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ABSTRACT

Acquiring point clouds of indoor environments became increasingly acces-
sible in recent years. However, the resulting 3D point cloud data is unstruc-
tured, and does not contain enough information to be useful for complex
tasks like pathfinding. Indoor models which are currently derived from
point clouds do not include furniture and stairs. The necessary graph to
enable multi-storey pathfinding is not available in the point cloud.

This thesis proposes a workflow to semantically enrich indoor point
clouds using an octree data structure. Meaning is added to the point cloud
scene that allows to act as a basis for a graph. This graph can then fol-
low navigation constraints of humans through an indoor environment. The
approach for semantic enrichment of this study is capable of separating
storeys, detecting floors, walls, stairs and obstacles like furniture. Strict pre-
conditions are used, like walls being perpendicular to each other and using
noise free point clouds. The implementation works as a proof of concept
and the octree proves to be a helpful data structure.

The contribution is a novel approach of using octrees for the semantic
enrichment of indoor point clouds, including the detection of stairs. Com-
bining and extending different works from various fields of research helped
to develop the presented methodology. The semantic classification of floors
and stairs in 3D point clouds allows to create a graph across multiple storeys.
A big part of the methodology was implemented and tested on different
types of buildings and scanned with dissimilar kinds of laser scanners. Mo-
bile scanners were found to be advantageous, because they are less depen-
dent on the line of sight. On top of that, they can provide a path of the
scanner, which is precious information that can support several structuring
improvements of the acquired data. The octree generalises the point cloud
to leafs and adds a structure to the empty space. This does not only improve
the calculation performance, but also provides more distinguishable results.

Concluding, the thesis proposes to extent the framework to cover a wider
range of architectural structures. Furthermore, future research should deepen
the knowledge for the stair detection of the presented conceptual frame-
work. As the representation of stairs differ for every scanner, future research
should focus on point clouds acquired by one kind of scanner first.
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1 INTRODUCT ION

Indoor navigation consists out of two parts: The localisation inside a build-
ing and the route planning, which brings the user to a desired location. To
successfully achieve those tasks an appropriate representation or model of
the building is required [Liu and Zlatanova, 2012]. Many buildings, whether
public or not, lack up to date 3D models or floor plans. Even emergency
plans are often outdated or the model of the architect does not correspond
with the building which was built in the end. Manually creating indoor
models or floor plans is time consuming and expensive. In case of emergen-
cies or for temporary exhibitions such models can be valuable for firemen
for orientation purposes or forecasting fire and smoke developments. How-
ever, in such situations, there is no time to create a semantically rich vector
model of the interior of a building. Point clouds, on the other hand, can be
acquired rapidly and relatively cheaply, but they lack structure and seman-
tic information which are necessary for pathfinding.

Consider a public building like a hospital or similar large public construc-
tion, where suddenly a fire breaks out. When the fire brigade arrives, they
realise that their floor plan of the building is not up to date. In the meantime,
several walls or even whole parts of the building were rebuilt or demolished.
As it is a huge building only some parts are currently on fire. However, the
fire will be hard to control and it cannot be guaranteed that other parts will
not catch fire, too. While evacuation takes place some firemen also start with
the acquisition of indoor data using laser scanners. This data will be helpful
in a later stage to not only detect change, but also to help the firemen to
navigate through the building and to tell them beforehand if a certain route
is possible to take with large equipment. In such emergency situations ev-
ery bit of information matters. The technology to acquire point clouds is
already there, but the data is not very useful for pathfinding yet. The point
clouds are unstructured and do not contain any semantic information.

This master’s thesis describes a workflow which semantically enriches
an indoor point cloud of a building with the use of an octree. The added
semantics support the pathfinding between storeys and a path to follow
the constraints of human movement can be derived. The results can help
emergency responders to navigate through a building.

1.1 background
A study of the National Human Activity Pattern Survey (NHAPS) showed
that Americans spend 87% of their life inside buildings. 11% of the time,
these buildings are neither residential, nor a workplace or restaurant. This
makes it likely for the person to be in relatively unknown or complex build-
ings, like shopping malls or airports. Only 5.5% of the time is spent in
vehicles [Klepeis et al., 2001]. Nevertheless, pathfinding and navigation for
outdoors have been studied for a long time already. Despite this, making
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2 introduction

use of indoor navigation is still not very common. This is mainly due to
the difficulties in positioning indoors as there is no Global Positioning Sys-
tem (GPS) or other signal globally available, which allows to navigate in all
buildings. Furthermore, it is a complex challenge to make indoor models
suitable for navigation as they need to be in 3D to optimally connect multi-
storey buildings. Such pathfinding models should be automatically derived
and follow the constraints of human movement.

The meaning of the terms pathfinding and navigation differs, even though
used interchangeable many times. Navigation offers continuous real-time
guidance during the movement, while pathfinding finds a route connecting
two locations [Karimi, 2015]. Pathfinding is thus necessary for navigation.
This thesis aims to support pathfinding, but the results can later also be
used for navigation.

This thesis is part of the SIMs3D project, which aims to solve the problem
of missing up to date 3D indoor models for many large public buildings.
The safety management of public buildings like the fire brigade, are in need
of such models. This project ranges from 3D indoor reconstruction from
point clouds to 3D indoor models (geometry, semantics and topology), but
also aims at 3D indoor navigation suitable for all kind of tasks and users. Fi-
nally, a rapid and low-cost 3D modelling approach which allows to identify
spaces and networks, needed for a navigation applications, shall be created
[SIMs3D (Smart Indoor Models in 3D), 2015].

During the 2015 Geomatics Synthesis Project at the Delft University of
Technology I took part in a group that developed a workflow, which ef-
ficiently identifies the empty space in a point cloud, and structures both
the empty space and the points in an octree. The identification of empty
space, in other publications also called free space, instead of using bound-
aries (walls, obstacles, etc.), allows the focus on pathfinding instead of only
collision avoidance. This makes sense because the space where the object or
person actually moves in is structured [Broersen et al., 2016]. An octree is a
three dimensional extension of a quadtree data structure. It consist out of a
3D volume and is recursively subdivided into eight octants until octants of
a uniform colour (black or white so either filled with points or empty) are
obtained, or a predetermined level of subdivision is reached [Samet, 1989].
Each octant not further split is called leaf.

Regarding localisation in indoor environments, van der Ham [2015] anal-
ysed the 2D performance of the Quuppa technology system [Quuppa Oy,
2015] in the Spark Center of CGI Nederland. He found that it can be used
up to a sub-meter accuracy level for asset tracking. Quuppa provides a
locating system which uses the Angle-of-Arrival processing of a Bluetooth
Low Energy signal for its location data.

1.2 problem statement
Acquiring point clouds of the interior spaces in buildings became increas-
ingly easy and cheap in the recent years. Technologies like the ZEB1 Light
Detection and Ranging (LiDAR) laser scanner [3D Laser Mapping, 2016] or
the Project Tango tablet [Google ATAP, 2015] allow to collect 3D point
clouds in an efficient and mobile way. On top of that, there are other
methodologies using for example sweep scanning LiDAR by Scanse or Mi-
crosoft Kinect.
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Nevertheless, this data is unstructured and does not yet contain enough
information to be useful for complex tasks like navigation or localisation.
Furthermore, the majority of the current models and point clouds need to
be free of any clutter like furniture and stairs. The point clouds are either
cleaned or only acquired in completely empty buildings. In many models
the geometry is preserved, however the semantics as well as the topologi-
cal information are lost [Diakité et al., 2014]. Indoor environments change
regularly. Therefore 3D indoor navigation modelling requires an accurate
3D topographic space of the interior of the building, which should be found
in an automated and fast way [Jamali et al., 2015]. The representation of
a whole room as one single object is not enough, especially if the room is
big or the navigation system is used for autonomous objects [Krūminaitė
and Zlatanova, 2014]. A further subdivision is therefore recommended. The
octree structure subdivides the space, but only classifies in occupied and
non-occupied (empty) space [Broersen et al., 2016]. Any additional seman-
tic information is lost and there is no way to distinguish whether the space
is open for navigation (for example above stairs) or not (for example under
a table). Also the identification of staircases is essential to reach the ultimate
goal of pathfinding on multi-storey indoor environments [Sinha et al., 2014]
and to create a logical model seamlessly connecting all storeys.

In case of emergency or for temporary buildings, like for exhibitions or
fairs, pathfinding models should be created as fast, cheap and autonomous
as possible. A standard way is needed to obtain a pathfinding model from a
point cloud connecting multiple storeys. This problem will be addressed in
this thesis using point clouds and an octree structure. Semantics are added
to establish relationships between different subspaces and allow to connect
multiple storeys via the stairways. Therefore, a 3D (or at least 2.5D) model
is required [Karimi, 2015]. The technique can also help to support user
requirements, such as if a person or object cannot use stairs (for example
with a wheelchair) and is not able to use a specific path because of that. Also
if the actor is too wide to fit through certain environments 3D information
is required.

The lack of structure and semantics in geometric data of indoor environ-
ments, whose acquisition becomes increasingly accessible, can be overcome
when the point cloud and its empty space are structured in a semantically
enriched octree. The structure of an octree enables to derive a graph or net-
work model following the pathfinding constraints of the actor. The usual
approach is the reconstruction of complex vector models, but in many cases
this is not necessary for pathfinding applications. It usually makes more
sense to show the user an intuitive set of cues about when to turn and
where, than to make the user look at complex models or even pictures of
the same hallway he is moving through [Halsted, 2014]. With the octree
approach only the route can be shown. The data however is still complete
with a detailed point cloud in the back end.

1.3 research questions
This MSc thesis has the aim to enhance the octree structure of a point cloud
and its empty space with semantic information and to automatically derive
a model that allows to find a path between multiple connected storeys. The
research aims to answer the following question: ”To what extent can an oc-
tree support semantic enrichment of point clouds for the purpose of multi-storey
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pathfinding?” To answer this, the following sub research questions have to
be answered as well:

• Can floors and walls be distinguished in the octree structure of a 3D
indoor point cloud containing stairs and furniture?

• What methodology can be used to detect stairs in the octree structure
derived from a 3D indoor point cloud?

• What is the influence of the three different scanners on the result of
the semantic enrichment?

• Is the semantically enriched octree sufficient to derive a pathfinding
model for humans?

• Which semantics improvements are necessary to establish a link be-
tween indoor and outdoor networks?

1.4 objectives and scope
The aim of this thesis is to create a workflow that takes an indoor point
cloud from a laser scanner as input. It then identifies and structures empty
space and the points in an octree. Before it enhances the structure with
automatically derived semantic information to subdivide the space and to
create a model for multi-storey pathfinding. Thus, while Broersen et al.
[2016] only found and structured the empty space in a point cloud, this
work explores how to add constraints and semantics to the resulting model.
The pathfinding model should relate to the movement of humans, so be
restricted to floors and stairs only, as they are walkable and can be used for
a path. Therefore, with the semantic enrichment the following features are
found and classified:

• floor and storeys

• stairs

• walls

• obstacles (for example furniture)

After the classification all obstacles, walls and nearby empty space can be
excluded from the membership of the pathfinding model. The resulting rep-
resentation or graph should be layered to keep the connectivity (at the stairs)
between different storeys in the building. The layers should be connected at
the stairs.

