), and o;; and &;; are dimensionless functions of n, the angle 6 and the stress state.
Values of I, cjj and ¢;; are given in tabular form by Shih (reference 8).

Note that for n =1 (linear elastic material behaviour), equations (6.31) show a 1/\/;
singularity, which is consistent with LEFM. In fact it can be shown that for n = 1 equa-
tions (6.31) become identical to the elastic solution given by equations (2.24). On the
other hand, for n = o, i.e. ideal plastic material behaviour, the solution becomes equal to
the so-called Prandtl slip-line field solution (reference 1).

Equations (6.31) imply that the stress/strain field in the direct vicinity of a crack tip
is completely characterized by a single parameter J. Different geometries with identical
J values can be expected to have the same stresses and strains near the crack tip, and
thus show identical responses. Therefore J can be considered as a single fracture me-
chanics parameter for the elastic-plastic regime (with the restriction of no unloading),
analogous to K for the linear elastic regime.

Note that the HRR singularity contains an anomaly similar to the LEFM singularity, namely that both
predict infinite stresses for —0. However the large plastic strains at the crack tip cause the crack to blunt,

which reduces the stresses locally. The HRR solution is thus not valid all the way to the tip. At a distance
less than twice the CTOD value the HRR singularity becomes invalid (reference 9).

BLUNTED CRACK

CTOD

SHARP CRACK

Figure 6.7. Crack tip opening displacement (CTOD or §;).

6.6 The Crack Opening Displacement (COD) Approach

The COD approach was introduced by Wells, reference 10 of the bibliography, as
long ago as 1961. The background philosophy to the approach is as follows. In the re-
gimes of fracture-dominant failure, cases A, B, C and partly D in figure 6.1, the stresses
and strains in the vicinity of a crack or defect are responsible for failure. At crack tips
the stresses will always exceed the yield strength and plastic deformation will occur.
Thus failure is brought about by stresses and hence plastic strains exceeding certain re-
spective limits. Wells argued that the stress at a crack tip always reaches the critical
value (in the purely elastic case ¢ — o0). If this is so then it is the plastic strain in the
crack tip region that controls fracture.
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A measure of the amount of crack tip plastic strain is the displacement of the crack
flanks, especially at or very close to the tip. The Crack Opening Displacement (COD) at
the original crack tip is called Crack Tip Opening Displacement (CTOD) or &; (see fig-
ure 6.7): an initially sharp crack blunts by plastic deformation, resulting in a finite dis-
placement at the original tip.*

Thus it might be expected that at the onset of fracture the crack tip opening dis-
placement, 6, has a characteristic critical value, d_,, for a particular material and there-
fore could be used as a fracture criterion.

In 1966 Burdekin and Stone provided an improved basis for the COD concept. They
used the Dugdale strip yield model to find an expression for CTOD. Their analysis has
already been reviewed in section 3.3 of the course and is given in full in reference 11 of
the bibliography to this chapter. The strip yield model assumes plane stress conditions
and ideal plastic (i.e. non-hardening) material behaviour. The result is

8oya hie)
_ S0y
&= E lnsec26 . (3.19)

ys
In sections 3.2 and 3.3 it was also shown that under LEFM conditions there are direct
relations between 6; and Kj. Thus, for the Dugdale analysis
K

 Eoys’

dy (3.20)

Note that this simple relation is obtained by taking only the first term of a series expansion of the
In sec part of equation (3.19), which is only allowed for 6 << o. The actual relationship between CTOD
and Kj also depends on stress state and material behaviour. These effects are represented by the plastic
constraint factor C (see section 3.5), i.e.
__Ki
ECoy

3,

C'is equal to 1.0 for plane stress and taken to be 2.0 for plane strain.

For the Irwin plastic zone analysis an analogous relation was found:

4K
- mEGy

t (3.8)

The foregoing relations between d; and Kj are important because they show that in the
linear elastic regime the COD approach is compatible with LEFM concepts. However,
the COD approach is not basically limited to the LEFM range of applicability, since oc-
currence of crack tip plasticity is inherent to it.

The major disadvantage of the COD approach is that equation (3.19) is valid only for
an infinite plate with a central crack with length 2a, and it is very difficult to derive
similar formulae for practical geometries. This contrasts with the stress intensity factor

4 Strictly speaking, a crack in a purely elastic material will have no CTOD. This is of course a hypo-
thetical limiting case.
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and J integral concepts. Thus in the first instance a characteristic value of CTOD at the
onset of fracture can be used to compare the crack resistance of materials. It cannot be
used, however, to calculate a critical crack length in a structure. In an attempt to over-
come this disadvantage the COD design curve has been developed (see chapter 8).

6.7 Remarks on the COD Approach

Some additional remarks are given here concerning use of the COD approach:

1) When comparing the crack resistance of materials it is necessary to obtain &, It
has been shown experimentally that the COD depends on specimen size, geometry
and plastic constraint, and so a standard COD test has been developed. This standard
does not, however, precisely define the event at which & is to be considered critical.
There are three possibilities: d¢, the value at instability without prior crack extension;
Oy, the value at the point of instability after stable crack extension; and dy,, the value
at maximum load (which is not necessarily identical to the other values, e.g. for
specimens that still exhibit stable crack extension beyond the point of maximum
load). The standard test is discussed further in chapter 7.

2) The COD approach has been developed mainly in the UK: more specifically, at the
Welding Institute. The chief purpose was to find a characterizing parameter for
welds and welded components of structural steels, which are difficult to simulate on
a laboratory scale. Thus the COD approach is more strongly directed towards use in
design of welded structures. (This, of course, does not mean that COD values cannot
be used to compare and select materials.)

3) In welded steel structures the welds are most liable to fracture, not the material itself.
At present the COD approach is a reliable way of accounting for the crack resistance
of welds, since several weld quality specifications incorporating COD exist.

6.8 Relation Between J and CTOD

The J integral and COD concepts have been developed mainly in the USA and UK
respectively. In the first instance the two concepts seem to be unrelated. In the late
1970s a number of expressions relating J and CTOD were published. They all take the
form

J= Moy, , (633)

where M varies between 1.15 and 2.95. General acceptance of equation (6.33) is indi-
cated by the use of a similar expression J = 3,5, in the blunting line procedure for Ji.
testing, see section 7.4.

Hutchinson (reference 12 of the bibliography to this chapter) showed that derivation
of equation (6.33) is relatively simple when the Dugdale strip yield model is used, al-
though since it uses a model it does not constitute a definite proof of the relation be-
tween J and CTOD.

Consider a Dugdale type crack as shown in figure 6.8. The Dugdale plastic zone is
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Figure 6.8. Dugdale model with contour T" around the yielded strip.

assumed to be a strip of plastically deformed material along the x; axis carrying the
yield stress, i.e. 623 = Gys. Furthermore, the model assumes a state of plane stress, i.e.
o33 = 0. Given the symmetry of both geometry and load, the x; and x; axes must be
principal stress directions, meaning that 61, = 0.

Now the J integral formula (equation 6.27) is applied to a contour I' that proceeds
counterclockwise around the yielded strip at an infinitesimal distance from the x; axis.
The contour starts and ends on the lower and upper crack flanks, respectively, at an in-
finitesimal distance from the crack tip. Thus

o o o [(poa, L om
J= deZ_Tiaxl =T oy -i-Tzax1

I T
o o J‘ dvy dn
T O 25y, B T Oy "2 0y, iy
.F T
@ cysjduz = oy [12] f;; = Oy & (6.34)
T

The steps (1) - (4) in this derivation are explained here:

1) Along the contour x; = constant, and thus dx, = 0. Note that there is no contribution
to J from the right-hand end of the contour, since the vertical dimension (in the x, di-
rection) of the contour is assumed infinitesimally small.

2) Along the contour n = (0,n;). Using equation (6.4) in combination with the stress
tensor for the yielded strip leads to a traction

A o)

3) According to equation (6.28) ds = dxl/—nz-
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Figure 6.9. Experimental relation between J and CTOD for notched bend (SENB) tests of a
steel with oy = 370 MPa. After reference 15.

4) Since dx; = 0, the following holds:

aUz aUz aUz

duz=a—xldx1 +a—x2dx2=a—xldx1 .

Remarks

1) Since only the definition of the strip yield model is used, and not the derivation of
Aay, there is no restriction on the length of the plastic zone (Aa;,). Thus Hutchinson’s
analysis is valid under both LEFM and EPFM conditions. As stated earlier, the
analysis is not a definite proof since it uses a model. However, it clearly suggests the
existence of a relation between J and CTOD of the type given in equation (6.33).

2) More complex analyses, often using finite element calculations, also give results of
the form suggested by equation (6.33). The multiplication factor M is found to be a
function of Oys/E and the strain hardening exponent #n, see references 13 and 14 of
the bibliography.

3) Experimental values of M are often = 2, e.g. figure 6.9, in contrast to equation (6.34),
where M = 1. The higher values of M found experimentally are most probably due to
the real plastic zone behaving differently from that assumed by the Dugdale ap-
proach.

4) Equation (3.20), relating the CTOD to K7 for LEFM conditions, can be written as

2
A6 (6.35)
Eoys Oy

t
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Substitution into equation (6.34) gives
J=060ys=G. (6.36)

This illustrates once more that J is equal to G in the LEFM regime.
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7
EPFM Testing

7.1 Introduction

In chapter 6 the two most widely known concepts of Elastic-Plastic Fracture Me-
chanics, the J integral and Crack Opening Displacement (COD) approaches, were dis-
cussed in general terms.

This chapter will deal with test methods for obtaining values of J and CTOD, in-
cluding critical values Jic and 8y, The chapter may be considered the EPFM counter-
part of chapter 5, which discussed LEFM test methods.

The greater complexity of the J integral concept as compared to the COD concept is
clearly demonstrated by the derivations in chapter 6. This difference in complexity is
also found in the test methods. Therefore the discussion of J integral testing is subdi-
vided into three sections:

1) The original Ji. test method, section 7.2.
2) Alternative methods and expressions for J, section 7.3.
3) The standard J|. test, section 7.4.

The original Ji, test method requires a large amount of data analysis. This problem led
to the development of certain types of test specimen for which simple expressions for J
could be derived, and ultimately to the standard Jj test.

Although it is not within the framework of EPFM testing, the K. specimen size re-
quirement (see section 5.2) is further discussed in section 7.5. The reason is that the J
integral concept enables this criterion to be viewed from a different perspective.

The COD concept is much more straightforward than the J integral, at least from the
experimental point of view. Thus only the standard &, test itself will be described,
namely in section 7.6.

With respect to standard test methods, it has already been remarked in sections 6.4
and 6.8 that the J integral concept was developed mainly in the USA and the COD con-
cept in the UK. Consequently it is logical that the original standard for Ji. was Ameri-
can (American Society for Testing and Materials) while the original COD test was the
subject of an official British Standard (British Standards Institution, BSI), see references
1 and 2 of the bibliography to this chapter. At present both organizations have incorpo-
rated the J integral concept as well as the COD concept into their test standards.

7.2 The Original Jc Test Method

The first experimental method for determining J (more specifically Ji, the critical
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Figure 7.1. The graphical procedure involved in Jj; testing according to Begley and Landes.

mode I value at the onset of crack extension) was published by Begley and Landes in

1971, reference 3 of the bibliography. The method is based on the definition of J as

—dUp/4q, and requires graphical assessment of dUp/d,. The method will be illustrated

with the help of figure 7.1, which schematically gives the graphical procedure for ob-

taining Jc.
The procedure is as follows:

1) Load-displacement diagrams are obtained for a number of specimens precracked to
different crack lengths (a;, a;, a3 in figure 7.1.a). Areas under the load-displacement
curves represent the energy per unit thickness, Uj, delivered to the specimens. Thus
the shaded area in figure 7.1.a is equal to the energy term U; for a specimen with
crack length a3 loaded to a displacement 3.

2) U, is plotted as a function of crack length for several constant values of displace-
ment, figure 7.1.b.

3) The negative slopes of the Uj—a curves, i.e. —(aUl/aa)v, are plotted against dis-
placement for any desired crack length between the shortest and longest used in
testing, figure 7.1.c. Since the elastic strain energy contents of a specimen is equal to
the energy delivered to that specimen, it follows that —(5U 1/8a)v is equal to
—(5Ua/aa) ». In section 6.3 the energy definition of J was given as:
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dU, d
J::Ef:E;F—UQ. (6.1)
Since for crack extension under fixed grip conditions no work is performed by the
loading system, it follows that:

oy, oU,
) )

Hence figure 7.1.c in fact gives J-r curves for particular crack lengths.

4) Knowledge of the displacement » at the onset of crack extension enables Ji. to be
found from the J-v curve for each initial crack length. In figure 7.1.c the value of Ji¢
is schematically shown to be constant as, ideally, it should be if J is an appropriate
criterion for the onset of crack extension.

Knowledge of the critical displacement » is a weak step in the procedure. Begley and Landes used
materials where the maximum in the load-displacement curve characterized the onset of crack growth.
For other materials a crack extension measurement device (e.g. a potential drop measurement apparatus)
is necessary. The method of Begley and Landes has the potential to find the applied J for an unknown ge-
ometry.

The graphical procedure described involves a large amount of data manipulation and
replotting in order to obtain J-» calibration curves and hence Ji.. There are thus many
possibilities for errors, and so easier methods have been looked for, as will be discussed
in section 7.3. However, the elegance of this original test method, in making direct use
of the energy definition of J, remains and it is still used as a reference to check more re-
cent developments.

7.3 Alternative Methods and Expressions for J

The main contribution to seeking alternatives for the Begley and Landes method was
made by Rice et al., reference 4 of the bibliography. Their analysis leads to simple ex-
pressions for J for certain types of specimen. However, before these expressions can be
discussed it is necessary to consider alternative definitions of J.

Recall the expressions for U, and J given in equations (4.2) and (6.1) respectively

Up=Uy+ Uy~ F 4.2)
du
_ P
J=—3 6.1

We will now consider the value of J for two extreme cases, namely for crack extension
under constant displacement v and crack extension under constant load per unit thick-
ness P. It follows that in both cases the change in potential energy due to a crack exten-
sion Aa is

AU, = Up|, =AU, - AF . (1.2)

PlatAa B



158 Elastic-Plastic Fracture Mechanics

LOAD LOAD
A A |£|
e o
PHAP}---memmm e i
~ ~
-~ -~
- -
s s
s s
2, ARG
/ s
am, /
/ 'axv /
/ /
7 /
74 74
74 74
v v VHAV
DISPLACEMENT DISPLACEMENT

Figure 7.2. Crack extension in a nonlinear elastic body under (a) fixed grip and (b) constant
load conditions.

