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Abstract
Adopting a 1DV numerical model including the standard k-E turbulence model, Winterwerp et
al. (1999) calculated a saturation concentration for an initially uniform distribution of fine
sediment concentration in steady flow. At concentrations exceeding the saturation concentration
the concentration profile collapsed and aU sediment was deposited as fluid mud. In this report
similar computations are presented using the Prandtl mixing-lengthmodel.New expressions for
the damping functions accounting for buoyancy effects are derived from three conditions: 1) in
the case of equilibrium the concentrationshould be bounded for all gradientRichardson numbers,
2) the mathematical model should be stabie and 3) the relationship between flux Richardson
number and gradient Richardson number should agree with empirical data. Numerical results
obtained with this model, such as the saturation concentration, agree fairly weUwith those of
Winterwerp et al. (1999). It is shown that the saturation concentration is sensitive to the
coefficients in the damping functions. This concentration may increase markedly for values of
these coefficients that differ from those selected herein.
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1 Introduetion

Turbulence tends to counteract the settling of suspended sediment particles, as it causes an
upward transport of mass in the case where the sediment concentration increases with depth. In
a steady-state situation an equilibrium concentrationdistributionmay exist so that the net vertical
transport of sediment vanishes. Teisson et al. (1993) present an argument based on the concept
of a maximum flux Richardson number, by which an upper bound to the maximum equilibrium
concentration is obtained. Teisson et al. also present results of computations using a Reynolds
stress turbulence model that support their argument.Winterwerp et al. (1999) apply the standard
k-e turbulence model including buoyancy effectsto quasi-uniform flow over a horizontal bed and
the vertical exchange of fine sediment. Initially the vertical concentrationdistribution is uniform
and the velocity distribution is logarithmic. Those authors find that in steady flow a complete
collapse ofthe concentration profile will result, ifthe initial concentrationexceeds a critical value
and the deposited sediment behaves as a dense fluid (fluid mud). This critical value is denoted
herein as the saturation concentration.

A turbulence model that is easy to implement is the Prandtl mixing-length (PML) model. In
this model density stratification caused by the sediment is accounted for by so-called damping
functions which depend on the gradient Richardson number. These functions are derived from
observations in most cases, and therefore lack universality. As a consequence, the simplicity of
the PML model is at the expense of a less predictive value for sediment-laden flow.

The purpose of this report is to derive conditions the damping functions have to satisfy, so
that the PML model is in agreement with the analysis of Teisson et al. (1993) and, as a
consequence, also prediets a saturation concentration. These conditions aid in estimating
damping functions from empirical data.

The determination of the damping functions indicated is presented in Section 2 of this report.
Results of numerical simulations similar to those of Winterwerp et al. (1999) are discussed in
Section 3. Conclusions resulting from this work are drawn in Section 4.
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2 IDV Prandtl mixing-Iength model

2.1 Equations

The flow considered is quasi-uniform, shallow-water shear flow over a horizontal bed. Fine
sediment is suspended in this flow.

Neglecting advective acceleration and adopting the Boussinesq approximation, the equation
of motion in the direction of the flow becomes

au ah
= -g-at ax

a- -<uw>az (2.1)

where U is the mean flow velocity, t time, g the acceleration of gravity, h the water depth, x the
streamwise coordinate, z the vertical coordinate (positiveupward, z = 0 at the bed) and <uw> the
turbulent shear stress.

Imposing a discharge q given by

h

q = f Udz
o

(2.2)

that does not change with time and assuming zero shear stress at the free surface, (2.1) can be
written as

au
at

U 2
*-
h

a- -<uw>az (2.3)

where u. is the (time dependent) frictionvelocity at the bed given by u.2 = -<uw>(Zo,t).Here Zo
is the roughness height of the bed, which is assumed hydraulically rough.

The 1DV mass balance equation for the sediment reads

se a
= -(W c - <wc»at az s

(2.4)

where C is the mean concentration,Ws the settlingvelocity and <wc> the vertical turbulent mass
transport. The effect ofhindered settlingon the settlingvelocity is not considered herein, because
it is not needed for the analysis. However, it could be included easily.

