
A Systematic Design Space Exploration of Datacenter Schedulers
Fabian Mastenbroek

Delft University of Technology
Georgios Andreadis∗

Delft University of Technology
Alexandru Iosup∗

Delft University of
Technology

ABSTRACT
Datacenter infrastructure has become vital for stakeholders across

industry, academia and government. To operate efficiently, datacen-

ter operators rely on a variety of complex scheduling techniques,

to distribute user workloads across resources. In this work, we

leverage a reference architecture for datacenter scheduling to de-

sign and implement an instrument for systematic design space

exploration of datacenter schedulers. We construct a formal rep-

resentation of the design space for datacenter schedulers, using

scheduling policies collected from real-world schedulers. We then

use a genetic algorithm in combination with trace-based simulation

to explore the space, optimizing for workload metrics. Through

several experiments, we assess the viability of the instrument. We

find that our instrument is able to identify patterns in the workloads

and adapt the scheduling policies appropriately. Overall, our work

leads to numerous findings, which can become valuable for future

comprehension and development of schedulers.

KEYWORDS
datacenter, scheduling, cloud computing, design space exploration,

reference architecture, genetic algorithm, simulation

1 INTRODUCTION
Datacenter infrastructure is becoming ever more important in to-

day’s society. Numerous stakeholders across industry, academia,

and government employ diverse cloud services, which, in turn,

are hosted by datacenter infrastructure. Crucial for datacenter op-

eration is the scheduler, which is concerned with planning and

assigning user workloads to resources in the datacenter [26, 33].

Scheduling is extremely challenging, yet at the same time, the com-

munity regards schedulers as ‘black-box’ in the system, hindering

understanding and comparison of schedulers. To address these is-

sues, we recently proposed a reference architecture for datacenter

scheduling [2]. Unifying the different approaches of schedulers, we

envision in this work another use-case for the reference architec-

ture: systematic design space exploration of datacenter schedulers.
We represent the design space of schedulers using the reference

architecture and design an instrument for systematic exploration

of this design space.

Datacenter schedulers decide and enforce which resources to

provision for a user or application and which parts of the applica-

tion (typically, tasks) to map to provisioned resources, while at the

same time optimizing for goals such as efficiency or sustainability,

and honoring complex SLAs. Optimal scheduling is not feasible due

to the NP-hardness of the problem; in practice, scheduling is solved

using numerous heuristics and other online methods that merely

approximate or satisfice the solution. Each part of enforcement

raises additional technical issues and especially the combination

∗
Supervision

of decisions and enforcement elements make the scheduler such

a complex system. Consequently, the current approaches in the

industry are problematic: although it is inconvenient for datacenter

operators to keep much of their infrastructure idle, due to result-

ing high energy consumption and thus unnecessary costs [24], in

practice, industry-wide, server utilization is only 6-12% [32, 19]. At

the same time, co-locating workloads on machines might cause un-

desirable performance variability [21]. Furthermore, this decision

making and enforcement needs to happen efficiently at unprece-

dented scale, yet schedulers require considerable time and resources

for these activities [17].

Currently, the community develops highly complex schedulers

ad hoc and yet treats schedulers as ‘black-box’ components in the

system. This hinders both the likelihood of developing of good

schedulers, and the analysis and comparison of schedulers, because

the complexity of a scheduler and the diversity of actions that it

needs to perform cannot be fully captured by an opaque compo-

nent. Consequently, only few schedulers are well-understood and

adopted by datacenter operators [20]. A conceptual model of data-

center scheduling could help understand how to design, build, and

control such complex systems [16]. The reference architecture for

datacenter scheduling [2] recently proposed by our group, identi-

fies over 30 different components of datacenter schedulers, and the

key data and control flows between these components. Fourteen

real-world, well-known scheduler publications have been already

been mapped to it.

Addressing the complexity of scheduler development, we pro-

pose in this work an instrument for systematic design space explo-
ration of datacenter schedulers. Leveraging the high level of granu-

larity provided by the reference architecture, we represent the con-

struction of a datacenter scheduler as combinatorial optimization

problem. Using a genetic algorithm, we explore the optimization

landscape of scheduling policy combinations, potentially identify-

ing novel combinations of scheduling techniques. With the instru-

ment we analyze how the different policies, equipped by different

components in the scheduler, can together affect the performance

of the system in terms of scheduler decision-making.

Overall, this work has a three-fold contribution:

(1) We characterize the design space of datacenter schedulers

(Section 2). We identify from real-world scheduler publica-

tions scheduling mechanisms and policies to include in the

design space.

(2) We design a method for systematic design space exploration

of datacenter schedulers (Section 3). We construct a design

space from a selection of scheduling stage policies and ex-

amine appropriate search methods for exploring this design

space.

(3) We develop a prototype of the instrument and evaluate

through trace-based simulation the quality and viability of

the instrument (Section 4).

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

2 DESIGN SPACE OF DATACENTER
SCHEDULERS

We analyze in this section the domain of datacenter schedulers and

define a representation for the design space of datacenter schedulers,

appropriate for design space exploration.

2.1 Reference Architecture for Datacenter
Schedulers

In traditional models of resource-management systems, datacenter

schedulers usually play only a coarse-grained, ‘black-box’ role.

Although we can evaluate and compare, on a high level, different

schedulers using various metrics (such as job makespan), due their

complex nature and diversity in approaches, it is often non-trivial

to asses the impact of each individual design decision on system

performance. In essence, this leaves little room for exploration of the

design space. We could explore the space of an individual scheduler

through a parameter sweep. However, this restricts the design space

to the options and insights of that particular scheduler. Instead, we

need to generalize the scheduling process across different scheduler

implementations.

We consider in this work the reference architecture for datacenter
scheduling proposed in 2018 by Andreadis et al. [2]. This is a concep-
tual model that captures the entire process of datacenter scheduling

and uses a structured, workflow-based approach as depicted in

Figures 1 and 2. The scheduler is modeled as a set of components

(stages), each with specified inputs, outputs and side-effects, the

combination of which define its function. Decisions taken by the

scheduling stages are guided by policies, separated by design from

the mechanism that executes the decisions. Numerous policies al-

ready exist for scheduling in datacenters and clouds [31, 28]. For

instance, to assign tasks to the appropriate resources, schedulers

could use the Worst-Fit policy, where tasks are placed on hosts

with the most resources available. As another example, to rank

the tasks eligible for scheduling, schedulers could use the First-In-
First-Out (FIFO) policy to order tasks based on their arrival time.

Alternatively, the scheduler might use the Shortest-Remaining-Time-
First (SRTF), where tasks with shorter (estimated) runtime are given

a higher priority over tasks with longer times.