For the case of a fixed grip condition, see figure 7.2.a, we may write

v v v
AU, —jP‘ dV—j P| dv=| APdr and AF=0 (7.3)
a+Aa a
0 0 0

and thus, using equation (7.2), the change in potential energy is equal to

v
AU, =AU, - M=JAPdV. (7.4)
0

Note that AP is negative and that AU, is equal to minus the shaded area between the
curves for crack lengths a and a+Aa in figure 7.2.a. From equation (6.1) it follows that

du, AU, an
= — =— I = — _—
J da ABmO Aa (Ga VdV . (7.5)

The case of a constant load condition, figure 7.2.b, is slightly more complicated, i.e.

AV v
AU, = J‘P|a+Aa dV—j-P|adV and AF=PAr. (7.6)
0 0

This leads to
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r+Av v
AU, =AU, - AF = IP| dr— '[P| dr+PAv |, (7.7)
a+Aa a
0 0

which, when regarded more closely, is equal to the shaded area in figure 7.2.b. There-
fore we may rewrite AU, as

P

AU, = —jAVdP. (7.8)
0

Note that Ar is positive now. Thus

P

dy,
_ 9%
J= 4 Ty Aa j (79)

The same results can also be found purely algebraically. For crack extension under fixed grip condi-

tions J is
. v

(U (oF oU; aUa) (aU) B ) (a_P)
Jﬁ_(&a) (aa Bajyi(o_aa V7 oa | da Pdv | =- oa VdV’

0 0
while on the other hand, for the case of constant load conditions
v P P
oy, oF 60) o o ( ay) 2, (61/)
_ () el ZHa) _ _ o
J (aal (6[1 oa /p Paa oa Pdy oa 6a vdp| = oa Pd’P'
0 P 0 » 0

Thus the alternative definitions of J, for crack extension under fixed grip or constant
load conditions are

v P
I [ R .10
0 0

Note the different sign for fixed grip and constant load conditions. This is analogous to
the formulae for G, equations (4.23).

Using equation (7.10), Rice et al. showed in 1973 that it is possible to determine Ji,
from a single test of certain types of specimen. As an example, J for a deeply cracked
bar in bending was derived as



160 Elastic-Plastic Fracture Mechanics

J=%-|mado., (7.11)

where B is the thickness of the bar, b is the size of the uncracked ligament ahead of the
crack, M is the bending moment and 6, is the part of the total bending angle 6 due to
introduction of the crack. More recently, see reference 5 of the bibliography to this
chapter, it was found that J is evaluated more accurately by simply using the total
bending angle 0 instead of 6, i.e.

6

2
J=55 | Mdo (7.12)

Equation (7.12) is important, since it applies to a basic cracked configuration. Therefore a derivation
is given in some detail here with the help of figure 7.3. For this deeply cracked bar loaded in bending the
ligament size, b, is chosen small compared to the width of the bar, /¥, so that it may be safely assumed
that all plastic deformation is confined to this ligament.

M is the bending moment per unit thickness, i.e. M' = M/p. We will use the definition of J for fixed
grip conditions, i.e. the first form of equation (7.10). P and v are converted to M’ and 0 by assuming the
moment is applied through three-point bending. The load per unit thickness, P, can be written as 4M'/f,
where L is the span of the bend specimen. Furthermore, since plasticity is confined to the ligament, the
sides of the beam will remain straight and v is equal to 0L/4. Finally, since b = W — a it follows that 0/,
= —0/gp. The first form of equation (7.10) can now be written as

v 0 0
oP oM’ oM’
1| - () a0~ (200 an
0 0 0

Since this expression cannot be evaluated experimentally, an analytical relation must be found be-
tween 0, b and M'. Rice et al. argued that a dimensional analysis can be used to obtain this relation. How-
ever, here an alternative reasoning will be used.

Figure 7.3. A deeply cracked bar loaded in bending.
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Figure 7.4. Stress distribution in the critical ligament

Elastic — perfectly plastic material behaviour is assumed, leading to a distribution in the ligament of
the stress component parallel to the neutral line, o, as follows (see figure 7.4):

géz Gy for [y < Ve
ox(y) = (7.14)

Gys for Vee < |y| < Vob ,

where y is the distance from the neutral line. The moment corresponding to this stress distribution can be
straightforwardly calculated as

+sb

&
M = y Gx(y) dy = Gys(z - E) . (715)
~b

The width e of the elastic part of the ligament is now estimated by assuming that in the small region
around the ligament the neutral line takes the shape of a circle segment with radius R and that all planes
normal to the neutral line remain normal to that line. Under these assumptions the strain, €, parallel to the
neutral line can be written as a function of y:

2n(R—y) — 2nR
B0) =T =g (716

At the boundary between the elastic and plastic parts of the ligament, i.e. y = £2e, the absolute value of &,
is approximately equal to the yield stress divided by E', i.e. E for plane stress and E/(1,V2) for plane
strain. Thus using equation (7.16) it follows that

[} he 2Rc.
Oy Ve Oy
E "R or e= E

Now it is assumed that the length of the circular shaped segment of the neutral line in the region around
the ligament is roughly of the order of the size of the ligament b, i.e. RO = b. This leads to

2bG
O6F" °

e~

(7.17)

Substitution of this expression in equation (7.15) leads to
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bzcS 4%2
M :#{1—3 or) |- (7.18)

The significance of this equation is that

where the function F(0) depends on material properties such as E, v, 6y, and, in the case of a work hard-
ening material, on the work hardening exponent n. We may now write

oM’ M
(ab)e—ZbF(G)—Z b - (7.20)
Substituting this expression in equation (7.13), we find
0 0 0
M 2 2
J—j2 b de—bjMdG—Bb Mdb . (7.21)
0 0 0

For a deeply cracked bar it is reasonable to assume that all plasticity is restricted to
the ligament, and thus the two halves of the bar remain straight. This enables equation
(7.12) to be rewritten as the more practical expression

v

J==1Pdr, (7.22)

where P is the load in terms of a force, i.e. no longer defined per unit thickness, and v is
the displacement in the load line, termed the load-line displacement.

In a Ji. test the load P acting on a cracked bar is measured as a function of the load-
line displacement v. Using equation (7.22) J can then be determined for any displace-
ment by calculating the area under the P-v curve up to that displacement, U. At the on-
set of crack extension, J is equal to Ji.. Therefore

2Uq
Bb -

2U
J=>77 and Ji=

2 (7.23)

where U, is the area under the P-v curve at the onset of crack extension.

Hence in principle Ji. can be determined by performing one test only in which the
specimen is loaded until the onset of crack extension. However this is not normally
done. The reason is that detection of the beginning of crack extension is difficult. It can
only be done with costly apparatus as potential drop, acoustic emission, ultrasonic, eddy
current etc., where each has its specific difficulties. An alternative is to make a number
of tests whereby each specimen is loaded to give a small but different crack extension
Aa. Then the values of J (which are, strictly speaking, invalid) are plotted versus Aa and
extrapolated to Aa = 0 in order to obtain Ji.. An example of this method is given in fig-
ure 7.5.

J-Aa lines like those in figure 7.5 are called J resistance curves, by analogy with the
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Figure 7.5. J-Aa plots for A-533B steel, after reference 6 of the bibliography.

LEFM R-curve. This seems slightly misleading, since J is strictly valid only up to the
beginning of crack extension and not beyond it. However, it must be noted that under
certain restrictions J resistance curves can be used to predict stable crack extension.
This subject is discussed in chapter 8.

The J integral expression in equation (7.23) and the multiple specimen method just
described, form the basis for the standard Jj. test, which is discussed in the next section.

7.4 The Standard J|c Test

Before publication of the standard Jj. test some ten different procedures had been
used. Chipperfield (reference 7) reviewed these methods and showed that Jj. values ob-
tained in different ways varied by up to 20%. This clearly demonstrated the need for a
standard test.

Original J;c Test Standard

A proposal for a standard Ji. test was published in 1979. This proposal became an
ASTM standard and was first published as such in 1981 under the designation ASTM
E 813, reference 1 of the bibliography. This standard describes Jj. determination using
three-point notched bend (SENB) and compact tension (CT) specimens. Roughly these
are the same specimen geometries as those for K, testing (see figures 5.2 and 5.3), but
there are a number of differences in detail. For both specimen configurations J is given
simply by a form of equation (7.23), i.e. J = (2U/gp)-fi4/w), where f(a/y) depends on
the specimen type.

Revised Test Standard

In 1989 a revised version of standard E 813 was published, which is referenced as num-
ber 8 of the bibliography. In this standard the same specimen geometries are described,
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but for experimental reasons J is evaluated in a somewhat different way. The load-line
displacement is divided into an elastic and a plastic part, i.e. v = ve| + 1;51. Consequently,
reverting to equation (7.10), with P now no longer defined per unit thickness, we may
write

P P P
_1 o 1 aVelj 1 (%j 3
_Bj(aajde_Bj(ﬁa PdP+Bj da PdP_Jel+Jpl' (7.24)

0 0 0

Expressing v, in terms of the specimen compliance, i.e. v, = C-P, it follows that (cf-
equations (4.16.b) and (4.19))

P P
_ L (%) o _L|(ACP)) o, PPOC_ ,_1=v2 ,
JelBJ‘(aajdeBj( » dePZBaaG = K7 (7.25)
0 0

Since the SENB and CT specimens have the same geometry as the standard Kj. speci-
mens, K can be calculated using equations (5.1) and (5.2).

Using the same reasoning as given in the previous section, the plastic part of J, Jp1,
can be related to the area under the P-1; curve up to the current value of vy, Upl. The
ASTM standard uses the relation

nUp
Jpl :B—N%, (7.26)

2 for SENB specimens
2+0.522 b/ for CT specimens
BN = net specimen thickness, which is equal to B if no side grooves are present.

where | = plastic work factor = {

Figure 7.6 illustrates how the plastic work Up is calculated. First the total work U is
determined by integrating the P-r curve and then the elastic part of the work is sub-
tracted. This elastic part is equal to '4r.P or, using the elastic specimen compliance C,
equal to ACP2.

Clearly C has to be known to carry out this procedure. Note also that C depends on
the current crack length. It can be determined either by calculating it using the formulae
given in the ASTM standard that express C as a function of crack length, specimen di-
mensions and Young’s modulus or by measuring it directly through partial unloading
during the test (see also under the next subheading).

Jic Test Procedure
The steps involved in setting up and conducting a Ji. test are:

1) Selection of specimen type (notch bend or compact tension) and preparation of shop
drawings.
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Figure 7.6 The part of the area under the P-v curve that represents the plastic work Up,.

2) Specimen manufacture.

3) Fatigue precracking.

4) Obtain test fixtures and clip gauge for crack opening displacement measurement.
5) Testing.

6) Data analysis.

7) Determination of a provisional Ji (Jg).

8) Final check for Ji. validity.

Steps (1) — (5) will be concisely reviewed here insofar as they differ from similar
steps for K. testing in section 5.2. Steps (6) — (8) are considered under the next sub-
heading in this section.

For both SENB and CT specimens the initial crack length (i.e. notch plus fatigue
precrack) must be greater than 0.5 ¥ to ensure validity of the formulae used to evaluate
J. The maximum crack length is 0.75 W, while a value of 0.6 W is usually optimum
from an experimental viewpoint.

A special feature of J testing is that the clip gauge has to be positioned in the load
line. For the CT specimen this means that the shape of the starter notch is different to

I
=" |
Kie ch
TESTING TESTING

Figure 7.7. CT specimen starter notches.
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that used in K. testing, figure 7.7. Note that a chevron starter notch for Jy. testing is not
specifically recommended. This is also true for the SENB specimen. Experience has
shown that a straight starter notch is usually sufficient.

In order to obtain sufficiently sharp crack tips the specimen should be fatigue pre-
cracked with the maximum load not exceeding 40% of the limit load for plastic collapse
Pr, which can be calculated from

) AB(W - a)*c,
SENB specimen Pp = — 35 (7.27)
. B(W — a)*c,
CT specimen  Pp = m , (7.28)

where o, is called the flow stress and is typically the average of the yield strength oy
and the ultimate tensile strength Gy, i.e. G, = 2(Gys + Oys). The use of o, is to account
for strain hardening.

The Ji. tests must be carried out under controlled displacement conditions in order to
obtain stable crack extension over the whole test range. This means that preferably an
electro-mechanical testing machine must be used.

In section 7.3 it was stated that the basis for the standard Jj. test is the multiple
specimen method, i.e. a number of specimens are loaded to give small but different
amounts of crack extension Aa. However, ASTM E 813 does allow a truly single
specimen Ji. determination. This involves the use of some technique for measuring the
current crack extension during a test, enabling the determination of the J resistance
curve defined in section 7.3.

A frequently used method for crack-length monitoring is the unloading compliance
technique. After loading the specimen until a small amount of crack extension occurs,

3000
2500

2000

—

=

1500

LOAD (N

1000

500

0 0.2 04 0.6 0.8 1.0 1.2
LOAD-LINE DISPLACEMENT (mm)

Figure 7.8. An example of the unloading compliance technique.
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the load is partially removed and subsequently reapplied, see figure 7.8. To avoid re-
versed plasticity having any effect on the test results, the maximum unloading range is
set to the smaller of 50% of the current load or 20% of Pr. In the load-displacement
(P-v) diagram this loading procedure is reflected as the first part of the elastic compli-
ance line for unloading. From the resulting elastic compliance, C, the instantaneous
crack length, a, and thus also Aa = a — a, can be calculated. ASTM E 813 gives formu-
lae equating the dimensionless crack length @/ to the dimensionless compliance for
SENB and CT specimens. The current values for a, Aa, P and the P-v curve up to the
current displacement lead to one point on the J—Aa curve. By repeating this process a
number of times a J resistance curve can be obtained from a single specimen. A disad-
vantage of the method is that an accurate measurement of the unloading compliance line
requires suitable equipment and sufficient experimental skill.

For both the multiple and the single specimen technique the specimen is broken af-
terwards to measure the crack extension visually from the crack surface. Note that for
the single specimen technique this final crack extension is determined only to verify the
accuracy of the unloading compliance technique. To be able to measure the crack exten-
sion a marking technique must be employed for distinguishing between Aa and the re-
sidual fracture due to breaking open the specimen after testing. One possibility is heat
tinting, i.e. heating the specimen in air to cause oxide discoloration of existing crack
surfaces. Another is to fatigue cycle after the Ji. test. Details of these techniques are
given in reference 8 of the bibliography.

