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Abstract
The key to precise global navigation satellite system (GNSS) positioning is carrier phase integer ambiguity resolution with
a high success rate. On the other hand when the success rate is too low, the user will normally prefer the float solution. The
alternative can be to use the best integer equivariant (BIE) estimator, since it is optimal in the minimum mean squared error
(MMSE) sense. Low-cost receiver real-time kinematic precise positioning has become possible through the many signals
that can be obtained by combining several GNSSs, such as BDS, Galileo, QZSS and GPS. In this contribution, we will use
both simulations and such low-cost multi-GNSS data to compare the performance of the BIE and integer least squares (ILS)
estimator, based on full ambiguity resolution. The GNSS data are evaluated in Dunedin, New Zealand, with a short- (670 m)
and long-baseline (112.9 km) where the relative atmospheric delays can be neglected and need to be estimated, respectively.
We compare the BIE and ILS results by using both single-frequency and dual-frequency (DF) low-cost and survey-grade
receivers and antennas. We demonstrate, for the first time, the distributional properties of BIE positioning, where it will be
shown that a ‘star-like’ pattern reveals itself once the model gets stronger and the ILS success rate increases. It will further
be shown that the DF low-cost receivers give a very good positioning performance, but still not yet competitive to the survey-
grade counterparts for the long-baseline. We will also demonstrate that the positioning performance of the BIE estimator will
always equal or be better than that of the float solutions. It will finally be shown that BIE will always be better in the MMSE
sense than the ILS solution when the success rate is at low to medium levels, whereas for high success rates we get a similar
performance to ILS.

Keywords Best integer equivariant (BIE) estimator · Integer least squares (ILS) estimator · Low-cost receiver · Low-cost
antenna · Single-frequency (SF) · Dual-frequency (DF) · Real-time kinematic (RTK) positioning

1 Introduction

Carrier-phase integer ambiguity resolution is the key to
high precision global navigation satellite system (GNSS)
real-time kinematic (RTK) positioning. The combination of
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several GNSSs like the Russian GLONASS, Chinese Bei-
Dou Navigation Satellite System (BDS), European Galileo,
Japanese Quasi-Zenith Satellite System (QZSS) and Ameri-
canGlobal Positioning System (GPS) has alsomade low-cost
receiver (Odolinski and Teunissen 2016; Mongredien et al.
2016; Odolinski and Teunissen 2017b) and smartphone pre-
cise positioning possible (Riley et al. 2017; Zhang et al. 2018;
Odolinski andTeunissen 2019; Paziewski et al. 2019;Aggrey
et al. 2020; Nie et al. 2020).

The method to obtain RTK-derived positions is to fix the
full or partial (Teunissen et al. 1999; Brack and Gunther
2014; Brack 2015, 2017) integer vector when the corre-
sponding ambiguity success rate is very high (Teunissen
1995). On the other hand when the success rate is low, one
usually opts for the float solution. The alternative is to use
the best integer equivariant (BIE) estimator as introduced

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00190-020-01423-2&domain=pdf
http://orcid.org/0000-0001-5073-4457


   91 Page 2 of 17 R. Odolinski, P. J. G. Teunissen

by Teunissen (2003b). This estimator is optimal in the min-
imum mean squared errors (MSEs) sense, and it has the
added advantage that no separate ambiguity validation step
is needed as is the case when using integer estimators such as
the integer least squares (ILS) estimator (Teunissen 2003b;
Verhagen and Teunissen 2005; Brack 2019). Verhagen and
Teunissen (2005), Brack et al. (2014), Brack (2019) used
simulation to study the distributional properties and perfor-
mance of the BIE estimator when compared to the float and
ILS fixed counterparts. Laurichesse andBanville (2018) used
BIE for instantaneous, cm-level, precise point positioning
(PPP) while making use of survey-grade, multi-frequency
receivers.

In this contribution, we study the BIE performance using
simulations as well as real data collected by low-cost, multi-
GNSS, single-frequency (SF) and dual-frequency (DF) RTK
receivers and antennas. With ‘low-cost’, we refer to the com-
bined cost of SF and DF receivers and antennas of at most a
few hundred USDs.We will also, for the first time, reveal the
‘star-like’ distribution in the positioning-space rather than
the low-dimensional ambiguity space (Verhagen 2005). All
BIE results will be compared to that of the float and ILS
solutions, based on full ambiguity resolution. In Sect. 2, we
define our functional model and show how the standard ILS
ambiguity and baseline solution is derived. In this section, we
also describe the BIE estimator. In Sect. 3, we then describe
the Monte Carlo simulations and compare these results to
realmulti-GNSSdata collected through a short-baseline (670
m) while employing low-cost SF receivers and antennas. In
Sect. 4,we showBIE results for simulated data and realmulti-
GNSSdata collected througha long-baseline (112.9km)with
low-cost DF receivers and antennas. Performance compar-
isons are here also made to that of survey-grade receivers
and antennas. With short- and long-baselines, we refer to
the case where the ionospheric and tropospheric delays can
be assumed absent and need to be modeled as completely
unknown parameters, respectively. Finally in Sect. 5, we end
up with a summary and conclusions.

2 Best integer equivariant estimation for the
multi-frequency, multi-system RTKmodel

2.1 Multi-frequency andmulti-system RTKmodel

In the following system of observation equations, we assume
that we have access to DF and double-differenced (DD) code
and phase data of GPS, BDS, Galileo and QZSS. When we
refer to BDS, we refer to the BDS-2 regional system (Odolin-
ski et al. 2013; Yang et al. 2014) and not the new global
BDS-3 constellation (Yang et al. 2019). The satellite orbits
and clocks are obtained through the broadcast ephemeris,
and we omit time stamps for brevity. We take a common ref-

erence satellite on the overlapping frequencies between the
systems to further strengthen the model. Since throughout
our results we are using similar receiver types, with the same
firmware version, modeling of the inter-system biases (ISBs)
on the overlapping frequencies is safely neglected (Odijk and
Teunissen 2013; Odolinski and Teunissen 2017a, 2019). The
linearized DD system of observation equations read,

E (y) = Aa + Bb, a ∈ Z
n, b ∈ R

p (1)

where E(.) is the expectation operator, y the vector of code
andphase observations of sizem,a is then vector of unknown
integer ambiguities, and b the p vector of real-valued base-
line components (and for sufficiently long baselines, it also
includes relative ionospheric and tropospheric delays). The
design matrices A and B are of sizem×n andm× p, respec-
tively, and are assumed to be of full rank.