The workload is modeled as a stream of jobs, where we assume

that all jobs fit the morphology of workflows [1, 9, 22]: each job

consists of a set of one or several tasks, with precedence constraints

between tasks determining the order of execution. Execution starts

at the central submission site, and progresses until job and task

completion and cleanup stages. A scheduler iterationmay be started

periodically, on events such as job arrival or completion, or even

manually.

Overall, we identify four main responsibilities in schedulers:

(1) Job processing (J): activities concerning the selection of jobs

and the job life-cycle, such as job setup and cleanup,

(2) Task processing (T): stages of the task life-cycle, including

more sophisticated stages for task migration, preemption,

and replication,

(3) Scheduler management (M): stages facilitating scheduling hi-

erarchies and (cloud) brokers, and

(4) Resource management (R): stages related to provisioning and

allocating resources.

Figure 1: Reference architecture for datacenter schedul-
ing [2]. Focus on the global scheduler. (Continued in Fig-
ure 2.)

To emphasize the scheduler hierarchy, we can further categorize

stages by the level at which they run: Figure 1 visualizes the stages

executed at datacenter-level by a global scheduler, whereas Fig-

ure 2 depicts stages predominantly executed at cluster-level by

a subordinate, local scheduler. However, this categorization only

serves as a suggestion as this division may not be applicable to

all schedulers (e.g., a monolith scheduler may execute all stages

on the same machine). The Broker component represents a stub; it

may employ more complex sub-systems, however, in a design that

remains external to the architecture.

2.2 Representation of the Design Space of
Datacenter Schedulers

A suitable representation of the design space is essential for the

effectiveness of the design-space exploration [18]. In this work,

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

Figure 2: Reference architecture for datacenter scheduling [2]. Focus on the local scheduler. (Continued from Figure 1.)

we propose a design space representation based on the state-of-

the-art reference architecture for datacenter schedulers proposed

by Andreadis et al. [2]. We represent each datacenter scheduler (a

point in the design space) as a particular combination of scheduling

policies, with each policy corresponding to and implementing the

intended functionality of a specific scheduling stage in the reference

architecture. More formally, in our representation, a scheduler S is

defined as the tuple S = (p J 1, . . . ,pM1, . . . ,pT 1, . . . ,pR7) where px
represents a policy used by the scheduler for each of the scheduling

stages x of the reference architecture.

Conceptually, we model policies of a scheduler using atoms and
operators as building blocks. Atoms (Section 2.2.1) represent pre-

defined and pre-programmed decision logic (algorithm) for a par-

ticular scheduling stage. To prevent ‘magic’ constants in policies

and to expand our design space even further, atoms may be also

parameterized, that is, they may accept arguments and change their

behavior according to them. Operators (Section 2.2.2) are higher-

order building blocks and are used to construct more complex

policies from (a combination) of other scheduling policies.

Formally, we can now represent the policies of a scheduling stage

x as the language Px , defined inductively as follows:

(1) Atom(y1, . . . ,yn) is a stage policy for every Atom and pa-

rameters y1 to yn .
(2) Operator (px1 , . . . ,pxn) is a stage policy for every Operator

and stage policies px1 to pxn .

2.2.1 Construction of Scheduling Policies using Atoms. Atoms are

the fundamental building blocks for stage policies in our repre-

sentation of the design space. Although, in theory, the complexity

and granularity of an atom may range from a single instruction to

entire policies, we restrict ourselves in this work to basic heuristic

scheduling policies. For example, to prevent queues from overflow-

ing, schedulers might want to limit the number of total active jobs

in the system during admission of new jobs into the queue (J2).
To achieve this behavior, we implement the Limit-Active(n) atom
using the pseudo-code listed in Algorithm 1.

Algorithm 1 Psuedo-code for the Limit-Active(n) atom

Require: n ∈ N
function Limit-Active(scheduler, job)

active← Query the number of active jobs in scheduler
if active < n then

Admit-Job(job)
end if

end function

We have implemented in total over 30 heuristic scheduling atoms

to include in the design space of datacenter schedulers, listed in

Tables 1 to 3 respectively. Note however that in this work, we con-

sider only a subset of the scheduling stages defined by the reference

architecture, consisting of non-trivial and important scheduling

stages:

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

Interactive Schedule immediately after submission

Batch(p) Schedule every time quantum q

Random Schedule after a random duration

(a) J1 – Incoming jobs

Always Admit every incoming job

Limit-Load(t) Admit if total system load does not exceed t

Limit-Active(n) Admit if number of active jobs does not exceed

n

Random(p) Admit with probability p

(b) J2 – Create list of eligible jobs

Submission-Time(asc |desc) Order by job submission time

Job-Size(asc |desc) Order by number of tasks in job

Job-Duration(asc |desc) Order by (estimated) critical path

of job

Random Order randomly

(c) J3 – Sort jobs on criterion

Table 1: Overview of the implemented atoms for job process-
ing.

J1 – Incoming jobs (Table 1a): this input stage provides the list
of jobs that users have submitted at the central submission site

of the scheduling system. Policies of this stage decide whether to

immediately pass the job to stage J2 or wait for some period.

J2 – Create list of eligible jobs (Table 1b): this stage makes a

selection from the input list of jobs that only includes jobs that

are eligible to be scheduled. A policy chosen for this stage may

dictate that all jobs may be passed through, or may implement a

restriction on eligibility, e.g. due to certain user restrictions or flow

control measures. Any jobs rejected at this stage return to the list of

incoming jobs and are reconsidered at the next scheduling iteration.

J3 – Sort jobs on criterion (Table 1c): this stage sorts a list of

jobs based on a certain priority criterion and outputs the sorted

list. Policies that determine this priority can take a variety of meta

data into account, such as: the submitting user, a metric such as

estimated time of completion, or even a composite score of different

aspects.

T1 – Create list of eligible tasks (Table 2a): this stage filters the
list of tasks provided as input, based on a filter-policy, e.g. a policy

that allows tasks to pass through if and only if their dependencies

have already finished.

T2 – Sort tasks on criterion (Table 2b): this stage takes a list of

tasks and sorts it on a given criterion. This can be done to improve

the throughput and latency of tasks.

R5 – Select and allocate resource(s) (Table 3a): in this stage, the

selected task is matched with a (set of) resource(s). The match is

passed on to the task submission stage (T4).

2.2.2 Combination of Same-Level Policies through Operators. Mul-

tiple scheduling policies can coexist in the same scheduling stage.

For example, modern datacenter schedulers can use a portfolio of

diverse policies, from heuristics [10, 25, 34] to optimization based

on linear-integer programming [29], to make scheduling decisions.