The equations for turbulence closure according to the PML model can be written as (e.g.,
Rodi,1980)
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<uw> (2.5)

<wc> = _ /2(z) aU Iac G(Ri)
at az I az (2.6)

where l(z) and at are mixing length and turbulent Prandtl-Schmidt number under neutral
conditions, F and G are damping functions, and Ri is the gradient Richardson number defined
by

(2.7)

Here Il.= (Ps - Pw)/Ps, p, is the density ofthe sediment and p; the density ofthe water.
The assumed distribution of the mixing length in the water column is the Bakhmetev profile,

( )

112

/(z) = Kz 1 - ~ (2.8)

where 'K ::::0.41 is the Von Karman constant.
The boundary conditions at the free surface are

<uw> (h,t) = 0 (2.9)

W C (h,t) - <wc>(h,t) = 0s (2.10)

Equations (2.9) and (2.5) yield as a condition for the velocity that ~u(h,t)/az2 should vanish.
Equations (2.10) and (2.6) give C(h,t) = O.The boundary conditions at the bed are

(2.11)

(2.12)
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Assuming near-neutral conditions near the bed, the above equations yield for the Richardson
number at z = Zo

(2.13)

The conditions near the bed are indeed near-neutral provided Ri(Zo,t) « 1. This condition is
satisfied for fine sediments in many cases, unless the sediment is deposited.

Deposited sediment is treated as fluid mud, that is, as adense fluid.

2.2 Equilibrium conditions

An equilibrium concentration distribution may develop under steady-state conditions. The time
derivatives in (2.3) and (2.4) then vanish so that these equations together with (2.5) - (2.8) give

RiG(Ri)

°tF3/2(Ri)
ilgW h

= 'IC s
U 3

:;:

z C(z)----
h - z Pw

(2.14)

The right-hand side ofthis equation is identical to Teisson et al.'s (1993) estimate ofthe flux
Richardson number inthe case of equilibrium. Because inshear flow the flux Richardson number
is bounded (also see Section 2.3), this implies for the PML model that the left -hand side of (2.14)
also should be bounded. Defining damping functions F and Ginthe interval 0 s Ri < 00, this
means that the left-hand side of(2.14) should be bounded for all Ri z O. This condition will
always be satisfied, ifthe limit of RiG1F3/2for Ri --+ 00 exists.

Assuming damping functions ofthe well-known form

F(Ri) = (1 + A Ri)-a (2.15)

G(Ri) = (1 + BRi)-b (2.16)

where A, B, a and b are positive constants, it is therefore required that

31 + -a - b ~ 0
2

(2.17)
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Kranenburg (1982) derived stability conditions forthe mathematical model under consideration
(that is, not a discretised representation of it) by requiring that small-amplitude disturbances
superimposed on a steady-state solution do not grow. In the case of (2.15) and (2.16), a sufticient
condition for stability resulting from this work is

31 + -a - b ~ 0
2

(2.18)

The PML model therefore satisfies both Teisson et al.'s (1993) result and the stability condition
(2.18), provided

31 + -a - b = 0
2

(2.19)

2.3 Damping functions in tbe PML model

Damping functions are not only used in the PML model, but also in turbulence models of the
Taylor-Kolmogorov(TK) type. In lDV models ofthe latter type (minus) the vertical velocity and
concentration gradients are multiplied by an algebraic eddy viscosity and eddy diffusivity,
respectively, to obtain vertical turbulent transports of momentum and mass. The damping
functions in these two types ofmodels are different, as can be seen in the following way.

Denoting damping functions in the PML model by Fp and Gp, and those in the TK model by
FfK and GTK, the two turbulence models can be written, for au/az> 0, as

(2.20)

<wc> = _!.:_ au ac G
at az az P

ui ac
= ---Gat az TK

(2.21)

Assuming in these equations <uw> = -u,", it follows that

(2.22)

(2.23)
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These results satisfy the condition that all damping functions are equal to one for Ri = o.
Furthermore, the expression for the turbulent Prandtl-Schmidt number (=OtF/G) is the same for
both models: OtFp/Gp= 0tFTK/GTK.

The widely used Munk-Anderson (1948) damping functions, for example, apply to the TK
model and have, in (2.15) and (2.16), a= 0.5 and b = 1.5. Substituting from (2.22) and (2.23) and
assuming for the sake of convenience B = A, the corresponding damping functions in the PML
model have a = 2 x 0.5 = 1.0 and b = 0.5 + 1.5= 2.0. It is noted that these values of a and b do
not satisfy (2.19).

Further quantitative results for the damping functions can be obtained from empirical data
concerning the flux Richardson number Rf' which for the PML model becomes

~g<wc> RiGp
R = ---""------ - --
f -Pw <uw>au/az (2.24)

Again assuming B = A and adopting (2.19), R, is found to reach a maximum for Ri = Ri.,=
2/(aA). The maximum, Rfm'of R, is given by

Ri ( ) (2 + a)/2R = _m a
fm ° 2+a, (2.25)

Reasonable values of~ and Ri., are about 0.15 and 0.4, respectively (e.g., Schumann and Gerz,
1995;Mizushina et al. 1978).Assuming o, = 0.7 this gives A = B = 2.4 and a = 2 (so that b = 4).