2.2 Integer least squares estimation

The GNSS model (1) is solved in the following three-step
procedure (Teunissen 1995).

2.2.1 The float solution

Firstly, we assume the ambiguities to be real-valued param-
eters a ∈ R

n and perform a least squares (LS) adjustment
(Teunissen 2003a), so as to obtain the so-called float solu-
tion of the ambiguities and baseline components, denoted
with a ‘hat’, as,

â =
(
A
T
Q−1

yy A
)−1

A
T
Q−1

yy y

b̂ =
(
BT Q−1

yy B
)−1

BT Q−1
yy

(
y − Aâ

) (2)

with A = P⊥
B A, and the orthogonal projector defined as

P⊥
B = Im − B

(
BT Q−1

yy B
)−1

BT Q−1
yy , where Qyy is the

variance (vc) matrix, i.e., the stochastic model, of the DD
code and phase observations, with an exponential elevation-
dependent weight employed for each satellite (Euler and
Goad 1991). The float vc matrices of the ambiguities and
baseline components in (2) read,

Qââ =
(
A
T
Q−1

yy A
)−1

Qb̂b̂ =
(
B
T
Q−1

yy B
)−1

(3)

with B = P⊥
A B and P⊥

A = Im − A
(
AT Q−1

yy A
)−1

AT Q−1
yy .

The second step is to solve the ILS problem making use
of the float ambiguities â ∈ R

n in (2) and search for its
corresponding integer solution a ∈ Z

n .
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2.2.2 Integer ambiguity estimation

Different integer estimators exist, such as those of Integer
Rounding, Integer Bootstrapping and integer least squares
(ILS). Here, we choose ILS as it is optimal in the sense of
having the largest possible success-rate of all integer esti-
mators (Teunissen 1999a). The ILS ambiguity estimator is
denoted with a ‘check’ and defined as,

ǎ = arg min
a∈Zn

||â − a||2Qââ (4)

where ||.||2Qââ
= (.)T Q−1

ââ (.). This ILS problem is then effi-
ciently solved bymeans of the LAMBDAmethod (Teunissen
1995; De Jonge and Tiberius 1996).

2.2.3 Fixed solution

In the third step, we compute the fixed baseline solution as,

b̌ = b̂ − Qb̂â Q
−1
ââ

(
â − ǎ

)
(5)

Provided the uncertainty in ǎ can be neglected, we have,

Qb̌b̌ = Qb̂b̂ − Qb̂â Q
−1
ââ Qâb̂ < Qb̂b̂ (6)

where QT
b̂â

= Qâb̂ are the float covariance matrices. As the
precision of the fixed baseline is driven by the very-precise
carrier-phase data, while that of b̂ in the single-epoch case
merely by the pseudorange data, the standard deviations of b̌
will then be a two-order ofmagnitude smaller than those of b̂.
However, for this to hold true, the uncertainty in the resolved
integer ambiguities must be negligible, implying that their
success rate (i.e., probability of correct integer estimation)
should be sufficiently close to one.

2.3 Best integer equivariant estimation

On the other hand, when the success rate is too low, the
user will normally prefer the float b̂ rather than the fixed
solution b̌ in (5). The alternative in such cases can be to
use the BIE estimator (Teunissen 2003b) to solve for the
ambiguities. Assuming normally distributed data, the BIE
estimator denoted with ‘overline’ is given as,

a =
∑
z∈Zn

z
exp

(
− 1

2‖â − z‖2Qââ

)

∑
z∈Zn exp

(
− 1

2‖â − z‖2Qââ

) (7)

The BIE baseline solution can then be derived as,

b = b̂ − Qb̂â Q
−1
ââ

(
â − a

)
(8)

where the ILS solution ǎ in (5) has been replaced by the
BIE solution a computed in (7). It was proven by Teunis-
sen (2003b) that the BIE estimator is unbiased and that it
minimizes the mean squared errors (MSEs) in the class of
integer equivariant (IE) estimators. And since it was also
shown in (ibid) that the IE-class includes the class of integer-
estimators, as well as the class of linear estimators, the mean
squared error of the BIE estimator is also always smaller than
that of the ILS estimator and float LS estimator. We therefore
have:

D
(
b
) ≤ D

(
b̌
)

D
(
b
) ≤ D

(
b̂
) (9)

where D(.) is the dispersion operator. The BIE estimator
becomes similar to the ILS solution when the success rate is
very high, and similar to the float solution when the success
rate is very low (Teunissen 2003b).

Note that the BIE solution in (7) involves an infinite
weighted sum over the whole space of integers, which is
computationally impractical. Teunissen (2005) has shown
that one can make use of a finite integer set Θλ

â while still
maintaining the property of integer-equivariance,

aλ =
∑

z∈Θλ
â

z
exp

(
− 1

2‖â − z‖2Qââ

)

∑
z∈Θλ

â
exp

(
− 1

2‖â − z‖2Qââ

) (10)

where z ∈ Z
n in (7) has been replaced by z ∈ Θλ

â in (10).
The integers that reside in the set Θλ

â depends then on the
ellipsoidal region around the float solution â with its radius
defined in the metric of Qââ , which can be defined as follows
(Teunissen 2005),

‖â − z‖2Qââ
< λ2 (11)

where the threshold λ2 can be determined from a central
Chi-squared distribution χ2 with n degrees of freedom and
a small significance level α. In this article, we choose α =
10−9 to avoid any computational burden, which produces
near-identical results as the setting of α = 10−16, similar to
Verhagen (2005). We also remark that again the LAMBDA
method is used to efficiently find the integer vectors residing
in the ellipsoidal region (11).

