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HIGHLIGHTS

® A comprehensive overview of the Euler-Lagrange bioreactor simulation approach.

® Application of Euler-Lagrange CFD to three different case studies.

o Different strategies to design scale-down experiments using CFD data are discussed.
® Approach selection chart based on hydrodynamic characteristics of modeled reactor.
® The potential of combining Euler-Lagrange CFD with microfluidics is discussed.

ARTICLE INFO ABSTRACT

Keywords: Euler-Lagrange computational fluid dynamics simulations offer great potential for the integration of transport
CFD dynamics and metabolic dynamics in fermentation systems. Since the seminal work of Lapin et al. [1,2], progress
Euler-Lagrange has been made, mainly in the analysis of CFD data and translation to laboratory setup designs. Different large-

Fermentation
Downscaling
Metabolic modeling

scale processes require different analysis methods; in this paper we discuss which analysis methods are best
suited for given reactor types, by reviewing prior simulation cases as well as introducing new test cases. Fur-
thermore, we address challenges in the translation from Euler-Lagrange simulations to laboratory scale systems,
and propose methods to work around these shortcomings. Based on the current state of the art, we propose
guidelines for the selection of data analysis methods, and we discuss the design of rational scale-down simu-
lators. We conclude with a brief discussion regarding the requirements and possibilities of next-generation scale-
down simulators, such as microfluidic single-cell analysis, and possible ways to approximate cellular lifelines
from invasive intra-cellular measurements.

Many things are known about scale-up. No longer are Rushton impellers 1. Introduction
the answer. No longer is our concern only in maintaining the same k.a.

Environmental stress due to poor mixing and “hidden” auxotrophy are In the past 20 years, “from shake flask to fermentor” (scale-up) has
two factors not fully addressed nor appreciated on scale-up. As a con- been shifting to scale-down: from industrial-scale to lab-scale. The
sequence, scale-up is still an art not a science. broth in industrial reactors may be heterogeneous in substrate con-
Arthur Humphrey: Shake Flask to Fermentor: What Have We Learned? centration, dissolved oxygen (DO), shear rate, etcetera. Humphrey,
(1998) [3] from a scale-up philosophy, hence posed: “we need to learn how to

achieve better mixing in large-scale fermentors” [3]. With larger re-
actors this is increasingly unachievable; heterogeneity manifests due to
the competition between mixing and reaction (expressed in the

Abbreviations: CFD, computational fluid dynamics; CRD, computational reaction dynamics; DO, dissolved oxygen; DRW, dynamic random walk; EL,
Euler-Lagrange; FACS, fluorescence activated cell sorting; MAMS, micro array mass spectroscopy; PBM, population balance model; (A)PFR, (axially dispersed) plug
flow reactor; RTD, residence time distribution; SD, scale-down; STR, stirred tank reactor; UDM, user defined memory; UDF, user defined function
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Nomenclature

A area (general), m?

Cs substrate concentration (mole based), mol/kg
Cext generic extracellular concentration, mol/L
Cint generic intracellular concentration, mol/g,

Cs substrate concentration (mass based), mg/L
Cy Biomass concentration, g/kg

Cp drag coefficient, —

D, dilution rate, h™?!

D diffusion coefficient, m?/s

D, Turbulent diffusion coefficient, m2/s

F feed rate (general), kg/s

F, Substrate feed rate (general), mol/s

kra overall mass transfer coeff., h™?

K, affinity constant for substrate, mol/kg

N, agitation rate, s7!

N, total number grid cells, —

N, total number particles, —

Np.c Number particles in cell c, -

ap specific production rate of product, mol,/Cmol,/h
qs specific uptake rate of substrate, mol,/Cmol,/s
qs,max max. specific uptake rate of substrate, mol;/Cmol,/s
qref reference qs/ qs,max> =

R, reaction rate of s, parcel-based, m

Ss source term of s, mol/kg/s

S average rate-of-strain (component), s7!

t time (general), s

U, liquid velocity, m/s

Ug superficial gas velocity, m/s

% tank volume, m>

I’A cell volume, m®

Vi parcel associated volume (V/Np), m®
Vr total volume (general), m3

a gas fraction, —

ag geometry constant for no. parcels, —
Y surface tension, N/m

Y shear rate, s !

At timestep size, s

€ turbulent energy dissipation rate, m>/s?
095 dimensionless mixing time, —

A inter-phase mass imbalance (Euler-Lag.), %
u specific growth rate, h~*

I effective Viscosity, dynamic, Pas
Hieff viscosity, dynamic, Pas

Uy turbulent viscosity, dynamic, Pas

P density, kg/m®

Tos mixing time, s

Tarc arc-time, s

Teirc circulation timescale, s

Trxn uptake timescale of substrate, s

bi circulation flowrate, kg/s

X heterogeneity in domain, —

Qs max max. qs/qs,max ON arc trajectory, —

Damkohler number Da = 7.4¢/7rn), With mixing inherently scale-de-
pendent whereas reactions are microbe-dependent. The scale-down
philosophy instead asks how broth heterogeneity will affect process
performance, taking the effect of heterogeneity into account early in
process development. This approach utilizes “scale-down simulators”
(SD-simulators), lab-scale reactors that deliberately produce a hetero-
geneous environment [4,5]. While developed in the eighties [6-9], SD-
simulators gained recent popularity [4] as omics advances enable
deeper quantification of the impact of extra-cellular variations on
micro-organisms.

A major challenge in downscaling is to devise a lab-scale environ-
ment that reflects industrial broth heterogeneity, with only limited
knowledge of said heterogeneity. Detailed local substrate/DO mea-
surements are generally lacking for existing processes, and even if flow-
following probes enable collection of such data in the future, this is of
little help during novel process design. Consequently, SD-simulators are
often calibrated without industrial reference [10-12], or based on
correlations [6,13]. Such experiments provide valuable insight in the
response of micro-organisms to extra-cellular variations, but do not
necessarily represent large-scale process performance. Computational
Fluid Dynamics (CFD) allows to simulate the hydrodynamics of large-
scale reactors, and may provide detailed in-silico insight in the microbial
environment within fermentors [14,5]. The scale of industrial fermen-
tors prohibits full resolution of turbulence and gas-liquid hydro-
dynamics, hence approximative models are required [15]. Still, keeping
these limitations in mind, CFD offers useful approximation of the large-
scale environment, in more detail than offered by correlations or in-
dustrial-scale measurements.

CFD is, amongst others, applied to study mixing [16,17], mass
transfer [18,19] and substrate gradients [14]. While such studies can
supply input for downscaling, the aim of SD-simulators is to capture
temporal environmental fluctuations as observed by micro-organisms.
Euler-Lagrange CFD simulations, in which a large number of virtual
particles (parcels) is tracked, are especially suitable: they allow to track
extra-cellular environment of each parcel in time (called “lifelines”)
[1,2]. In our view, these lifelines form a preferential basis for SD-design
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as they provide detailed dynamic information that is unavailable from
purely Eulerian simulations. In a Sino-Dutch collaboration, we explored
the use of Euler-Lagrange CFD for SD-design [20]; here we provide an
overview of the lessons learned during this project. These lessons in-
clude Euler-Lagrange reaction coupling, lifeline analysis methods and
their relation to reactor configuration, and scale-down design as well
limitations therein. To conclude, we outline some considerations for
future scale-down simulators, and present a conceptual design of a
micro-fluidic scale-down simulator that may overcome limitations ob-
served for bench scale systems.