The measurement of the crack extension gives specific problems. J integral test
specimens are usually thick, such that ‘crack front tunnelling’ occurs during both pre-
cracking and Ji. testing. This is illustrated schematically in figure 7.9. Experience has
shown that to obtain consistent values of J and Jy. it is necessary to take averages of at
least nine measurements of @ and Aa equally spaced across the specimen thickness, and
to count the averages of side surface crack lengths as one measurement only.

Data Analysis and Determination of J\¢

The data analysis consists of calculating J values for a number of crack extensions Aa.

Jjc TEST RESIDUAL
CRACK EXTENSION FRACTURE

/

FATIGUE PRECRACK

Figure 7.9. Schematic of a J. test specimen broken open after testing.
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The elastic part of each J value, J¢, is evaluated with equation (7.25) by substituting the
Kj value corresponding to the load and the crack length at the moment the crack exten-
sion Aa was reached. For Jp; the load-displacement record is analysed to obtain the area
Up1 under the curve up to the P- point corresponding to crack extension Aa. Values of
Jp1 are then calculated by inserting Up and values of the crack length @ into equation
(7.26).

These J-Aa points are used in determining the provisional Jic (Jg). However, de-
pending on their value, some points may yet turn out to be unacceptable. To check for
acceptability and at the same time determine Jg a plot more or less similar to figure 7.5
must be constructed as shown schematically in figure 7.10.

100 -

® POINTS USED FOR

90 REGRESSION ANALYSIS

80 BLUNTING LINE

70

0.15 mm
EXCLUSION LINE

60

1.5mm

50 EXCLUSION LINE

POWER LAW
REGRESSION LINE

0.2 mm
OFFSET LINE

0 02 04 06 08 1 12 14 16 18 2 22

CRACK EXTENSION, Aa (mm)

Figure 7.10. Schematic determination of acceptable J values and of Jqg.

The procedure for constructing this figure is:

1) Plot the J-Aa data points, discarding points with J values exceeding 6G0/15.

2) Draw a theoretical blunting line J = 26,Aa.

3) Draw a 0.2 mm offset line parallel to the blunting line.

4) Draw 0.15 and 1.5 mm exclusion lines parallel to the blunting line and discard all J-
Aa points that fall outside the region bounded by these lines.

5) There must be at least 4 J-Aa data points remaining and they must be distributed suf-
ficiently even within the region between the exclusion lines (see reference 8).

6) Using the acceptable J-Aa points, draw a power law regression line of the form
J = C1(Aa)©2 by determining a least squares linear regression relation according to:

InJ=InC; + C, In (Aa) . (7.29)
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7) Determine the intersection of the power law regression line with the 0.2 mm offset
line. The resulting J value is designated Jg. The ASTM standard suggests an iterative
procedure to determine the point of intersection with sufficient accuracy.

8) Draw two vertical lines through the intersections of the exclusion lines with the re-
gression line. These vertical lines represent the minimum and maximum crack exten-
sions. If data points fall outside this range they should be discarded and the proce-
dure should be repeated starting at point 5.

Finally, for Jq to qualify as a valid J, it is required that:

1) The specimen dimensions satisfy the equation

25 Ji
Band W — a both > GJ . (7.30)

(o]

2) The slope of the regression line at Jq is smaller than o,

3) None of the test specimens have experienced brittle fracture.

4) No excessive crack front tunnelling has occurred (see reference 8).

5) For the single specimen technique the predicted final crack extension does not devi-
ate more than 15% from the crack extension measured directly from the crack sur-
face.

Some Background to the J,c Determination

1) The minimum thickness requirement B > 25 JQ/co ensures that crack extension Aa
occurs under plane strain. It is an empirical requirement based on tests with steels.

2) The minimum ligament length requirement b = (W — a) > 25 JQ/5 o 1s also empirical
and is intended to prevent net section yield, see section 6.1. For this same reason all
measured J values exceeding bGo/15 are discarded.

3) The blunting line procedure was adopted to account for the apparent increase in
crack length owing to crack tip blunting. This apparent increase in crack length will
be less than or equal to the blunted crack tip radius, which in turn is half the crack
opening displacement 3. Thus the apparent Aa < 0.55;. Assuming &; = J/GO, a rela-
tion discussed earlier in section 6.8, the apparent crack extension due to crack blunt-
ing can be accounted for by Aa = 0.58;=/2¢,, or

J=206,Aa . (7.31)

Although the concept of accounting for crack blunting is correct, the use of equation
(7.31) can still be criticised for two reasons, which are discussed in points 5 and 6.

4) Jq is not the J value at the initiation of crack extension, since it is determined as the
intersection of the 0.2 mm offset line and the power law regression line. In the origi-
nal ASTM standard (see reference 1) Jg was determined as the intersection of a lin-
ear regression line and the blunting line and could thus be regarded as J at initiation.
This procedure, however, was found to introduce much scatter in Ji. values, because
the transition between the blunting process and actual crack extension is not always
distinct.
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Figure 7.11. Influence of work hardening on Jq estimation error.

Note that the current approach is analogous to that for quantities like the yield
strength defined at 0.2% offset strain and K. defined at 2% stable crack growth.

5) The blunting line and the J resistance curve are influenced by work hardening. With
more work hardening the slope of the blunting line is less, while the J resistance
curve is observed to be steeper. This leads to much more potential error in estimating
Jq, as is shown in figure 7.11. In the ASTM procedure this point is addressed by the
requirement that the slope of the regression line at Jg is smaller than o,

6) The blunting line, equation (7.31), is based on J = 8,6,. As was discussed in more
detail in chapter 6, relations of the form J = Mdc, are reasonable, but the factor M
can vary between 1 and 3, and often has a value ~2. This means that the blunting line
slope according to the ASTM standard may be too shallow, which results in an over-

J =4c,Aa = 25, i.e. M=2

S A 4

J = 2c,Aa = 8i0,, .e. M =1

POWER LAW
REGRESSION LINE

Ja, |

0.2 MM
OFFSET LINES

»
>

Aa

Figure 7.12. Influence of the relation between J and &, on J,.
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estimation of Jg, as figure 7.12 shows. Experiments have shown that the overestima-
tion of Jg may be as much as 10%, reference 7 of the bibliography.

It should be noted that in recent ASTM publications (e.g. reference 10) the use of a
higher blunting line slope, obtained from experimental data, is suggested.

7) The 0.15 mm exclusion line ensures that Aqa is at least 0.15 mm and so can be meas-
ured accurately enough. The 1.5 mm exclusion line ensures that Aa is generally less
than 6% of the remaining ligament in the SENB and CT specimens proposed for Ji.
testing, and it has been shown that up to this amount of crack extension the J integral
formula, equation (7.26), remains valid.

8) Steps 5 and 8 of the procedure to construct figure 7.10 and the final checking criteria
4 and 5 for Ji validity have been devised to minimise scatter and improve the reli-
ability of the J resistance curve.

Concluding Remarks

It should be noted that the test procedure according to ASTM standard E 813 allows
only Ji¢ (or Jq) to be determined. There are also standardized test procedures for deter-
mining the whole J resistance curve, involving larger amounts of stable crack extension
than for the Ji. determination. With the resulting curve the effect of stable crack growth
on the material’s crack resistance in the elastic-plastic regime is quantified. This type of
test will not be discussed here, but the topics of J controlled crack growth and use of the
J resistance curve will be elaborated on in chapter 8.

The Jj. test procedure described in this section is restricted to cases of crack exten-
sion by means of a ductile failure mechanism (see chapter 12). However, J can also be
used to characterize the onset of brittle fracture, before or during stable crack extension.
The restrictions imposed on the amount of crack tip constraint are then much more se-
vere (see reference 9).

It should be further noted that in 1997 the ASTM published a standard (see reference
10) that combines different types of fracture toughness measurements into a single set
of test rules. It includes the determination of Kj, Jic, J resistance curve, J;, (see sec-
tion 7.6) and also critical values for J and §; in the case of brittle fracture. The idea be-
hind this new standard is to enable fracture toughness evaluation using a single experi-
mental procedure, while minimising the risk of invalid test results because of unex-
pected material behaviour. If the evaluation of one critical fracture parameter fails it
may be possible to evaluate another parameter using the same experimental data. How-
ever, the procedure for determining Ji. described in this section 7.4 is more or less cop-
ied in this recent ASTM standard, and is therefore still relevant within the context of
this course.

7.5 The K. Specimen Size Requirement

Although it is not really part of EPFM testing, some attention will be paid to the
evaluation of K. for relatively tough materials. The reason is that J resistance curves
enable a somewhat different view on this subject.
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Kj. is a workable fracture criterion for higher strength, lower toughness materials, see
chapter 5, section 5.2. The specimen sizes required for a valid Kj. are convenient to
handle for these materials. For lower strength, higher toughness materials Kj. cannot be
measured so conveniently because the specimen size required for a valid test may be
prohibitively large. However, Landes (see reference 11) argued that the assumption that
a K. always can be measured for any material provided that a large enough specimen is
used is not true. He showed that for some materials it is impossible to measure a valid
Kie.

For ductile materials, i.e. materials that exhibit stable crack extension prior to failure,
the Kj. is defined at the point where the stable crack extension Aa is 2% of the original
specimen crack size a. The specimen size requirement in terms of crack length is given
by

KIc :
az25\—|. (7.32)
Oys
Combining this relation with Aa = 0.02-a yields
ch ’
Aa>0.05|—]| , (7.33)
Oys

a relation which should be fulfilled to obtain a valid K.
To further examine the size requirement it is convenient to write K in terms of J, us-
ing equation (6.30). For arbitrary values of J equation (7.33) can be rewritten as

E J
Aa>0.05">5"75 (7.34)
1-v* o3
or
A
J HIGH
TOUGHNESS SLoPE = 20(1-v?)o3IE
Low
TOUGHNESS
VALID Kz AREA

\ 4

Aa

Figure 7.13. Schematic showing the K|; size requirement as an area in a J-Aa plot.
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2
J<20 (1) 22 Aa (7.35)
As a function of the absolute amount of crack extension Aq, this relation gives the
maximum J value for which the Kj. size requirement with respect to the crack length,
equation (7.32), would be fulfilled. This condition is represented by the shaded area in
the J-Aa plot of figure 7.13. Also, in this figure J resistance curves are schematically
plotted for materials with a high and a low fracture toughness.

Irrespective of specimen size, a valid K|, for a certain material can only be obtained
if for some crack extension the J resistance curve enters the shaded area. The required
specimen size then follows from equating the crack extension at which this occurs to
2% of the initial crack length. Clearly, for the tougher material K. cannot be determined
no matter how large a specimen is used. For the material with the lower toughness, if all
other requirements are fulfilled also (see section 5.2), a valid Kj. value can be deter-
mined, albeit that sometimes unrealistic specimen sizes would be required.

For aluminium alloys and for high strength steels the Kj. size requirement will be ful-
filled. However for lower strength, higher toughness steels this certainly will not be the
case: no valid K. can be determined, regardless the specimen size.

7.6 The Standard &, Test

At the beginning of this chapter it was remarked that the original &, test was the
subject of an official British Standard. At present the most recent version, designated
BS 7448, dates from 1991, see reference 12 of the bibliography.

The Standard COD Specimens

The standard COD test specimens conform to the three-point notched bend (SENB) and
the compact tension (CT) configurations already described in section 5.2. For CT
specimens a Ji type starter notch is allowed also (see figure 7.7). The preferred W/ ra-
tio is 2, but deviation is allowed within certain limits. In principle the thickness B must
be equal to that of the material as used in service, and the specimens are not side
grooved. Exceptions are allowed if it can be shown that a lesser thickness does not af-
fect fracture toughness or if a relation between thickness and fracture toughness can be
established.

It is important to note that the 8, values resulting from this test method may be af-
fected by the specimen geometry and size. Therefore caution is required when compar-
ing results from different sources.

Expressions for Calculating &

Direct measurement of d; at the crack tip is impossible. Instead a clip gauge is used to
measure the crack opening displacement, g, at or near the specimen surface. It is then
assumed that the ligament b (= W — a) acts as a plastic hinge. This implies a rotation
point within the ligament at some distance r-b.
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D
.

Figure 7.14. Relation between crack opening displacement vy and crack tip opening displace-
ment &;.

In figure 7.14.a an example is shown where the clip gauge is mounted on attachable
knife edges on the specimen surface. Figure 7.14.b shows that 3, can be expressed as

b

="
Y rbta+z

(7.36)
where the distance z corrects for the use of knife edges. In general a + z should be inter-
preted as the distance between the position of the clip gauge and the crack tip. This pos-
sibly includes the size of attachable knife edges (see figure 5.5) and for CT specimens
also depends on the type of notch used.

Although equation (7.36) is simple, there are two notable difficulties:

1) The value of the rotation factor ». Experiments show significant spread in the value
to be used for r. This is because the determination requires complicated techniques,
e.g. the double clip gauge method (reference 13) or infiltration of the crack with
plastic or silicone rubber (reference 14). For the standard COD test the assigned r
values are 0.4 for the SENB specimen and 0.46 for the CT specimen.

2) Interpretation of the clip gauge displacement v,. The increase in rg with loading from
a null point setting is caused by two effects, namely elastic opening of the crack and
rotation around 7-b. Thus to consider v, as arising only from rotation, as in equation
(7.36), would lead to erroneous results. Instead 1, must be separated into an elastic
part v and a plastic part v, as shown schematically in figure 7.15.

Only the plastic part of the displacement is substituted into equation (7.36), i.e.

B Vpi'7b
Sp1 = hiats (7.37.a)

For reasons of accuracy the elastic part v, is not used but the elastic contribution to J; is
calculated according to the LEFM expression for CTOD, equation (3.20), modified for
plane strain and a plastic constraint factor C = 2 (see also section 3.5), i.e.
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Figure 7.15. Separation of total crack opening displacement v, into elastic (ve) and plastic (vp)

components.
Kt (1 - Vz)
Se1 = ol 2 - (7.37.b)

and
K12(1 -v?) rb
2EGy trbrarz P

8¢ = Oe1 + Op1 = (7.38)

Note that the value of K| in equation (7.38) is obtained from the standard formula for
the SENB and CT specimens, equations (5.1) and (5.2), by substituting the initial crack
length, @, and the load at which vy, is measured.

As will be seen under the subheading “Analysis of Load-Displacement Records to
Determine &;;,” several values of & can be defined. Note that the British Standard
defines &, as the crack opening at the original crack tip, as shown in figure 6.7. This
means that it is taken for granted that during loading the crack tip will displace and
move forward owing to blunting, since at the very tip d; must always be zero.