In the following sections, we will evaluate how the BIE
performance (9) hold true for the BIE approximation in (10),
while using real data collected by low-cost SF and DFmulti-
GNSS receivers and antennas in Dunedin, NZ.
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Table 1 Undifferenced and zenith-referenced STDs for code and phase
with simulated data and a SF L1 GPS model, with an elevation cut-off
angle of 10◦ and 11 satellites (see skyplot in Fig. 1)

σ̂p1 (cm) σ̂φ1 (mm) L1 ILS SR (%)

50 5.0 11.8

37 3.7 40.8

25 2.5 83.5

20 2.0 94.1

18 1.8 96.6

15 1.5 99.0

10 1.0 100.0

The corresponding single-epochL1 ILSSRs are given in the last column

3 BIE for single-epoch and short-baseline SF
RTK positioning

3.1 BIE simulation for single-epoch SF L1 GPS RTK
positioning

To better understand the real data results to be presented in
the following section, we will in this section present results
for simulated data with a fixed satellite geometry. In order to
do this, we make use of Monte Carlo simulations, where the
code and phase observations are produced using the zenith-
referenced and undifferenced standard deviations (STDs) in
Table 1 together with an exponential elevation weighting
function (Euler and Goad 1991). In the single-baseline RTK
model (1), we assume any residual atmospheric delays to
be absent (here referred to as the ‘ionosphere-fixed’ model);
hence, the results presented here hold true for a short base-
line. Table 1 shows also the corresponding single-epoch ILS
success rates (SRs). The SF L1 GPS satellite constellation in
Fig. 1 is used as obtained through the broadcast ephemeris
for a position in Dunedin, NZ. We simulate 200,000 samples
of observations, where the benchmark coordinates and satel-
lite coordinates of the broadcast ephemeris are assumed to
be true coordinates. This has as a consequence that the esti-
mated receivers coordinates will be unbiased, and thus the
mean of the positioning errors to be depicted will be zero.

Figure 2 depicts simulated horizontal (North and East)
single-epoch, ambiguity-float, ILS and BIE SF ionosphere-
fixed positioning errors as black, magenta and green dots,
respectively. The ILS positioning results follow a multi-
modal continuous probability density function (PDF), see
further Fig. 3, and thus all the ILS solutions that have the
same integer ambiguity vector are classified into different
clusters if they exceed a certain number of positioning solu-
tions. A cluster of ≥ 5000 positioning solutions is denoted
as the largest magenta dot, where the corresponding number
for the second largest magenta dots, etc., is 500 to < 5000,
50 to < 500, 5 to < 50, and finally a single ILS solution.

Fig. 1 Skyplot of L1 GPS with an elevation cut-off angle of 10◦ for the
simulated data from a position in Dunedin, NZ

The top to bottom row and from left to right panels show
models with an ILS SR of 11.8%, 40.8%, 83.5%, 94.1%,
99.0% and 100.0%, respectively. The zoom-in window is
depicted to show the two-order of magnitude improvement
when going from ambiguity-float, to successfully fixing the
ambiguities to their correct integer values through ILS. Note
that in this zoom-in window all ILS solutions are shown as
their single-epoch ILS solutions (small magenta dots).

Figure 3 shows a selection of the corresponding his-
tograms of the North positioning errors in Fig. 2, where the
left column panels depict the ILS, the middle column BIE,
and the right column the ambiguity-float positioning results.
The East and Up positioning errors behave in a similar man-
ner and are thus not depicted for brevity. On top of the float
solutions, we also plot the theoretical normal distribution,
and we use kernel smoothing (Wand and Jones 1995) to fit
a distribution to the BIE results and the ILS solutions in the
zoom-in windows. The zoom-in windows show that the ILS
solutions follow indeed a multi-modal and continuous PDF
(Teunissen 1999b), and that the stronger the model strength,
i.e., the higher the ILS SR, the more peaked the distribu-
tion becomes around zero meters. We remark that the y-axis
for the zoom-in windows are different between each row, so
that a direct comparison can be made between ILS, BIE and
ambiguity-float solutions for each model strength.

Figure 2 and the top left panel show that with a lower SR
(in this case 11.8% ILS SR) the precision of the BIE solu-
tions resembles that of the float solutions, which is depicted
as green dots that generally are plotted above or very close to
the black dots, respectively. This is also illustrated through
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Fig. 2 Simulated (200,000 samples, see Table 1 and Fig. 1) horizontal
(North/East) scatter of the BIE (green dots), ILS (magenta dots), and
ambiguity-float (black dots) ionosphere-fixed SF L1 GPS (cut-off 10◦)
RTK positioning errors. The largest magenta dots are for ILS position-
ing solutions that have the same integer ambiguity vector and exceeds a
cluster of ≥ 5000 positioning solutions, where the corresponding num-

ber for the second largest magenta dots, etc., are 500 to < 5000, 50 to
< 500, 5 to < 50 and a single ILS solution. This multi-modal distribu-
tion of the ILS solutions is also depicted by the histograms in Fig. 3.
Note the x- and y-axis scale difference between the twoweakest models
at the top row and all other solutions

123
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Fig. 3 Example histograms (bin size of 5 mm) of simulated (200,000
samples, see Table 1 and Fig. 1) North positioning errors in Fig. 2 of the
BIE (green bars), ILS (magenta bars) and ambiguity-float (black bars)
solutions. The East and Up positioning histograms behave in a similar
manner and are thus not shown for brevity. The theoretical normal dis-
tribution is plotted for the float solutions, and kernel smoothing (Wand

and Jones 1995) is used to fit a distribution to the BIE solutions and
ILS solutions depicted in the zoom-in windows, respectively, which are
all given as gray lines. The zoom-in windows depict the spread of the
sample solutions of North errors between −0.05 and 0.05 m and 0.5 to
1.5 m, respectively

123
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Fig. 4 CDFof simulated (200,000 samples, see Table 1 and Fig. 1) BIE,
ILS, ambiguity-float and ionosphere-fixed SF RTK positioning errors
in Fig. 2. b̃ are either the float b̂ (black lines), ILS b̌ (magenta dashed

lines) and BIE b (green lines) estimated 3D coordinates, respectively,
and ||.|| is the norm of this vector. The dashed black line corresponds
to the 95% CI

their similar histograms that follow a theoretical normal dis-
tribution in Fig. 3. For all models in Fig. 2, we can see that the
ILS solutions indeed follow a multi-modal distribution (c.f.
Fig. 3), and that the majority of incorrect ILS solutions are
generally located in the South-West and North-East direc-
tion due to the corresponding poorer satellite coverage (c.f.
Fig. 1). The BIE solutions are then shown to become better
than the float solutions when the ILS SR increases to, for
example, 40.8% in the top right panel of Fig. 2, which is also
indicated by the many more green dots visible in the zoom-
in window (and plotted underneath the magenta dots). We
can also see that when the model becomes much stronger,
such as at the middle and bottom panels, we obtain fewer
number of incorrectly fixed solutions. This gives rise to a
‘star-like’ scattering of the BIE solutions as they are com-
puted as a (weighted) average of all integer vectors within
the search space defined by (11). As the weight is larger, the
closer the integer vector is to the float solution in the metric

of the ambiguity variance matrix, the more the ‘star’ sym-
metry will point in the directions of integer vectors that have
a larger probability of being an ILS solution.