2. Bioreactor hydrodynamics

First, the Eulerian model - resolving broth (and air) flow — must be
developed. The following aspects are to be considered:

e Macromixing (impeller & gas/liquid interaction)

e Mesomixing (feed mixing)

e Micromixing (e.g. film & intra-pellet mass transfer)

e Aeration (phase interaction, bubble size, etc.)

® Solid-liquid interaction (turbulent motion, settling, etc.)
® Gas-liquid mass transfer (k;a models)

e Heat transfer

e Rheology (& turbulence/aeration interaction)

o Liquid-microbe transfer/reactions (uptake/excretion)

e Turbulence

The Euler-Lagrange approach is compatible regardless of the
choices made regarding the above. Inclusion of all aspects leads to
demanding models, while data for modeling and validation may be
scarce. Often, one or more aspects are negligible or absent; a timescale/
force balance analysis then allows to discard irrelevant processes.
Macro-mixing [14], gas-liquid interaction [21,22] and microbial reac-
tions are often considered dominant [14]. Meso-mixing can be relevant
near the feed inlet point, where concentrated glucose blobs may be
segregated from the broth (hence not observed by biomass) [14,23,24].
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Based on the analysis of Linkes et al., eddy micro-mixing and film dif-
fusion are estimated to be rarely limiting [23], although this may differ
in highly viscous processes. These aspects may be included via subgrid
concentration distribution and film diffusion models, respectively. A
concern is that potential mass transfer limitations at the cell surface are
rarely checked in experiments, which may compromise the determi-
nation of kinetic parameters [25,24]. Even if rarely an issue in practice,
it is wise to adopt practices from catalysis engineering to rigorously
exclude- or account for them.

Non-Newtonian rheology may be highly relevant [26,27], but is
often omitted due to modeling difficulties. In highly turbulent flows,
assuming an overall effective Newtonian viscosity 11 . may be allowed,
but in transitional flows effective viscosities may differ locally. Moi-
lanen et al. found large stagnant caverns in simulations with a Her-
schel-Bulkley fluid [27], yielding simulated mixing times in excess of
10s, compared to ca. 3s experimentally. While cavern formation may
appear in yield-stress fluids, the stagnation observed in these simula-
tions does not appear to reflect reality. They based the local y; . on the
mean flow-shear rate y = |9U;/dx;|; it can be argued that the shear rate
based on energy dissipation, y = /eo/y, .« , may be more representative.
In exploratory simulations we found reasonable single-phase results
with this approach, but multiphase simulations diverged (Appendix A).
For single cells, the Stokes number St < < 1 meaning they can be
considered massless flow-followers. For cell agglomerates, however,
settling effects may become relevant. Turbulent motion of parcels has to
be considered. The default way to describe this is via the discrete
random walk model (DRW), which may suffer from artificial accumu-
lation of parcels in low-turbulence regions, e.g. near walls [2,28].
Continuous random walk (CRW) models [28] or a Fokker-Planck type
treatment [2], may yield superior results. Practically, we observed little
accumulation in stirred tanks due to the low surface/bulk gridcell ratio
[29]. Possible intra-pellet diffusion limitations can be evaluated via
reaction-diffusion models, although determining the intra-particle dif-
fusion coefficient may be challenging. The computational burden
makes large eddy simulations unsuitable for (routine) application in
bioprocess simulation; cruder Reynolds-Averaged Navier Stokes (RANS)
simulations have to be relied on. In reactors lacking significant flow
transients (including stirred tanks with the MRF-impeller model), a
steady-state solution may be a reasonable approximation, reducing
computation time [30]. In the end, the choice of models is dictated by
the relevant physics, the required level of detail, and the availability of
verification data.

3. Reaction coupling
3.1. Coupling methods

Reactions can be coupled to CFD simulations via regular Eulerian
models, population balance models (PBMs), and Euler-Lagrange (EL)
models (which are our primary interest). The current focus is on me-
tabolic models [1,2,31,32], and metabolic models including key en-
zymes [33]. Similar strategies can be applied to include a broader
spectrum of cellular responses (transcription and translation dynamics
[34-36], protein formation [37], cell cycles [38], and more), provided
the resolved timescales are sufficient to capture such dynamics.

Regular and PBM coupling. Regular reaction models compute rates
based on the local extra-cellular conditions. This assumes instantaneous
equilibrium between intra- and extracellular conditions, which is valid
for uptake processes lacking metabolic feedback (for example lacking
intra-cellular glucose inhibition) and with constant enzyme capacity,
which is justified when considering “process snapshots” of a few mixing
times. Directly linking long-term intra-cellular (enzymatic) adaptation
to local extra-cellular conditions may lead to gross errors; for example
coupling a penicillin production model (enzyme adaptation time
744 = 20 h) to a CFD simulation led to an improbable yield loss of 85%
[39]. PBMs account for local non-equilibrium and parcel history by
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incorporating a transportable distribution of the intra-cellular compo-
sition, typically with growth rate y as a representative parameter. Im-
proved acetate overflow predictions for E. coli were found with the
approach [31], and and simulations of the full process duration are
feasible if (pseudo-) steady hydrodynamics can be assumed [40,41].
Capturing the distribution by traditional class-based methods is tract-
able for narrow composition ranges (bubble size distributions for ex-
ample [21]), but becomes cumbersome for broad distributions. Moment
methods offer an alternative. Initially, a comparison between 100 and
400 classes and several moment methods found mostly gains in memory
use [42], more recently also time-gains were observed [43]. Most stu-
dies assume one-dimensional heterogeneity, captured by p; this may be
insufficient in some cases. Consider a model with enzyme X (adaptation
time ¢x=1lh>7t,.) subject to metabolic control by M
(zym = 30s = 7.). This requires accounting for heterogeneity at two
timescales; X may be distributed in the population, but the long turn-
over time makes the distribution spatially homogeneous. The distribu-
tion in M will vary locally, making X and M uncorrelated. Y" class-
interactions may occur for n pools with Y classes, posing a potential
computational challenge. Models with two compositional variables
have been reported [44]. How the PBM framework performs with
higher-dimensional metabolic models is a development to be followed
with interest.