Therefore, the location of floors and storeys as well as stairs will be iden-
tified. Furthermore walls and other obstacles will be classified in this work-
flow. The list could be extended with elevator, doors and windows for
example. They lie, however, out of the scope of this research. Also a further
definition of the obstacles is out of the scope. All not classified points will
therefore be obstacles.

To be able to use doors for pathfinding it is assumed that they are open
during the time of the laser scan to acquire the point cloud. Also cleaning of
the data is out of the scope of this research as several tools, like CloudCom-
pare [Girardeau-Montaut, 2016], are available to perform such tasks. Thus,
it is assumed that the point clouds are clean and free of noise, from the
beginning.
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1.5 research relevance
Point clouds of buildings can be obtained quickly nowadays. But there is no
way to automatically derive a structured and semantically enriched model
suitable for pathfinding, while at the same time enable and enhance the
multi-storey connectivity via the stairs. This is essential however, as there is
not always enough time to create a semantically rich building model that fa-
cilitates pathfinding. Also Liu and Zlatanova [2013a] write that there is only
very few research about the creation of navigation models derived from 3D
geometry. Current 3D indoor models are simple, not scalable and the data
has no clutter, like furniture or stairs [Nikoohemat, 2016]. This thesis aims
to provide a first step for combining and extending several methodologies,
to not only semantically enrich and reconstruct a 3D indoor model, but also
allow pathfinding across multiple storeys. On top of that, the research in
not limited to pathfinding only and can be useful for reconstruction and the
creation of vector models or floor plans which are automatically built from
point clouds. Furthermore, the resulting graph can be a base model for
tracking applications and research. Also in these cases semantic enrichment
of the point cloud is necessary.

The research can have a value for the society as well. Especially in emer-
gency cases automatically created pathfinding models of buildings can be
useful, but also for temporal structure like company fairs or exhibitions.
In many cases it can be too expensive or too time consuming to manually
create a 3D indoor vector model. Having a model derived from a quickly
obtainable point cloud is therefore advantageous.

1.6 reading guide
The following chapter presents the related work (Chapter 2). Chapter 3 will
present the conceptual framework and workflow developed and used to
fulfil the objectives of this research. Subsequently the implementation will
be explained in Chapter 4 before results and analysis follow in Chapter 5.
Finally, conclusions will be drawn and the research questions answered in
Chapter 6. Furthermore, recommendations for future projects are given.





2 RELATED WORK

Several areas of research are relevant for this thesis. The following chapter
will provide an overview of related works. The first part (Section 2.1) will
address the semantics and subdivision of space necessary for navigation or
pathfinding, which was studied in other works. After that, the research to
find an applicable and automatically derived navigation model for indoor
applications will be explained (Section 2.2). Finally, research in indoor nav-
igation in the field of robotics will be introduced as an example of collision
avoidance, indoor navigation and as a possible future use case (Section 2.3).

2.1 semantics in indoor point clouds
The success of indoor navigation is mainly dependent on the model of the
building available [Krūminaitė and Zlatanova, 2014]. Diakité et al. [2014]
developed a framework to recover semantic information from Building In-
formation Model (BIM) and 3D Geographic Information System (GIS) data.
The framework was based on the combination of geometry and topology
for automated semantic labelling. The initial situation of this MSc thesis
however, is not based on vector models, but on point clouds and the empty
space which are structured and subdivided into an octree. Therefore, to
enhance subdivision and to create a logical model for indoor pathfinding
across multiple-storeys, features have to be detected from those point clouds.
3D modelling of the building architecture from point cloud scans is a rapidly
advancing field [Turner and Zakhor, 2013] and its results can be beneficial
for indoor wayfinding. Broersen et al. [2016] efficiently generated a linear
octree from a point cloud and derived the empty space, which is usable for
pathfinding. However, there were no further semantics provided, besides
empty and occupied space. The following sections will go deeper into de-
tail about what has been researched in other works. This research will form
the basis of this project.

2.1.1 Feature detection and 3D indoor reconstruction

For extracting information, or to build an application using point clouds, the
recognition of object surfaces is often one of the first steps to perform [Vos-
selman et al., 2004]. Vo et al. [2015] were able to extract roads from point
clouds using a supervised machine learning approach. Wang and Tseng
(2004, 2005, 2011 and 2014) published extensive research about extraction
of surface features from LiDAR data using an octree data structure. How-
ever, there is no focus on indoor environments. Yogeswaran and Payeur
[2009] developed a technique to group features from a point cloud based
on their proximity and similarity using an octree structure, but there was
no further classification. Rusu et al. [2009a] present a method to identify
objects in a point cloud of a kitchen environment. They find planar areas
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Figure 2.1: Height histogram, as projection of 3D points to the vertical axis. The
larger maxima at top and bottom can be used to identify floor and ceiling
heights. image courtesy of Okorn et al. [2010]

using the point’s normals and then split them into smaller parts with a re-
gion growing method. Trained conditional random fields, purely based on
geometrical reasoning, are used for classification. The result is a semantic
object map, which can be of help to provide context for robots. Furthermore,
the Triangulated Surface Map, which is also created, can support collision
avoidance and path planning.

Khoshelham and Dı́az-Vilariño [2014] present a method for automated
3D indoor modelling of floors, ceilings and walls with shape grammar and
histograms in point clouds. This is suitable for the detection of floors and
walls as well. Also Becker et al. [2015] use shape grammar to reconstruct 3D
indoor models as BIM from point clouds.

Okorn et al. [2010] take a more planar based 3D indoor reconstruction
method and use histograms to detect floor and ceiling data from 3D point
clouds like shown in Figure 2.1. Histogram peaks represent many points,
sharing the same height. The histogram approach is similar to the one in
Khoshelham and Dı́az-Vilariño [2014]. Walls are identified using histograms
and a hough transformation approach for line detection. Oesau et al. [2014]
further develop this methodology using a graph-cut formulation to solve the
inside/outside labelling of a space partitioning. The approach of Ochmann
et al. [2016] makes use of the piecewise linearity of wall segments to detect
vertical planes as candidates for wall surfaces and project them to the hor-
izontal plane. Furthermore, the structure gets enriched through door and
window detection.

Turner et al. [2015] present a workflow to create 2D floor plans from
point clouds making use of the scanner’s position and voxel carving, as
well as partitioning by height with histograms similar to the methodolo-
gies explained above. Such approaches can also be useful in this work to
add semantics about room separation to the model or the histograms to
distinguish different levels in the building. Turner [2015] go further into
detail about their approach to derive 2D samplings of wall positions from
histogram analysis on point clouds. It is also shown how to generate floor
plans from octree structures and how to make use of the topology infor-
mation to distinguish between walls and obstacles. The approach uses the
assumption that walls are vertical and identifies large planar surfaces. The
results of the wall samples are cleaner and more robust to clutter than the
ones directly extracted from the point cloud.

Xiong et al. [2013] create a BIM from laser scanner data, where they re-
construct occlusions as well as are able to label walls, ceilings and doors.
Volumetric primitives are reconstructed by Xiao and Furukawa [2014] from
ground-level photographs and 3D laser points.
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2.1.2 Identification of stairs

One of the main goals of feature detection and semantic enrichment in this
research lays in the identification of stairs in a point cloud or octree. To
enable indoor pathfinding, first an indoor model has to be created. The
majority of such a model can be shaped with walls, ceilings, floors and
stairways which the authors call the four structural elements [Sanchez and
Zakhor, 2012]. They run a principal component analysis for every point
and then they classify and segment the point cloud into these structural
elements. Their system makes use of public C++ libraries of the Point Cloud
Library (PCL).

Also Eilering et al. [2014] identify those surfaces, with a specific focus on
segmenting stair structures. The classification of each point is dependent
on local spatial features of the point cloud, but also on the classification
of close points based on probability. With a trained dataset they achieve a
success rate of approximately 75%. On the other hand, there was not yet a
focus on segmentation and structural relationships between the objects, but
they plan to do this in the future. Python and the PCL were used for the
implementation.

Schnabel et al. [2007] use random sample consensus (RANSAC) techniques
to identify structures in point clouds. Also Oßwald et al. [2011] argue that
RANSAC tends to simplify complex planar structures so that small steps
merge into a sloped plane. This however, might not be detrimental for this
project.

Delmerico et al. [2013] model and localise stairways on a map from depth
imagery where lines represent discontinuities and depth changes abruptly.
Stairs are detected by a big and regular change of depth, however the view-
point does matter. Even though this is a promising and well described
method, Delmerico et al. [2013] use depth images for the detection of stairs
instead of using the point clouds directly, like it is aimed at throughout this
research. Another research shows an algorithm for grouping step-like obsta-
cles from point clouds obtained by RGB-D sensor [Sinha et al., 2014]. It runs
in real-time, divides stairs in subsections and the authors claim that it is
suitable for any real-world application. The paper contains a well described
method and pseudo-code, but only the point cloud and environment within
the viewpoint around the robot is considered.

Bansal et al. [2010, 2011] stream a point cloud, store the points in a voxel
grid and use image processing methods to detect doors and stairs. The
usage of histograms for stairs detection, even though just a small part of
the research, follows a similar approach as the histogram based method of
Okorn et al. [2010] or Oesau et al. [2014] and can therefore potentially be
connected. The authors use filters, see Figure 2.2, on top of 2D histograms
built according to the plane direction through the points in each voxel, to
identify the location of the stairs.

1. Bansal et al. [2010, 2011] first voxelise the point cloud, fit local planes
and identify vertical and horizontal surfaces.

2. Then the voxels containing surfaces are projected to a 2D grid giving a
vertical and a horizontal histogram representation respectively where
the number of cells measure how many voxels above this cell contain
vertical or horizontal surfaces.

3. Now the filters need to be set to detect the stairs, so that the matched
filter for the vertical histogram is a rectangular block with alternating
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Figure 2.2: Matched filters: stair vertical filter (left) and horizontal filter (right), blue
represents positive filter weights and red negative ones, image courtesy of
Bansal et al. [2011] [changed]

rows of positive and negative weights. The horizontal histogram only
shows a continuous horizontal structure. Moreover the number of
steps should be at least 3 to gain robustness for the stair detection.

4. Finally, the filter responses for the vertical and horizontal histograms
of the previous step need to be combined to increase robustness.

The approach works on a point cloud from a global perspective and does not
rely on a viewing angle of the scanner. Also the initial voxel data structure
has overlaps with the one which will be used for the research in this thesis,
which was developed by Broersen et al. [2016].

Stairways can also be found using their slope, so normal directions found
through a covariance matrix to segment a Kinect point cloud into regions
[Wagner et al., 2015]. Thus again, the tilted position of the scanner has to be
taken into account in order to use this methodology.

A majority of the studies are performed with the aim of improving robot
navigation, more specific research about this can be found in Section 2.3.