Finally, Fig. 2 shows also instances, for example in the
middle left panel and for the scenario with an ILS SR of
83.5%, where frequent occurring ILS baseline solutions can
be further apart from the correct solution than less frequent
occurring ILS baseline solutions (c.f. Fig. 3). As expected,
for instances when the distance between these ILS solutions
and the float solutions is large, these incorrect ILS solutions
are shown to not be as heavily weighted into the BIE solu-
tions (since there are indeed fewer green dots pointed toward
these locations). In other words, when the ILS SR is not suf-
ficiently close to 100%, BIE will produce solutions that are
less likely to be far from the true coordinates without the
need to make use of integer validation techniques (see, e.g.,
Teunissen and Verhagen 2009). Also note that the model at
bottom row and right column of Fig. 2 has a 99.997% ILS
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SR (but here rounded to 100% ILS SR), which explains the
fewBIE solutions directed toward those incorrectly fixed ILS
solutions.

Figure 3 and the top row show thatwhen themodel isweak
(ILS SR of 11.8%), the BIE and ambiguity-float solutions, in
the two right columns, have, as expected, similar positioning
precisions and follow well a theoretical normal distribution.
Once the model gets stronger, however, as shown at the sec-
ond row (ILS SR 40.8%), the BIE distribution gets more
peaked than that of the float distribution which indicates an
overall better positioning precision. For the samemodels, we
can also see, e.g., in the histogram zoom-in of Fig. 3, that ILS
(in the left column) has more instances than BIE with large
North positioning errors of say above 0.5 m. For example,
the highest PDF peak for ILS is almost 3% with errors above
0.5 m as shown in the second row of Fig. 3, whereas BIE
has a much smaller PDF value for the similar magnitude of
positioning error. Note also that the ILS solutions are here
indeed multi-modal distributed (and symmetric with respect
to zero meters), but that the corresponding distribution gets
more peaked for both zoom-in windows when going from
the weakest model at the top row, to a stronger model at the
second row. This trend follows accordingly when the ILS
SR increases to 83.5% and 99.0% at the bottom two rows,
respectively. Most importantly for these two stronger mod-
els, we can also see that the BIE distribution gets even more
peaked than the float solution, and at the same time it has
again fewer instances than ILS of positioning errors of say
above 0.5 m and below −0.5 m, respectively. Finally, when
we have an ILS SR of 99.0% at the bottom row, it is shown
that the BIE PDF resembles indeed that of ILS.

Figure 4 shows the cumulative distribution function (CDF)
of the 3D BIE, ILS and ambiguity-float positioning results.
The black lines corresponds to the float, magenta dashed
lines to the ILS, green lines to the BIE positioning solutions,
and dashed black lines to 95% confidence intervals (CI). The
vector b̃ is either the float b̂, ILS b̌ and BIE b estimated 3D
coordinates, respectively, and ||.|| denotes the unweighted
L2-norm of this vector.

Similarly to Figs. 2 and 3, we can see in top row of Fig. 4,
for the weakest model with the lowest ILS SR (11.8%), that
the BIE solutions resemble indeed that of the float solutions
(||b̂ − b||), and for an ILS SR of 100% at bottom row and
right column it equals the ILS estimator (c.f. Fig. 2). TheCDF
ILS (||b̌ − b||) stepwise function (magenta dashed lines) in
the top two rows indicates that if b̌ is not close to b, it will
immediately be far from the true baseline (due to its multi-
modal distribution, c.f. Fig. 3), whereas for BIE (CDF of
||b − b||) this is not necessarily the case. For instance, if
we focus our attention on the top row and right column of
Fig. 4, the ILS CDF quickly reaches values close to its ILS
SR (40.8%) for small positioning errors, and then the CDF
goes quickly toward the onemeter level before it significantly

Fig. 5 MSE ratios of the simulated (200,000 samples, see Table 1 and
Fig. 1) BIE (green line), ILS (dashed magenta line), ambiguity-float
(black line) solutions, all versus float, for the ionosphere-fixed SF RTK
positioning errors in Fig. 2

increases again. On the other hand, for the BIE estimator the
CDF is larger than ILS for errors of say one meter for the
top two rows of Fig. 4, but at the same time it is also less
likely to have small positioning errors (except when the ILS
SR is very high). Most importantly, we can see for all ILS
SRs up to 94.1%, when one would not fix the ambiguities in
practice, that the 95% CI of BIE is smaller than that of the
ILS and smaller (or equal) to the float solutions.

Figure 5 depicts the MSEs ratios of BIE as green and
ILS as a dashed magenta line, relative to the ambiguity-
float solutions (float vs. float ratio is given as a black line).
We simulated a few extra ILS SRs cases, in addition to the
ones depicted in Table 1, to give a smoother behavior of the
depicted ratios. Note that since the simulated positions are
unbiased, the MSEs equal the sum of the variances of North,
East and Up.
Figure 5 shows that ILS has a larger MSE than the float

solutions for an ILS SR up to about 45%, and always larger
than BIE until we reach an ILS SR of 100% (when they
become similar). Finally, as the results show, theMSE of BIE
is, with the exception when the ILS SR equals 0% or 100%,
always better than that of the float and ILS-fixed solutions.
For the 0% and 100% SR case, the BIE is identical to the
float and ILS solution, respectively.