Lagrangian coupling. In EL methods N, individual parcels are tracked.
EL simulations come in two forms. EL simulations with Eulerian reac-
tion coupling solely employ the parcels to probe extra-cellular condi-
tions over time, registering what organisms “see” [32,39,22,38].
However, this approach allows for only limited interaction between the
extra- and intra-cellular domain [39,33] (see Section 3.2). Reactions
can also be coupled to the Lagrangian phase. In this case, the cellular
composition is tracked by assigning a composition vector X, with n
pools to each parcel. Each pool is quantified by a single value, making
pool interactions straightforward. A metabolic model, taking the extra-
cellular concentration field(s) of parcel p as a boundary condition, de-
scribes pool and environmental interactions. In contrast to PBM, there
are no pseudo-steady states for the Lagrangian phase, requiring a
transient solution with short At to capture parcel motion and pool dy-
namics [29]. Typically O(> 10°) parcels are needed for a smooth bio-
mass distribution [29], making full fermentation simulations infeasible
with full Lagrangian coupling. These requirements make EL most sui-
table to simulate multi-dimensional heterogeneity on minute-hour
timescales; the unique parcel perspective provides “lifelines” of the
observed environment in time. We do emphasize these models re-
present an average response to extra-cellular variations. At the single-
cell level, intrinsic heterogeneity [45] and fluctuations in transcription
levels [46] will induce variations in this response, that are not captured
by typical metabolic models.

Computational advances are required to enable full fermentation
and (faster than) real-time simulations. With innovations in highly
parallel and GPU-accelerated CFD giving rise to applications like
ANSYS Discovery Live, the prospects are positive, underlining our
preference for the EL method. In the next section, practical coupling
implementations are discussed.

3.2. Lagrangian coupling: practical aspects

Lagrangian reaction coupling comes with practical challenges, for
example regarding N,. Whether or not full Lagrangian coupling is re-
quired depends on how the inter-phase (uptake) reactions are con-
trolled by the cellular composition, where we distinguish three situa-
tions:

® C1: no rapid or slow intracellular control.
e C2: only slow intracellular control.
® C3: only rapid or rapid and slow control.
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The cases are graphically summarized in Fig. 1. In C1, uptake re-
actions are completely uncoupled from the Lagrangian phase, meaning
straightforward Eulerian reaction coupling can be employed and par-
cels are only used to register extra-cellular fluctuations [32,39,22,38].
The number of parcels N, needs to be sufficient to converge fluctuations
statistics (typically 10°-10*, depending on resolved flow-time), but is
otherwise unrestricted. The assumption of no intra-cellular control (e.g.
simple Monod kinetics with constant parameters) is valid if there are no
rapid turnover intra-cellular pools (zp001 < mix) controlling the rate
(or: instantaneous equilibrium can be assumed), while changes in slow
POools (75001 > Tmix) are insignificant (growth and enzyme dynamics can
be neglected in the chosen timeframe). Intra-cellular responses can be
calculated in the CFD software or during post-processing, as there is no
feedback to the Eulerian phase.

In C2, growth and/or enzyme level changes have to be accounted
for, and the population may exhibit significant heterogeneity in enzyme
levels. However, since 7p,o>> Tmix, the population distribution will be
the same everywhere in the domain. This allows a hybrid
Euler-Lagrange model: uptake reactions are coupled to the Eulerian
phase, but reaction parameters like g;mq. are determined based on on
population average enzyme levels [33] in the Lagrangian phase. In this
case N, must suffice to capture enzyme pool distributions. In C3, local
uptake/excretion rates are affected by intra-cellular heterogeneity in
rapid turnover pools, which requires full Lagrangian coupling to cap-
ture [1,2]. In this case, the distribution of parcels determines the dis-
tribution of biomass, and N, must be sufficient to produce a (near)
homogeneous biomass distribution, in order to ensure realistic con-
centration fields. This puts a criterion on N, [29] that is treated in the
next section.

3.2.1. C3: interphase coupling

In Lagrangian coupling, inter-phase species transfer is key; uptake
by parcels must equal field depletion. The pseudocode in Fig. 2 de-
scribes an (explicit) implementation of parcel-bound kinetics in ANSYS
FLUENT. The workflow in FLUENT means DPM scalars, and hence
source terms S, are updated after the field iterations: what parcels
consume in step t, is taken from the extra-cellular domain in step t+ 1.
Aside from challenges with explicit integration, an issue is that the mass
balance is violated if uptake exceeds availability (Ss(c, t)At >
V.(c)Cs(c)) [29]; source term ‘clipping’ will occur. As parcels do not

L-III

_J.|||| .

Demax (a.u.)

(a.u.)

(a.u.)

qs,max qs,max

qs,max (a'
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Timestep t

{

Update Eulerian Fields (U,V,W,Cext)

(implicit loop over cells c)

transfer user-de fined memory to cell source terms
Ss(c) = UDM(c)

Cext(c,t)= Cext(c,t-1) + Ss(c)*dt
Reset source terms

UDM(c) =0

}

[mol/L]

Loop over P particles

{

Determine cell ¢ containing particle p,
determine reaction rates

Rp(p,t) = f(Cext(c,t),Cint(p,t-1))

Update intra-cellular pools

dCint(p,t-1)/dt = Rp(p,t)

Cint(p,t) = Cint(p,t-1) + dCint(p,t-1)/dt *dt

[mol/gx/s]

[mol/gx/s]
[mol/gx]

Update extra-cellular sources

Store in user def ined memory(c)
UDM(c) = UDM(c) - Rp(p,t)*Cx(p,t) [mol/L/s]
Store extra- and intra-cellular values in file

}

transfer to next timestep

Fig. 2. Pseudocode for an (explicit) implementation of parcel-bound kinetics in
ANSYS FLUENT. Updating the reaction-rates and intracellular pools is done
using a DPM scalar UDF. Uptake rates are transferred to used defined memory
(UDM) and included in Eulerian computations in the next timestep via source
term UDFs. An execute at end UDF is used for data storage, and to reset the UDM.

“see” each other, this may also occur when multiple parcels reside in
the same gridcell, competing for the same substrate. Re-calculating the
exchange terms in each iteration accounts for the presence of multiple
parcels (uptake now fully takes place in timestep t), but increases
computational expense, and it was not found to yield improved accu-
racy [29]. In fact computing ¢ once per timestep performed slightly
better, possibly due to exploiting sub-flowtime time-stepping for parcel
updating. In open-source or dedicated codes, an implementation that
combines sub-flowtime stepping with implicit integration may be more

qs,max (G. U.)

u.)

G max (a.u.)

Do mox (a.u.)

qs,max (G. U.)

1
i
i
i
1
1
i
|

Homogeneous intra-cellular environment
and/or no intra-cellular control
1- way coupling, N, = O(10°+)

= constant & homogeneous

qs,max

but spatially similar at all instances
Averaged 2- way coupling, N, = O(10° +)
4. ..x = Variable & homogeneous
(parcel-phase ensemble average)

Heterogeneous intra-cellular environment, Locally and globally heterogeneous

intra-cellular environment

2- way coupling, N, = O(10°+)

4, o = variable & heterogeneous
(local grid cell-average)

Fig. 1. Coupling approaches used in this work. Left: C1: instantaneous intra-cellular response or constant intra-cellular environment, leading to a homogeneous
population. Middle: C2: slow intra-cellular variations, leading to a heterogeneous population, but without spatial variation. Right: C3: rapid intra-cellular variations,
leading to a population distribution that is also spatially heterogeneous. The shown distributions are hypothetical distributions on the single-cell level. In practice, the
resolved number of parcels in current Euler-Lagrange simulations does not suffice to locally reconstruct such instantaneous distributions of cellular composition.