We use operators to construct such combinations of same-level

scheduling policies in our design space. Similar to atoms, they may

Always Admit every incoming task

Limit-Load(t) Admit if total system load does not exceed t

Limit-Active(n) Admit if number of total active tasks does not

exceed n

Limit-Job(n) Admit if number of active tasks in the job does

not exceed n

Job-Balance(t) Admit if proportion of active tasks in a job to

the average number of active tasks in a job

does not exceed a threshold t

Random(p) Admit with probability p

(a) T1 – Create list of eligible jobs

Submission-Time(asc |desc) Order by task submission

time

Task-Duration(asc |desc) Order by (estimated) dura-

tion of task

Task-Duration-History(asc |desc) Order by average duration of

other finished tasks in job

Task-Dependencies(asc |desc) Order by number of depen-

dencies of a task

Task-Dependents(asc |desc) Order by number of depen-

dents of a task

Active-Per-Job(asc |desc) Order by number of active

tasks of the job of the task

Job-Completion(asc |desc) Order by percentage of tasks

finished in job

Random Order randomly

(b) T2 – Sort tasks on criterion

Table 2: Overview of the implemented atoms for task pro-
cessing.

First-Fit Match task with first fitting resource

Best-Fit Match task with resource with least amount of pro-

cessing elements available to satisfy the request

Worst-Fit Match task with resource with most amount of pro-

cessing elements available to satisfy the request

Expensive Match task with most expensive (fastest) resource

Cheap Match task with cheapest (slowest) resource

Random Match task with random resource

(a) R5 – Select and allocate resource(s)

Table 3: Overview of the implemented atoms for resource
management.

range in complexity and granularity. For example, we could im-

plement a simple conditional operator, which selects a policy if a

certain condition is met. On the other hand, we could also imple-

ment a complex portfolio scheduling operator, which dynamically

selects an appropriate policy based on real-time information from

the scheduler.

We consider in this work only the composition operator p1 ◦ p2,
which composes sequentially policies p1 and p2. Its exact behavior
is dependent per stage and described in Table 4.

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

J1 Not supported

J2 Admit if both p1 and p2 accept the job

J3 Order first by p1, then by p2
T1 Admit if both p1 and p2 accept the task

T2 Order first by p1, then by p2
R5 Match using p1, then using p2

Table 4: Behavior of the composition operator for the con-
sidered scheduling stages.

2.3 Evaluation of Datacenter Scheduler
To explore the design space, we need to be able to evaluate points

in the design space. That is, we need to define an ordering of fitness

between the points in the space. We use in this work the following

four traditional metrics to evaluate the performance of a scheduler:

(1) Task response time (TRT): time elapsed from task submission

to task completion,

(2) Jobmakespan (JMS): time elapsed from the first task-submission

of a job, to the last completion of a task in the job,

(3) Normalized Job-Schedule Length [23] (NJSL): job makespan

normalized by the length of the critical path (the shortest

possible execution time of the job),

(4) Job waiting time (JWT): time elapsed from the first task-

submission of a job, to the first start of a task of that job.

2.4 Problem Definition
Using this design space representation, we can formulate the de-

sign space exploration of datacenter schedulers as the following

optimization problem:

Main Problem: Given a datacenter environment E, a
workloadW and some objective function f , find the sched-
uler S = (p J 1, . . . ,pR7) such that f (S,E,W) statisfices [30,
p.27].

2.5 What Is the Magnitude of the Design Space?
It is important to have an understanding of the magnitude of the
design space, that is the order of its size. Concretely, we consider

for our design space representation as magnitude the number of

possible scheduling combinations in the design space. The magni-

tude of the design space directly influences the design of design of

the instrument and may rule out certain approaches for exploration.

For instance, for smaller design spaces brute-force search might be

a feasible strategy. However, as the design space grows, brute-force

search becomes less feasible and smarter methods are required to

traverse the search space.

We investigate magnitude of the design using a three-point es-

timation. We assume that evaluation of a scheduler in the design

space takes 1 second and we can evaluate up to 1024 schedulers at

the same time.

Best-case Suppose none of the atoms accept any parameters and

we have no operators. In this case, the magnitude of the

design space must at least be the product of the number of

atoms for each stage: 3× 4× 4× 5× 8× 6 = 11520. Given our

assumptions, a brute-force search of this magnitude would

take only 12 seconds and therefore a feasible approach.

Average-case Suppose the parameters of each atoms have at most

100 choices and we can only use the composition operator

twice per stage. We approximate the magnitude as follows,

taking into account the number of combinations produced

by composition, if applicable, by taking the sum of a stage

to the power of three.

J1: 1 + 100 + 1 = 102

J2: (1 + 100 + 100 + 100)3 = 301
3

J3: (2 + 2 + 2 + 1) = 7
3

T1: (1 + 100 + 100 + 100 + 100 + 100)3 = 501
3

T2: (2 + 2 + 2 + 2 + 2 + 2 + 2 + 1)3 = 15
3

R5: (1 + 1 + 1 + 1 + 1 + 1)3 = 6
3

Total: J1 × J2 × J3 ×T 1 ×T 2 × R5 ≈ 9 × 1029

In such a configuration, a brute-force search of the design

space would take over 3 × 1018 years to complete given our

assumptions, making it intractable to brute-force.

Worst-case Suppose we consider all atoms with every possible

combination of parameters and all operators: extremely high

amount of combinations, so also intractable to brute-force.

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

3 DESIGN OF AN INSTRUMENT FOR DESIGN
SPACE EXPLORATION OF DATACENTER
SCHEDULERS

In this section, we present the design for an instrument for design-

space exploration of datacenter schedulers, and motivate the de-

cisions behind our proposed design. We first define the problem

formally. Subsequently, we describe our set of requirements, present

a high-level architectural overview of the instrument and discuss

the design details.

3.1 Requirements
We identify five key requirements for an instrument for design-

space exploration of datacenter schedulers:

R1 Usability: The instrument should require only minimal involve-

ment from the user during the exploration process.

R2 Feasibility: The instrument should be able to find a solution

that satisfices within an acceptable time frame.

R3 Explainability: The instrument must be able to explain sched-

uler configuration selections to the user, such that they can

understand why a specific configuration was chosen. Such

a property is crucial for the adoption of new scheduling

approaches [20].

R4 Reproducibility: The outputs of the instrument must be repro-

ducible.

R5 Configurability: The instrument must support optimizing for

different user-specifiedmetrics, workloads and environments.

3.2 Design Overview
The instrument follows the high-level process depicted in Figure 3

and consists of three main components, which interact during

runtime: (1) the exploration algorithm, (2) the simulator, (3) the
result processing and analysis component. It is an iterative process:

the instrument uses feedback from previous iterations to improve

its next results.