3.2 BIE for single-epoch SF RTK positioning with real
multi-GNSS data

In order to validate the simulation results in the previous sec-
tion, we will use 48 h (30 s measurement interval) of real
data collected through low-cost ublox EVK-M8T receivers
and patch antennas with SF GPS +Galileo + BDS +QZSS in
Dunedin, NZ and a 670 m baseline. A circular ground plane
was used for each patch antenna to reduce any multipath
effects. The Detection, Identification and Adaptation (DIA)
procedure by Teunissen (1990) was used to detect and iden-
tify outliers. The number of satellites of this data is depicted
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Fig. 6 Number of satellites for SF GPS+Galileo+BDS+QZSS with an
elevation cut-off angle of 20◦ for the real multi-GNSS data collected
in Dunedin, NZ. The black lines corresponds to a combined 4-system
model, blue lines GPS, green lines Galileo, magenta lines BDS and
cyan lines QZSS

Table 2 Undifferenced and zenith-referenced STDs for code and phase
for a SF L1 + E1 +B1 + L1GPS +Galileo + BDS +QZSSmodel (ublox
+ patch), with an elevation cut-off angle of 20◦ over 48 h (30 s) of real
data collected in Dunedin, NZ at 5 Jan, 2018 from 05:00 (hh:mm) UTC

σ̂p j (cm) σ̂φ j (mm)

L1 GPS 45 2

E1 Galileo 41 2

B1 BDS 58 2

L1 QZSS 48 2

in Fig. 6, where an elevation cut-off angle of 20◦ is mainly
used so as to give similar ILS SRs to the simulation results in
the previous section when combining different GNSSs. The
stochastic model settings in Table 2 were used, as obtained
through least-squares variance component estimation (LS-
VCE) similar to Odolinski and Teunissen (2019). Making
use of a realistic stochastic model is important as otherwise
the float and ILS positioning performance would deteriorate.
Since the BIE solutions are a (weighted) average of all ILS
integer vectors within the search space defined by (11), the
BIE performance would then worsen as well.
Figure 7 depicts, similar to Fig. 2, the single-epoch esti-

mated horizontal North and East positioning errors, but
now based on the 48 h of real multi-GNSS data and
when compared to very precise benchmark coordinates.
These benchmark coordinateswere obtained by averaging all
single-epoch estimated coordinates derived from assuming
the ambiguities to be time-constant over the whole observa-
tion time span, while combining all four systems (c.f. Fig. 6),
so as to maximize the model strength with a 100% ILS SR.
Again, we make use of a zoom-in window to depict the
two-order of magnitude improvement going from float to
correctly fixed ILS solutions. To vary the ILS SRs, we look
at different positioning models, with top left to bottom right
panels depicting the results for an L1 GPS model and an ele-
vation cut-off angle of 20◦, but we remove four random GPS
satellites here to make the model weaker. This follows by L1
GPS (20◦ cut-off without removing satellites), L1 GPS (cut-

off 10◦), L1 + E1 GPS + Galileo (cut-off 20◦), L1 + E1 + L1
GPS + Galileo + QZSS (cut-off 20◦), and L1 + E1 + B1 +
L1 GPS +Galileo + BDS +QZSS (cut-off 20◦), respectively.
The ILS SR was computed by comparing the single-epoch
estimated ambiguities to a set of reference ambiguities. These
reference ambiguities were obtained by using a four-system
model, with ambiguities again kept time-constant over the
entire time-span, while the precise baseline and the satellite
coordinates, as obtained from the broadcast ephemerides, are
used so as to fix a known range. This is referred to as the
‘geometry-fixed’ model. Note that since we are now using a
time-varying satellite geometry (c.f. Fig. 6) and much fewer
epochs, the incorrectly ILS positioning solutions will not be
clustered as heavily into similar locations like Fig. 2 (with a
fixed satellite geometry). Figure 8 shows the corresponding
histograms for the North positioning errors, where the East
and Up component behave in a similar manner and are thus
not shown for brevity.
Figure 7 confirms the simulation results in the previous

section where the low ILS SRs, at the top row, give BIE
solutions (green dots) that resemble or are better than the
float solutions (black dots underneath or near the green dots),
whereas when the model gets stronger at the middle and bot-
tom panels the BIE solutions outperform the ambiguity-float
counterparts. This is confirmed by inspecting the correspond-
ing histograms in Fig. 8. Moreover, we see again a slight
tendency of a star-like scattering of the BIE solutions, par-
ticularly at the bottom left panel with the 3-system model
and an ILS SR of 99.3% similar to Fig. 2. However, due
to the time-varying satellite geometry, this is now less pro-
nounced. We can also see that there are several ILS solutions
that are further away from zero meters than BIE, which is
further evident by inspecting the corresponding histograms
in Fig. 8. For instance, for the SF GPS + Galileo model (ILS
SR 96.9%) at the third row of Fig. 8 and in the zoom-in win-
dow we can see several ILS North positioning errors above
2.5 m, whereas the number of such solutions is much fewer
for BIE.
Figure 9 shows, similar to Fig. 5, the MSEs ratios of BIE

as green and ILS as a dashed magenta line, relative to the
ambiguity-float solutions, and with the float versus float ratio
given as a black line. Since the estimated positions are unbi-
ased, the MSEs equal the sum of the variances of North, East
and Up.
Figure 9 shows that ILS has indeed a larger MSE than the

float solutions for an ILS SR up to about 40%, which is
remarkably similar to the simulation results in Fig. 5 where
this happens at a ILS SR of about 45%. We can also see that
the MSE of ILS is always larger than BIE until we reach an
ILS SR of 100% (when they become similar). Finally, the
MSE of BIE is always better than that of the float and ILS-
fixed solutions (except for the 0% and 100% ILS SR cases,
respectively).
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Fig. 7 Horizontal (North/East) scatter of the real multi-GNSS data
derivedBIE (green dots), ILS (magenta dots) and ambiguity-float (black
dots) ionosphere-fixed SF RTK positioning for a 670 m baseline in

Dunedin, NZ, based on two days of data (48 h, 30 s measurement
interval) and ublox EVK-M8T + patch antennas. The corresponding
histograms are depicted in Fig. 8
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Fig. 8 Example histograms (bin size of 3 mm) of the real multi-GNSS
data derived North positioning errors in Fig. 7 of the BIE (green bars),
ILS (magenta bars), and ambiguity-float (black bars) solutions. The
East and Up positioning histograms behave in a similar manner and are

thus not shown for brevity. The zoom-in windows depict the spread of
the sample solutions of North errors between −0.025 and 0.025 m and
1.0 to 6.0 m, respectively
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Fig. 9 MSE ratios of the ionosphere-fixed (670 m baseline, ublox +
patch)SF single-epochRTKpositioning errors inFig. 7,withBIE (green
line), ILS (dashedmagenta line), ambiguity-float (black line), all versus
float