2.2 indoor pathfinding models
There already exists a wide range of different kind of digital models, which
can be used for indoor pathfinding purposes. They range from geometric, to
semantic and topological models or to a combination of them [Krūminaitė
and Zlatanova, 2014]. Liu and Zlatanova [2013b] argue that there are dif-
ferent types of indoor paths that depend on attributes like the user size or
a visibility graph. Zlatanova et al. [2014] present several 3D (and also 2D)
approaches for indoor navigation models. The possibilities for creating a
complete and partial subdivision for networks, or to use a 3D grid graph
are presented. Zlatanova et al. [2014] identify four different steps necessary
for a successful application for navigation through indoor spaces. The dig-
ital acquisition of available spaces (1), the structuring of acquired data (2),
formalisation of the data to establish relationships between different sub-
spaces (3) and lastly applying the user requirements on the formalised and
structured data (4). Subspaces are formed by subdivision of indoor space
into smaller parts. They can have semantic meaning. Moreover, they can
be navigable, so be used to perform activities, or non navigable like for
example walls. There are many applications in disaster management, facil-
ity management for indoor 3D models and they are necessary for indoor
pathfinding. 2D plans can be a basis to derive 3D models, but they are of-
ten outdated, not available and tedious work is necessary to achieve good
results [Nikoohemat, 2016].

Different logical models can be used for pathfinding, and the subdivision
is dependent on the type of application [Liu and Zlatanova, 2013a]. There
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are two different ways to subdivide, first semantically, which means to di-
vide into meaningful subspaces (with information about the kind of room,
etc.) and secondly geometrical, which divides based on geometry only (grid,
Voronoi diagram etc.). Both methods have advantages and disadvantages,
as the geometric approach can be fully automated, but the semantics re-
main unclear. For the semantic approach the reverse is the case. Liu and
Zlatanova [2013a] point out, that there was only a limited amount of re-
search to derive topological models from 3D geometrical models at the time
of writing. With the aim to automatically derive a logical model, first navi-
gable spaces and doors need to be identified in order to build a connectiv-
ity network. They also argue that to generate a multiple-storey navigation
model from floor plans, semantics have to be added. However, there is no
standard way of creating a network from floor plans.

Jamali et al. [2015] use a laser range finder for the acquisition of inac-
curate geometry from buildings and propose a 3D modelling method for a
topological navigation network. The model and connectivity is built up step
by step, fully autonomous, but each space requires an ID, specified during
the scanning process. Topology is mapped using dual edges for adjacent
spaces.

Yang and Worboys [2015] use combinatorial maps and their duals to de-
rive a navigation graph, while Yuan and Schneider [2010] introduce the
so called LEGO model and then use merged blocks of maximum available
widths and heights. From the connectors between blocks, which they de-
fine through neighbour finding, they build a graph where the nodes are the
connectors and the edges the distance between them. Yuan and Schneider
[2011] use their LEGO model and build a graph for navigation by repre-
senting blocks as nodes and connectors as edges. Because they first merge
larger blocks, they create a structure quite similar to an octree and might
therefore be useful for this research as well. Generally deriving topology
using Poincaré duality is a common approach [Lee and Zlatanova, 2008;
Becker et al., 2009; Boguslawski et al., 2011].

Narasimhan et al. [2006] extract a graph from a CAD model and store it
in an octree. The octree enables them to determine the path to the closest
destination.

The OGC IndoorGML standard for an open data model and XML schema
for indoor spatial information is based on the requirements for pathfinding
[Lee et al., 2014].

2.3 indoor navigation in robotics
Even though this research’s main goal is not aimed at robotics, experiences
in this field can be useful for this study. In the area of robotics indoor
navigation has been well researched for quite a long time already. Many
approaches also use an octree data structure and Simultaneous Localization
and Mapping (SLAM) technologies. Herman [1986] argues that an octree rep-
resentation of obstacles enables fast wayfinding algorithms. Kitamura et al.
[1995] represent everything in the environment by an octree structure and
generate a potential field from the black leafs in the octree by successively
adjoining regions with white leafs. This way they were able to create a col-
lision free navigation method, which is not graph based. An approach that
also Wu and Hori [2006] follow, who developed a collision free wayfinding
method based on an octree model, which was faster than graph based so-
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lutions. However, the research was limited on the movement of a robotic
arm. Jessup et al. [2014] show that octree based occupancy grids are a suit-
able representation for multi-robot 3D mapping and that these grids are
updatable.

Robotics need context and semantics, like the room structure, estimated
from the environment [Olufs and Vincze, 2011]. Shen et al. [2011] describe
a method for autonomous multi-floor indoor navigation of micro aerial ve-
hicles (MAVs), while only using on-board sensors without prior knowledge
of the environment. Therefore 2.5D environment models are used, which
are formed by collections of vertical walls and horizontal floors or ceilings.
Wang et al. [2014] were able to find the 3D coordinate of an unmanned aerial
vehicle (UAV) using a 2-laser-setup and structured indoor features with pre-
known key corner coordinates.

However, the field of robotics does not seem to provide research about
the shortest pathfinding in an octree representation of 3D spaces. Instead,
sensors are added on moving objects to avoid collision when in motion. On
top of that, sensors are also used for SLAM. SLAM stands for measuring
an environment, building a map and finding itself in there with the help
of feature point matching like in Bergeon et al. [2015]. They use point of
interests in images obtained with a Kinect to localise the robot. The octree
is often used as a supporting data structure.

Hornung et al. [2013] present the so called OctoMap, a volumetric repre-
sentation of occupied, empty, and unknown space. It is built from a point
cloud and allows sensor updates and raycasting. Hornung et al. [2012] argue
that a majority of indoor navigation models use a projected 2D representa-
tion of the robot’s footprint in a 2D projection of the world. Alternatively,
they introduce a stack of 2D representations for the different layers, associ-
ated with the attributes of the robot’s body at each height. Each of these
layers serves as a collision map for each body part with obstacles at the
same height. Also Payeur [2006] uses an octree to subdivide 3D space for
robotics. The approach is comparable to the one of Broersen et al. [2016].

Vandapel et al. [2005] structure empty space in spheres where the radius
of each bubble is determined by the distance to the next point in the cloud.
Overlapping and connected bubbles form a network of tunnels, stored as
graph. This provides an interesting alternative to the octree approach of
Broersen et al. [2016]. A lattice graph, which guarantees that every connec-
tion represents a feasible path, like implemented in Brock et al. [2009] is out
of the scope of this research.

2.4 observations
There is a broad research about feature detection and 3D indoor reconstruc-
tion from point clouds, which can be reused in this thesis (2.1.1). Especially
for stairs detection (2.1.2), but also for other purposes like indoor reconstruc-
tion and navigation the field of robotics (2.3) offers a broad research. Never-
theless, the focus of indoor navigation in robotics is mainly based on SLAM,
while in this research the environment or at least the geometry is gathered
beforehand using laser scanning methods. Also the viewpoint and depth
plays a role in many methodologies found. This makes sense for robotics
applications, which operate in real time, but it may not be suitable for this
work, as the model has to be global and not just consider the environment
around the current position.
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The goal is to find and implement a workflow to semantically enrich in-
door point clouds using an octree data structure and to create a logical
model for pathfinding based on geometry, similar to Liu and Zlatanova
[2013a] or also Jamali et al. [2015]. Those works did not use a point cloud as
input data, though. Work focusing on point clouds on the other hand, are
usually limited to modelling and reconstruction or to specific robotic appli-
cations or tasks. Also, there was no work found, which derives a pathfind-
ing model in a way it is aimed throughout this research. The methods which
will be reused and implemented, based on the findings in this Chapter, will
be further explained in Chapter 3. The proposed workflow does first struc-
ture the point cloud according to Broersen et al. [2016] and then follows the
histogram based extraction of storeys and floors, which was seen in Okorn
et al. [2010], Oesau et al. [2014] or Khoshelham and Dı́az-Vilariño [2014].
The last methodology is on top of that used to identify walls and vertical
features in the point cloud scene. The approach of Bansal et al. [2010, 2011]
will be employed to also find the location of stairs in the model and the
methodology of Hornung et al. [2012] provides inspiration about how to
derive a smart graph to perform pathfinding for humans.





3 CONCEPTUAL FRAMEWORK

The following chapter provides the conceptual framework and approaches
used, developed and reused throughout this thesis project. It will emphasise
the design of the workflow and describes each step in detail. First, the pre-
condition of the data (Section 3.1) will be defined. Then, the methodology
used for the semantic enrichment will be shown (Section 3.2). Following
this, the actual approach will be explained in detail, starting with the sep-
aration of the storeys, which will be illustrated in Section 3.2.1. Section
3.2.2 describes how the walls are derived and located in the structure before
Section 3.2.3 characterises how the stairs were found. Finally, Section 3.3
will construe the way on how to derive a graph network using the semantic
enrichment achieved in the earlier sections.

The workflow of the concept can be found in Figure 3.1. The initial data
is a 3D indoor point cloud of the building or the part of the building to
be used. All points and the remaining empty space are structured and
subdivided in an octree. Now, the black leafs in the octree, so the leafs
containing points, are further subdivided and labelled according to their
storey number and attributes (e.g. whether they are part of a floor, wall
or stairs). Following this, a pathfinding model, thus a graph, needs to be
derived from the empty space according to the semantically enriched black
leafs of the structure. Finally, the indoor graph network should include the
possibilities to be connected to outdoor networks.

Figure 3.2 shows the UML of the project logic diagram of this work and
how the derivation of the graph relates to the semantic enrichment of the
point cloud or octree data structure. First the indoor point cloud and the
empty space are structured in an octree. Then the octree or the point cloud
get subdivided so that floor, stairs, walls and other obstacles can be distin-
guished from one another. After that the pathfinding model or graph, which
connects different storeys in the building, can be derived.

3.1 precondition of the input data
To be able to create a stable framework and to reach the goals of this thesis
(see Section 1.4), some preconditions of the input data are necessary to be
defined. Below, the general criteria considered in this project are listed:

• The input data is a 3D point cloud of the indoors of a multi-storey
building.

• The point cloud should be clean (free of noise).

• The rooms of the acquired point cloud can be furnished, so the point
cloud can be cluttered.

• Colour information is not necessary.

• The path of the scanner is not necessary, but can improve the result.

15
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Figure 3.1: Workflow of the methodology for the semantic enrichment of a point
cloud based on an octree for multi-storey pathfinding
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Figure 3.2: UML of the project logic diagram
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Figure 3.3: Current octree implementation simplified to quadtree structure

• The walls in the building should follow the Manhattan-World assump-
tion.

• Floors should be horizontal and levelled.

• Stairs are perpendicular to walls and completely represented in the
point cloud. For the best result, the riser is concrete.

The input point cloud should represent a building with multiple storeys (at
least two) which are connected through a staircase. The building should fol-
low the Manhattan-World assumption, this means that all walls are parallel
or perpendicular to either the X- or the Y-axis and the floors are horizontal
and levelled. Point clouds should be as free of noise as possible and can be
cluttered, depending on the scanner used and the environment where they
were acquired. Colour information is not needed for the workflow to be
able to work, the same applies to the path or location of the scanner. How-
ever, having such information can increase the possibilities for a successful
analysis and semantic enrichment of the data. The last point emphasises
that all elements of the stairs’ surface should be represented in the point
cloud and not suppressed by either noise or the point of view of the scan-
ner. Furthermore, also the staircases should follow the Manhattan-World
assumption.

3.2 semantic enrichment
The conceptual framework used in this thesis is built on top of a point cloud
structure, which uses an approach developed during the Geomatics Synthe-
sis Project 2015. This approach structured the points and the empty space in
an octree [Broersen et al., 2016]. Octrees for point clouds are based on the re-
cursive and non-uniform subdivision of space and are a common approach
to structure and segment 3D point clouds and like shown in Chapter 2 used
for the partitioning of space. Octrees represent a hierarchical data structure,
they allow addressing and efficient use. In the methodology of Broersen
et al. [2016] the empty space, so all the free space which is not occupied by
any points and therefore available for navigation, is structured in an octree
as well. A similar approach was used for localisation by Payeur [2006].