COD Test Procedure
The steps involved in setting up and conducting a COD test are:

1) Prepare shop drawings of the specimen.
2) Specimen manufacture.
3) Fatigue precracking.
4) Obtain test fixtures and clip gauge for crack opening displacement measurement.
5) Testing.
6) Analysis of load-displacement records to determine &,
Steps (1), (2) and (4) will not be considered further in view of previous discussions
in section 5.2. Steps (3) and (5) will be reviewed here and step (6) will be dealt with un-
der the next subheading.
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The configuration of the starter notch for fatigue precracking is similar to that for the
standard K. specimens, see section 5.2, except that a straight notch is recommended
rather than a chevron. Fatigue precracking has to be done with a stress ratio R (=
Omin/g,, ) between 0 and 0.1. As was the case for J testing, the maximum fatigue load
should not exceed 40% of the plastic collapse load given in equations (7.27) and (7.28)
for SENB and CT specimens respectively. These requirements are to ensure a suffi-
ciently sharp precrack with limited residual plastic strain in the crack tip region.

During the actual COD test the specimen is loaded under displacement control while
recording load and crack opening displacement. The test can be carried out with any
testing machine incorporating a load cell to measure force electrically. The British
Standard specifies that the loading rate should be such that the increase in stress inten-
sity factor with time, dK1/gy, is between 0.5 and 3.0 MP a\/r—n/s_ This is arbitrarily de-
fined as ‘static’ loading, in the same way as for K. testing. Again note that equations
(5.1) or (5.2) may be used to calculate stress intensity factors.

Since the increase rate dKi/q; is measured in the elastic region of the load-
displacement curve this procedure can lead to large differences in loading rate for duc-
tile specimens: if the loading rate of the testing machine is kept constant the rate of dis-
placement will strongly increase in the plastic region of the load-displacement curve; if,
on the other hand, the displacement rate of the testing machine is kept constant, the
loading rate will decrease in the plastic region. It has been shown that low loading rates
in the plastic region of the load-displacement diagram may lead to lower CTOD values,
see reference 15 of the bibliography.

After the test the fracture surface must be examined. The procedure to determine the
fatigue precrack length and the requirements that must be met to obtain a valid test re-
sult are the same as in Ji. testing, see section 7.4. Furthermore, it is necessary to estab-
lish whether stable crack extension occurred during the test and to assess the amount of
crack extension associated with possible pop-in behaviour, i.e. a small amount of unsta-
ble crack growth followed by crack arrest.

Analysis of Load-Displacement Records to Determine &
The load-displacement records can assume six different forms. These are given schema-
tically in figure 7.16. The assessment of 6, for each case will be briefly discussed.

Before classifying the measured load-displacement curve, it is necessary to decide
whether possible pop-in behaviour must be considered significant. In all cases a pop-in
is significant if post-test examination of the fracture surface reveals that the corre-
sponding crack extension exceeded 4% of the uncracked ligament, b. Otherwise, a pop-
in is only considered significant if at subsequent crack arrest the specimen compliance
has dropped by more than 5%. A procedure for deciding this is suggested in the stan-
dard.

Cases 1, 2 and 3 are treated similarly. Cases 1 and 2 are monotonically rising load-
displacement curves showing no or limited plasticity and no stable crack extension be-
fore fracture. Case 3 shows a (significant) pop-in owing to sudden crack extension and
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arrest. In all these cases Jy;, is taken to be 6., which is calculated according to equation
(7.38) using P, and ..

Cases 4 and 5 may also be treated similarly. Prior to instability, which again is either
fracture or a (significant) pop-in, stable crack extension occurs. This should be revealed
after the test by examination of the fracture surface. In these cases 6, is calculated as
Sy at (Py,ry)-

Case 6 is relevant to extremely ductile materials for which stable crack extension
proceeds beyond maximum load Py,: 6, is calculated as 6y, corresponding to (P, /m).

POP-IN FRACTURE ~ POP-IN
FRACTURE

R

P
A FRACTURE R ¢
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»
>
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Figure 7.16. Types of load - crack opening displacement plots obtained during COD testing.

Concluding Remarks

The significance of &, is somewhat limited in practice. Materials can be classified
with it and to a certain extent J;; can be used in failure assessment procedures (see
section 8.2). However, test results cannot be used to assess the effect of stable crack
growth on crack resistance. For this purpose the British Standards Institution has pub-
lished additional standards. These bear more resemblance to the J. test procedure de-
scribed in section 7.4.
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8
Failure Assessment
Using EPFM

8.1 Introduction

When dealing with structures containing postulated or actual flaws, there is a need
for assessing the probability of failure. Obviously this is the case in the design phase
and at in-service inspections. However, in the possible event of failure it is also impor-
tant to reveal the cause and to determine how failure can be avoided in the future.

As was already mentioned in section 1.3, key questions that fracture mechanics deals
with are

e what is the critical crack size for a given load or
e what is the maximum load for a given crack size?

To address these questions the concepts available in Elastic-Plastic Fracture Mechanics
are the Crack Opening Displacement (COD) and the J integral (see chapters 6 and 7). In
this chapter these parameters are used in the following three topics:

e The COD design curve, section 8.2.
e Stable crack growth and ductile instability, described by J, section 8.3.
o Failure assessment diagrams, section 8.4.

The very first method for assessing flawed structures under EPFM conditions was
the COD design curve, developed in the 1960s. To outline the historic development and
also because it is still in use, this approach will be briefly discussed in section 8.2.

It can be highly conservative to ignore the effect of stable crack growth in failure as-
sessments under EPFM conditions. Therefore in section 8.3 the conditions for J-
controlled crack growth are considered briefly. Furthermore the so-called tearing
modulus is treated. This concept can be used to assess the onset of ductile instability
that may follow after a certain amount of stable crack growth, which is also often re-
ferred to as stable tearing.

In section 8.4 an advanced method for failure assessment is discussed, based on the
failure assessment diagram. This is a two-criteria approach in which failure is consid-
ered as a process resulting from both fracture and plastic collapse. Furthermore, it al-
lows the effect of stable crack growth to be taken into account.

8.2 The COD Design Curve

In this section the development of the COD design curve is concisely reviewed.
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More details are to be found in references 1, 2 and 3 of the bibliography. The basis of
the original COD design curve is a relation between the CTOD and strains in the vicin-
ity of the crack. Using this, critical CTOD values from test specimens could be related
to maximum permissible strains near a crack with a certain size in an actual structure. In
turn these maximum strains could be compared with the actual strain in order to deter-
mine whether the crack would be critical or not.

This approach has the disadvantage that nothing is said about how nearly critical a
crack is, nor about the maximum permissible crack size (see figure 1.4). Later, however,
critical COD values could be directly related to maximum permissible crack sizes. Nev-
ertheless, to properly understand the COD design curve it is best to first briefly consider
its historical development.

Analytical and Experimental Approach

For the COD design curve a dimensionless CTOD is introduced. This parameter, @, is
obtained by dividing &;, by 210ysa/g, which consists of known quantities. Thus

__%E &
B 2nGysa B 2neysa’

(8.1)

where &y = Oys/[;, the elastic strain at the yield point. The numerical factor of 2n was
added to the denominator for convenience in a later stage of analysis.

P

;‘4

—

P

Figure 8.1. Points P at a distance y above and below the centre of a crack of length 2a.

In the original approach an analytical relation was established between the strain, &y,
between two equidistant points P across a central crack, as shown in figure 8.1. The
derivation of this relation is straightforward, although some complicated mathematics is
involved. It was based on Dugdale's strip yield model using the expression given in sec-
tion 3.3 for d in an infinite centre cracked plate, i.e.

8oysa
o= —=In sec

(0]
— T (3.19)
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In figure 8.2 the final result is shown, taken from reference 1. For several values of the
ratio of crack length to gauge length, @/y, the dimensionless CTOD, @, is plotted versus
the relative strain 8y/gys.

This is the original COD design curve, an analytical one. The intention was to pro-
vide a design curve for each @/) value such that once the critical CTOD was known
from specimen tests the maximum permissible strain in a cracked structure could be
predicted. Computation of the actual strain in the structure should then indicate whether
it were in danger of failing.

In the late 1960s tests on wide plates were done to check the predictive capability of
the COD design curve. Measurements of critical CTOD and strain at fracture showed
that the data fell into a single scatter band with no discernible dependence on @/y. Also

a/y=0 a/y=1/24 a/y=1/12 a/y=1/6
5 L
4 |
D
3L
2 |
1T TEST RESULTS FOR
aly=1/40 —1/2
0 ! ! !
0 1 2 3 4

Eyleys

Figure 8.2. The analytical COD design curve for an infinite centre cracked plate and experi-
mental data from tests on wide plates, from reference 1 of the bibliography.

the strain at fracture was much larger than would have been predicted. These test results
are roughly indicated in figure 8.2.

Obviously, there is marked disagreement between theory and experiment when 8y/gys
exceeds 0.5, which may be explained as follows. For wide plates the relative crack
length, @/, is small, such that as Sy/gys approaches unity the plates undergo net section
yield and ultimately general yield. Net section yield causes the increase in CTOD to be
equal to the increase in overall displacement, and a more or less linear relation between
® and Ey/gys independent of @/y, has to be expected. Ultimately, in the case of general
yield, which is quite different from the assumption of a yielding strip ahead of the crack
tip, the increase in Sy/gys becomes much larger than the increase in @.

The problem that the analytical COD design curve is useless for 8y/gys greater than
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about 0.5 was obviated simply by drawing a line just above the scatter band of experi-
mental results, thereby obtaining the empirical design curve, which is also drawn in fig-
ure 8.2. In reference 2 the whole COD design curve is approximated as

2

€

o= (f) for Sy/gys <0.5,
yS,

(8.2)

_E
o= ey -0.25 for Sy/gys >0.5
and so this concept has evolved to a purely empirical one, even though it has an analyti-
cal background.

The Maximum Permissible Crack Size

Equations (8.2) still express the dimensionless COD in terms of relative strain. From
what was stated at the beginning of this section it is clearly preferable to express the
COD design curve in terms of maximum permissible crack size: this is the current COD
design curve approach due to Dawes, reference 3. He argued that for small cracks (4/p
< 0.1) and applied stresses below yield

& FEo o

~ =—. 83

gys FEoys Oys (8.3)
Substituting in equations (8.2) gives

_(oy] __OE

¢ (Gys) 2nGysa for Oy/gy,<0.5,
84

. Oyl >

0] Oy 0.25 210y, for y/cys—0-5-

The maximum permissible crack size, am,x, can be obtained directly from equations
(8.4) by substituting the critical COD value, Stcrit:

St 'tEGyS
max = ;r;t—c% for Gl/cys <05, (8.5.2)
6tcritE
Amax = 27[(61 _ 0.250ys) for 0.5< Gl/GyS <2. (85b)

Note the designation ;. This will be explained in remark (2) below.

Remarks

1) The Dugdale approach implies (i) plane stress conditions and (ii) elastic — perfectly
plastic material behaviour. The material is thus assumed to yield at Gy, while in re-
ality most structural parts will yield at a somewhat higher stress level owing to work
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hardening and plastic constraint. This means that the actual CTOD for a crack in a
structural part will be smaller than predicted, and higher stresses will be needed to
reach 6 ;. Hence the COD design curve is conservative, ie. its use will predict
smaller maximum permissible strains and crack sizes than those in reality.

2) In equations (8.5) the designation o; was introduced instead of o. This is a design-
oriented convenience: using o as the sum of all stress components (general and lo-
cal) the effects of, for instance, residual stress in a weld or peak stress due to a geo-
metrical discontinuity can be accounted for. o; may reach values as high as twice
Gys. More information is given in reference 2 of the bibliography to this chapter.

3) Equations (8.5) are also used for predicting the maximum permissible defect size of
elliptical and semi-elliptical defects. This is done by calculating the LEFM stress
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Figure 8.3. Correlation of COD design curve predictions of maximum permissible crack size
with actual critical crack size for a structural steel, after reference 3 of the bibliog-
raphy.
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intensity factor for such defects, compare section 2.5. The result is set equal to K =
G]\/El for a through-thickness defect. From this equation an equivalent through-
thickness crack length, a, follows and this is compared to ay,x in equations (8.5).

4) The British Standards Institution has published guidelines to assess the significance
of weld defects (which are considered as elliptical flaws) based on the COD design
curve. From service loads and measured CTOD values the tolerable defect sizes can
be predicted. For more information the reader is referred to the official documents,
e.g. reference 4 of the bibliography.

5) The COD design curve is generally considered to be conservative. For example from
equation (8.5.a):

2nola 2K7?
1Ymax 1 (8.6)

Bterit = Eoys  Eoy
This value of &, is twice that obtainable from the Dugdale analysis assuming
LEFM conditions, see equation (3.20), and so it should be expected that at least the
lower part of the COD design curve (i.e. up to 8y/gys =0 1/(;yS = 0.5) has a safety
factor of 2. As a check on this conservatism figure 8.3 correlates COD design curve
predictions of maximum permissible crack sizes, based on small specimen tests, with
experimentally determined critical crack sizes in wide plates. It is seen that a safety
factor of 2 bounds most of the data, all of which lie above the derit/q,, = 1 line.

6) Nowadays the use of the COD design curve is rather limited. In the previous remark
it was already noted that assessments are conservative. Furthermore, the method does
not address the effect of stable crack growth, a subject which will be discussed in the
next section. In fact the COD design curve is now incorporated in a failure code re-
cently published by the British Standards Institution under the designation BS 7910,
see reference 5, as only a means for a simplified assessment. In section 8.4 a more
advanced approach to failure assessment will be reviewed.

8.3 Stable Crack Growth and Ductile Instability described by J

In sections 6.4 and 7.3 it was stated that the J integral concept is strictly valid only up
to the beginning of crack growth. However, J shows a well-defined rise with increasing
crack extension Aa, e.g. figure 7.5, and this has resulted in J — Aa plots being referred to
as J resistance curves, or J-R curves, and to the use of a regression line for Ji testing,
figure 7.10.

A related aspect is that it may be highly conservative (i.e. inefficient) to use Ji. as a
measure of the crack resistance to be expected in practice. This is because the J-R curve
for many materials has a very steep slope, and only a few millimetres of stable crack
extension may give J values two or three times Jj. It is therefore no surprise that at-
tempts are being made to describe stable crack growth under elastic-plastic conditions.

Depending on material behaviour, geometry and loading conditions ductile instabil-
ity may occur after a certain amount of crack growth. Obviously it is important to be
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able to predict this phenomenon.

It should be noted that, especially in a material such as low-strength steel at relatively
low temperatures, the process of blunting and stable crack growth can also be inter-
rupted by unstable crack growth due to cleavage (see section 12.5). In the present con-
text only the more ductile behaviour, i.e. stable tearing without cleavage, will be con-
sidered.