The exploration algorithm is responsible for constructing a fixed-

size population of scheduler candidates (individuals) based on the

configuration specified by the user. This configuration consists

of the workload, the datacenter environment and the objective

(the fitness function) to optimize for (R5). Moreover, the user may

also specify meta-parameters such as the population size or the

seed of the pseudorandom number generator (R4), or supply the

exploration with additional atoms and operators for construction

of scheduling policies. We construct the scheduler candidates using

the genetic algorithm described in Section 3.3 (R2) and then sent

them to the simulator for evaluation.

The simulator receives the population of scheduler candidates

from the exploration algorithm and will simulate (R4) the con-

figured workload and datacenter environment using each of the

individuals in parallel. During execution, the simulator monitors,

through the monitoring component, the progress of the workload

and tracks various metrics of the system, such as system load, task

response time and job makespan. This information is then stored

in the result database to be processed and analyzed.

The result processing and analysis component is responsible

for processing the results of each round of simulation. For every

Legend
Configuration

Data

Results

1

...

Simulator

Objectives

Workloads

Parameters
Meta

Exploration Algorithm

Instrument

Datacenter
Topologies

M
onitoring

Results
database

User

Result processing
and analysis

n

Configuration

Atoms &
Operators

Figure 3: Architectural overview of the instrument.

individual in the population, it determines the fitness based on the

objective function specified by the user. This information is com-

municated back to the exploration algorithm, where this feedback

will be used to construct a new population of scheduler candidates.

In addition, this component also analyzes after each round of sim-

ulation, the difference between the elite (the fittest individual) of

last round and the elite of the current round, and tries to identify

the policy that caused a drop in fitness.

3.3 Exploration of Design Space using Genetic
Search

Numerous methods for exploring a design space exist. The most

straightforward approach is to perform a brute-force search of the

design space. Although effective for smaller design spaces, brute-

force search quickly becomes infeasible as themagnitude of a design

space grows. As we have shown in our estimation of magnitude

of the design space in Section 2.5, brute-force exploration of our

design is intractable. We instead use an evolutionary approach

proposed by Holland [12]. This approach is inspired by the process

of natural selection and encodes each point in the design space as

a set of chromosomes which can be mutated and altered.

We encode each scheduler combination as a phenotype with

its scheduling stages represented as chromosomes. The genes of

each chromosome represent the scheduling policies of a particular

scheduling stage. If a chromosome contains more than one gene,

we use the composition operator to combine the genes into a single

scheduling policy that accepted by the simulator.

A high-level overview of the evolution process is depicted in

Figure 4, which proceeds as follows:

(1) A population of random individuals is generated based on

the population size and seed specified by the user.

(2) The fitness of every individual is evaluated. We send the

individuals simulator component and wait for feedback from

the result processing and analysis component.

(3) The stop criteria are evaluated. The instrument limits the

maximum number of generations to 500 by default. Further-

more, we terminate the evolution process when the average

fitness of the last 10 generations differs at most 0.01% from

the average fitness of the last 30 generations, in which case

we deem the fitness as converged.

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

(4) A selection of the more fit individuals is made from the

current population. We use tournament selection, where the

best individual from a random sample of three individuals

(drawn with replacement) is chosen from the population.

Tournament selection is a good choice due to its lack of

stochastic noise and independence to scaling of the fitness

function.

(5) The genetic operators, described below, are applied to the

selection. We proceed to step 2 to evaluate the new popula-

tion.

To explore the design space using a genetic algorithm, genetic

operators are used to either converge or diverge the solution. We

consider for our instrument the following genetic operators:

(1) Uniform crossover – The genes at index i of two chromo-

somes are swapped with probability 0.2. Empirical studies

show that this approach leads to better exploration of the

design space while maintaining the exchange of good infor-

mation [8].

(2) Unguided mutation – A gene is changed to a random policy

with probability
3
√
0.1.

(3) Guided mutation – With probability probability
3
√
0.05, the

parameter of an atom is changed. The new value is picked

based on a Gaussian distribution around the current value

of the parameter. This allows for exploration for better solu-

tions near the current individual.

(4) Length mutation – The length of a chromosome is mutated

with probability
3
√
0.02. In turn, with probability 1

3
we remove

the first gene from the chromosome and with probability
2

3

we add a random gene to the chromosome.

(5) Redundancy pruning – We prune redundant combinations

from the chromosome. For example, the composition of an

allocation policy with itself is redundant and may be reduced

to a single policy.

Note that in this work we are not concerned with the efficiency

of search methods for design space exploration of datacenter sched-

ulers. Instead, the goal of this work is to display the feasibility and

potential of such a design space exploration. We leave efficiency as

an interesting concern to explore in the future.

3.4 Simulation of Datacenter Schedulers
To evaluate scheduling candidates, we use simulation, which is a

powerful and cost-effective tool for computer-based modeling and

analysis of complex systems. Simulation is often useful when other

techniques such as mathematical modeling or direct measurement

of a system become infeasible due to complexity or costs. Several

software packages already exist for simulating schedulers [5, 4, 6,

15, 13], which can be used to optimize scheduling policies and test

scenarios which are prohibitively expensive in physical datacenters.

We implement a prototype of the instrument on top of the

community-driven, open-source OpenDC simulation platform [13],

making configurable the stages J1, J2, J3, T1 T2 and R5 and im-

plementing the atoms and operators described in Section 2.2.1 and

Section 2.2.2 respectively.

In theory, the instrument could employ real-world experiments

for short scenarios using real-world experimental infrastructure. To

support this functionality, our implementation of the scheduler with

Initial
Population

Evaluation

Genetic
Operators

NoYes

SelectionTerminate

Stop criterion
met?

Figure 4: Exploration of the design space through genetic
search.

the various stages of the reference architecture should be adapted to

delegate task to real machines, instead of simulated machines. How-

ever, the results of the instruments will most-likely suffer due to

the non-determinism of real-world systems. This causes the fitness

of individuals to include noise, which hampers the performance of

the genetic search algorithm.

3.5 Explainability
Many new scheduling approaches are developed every year, but

they are not well-understood and face lack of adoption by data-

center operators [20]. Although the instrument might be able to

identify novel scheduling combinations, in light of adoption, it is

crucial that we are able to understand and explain the performance

of a scheduling combination. Moreover, this information is valuable

for the development of new scheduling policies.

To address this problem, we integrate a notion of explainability

into the instrument. That is, the instrument will by itself investigate

the cause of a certain scheduling combination performing better.

After each generation, the instrument analyses and compares the

fittest individual of the current generation against the one of the

last generation. The instrument will take the stages that changed

between the generation and apply one-by-one a changed stage to

the individual of the last generation. Next, it will run for each of

these changes a simulation to asses the impact of this single change

on the fitness of the individual. If the fitness is within 10% of the

current individual’s fitness, we consider that particular change to

explain the fitness increase and report this to the user.