C. Haringa et al.

straightforward to implement than in commercial codes.

3.2.2. C3: simulation criteria

To resolve flow dynamics for many parcels requires a proper bal-
ance between computational burden and accuracy; N, and timestep At
have a large influence. It is clear from the pseudocode that if
N, < < N, S; =0 in many gridcells, i.e. no biomass will be present,
resulting in unphysical g; and C; gradients. The volume of gridcells in a
locally refined grid may range over orders of magnitude, meaning some
cells contain many parcels, while others are mostly empty even if
N, > N; ensuring homogeneity by increasing Np is unrealistic. An al-
ternative, distributing q; in a parcels ‘effective volume’ V,, = Vgomain/Np
requires cumbersome listing of surrounding gridcells. However, if tur-
bulent distribution of substrate is sufficiently fast, artificial gradients
will be minor even with inhomogeneous parcel distributions. By linking
the magnitude of unphysical gradients to the ratio of timescales of re-
action and turbulent dispersion, and including fluctuations in parcels-
per-cell N,., a criterion for N, can be developed. Substituting the
timescales with the underlying hydrodynamic and kinetic parameters
this gives (for Monod and 1st order kinetics) [29]:

2
N = g2 | Tomax G 3 L4 (1 - (&)]m
P g K.\X\/VT Dt,c VT (1)

With y an accuracy parameter and a a geometry-dependent con-
stant. For typical conditions, this gives N, = 10*-10° if ) = 0.05. With
this, running full fermentation simulations (O(> 10h) on desktop
computers is infeasible, but several mixing times (O(min-h)) to gain
insight in metabolic fluctuations are manageable. A timestep size of min
(1/(10Ny), 7,4,/10) is advised for stirred tanks, with N; the stirring
speed ins™ ! and 7,4, the timescale of the fastest exchange reaction [29].
The first of these criteria considers flow trajectory calculation and may
differ per reactor type. The pioneering studies by Lapin et al. did not
explicitly note the effect of parcel distribution on uptake; with 10°
parcels in 44° gridcells [1,2], their work was likely in accordance with
these criteria. All criteria are based on 1st order accurate explicit in-
tegration for the exchange terms; the presence of stiff intracellular re-
actions may change the criteria and favor the use of higher order ex-
plicit or implicit methods, at least for the intra-cellular equations.

p(time)

p(time)

S

Residence time

Magnitude

(TR
LA T,

|
time !

Regime
qS max
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3.2.3. Model structure

Dynamic kinetic models should be designed with CFD in mind,
meaning they should be stable towards turbulent fluctuations in extra-
cellular concentrations C,. Using a model for penicillin production [47],
two potential issues were identified: (1) noisy rates when extra-cellular
control was assumed over intra-cellular rates and (2) non-zero rates at
zero pool size [33]. Concerning the first, storage of glycolitic inter-
mediates to polymers was non-linearly controlled using extra-cellular
substrate as a signal molecule, strongly affecting rates in the range of
turbulent fluctuations. Rates hence oscillated rapidly, inducing in-
sufficient release of storage carbohydrates during starvation, which
reduced ATP availability. Such issues (and numerical issues noted
above) are more likely present in systems with low K, as small Cj
variations may lead to strong ¢ variations. Low Xsrp quenches depo-
lymerization, while the ATP-consuming storage process continued (a
non-zero storage rate at low X,rp was no realistic scenario in model
development), eventually driving X,7p negative.

Numerical instability was excluded as a cause by varying integrators
(implicit, explicit, RK4), timestep sizes (At = 0.0005-0.55s), and en-
forcing noise in MATLAB. The issues related to the non-linear differ-
ential-algebraic formulation of the model, not to the solution algorithm.
The problem was bypassed by correlating X,7p with the glycolitic pool
Xqry, but storage rate oscillations remained [33]. More generally, direct
extra-cellular rate control over intra-cellular rates should be avoided
(instead, use intra-cellular substrate, ATP or redox factors as a signal),
or a signaling timescale should otherwise be introduced, for example
using an “activated enzyme pool”, to buffer rapid extra-cellular dy-
namics. Furthermore, ensure all rates quench when their reactants de-
plete, even if depletion is unlikely. Most dynamic metabolic models
described in literature are based on ideal-mixed systems with smooth
dynamics, not anticipating CFD application. For example, Lei et al. [48]
eliminated all intra-cellular pools for S. cerevisae, as intra-cellular
changes could be considered instantaneous compared to slow (fed-)
batch dynamics. Imposing rapid noise on this model led to similar issues
as described above. We did not conduct rigorous stability analysis,
which may be a future avenue to formalize model requirements.

3.2.4. Compartment-based Lagrangian simulations
The high N, required to simulate the microbial phase induces a large
computational burden. With C3 coupling and unsteady hydrodynamics,

Intensity

frequency

Arc time

qs,max

T
—i
I
-
|
L
i

|
—_—y
1

— |
1

|

1

T

1

T

44

time

o

Regime analysis Arc analysis
Divide domain in (metabolic) regimes
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Fig. 3. Lagrangian analysis methods used in this work. Left: Regime analysis, based on regions in gs-space with a consistent metabolic response. Most suitable for
compartmentalized flows (often found in stirred tanks), and for application with multi-compartment downscaling. Middle: Arc-analysis, based on the duration
between subsequent crossings of a reference value in g.;. Most suitable for non-compartmentalized flows (smooth extra-cellular variations), with a wide residence
time distribution (some stirred tanks, bubble columns) (Right: Fourier analysis, seeking the dominant fluctuation frequencies. Most suitable for flows with narrow
residence time distributions, such as airlift-loop or pipe reactors. Here, methods were illustrated with g, variations, but they are broadly applicable.
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simulating several mixing times can take weeks on a desktop computer;
in contrast, a full fermentation period is feasible in 1-2 weeks assuming
steady state flow and C1-C2 reaction coupling. Using the hydro-
dynamics of compartment models using CFD, and modeling
(Lagrangian) reactions in these compartment models, can strongly re-
duce computation time by lowering both N, and grid size N., without
severely compromising accuracy [49,50]; parcel tracking in such a
model can be done, for example, using a statistical (Markov-chain)
rather than a trajectory-resolved approach [51-54].

4. Lifeline analysis methods

Lifelines represent cellular data as a function of time, and can be
subjected to signal/statistical analysis to report extra-cellular fluctua-
tions experienced by organisms. One of the main goals of lifeline ana-
lysis is to provide guidance in the design of scale-down experiments.
The methods described below aim to capture statistics describing the
duration and magnitude of extra-cellular fluctuations, which can then
be used to set design parameters for scale-down simulators (as de-
scribed in Section 5). To our knowledge, such a direct CFD-based scale-
down design has not yet been used, at least in public literature. There
are, however, examples where scale-down design was aided by CFD
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results, for example in setting the order of magnitude in fluctuation
frequency, shear-rate or fluctuation amplitude [55-58].