J and Stable Crack Growth

An outline will be given of the conditions for which J can be adequately used beyond
crack initiation, i.e. J-controlled crack growth. A more thorough discussion of this sub-
ject is given in reference 6 of the bibliography.

In section 6.5 the stresses and strains near the crack tip in a material that exhibits
power law hardening were expressed in terms of J, the so-called HRR solution. The
conditions for J-controlled crack growth are now interpreted as the ability of J to de-
scribe the crack tip fields in the presence of crack growth, at least in some annular re-
gion around the tip.

In the J integral concept nonlinear elastic material behaviour is used to model actual
(plastic) behaviour. This is referred to as the deformation theory of plasticity. In section
6.3 it was stated that to obtain an adequate description of the material behaviour no un-
loading may occur. However, this is not the only restriction that should be imposed. The
reason is that strain hardening in a material not only depends on the amount of plastic
strain, but also on the path followed in ‘strain space’ to arrive at this strain. Deformation
theory can describe strain hardening appropriately as long as plastic deformation is
‘proportional’. This is the case if during deformation all strain increments dg;; are pro-
portional to the increment in the same parameter, e.g. an infinitesimal increase in J, dJ.

In figure 8.4 a schematic is shown of the different regions around a crack tip that has
extended by Aa in elastic-plastic material. The distance from the crack tip beyond which

NON-PROPORTIONAL P NEARLY PROPORTIONAL
PLASTIC LOADING — //\ LOADING (HRR FIELD)
s N
Va N
/ N\

ELASTIC UNLOADING

Figure 8.4. Different regions around a growing crack tip in elastic-plastic material.
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the HRR solution is no longer valid, even for a stationary crack, is denoted by R. Along
the newly formed crack flanks there is a region in which elastic unloading occurs. Fi-
nally there is a so-called process zone immediately surrounding the tip in which non-
proportional plastic loading occurs due to large geometry changes, e.g. blunting and
void formation.

Obviously, J will be invalid in the process zone as well as in the region where un-
loading occurs. Both regions have a size of the order of Aa, and therefore a first re-
quirement for valid application of J under stable crack growth conditions must be:

Aa<<R. 8.7)

Consider some point at a distance » from the crack tip, where » < R. When a crack
extends as the result of an increasing load, and thus an increasing J value, the strain at
that point will change. This change can be attributed to the crack extension as well as to
the increase in J. It can be derived (see reference 6) that the deformation is predomi-
nantly proportional (see above) if it is mainly caused by the increase in J and only
slightly by crack extension. This condition is expressed by

da dJ
<7 (8.8)

The question whether this inequality holds for a certain r value depends entirely on ma-
terial behaviour: J must increase sufficiently during crack growth. At this stage it is
convenient to define a length quantity

__J
dJldqq

D (3.9)

At crack initiation, i.e. J = Ji¢, D is roughly equal to the crack extension corresponding
to a doubling in J. As the crack extends as the result of an increase in J, which also in-
volves a decrease in 4J/(y, it is obvious that D will increase.

Inequality (8.8) can now be rewritten as

D<<r. (8.10)

As long as D is much smaller than the size of the region in which the HRR solution
is valid, i.e.

D<<R, (8.11)
then there will be some annular region surrounding the crack tip, defined by
D<<r<R, (8.12)

in which inequality (8.8) holds and thus deformation is approximately proportional.
Summarising, J can be used to describe crack growth if (i) the crack extension is
limited, ¢f. equation (8.7), and (ii) if a region exists in which strain is mainly determined
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by the increase in J rather than by crack extension, cf. equation (8.11). These conditions
for J-controlled crack growth can also be expressed somewhat more quantitatively. For
this it is convenient to consider R as being some fraction of the uncracked ligament b (=
W — a). Equations (8.7) and (8.11) may then be rewritten as

Aa<<b or %:a<<l, (8.13)
and
b d/ b
D<<b or 5>>1 and thus a~j=m>>l. (8.14)

Based on both experimental and analytical studies using bend type geometries, i.e.
SENB and CT specimens, a maximum o value of 0.06 - 0.10 and a minimum © value of
10 is suggested by Shih et al. (reference 7). However, they also found that for tensile
type geometries, e.g. CCT specimens, these limit values are 0.01 and 80 for o and  re-
spectively. Thus it seems that the range over which J controls crack growth is geometry-
dependent.

More recently this geometry dependence has been attributed to the fact that stresses
and strains near the crack tip are not in all cases accurately described by the HRR solu-
tion, see reference 8. Differences arise from the development of so-called in-plane con-
straint around a growing crack (see also under the subheading “Applicability of the
Tearing Modulus” in this section).

The general tendency is that in the case of bending loads, large specimens and/or a
high degree of strain hardening, crack growth will be mainly J-controlled.

Ductile Instability

The first notable attempt to describe ductile instability under elastic-plastic conditions is
the tearing modulus concept developed by Paris et al.!, reference 9. This concept, which
will be treated in some detail here, is based on the elastic-plastic analogue of the R-
curve concept in LEFM. In this case of J-controlled crack growth we must therefore
distinguish between the applied J value on the one hand and the material’s resistance to
crack growth on the other.

If a structural component containing a crack is loaded, a certain value of J is applied
which can be considered as the ‘crack driving force’. For a certain geometry this J
value, which will be denoted as J,p,, depends on the load level and the crack length. For
a limited number of geometries J,,, values can be calculated analytically. Otherwise
numerical methods, such as the finite element method, must be used.

On the other hand, as is schematically shown in figure 8.5, the J-R curve represents
the material’s crack resistance as a function of crack extension. This crack resistance in
terms of J, denoted as Jp,1, is assumed to be independent of the initial crack length.

I P.C. Paris is generally credited with developing the tearing modulus concept. However, J.R. Rice and
J.W. Hutchinson have made important contributions, as Paris acknowledges in his publications on the
subject.
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Figure 8.5. A schematic J—R curve, i.e. Jnat Versus crack extension.

In figure 8.6 calculated values for J,p, as a function of crack length at discrete load
levels P; to P4 are schematically represented by solid lines. Since Jy,¢ is independent of
the initial crack length, the crack initiation and stable crack growth behaviour of a com-
ponent containing a crack of length a, can be studied by inserting the material’s J-R
curve in figure 8.6, starting at this initial crack length a,.

Assume that in figure 8.6 initiation of crack growth occurs at load level P3. By in-
creasing the load, stable tearing takes place as long as there is equilibrium in the sense
that

Japp(P,a) = Jmar(Aa) . (8.15)

Analogous to the LEFM R-curve, tearing will become unstable as soon as

J Pi<Py,<P3<Py

TEARING
INSTABILITY

! Japp AT LOAD

0
% CRACK LENGTH, a

Figure 8.6. The crack driving force diagram.
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oJ, dJ,
o (8.16)

From figure 8.6 it can be seen that at this point the load has increased to Py, while the
amount of stable ductile tearing can be assessed also. This type of graph is referred to as
a ‘crack driving force diagram’, see reference 7.

The Tearing Modulus Concept

A serious drawback of the approach adopted in figure 8.6 is its lack of accuracy: the J
value at instability and the amount of crack extension have to be obtained from a graph.
Paris formulated the criterion for ductile instability, equation (8.16), as

Tapp> Tmat, (8.17)

using the non-dimensional quantities

E a]agp E dJmat
appzc_% da and Tma‘:c_% da ° (8.18)

which he termed the applied and the material tearing modulus respectively. As before,
G, is the flow stress equal to the average of the yield strength 6y and the ultimate ten-
sile strength oyg.

The material tearing modulus, Ty, is completely determined by material properties,
i.e. the slope of the J-R curve, the Young’s modulus and the flow stress, and is therefore
unique for a given material and fully describes its (J-controlled) tearing behaviour.

Paris also chose the non-dimensional formulation of equation (8.18), because he
found that the material tearing modulus 7,,; depends less on temperature than the slope
of the J-R curve, /mat/d,, does. Furthermore, for a limited number of idealized configu-
rations ductile instability can be analytically assessed, leading to expressions that con-
tain the definition of T,y

An approximate analysis of ductile instability for a centre cracked plate under plastic limit load is
given here as an illustration (taken from reference 9). Consider figure 8.7 in which a plate-shaped speci-
men is shown with width, ¥, length, L and thickness, B, containing a central crack with length, 2a. It is
assumed that material behaviour is elastic — perfectly plastic and that the ligaments adjacent to the crack

have become fully plastic. For this case the specimen load is equal to the plastic limit load, Py, and is
given by

PL=0c,(W-2a)B. (8.19)

Owing to the load the length of the specimen, L, increases by AL. This specimen lengthening can be
divided into an elastic part

AL

AL =BwE

(8.20)
and a plastic part, ALy The plastic part is caused solely by the presence of the crack and is therefore ap-
proximated by the crack tip opening displacement, ;. Using equation (6.34), 5, can be related to J, lead-
ing to

J
ALy=8="". (8.21)

Go
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Figure 8.7. Centre cracked plate under limit load.

If J is sufficiently high, an increase dJ will involve the extension of each crack tip over a distance da.
Note that the material’s tearing behaviour determines the relation between dJ and da.
Increasing J by dJ implies an increase in plastic lengthening

dJ
d(ALy) = o, (8.22)

while at the same time a crack extension, da, causes a change in the (limit) load
dP =-20,Bda, (8.23)
leading to a decrease in elastic lengthening, i.e.

dP L 26.L

A(ALe) = Z =g -

(8.24)
Assume that the specimen is loaded under fixed grip conditions, i.e. the crack extends while the total
specimen lengthening, AL, remains constant. Instability will now occur as soon as the elastic shortening,
i.e. —=d(ALy), is larger than the plastic lengthening. Thus, using equations (8.22) and (8.24), the instability
criterion reads
26,L dJ

WE 92> - (8.25)

After rearranging this criterion to

2L EdJ
W ol da (8.26)

it can directly be compared with equation (8.17), i.e. Typp > Trngr-

The applied tearing modulus for the specific case considered here turns out to depend on geometrical
quantities only. The tendency is that tearing instability will occur sooner, i.e. at a lower amount of crack
growth, if the specimen has a high length to width ratio. This seems reasonable in view of the higher

amount of elastic energy stored in the specimen.

Applicability of the Tearing Modulus

Within the validity range of J-controlled crack growth, the tearing modulus concept
should be capable of predicting ductile instability. It requires the calculation of Ty, for
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a certain structural component and experimental data on Ty, for the component mate-
rial. However, its usefulness in practice must still be considered.

First it must be noted that criteria for initiation of crack extension, based on the K, G,
J or COD concept, are based only on stress, crack length and a single material parame-
ter. In general, no further information is needed for predicting initiation of fracture in a
component or structure.

In contrast with this, predicting ductile instability is very complex. Firstly, the ap-
plied tearing modulus, T,pp, not only depends on crack length and the load level, but
also on quantities such as specimen geometry, flow stress and strain hardening charac-
teristics of the material. In reference 10 of the bibliography J,p, — crack length a solu-
tions are presented for a number of standard geometries. Material properties such as E,
O, and strain hardening exponent n (cf. equation (6.32)) have to be substituted to obtain
the Japp — a curve for a cracked component of a specific material under a given load. For
other geometries calculations are required which relate to that specific case and thus
have no general validity.

Secondly, for most materials, the slope of the J-R curve becomes less steep with in-
creasing crack extension. This means that Ty, is not a constant material parameter.
Furthermore the J-R curve is found to depend strongly on the state of stress near the
crack tip or, more specifically, on the constraint in the thickness direction (i.e. plane
strain, plane stress), but also on the in-plane constraint. Numerical analyses show that
the in-plane constraint around a growing crack depends strongly on specimen geometry
and type of loading: for example, a deeply cracked SENB specimen shows a signifi-
cantly larger amount of in-plane constraint than a CCT specimen.

To understand why the J-R curve and thus the process of ductile crack growth is affected by the

amount of constraint, one needs to consider the hydrostatic stress component, oy, defined as the average
of the principle stresses, i.e.

Gy =3 (0, + 0y +53) . (8.27)

This hydrostatic stress component is responsible for the nucleation and growth of voids, which is an es-
sential step in the ductile tearing mechanism (see chapter 12). Since constraint determines the magnitude
of oy, dJ/{, for a given material can be expected to be affected also.

Evidently, the practical use of the tearing modulus concept is subject to many re-
strictions.

8.4 The Failure Assessment Diagram: CEGB R6 Procedure

Accurate failure assessments in an elastic-plastic context cannot be solely based on
fracture mechanics concepts but should also consider effects of plastic deformation. In
fact the Feddersen approach discussed in section 5.3 is an example in which the effect
of (contained) yield on failure is already considered.

During the last decades considerable effort has been put into the development of a
procedure that is able to deal with more widespread plasticity and the interaction with
fracture. This procedure is focused around a two-criteria approach which was originally
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introduced in 1975 by Dowling and Townley, see reference 11. In 1976 the Central
Electricity Generating Board in the UK (CEGB) published the first procedure for failure
assessment using the two-criteria approach. It has gained widespread attention and is
used in various countries.

Since the first publication numerous changes have been implemented. Here revision
3 of what is commonly referred to as the R6 procedure will be treated, see reference 12.
Note that roughly the same procedure is adopted by the British Standards Institution and
issued as a standard, see reference 5.

Principle
The load carrying capacity of a flawed structure is limited by two criteria. First of all the
linear elastic stress intensity factor K; must not be greater than the fracture toughness. In
the notation of the R6 procedure this is expressed in terms of the dimensionless pa-
rameter K, i.e.

Ky

Ki=g ~<1. (8.28)

Here K is a fracture toughness value whose precise definition depends on the type of
analysis, as will be discussed later.

The second criterion is that the applied load that actually contributes to plastic col-
lapse must not be larger than the plastic collapse load of the flawed structure. To ex-
press this criterion the parameter L, is introduced, which describes the proximity to
plastic yielding of the structure, i.e.

_ applied load that contributes to plastic collapse
T plastic yield load of the flawed structure

< pmax (8.29)

Note that the load needed for plastic yield is used and not that for plastic collapse. These
loads will be discussed further under the subheading “Evaluation of K, and L,”.
The value of L™ depends on the plastic behaviour of the material and more specifi-
cally on the amount of strain hardening, i.e.
Oo
Lax = P (8.30)
ys
where o, is again the flow stress, equal to the average of the yield strength, Gy, and the
ultimate tensile strength, oys. For ideal plastic (i.e. non-hardening) material behaviour
L would be 1, but in general L"®* is somewhat larger than 1.
The criteria (8.28) and (8.29) represent two distinct failure mechanisms. However,
some interaction between the mechanisms is to be expected and is included in the R6
procedure by replacing the inequality in equation (8.28) by

K <fiLy) . (8.31)

The criteria represented by inequalities (8.29) and (8.31) may be represented by a
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Figure 8.8. A Failure Assessment Diagram.