However, note that it might be possible that there is no single

change whose fitness is within 10% of the current individual’s

fitness. In this casemultiple policies together have caused the fitness

to increase.

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

4 EXPERIMENTAL EVALUATIONWITH THE
INSTRUMENT

We present in this section an experimental evaluation with the

instrument. Our main findings are:

MF1 The instrument supports exploration long-term and large-

scale scenarios.

MF2 The instrument is able to identify patterns in the workloads

and adapt appropriately the stages of the scheduler using

the portfolio of policies available.

MF3 The instrument is sensitive to changes in workload and envi-

ronment.

MF4 The instrument blindly optimizes for a single objective and

does not take into account other metrics.

4.1 Experimental Setup
In this section, we describe the experiment setup used throughout

our experiments.

4.1.1 Hardware and Software Environment. The prototype of the
instrument is implemented on top of the community-driven, open-

source OpenDC simulation platform [13], which itself is written in

the Kotlin language (version 1.3).

Experiments are carried out on the Google Cloud Platform, using

a standard machine
1
(n1-standard-64) running Linux (Ubuntu

19.04) and Java 12 (OpenJDK 12.0.1).

4.1.2 Workloads. We use three traces collected from real-world

datacenter-like environments by the community of various sizes:

Google [27], Askalon [14] and Chronos [25]. Google is a hetero-

geneous engineering workload from Google that captures a month

of activity of over 12k machines running the Borg [33] resource

management system.Askalon is an engineeringworkload that uses

workflows to simulate chemical processes. Chronos is an industrial

workload that uses workflows to process data collected from an IoT

production-environment monitoring industrial equipment. Table 5

gives an overview of the characteristics of the workloads: Google

is a long-running, highly dynamic workload, varying over time

and features, but is driven by many short-running jobs. Askalon

has more complex workflows, whereas Chronos includes a large

job-burst at start.

4.1.3 Datacenter topology. We consider in this work a datacenter

environment with a varying number of common-off-the-shelf re-

sources (machines), where half of these machines contain each an

Intel i7 processor, with 4 cores, at a clock rate of 4.1GHz and the

other half contain each an Intel i5 processor, with 2 cores, at a clock

rate of 3.5GHz.

1
https://cloud.google.com/compute/docs/machine-types

Table 5: Workload characteristics.

Workload Application domain Workflows Tasks

Google Engineering 494,179 17,810,002

Askalon Engineering, chemistry 3,551 122,105

Chronos Industrial, IoT 1,024 3,072

4.2 Experiment 1: Exploration for a Long-term
and Large-scale Scenario

With the ever more growing demand for cloud services, datacenter

operators such as Google and Amazon must maintain efficient

operation at unprecedented scale [3]. It it therefore essential that

datacenter schedulers they employ are sufficiently optimized for

the heterogeneous workloads they face.

Our instrument could prove valuable for datacenter operator,

but this requires the instrument to support for the tremendous

scale and time-frame in which typical modern datacenters operate.

Demonstrating the viability of exploring long-term and large-scale

scenarios of the instrument, we optimize a scheduler running the

Google [27] workload for average job makespan. This workload

consists of over 400k workflows and captures a month of activity.

Moreover, we consider for this experiment a datacenter environ-

ment with 24k machines using the setup described in Section 4.1.

Figure 5 shows the progression of the elite fitness over the gener-

ations of the exploration. On top of that, we depict the scheduling

combinations that were used in the particular generation. We high-

light their effect on the fitness using the dashed red line, indicating

a switch in scheduling policy.

We observe that there is only few variation in the policies that

have been selected. In particular, the stages J2, J3 and R5 do not

change at all during evolution. Moreover, we also observe the use

of random policies for stages J1, J2 and T2. This suggests that for
this particular workload, our current portfolio of policies for these

scheduling stages is unsuitable.

Overall, the results seem to indicate that the instrument tries

to limit large jobs from taking over the scheduling queue. Instead,

preference is given to jobs of smaller size with the least amount of

tasks running. This observation seems to agree with the conclusion

[27] that theGoogle trace is driven bymany short jobs that demand

quick scheduling decisions.

This suggests that the instrument is able identify global patterns

in the workload and is able to adapt appropriately.

4.3 Experiment 2: Sensitivity Analysis for
Workload, Topology, and Other Parameters

In this experiment, we investigate the sensitivity of the input work-

load, topology and meta-parameters of the instrument. This is im-

portant as chosen parameters should not have too large of an impact

on the instrument output.

We first analyze the effect of the seeding of the pseudo-random

number generator on the results of the instrument. We optimize the

Askalon workload for makespan twice using a different seed each

run. We consider a datacenter environment of 256 machines. In

Figure 6, we show the effect of different seeding on the progression

of the fitness of the elite solution. Additionally, we show the sched-

uling combinations that were used in the particular generation.

The results indicate that the progression of the fitness is defi-

nitely affected by the seeding of the psuedo-random number gen-

erator. While Figure 6a progresses overall slower than Figure 6b,

Figure 6b slows down immediately after the second generation.

However, we observe that both figures converge to the same point.

Moreover, they also overlap in the scheduling policies they select.

https://cloud.google.com/compute/docs/machine-types

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

Batch

Random

J1

13
9

33
3

86
RandomJ2 0.

31

Job-SizeJ3 as
c

Limit-Active-JobT1 6786

Active-Per-Job

Random

T2

as
c

ExpensiveR5

1 3 5 7 9 11 13 15 17 19
Generation

1000000

1010000

1020000

1030000

Av
g.

 Jo
b

m
ak

es
pa

n
[s

]

Figure 5: Policy selection per scheduling stage and fitness
per generation. Each bar represents the period of genera-
tions that a policy is active. The text inside a represents the
parameter of that policy.

In both cases, the scheduling policies Interactive, Limit-Active-Job,
Job-Balance and Active-Per-Job.

In summary, while the seeding of the pseudo-random number

generator affects the fitness progression, the fitness tends to con-

verge to the same point eventually.

Next, we investigate the effect of different workloads and data-

center environments on the fitness progression. We depict in Fig-

ure 7 the fitness progression as a fraction of its initial fitness. We

observe that the Chronos workload does not optimize well for

the environment of 512 machines and the environment of 64 ma-

chines. Strangely enough, Chronos is able to achieve a rather large

speedup when using an environment of 256 machines. Moreover,

we observe that for the Askalon workload, the different environ-

ments do show different fitness progression. However, in all cases,

they seem to converge to the same fitness.

Overall, the results indicate that the instrument is indeed sensi-

tive to the input workload and environment.