4 BIE for multi-epoch and long-baseline DF
RTK positioning

In this section, we will extend our BIE simulation and
real data analysis from the SF short baseline model, to a
model when the relative atmospheric delays need to be mod-
eled as completely unknown parameters with a DF model
(here referred to as the ‘ionosphere-float’ model). The 112.9
km baseline and the two receiver types that will be ana-
lyzed are depicted in Fig. 10. The low-cost ublox ZED-F9P
DF receivers are connected to low-cost ANN-MB patch
antennas, and the survey-grade Trimble R10 receivers have
integrated antennas. A circular ground plane was again used
for each patch antenna. We ignore any phase center offset
(PCO) and phase center variations (PCV) for the ANN-MB
antennas, but emphasize that it could improve the ublox long-
baseline results with a few millimeters (Krietemeyer et al.
2020).
Figure 11 depicts the total number of satellites during a 3 h

period of the two receiver types in Fig. 10, with GPS as blue,
BDS as magenta, Galileo as green and the 3-systemmodel as
a black line. Top row shows the number of satellites tracked
by the DF ublox F9P model, whereas bottom row shows
the corresponding number of satellites for the Trimble R10
receiver setup.We remark that the F9P receivers did not track
BDSgeostationary (GEO) satellites and tracked the civilGPS
signals (L1C and L2C, see Nie et al. 2020), which restricts
the total number of satellites for the model. We also note that
the F9P receivers were able to track the QZSS L1 and L2
signals, however, due to a firmware issue at our end for one
of the Trimble R10 receivers we were not able to track those
satellites. Hence, we excluded QZSS for all receivers so that
the results can be more fairly compared.
LS-VCE is again used to determine the stochastic model.

We focus on determining the diagonal terms, whereas esti-

mation of covariances between code/phase, frequencies and
satellites was here neglected for brevity. Table 3 depicts
the undifferenced and zenith-referenced code/phase STDs
for ublox and Trimble R10 receivers/antennas. These results
were all obtained for the 3 m baseline in the top right column
of Fig. 10, while still taking into account the GPS satellite
constellation repeatability period of one sidereal day (Axel-
rad et al. 2005). This so that the GPS STDs can be compared
between the receivers, whereas the BDS medium earth orbit
(MEO) and Galileo satellites do not have the same repeata-
bility period.
Table 3 shows remarkable results for the ublox F9P

receivers. For example, the C1C code STD of 18 cm is even
better than the Trimble R10 receiver corresponding STD
of 20 cm. When we inspected the DD code least squares
residuals from which the ublox code STDs were obtained,
we could see a smooth behavior which might indicate that
some receiver-related filtering (possibly ‘phase smoothing’)
is used for the ublox receivers. This is similar to the findings
in Odolinski and Teunissen (2017b) for the corresponding
ubloxM8TSF receivers.When investigating the correspond-
ing observation time correlation for a zero baseline setup,
we found significant autocorrelation coefficients (Amiri-
Simkooei and Tiberius 2007; Teunissen andAmiri-Simkooei
2008) over several seconds. Therefore, in the BIE real-data
analysis, wewill use ameasurement interval of 10 s to largely
avoid any such code time correlation.

4.1 BIE simulation for multi-epoch and
long-baseline DF GPS RTK positioning

We are now ready to investigate the BIE performance for a
long-baseline DF setup. Similarly to the short-baseline sim-
ulation results, we make use of Monte Carlo simulations,
where again the GPS broadcast ephemerides and very pre-
cise benchmark coordinates are used. However, in this case
we make use of the satellite visibility of the two Trimble
R10 receivers forming a 112.9 km baseline in Fig. 10, and
DF L1,L2 observations. The code and phase observations
are again produced using the zenith-referenced and undiffer-
enced STDs. In the single-baseline RTK model (1) and in
addition to the baseline coordinates in b, we determine slant
ionospheric delays and the relative (wet) zenith tropospheric
delay (ZTD). Since atmospheric delays are present, we need
to also extend our model from single-epoch to multi-epochs,
i.e., we use a dynamic model for certain parameters in a
Kalman filter. The ambiguities are kept time-constant, and
for the relative ZTD, we use a random walk process noise of
2mm/

√
h similarly to (Odolinski et al. 2014, 2015), whereas

all other parameters are treated as unlinked in time.
The DF GPS satellite constellation used is depicted in

Fig. 12, with the same number of satellites to the short-
baseline data (Fig. 1), and in totalwe simulate 10,000 samples
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Fig. 10 Baseline of 112.9 km between Dunedin (WGS84 latitude
45.87◦ S, longitude 170.511◦ E) to Alexandra (latitude 45.25◦ S,
longitude 169.377◦ E): GNSS RTK receivers collecting data for single-
baseline RTK (1) during 3 h at 19 Feb, 2019 at 18:12:00 to 21:12:00
(hh:mm:ss) UTC. a Patch ANN-MB antennas are connected to the two

b ublox ZED-F9P receivers (forming one low-cost baseline), and the
two Trimble R10 receivers have their own integrated antennas (forming
a survey-grade baseline). The map in c was obtained through Map data
©Google

of observations for each epoch in the Kalman filter.We found
that adding many more samples of observations did not sig-
nificantly change the following results.
Figure 13 shows the MSE ratios as a function of time for

the simulated 3D positioning errors. In addition, we depict as
a gray line the ILS SR. Figure 13 shows, similarly to Fig. 5,
that the ILS estimator becomes better than the float estima-
tor at an ILS SR of about 45%. Since we are now using a
long-baseline with atmospheric delays present and aDFGPS
model, this takes more than 10 epochs. Most importantly, the
BIE estimator is, as expected, at least equal to float for single-
epoch positioning, and better than the float estimator when a
multi-epoch model is employed. BIE is also better than ILS
for all epochs until the ILS SR reaches a value of 100% at
40 epochs, when they become equal.