Taking into account (2.22) and (2.23), the damping functions thus obtained agree fairly well
with the data ofUeda et al. (1981). However, these functions underestimate the damping found
by Uittenbogaard (1993). Lehfeldt andBloss (1988) applied (2.15)and (2.16) withA =B = 3 and
a =1, b = 3 together with the TK model. These values of a and b correspond with those obtained
for the PML model. Lehfeldt and Bloss found satisfactory agreement with observations of
salinity and temperature in a well-mixed estuary and in a stratified estuary.

In the case where B = A and (2.19) is satisfied, it follows from (2.14) that for an equilibrium
distribution

_C_(z_) < _1__ U_*_3 _ h - z
Pw KO,A ~gW$h

(2.26)
z

This result is similar to that derived by Teisson et al. (1993). As a numerical example the case
exarnined by Winterwerp et al. (1999) is considered:
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Pw= 1020 kg/nr',
Ps = 2650 kg/m",
1C = 0.41,
at = 0.7,
h= 16m,
Ws = 0.5 mrnJs and
u. = 9.45 mrnJs (which is the initial value in the computations of these authors, who

assumed Zo = 1mm and depth-averaged flow velocity = 0.2 mis).

Furthermore, A = 2.4. For these values ofthe parameters, (2.26) gives for the concentration at
mid-depth, for example: C(h/2) < 0.026 kg/m'. This upper bound is close to the saturation
concentration of 0.023 kg/m' found by Winterwerp et al. (1999).
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3 Numerical computations

3.1 Case examined

To compare results ofthe PML model with results ofthe standard k-e model (Winterwerp et al.,
1999) ingreater detail, Equations (2.3) - (2.12) were solved numerically for the conditions those
authors selected.

As before, the water depth is 16 m, the roughness height is 1 mm, the depth-averaged flow
velocity is constant and equal to 0.2 mis, the settling velocity is 0.5 mrnJs, the densities of water
and sediment are 1020 and 2650 kg/nr', the turbulent Prandtl-Schmidt number for neutral
conditions is 0.7, and the Von Karman constant is 0.41. The coefficients in the damping
functions are adopted from the previous section: A = B = 2.4, a = 2 and b = 4.

The numeri cal scheme used is the explicit Euler scheme, the time step is 1 s, and the water
column is discretised in 51 equidistant grid points. The differences from computations with 101
grid points are minor.

A logarithmic velocity profile and a uniform concentration distribution are prescribed as
initial conditions,

U(z,O) u* z= -ln-
l( Zo

(3.1)

C(z,O) = Ci (3.2)

where ei is a constant.
The boundary conditions are given by (2.9) - (2.12). The friction velocity u., which decreases

in the course of time because of density stratification, is determined from an approximate
analytical solution nearthe bed of(2.5) in which <uw> ::::-u,", (2.8) in which z/h « 1, and (2.15)
in which use is made of the computed value of Ri in the first grid point above the bed.
Stratification is included, because in the case of collapse of the concentration profile the flow
near the bed becomes stratified.

3.2 Results

Some computational results are shown in Figures 3.1, 3.2 and 3.3 for ei= 0.010, 0.020 and 0.024
kg/m", respectively. Figure 3.1 shows that in an upper part ofthe water column the sediment
initially settles, as a result of which concentrations closer to the bed increase. Equilibrium is
reached relatively fast, after about 400 min. The velocity distribution hardly changes with time.
At the higher initial concentration of 0.020 kg/m' the concentrations near the bed become much
higher and much more time is needed to reach equilibrium (about 900 min., see Figure 3.2).

Figure 3.3 with ei= 0.024 kg/m? shows a completely different picture. Although a tendency
to develop an equilibrium concentration distribution exists during the fust 500 min. or so, the
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concentration profile eventually collapses completely so that after about 1000 min. all sediment
has deposited. The time needed for collapse is about twice the time scale for settling, h/W; Again
the veloeities are much less atTected. The decreasing velocity at the lutocline near the bed
implies a decreasing bed shear stress.