4.4 Experiment 3: Exploration with Diverse
Objectives

Datacenters and other large-scale computing infrastructure often

have different needs and requirements. In traditional batch sched-

uling systems, jobs are usually queued and processed at a later

moment in the background. In contrast, interactive scheduling sys-

tems require immediate feedback to incoming requests. In essence,

these systems optimize for different requirements.

As such, we analyze the effect of optimizing a scheduler for dif-

ferent objectives (metrics). We run in this experiment the Askalon

workload and optimize for the job makespan (JMS), job waiting

time (JWT) and normalized job-schedule length [23] (NJSL). We

consider a datacenter of 256 machines.

Figure 8 depicts the different metrics per generation as different

metric is being optimized. The top graph represents the evolution of

the job makespan, the middle graph the evolution of the normalized

job-schedule length and the bottom graph the evolution of the job

waiting time.

We observe that the jobwaiting time and normalized job-schedule

length show some correlation. In contrast, the job makespan does

not seem to have any correlation with other two metrics. Inter-

estingly, the rather chaotic relation between on one side the job

waiting time and normalized job-schedule and on the other hand

the job makespan show that even when the fitness is converging,

other metrics may still fluctuate a lot.

This suggests that there exists solutions where we both met-

rics are optimize, yet the instrument blindly focuses on its given

objective.

5 THREATS TO VALIDITY
We discuss in this section several points which might threaten the

validity of the work, and how these are mitigated.

5.1 Validity of Simulator
A possible threat to the validity of this work is the use of a sim-

ulator in the instrument, instead of real-world experimentation,

for evaluating schedulers in the design space. To mitigate this risk,

we have validated the simulator by running real-world workloads

and verifying the outcomes manually. However, currently exist-

ing alternatives are not suitable and could suffer from the same or

even deeper problems: mathematical analysis, where the scheduler

represented as a mathematical model (e.g., hierarchical and queu-

ing models), is limited because its accuracy relies on preexisting

data from which a model derived. Considering further the com-

plexity and responsibilities of modern datacenter schedulers, this

approach becomes infeasible. Another approach is real-world ex-

perimentation. However, such experimentation is expensive, hard

to reproduce and cannot capture the scale at which datacenter

infrastructure is running at.

5.2 Limits of the Reference Architecture
Another threat to the validity of this work is the use of the reference

architecture by Andreadis et al. [2]. In particular, the use of the

reference architecture might restrict our design space by possibly

not being able to represent some of the scheduling approaches.

However, more than ten real-world and state-of-the-art scheduling

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

Batch

Interactive

J1

28
Limit-Active

Limit-Load

Random

J2

76
6

0.
58

0.
58

0.
97

0.
51

0.
83

0.
83

0.
83

0.
99

Job-Size

Random

Submission-Time

J3

as
c

as
c

de
sc

de
sc

Job-Balance

Limit-Active-Job

Random

T1

1.
01

1.
01

1.
07

1.
49

1.
49

87 87 91

0.
82

0.
82

Active-Per-Job

Job-Completion

Random

T2

as
c

de
sc

Best-Fit
Cheap

Expensive
Random

Worst-Fit

R5

1 3 5 7 9 11 13 15 17 19
Generation

1500

2000

2500

3000

3500

4000

Av
g.

 Jo
b

m
ak

es
pa

n
[s

]

(a) Seed: 456

Interactive

Random

J1

Always

Limit-Active

Random

J2 49
2

51
1

55
8

71
4

0.
69

0.
8

0.
8

Job-Size

Submission-Time

J3

as
c

as
c

as
c

de
sc

de
sc

Job-Balance

Limit-Active-Job

T1

1.
04

1.
45

1.
48

22 22 4750

Active-Per-Job

Task-Dependents

Task-Duration-History
T2

as
c

as
c

de
sc

Cheap

Random

R5

1 3 5 7 9 11 13 15 17 19
Generation

1500

2000

2500

3000

3500

4000

Av
g.

 Jo
b

m
ak

es
pa

n
[s

]

(b) Seed: 789

Figure 6: The effect of different seeds on the fitness. Each bar represents the period of generations that a policy is active. The
text inside a represents the parameter of that policy

systems have already been mapped to the reference architecture.

These systems cover the multiple dimensions of the domain, such

as background, age and deployment.

Moreover, we have found that alternative models are even more

restricting to the design space. They lack the fine granularity of

the reference architecture and miss support for advanced concepts

typical in modern datacenter scheduling.

5.3 Optimality of Solutions
Another concern for this work is the optimality of solutions as

the instrument might suffer from the local optima problem. That

is, the exploration algorithm might get stuck at a local optimum

in the design space. However, we try to overcome this problem

by using (1) unguided mutation as divergence operator to explore

possible other regions of the design space and (2) uniform crossover

to combine two schedulers, which also leads to better exploration

of the design space [8].

Furthermore, we focus in this work on finding a solution that

satisfices [30, p.27], rather than full minimization of the fitness of a

scheduler, given that this is most likely unachievable or intractable

due to extreme magnitude of the design space (see Section 2.5).

5.4 Inter-Dependence of Stages
The inter-dependence of stages in the scheduler might pose another

threat to the validity of this work. This is the effect that policies

of the different scheduling stages may not be fully independent

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

0 2 4 6 8 10 12 14 16 18
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

iti
al

 fi
tn

es
s

Workload
Askalon
Chronos
Environment
512 machines
256 machines
64 machines

Figure 7: The effect of optimizing different workloads and
environments.

2500

5000

7500

JM
S

[s
]

0

50

100

NS
JL

 [s
]

0 5 10 15 20 25 30 35 40
Generation

0

1000

JW
T

[s
] Objective

JMS
NJSL
JWT

Figure 8: JMS, NJSL and JWT per generation while optimiz-
ing for different objectives.

with respect to other scheduling stages and the performance of the

system, such that using either one of two policies will not give the

desired speedup, but both will.

While it very valuable for the instrument to be able to recog-

nize and analyze inter-dependence between the different stages of a

scheduler, trying to accomplish this will lead to combinatorial explo-

sion as trying to analyze the difference between two schedulers will

require in the worst-case an exponential amount of combinations.

As such, we do not take this property into account in this work.

Instead, we assume that each scheduling policy is independent

during analysis of scheduling combinations.

6 RELATEDWORK
The field of scheduling simulation is broad. Various taxonomies

of scheduling have been proposed in literature [7, 28]. Rodriguez

and Buyya additionally surveyed numerous scheduling algorithms

and classified them according to their proposed taxonomy. These

taxonomies focus on the characteristics of the broader architecture,

but do not elaborate into the interplay between these characteristics.