In the current implementation of the octree structure [Broersen et al.,
2016], all black leafs (leafs containing one or more points) are split until the
deepest and smallest level in the tree. The octree of empty space (the reverse
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with all white leafs) are as big and up in the tree as possible. Furthermore,
both linear octrees supplement each other and the octree of empty space is
the reverse of the full and occupied space. Figure 3.3 show the current oc-
tree implementation simplified to a 2D quadtree for visualisation purposes.
It is distinguishable that the octree (or quadtree in this figure) is further
split when there are points and the leafs are as big as possible when they
are empty. This has the advantage that the structure has more detail close
to obstacles and less when there is nothing around. Moreover, a method
[Vörös, 2000] has been implemented which finds all the leaf’s neighbors in
the octree on-the-fly for a basic pathfinding calculation. The path, however,
has neither size constraints nor is usable for humans and is not bound to
the semantics of its environment. This means for example, that the route is
not constrained to represent the possible path of a human, which is sticked
to the floor or avoids obstacles like tables.

So, after reusing the methodology of the Synthesis Project the empty
space and the point cloud are subdivided into an octree structure. But,
to find which parts of the model can be used for pathfinding, the floors and
the stairs (together with the empty space they make the walkable space) need
to be identified. In a building four different kinds of semantic classification
are important for deriving a pathfinding model for humans:

• storeys

• floors as walkable space

• connections between storeys, in this case restricted to stairs as walkable
space

• walls (static)

• obstacles (for example furniture, often not static)

The semantic attributes need to be derived from the current octree struc-
ture. Naturally the focus here lies on the full space rather then the empty
space, as all the listed features are represented by full leafs. The pathfind-
ing through the octree of empty space will be able to profit from the richer
semantics of its surrounding and can use the better scene understanding to
provide a more realistic path. The linear octree of black leaf nodes [Broersen
et al., 2016] is the initial data structure and (sometimes along with the points
itself) used to semantically enrich the formation. Figure 3.4 shows the point
cloud and the empty space in it, structured in an octree. This also illustrates
the connection between the empty space and the importance of semantic
enrichment of the scene. On the left side of the figure you can see the bar
(represented as point cloud instead of octree of full space for visualisation
purposes), which is surrounded by empty leafs. The empty leafs are gener-
ally free for pathfinding. If they are on top of the bar, however, they should
not be part of the graph used for pathfinding as humans usually go around
the bar rather, than across it. Therefore, it is necessary to know which leafs
can actually be used, so the general understanding of the scene is of impor-
tance.

Figure 3.5 shows the workflow of semantic enrichment of the black octree
leafs. First the floors are identified and the storeys separated. The gained
separation can, with the points be used to identify and verify the walls as
well as to locate the stairs. This results in a semantically enriched octree with
black leafs which can be put in combination with the white leaf nodes again
to create a pathfinding network following human movement constraints.
The derivation of the graph is further described in Section 3.3.
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Figure 3.4: Slice through the point cloud of the Bouwpub of the Faculty of Architec-
ture in Delft with the empty space (grey octants) structured as an octree.
The bar is on the left of the figure, image courtesy of Broersen et al. [2016]

Figure 3.5: Workflow of the semantic enrichment of the octree and the connection
to the empty space
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3.2.1 Identification of floors and separating storeys

When all preconditions are fulfilled and the data preparation is completed
the different storeys need to be distinguished and it has to be possible to
separate them from each other. Every storey is defined as a horizontal part
of the building, which can be used for walking enclosed by a floor and a ceil-
ing. The typical and human perspective of storey enumeration only counts
full storeys and not landings in between stair flights. In this case however,
also a platform between different pitch lines or flights in a staircase will be
called a separate storey, even though this might not add to the usual storey
count used in architecture. The reason behind this is that the identification
of storeys in the proposed methodology is equivalent to the identification
of the floor. Furthermore, it is necessary for the following steps to look at
each floor location separately. The approach will be explained in detail in
the following.

The methodology to separate different storeys from each other and to
identify the floor is based on Okorn et al. [2010]. A height histogram is cre-
ated where the samples are projected to a histogram in Z-coordinate direc-
tion. Whereas Okorn et al. [2010] use voxels instead of points (like Khoshel-
ham and Dı́az-Vilariño [2014]), in this approach the black octree leafs can
be used. Every time a black leaf has the same Z-value as another one it is
stacked to the according histogram bin. The peaks at the highest increment
of the histogram show the location of horizontal structures in the facility,
and represent the locations of floors and ceilings. Using the octree leafs in-
stead of the raw point cloud is advantageous because the result proved to be
cleaner (see Figure 4.2). Furthermore, the bin size can follow the resolution
of the octree and does not have to be manually specified. Also Okorn et al.
[2010] state that using the raw point cloud would bias the result in direction
density of the points rather than the actual floors.

The peaks in a histogram have the characteristic to be higher than their
immediate neighbours [Duarte, 2015]. There are several methodologies to
detect local maxima in histograms. The red line in Figure 4.2 shows the
minimum peak height, which is necessary to suppress not significant peaks
in the data, also Oesau et al. [2014] remove every local maximum which
is not above a certain ratio to their neighbourhood. It is important to pay
attention to the fact, that close peaks refer to ceiling and floor. Together they
represent one concrete feature in the building if they are less far apart then
the maximum wall thickness in the building.

Once the peaks are found, the storeys can be separated and the cloud be
divided into subclouds according to their storey level. Nevertheless, there
are still exceptions to be considered. One of them, which especially occurs
in public facilities are dropped ceilings which result in two peaks close to
each other, but further apart than the maximum wall thickness. A dropped
ceiling is a secondary ceiling, which hangs below the main ceiling and can
often been found in public buildings. Figure 3.6 shows such a case between
the second and the third peak from the bottom. In many cases, such prob-
lems can be solved with a logic constraint by setting the minimum height
of a storey to a minimum threshold to rule out such dropped ceilings. This
can, however, lead to misleading results when there are for example many
tables on a floor or a platform in a staircase. The tables cause similar results
as dropped ceilings, because they are consisting out of a large planar area
and can appear as another peak in the histogram.
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Figure 3.6: The point cloud (left) can be separated into its stories by using the peaks
(marked with a red dot) above the minimum peak height (red line) of
the histogram of the points in Z-direction (right)

Figure 3.7: The stories in the point cloud (left, black) can be evaluated with the
peaks of the histogram of the points of the path of the scanner (left, in
colour) in Z-direction (right)

If available it is therefore recommendable to use the path or location of
the scanner to solve this problem. For the ZEB1 scanner, for example, this
data is usually available as a trajectory consisting out of another point cloud.
Now, a similar approach as for the building’s point cloud can be applied and
a histogram can be created. As the scan is usually performed by walking
around in the area which is meant to be captured, the trajectory is for the
most part parallel to the slope of the floor, so horizontal. The distance be-
tween the height of the trajectory and the next lower peaks in the histogram
of the building provides answers to the question for which peak in the build-
ing’s histogram corresponds to a floor and which one is a dropped ceiling
or a table. The distance should represent the height of the scan, which is
performed within a certain height threshold above the ground.

Using these methodologies the storeys and the location of floors can be
found and the attribute for storey height can be added to the octree. From
now on, each storey can be treated and looked at independent from each
other for the most of following steps. The octree allows a simple projection
of attributes. Every black leaf node of the octree having the same Z-values
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Figure 3.8: A locker covering a large part of the wall behind it. It might result in a
higher peak in the histogram as it has a bigger area to reflect points to

as the location of the histogram peaks determined before (location of floors)
can be assigned to the corresponding characteristic. The leafs with Z-values
of in between the peaks can get the according enumeration of the storey.
Generally this simplification due to the projection can also cause wrong
attributions, for levels in the building or the attribute to be a floor. This,
however, is not harmful for further processing as intended in this research.
Furthermore, as already stated, the enumeration of levels might not corre-
spond to a human perception of a storey as a landing, so the intermediate
platform between flights of stairs, might get its own number. Such situa-
tion could be fixed by setting a minimum area for a floor to get a new, full
number.

3.2.2 Identification of walls

Similar to the methodology explained in Section 3.2.1, histograms can be
used to detect the walls in a building as well. As the Manhattan-World
assumption applies (Section 3.1) this means that the peaks need to be found
in X- or in Y-direction, instead of in Z-direction. Khoshelham and Dı́az-
Vilariño [2014] state that adjacent histogram peaks with a smaller distance
than the maximum wall thickness correspond to the non-navigable space
of a wall. This applies, with constraints for furniture, also to the research
performed throughout this thesis. The maximum wall thickness has to be a
manual parameter.

Walls and obstacles can both appear as a peak in the histogram of either
direction. Therefore, to differentiate between the two proves to be one of the
biggest challenges for the identification of walls. Especially large cupboards
with a flat surface are hardly distinguishable from walls at all. Khoshelham
and Dı́az-Vilariño [2014] and many other works bypass such false assign-
ment by restricting their methodology to uncluttered point clouds, thus data
acquired in empty buildings only without any furniture.
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Figure 3.9: Histogram in X-direction showing peaks at the location of walls. Peaks
on the right show the locker and the wall of Figure 3.8

The separation of walls and obstacles, however, can be important. Gen-
erally, they do both belong to non-navigable space, but obstacles are more
likely to change their position than walls. Such information can be crucial
in emergency situations, especially when the date of the last scan is long in
the past. The height of a peak in the histogram cannot be used to distin-
guish between walls and obstacles and is misleading as a higher density or
area of points scanned can also be on a cupboard rather than on a wall, like
shown in Figure 3.8. Therefore following assumptions are made to distin-
guish between the two. It is assumed that main walls are load-bearing and
if histogram peaks appearing in multiple storeys are with a higher certainty
a wall and not an obstacle:

• The main walls are more likely to appear in multiple storeys, that
is why it is important to identify them. Peaks above each other are
more likely main walls as they represent load-bearing walls. In the
majority of cases wall directions are shared across different levels of
the building [Oesau et al., 2014].

• The first peak from either side of the histogram is a main wall. One of
the general preconditions (Section 3.1) of the data was that the point
cloud has to be of an indoor environment. As the acquisition therefore
also has to be performed from the indoors, the first high peak on either
side of the histogram represents the location of a main wall. In this
case, this is a wall connecting to the exterior of the building.

• The peaks close to main walls and not in other storeys are more likely
obstacle and not another wall, the same accounts for three close peaks,
were at least one of them must be an obstacle.

Using these assumptions together with the histogram approach does pro-
vide a first estimation for the walls’ locations. The model can be labelled
accordingly and the attributes be projected to the corresponding X- and
Y-values in the octree, similar to what has been explained for the floors
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Figure 3.10: Wrong assignment of walls instead of stairway due to wall projection
at histogram peak

Figure 3.11: Workflow to detect vertical features like walls in point clouds. Top
left: Ground level point cloud; Top right: vertical planes in octree leafs
stacked to 2D histogram; Bottom left: Canny edge detection to reduce
noise; Bottom right: line detection through hough transform, lines rep-
resent walls

and storeys in Section 3.2.1. In contrast to the methodology of Khoshel-
ham and Dı́az-Vilariño [2014], there is a validation of the walls necessary in
this research. Khoshelham and Dı́az-Vilariño [2014], besides using a shape
grammar, exclude all furniture and staircases from the point clouds. Wrong
projections are therefore not possible as every point in a certain height and
direction can exclusively be a part of a wall only. The point clouds used
here may have clutter and stairs, and therefore it needs to be determined
whether all wall attributions do represent a large vertical plane.