Failure Assessment Diagram (FAD) as depicted in figure 8.8. If the point (L, K})
calculated for the cracked body at extreme loading conditions lies within the region
bounded by equations (8.29) and (8.31), it is considered safe.

In the first version of the R6 procedure the limiting curve of the FAD was based on
Dugdale’s strip yield model (see chapter 3). Work hardening was incorporated implic-
itly by using an alternative definition of L; (then still called S;). Instead of the plastic
yield load being used, as in equation (8.29), the plastic limit load was chosen, which is a
quantity based on the flow stress acting on the net section. At the same time L, was lim-
ited to 1. Although this is satisfactory for most structural steels, this is not the case for
materials like austenitic steels, which show a low initial rate of, and a high capacity for
work hardening. The need arose to explicitly incorporate the details of the material’s
stress-strain behaviour.

Revision 3 of the R6 procedure uses the J integral to calculate K, an idea originally
introduced by Bloom, reference 13, and Shih et al., reference 14. The method developed
is based on the explicit formulation of J given in reference 10.

Failure Assessment Curve

In the R6 procedure three options are given for establishing a failure assessment curve.

These options require an increasing amount of material data and effort, but the results

are increasingly accurate (less conservative). For convenience, these options will be

treated in reversed order.

e Option 3: J integral analysis
In this option an assessment curve is obtained that is specific for the material and the
geometry considered. Stress analyses must be performed for the cracked structure,
for example using the finite element method, and values for the J integral should be
evaluated. For an appropriate range of L, values (and thus load values) both elastic
and elastic-plastic analyses should be performed, resulting in J, and J values respec-
tively.
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The failure assessment curve for this option is

Je
(L) = \/: , (8.32)

where J and J, are evaluated for equal values of L,. Clearly, for low L, values the as-
sessment curve will be almost equal to 1, while at higher values the value can be ex-
pected to drop.

In the actual assessment the following definition is used:

e

Kr - Jmat ’

(8.33)
where Jp,t depends on the type of analysis (see below). By combining equations
(8.32) and (8.33), it can be seen that in fact the assessment is based on the criterion J
< Jmat- The advantage in using the assessment curve lies in the fact that once this
curve is established for the geometry and material under consideration, the actual as-
sessment is based on J;, for which only an elastic calculation needs to be performed.

Although the Option 3 assessment curve requires a J analysis of the cracked
structure, it has the potential for greater accuracy than the approximate curves of
Options 2 and 1.

e Option 2: Approximate J integral analysis
As stated before, reference 10 gives J integral solutions for standard geometries.
These require the material stress-strain behaviour to be described in terms of the
Ramberg-Osgood relation, equation (6.32). However, not all materials are well de-
scribed by this relation. For this reason Ainsworth (reference 15) reformulated the J
solutions in such a way that the actual stress-strain relation of the material could be
used. In combination with equation (8.32) he obtained the assessment curve

Fo 12 -12

T¢ I

b= ( onr 21+ L%)j

In this expression a so-called reference stress, G, is introduced. This stress is de-
fined such that the ratio of Gyer to Gys is equal to Ly, i.e. Gref = L;Gys. From the refer-
ence stress a reference strain, €, is obtained using the material’s true stress-strain

(8.34)

curve.

In the case where the structure behaves elastically the first term in equation (8.34)
is equal to 1, and since L; << 1 the second term is negligible. On the other hand, for
fully plastic behaviour the first term is much larger than 1, while the second term still
remains smaller than 1. Therefore in these two extreme cases f{L,) is determined only
by the first term in equation (8.34). For the intermediate case where only small-scale
yielding occurs, the bulk behaviour of the structure is still elastic, i.e. Egpf & Oref.
The fact that J now already exceeds its elastic value must be reflected in a value for
A(L;) somewhat lower than 1. The second term in equation (8.34) accounts for this

correction.
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To diminish the correction of the second term in the case of fully plastic behav-
iour the denominator includes the term (1 + L?). However, it was found that this di-
minishing effect is not in all cases satisfactory, since it is based on L,. It should be
based on the extent to which the structure behaves fully plastically, which is de-
scribed by Egref/gref. Substituting this term for (1 + L2) in equation (8.34) leads to the
failure assessment curve for Option 2:

-12
E et L% Oys

SoLy) = (—Lr oy T 2E Srefj : (8.35)

Using the Option 2 assessment curve avoids the necessity of a full J analysis.
However, it still requires full knowledge of the (true) stress-strain curve of the mate-

rial.

Option 1: General failure assessment curve

The Option 1 curve is derived as an empirical fit to the Option 2 curves for several
commonly used materials, but biased towards the lower bound. The result of this fit
is:

fill)=(1-0.14 £L3){0.3 + 0.7 exp(-0.65 L) } . (8.36)

This curve is plotted in Figure 8.9. Note that this curve needs no material data apart
from oy and the flow stress, c,,. These are used to calculate L{™** according to equa-
tion (8.29). Typical values for some steel categories are indicated in figure 8.9.

For materials that show a discontinuous yield point, as is the case for a number of
structural steels, the use of the Option 1 curve should be restricted to L, < 1. The Op-

K, = (1-0.1412){0.3+0.7 exp(-0.65L8)}

0.6}

LM FOR A508
LM FOR MILD STEEL WELDS

0.2} L@ FOR AUSTENITIC

STEELS

Figure 8.9. The Option 1 failure assessment curve of the R6 procedure (reference 12).
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tion 2 curve for these materials predicts a sharp drop near L, = 1, which is not de-
scribed by equation (8.36).

Obviously, the Option 1 assessment curve requires the least amount of material
data and effort, but also leads to the most conservative failure assessment.

Evaluation of K, and L,

Before the assessment parameters K; and L, can be evaluated, stress analyses must be
performed. For Options 1 or 2 an elastic analysis of the uncracked structure suffices,
using any suitable method that yields the stresses in the region of the defect. As stated
before, Option 3 requires both an elastic and elastic-plastic stress analysis of the cracked
structure.

It is important to categorize the loads or resulting stresses with respect to their nature.
A distinction must be made between

o primary stresses, oP, defined as those stresses arising from loads which actually
contribute to plastic collapse, such as pressure, dead-weight or interaction with other
components,

e secondary stresses, %, which are self-equilibrating stresses not contributing to plas-
tic collapse and caused by, for example, local thermal gradients or welding.

In view of the definition of L, equation (8.29), it is obvious that secondary stresses
need not be considered to evaluate L., i.e.

__applied load giving rise to oP stresses
T plastic yield load of the flawed structure -

(8.37)

The definition of the plastic yield load also depends on the nature of the defect. For
through-thickness cracks this is the global yield load, which can be determined as the
limit load for the structure assuming no work hardening. For part-through cracks the
yield load is the load needed for plasticity to spread across the remaining ligament,
again without accounting for work hardening. The R6 procedure gives several examples
of, and references to, plastic yield load solutions.

Although secondary stresses are not relevant when calculating L,, they do contribute
to K;. Since this contribution is not straightforward it will be concisely reviewed here.

In the elastic range the stress intensity caused by secondary stresses, Kj, can simply
be added to that caused by primary stresses, K}. However, due to crack tip plasticity this
superposition will be an underestimate when stress levels become higher.? Ultimately, if
the structure shows significant plasticity due to high primary stresses, the effect of sec-
ondary stresses will again become small. To account for this interaction of primary and
secondary stresses a shift, p, is applied to the definition of K; in equation (8.28), i.e.:

2 Although the R6 procedure is primarily intended for elastic-plastic cases, the fact that a straightforward
superposition is an underestimate can also be understood by considering the LEFM correction for
crack tip plasticity suggested by Irwin. From equation (3.7) it is easily verified that Kj(c; + o,) >
Ki(o1) + Ki(o2).
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K

Kr:Kmat+p:

(8.38)
where K1 = K} + K].

The value of the shift depends on the magnitude of both primary and secondary
stresses. Based on finite element analyses the R6 procedure gives values for p depend-
ing on the magnitude of the primary stresses relative to the yield strength, expressed by
the value for L,:

o [,£08

The shift p is equal to p;, a value which is independent of L;, but is a function of a

parameter y according to

p1=0.1¢%714 — 0.007%% + 0.00003%° , (8.39)

where
K?L 8.40
X - KII) T ( . )

The parameter y can be considered a measure for the level of the secondary stresses
relative to the yield strength.’

e 08<L,<1.05
For increasing primary loads the shift is decreased linearly to zero according to

p=4p; (1.05-L,). (8.41)

o 1.05<L,
The shift p is set to zero. This is a conservative estimate since finite element analyses
suggest negative values for p in this L, range.

Note that for high levels of secondary stresses, i.e. for y > 4, the approach described
here may lead to a significant overestimation of the effect of secondary stresses, because
of plastic relaxation of peak elastic stresses that exceed the yield stress. However, to ac-
count for this an elastic-plastic analysis is required. Such an analysis is also required
when only secondary stresses are present.

The evaluation of K, also requires a value for K, to be set. This, however, depends
on the type of analysis that is chosen and will be treated under the subheading “Types of
Analyses”.

Flaw Characterisation

Generally, the geometry of flaws will not allow a straightforward analysis and some
simplifications must be made. This process, termed flaw characterisation, should be per-
formed with care since it must lead to conservative results. The following aspects need
to be considered:

3 Equation (8.40) suggests a dependency of y (and thus of p;) on L,. However, this is only seemingly so
since K} increases proportionally with L;.
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Orientation

Arbitrarily shaped flaws are represented by equivalent planar crack-like defects. A
flaw is projected on a plane either:

1) through its principal plane,

2) normal to the direction of the maximum principal stress or

3) normal to the surface and parallel to the principal axis of the flaw.

Note that only in the second case a pure mode I situation is obtained.

Shape

A distinction is made between through-thickness defects, semi-elliptical surface de-
fects and elliptical embedded defects. If the assessment indicates ligament failure for
either an embedded or a surface defect it may be re-characterised as a surface defect
or a through-thickness defect, respectively.

Interaction

The interaction between a defect and a neighbouring defect or a free surface can be
accounted for by assuming the ligaments to be part of the defect. If this does not
yield satisfactory results, one may use the more extensive interaction criteria given in
the Boiler and Pressure Vessel Code of the American Society of Mechanical Engi-
neers (ASME), Section XI (see reference 16) or the British Standards Institution
(BSI) Published Document 6493 (see reference 4). As a last resort, the calculation of
K, can be based on appropriate Ky solutions, if available, while L, follows from the
procedure already briefly described under the subheading “Evaluation of K; and L,”.

Types of Analyses

In the R6 procedure three analysis categories are defined:

e Analysis against Crack Initiation Criteria (Category 1)

This type of analysis is appropriate when failure is either brittle or is preceded by
only a limited amount of ductile tearing. It can also be used when the material shows
significant ductile tearing prior to failure, but then the increase in toughness involved
in crack growth cannot be taken into account. This can, however, be advantageous in
view of the relative simplicity of this type of analysis.

In LEFM cracks are assumed to initiate when Kj > Kj.. If a valid K. value can be
determined for the material, for example using the test method given in ASTM stan-
dard E 399, K;,,; in equations (8.28) or (8.38) is equal to Kj.. If no valid Kj. can be
obtained but the slope of the load-displacement test record does not deviate more
than 5% from the initial value, the conditional Kj. value, Kq, may be used for K.

If the nonlinearity of the load-displacement test record is larger, indicating signifi-
cant plastic deformation, K, must be determined using the J integral. If the total
crack extension prior to failure, Aa, which is defined as the sum of crack tip blunting
and stable tearing, is less than 0.2 mm, then

| EJ
Kinat = 1—v2° (8.42)




8. Failure Assessment Using EPFM 199

where J is evaluated at failure. When the total crack extension is larger, J in equation
(8.42) is evaluated at Aa = 0.2 mm. This is done by constructing a J-Aa regression
line more or less similar to that used for the Jj. determination according to ASTM
standard E 813. Note, however, that the R6 procedure is different, in the sense that
no distinction is made between blunting and actual crack growth.

Kr ‘k
T B
C
A
0 L >
0 1 Lmax

L
Figure 8.10. FAD for a category 1 analysis against crack initiation (reference 12).

The calculated K, and L, values represent a point in the FAD. For the condition
represented by point A in figure 8.10 crack initiation will not occur, since this point
lies on the safe side of the assessment line. Crack initiation can occur as a result of
changes in one or more parameters affecting the assessment. Such changes can be
represented on the FAD by the loci of points. For example, the line AB represents a
decrease of the initiation toughness for the material, and the line AC shows what
happens if the load applied to the structure is increased. Since points B and C lie on
the assessment curve, they represent different limiting conditions for the avoidance
of crack initiation.

Ductile Tearing Analysis (Categories 2 and 3)

If the assessment point of a Category 1 analysis lies outside the safe region of the
FAD, this does not always indicate a failure condition. For materials that exhibit sta-
ble crack growth by ductile tearing, the fracture toughness increases with crack
growth. As already expressed in equations (8.15) and (8.16), the crack will remain
stable as long as

Japp < Jmat (8.43.2)
and
aJ, dJ;
a mat
_Enaa <“da (8.43.b)

A Category 3 ductile tearing analysis is performed by calculating L, and K; for a
range of postulated crack extensions, Aa, starting from the initial crack length a,. In
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the calculation of K, according to equation (8.38), K is derived from the mate-
rial’s J resistance (J-R) curve for a crack growth increment Aa. As a result of crack
extension both K (or \/Kpp) and K, (or \/Kat) will increase. However, as long as
inequality (8.43.b) holds, K; will decrease. At the same time L, will increase some-
what as a result of crack growth, so in the FAD the locus of assessment points will be
directed roughly downwards from the point corresponding to the initial crack length
o.

Figure 8.11 gives an example of a Category 3 assessment. For equal initial crack
lengths assessment curves AB and CD are calculated at a load P and a much higher
load P, respectively. Curve AB lies entirely below the assessment curve and so no
cracking will occur at load level P;. Curve CD is first above and then tangent to the
assessment curve. This means that load level P, is the limiting load for this analysis,
since for any load smaller than P, the assessment points would eventually drop be-
low the assessment curve as a result of ductile tearing and thus crack growth would
stop.

Kr A
C
1 LOAD P,
|
A
LOAD P
S
x D
B
0 1 3
0 1 Lmax

Figure 8.11. FAD for a category 3 ductile tearing analysis (reference 12).