Three methods were addressed: Fourier analysis, Arc-analysis and
Regime-analysis. A graphical overview of methods is provided in Fig. 3.
The preferred method depends on:

e Flow behavior (plug-like or well circulating).
e Compartment formation.

® Operating conditions.

e Application (downscaling method).

Low-pass filtering of lifelines to remove rapid turbulent variations is
advised, as these are unlikely to have metabolic influence and may
affect the statistics of large scale fluctuations. Smoothing using the
timescale of turbulent fluctuations as a window is the most straight-
forward approach [39].

Fourier analysis. The Fourier method is fast and straightforward,
giving most insight with periodic fluctuations, e.g. narrow circulation
time distributions. For broad distributions, data interpretation is chal-
lenging [39]. First, the mean is subtracted from the lifeline (as a re-
ference value) which is then multiplied with a window function and fed
to an FFT algorithm. The real parts of the transforms are subsequently
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Fig. 4. Analysis selection diagram. Top: some considerations for SD-selection. Gradient-induced population heterogeneity means different cells have significantly
different lifelines (In single-vessel scale-down simulators, some difference between individual cell experiences may exist by micro-mixing, but all cells experience the
same explicitly induced variations). Operational challenges are linked to pumping issues for shear-sensitive and complex rheology systems. The selection chart gives

the preferred analysis method; other analysis methods may still be applicable.
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summed to a composite spectrum to reveal dominant frequencies.
Amplitudes are retrieved by visual inspection of the lifelines; extracting
them from spectra is more challenging.

Arc-analysis. Arc-analysis records fluctuations compared to a re-
ference g, (e.g. the mean) in the time-domain [39,22,33]. The interval
between consecutive g, crossings gives the fluctuation duration, akin
to a circulation time measurement in reactant rather than physical
space. The magnitude follows from the extreme lifeline value between
crossings; correlating magnitude and duration provides insight in ty-
pical circulation trajectories. The three points (start, extreme and end)
form an “arc” describing the fluctuation. The time at which the max-
imum is recorded can be used to study if fluctuation trajectories are
symmetric. To remove negligible oscillations, it is advised to only
register events that exceeding g,.s by a certain threshold. A drawback
arc-analysis is that secondary motions are not captured; the method is
most applicable for relatively simple circulation behavior, not for
strongly compartmentalized reactors.

Regime analysis. In regime analysis, the domain is divided into zones
based on a characteristic quantity such as a certain metabolic response
(e.g. Cs > C;overfiow), Or a relatively homogeneous concentration (a
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compartment around an impeller) [39,22]. The fluctuation duration
follows from the duration of individual regime visits. Again, it's advised
to set a crossing threshold (a “fuzzy boundary” [29]) to remove minor
fluctuations. The amplitude is replaced by a per-regime mean value; if
oscillations around this mean are relevant, arc-analysis can be con-
ducted within a regime. Regime analysis works well with more complex
systems, like compartment-forming multi-impeller reactors.

The role of downscaling. Fourier and arc-analysis are best suited for
single-vessel, fluctuating input designs. Both provide the duration
(distribution) of observed fluctuations, and the amplitude compared to
a reference value. Regime analysis directly links to multi-vessel scale-
down, each vessel representing a regime, operating at the regime mean.
This means that the number of regimes may be practically constrained
[22]. For a combination of feed fluctuations and multiple vessels the
combination of regime and arc-analysis seems most applicable. The
preferred downscaling method follows from lifeline structure (smooth
versus discrete jumps) and practical considerations. In a single vessel
SD-simulator, all organisms see the same; the effect of rare, extreme
fluctuations cannot be captured. A multi-vessel simulator accounts for
the duration distribution by design, but it does not account for the
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Fig. 5. Analysis of Case I. A: Example lifeline, the red and blue dashed line providing regime boundaries. B: Residence time distributions (RTDs) per regime (solid
lines), fitted ideal stirred tanks RTDs in a 3-vessel SD-simulator (dashed). The volumetric regime distribution is reported in Fig. 3A; the inset shows conceptual lifeline
discretization. C: 3-vessel SD-simulator based on the regime division, RTDs, and regime-mean operating conditions. D: Example of a SD-simulator lifeline. Image

reproduced from [22] with permission.
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Table 1
Validation of airlift loop simulations, compared with experimental data of
Simcik et al. [65].

Parameter Simulation Experimental
u; (m/s) (draft tube) 0.7 0.75
u; (m/s) (downcomer) 0.18 0.18
a (draft tube) 0.06 0.07
a (downcomer) 0 0.02

amplitude distribution; this is better captured in fluctuating input sys-
tems. Single-vessels are also more straightforward to operate and ana-
lyze. Sweere et al. [7-9] and Wang et al. [55] are among the few to
compare two downscaling approaches. Both observed significantly
different responses at equal mean fluctuation time, including hints at
different substrate transporter expression, showing that an increased
understanding of the metabolic response to extra-cellular variations is
still required. In Fig. 4 we present a selection chart for the preferred
analysis method depending on the problem statement and downscaling
approach, built on our experience to date.

5. Case studies

Three different case-studies were explored in this project, with
different lifeline structures and analysis methods.

5.1. Case I: stirred yeast fermentation

A top-fed stirred, aerated yeast fermentation in a 22m> research
fermentor was simulated [14,59-61,56]. Details regarding computation
and validation are found in [22]. The analysis considers a short time-
frame (ca. 1800s). Monod kinetics for glucose consumption were as-
sumed, using Cl-coupling; dissolved oxygen and ethanol were not si-
mulated. The observed concentration gradient is in decent agreement
with experimental data [14]. Eight circulation loops form around the 4
impellers, yielding strongly compartmentalized flow; regime-analysis is
the preferred analysis method. The reactor circulation time 7., = 40s
is close to the characteristic reaction time Ky/Cyqsmax = 38 s which
suggests a global gradient. The per-loop circulation time is 7;o,p = 40/
8 =55, making the individual compartments well mixed.

7 gs ranges can be discerned [22]. While a 7-regime analysis can be
conducted, the g; jump between compartments is small, and the average
residence time impractically short. A 3-regime division is therefore
selected, in line with state of the art downscaling [62]. The boundary
between regime 1 and 2 is set to qs/qsmax = 0.05 to capture the large,
nearly homogeneous bottom region. The regime 2-3 boundary is set to

A Gas holdup ‘B Liquid velocity (m/s)

I 0.075 I 1.00

0.060 0.80
0045 0.60
- 0.030 F 0.40
0015 0.20
' 0.000 ' 0.00
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qs/qsmax = 0.2, the expected transition to Crabtree ethanol fermenta-
tion [63]. The regime layout is provided in Fig. 3A, the lifelines in
Fig. 5A. From the acquired regime residence time distributions (RTDs)
(Fig. 5B), it is possible to design a multi-vessel SD-simulator using the 5
degrees of freedom posed by Noorman [64]:

e Number of regimes — number of reactors.

® Per-regime volume fraction — Reactor volume ratio.
e RTD — Reactor circulation pattern.