A survey by Singh and Chana [31] on resource scheduling iden-

tifies several responsibilities of schedulers, including provisioning

assignment and monitoring, but lacks the more advanced concepts

present in modern datacenters, such as checkpointing, auto-scaling,

replication and migration of workloads.

Closest to our work, and surveying the most relevant alternatives

for simulation is our own previous publication on the reference

architecture for datacenter scheduling [2] in 2018. In this work, four

stages of the reference architecture were implemented using the

community-driven, open-source OpenDC platform for datacenter

simulation [13]. The authors conduct experiments with the four

implemented stages of the general model. The work proposed here

naturally complements this prior work. In this work, we extend

OpenDC platform with more stages of reference architecture and

implement over 30 scheduling policies. We further design and im-

plement an instrument for exploring the optimization landscape

of datacenter schedulers. We systematically construct scheduling

combinations of various policies and using simulations on traces

from real-world datacenter-like environments, we analyze the ef-

fect of different scheduler combinations on system performance

(e.g., in terms of job makespan).

Estrada et al. propose a similar idea for design space exploration

of datacenter schedulers [11]. They use genetic programming ap-

proach to construct parse trees of conditional statements which

represent resource allocation policies. While we also use a genetic

algorithm for constructing scheduling policies, we work at the

granularity of a single policy (e.g., Select host with most avail-

able resources). In contrast, Estrada et al. work at finer granularity,

constructing allocation policies using inequalities and logical ex-

pressions. Moreover, in their work they consider only the resource

allocation stage (R5) of the reference architecture. In this work, we

also explore important stages related to job and task processing,

such as admission and sorting.

7 CONCLUSION AND FUTUREWORK
Datacenter infrastructure power today’s digital society. Crucial for

their operation is the scheduler, responsible for allocating datacenter
resources for user workloads. Although the community develops

highly complex and advanced schedulers, they struggle to perform

efficiently both in terms of output performance and runtime. More-

over, due to their complex nature and diverse approaches, they are

difficult to comprehend and compare, hindering adoption of new

schedulers and policies [20]. The reference architecture for datacen-

ter scheduling proposed by Andreadis et al. [2] tries to address this

problem using a conceptual workflow-based model, in which over

30 components including their key data and control flows represent

the processes of scheduling in datacenters.

We design and implement in this work an instrument for system-

atic design space exploration of datacenter schedulers. Using the

reference architecture, we construct a formal representation of a

design space for datacenter scheduler. We use a genetic algorithm to

explore the space and analyze design candidates using simulation.

Using real-world workloads, we analyze the performance of the

instrument.

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

Our main findings consist of:

MF1 The instrument supports exploration long-term and large-

scale scenarios.

MF2 The instrument is able to identify patterns in the workloads

and adapt appropriately the stages of the scheduler using

the portfolio of policies available.

MF3 The instrument is sensitive to changes in workload and envi-

ronment.

MF4 The instrument blindly optimizes for a single objective and

does not take into account other metrics.

For the future, we plan to extend the design space withmore policies

and implement more stages of the reference architecture. Further-

more, we aim to investigate the decomposition of policies into a

finer granularity, similar to the genetic programming approach

by Estrada et al. [11]. Lastly, analysis of the efficiency of the ex-

ploration algorithm is left out in this work, but this might be an

interesting concern to explore in the future, allowing for possibly

larger-scale experiments.

REFERENCES
[1] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones,

Bertram Ludäscher, and SteveMock. 2004. Kepler: an extensi-

ble system for design and execution of scientific workflows.

In Proceedings of the 16th International Conference on Sci-
entific and Statistical Database Management (SSDBM 2004),
21-23 June 2004, Santorini Island, Greece, 423–424.

[2] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek,

and Alexandru Iosup. 2018. A reference architecture for dat-

acenter scheduling: design, validation, and experiments. In

Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, SC 2018,
Dallas, TX, USA, November 11-16, 2018, 37:1–37:15.

[3] Beyer et al. 2016. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media.

[4] Rajkumar Buyya and M. Manzur Murshed. 2002. Gridsim:

a toolkit for the modeling and simulation of distributed re-

source management and scheduling for grid computing. Con-
currency and Computation: Practice and Experience, 14, 13-15,
1175–1220.

[5] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De Rose, and

Rajkumar Buyya. 2009. Cloudsim: A novel framework for

modeling and simulation of cloud computing infrastructures

and services. CoRR, abs/0903.2525.
[6] Henri Casanova. 2001. Simgrid: A toolkit for the simulation

of application scheduling. In First IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2001), May
15-18, 2001, Brisbane, Australia, 430–441.

[7] Thomas L. Casavant and Jon G. Kuhl. 1988. A taxonomy of

scheduling in general-purpose distributed computing sys-

tems. IEEE Trans. Software Eng., 14, 2, 141–154.
[8] Pravir K. Chawdhry, Rajkumar Roy, and Raj K. Pant. 1997.

Soft Computing in Engineering Design and Manufacturing.
Springer-Verlag.

[9] Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv

Mayani, and Rafael Ferreira Da Silva. 2016. Pegasus in the

cloud: science automation through workflow technologies.

IEEE Internet Computing, 20, 1, 70–76.
[10] Kefeng Deng, Junqiang Song, Kaijun Ren, and Alexandru

Iosup. 2013. Exploring portfolio scheduling for long-term

execution of scientific workloads in iaas clouds. In Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC’13, Denver, CO, USA - November
17 - 21, 2013, 55:1–55:12. doi: 10 . 1145 / 2503210 . 2503244.
https://doi.org/10.1145/2503210.2503244.

[11] Trilce Estrada, Michael R. Wyatt, and Michela Taufer. 2015.

A genetic programming approach to design resource alloca-

tion policies for heterogeneous workflows in the cloud. In

21st IEEE International Conference on Parallel and Distributed
Systems, ICPADS 2015, Melbourne, Australia, December 14-17,
2015, 372–379.

[12] 1984. Genetic algorithms and adaptation. Adaptive Control of
Ill-Defined Systems, 317–333.

[13] Alexandru Iosup, Georgios Andreadis, Vincent van Beek,

Matthijs Bijman, Erwin Van Eyk, Mihai Neacsu, Leon Over-

weel, Sacheendra Talluri, Laurens Versluis, andMaaike Visser.

2017. The opendc vision: towards collaborative datacenter

simulation and exploration for everybody. In 16th Interna-
tional Symposium on Parallel and Distributed Computing,
ISPDC 2017, Innsbruck, Austria, July 3-6, 2017, 85–94.

[14] Alexandru Iosup, Hui Li, Mathieu Jan, ShannyAnoep, Catalin

Dumitrescu, Lex Wolters, and Dick H. J. Epema. 2008. The

Grid Workloads Archive. Future Generation Comp. Syst., 24,
7, 672–686.