To be able to actually assess the tangency condition, it is imperative that the J re-
sistance data for the material, i.e. the J-R curve, extends over a sufficiently large
crack extension range. Very often such data are not available due to the limited di-
mensions of the test specimens used for determining the J-R curve. Specimen dimen-
sions restrict the maximum allowable J value to the smaller of

bo
Jmax =5 (8.44.2)
and
Bo,
Jimax = 2_50 > (8.44.b)

¢f. equation (7.30). Furthermore, crack growth must be J-controlled in order for an
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experimentally determined J-R curve to be applicable to an actual structure. For this
reason the maximum amount of crack growth, Aap.x, is related to the ligament size,
¢f. equation (8.13). In the R6 procedure

Adimax = 0.06(W — ag) + 0.2 . (8.45)

At the same time it is required that

_b A 10, (8.46)

©=J da
cf. equation (8.14).* Note that if the onset of instability cannot be assessed, the lim-
iting load resulting from a Category 3 analysis will be lower.

A Category 2 analysis requires less effort, while still providing a safeguard
against instability. In a Category 2 analysis L, and K, are evaluated only for two
crack lengths, i.e. at the initial size @, and at the size after a certain amount of crack
growth, aot+Aag. The crack growth Aag is the validity limit for the J-R test imposed
by either the maximum allowable J value or the maximum crack growth.

Both the Category 2 and 3 analyses consider ductile tearing due to a certain load.
It is assumed that no form of subcritical crack growth is involved during this tearing,
e.g. fatigue crack growth or sustained load fracture (see chapters 9 and 10 respec-
tively). If these crack growth mechanisms cannot be excluded, Category 2 or 3
analyses should only be applied to overload conditions. (Obviously subcritical crack
growth under normal loading should be taken into account to estimate the crack size
after a certain service time.)

Significance of Analysis Results

In practice it is not sufficient to define a limiting condition, e.g. a critical crack size or a
maximum load. It is important to obtain insight into the sensitivity of the result to
variations in input parameters, such as material data, loads and/or crack sizes. To do this
it is convenient to define reserve factors with respect to these parameters.

An important reserve factor is that with respect to the load, F*, which is defined as

_ Load producing a limiting condition

F- -
Load actually applied

(8.47)
The load producing a limiting condition corresponds to an assessment point (L, K;) ly-
ing on the failure assessment curve. In the absence of secondary stresses F- simply fol-
lows from scaling the actual assessment point along a line from the origin in the failure
assessment diagram. Referring to figure 8.10, the reserve factor F& = OC/gA. In the
case where both primary and secondary stresses are present the R6 procedure gives a
graphical procedure to account for the interaction between these two types of stress.

4 Under certain conditions the limits for J-controlled growth can be relaxed. This is the case if tests show
that specimen size is not relevant for the J-R curve or if the cross-section of the structure is thin and the
test specimens have the same thickness.
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For example, the reserve factors on crack size, F?, and on fracture toughness, F¥, are

_ Crack size producing limiting condition
= Actual crack size ’ (8.48)

_ Material fracture toughness
~ Fracture toughness producing limiting condition *

FK (8.49)

The minimum values for the relevant reserve factors needed to establish whether a
loading condition is acceptable follow from sensitivity analyses. In such analyses the
sensitivity of reserve factors to variations in load, secondary stresses, crack size, mate-
rial properties, etc. are evaluated. As an example, figure 8.12 schematically shows a pre-
ferred and a non-preferred variation of F- with crack length. In the non-preferred situa-
tion F- would most probably be required to be higher than 1.4 in order to reliably avoid
the limiting condition. Obviously the range of uncertainty in the parameter under con-
sideration should also be taken into account.

FL A FL A
14 14 T~
1.0 L ] S S
ASSESSED LIMITING ASSESSED LIMITING
CONDITION CONDITION CONDITION CONDITION
N  — —P I — »
CRACK LENGTH, a CRACK LENGTH, a

Figure 8.12. Preferred (left) and non-preferred (right) variation of load reserve factor with crack
length (reference 12).

For a Category 2 analysis a specific sensitivity analysis is suggested in the R6 procedure. Two load re-
serve factors, FE and F, Ig‘, are evaluated:

e FL at the initiation of crack growth, i.e. at crack length a, and the initial fracture toughness,
o F Ié after Aa, of ductile crack growth, i.e. at crack length a,+Aa, and an increased fracture toughness.

Since for a Category 2 analysis the acceptance of the loading condition generally relies on the increase in
fracture toughness caused by ductile tearing, F& will be relatively small and probably smaller than 1. To
ensure that F* increases sufficiently during ductile tearing, it is required that

FL
;f >12. (8.50.a)
o

Furthermore, at the validity limit of crack extension, Aag, the load reserve factor should have a certain
minimum value, i.e.

Fe>11. (8.50.b)
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9
Fatigue Crack
Growth

9.1 Introduction

In the middle of the nineteenth century failures were observed in bridges and railway
components that were subjected to repeated loading. Because the loading was such that
statically it would pose no problem, it was accepted very soon that the failures were a
consequence of the cyclic nature of the loading. A complicating factor was that most
failures occurred without any obvious warning. The problem was defined as metal fa-
tigue, which was considered as a fracture phenomenon caused by repeated or cyclic
loading. A rigorous definition of metal fatigue is difficult. In reference 1 it is defined as:
“Failure of a metal under a repeated or otherwise varying load which never reaches a
level sufficient to cause failure in a single application”.

In 1860 Wohler, a German railway engineer, proposed a method by which failure of
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L TOTAL LIFE N
™~ >
[INITIATION|F—{MICROCRACK GROWTHF—"{MACROCRACK GROWTH}—FINAL FAILURE]

CRACK PROPAGATION PERIOD

ALTERNATING STRESS RANGE, Ao

Ag, = FATIGUE LIMIT
STRESS RANGE

FATIGUE LIFE

Figure 9.1. Schematic representation of the fatigue life and its dependence on stress levels.
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cyclically loaded components could be avoided. Figure 9.1 shows a so-called Wohler
curve, which gives the fatigue lifetime as a function of the applied alternating stress
range.! Wohler found that by limiting the alternating stress range to a certain level the
life of the load bearing components would become virtually infinite. This safe level was
called the fatigue limit stress range* and was considered a material property provided
some special precautions were taken.

At the beginning of the 20t century it became increasingly clear that fatigue failure
is a progressive and localized process, involving both initiation of a crack and its growth
until instability. However, this was not generally accepted. For a long time fatigue was
considered as a gradual deterioration of a material subjected to repeated loads. A con-
siderable confusion about the nature of fatigue resulted. This changed around 1950
when a considerable interest in the initiation and growth of fatigue cracks arose. This
interest was stimulated by the understanding that the fatigue lifetime of a cyclically
loaded structure comprises stages of both crack initiation and propagation, as is also in-
dicated in figure 9.1.

In the context of this fracture mechanics course the division into microcrack and
macrocrack (or long crack) growth periods is of basic importance. This division can be
defined in various ways. An apparently very reasonable definition is that a macrocrack
has dimensions sufficient for its growth to depend only on bulk properties and condi-
tions rather than on local ones. In LEFM terms this means that macrocrack growth can
be described by the stress intensity factor concept. The merits of this approach will be
discussed in section 9.2.

As in the case of statically loaded cracks, there are plastic zones at the tips of propa-
gating fatigue cracks. These plastic zones have a significant effect on crack growth, to
be discussed in section 9.3. Another important influence is the effect of the environ-
ment. An overview of environmental effects on fatigue crack growth is given in section
9.4. However, the effects of material microstructure are not fully dealt with in this
chapter. Instead they form part of chapter 13, sections 13.3 and 13.4.

Sections 9.2 — 9.4 are concerned with the straightforward application of linear elastic
fracture mechanics to fatigue crack growth. In section 9.5 this application is extended to
predicting crack growth under constant amplitude loading. In sections 9.6 and 9.7 fa-
tigue crack propagation under variable amplitude loading and methods for its prediction
are discussed.

The initiation and growth of microcracks as a result of fatigue loading is an impor-
tant issue because these phases generally represent a major part of the total fatigue life-
time and also because knowledge of these phases is essential if one aims to prevent fa-
tigue damage to occur at all. In section 9.8 the relation between the fatigue limit stress
range and the threshold stress intensity range is considered. Furthermore, the growth of
microcracks (small compared to the notch dimensions) from the roots of notches will be

! This is also frequently referred to as an S/N curve.
2 In the literature the term ‘fatigue limit’ is often used, which is half the stress range at the fatigue limit,
i.e. the amplitude of the alternating stress at the fatigue limit.
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treated briefly. Finally, an engineering approach to the effect of defects on the fatigue
limit is discussed.

9.2 Description of Fatigue Crack Growth Using the Stress Intensity
Factor

A very important advance in metal fatigue during the past decades is the general un-
derstanding that structures can contain crack-like defects that are either introduced dur-
ing manufacturing, especially in case of welding, or form early during service. Virtually
the whole life of some structures can be occupied by fatigue crack growth from flaws.
Despite the fact that cyclic loading can change the deformation response of a metal and
its microstructure, leading to fatigue crack initiation, it is now generally accepted that in
engineering terms fatigue damage is best dealt with by a combination of ‘traditional’
lifing approaches (fatigue initiation) and lifing based on fatigue crack growth. Know-
ledge about fatigue crack growth is essential for the understanding and prediction of fa-
tigue behaviour of many structures.

The main question concerning fatigue crack growth is: how long does it take for a
crack to grow from a certain initial size to the maximum permissible size, i.e. the crack
size at which failure of a component or structure is just avoidable. This is one of the five
basic questions posed in section 1.3. There are three aspects to this question:

o the initial crack size, aq,
e the maximum permissible or critical crack size, ac;,
o the period of crack growth between a4 and a;.

The initial crack size, a4, corresponds to the minimum size that can be reliably de-
tected using non-destructive inspection (NDI) techniques, or it corresponds to a crack
size that cannot be detected but is assumed to be present. Secondly, the maximum per-
missible crack size, a;, can be determined, at least in principle, using LEFM or EPFM
analysis to predict the onset of unstable crack extension. The third aspect requires
knowledge of a fatigue crack growth curve, schematically shown in figure 9.2. Note that
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Figure 9.2. Schematic fatigue crack growth curve.
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there is also an initial discontinuity size, a,, which is not the same as a4 and is non-zero.
This is because real components and structures often contain initially non-detectable
discontinuities (voids, flaws, damage, inhomogeneities).

At this point it is convenient to define some parameters that are used to describe fa-
tigue crack growth. In figure 9.3 a varying load is shown with a constant stress ampli-
tude and mean stress.’ The stress ratio R is defined as Omin/g, ., the stress range Ac =
Gmax — Omin and the mean stress Gmean = ¥2(Cmax + Omin)- Note that any combination of
two of the parameters R, AG, Gpin, Omax and Gmean completely defines the load.

A

STRESS, ¢

TIME

Figure 9.3. Variables describing fatigue loading.

If the maximum load level in fatigue is well below the critical value for the onset of
unstable crack extension, as is generally the case, LEFM can be applied. For a given
crack length all stress levels can then be converted to corresponding Ky values using the
appropriate relation, e.g. Kj = CG\/E -falw).

The fatigue crack propagation rate is defined as the crack extension, Aa, during a
small number of cycles, An, i.e. the propagation rate is Ad/Ay, which is usually written
as the differential da/g;. Because crack growth during one cycle is discontinuous, i.e.
there is an enhanced crack length increase during the rising part of the load and far less
or no crack growth during the descending part, the minimum value of dn is one cycle.

Experimental determination of fatigue crack growth curves for every type of compo-
nent, loading condition, and crack size, shape and orientation in a structure is impracti-
cal, not to say impossible. Fortunately, at least for constant amplitude loading, one can
use the correlation between fatigue crack growth rate, da/q;, and the stress intensity
range, AK, already discussed in section 1.10.

The correlation of AK and da/4;, for constant amplitude loading was a very important
discovery. For example, suppose the relation between da/q;, and AK is known from
standard tests. Then provided the stress intensity — crack length relationship can be de-
termined for a component, it is possible to specify da/g; for each crack length, and the

3 Inthe figure a sinusoidal load is shown, but other waveforms could also be assumed.
4 In this chapter, as is usual in fatigue, the mode I stress intensity factor will be conveniently denoted as
K, i.e. without the subscript 1.
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required @ — n curve can be constructed by integrating the standard da/q;, — AK data
over the appropriate range of crack length (a4 to a, in figure 9.2).

The notion that da/g, is fully determined by AK is known as the similitude approach,
with AK as a similitude parameter. The approach can be defined as: “similar conditions
applied to the same system will have similar consequences”, see reference 2. More spe-
cifically, a similar K cycle applied to a crack in a standard specimen will induce the
same crack length increment as when applied to a crack in a structure with an arbitrary
geometry consisting of the same material.

This rule seems logical and physically sound, but careful examination is needed to
assure that similar conditions do indeed apply. In the case of fatigue crack growth, as
will be discussed below, it is often found that besides AK the crack growth rate also de-
pends on stress ratio, load frequency, environment, shape of the load cycle, temperature,
and load history. Moreover, in view of the stress state, material thickness and crack ge-
ometry can also be significant.

The Fatigue Crack Growth Rate Curve d8/gn — AK

The characteristic sigmoidal shape of a da/4,, — AK fatigue crack growth rate curve is
shown in figure 9.4, which divides the curve into three regions according to the curve
shape, the mechanisms of crack extension and various influences on the curve. In region
I there is a threshold stress intensity range, AKy,, below which cracks either propagate at
an extremely low rate or do not propagate at all. Knowledge of AKy, permits the calcu-
lation of permissible crack lengths and/or applied stresses in order to avoid fatigue crack
growth. Above the threshold value the crack growth rate increases relatively rapidly
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with increasing AK.

In region II the crack growth rate, da/q;, is often some power function of AK, lead-
ing to a linear relation between log(da/4;) and log(AK). Finally, in region III the crack
growth rate curve rises to an asymptote where the maximum stress intensity factor,
Kax, in the fatigue stress cycle becomes equal to the critical stress intensity factor, K.

There have been many attempts to describe the crack growth rate curve by ‘crack
growth laws’, which usually are semi or wholly empirical formulae fitted to a set of
data. The most widely known is the Paris equation

d
0= CAKy". ©.1)

Forman proposed the following well-known ‘improved’ relation:

da___ CAKy"

dn = (1-R)K.—AK ©.2)

Paris’ equation describes only the linear log-log (region II) part of the crack growth
curve, as indicated in figure 9.4, while Forman’s equation also describes region III.
It is also possible to describe the complete d4/4, — AK curve by an expression like

. [AKthjnl
da -\ AK

dn = CAKY"

, (9.3)

where ny, np and n3 are empirically adjusted exponents. McEvily, reference 3, devel-
oped yet another relatively simple equation:

da

dn = CAK — AKy)? (1 ©4)

* Kc - Kmaxj ’

The significance of such equations is limited, but they can be useful in providing a
first estimate of crack growth behaviour, especially if the material concerned exhibits
region II behaviour over a wide range of crack growth rates (see section 9.5). An exam-
ple is given in figure 9.5. The material is a higher strength structural steel often used for
offshore structures, reference 4 of the bibliography to this chapter.