® Mean RTD, regime volume — Exchange flowrates.

e Mean regime conditions — Feed/aeration rates.

Despite the complex flow patterns, each regime RTD shows the
exponential decay of a recirculating flow (Fig. 5B); 3 well-mixed
compartments are hence selected. The exchange flowrates are found by
fitting the regime RTDs with perfect stirred-vessel RTDs (Ignoring the
short term peaks, and under the restriction that (¢.;.) = 0). Knowing
the flowrates, MATLAB optimization is used to specify feed and drain
rates, leading to the design in Fig. 5C, with an example lifeline depicted
in Fig. 5D. In order to set the operating g, the SD-system needs to
operate at or above C, = 15g/kg; the underlying reason is further
discussed in [39,22].

5.1.1. Case study II: airlift yeast fermentation

The forced flow structure in an airlift loop reactor leads to a more
narrow RTD [66,67], which is revealed in the lifelines. Lacking an in-
dustrial case, we simulated a hypothetical fermentation based on the
geometry and conditions of Simcik et al. [65]. A bubble size of 5mm
was assumed. The realizable k — e turbulence model, Universal drag
model and Simonin et al. turbulent dispersion model were used [68].
2nd upwind discretization was used except for volume fraction, for
which 1st order upwind was used to ensure stability. Validation results
are in Table 1. We employed the yeast kinetics used in case I with a
biomass concentration of 30 gg4,/kg. The liquid phase properties
equaled water, for air p=1.2g/L, i, = 18.6 x 10 ®Pas were set.
Profiles of steady-state holdup and liquid velocity are shown in Fig. 6A,
B.

The feed F; = 0.00194 mol/s, included as a source term at the
bottom of the draft tube, at the high-g; spot in Fig. 6C. The feed was set
such that under ideal mixing conditions K; = Cs. The non-ideal simu-
lated conditions result in a gradient ranging from 0.45 < g,/
Qs,max < 0.8. 7500 particles were tracked for 200s. Fig. 7 shows a ty-
pical track, showing periodicity, in contrast to those from stirred ves-
sels. Still there is duration variability, from two sources: 1) dispersion in
the riser/down-comer and 2) recirculation in the headspace. Two
‘types’ of peaks are distinguished in the lifelines; peaks with g,/
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' 060
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) | 4

Fig. 6. Eulerian profiles for the Airlift loop reactor. A: Gas holdup profile. B: Liquid velocity profile. Vectors show direction, colors show magnitude. C: Uptake rate
profile. Substrate is fed right above the sparger, leading to a high-uptake hotspot at this location.
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Fig. 7. A: Single lifeline in the airlift-loop reactor. B: Composite Fourier spectrum of 7500 tracks, peaking at 0.05 and 0.11 Hz, associated with reactor and headspace

circulations respectively.

Qsmax > 0.6 from feed point passages, peaks with 0.52 < g/
Qs,max < 0.6 from down-comer passes and headspace recirculation; a
high peak followed by a low peak is a direct full circulation, a high
followed by multiple lows signifies repeated headspace recirculation.
The riser peaks are uniform, reflecting the uniform velocity profile; the
recirculation/downcomer peaks show more variability. The periodic
nature makes the lifelines more suitable for Fourier analysis than prior
examples. The combined spectrum of 7500 lifelines (Fig. 7) shows two
distributed peaks centered around 0.05Hz and 0.1-0.12 Hz, the first
reflecting the interval between feed-passings, the second reflecting the
secondary circulations.

Three straightforward scale-down strategies can be devised: (1) a
variable feed reactor, total cycle time of 20s (0.05Hz), imposing g,/

gs,max = 0.65 at the cycle start, optionally using a secondary injection at
t = 10s to reach qy/qs max = 0.54. (2) A STR-PFR combination with the
STR representing the headspace/downcomer and the PFR as the riser,
containing the feed point (Fig. 8A). (3) A 2-PFR combination, one near-
perfect PFR for the riser and a more dispersed PFR for the headspace/
downcomer (Fig. 8B). Putting the “riser” above the “downcomer”
compartment has the benefit of allowing selective aeration in the
“riser” section, if combined glucose and oxygen gradients are desired.
We present conceptual designs for systems (2) and (3), by fitting the q,/
s max distribution between the CFD results and idealized systems using
the MATLAB function fmincon, assuming the system in chemostat op-
eration with a dilution rate D, = 0.05h ™! and C, = 30 g/kg. The fitted
parameter values are reported in Fig. 8A, B, for concept 2 and 3,

Fig. 8. Conceptual design of multi-vessel SD-simulators for the

1
A Fs2=22.9 mmol/L s E B % Feirc =54 ml/L s airlift case. A, B: Sketches of the PFT-CSTR and PFR-PFR con-
| < 2 figuration, respectively, with design parameters as determined
: AN
! g : ?E by fitting the q,/q; max distributions. Note the desired axial dis-
“ | £ > <3 = persion depends on the reactor cross-sectional area A C:
: N I H ™M % $ Frequency spectra for the lifelines in both designs, compared
% VE : PSS ~ with the CFD result. D: ¢,/qsmax distribution for both designs,
g S - 'L I " compared with the CFD result. E: Examples of lifelines for the
g : ' w Q( scale down simulator designs proposed in A, B, generated using
g < ! = " idealized CSTR/axially-dispersed PFR models in MATLAB. These
T ) “ oo N lifelines are designed to replicate the airlift-loop lifelines re-
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respectively. Fig. 8C-E shows the Fourier spectrum, qs/qsmax distribu-
tion and example lifelines, respectively. Note the Fourier spectrum was
not fitted — by requiring a similar q,/qsmaex distribution a decent fre-
quency spectrum match emerged automatically. Due to rapid dilution
near the feed point in CFD simulations, the peak in gy/q; mqex cannot be
reproduced explicitly.

5.1.2. Case study III: stirred penicillin fermentation

A broad study with both C1- and C2-coupling was conducted in a
54m® stirred fermentor (described in [39,33]), using the metabolic
model by Tang et al. [47] with adaptations to ensure stability [33]. The
effect of viscosity was omitted due to divergence. The mixing time over-
estimated experimental data by about 25% with aeration included,
excluding aeration gave a similar under-estimation. With z,,, = 0.32s
and 7. = 26s, a strong gradient appeared, which manifests itself
completely in the top impeller loop, with the vessel bottom operating
under starvation conditions. For end-of-fermentation snapshot simula-
tions (C, = 55 g/L, Cl-coupling), a penicillin yield Yy, loss up to 40% is
found, depending on the circulation time. A linear relation between Yy,
and Damkoler number 7/7,4, is observed in the range, allowing for
interpolation. The single-loop gradient gives smooth fluctuations with a
wide duration distribution (Fig. 9A), suitable for arc-analysis
(Fig. 9B,C).