4.2 BIE for multi-epoch and long-baseline DF RTK
positioning with real multi-GNSS data

In this section, we will evaluate a snapshot of the real data
collected through the long-baseline (112.9 km) experiment in
Fig. 10 while using low-cost ublox F9P receivers connected
to low-cost ANN-MB patch antennas. The results will be
compared to that of survey-grade Trimble R10 receivers with
their integrated antennas. The DIA (Teunissen 1990) is again
used to detect and identify outliers such as cycle slips.
We depict in Table 4 the time to first fix (TTFF) of the two

receiver models while using 3 h (10 s) of data and an eleva-
tion cut-off angle of 10◦. The TTFF is defined as the time
when the horizontal positioning errors go below and stay
below 0.15 m. The Up component is not shown for brevity
as it shows little improvement by ambiguity-fixing similar to
Odijk et al. (2017). These positioning errors were computed
by comparing the estimated positions to very precise bench-
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Fig. 11 Number of satellites for DF GPS + Galileo + BDS with an
elevation cut-off angle of 10◦ for the real multi-GNSS data collected
in Dunedin and Alexandra, NZ (Fig. 10), with ublox F9P + ANN-MB
(top row) and Trimble R10 (bottom row). The black lines corresponds
to a combined 3-system model, blue linesGPS, green linesGalileo and
magenta linesBDS. Note that the F9P receivers did not track BDSGEO
satellites and tracked only the civil GPS signals (L1C and L2C), which
explains the difference in the number of tracked satellites to the Trimble
R10 receivers

Table 3 Undifferenced and zenith-referenced STDs for code and phase
for a DF GPS + Galileo + BDS model (ublox + ANN-MB and Trimble
R10), with an elevation cut-off angle of 10◦ over 2 h (1 s) of real data
collected for a 3 m baseline in Dunedin, NZ

Receiver/antenna System Frequency σ̂p j (cm) σ̂φ j (mm)

Ublox F9P GPS C1C/L1C 18 2

+ANN-MB C2C/L2C 18 2

Galileo E1 21 2

E5b 10 2

BDS B1 34 2

B2 11 2

Trimble R10 GPS C1C/L1C 20 2

C2W/L2W 25 2

Galileo E1 14 2

E5b 10 2

BDS B1 29 2

B2 17 2

The RINEX3 notation is used for the GPS frequencies, since the ublox
receivers were restricted to civil GPS signals, whereas Trimble tracked
all GPS satellites

mark coordinates. The benchmark coordinates were again
obtained by averaging all single-epoch estimated coordinates
derived from assuming the ambiguities to be time-constant
(and ZTD treated with random walk process noise) over the
whole observation time span, while combining all three sys-
tems. We make use of two re-initializations of the Kalman
filter to compute the TTFF, one at the maximum number of

Fig. 12 Skyplot of L1,L2 GPS with an elevation cut-off angle of 10◦
for the simulated data for the long-baseline in Dunedin and Alexandra,
NZ (c.f. Fig. 10)

Fig. 13 MSE ratios of the simulated (10,000 samples, see Fig. 12) BIE
(green line), ILS (dashed magenta line), ambiguity-float (black line)
solutions, all versus float, for the ionosphere-float DF RTK positioning
errors. The corresponding ILS SR is also depicted (gray line)

Trimble satellites at epoch one, and one initialization at the
minimum number of Trimble satellites and halfway through
the observation time span for the respective models. Note
that the average number of satellites for ublox during the
two initialization periods are about 14 and 12, respectively,
whereas Trimble have corresponding 24 and 20 number of
tracked satellites (c.f. Fig. 11). The corresponding ILS SRs
for ublox and Trimble are 92.7% and 96.6%, respectively.
The snapshot results in Table 4 show that the ublox model

requires an ILS and BIE TTFF of 37 epochs (6 min and 10
s) and 42 epochs (7 min), respectively. The Trimble model
requires an ILS TTFF of 11 epochs (1 min and 50 s) and 26
epochs (4 min and 20 s), respectively, while BIE requires one
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Table 4 Empirical STDs of ionosphere-float horizontal positioning errors and TTFF (# of epochs with 10 s measurement interval) defined as the
time when the horizontal positioning errors for BIE, ILS and float are below and stay below 0.15 m

Model Estimator TTFF (1st init., 10 s) TTFF (2nd init., 10 s) STD before TTFF (m) STD after TTFF (m)

DF ublox+ANN-MB BIE 37 (# epochs) 42 (# epochs) 0.368 0.010

L1+L2,E1+E5b,B1+B2 ILS 37 (# epochs) 42 (# epochs) 0.429 0.009

Float 143 (# epochs) 177 (# epochs) 0.382 0.102

Trimble R10 BIE 12 (# epochs) 27 (# epochs) 0.168 0.014

L1+L2,E1+E5b,B1+B2 ILS 11 (# epochs) 26 (# epochs) 0.202 0.012

Float 197 (# epochs) 77 (# epochs) 0.181 0.092

This is based on two re-initializations of the Kalman filter at epoch one (with maximum number of Trimble satellites) and halfway through the
observation time period at epoch 541 (with minimum number of Trimble satellites), c.f. Fig. 11. The STDs are given before the minimum TTFF
(ILS) and after this TTFF, so that the STDs can be fairly compared between estimators as they are then based on the same number of epochs. This
is given for two 112.9 km baselines based on DF ublox and Trimble R10 receivers, respectively. An elevation cut-off angle of 10◦ is used and 3 h
of data (Fig. 10)

additional epoch for the two initializations. In other words,
the ILS TTFF difference is a mere 2 min and 40 s during the
second initialization between the low-cost ublox and survey-
grade Trimble model. It is also shown that the TTFF for both
ILS and BIE is much shorter than for the float solutions for
both receiver types. For instance, the ublox model reaches
BIE and ILS TTFF after 37 epochs (6 min and 10 s) during
the first initialization, while the float solutions have a TTFF
of 143 epochs (23 min and 50 s).
The empirical STDs in Table 4 are based on the horizontal