Figure 9.6 gives an impression of the crack growth rate behaviour of a number of
well-known structural materials for low values of the stress ratio, R = Omin/g, . (the
numbers in square brackets are references in the bibliography). The positions of the
crack growth rate curves for the various types of material represent a general trend.
Thus aluminium alloys generally have higher crack propagation rates than titanium al-
loys or steels at the same AK values, and the data for steels fall within a surprisingly
narrow scatter band despite large differences in composition, microstructure and yield
strength.
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materials at low R values.

The ability of AK to correlate fatigue crack growth rate data depends to a large extent
on the fact that the alternating stresses causing crack growth are small compared to the
yield strength. Therefore crack tip plastic zones are small compared to crack length or
other relevant dimensions, e.g. ligament size, even in very ductile materials like stain-
less steels.

However, even though they are small, fatigue crack plastic zones can significantly
affect the crack growth behaviour. This will be shown in the next section.

9.3 The Effects of Stress Ratio and Crack Tip Plasticity: Crack Closure

The Paris equation states that da/q; is solely determined by AK. Other influences
were thought to be secondary to that of AK and as a consequence they were neglected.
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Figure 9.7. Influence of R on fatigue crack growth in aluminium alloy 2024-T3 Alclad sheet.

The effect of the stress ratio, R, was also assumed to be a secondary effect, but later ex-
periments showed that for many materials R can significantly affect fatigue crack
growth behaviour. This is expressed by the equation already given in section 1.10, i.e.

da

4 = TOK.R) . (9.5)

In other words, besides the stress intensity range, AK, there is an influence of the
relative values of Kiax and K, since R = Omin/g, = Kinin/ Komax- This is illustrated in
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figure 9.7, which shows that crack growth rates at the same AK value are generally
higher when R is more positive.

There is no immediately obvious explanation for the effect of R. A proper explana-
tion requires the understanding of crack closure, to be discussed next. However, it is
worth noting here that the effect of R has proved to be strongly material dependent, a
fact readily observed by comparing figures 9.5 and 9.7.

Crack Tip Plasticity and Crack Closure

In the early 1970s Elber (reference 10 of the bibliography) discovered the phenomenon
of crack closure, which can help in explaining the effect of R on crack growth rates. He
found that fatigue cracks are closed for a significant portion of a tensile load cycle,
probably owing to residual plastic deformation left in the wake of a growing crack. This
phenomenon is normally designated as plasticity-induced crack closure.

At the tip of a growing fatigue crack each loading cycle generates a monotonic plas-
tic zone during increased loading and a much smaller reversed (cyclic) plastic zone
during unloading. The reversed plastic zone is approximately one-quarter of the size of
the monotonic plastic zone. This means there is residual plastic deformation consisting
of monotonically stretched material.

The relative sizes of the monotonic and cyclic plastic zones can be understood from a superposition

model. Figure 9.8.a shows Irwin’s solution for the (forward) monotonic plastic zone with a size given by
(cf. section 3.2)

OyA OyA
& B
C
K = Kmax K=-aK _2r
X X
" 2ry
—26ys —
OyA
A
N X
—Gys |—

Figure 9.8. Superposition model for the relative sizes of monotonic and cyclic plastic zones at
the tip of a fatigue crack.
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1 [<max 2
2, =22 (9.6)

T\ Oys

To obtain the solution (figure 9.8.c) for a zone of reversed plastic flow, i.e. o, changing from +Gy to —Gy
on unloading, it is necessary to subtract the solution in figure 9.8.b from that in figure 9.8.a. In the solu-
tion shown in figure 9.8.b the yield stress is ‘doubled’. Therefore it can be argued that the size of the re-
versed (cyclic) plastic zone, 27, depends on the magnitude of AK and twice the yield strength, i.e.

c_Ll(AKY
2= (2%) . 9.7)

Consequently, for R = 0 the ratio of the monotonic and cyclic plastic zone sizes is 4, because now AK =
K nax- For positive R the ratio is smaller than 4 and for negative R it is larger.

As the crack grows the residual plastic deformation forms a wake of monotonically
stretched material along and perpendicular to the crack flanks. This is depicted in figure
9.9 for the case of gradually increasing K levels and hence gradually increasing plastic
zone sizes.

MONOTONIC CRACK
TIP PLASTIC ZONE

RESIDUAL DEFORMATION

CYCLIC CRACK TIP
PLASTIC ZONE

Figure 9.9. Zones of plastic deformation in the vicinity of a fatigue crack.

Because the residual deformation illustrated in figure 9.9 is the consequence of ten-
sile loading, the material in the crack flanks is elongated normal to the crack surfaces
and has to be accommodated by the surrounding elastically stressed material. This is no
problem as long as the crack is open, since then the crack flanks will simply show a dis-
placement normal to the crack surfaces. However, as the fatigue load decreases the
crack will tend to close and the residual deformation becomes important. This will be
illustrated with the help of figure 9.10, as follows:

1) Figure 9.10.a shows the variation in the nominal stress intensity factor, K, with ap-
plied stress, o.

2) Figure 9.10.b shows that as the applied stress decreases from oy, the crack tip
opening angle decreases owing to elastic relaxation of the cracked body. However,
the crack surfaces are prevented from becoming parallel because the stretched mate-
rial along the flanks causes closure before zero load is reached. This closure results
in the flanks exerting reaction forces onto each other. Since this is a case of crack-
line loading, see section 2.5, a mode I stress intensity will develop which increases as
the applied stress decreases.
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Figure 9.10. Principal of crack closure: (a) nominal K-c plot, (b) residual deformation due to
crack tip plasticity results in mode | crack-line loading K values, compare section
2.5, (c) superposition of K values shows the effect of crack closure.

3) Figure 9.10.c shows superposition of the stress intensities due to the applied stress
and due to reaction forces (the latter defined as crack closure). Also the crack open-
ing stress, Gop, is indicated. This important concept was defined by Elber as that
value of applied stress for which the crack is just fully open. It can be determined
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experimentally from the change in compliance: increasing crack closure results in an

increase of stiffness and a decrease in compliance. Elber further suggested that for

fatigue crack growth to occur the crack must be fully open. Thus an effective stress

intensity range, AKcfp, can be defined from the stress range Gmax — Ggp. Obviously

AKsr is smaller than the nominal AK.

Elber’s suggestion that fatigue crack growth occurs only when the crack is fully open is not entirely
correct. In fact it would be better to define AK.g as Ky — Kiinesr> see figure 9.10.c. However, K, efr

cannot be determined experimentally, whereas the crack opening stress, G,p, can be determined by meas-
uring a stress-displacement curve (see figure 9.11).
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Figure 9.11. Measuring the crack opening stress by means of a stress-displacement curve.

As schematically shown in figure 9.11, the stress-displacement curve is linear above o,,: the crack is
fully open and the stiffness does not change provided the crack does not grow significantly during the
measurement. Below o, the crack will close increasingly as the stress decreases. This is reflected by an
increasing slope of the stress-displacement curve. The stress below which the curve starts to deviate from
linearity can be considered the crack opening stress, Gp.

Note that to perform this closure measurement the displacement has to be accurately determined at a
well-chosen place using a strain gauge, a clip gauge or another displacement measurement device. Fur-
thermore, a slight hysteresis is often visible between loading and unloading. This leads to a difference
between o, and the stress at which the crack starts closing during unloading. For convenience this effect
is ignored here.

A higher R value implies a higher mean load relative to the load amplitude. As a re-
sult the crack flanks will be relatively further apart. This leads to less crack closure, i.e.
AK¢r becomes more nearly equal to AK. Elber therefore proposed that AK.¢ accounts
for the effect of R on crack growth rates, so that

% = flAKefr) , ©-8)

¢f. equation (9.5). He also obtained the empirical relationship

AKefr

AK U=0.5+04R for-0.1<R<+0.7, 9.9)

which enabled crack growth rates for the indicated range of R values to be correlated by
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Figure 9.12. Crack growth rate data from figure 9.7 correlated by AK (reference 7 of the bib-
liography).

AKegr. This crack closure function, which was obtained for the aluminium alloy 2024-
T3, has been modified by Schijve (reference 11 of the bibliography) as follows:

U=055+035R+0.1R> for-1 <R<+1. 9.10)

The usefulness of equation (9.10) is demonstrated by figure 9.12, in which the crack
growth rate data from figure 9.7 are plotted against AKc¢. Although equations (9.9) and
(9.10) were found for aluminium alloy 2024-T3, they can often be used for other metal
alloys too.

Elber measured o, values from stress-displacement curves (the principle is shown in figure 9.11). In
contrast with this, Schijve used a similitude approach by using the assumption that an equal AK leads to
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an equal 44/4;,. He used a quadratic crack closure function, U, to let the 4a/q,, — AK ¢ curves for different
R values coincide, ¢f- figures 9.7 and 9.12. An additional and necessary constraint was added to obtain the
result, i.e. the assumption that AK ¢ = AK for R = 1. This implies U =1 for R = 1 and thus that the sum of
the coefficients of the quadratic crack closure function must be 1.

In general, exactly the same correlation will be found between 4a/q,, and either AK i = U(R) AK or
AK = q U(R) AK = U(R)" AK, where ¢ is an arbitrary constant (see reference 2). The resulting ratios of
the coefficients of U(R) and U(R)" are the same, i.e. for a quadratic U: a/b/c = galgblgc. In the da/g, —
AK.g plot given in figure 9.12, the use of U(R)” instead of U(R) only results in a shift to the left or to the
right, depending on g, but the correlation is the same. To obtain a definite solution either a physical meas-
urement, such as performed by Elber (see fig. 9.11), is needed or a U value must be assumed for a certain
R value.

Note that it is not always correct to assume that closure occurs for all R < 1. For example, recent
measurements on aluminium alloy 5083 showed that closure is absent for R > 0.5 (reference 12). In gen-
eral to obtain a quadratic closure function of the form of equation (9.10) the coefficients must satisfy

a+bR.+cR =1,

where R, is the R value above which closure is absent. The closure function U now becomes 1 for R = R,
while for R > R, the U value should be taken as 1.

Since Elber’s discovery of crack closure, numerous papers have been written on this
subject. Crack closure has made the application of the similitude approach more diffi-
cult. A prediction of da/g;, in a cracked structure not only requires that the K applied to
the structure is known, but also the history of K during previous load cycles. Although
models have been developed to predict the variation of crack closure for any arbitrary K
history, many problems are involved and several assumptions must be made. For load-
ing situations with a slowly changing Kpay, i.e. a low dKmax/dq, the situation is less dif-
ficult, since standard relations as presented by Elber or Schijve can be adopted to cal-
culate AKst.

Other Causes for Crack Closure

The approaches used by Elber and Schijve implicitly assume that (plasticity-induced)
crack closure is responsible for all load-ratio effects, and that the crack closure function
U = AKeff/AK is a function of R alone. However, some authors, e.g. reference 13, ob-
served that besides R the closure function U may also depend on Kj,x. This is specially
the case for high loads and high R values.

Another factor that may play a role in the amount of closure is the crack front ge-
ometry. The experimental conditions under which both Elber and Schijve measured
crack growth and closure for the aluminium alloy 2024-T3 were such that shear lips
(see section 3.6) are likely to have been present on part of the fracture surfaces. This
may cause additional closure as is illustrated in figure 9.13.

More recently it was shown that the roughness of shear lips can also affect the
amount of crack closure, see reference 15. Figure 9.14 shows fracture surfaces of
specimens of aluminium alloy 2024 subjected to identical fatigue loads but at different
frequencies. At the higher frequency a lower crack growth rate was found, which was
attributed to roughness-induced crack closure. Note that this type of closure can also re-
sult from the microstructure. For example, a large grain size may lead to crack path
tortuosity and thus to more roughness-induced closure.
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Figure 9.13. Cross-section of a through-thickness crack showing additional closure due to
shear lips (from reference 14).

Other closure mechanisms have also been reported, such as (microstructural) trans-
formation of material near the crack, formation of oxides or corrosion products on the
crack surfaces or a (viscous) fluid resisting the closing and opening of the crack.

Stress Ratio Effect on Fatigue Threshold Stress Intensity Range

Besides the influence on crack growth rate in the AK range where the Paris equation is
valid, crack closure plays an even more important role in the threshold region. In this
region of very low crack growth rates the loads are low leading to small average crack
opening values. This means that different closure mechanisms can be operative. For
materials with only limited closure effects AKy, is more or less independent of R. On the
other hand, for example, AKy, for the aluminium alloy 2024-T3 decreases with increas-

Figure 9.14. Smooth (top) and rough (bottom) shear lips on aluminium alloy 2024 fatigue frac-
ture surfaces formed at frequencies of 0.2 and 20 Hz, respectively, both at a con-
stant AK = 20 MPay/m, R = 0.11 and 42-55% relative humidity.
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Figure 9.15. Threshold stress intensity range for fatigue crack growth as a function of R for
aluminium alloy 2024-T3 (reference 16).

ing stress ratio R, as is clearly shown in figure 9.15. In this alloy closure plays a signifi-
cant role (see also figures 9.7 and 9.12).

A simple description of the effect of R on the fatigue crack growth threshold is given
by Schmidt and Paris (reference 17). They assumed that

o the threshold condition for fatigue crack growth corresponds to a constant effective
stress intensity range, AKy, ¢fr, that is independent of R,

e no crack closure will occur at R values above a certain critical value, R,

e the opening stress intensity level, K, is independent of R for R < R, i.e. when crack
closure does occur.

The consequences of these assumptions are depicted in figure 9.16, where Kax, Kmins
Kop, all at the threshold of crack growth, and AKy, are plotted as a function of R. For R <
R, i.e. in the presence of closure, Kiyax = Kop + AKin efr, and since both Ko, and AKy, efr
are assumed constant Ky.x must be constant too. This implies that AKy, will vary line-
arly with R according to AKy, = (1 — R)Kax. For R > R, i.e. in the absence of crack clo-
sure, AKy, will be constant and equal to AKy, ofr. Clearly both Kinax and Kpin will now
increase with R.

9.4 Environmental Effects

Fatigue crack growth is a complex process influenced by a number of variabl