Figure 3.10 shows a case where the histogram for the walls in Y-direction
found a peak, which resulted in a wrong assignment of a wall where there
is a stairway in reality. Such cases, that do not only happen with stairs,
but also with other obstacles and clutter do make a validation of the walls
necessary. It cannot simply solved by increasing the threshold for a peak to
be found, because then relevant peaks might be lost as well.

A validation can be performed reusing the approaches of Okorn et al.
[2010] or Oesau et al. [2014], who are using the hough transform line de-
tection algorithm on 2D histograms. Figure 3.11 illustrates the workflow to
detect walls in the point cloud reusing and extending the method of their
research. For this workflow the 2D histogram can be built with leafs of the
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octree that include vertical planes. In the octree structure a plane has to be
fitted through all points in each leaf in the storey. To increase robustness
also the points in each of the leafs’ neighbours can be added. The direction
of the normal can be detected using the singular value decomposition or
the covariance matrices. When the normal corresponds to a vertical plane
in the octree’s leaf it is stacked to a 2D grid histogram of vertical leafs, where
the grid size is equivalent to size of the leafs. All leafs containing vertical
surfaces are projected on the grid so that each cell in the grid provides a
measurement about how many leafs above this cell contain a vertical sur-
face. This results in a 2D histogram with peaks at locations with many
vertical surfaces. Figure 3.11 shows such a histogram in the top right corner,
where the colours are brighter when the histogram bin is higher.

Peaks in the 2D grid histogram represent lines, which can be found using
a Progressive Probabilistic Hough Transform [Galamhos et al., 1999]. This
methodology assumes that a random subset of voting points can provide a
good approximation of the actual results, where lines are extracted during
the process by walking along connected components. Using a canny edge
detector decreases noise and the number of operations necessary, which
is proportional to the number of lines in the image, the edges need to be
detected in van der Walt et al. [2014].

Each line must be within a threshold to the wall detected in the previous
approach, else the previously detected wall is more likely to be an obstacle
or corresponds to stairs like in Figure 3.10. As soon as the walls are exceed-
ing the threshold to the distance to a line, the attribution can be removed.

There is a large potential to build up on this and to also extent such
methodology to Non-Manhattan-World structures. For example Oesau et al.
[2014] successfully use such approach for reconstruction. Furniture or other
clutter will always be the cause of difficulties, though.

3.2.3 Identification of stairs

To be able to connect and find a path between different storeys, the stairs
need to be identified. Like introduced in Section 2.1.2, there are many dif-
ferent approaches to do so, but they usually rely on the point of view of the
scanner. Staircases and stairs are crucial to the derivation of a pathfinding
model for humans from 3D indoor point clouds as they do not only form a
connection between different storeys in the building, but also are part of the
walkable space.

The approach for the identification of the stairs is initially based on
reusing the method of Bansal et al. [2010, 2011]. Other methodologies de-
scribed in 2.1.2 were often depending on the point of view of the scanner
or had the focus on single steps and their attributes like the height of the
riser (which are important for robotics) instead of on the whole stairway.
The proposed methodology has the advantage of taking the point cloud as
a whole into account, because it uses the point cloud on a global approach.
It then analyses at which locations stairs can be identified.

Specific preconditions for stairs

Stairs come in various shapes and forms, the majority of the algorithms to
detect them are limited to straight stairs and do not work for spiral stairs.
Even though it could not be tested, it is not assumed that the methodol-
ogy presented in this section does work properly for such cases. Therefore,
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the constraint to follow the Manhattan-World assumption also applies to
the stairs. Furthermore, the point cloud needs to be complete and should
not contain gaps caused, for example, by the viewing angle of the scanner.
Such gaps usually occur with stationary scanners and result from the static
scanning. Therefore, mobile laser scanners are preferred in this scenario.
Stationary laser scanner can cause the same stair facilities to be represented
completely different in the point cloud, depending on the line of sight of
the scanner.

Bansal et al. [2010, 2011] take voxels in point cloud chunks with points
and compute a plane normal of the points inside each voxel or within a
radius of the its centre. In this workflow the full octree leafs, located at the
storey where stairs have to be found in and which are not classified as walls
yet, can be taken into account instead.

Filter based approach

In the following, the steps for the algorithm to find stairs are described. If
not explicitly explained, the methodology is close or similar to the one of
Bansal et al. [2010, 2011] and also described in Section 2.1.2.

1. First, the normal of all points in each leaf and its face neighbours has to
be found. This can be done using the Singular Value Decomposition
(SVD), so a factorisation of the matrix. The last row of the unitary
matrix of V represents the eigenvector of the smallest eigenvalue and
therefore the normal. Also the covariance matrix can be used giving
the same results. The neighbours can be found using the methodology
described in Vörös [2000].

2. Using the normal of each leaf, it is checked whether the plane through
the points corresponds to a vertical, horizontal or a differently oriented
surface. The methodology is similar to the approach for building the
2D grid histograms for the hough transform to validate the walls, ex-
plained in Section 3.2.2.

3. Based on the smallest leafsize of the octree a 2D grid histogram is
created. All leafs containing vertical surfaces are projected on the grid
so that each cell in the grid provides a measurement about how many
leafs above this cell contain a vertical surface. This results in a 2D
histogram with peaks at locations with many vertical surfaces.

4. The previous step is repeated with leafs containing horizontal surfaces.
The 2D histograms are not illustrated here because they are hard to
visualise, Figure 3.13 shows how they look like after the filters, which
are explained in the following step, were applied.

5. The filters for the vertical and the horizontal histogram are created
and their responses to the histograms computed. The filter for the
vertical histogram is a rectangular block having alternating rows of
positive and negative weights. The horizontal matched filter is a box-
car filter to be able to detect continuous horizontal structures. Both
filters combined correspond to the direction changing structure of the
surfaces in stairs (see Figure 3.12).

6. The filters’ responses are combined using the geometric mean.

The following steps extent and change the methodology of Bansal et al.
[2010, 2011], who perform a non-maximal suppression to suppress spurious
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Figure 3.12: Matched filters: stair vertical filter (left) and horizontal filter (right),
blue represents positive filter weights and red negative ones, image cour-
tesy of Bansal et al. [2011] [changed]

Figure 3.13: Response of vertical filter on the left, response of horizontal filter on
the right. The figures can be seen as a top view on the scene of the
storey, where positive responses are in brighter colours than negative
ones. Walls and other already labelled leafs in the octree are not used
for the 2D histogram the filter is applied on

responses instead. Changes needed to be made as the stairs could not be
found due to the functionality of the vertical filter. Figure 3.13 shows how
many, even smaller regions where found and identified as stairs. Many of
them correspond to flat surfaces, which were not identified to be floor, but
are rather caused by obstacles. The weaknesses of the method and especially
the filters will be elaborated on in Section 5.2.3.

To overcome these limitations following extensions of the methodology
are necessary:

7. Regions get grown on the filter responses using a Gaussian filter to
treat possible stairs as one area (see 3.14). Otherwise all leafs are
treated separately, which limits the possibilities for further analyses.
On top of that, it can be used to filter out too small areas that can
impossibly be stairs and do more likely represent obstacles. It was
also considered to use the shape of the resulting regions found, but
as there could have been an obstacle placed on the stairs it has been
excluded from the methodology.

8. The heights of different pixel rows per region are compared and out-
liers are removed. The height of each pixel is its Z-value, which is
important for the calculation of the slope of the area. Outliers can
be identified with least square adjustment, linear regression or other
methods, like the absolute scaled distance to the median of all values.
The assumption is, that stairs are shaped regular and outliers might
be artefact from the point cloud or of the handrail. Therefore, they can
influence the slope estimation.
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Figure 3.14: Areas in different colours (left), grown of combined positive filter re-
sponses. The cut through the point cloud on the right is for better
orientation

9. Also, the Manhattan-World assumption of the stairs can be used. Each
row and column of the grid which belong to the bounding box of a
region can be looked at separately. If there are too many pixels per row
or column, which do not have a positive value from the filter response
they are removed because it can be assumed that stairs have a close
to rectangular shape. The red region in Figure 3.14 shows such an
artefact on the right side, where a line exceeds the area.

10. When all outliers are removed the slope of a region is calculated. Is
the slope in between the dimensions of stairs, the region will be la-
belled a staircase. Interpreting the numbers of Table 3.1 concludes to a
maximum slope of the pitch line for stairs in the Netherlands should
have an angle to the floor of about 43.5◦ for residential buildings and
about 37.9◦ for all others buildings. In the other direction, the slope
should be close to 0 accordingly, in other words: stairs should not
be tilted. Furthermore, the slope direction can be determined to find
the orientation of the stairs. Figures 3.15 and 3.16 show the average
Z-value of the data or octree leafs in the region. The red line in Figure
3.16 is the aggression line to estimate the slope of the region in each
direction. When the region and slope are badly conditioned it will not
be identified as stairs.

11. Flat areas with not enough slope or regions with a low linearity, which
can be detected using the Pearson’s coefficient, are removed and will
not be detected as stairs.

Figure 3.17 shows the most important steps in the workflow of the ap-
proach to discover the stairs in the point cloud scene.

3.3 derivation of the graph
Once the octree structure is semantically enriched, the new information can
be used to get a better and smarter graph than before. In Broersen et al.
[2016] the shortest path would just fly through the building, independent
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Figure 3.15: 3D raster of the data from the green area in Figure 3.14

Figure 3.16: Linear regression in X- and Y-direction of the same data as in Figure
3.15

Figure 3.17: Workflow to detect stairs in point clouds. Left: Ground level point
cloud; Centre: regions in 2D histogram after plane fitting, filter appli-
cation and region growing; Top right: 3D raster of region complying to
slope and tilt for stairs; Bottom right: 3D raster not complying to the
requirements
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Table 3.1: Staircase dimensions in the Netherlands, Bouwbesluit 2012 [Minister van
Binnenlandse Zaken en Koninkrijksrelaties, 2015] [changed]

residential other

Minimum width of the stairs 0,8 m 0,8 m
Minimum free height above the stairs 2,3 m 2,1 m
Minimum tread depth per step 0,22 m 0,185 m
Maximum rise height per step 0,188 m 0,21 m

from what is underneath or if a human actor could actually use this path.
There was no understanding of the scene and the surroundings of the graph.
The goal of the semantic enrichment was not only to reconstruct the build-
ing, but aimed specifically at providing a possibility to derive a smarter
graph. The graph should be restricted to only walk on top of floor and
stairs, thereby sticked to the ground and to go around obstacles.