Setting qs/qsmax = 0.05 as g, only arcs above g, have to be
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analyzed in magnitude, showing a clear relation between duration and
magnitude (Fig. 9D,E). Below g, assuming g;— 0 and registering
duration suffices. From this data, an SD-simulator with variable inter-
vals can be designed. Using inverse transform sampling, a string of
random intervals can be generated that abides the duration pdfs
(Fig. 9D), alternating between positive and negative (Fig. 9F,G). For
positive arcs, the amplitude is set from the duration-magnitude relation,
computing the feed from the mass balance. In-silico assessment of the
SD-system assuming ideal mixing shows good agreement in yield loss
compared to large scale CFD.

In-silico assessment allows to study simplifications; faithfully re-
producing the arc structure (Fig. 9F), with gradual feeding followed by
consumption, requires the industrial C, = 55 g/kg. This may be chal-
lenging to operate with filamentous fungi at SD scales. It is found that
administering the pulse instantaneously and reducing the consumption
rate by halving C, (Fig. 9G) does not affect the predicted cellular re-
sponse, while theoretically reducing the viscosity by a factor 5.6 [26].
Furthermore, with finite mixing times of 2.2 and 13.2s the predicted
metabolic response still equals ideal mixing, implying the SD-protocol is
realizable in practice. If lower C, and/or regularly spaced pulse inter-
vals are required, faithful downscaling based on extra-cellular varia-
tions is not possible for the simulated conditions. An alternative is to
conduct “intra-cellular downscaling”: finding a set of inputs that re-
plicates the metabolic model output (gp, 1 and/or intra-cellular pool
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Fig. 9. A: Lifeline for case III. B, C: Arc analysis approach with gof = 0.05¢s max. D: Arc time distributions based on all lifelines. E: Relation between arc-duration and
magnitude. The solid line gives the mean magnitude as function of duration. F: SD-lifeline generated from the arc-time distributions and magnitude. Feeding is
gradual, with C, = 55 g/kg. G: Alternative feed protocol with instantaneous pulses allows to set C, = 27.5 g/kg. A comparison with the metabolic model of Tang
et al. [47] showed no significant difference in metabolic response [33]. Image reproduced from [33] with permission.
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sizes) within set constraints (fixed feed period, pre-set C,). This can be
done by feeding intra-cellular target values and constraints to a genetic
algorithm for optimization [69], for brevity a further discussion is in
Appendix B.

Besides downscaling, CFD-CRD (Computational Reaction Dynamics)
for design optimization and full fed-batch simulations are explored.
Moving the feed from the top to the impeller discharge stream reduces
the projected yield loss from 31% to 9%. To conclude, fed-batch si-
mulations with C2-coupling were conducted; the predicted yield-drop
agrees with experimental observations. The model predicts significant
heterogeneity in the number of glucose transporters depending on the
cellular history. This observation has not yet been experimentally as-
sessed, but it shows the capacity of simulations to generate hypothesis
for experimental follow-up. All-together, this case highlights the spec-
trum of applications of coupled CFD-CRD [33].

5.2. Other Euler-Lagrange studies

The major aspect not addressed in the Sino-Dutch collaboration is
C3-coupling with metabolic models; guidelines for C3-coupling were
explored with a Monod-model, while the P. chrysogenum model lacked
rapid feedback and did not warrant the computationally expensive
approach. The seminal work of Lapin et al. remains the sole example of
C3-coupling, exemplified by replicating experimentally observed NADH
oscillations in a yeast culture [1] and gradients in the phosphoe-
nolpyruvate to pyruvate ratio in E. coli [2]. C1-tracking has been used
more frequently; McClure et al. quantified the duration of substrate
fluctuations in a bubble column [32]. Kuschel et al. simulated an E. coli
cultivation and used regime analysis for transitions between replication
regimes; they linked the transition frequency to experimentally tran-
scriptome changes [38]. Liu et al. [70] used Euler-Lagrange simulations
to study shear exposure of plant cells, linking the death rate to peak
shear exposures in a lifeline extension of the EDCF function [71]. De-
lafosse et al. used a CFD-based compartment model, to compare tra-
jectories with experimentally recorded tracks [54].

6. Towards novel scale down simulators

Current generation downscaling approaches have inherent limita-
tions: all cells observe the same in single-vessel systems, and both in
single and multi-compartment systems, a limited range of frequencies/
amplitudes is available, with no straightforward way to reduce glucose
concentration other than by consumption alone [39,22] (for oxygen,
there is the option of stripping with an inert gas). While current scale-
down simulators operating at industrial C, may capture dynamics at the
average level, more rapid dynamics at the individual level are un-
attainable. Formulating the desires for a new generation of SD-simu-
lators:

e Decouple rate-of-change from consumption.
o Full range of amplitudes can be imposed.

A Fluid A
fraction

! 1.00

Cell trap cell cluster

Mixing section
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e Full range of durations can be imposed.
o Arbitrary duration (circulation) patterns.
o Different cells undergo different experiences.

It would additionally be desirable if individual or small sub-popu-
lations of cells could be analyzed, to gain insight in individual experi-
ences rather than population averages. It may be challenging to satisfy
all the above, but there are promising developments in microfluidic
development [69]

6.1. Towards microfluidic downscaling

Microfluidic devices allow to conduct small-population or even
single-cell cultivation. They have been applied to study growth under
controlled conditions [72-76], and to study enzyme dynamics during
slow extra-cellular variations [77,78], but not to impose rapid fluc-
tuations (to our knowledge). Convective flow can renew volumes in less
than a second in typical micro-cultivations, and with a diffusion coef-
ficient D,, = 6 X 1071°m?/s (glucose in water), diffusive transport over
a typical 50 um lengthscale takes around a second. Theoretically, all but
the most rapid turbulent variations can be imposed. By mixing an
oxygen saturated and oxygen-free stream, DO fluctuations may also be
imposed. Laminar flow means there will be axial dispersion, which has
to be quantified.

A 2D CFD simulation of a feed pulse in a microfluidic system was
done as a proof-of-principle, the geometry being a simplification of a
cell-trap design [79], shown in Fig. 10A. A 40 um diameter was set for
the feed- and main flow channels. Both inlets had a liquid inlet velocity
of 5-20 x 10~ *m/s, making the main channel velocity 1-4 mm/s. The
path length was approx. 3 mm/s. First, the flow was solved in steady
state with pure fluid B. At t = 0, inlet 1 is switched to pure A, with
properties equal to B and a molecular diffusion coefficient
Dy = 6 X 1071°m?/s. Fig. 10A shows a snapshot of the transition from B
to A + B. After 3 s, inlet 1 switched back to B. The concentration of A at
the cell cluster was measured. While the imposed step is indeed dis-
persed somewhat, a change from 5 to 95% saturation takes just
0.46-1.15s (Fig. 11), for the highest and lowest simulated velocity.
Still, if required, backmixing may be further reduced by using droplet-
based microfluidics to enhance plug flow (Fig. 10B), albeit at the
drawback that cells grow in compartments separate from the main flow,
requiring diffusion-controlled substrate transfer [80]. In both cases,
with a transfer function describing the device dynamics, it can be
checked if convolution of imposed dynamics by device dynamics affects
the metabolic response. Deconvolution of the device dynamics may be
possible if lifeline dynamics are slower than device dynamics. The
above conceptual analysis concludes that inducing rapid fluctuations
using microreactors is feasible. The challenge likely lies in quantifying
the dynamic metabolic response.