[15] Alexandru Iosup, Ozan Sonmez, andDick Epema. 2008. Dgsim:

comparing grid resource management architectures through

trace-based simulation. In Proceedings of the 14th Interna-
tional Euro-Par Conference on Parallel Processing, 13–25.

[16] Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios

Andreadis, Erwin Van Eyk, Tim Hegeman, Sacheendra Tal-

luri, Vincent van Beek, and Lucian Toader. 2018. Massivizing

computer systems: a vision to understand, design, and en-

gineer computer ecosystems through and beyond modern

distributed systems. CoRR, abs/1802.05465.
[17] Svilen Kanev, Juan PabloDarago, KimHazelwood, Parthasarathy

Ranganathan, TippMoseley, Gu-YeonWei, and David Brooks.

2015. Profiling a warehouse-scale computer. In Proceedings
of the 42Nd Annual International Symposium on Computer
Architecture, 158–169.

[18] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. 2011.

An approach for effective design space exploration. In Pro-
ceedings of the 16th Monterey Conference on Foundations of
Computer Software: Modeling, Development, and Verification
of Adaptive Systems, 33–54.

[19] James M Kaplan, William Forrest, and Noah Kindler. 2008.

Revolutionizing data center energy efficiency. In Uptime
Institute Symposium.

[20] Dalibor Klusáček and Šimon Tóth. 2014. On interactions

among scheduling policies: finding efficient queue setup

using high-resolution simulations. In Euro-Par 2014 Parallel
Processing, 138–149.

https://doi.org/10.1145/2503210.2503244
https://doi.org/10.1145/2503210.2503244

A Systematic Design Space Exploration of Datacenter Schedulers Fabian Mastenbroek, Georgios Andreadis, and Alexandru Iosup

[21] Younggyun Koh, Rob C. Knauerhase, Paul Brett, Mic Bow-

man, Zhihua Wen, and Calton Pu. 2007. An analysis of per-

formance interference effects in virtual environments. In

2007 IEEE International Symposium on Performance Analysis
of Systems and Software, April 25-27, 2007, San Jose, California,
USA, Proceedings, 200–209.

[22] Mehmet Can Kurt, Sriram Krishnamoorthy, Kunal Agrawal,

and Gagan Agrawal. 2014. Fault-tolerant dynamic task graph

scheduling. In SC, 719–730.
[23] Yu-Kwong Kwok and Ishfaq Ahmad. 1998. Benchmarking

the task graph scheduling algorithms. In IPPS/SPDP, 531–537.
[24] Jacob Leverich and Christos Kozyrakis. 2010. On the energy

(in)efficiency of hadoop clusters. SIGOPS Oper. Syst. Rev., 44,
1, 61–65.

[25] Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, and

Alexandru Iosup. 2017. Ananke: A q-learning-based portfolio

scheduler for complex industrial workflows. In ICAC.
[26] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion

Stoica. 2013. Sparrow: distributed, low latency scheduling.

ACM Symposium on Operating Systems Principles (SOSP), 69–
84.

[27] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy

H. Katz, and Michael A. Kozuch. 2012. Heterogeneity and

dynamicity of clouds at scale: google trace analysis. In Pro-
ceedings of the Third ACM Symposium on Cloud Computing
(SoCC ’12), 7:1–7:13.

[28] Maria Alejandra Rodriguez and Rajkumar Buyya. 2017. A

taxonomy and survey on scheduling algorithms for scientific

workflows in iaas cloud computing environments. Concur-
rency and Computation: Practice and Experience, 29, 8, e4041.

[29] Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick H. J.

Epema. 2013. Scheduling jobs in the cloud using on-demand

and reserved instances. In Euro-Par 2013 Parallel Processing -
19th International Conference, Aachen, Germany, August 26-
30, 2013. Proceedings, 242–254. doi: 10.1007/978-3-642-40047-
6_27. https://doi.org/10.1007/978-3-642-40047-6%5C_27.

[30] Herbert A. Simon. 1996. The Sciences of the Artificial (3rd Ed.)
MIT Press, Cambridge, MA, USA. isbn: 0-262-69191-4.

[31] Sukhpal Singh and Inderveer Chana. 2016. A survey on re-

source scheduling in cloud computing: issues and challenges.

Journal of Grid Computing, 14, 2, 217–264.
[32] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi,

T. Sivabalan, and Rajesh Subbiah. 2010. Worth their watts?

- an empirical study of datacenter servers. In 16th Interna-
tional Conference on High-Performance Computer Architecture
(HPCA-16 2010), 9-14 January 2010, Bangalore, India, 1–10.

[33] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David

Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-scale

cluster management at google with borg. In Proceedings of
the Tenth European Conference on Computer Systems, 18:1–
18:17.

[34] Maria A. Voinea, Alexandru Uta, and Alexandru Iosup. 2018.

POSUM: A portfolio scheduler for mapreduce workloads.

In IEEE International Conference on Big Data, Big Data 2018,
Seattle, WA, USA, December 10-13, 2018, 351–357. doi: 10 .
1109/BigData.2018.8622215. https://doi.org/10.1109/BigData.

2018.8622215.

https://doi.org/10.1007/978-3-642-40047-6_27
https://doi.org/10.1007/978-3-642-40047-6_27
https://doi.org/10.1007/978-3-642-40047-6%5C_27
https://doi.org/10.1109/BigData.2018.8622215
https://doi.org/10.1109/BigData.2018.8622215
https://doi.org/10.1109/BigData.2018.8622215
https://doi.org/10.1109/BigData.2018.8622215

	Abstract
	1 Introduction
	2 Design Space of Datacenter Schedulers
	2.1 Reference Architecture for Datacenter Schedulers
	2.2 Representation of the Design Space of Datacenter Schedulers
	2.3 Evaluation of Datacenter Scheduler
	2.4 Problem Definition
	2.5 What Is the Magnitude of the Design Space?

	3 Design of an Instrument for Design Space Exploration of Datacenter Schedulers
	3.1 Requirements
	3.2 Design Overview
	3.3 Exploration of Design Space using Genetic Search
	3.4 Simulation of Datacenter Schedulers
	3.5 Explainability

	4 Experimental Evaluation with the Instrument
	4.1 Experimental Setup
	4.2 Experiment 1: Exploration for a Long-term and Large-scale Scenario
	4.3 Experiment 2: Sensitivity Analysis for Workload, Topology, and Other Parameters
	4.4 Experiment 3: Exploration with Diverse Objectives

	5 Threats to Validity
	5.1 Validity of Simulator
	5.2 Limits of the Reference Architecture
	5.3 Optimality of Solutions
	5.4 Inter-Dependence of Stages

	6 Related Work
	7 Conclusion and Future Work