3.3.1 Derivation of the graph on floors

To derive the graph on floor level it is first necessary to project the 3D empty
space of the octree to 2D. The graph can still be layered for the different
storeys, but needs to be 2D locally as human tracks are also 2D, horizontal
and sticked to the floor. It is thus necessary, to create the graph on floor
level. The derivation of the graph at the stairs follows another approach as
it cannot be horizontal and will be described in a separate Section 3.3.2. A
straightforward solution to find such 2D graph would be to derive the 2D
equivalent of an octree from the current structure, a quadtree. This would
also allow an implementation of the methodology for a distance transform
of Samet [1982]. A distance transform is necessary to create a clearance map
or graph that makes sure that at all places there is enough space for the
actor to move through. The distance transform is the value of the shortest
distance of each empty space entity to an obstacle or generally non-movable
leaf. However, deriving a quadtree would not make use of the current data
structure and give up a lot of information in vertical direction. That is why
a cut of the octree can provide a more complete picture of the set and is
also cheaper to calculate with the current set up. A cut of an octree is not
equivalent to a clean quadtree structure. It is a challenge though, to find an
appropriate cutting height from which a good network can be derived using
the principle of the Poincaré duality (see 2.2) and at the same time keeps all
necessary information.

Octrees are regularly structured, therefore a cutting height can be found
using the characteristics that the octants of empty space are as big as possi-
ble and the floor horizontal. This guarantees, that the first time the Z-value
of the octree’s leafs, higher than the floor, can be divided by 8 is an advan-
tageous cutting height. The attributes of the octree and its regularity make
sure that this is a height where the leafs are completely covering the empty
space in a relatively small grid like shown in Figure 3.18. The first time the
Z-value can be divided by 4 is also the first time a new, complete grid of
new leafs start. As there is floor underneath or the graph should only exist
when this is the case (because the empty space should only be usable with
floor underneath) it is also assured that there is no bigger leafs starting in a
lower Z-value. Larger leafs having their origin lower are therefore not part
of the grid. However, dividing by 8 leads to better results as this makes the
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Figure 3.18: Left: Cut of empty space (transparent) in semantically enriched octree
of first storey level of scene in top-view, where floor is yellow, stairs are
red, walls green and obstacles grey. Right: Cut of empty space (grey)
in thinned point cloud at first Z-height divisible by 8 above the floor
height

Figure 3.19: Human actor with bounding box in semantically enriched octree scene,
empty space is not shown

grid less susceptible to noise and a guarantees a larger resolution. On top
of that, dividing by 4 or 8 might even lead to the same height in some cases.

Once the cut is performed it needs to be tested whether all the leafs are
really free for navigation. Therefore, it needs to be known whether there is
floor (or stairs, see Section 3.3.2) underneath and no obstacle above, up to
the actor’s maximum height. Figure 3.19 shows a human actor standing in
the scene displayed earlier in Figure 3.18. The dark bounding box around
him illustrates the space that should be empty or free for him to comfortable
navigate through. The following sections will demonstrate how it is made
sure that a network graph will only deploy free leafs.

Checking space vertically

Moreover, should be tested, whether there is enough vertical space for a
person to move. First of all it needs to be checked, whether there is enough
floor underneath. It is recommendable to set a threshold so that the floor
only has to cover some parts of the empty leaf’s extent. This is because
point clouds tend to have holes and gaps especially at the floor, which do
not exist in reality. All leafs, found to fulfil this criteria can be added to
a 2D map, which represents navigable space and from now on only these
are further considered and checked. The map also still holds the locational
codes of the octree structure to address each octant.
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Figure 3.20: Cut of empty space found to be free. Red leafs are further subdivided,
blue ones are still in their original size

Furthermore, it needs to be determined whether there is enough space
above each leaf before it can be declared navigable and therefore become a
part of the graph. Also here the octree structure can be used as there can
only be an obstacle to collide with when the leafs above are smaller than the
size of the leaf of the cut. If there is no obstacle, the leafs are either bigger
or of the same size. The general methodology is comparable with Hornung
et al. [2012], but takes the entire height of the actor as constant layer. If for
all zi above the leaf to be checked (x, y, zi) is free of any obstacles or other
occupied leaf, the leaf to be checked (x, y) is marked as free (blue in Figure
3.20). Is (x, y, zi) occupied and will be further subdivided to test whether
a smaller instance of (xsmaller, ysmaller) is free (red in Figure 3.20). When a
maximum and predefined level is reached and occupied (xsmaller, ysmaller)
are considered as occupied. The resulting 2D map holds only free leafs that
can be used for navigation, they guarantee that there is not collision in 3D
space above it. The further subdivision, once a leaf is found to be not free,
is necessary to prevent marking large areas as occupied, even though only
a marginal part of them actually is (see Figure 3.20).

Distance Transform (horizontal)

To make sure that the object or person fits through the width of the space a
distance transform has to be performed. The distance transform calculates
the closest vertical distance of the centre of each leaf, which was declared
free for movement before, to a cell which does not apply to that. Is the
distance less than half of the width of the object to be moved, the leaf cannot
be a part of the navigation graph because it would not be able to fit through.
It is tested, whether there is enough space to horizontally. For this task only
the resulting 2D map of Section 3.3.1 is taken into consideration.

To be able to calculate the distance to the boundary of the next cell which
cannot be used for navigation the non-movable leafs, sharing the same
height, first have to be created. Projecting the walls and obstacles found
earlier to 2D does not work, as they can be on different heights. A good
example for such situation is an open door. If a door gets projected to 2D
it seems like a wall. It is, however, possible to move through and therefore
there should not be a boundary. Also a cut of the data between the appro-
priated heights does not work in all cases, for example where there is no
obstacle, but also no floor underneath. Also the empty space, structured
reusing the methodology of Broersen et al. [2016], is not sufficient because
it is not limited to the necessary height only.

Thus, the reverse of the 2D map created in Section 3.3.1 and shown in
Figure 3.20 needs to be found. It is possible to find all locational codes at a
certain height in the octree making use of its Z-order and bitwise interleav-
ing. As soon as a number in the locational code is above 3 this means that
the leaf is in one of the upper octants in the current level (see 3.21).

Algorithm 3.1 shows how the height can be determined by following these
attributes of the octree’s locational codes. The returned list of Booleans can
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Figure 3.21: Octants enumeration in Z-order

then be used to find all remaining leafs at the height of the navigable leafs
as they are complementing each other. This approach resembles the finding
of the empty space by taking the reverse of the full octree in Broersen et al.
[2016], the Z-order of the octree leafs can be found in Figure 3.21.

Algorithm 3.1: Height to Boolean
Input: locational code of deepest leaf usable for navigation
Output: locational codes of deepest level in booleans according to

their height in the octree

1 foreach digit i of locational code do if i < 4 then
2 append False

3 else
4 append True

5 ;

Having both, a slice of the navigable space and a slice of the non-navigable
space the distance transform can be calculated. There are several methodolo-
gies to do so. The approach for distance transform on quadtrees by Samet
[1982] does not work in this situation as data structure is represented by a
sliced octree, which does not correspond to a correct quadtree data struc-
ture. The computation of the distance between the centre of a navigable leaf
to every non-navigable leaf, which keeps the value of the shortest distance
for the clearance map is one possible solution. Due to its simplicity it can
be implemented quickly, but lacks performance. Another alternative would
be to find the neighbour of each leaf, check whether one of them is non-
navigable and if this is the case calculate the distance. Is there only naviga-
ble neighbours, then their neighbours need to be found. This is challenging
though, as the grid is irregular and the first non-navigable neighbour is not
necessarily the one with the closest distance. Furthermore, using filters like
suggested in Borgefors [1986] are an efficient possibility to achieve the same
result for a distance transform.

3.3.2 Derivation of the graph on stairs

The graph network on the stairs can be derived using a similar methodology
as the one on floor level. Furthermore, it needs to be connected to adjacent
floor networks to enable multi-storey pathfinding. There are, however, some
differences between the methodology to derive the graph on floor levels. For
example the height of the cut has to be floating above the stairs instead of
above the floor. Due to the slope and irregularity of the octree it is not
possible to simply cut the structure as it is done for the graph above floor
and described in Section 3.3.1. Instead of using the octree, each edge in the
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graph will be equal to the size of the smallest octree leaf and the graph on
the stairs will be similar to a graph in a voxel based approach. This means,
that the X- and the Y-coordinate of the origin of each leaf are represented
by the full coordinates, which are above stairs. The Z-coordinate, which is
necessary to get the locational code, can be a value close above the average
step height in the octree.

Furthermore, the graph at the stairs need to be connected to adjacent
floor on each level, so at the start and the end of the stairs’ flight. Therefore
adjacent leafs of the cut on floor level have to be found and the neighbours,
as well as their distances, added to the network. Optimally building the
distance or clearance map is performed afterwards on each storey, to keep
the connection intact. The distance transform works in the same way as
described in Section 3.3.1 and 3.3.1.

3.4 connecting to outdoor reference sys-
tems

It is important for emergency responders to also keep a connection to the
environment of the building. A completeness of the scene including the
outdoors is necessary to provide a full understanding of the situation. Also
a path is not limited to the indoors and often the closest and safest route
includes leaving the building. van der Marel [2016], assistant professor of
Faculty of Civil Engineering and Geosciences at the Technical University of
Delft, who’s research focuses on continuously operating Global Navigation
Satellite System (GNSS) networks, states that real world coordinates can as
well be used indoors. However, the majority of all point clouds uses its
own reference and coordinate system. The dimensions are in tact, so it
is possible to calculate distances, but the coordinates and orientation are
lost in relationship to the outside world. Therefore it is necessary to create
control points in order to be able to align the indoor point cloud with a
global coordinate system. The real world coordinates of the control points
have to be known and the points should be able to be registered in the point
cloud of indoor space. Automated point cloud registration and alignment to
known reference point clouds can be performed using methodologies, like
Iterative Closest Point (ICP) [Tamas and Goron, 2012] or fast feature points
histograms (FFPH) [Rusu et al., 2009b].

Alternatively, if a scanner has GPS on board the reference points can be
the locations of the scanner, provided a GPS connection can be achieved
with a high enough accuracy. If it is a mobile laser scanner, the loop for the
SLAM can be closed at a point where there is a GPS accessibility, like in front
of the building. Inertial Measurement Unit (IMU) can provide additional
information for when the scanner is used.





4 IMPLEMENTAT ION AND
EXPER IMENTS

This chapter will describe the implementation details of the workflow de-
scribed earlier in Chapter 3. It will be more specific about what has been
implemented and which techniques have been used throughout this thesis
project. The first two sections introduce the tools and data to be used for the
proof of concept, then the implementation of the workflow will be explained.
Finally, in the last sections the performance will be shown.

4.1 tools and libraries
For the implementation the high-level programming language Python and
the object-relational database management system PostgreSQL were used.
The most important (non-standard) Python packages or algorithms used for
the implementation of the workflow are listed in the following:

• Psycopg2 2.6.2 [Varrazzo, 2015]

• NumPy 1.10 [van der Walt et al., 2011]

• Matplotlib 1.5.1 [Hunter, 2007]

• Scikit-image 0.11.3 [van der Walt et al., 2014]

• detect peaks [Duarte, 2015]

Moreover programs like CloudCompare 2.6.2 [Girardeau-Montaut, 2016],
FME Workbench 2016 and ParaView 5.0.0 [Ahrens et al., 2005] were used,
but mainly for the visualisation of the results. Some processing, like for
example the rotation of the point cloud (Section 4.2.2) were also done using
CloudCompare.