6.1.1. Single-cell analysis: towards experimental lifelines?
Several microfluidic studies have focused on visual measurements,

Fig. 10. A: 2-D CFD simulation of a simple
single-phase micro-reactor (channel diameter
40 um) designed to impose rapid extra-cellular
variations on micro-organisms, physically
trapped in a cell chamber. Contour plot shows
a switch from pure fluid B to fluid A fed via
feed 1, while feed 2 constantly feeds fluid B. B:

Feed 1
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Fig. 11. Response at the cell-trap (black) to a pulse of A in-
serted via one inlet. The pulse profile (red) has been visualized
as the response for a perfect plug flow with the same super-
ficial flow-rate. A: inlet velocity of 2 mm/s, B: inlet velocity of
0.5 mm/s per channel.
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Fig. 12. Conceptual outline of activity segregated lifeline ana-
lysis, using three activity classes (called X, Y, Z), defined pre-
perturbation. A: Microcultivation containing cells with a fast-re-
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the fluorescence-activity of each class may change in time; this is
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Fig. 13. Multi-scale bioreactor evaluation and design approach. Micro-fluidics allow single cell or small population analysis. Combined with omics-information from
the other lab-scales, this provides a comprehensive modeling basis. The microtiter-scale and/or massive parallel microfluidics provide the environment for rapid
parallel strain evaluation and selection, which may make the shake-flask obsolete. The regular bench-scale remains valuable for verification and population behavior.
Large-scale (CFD) data feeds environmental information, and is the target for reactor optimization. For well-defined processes, the intermediate pilot scale may in
time be omitted.

such as cell division frequency or fluorescent labeling [81,73,76]. These
techniques could be employed to study the response of (repetitive)
extra-cellular perturbations on the single cell level. Still, many dimen-
sions of the cellular response cannot (currently) be measured on-line,
while knowledge about the dynamics of these responses is relevant for
modeling purposes, where the overall cellular performance (e.g. growth
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rate, enzyme expression, production rates) is computed based on the
dynamics of a number of intra-cellular pools (metabolites, redox fac-
tors, enzymes, etcetera).

Cell-sorting techniques, such as Fluorescence Activated Cell Sorting
[82,83] (FACS), offer the option to segregate cells in a (micro)popula-
tion based. For example, this can be used to segregate a cell-sample in
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several classes of cells after a perturbation, based on their fluorescent
activity. A range of off-line techniques can then be used for an in-depth
analysis of the sub-population characteristics (sub-population omics
[84,83]). This allows, for example, to correlate the availability of cer-
tain key-metabolites after a perturbation with the strength of the on-
line (e.g. fluorescent) response. Such data, providing links between
metabolite levels and fluorescent response, is highly useful for mod-
eling purposes. In principle, it is possible quantify certain compound
classes or specific metabolites at the single-cell level [85], although
their size limits such possibilities for microbes. In cases where the
metabolite abundance is sufficient, the variance within a given sub-
population could be assessed to comment on the intrinsic heterogeneity
in such pools, as well as the strength of the correlation to the on-line
measured response.

The above methodology can be applied in “classical” bench-scale
cultivations, as the activity at time of sorting can be correlated with
subsequent measurement data. However, such cultivations do not allow
to follow the response of individual cells on-line, meaning that we can
only link metabolite levels between timesteps if the fluorescent activity
of sub-populations is static: for example, how do metabolite levels after
a substrate pulse develop in relation to the abundance of a certain
(labeled) enzyme, the level of which does not change in the studied
timeframe. If the fluorescent activity itself changes in response to the
pulse, for example using fast-responding bio-sensors to monitor the
availability of a single key metabolite or signal molecule [86,45,87], it
is not possible to reconstruct dynamics: we don’t know how the activity
of a cell at timestep ¢ relates to that at step t — 1. In micro-fluidic cul-
tivations establishing such correlations is possible, as we can track in-
dividual cells in time, thereby allowing to construct dynamic “activity
classes”. Again, we can take (off-line, destructive) samples of sorted
sub-populations and correlate the levels of measured metabolites with
the fluorescent response, but now we can also use the on-line single-cell
responses to monitor how sub-populations develop in time, in terms of
their fluorescent activity and (by correlation) other relevant metabolic
pools. If population heterogeneity is already visible prior to a pertur-
bation, it is possible to monitor how different sub-populations respond
to a perturbation (how strong is the response, and is it consistent be-
tween cells in a class?), in relation to their pre-perturbation composi-
tion. Graphically, this approach is outlined in Fig. 12. Of course, we are
still typically dealing with sub-population averages, and sub-popula-
tions will still be intrinsically heterogeneous, hence individual lifelines of
cells in the sub-population may still differ. Still, being able to measure
and dynamically model extrinsic heterogeneity between sub-popula-
tions [45] would be a large step forward from the current situation,
where models are based on whole-population averages. Significant
experimental developments are required to realize experimental lifeline
acquisition as described above, but the insights might well be worth
pushing for, and we’ve only just begun to explore the opportunities.

7. Future perspective

Euler-Lagrange CFD simulations, especially with C3 coupling, re-
quire days to weeks of computation time to resolve several mixing times
of flow time. This limits its applications; routine usage in process design
and optimization is not yet feasible. Computational advances such as
highly parallelized simulations and GPU-assisted CFD are promising:
real-time Euler-Lagrange simulations are already feasible if the flow
itself can be considered steady-state, and ANSYS Discovery live already
delivers real-time capabilities for transient single-phase flows. If this is
extended to multi-phase and reactive flows, application for routine
design and optimization are truly within reach. Even if crude meshes
are applied, the ability to assess the qualitative impact of design
changes and subsequently case the most promising configurations in
detail is of great interest. Next-generation microfluidic SD-simulators
may then impose lifelines from such simulations directly on organisms,
while advances in micro-population omics allow for ever-increasing
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insight in the cellular response. Our current understanding of extra-
cellular fluctuation effects is insufficient to go directly from lab to full
scale, but with increasing understanding the need for piloting may re-
duce. Automated microwell devices like the Biolector [88] are replacing
shake-flasks, allowing for parallelized strain testing, and in due time
milli-wells may be replaced by micro-droplet cultivations, converging
the capacity of microfluidic micro-population and/or even single-cell
analysis with highly parallel strain testing and controlled population
heterogeneity studies. The combined information from massive parallel
micro-cultivations and bench-scale cultivations refines metabolic un-
derstanding and associated CFD-CRD models; these simulations in turn
provide environmental input for cultivations at all scales, illustrated in
Fig. 13. Real-time simulations also have implications for process con-
trol. Imagine a “digital twin” of an industrial reactor, predicting the
effect of process disturbances on the metabolic composition; with vi-
sualization techniques like virtual reality, operators may even “look”
into running processes on-site. While this may be some longer term
speculation, the potential is certainly there. Advances in simulation,
miniaturization and visualization will impact the field of bioprocess
engineering in the years to come, and the biggest advances are likely
still ahead.
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