errors that were obtained by comparing the estimated coor-
dinates to the benchmark coordinates. These empirical STDs
are for all estimators computed before the minimum TTFF,
as derived from ILS, and also after this TTFF. This is done so
that the corresponding STDs can be fairly compared between
estimators as they are then based on the same number of
epochs. If we inspect Table 4, this means that the empirical
STDs before TTFF for all estimators (column five) and ublox
are based on horizontal errors with epoch intervals consist-
ing in total of 36 epochs and 41 epochs, respectively. This is
when the TTFF criterion of horizontal errors below 0.15 m
has not yet been obtained for ILS and the two Kalman filter
re-initializations. The corresponding STDs for Trimble are
based on intervals consisting of 10 epochs and 25 epochs,
respectively. The empirical STDs after TTFF (column six)
are then based on all other epochs when the TTFF criterion
of horizontal errors below 0.15 m has been obtained for ILS.
In order to understand themagnitude of the empirical STDs

in Table 4 better, we provide here an explanation. Before
TTFF and at the beginning of the two Kalman filter initial-
izations, the float ambiguitieswill be less precise and the code
observationswill dominate the precision of the baseline com-
ponents. This will then result in low to medium ambiguity
SRs and sub-meter level empirical STDs for the horizontal
errors (column five in Table 4). On the other hand, once the
ambiguities are of a sufficiently good precision, one can with
ILS successfully fix the ambiguities to their correct integer

values and quickly reach the TTFF criterion. All horizontal
errors after the TTFF will then be driven by the very precise
carrier-phase data, and high ambiguity SRs, until the second
Kalman filter re-initialization and its TTFF. This explains the
sudden decrease in the float STDs before TTFF to relatively
precise values after TTFF (column six in Table 4), and that
the BIE STDs become very similar to the ones obtained by
ILS after TTFF indeed. Table 4 reveals that the horizontal
STDs after TTFF are still much better for both BIE and ILS
when compared to the float solution. For instance, the ublox
model has corresponding BIE and ILS STDs of 0.010 m and
0.009 m, respectively, while the float solutions have a STD
of 0.102 m. The poorer performance for the float estima-
tor is attributed to the longer time it takes to reach cm-level
positioning precisions (see also the TTFFs).
Also note that the Trimble TTFF for the float solution and

the first initialization is 197 epochs, whereas for the second
initialization it is 77 epochs. This is in contrast to what one
would have expected considering the total number of satel-
lites used (Fig. 11). As a matter of fact, the float solution
goes below the 0.15 m level quicker at the first initialization
in comparison with the second initialization. However, due
to satellites that sets (and rises again) when this has occurred
(c.f. Fig. 11), the float horizontal solution increases in error
again and exceeds again the 0.15 m threshold. This has as
a consequence that it does not fulfill our TTFF criterion of
being below 0.15 m until after 197 epochs.
Finally, we can see in Table 4, in analogy to the simulation

results, that when the SR is too low for successful fixing and
hence TTFF has not yet been obtained, BIE outperforms both
the ILS and float solutions. This is shown by the smaller BIE
horizontal STDs (column five in Table 4) for both ublox and
Trimble being 0.368 m and 0.168 m, respectively, whereas
the corresponding ILS STDs are 0.429 m and 0.202 m. The
float STDs are here also poorer than the BIE estimator, with
values of 0.382mand 0.181m for ublox andTrimble, respec-
tively.
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5 Conclusions

In this contribution, we evaluated the approximation of the
best integer equivariant (BIE) estimator (10), which can be
preferred over the float solution when the integer success
rate (SR) is different from one. This since BIE estimation
will always be better in the minimum mean squared error
(MMSE) sense than the float and integer least squares (ILS)
solutions. We evaluated the BIE single-baseline RTK per-
formance through Monte Carlo simulations and compared
the results to multi-GNSS, single-frequency (SF) and dual-
frequency (DF) low-cost receiver and antenna data collected
in Dunedin, New Zealand.With ‘low-cost’, we refer to a cost
of at most a few hundred USDs for the receiver and antenna.
Our results were evaluated for a short- (670 m) and a long-
baseline (112.9 km), where the relative atmospheric delays
can be neglected and need to be estimated, respectively. In
our model (1), we distinguished between the single-epoch
case for the short-baseline, to using multiple epochs and a
Kalman filter with a dynamic model when the long-baseline
was used. We also compared the multi-GNSS positioning
performance of the low-cost receiver model to that of survey-
grade receivers and antennas.
First, we used Monte Carlo simulations to simulate obser-

vations of a SF single-epoch GPSmodel, while assuming the
relative atmospheric delays to be absent. Single-epoch posi-
tioning errors were estimated by comparing the BIE, ILS
and float estimated positions to the known benchmark coor-
dinates, and we simultaneously estimated the single-epoch
ILSSRs. The simulation resultswere subsequently compared
to that of L1 GPS, E1 Galileo, B1 BDS and L1 QZSS ublox
EVK-M8Tdata. Itwas demonstrated that theBIEpositioning
performance is better than that of the float and ILS solutions
when the ILSSR is at low tomedium levels, where onewould
not fix the ambiguities to integers in practice. When the ILS
SRs were close to 0% and 100%, respectively, the BIE per-
formance was shown to be similar to that of the float and
ILS solution, respectively. We also demonstrated the distri-
butional properties of BIE positioning, where it was shown
that a ‘star-like’ pattern reveals itself once the model gets
stronger and the ILS success rate increases.
We then investigated the simulated long-baseline DF BIE

performance of L1,L2 GPS and the real data of a 112.9
km baseline, while employing L1,L2 GPS, B1, B2 BDS
and E1, E5b Galileo data. The performance was compared
between the low-cost ublox ZED-F9P receivers connected
to patch ANN-MB antennas, and survey-grade Trimble R10
receivers and antennas. While using the long-baseline, mul-
tiple epochs were needed for precise positioning, and the
simulation showed again that BIE outperformed ILS and the
float solutions for ILS SRs at low to medium levels. We then
evaluated the time to first fix (TTFF) based on the 112.9 km
baseline and DF multi-GNSS data, which was defined as the

time when the horizontal positioning errors go below and
stay below 0.15 m. It was concluded that the survey-grade
DF Trimble solution performed slightly better than the DF
ublox receivers and antennas.We finally showed that the BIE
performance is better than both ILS and float before TTFF,
and similar to that of ILS after successful fixing.
With the aboveBIEperformance studies,we have presented

results based on real data collected by low-cost multi-GNSS
receivers using the single-baseline RTKmodel for both short
and long baselines. More studies can be considered, such as
those for network-RTK and Precise Point Positioning (PPP)
RTK.
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