Apparently, a critical initial concentration exists beyond which the concentration distribution
becomes supersaturated so that all sediment is deposited. This result agrees quite well with that
ofWinterwerp et al. (1999). As stated before, those authors found a saturation concentration of
0.023 kg/nr'. For C, = 0.024 kg/m' Winterwerp et al. found complete collapse ofthe concentra
tion profile after about 1250 min.

Inthe present calculations a partial collapse occurs for 0.021 :5; C, s 0.023 kg/nr'. An example
is shown in Figure 3.4 for C, = 0.022 kg/rrr'. The more gradual transition from subsaturated to
supersaturated conditions in the present results affects the shape ofthe equilibrium concentration
profile. The equilibrium distribution of C/Ci Winterwerp et al. calculate for C, = 0.023 kg/m',
for example, shows more resemblance with the equilibrium profile obtained herein for C,=0.010
kg/m' (Figure 3.1) than with that for C, = 0.020 kg/m' (Figure 3.2).

The sensitivity of the results to the exponents a and b in the damping functions is illustrated
in Figures 3.5 and 3.6. Figure 3.5 shows results for b = 3 and C, = 0.040 kg/rrr', while the
remaining parameters remain unchanged. This value of b does not satisfy (2.17), as a result of
which a stabie equilibrium distribution is obtained for a much higher initial concentration. In this
case the range of concentrations for which partial collapse is found, is much wider. Complete
collapse occurs for C, > 0.064 kg/rrr'. Figure 3.6 shows similar results for a = 3, also at varianee
with (2.17), and C, = 0.035 kg/nr'. Although the damping of turbulent shear stress is increased
in this case, equilibrium is again found for much higher initial concentrations.

The sensitivity to the coefficients A and B is also considerable, though to a lesser extent than
that to a and b. Increasing A and B to 3, for example, reduces the saturation concentration to
0.016 kg/rrr'.
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4 Conclusions

The damping functions that result from this work were derived from three conditions: 1) in the
case of equilibrium the concentration should be bounded for all gradient Richardson numbers,
2) the mathematical model should be stable, and 3) the relationship between flux Richardson
number and gradient Richardson numbers should agree with empirical data. The damping
functions obtained show a strongerdamping for increasing gradientRichardson number, Ri, than
those usually adopted in the literature.A partial explanation for this fact is the often overlooked
difference of damping functions for the PML model from those for the TK model, as indicated
by (2.22) and (2.23). These equations imply a stronger damping for largeRi in the functions for
the PML model.

With the damping functions derived, the numerically predicted saturation concentration
agrees weIl with that obtained by Winterwerp et al. (1999) using the standard k-e model. The
times needed for the deposition of all sediment under supersaturated conditions are comparable
for both modeis. This agreement may be somewhat fortuitous because of the differences in
turbulence modelling and the high sensitivity of the present results to changes in the coefficients
in the damping functions.As opposed to the k-e model, the PMLmodel prediets a certain range
of initial concentrations for which partial collapse of the concentration profile occurs. Although
this range is smalI, differences in the shape of the equilibrium concentration profile exist for a
much wider range of initial concentrations.

As damping functions lack universality, different values ofthe coefficients in these functions
may be required for other types of flow and turbulent exchange. In this respect the k-E model is
more generally applicable. This report therefore is not meant as a recommendation for replacing
the k-e model with the PML model.
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Figure 3.1. Concentration and velocity distributions for C, = 0.010 kg/m'. Time interval between
plots is 100min. Total simulation time is 800 min.
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Figure 3.2. Concentration and velocity distributions for C, = 0.020 kg/nr'. Time interval between
plots is 100 min. Total simulation time is 1300 min.
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Figure 3.3. Concentration and velocity distributionsfor C,= 0.024 kg/m'. Time interval between
plots is 100min. Total simulation time is 1000 min. .
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Figure 3.4. Concentration and velocity distributions for C,=0.022 kg/nr'. Time interval between
plots is 100 min. Total simulation time is 1300 min. The kink in the [mal
concentration distribution at C/Ci ::::;2.6 indicatespartial collapse ofthe concentration
profile.
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Figure 3.5. Concentration and velocity distributions for C,= 0.040 kg/nr' ,a = 2 and b = 3. Time
interval between plots is 100min. Total simulation time is 1300min.



1~~~--~--~--~--~--------4-~-------+

t= 0 t=O

z
h

t = 1300min.

° 1 2 3 4 ° 1 2

c
C·1

U
U(h,O)

Figure 3.6. Concentration and velocity distributions for C,= 0.035 kg/nr', a = 3 and b = 4. Time
interval between plots is 100min. Total simulation time is 1300 min.