4.2 data
The data to be used in this research consists out of 3D indoor point clouds
acquired with different kinds of scanners. The resulting point clouds must
be available in LASer File Format (LAS) to be used in this workflow. If the
file is not available in this format, it can be converted with CloudCompare.

4.2.1 Choice of scanner

The used point clouds was acquired using three different kinds of laser
scanners. Besides the entrance area of the fire brigade in Berkel en Rodenrijs,
which was scanned with all scanners, also point clouds of other areas in the
building or the Bouwpub of the Technical University of Delft were available.
Two of the used scanners for acquiring point clouds were mobile, the ZEB1

37
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Figure 4.1: Three point clouds of the same scene with different laser scanners after
application of an Eye-Dome Lighting shader for better visualisation: Sta-
tionary Leica C10 laser scanner (left), the ZEB1 hand-held mobile laser
(middle) and the Project Tango tablet (right)

laser scanner and the Project Tango tablet. Moreover, a stationary Leica C10

laser scanner was used to acquire LiDAR scans. The resulting point clouds
have different attributes in terms of quality, precision and completeness.
Furthermore, another part of the building, scanned with the ZEB1 was also
used.

4.2.2 Rotation

Besides the already mentioned octree structure the data needs to fulfil some
other attributes to be applicable for the following methodology. As de-
scribed in Section 3.1 the data needs to be aligned to follow the Manhattan-
World assumption. Besides only having perpendicular and straight walls,
they also need to be axis aligned. However, this is rarely the case for point
clouds, even though they usually use their own coordinate reference sys-
tem. It is therefore necessary to rotate the point cloud so that the main
walls are parallel to either the x- and the y-axis. Main walls are impor-
tant, load-bearing and large walls, which occur in many storeys. There are
several methodologies in which way this can be achieved and can be done
manually, semi-automated and completely automated. Examples for axis
alignment can be found in Khoshelham and Dı́az-Vilariño [2014] or Bansal
et al. [2011]. To detect planes in the point cloud the RANSAC implementation
of Schnabel et al. [2007] for example in CloudCompare can be used. The
main plane’s normal can then be found and the angle to one of the axes
calculated. The resulting angle is the angle the point cloud needs to be ro-
tated to fulfil the Manhattan-World requirements, under the condition that
all walls in the scene are either perpendicular or parallel to each other. If
the requirements are fulfilled and one of the main walls is either parallel or
perpendicular, then it should also be fulfilled for all other walls.

The rotation parameters can also be of importance for the connection of
the pathfinding networks in the indoors and outdoors, which were further
explained in Section 3.4. They can be necessary for the transformation of
one coordinate system to the other.

For the rotation itself, some manual steps are necessary with the current
implementation. All manual steps can be carried out in CloudCompare.
First, RANSAC needs to be performed to find planes through the walls of the
building. Second, a plane representing a wall and thus, should be parallel
to one of the axes needs to be manually selected and exported to an *.xyz-
file. This file can be opened in CloudCompare again and the parameters of
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the normal can be found under properties. Now the rotation parameters, so
the angle between the plane’s normal and one of the axes can be calculated
using the Python SymPy- and Math-packages. The resulting angle can be
used as a rotation parameter in CloudCompare to rotate the point cloud.
Now the point cloud is axis aligned and follows the Manhattan-World as-
sumption. As most buildings have levelled floors the assumption is made,
that the point clouds are horizontally aligned. In other words, it is assumed
that the floor is parallel to the X,Y-plane. This was also the case for all point
clouds tested during the implementation.

4.2.3 Octree

Using the methodology of Broersen et al. [2016] a linear octree of the point
cloud and the empty space is created. Their script was slightly changed, to
fulfil the needs of this research. The most important adjustment is that it
now calculates and returns the size of the smallest leaf in the linear octree
and the scale. This information is necessary to create some parameters of
other functions which are needed later (like the wall thickness). The scale
can be used to translate the point cloud back to its original extent. Further-
more, the point cloud can be de-noised by activating a simple query in the
script. The query adds a threshold for the point count of each leaf that must
be reached for a leaf to be part of the full octree. In other words there must
be x > t points in a leaf to not be considered as white and thus empty space.

It was found that an octree of 8 levels gave the best results for buildings
with a diameter between 15 and 20 meters. However, the level is less impor-
tant than the size of the smallest leaf of the octree. This size determines the
bins of the histograms and how big around each leaf is used to fit planes
through the points. In all tested point clouds the best working leaf size was
slightly above 5 centimetres. When the smallest leafs were bigger, the results
were much worse and especially the stairs could not be found.

4.3 semantic enrichment
In the following section the implementation of the concept for semantic
enrichment for the purpose of multi-storey pathfinding (see Section 3.2) will
be described. When the same implementation details are used for different
purposes (like the 1D histograms for floors and walls), they will be described
the first time they occur in the workflow.

4.3.1 Identification of floors and separating storeys

The first and most important step in the semantic enrichment is the iden-
tification of the floors and the separation of storeys. It is necessary for all
following steps because for the identification of walls and stairs the storeys
need to be handled individually.

Creation of histograms

The projection of point clouds to a 1D histogram is an approach, which is
frequently used for point cloud reconstruction in recent research [Okorn
et al., 2010; Oesau et al., 2014; Khoshelham and Dı́az-Vilariño, 2014]. The
histograms are built on top of the octree structure of Section 4.2.3. Directly
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Figure 4.2: The Z-histogram projected directly from the points (left), and projected
from the black octree leafs (right). The result of the octree is less effected
by the density of the point cloud. The red line is the minimum peak
height

using the LAS containing the LiDAR point data records was less sophisti-
cated (see also Section 3.2.1). Instead the method was implemented using
the black leafs of the linear octree. Experiments throughout this research
have shown that this was not only faster, but also gave better and especially
cleaner results like shown in Figure 4.2. The size of the smallest leaf of
the octree, which is usually between 5 and 10 centimetres has proven to be a
good bin size as well. The histograms can be visualised using the Matplotlib
package [Hunter, 2007].

There are many different possibilities to detect peaks in 1D histograms.
The repository of Tournade [2015] provides an overview of several algo-
rithms for peak detection, which are all written in Python. The first pos-
sibility listed there is the scipy.signal.find peaks cwt approach. This is
an obvious choice when working with SciPy [Jones et al., 2001] (the NumPy
and Matplotlib packages are a part of SciPy and used in this thesis project).
Even though it is working fine for the majority of the cases, the settings
were not sufficient as it does not include a minimum peak height. Further-
more, the wavelet convolution approach which is used seems to be very
complex. Also other methods like the findpeaks by Slavic [2015] provided
only limited settings.

Finally, the algorithm detect peaks by Duarte [2015] was chosen for the
peak detection as it provided everything necessary for the task, including a
minimum peak height and various other settings. This method can also be
used for the identification of walls (Section 4.3.1). However, there was one
exceptional case none of the approaches took into consideration. Mathemat-
ically seen an extreme at the edges of the histograms is not a peak, because
it does not go down at either side of the edge. Such situation is likely to
occur in this application because lowest floor, the upper ceiling and outer
walls should be at the border of the point cloud’s bounding box. To over-
come this limitation a temporary bin with a height of 0 is added to either
side of the histograms. Now, the peak will be detected and the temporary
bins need to get removed again, as well as the bin count adapted. The func-
tion to find the peaks takes several parameters. Especially the minimum
peak height influences the result as it can suppress spurious responses from
noise or obstacles. A threshold, which makes sure that a peak has to be
at least above 95 percent of all other bins was found to be working well in
most cases.
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Figure 4.3: Point cloud of Leica laser scanner (left) and Z-histogram with detected
peaks. The third peak represents a dropped ceiling

While the location of a peak can be a good indicator of either a floor or
also a wall, the height of peak is not (see Figure 3.9). The height strongly
depends on the length of the object and on the point cloud density. This
however, can cause difficulties when distinguishing between obstacles. A
ceiling or floor (to separate from furniture like tables) or a wall (to separate
from furniture) can have a smaller peak size, as for example a large cup-
board covering a wall. In such case the LiDAR response are of the cupboard
can be bigger than the one of the wall behind. Nevertheless, small obsta-
cles or clutter can be removed from the peak detection by using a minimum
height parameter.

Identification and verification

The peaks of the histogram in Z-direction are used to separate the storeys
in the building from each other and to identify the floors (see Figure 3.6
and Section 4.3.1). This method was also used and explained in Okorn et al.
[2010]; Oesau et al. [2014]; Khoshelham and Dı́az-Vilariño [2014].

However, the results need to be verified because of peaks resulting from
either dropped ceilings or table surfaces that might lead to wrong assign-
ments. Figure 4.3 shows a case of a peak, which does not represent a new
storey and which is further apart from another one than the maximum wall
thickness. This peak is caused by a dropped ceiling.

One indicator which can help to verify a storey is the minimum storey
height and thus the distance of the peaks in the Z-histogram. The minimum
storey height needs to be set as a parameter, and peaks closer than this value
can be ignored. However, if there are both, table-like structures covering
large surfaces and dropped ceilings, it can still not clearly be distinguished
as it is hard to decide which peak represents the floor, the ceiling or the table.
The path of the scanner can overcome this difficulty. The implementation of
the usage of the path of the scanner to separate the storeys is explained in
the following.

If the path of the scanner is available, for example when using a ZEB1

laser scanner, it can be used to validate a storey. Furthermore, it can be used
to verify, that it is really possible to walk on this structure, thus whether the
peak in the histogram Z-direction represents floor. The implementation is
similar to finding the Z-value of floors in the point cloud described earlier
(compare Figure 3.7). Considering that the average shoulder height is of
about 1 meter 40 centimetres [Adler, 1999] the height of the path scanned
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with the ZEB1 should vary in between 1400 and 1700 millimetres above the
floor ground. Experience showed that the scanner is usually carried at such
heights. To use the path of the scanner, the file needs to be placed in the
same folder of the point cloud and named ” f ilename” + ” traj.las”.

Projection to octree

Once the information about the storeys is found the data can be projected
to the octree. Every histogram bin represents one row or column of leafs
in the deepest level of the octree. The semantic information, which can be
written to the database is about the object classification the leaf represents.
So far this can be the floor or the storey level. From now on, the data for
each storey can be retrieved separately from the PostgreSQL database. The
analysis can therefore happen independent from other storeys.

4.3.2 Identification of walls

The detection of walls is restricted to those, which follow a Manhattan-
World assumption. The peaks in the 1D histogram in X- and Y-direction rep-
resent a wall in the model. This approach is very similar to the Z-histogram
method used for the storey separation and the identification of floor (Section
4.3.1).

Close Peaks and average wall thickness

The average wall thickness has to be set as a manual parameter as it differs
widely for different kinds of buildings and is even depending on the quality
of the point cloud. If the point cloud is of a lower quality, holds more
clutter or noise, the maximum wall width has to be set to a higher number
in order to classify them successfully. Histogram peaks close to each other
and within the average wall thickness can usually be interpreted as either
side of a wall. The empty space in between represents thus the volume of
the wall.

The parameter for the maximum wall thickness exceeds the importance
it has in Khoshelham and Dı́az-Vilariño [2014]. In that research the parame-
ter only provides valuable information to decide whether an area is empty
space or enclosed by a wall. This thesis project however has a stronger
focus on pathfinding, rather than about reconstruction. Volumes enclosed
by a wall would lack connectivity to any start and end of the route and
can be ignored accordingly. The wall thickness has therefore importance
for the distinction of walls from furniture, like large lockers. However, in
many buildings the wall thickness differs. The wall to the outside is usu-
ally thicker than interior walls, which makes finding one parameter for the
whole building a difficult task.

On top of that, when the precision is low, like with the Project Tango
tablet, the wall thickness has to be set a lot larger than it is in reality or
with a more precise laser scanner like the Leica C10 to detect the walls
successfully. The reason behind this is the SLAM distortion and the noise of
the Tango. This can lead into walls not exactly following the Manhattan-
World assumption, even though they do in reality. Also the hough line
detection (Section 4.3.2) needs different and less strict parameter settings
for the Tango tablet.

Furniture and other obstacles can also be recognised when they show up
as peaks in the histogram, using the location and distance of the peaks. In
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order to tell the difference between walls and obstacles some assumptions
are necessary and implemented which were explained Section 3.2.2.

Lines of vertical planes

The second approach to find the walls was based on the approached of
Okorn et al. [2010]; Oesau et al. [2014]. In the current implementation it
is only used to verify the outcomes of the previous way. First of all, using
NumPy [van der Walt et al., 2011] a 2D histogram is made. The 2D his-
togram is represented as a grid or an image which can be used for further
analyses. For the construction of the histogram SVD [van der Walt et al.,
2011] is used. SVD enables to fit a normal through the points and to find
the local plane direction. The histogram has then peaks where the stack of
vertical planes through all points within the neighbourhood of each octree
leaf is the highest. Secondly, image processing techniques of Scikit-image
[van der Walt et al., 2014] are used to detect lines of peaks in the resulting
2D histogram representation. If there is no line detected within a proximity
of the previously identified part of a wall, the classification will be removed.

The implementation of this part of the workflow is the most expensive
part of the whole framework because planes have to be fit through all points
in each of the building’s storey. It is, nevertheless, necessary in many cases
to avoid situations like shown in Figure 3.10.

4.3.3 Identification of stairs

When the storeys are separated and the walls are found, the stairs need
to be located in the octree structure. As explained in Section 3.2.3, the
stair detection methodology of Bansal et al. [2010, 2011] was not sufficient
or could not be implemented properly to meet the requirements of this
thesis project. Therefore, the approach was extended. In the following the
implementation will be described.

The implementation of the 2D histograms to locate the different plane
directions in the model is similar to the one used to create histograms for
the wall verification explained in Section 4.3.2. However, the plane fitting
is limited to not yet labelled octree leafs. Furthermore, two kinds of his-
tograms are created, including one for leafs having horizontal planes. In the
future the implementation of the wall verification and stair detection could
go hand in hand to avoid searching for planes in the same octree leafs twice.

The resulting 2D histograms alter according to the stair’s characteristics
or whether the scanner is mobile or not. If the scanner is stationary the
attributes of the point cloud differ like it is shown in Figure 4.4. The figure
exemplifies how stairs, which follow the same architectural structure in re-
ality have different appearances in the point cloud depending on the line of
sight of the scanner.

As a next step the filters were implemented and applied on the histograms
using NumPy. However, the implementation of the matched filter for the
vertical histogram, which is supposed to be constructed ”as a rectangu-
lar block with alternating rows containing positive and negative weights”
[Bansal et al., 2011, p. 1809] did not give the expected results. The descrip-
tion of the filters [Bansal et al., 2010, 2011] was not entirely clear and left
open questions. Thus, the implementation might not meet exactly what
was intended by the authors of the paper. Generally the filter design cannot
work throughout all stair designs since not all stairs have a vertical com-
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Figure 4.4: Staircase in the Leica point cloud. Stairs lack the vertical (upper part)
or horizontal (lower part) component depending on the position of the
scanner, which makes both completely different even though they are
the same in reality (just the orientation changes)

ponent (riser) as can be seen in Figure 4.5. Additionally the step distance
should match the filter’s grid size or generally complement to the stair’s
architectural structure. On top of that, the orientation of the filter is unclear.
Finally, experimental results have shown that not applying the vertical filter
at all had only minimal effects on the results of the stair detection.

The filter responses are combined with the general mean and regions are
distinguished from each other through region growing like explained ear-
lier in Chapter3. To identify the stairs, the slope of each region is calculated.
This is implemented by computing the linear regression using SciPy. Dis-
regarding the preconditions for point clouds to be free of noise (Section
3.1), also noisy data was used to test the implementation. Therefore, as the
surroundings of stairs in point clouds is sensitive to noise, outliers need to
be removed. The removal is important as extreme values have a negative
influence on the resulting slope. Ordinary least squares adjustment can be

Figure 4.5: Staircase at the Faculty of Architecture in Delft, with no concrete vertical
riser
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carried out to do so, but the implementation proved to be not robust enough
with rows having too few data values. The absolute scaled distance to the
median of all values on the other hand works just fine.

Furthermore, since stairs are restricted to follow the Manhattan-World
assumption, the regions in the 2D histogram should have a close to rectan-
gular shape accordingly. Pixel rows with very few data values are therefore
excluded. Moreover, each region should have a minimum size to be taken
into consideration for a further selection process.

The slope threshold parameters have to be tolerant as well. So does the tilt
of the region. The tilt, which should be around 0 in reality, has to be flexible
and should be adapted to the quality of the data and filter responses. Figure
3.15 shows why this is necessary. There is a rise of the data at the location
of a handrail, which often also fall into the stairs’ regions. The requirements
for the stairs’ regions to have a linear correlation should be set leniently as
well. A high Pearson’s coefficient denotes a linear correlation and can have
values between 0 and 1.

4.4 derivation of the graph
To prove the concept and to show the usefulness of the previous work also
the workflow to derive a graph from the semantically enriched octree struc-
ture has been implemented (see Section 3.3). The graph should be restricted
to only use walkable spaces, where a human fits through. The necessary
space should be selected according to the space a human needs to navigate
comfortably. It can be represented as a bounding box. The implemented ex-
tend has half a meter of width and more than 1.8 meter of height. 1.8 meter
is usually enough (even though many people are taller), since the lowest cut
and base of the graph is floating above the floor and is found according to
the method described in Section 3.3.1. In some cases it can also be 20 cen-
timetres above ground, which is not a problem, as humans can step easily
over slightly uneven floors. To find the neighbours a modified implementa-
tion of the neighbour-finding algorithm of Broersen et al. [2016], which is
based on Vörös [2000], is used. In order to find the locational code or to
retrieve the coordinates from locational codes the respective algorithms of
Broersen et al. [2016] can be reused as well.

PgRouting which was planned to be used for the implementation to build
the graph and perform the pathfinding only works in 2D. As the extension
does not rely purely on topology, but also on geometry the Z-coordinate is
lost. Therefore, this implementation leads to wrong results with the graph
jumping up and down between different storey levels. Instead, the topology
and graph is stored in a Python dictionary, which can be serialised into a
byte stream using the pickle-module. Due to a different height of the leafs at
the stairs, the leafs were not always directly adjacent. Therefore, to connect
the graph above stairs with the graph above floors the closest, instead of
adjacent leaf as proposed in Section 3.3.2 was taken. The distance transform
at the stairs was not implemented yet due to the limited time of this research.
Moreover, for the current implementation it is assumed that the stairs run
in X-direction only. The shortest pathfinding is finally performed using a
simple Dijkstra algorithm [Chiu, 2013].
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4.5 execution performance
The workflow was implemented and tested on an Intel(R) Core(TM) i7-
4800MQ CPU @ 2.70GHz and 16.0 GB RAM on a 64-bit Windows 7 ma-
chine. To give an impression about runtime the workflow was tested with
the point clouds shown in Figure 4.1. The following measurements only
show the time needed for the semantic enrichment, including building the
octree, but without the pathfinding and creation of the graph (see Section
4.4).

• Google Tango point cloud with 750.000 points, takes around 330 sec-
onds

• ZEB1 point cloud with 2.200.000 points, takes around 350 seconds

• Leica C10 point cloud with 4.800.000 points, takes around 530 seconds

The, in comparison, fast execution of the Leica C10 point cloud is at-
tributable to the high density and good condition of the points, which causes
more points to be in one octree leaf. Furthermore, the path of the scanner
was only included for the ZEB1 laser scanner. This causes another file to
be opened, more database queries to be necessary and finally to a longer
execution time.



5 RESULTS AND ANALYS IS

This chapter will present the results and analysis of the earlier explained
implementation (Chapter 4) of the workflow (Figure 3.1). Figure 5.1 shows
what can be achieved by applying the methodology explained in Chapter
3 to 3D indoor point clouds which did not have any semantic information.
The colours depict the classification categories of the octree leafs.

The chapter will follow a similar structure as the previous ones and first
discuss the results with different kind of point clouds in Section 5.1. Then
the floor and wall detection as well as the stair identification will be pre-
sented and analysed. Finally, the results for the derivation of the graph will
be presented. In the majority of the cases in which the workflow did not
work as intended, the point clouds or scenes did not meet the preconditions.
To illustrate the limitations of the workflow and to underline the precondi-
tions set in Section 3.1 they will take a prominent part in this chapter.

5.1 different kinds of scanners
The quality of the reconstruction and semantic enrichment strongly depends
on the device the point cloud was acquired with. A visualisation of the
resulting point clouds representing the same building scene from different
laser scanner can be seen in Figure 4.1. The following sections will elaborate
on the advantages and disadvantages of each scanner and their point clouds
used and their effects on the result.

Independent from the scanner every scene is different, so parameters have
to be adapted. In total 6 point clouds were used for testing purposes. There
is a point cloud of the same architectural scene of all laser scanners and
additional ones of the ZEB1 of other parts in the same building. In total 4

of the point clouds were taken with the ZEB1 laser scanner, 3 of them were
acquired in the building of the fire brigade in Berkel and Rodenrijs and one

Figure 5.1: Semantically enriched octree of the point clouds of the same scene with
different laser scanners: Stationary Leica C10 Laser scanner (left), the
ZEB1 hand-held mobile laser (middle) and the Google Tango tablet
(right) (to compare with the unprocessed point clouds see Figure 4.1).
Green: wall; yellow: floor; stairs: red; obstacles: grey

47
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Figure 5.2: The figure shows a top view of the point cloud acquired with the Project
Tango tablet. The offset of the second storey is disadvantageous for the
approach using 1D histograms

in the Bouwpub of the faculty of Architecture and the Built Environment at
Delft University of Technology. The advantage of using the same building
or architectural scene acquired by different scanners is that this makes the
results comparable, even using the same parameters.

5.1.1 Project Tango Tablet

The Project Tango is a Google tablet which combines 3D motion tracking
and depth sensing. The depth data has the form of a point cloud. The
point cloud can be acquired quickly with the tablet and the device is much
cheaper than the other scanners. The cost is around 500$ [Google ATAP,
2015]. It produces a 3D mesh from which a point cloud can be derived.
The SLAM seems to be losing accuracy over time and distance though. Con-
sequently the walls have an offset in the different storeys of the building,
which does not appear in other point clouds. Figure 5.2 shows the offset at
the highest storey of the building compared to the other storeys which are
parallel in reality. Therefore, the threshold for wall width or thickness has to
be set rather wide in order to still follow the Manhattan-World assumption.
This makes it almost impossible to differentiate walls from furniture, when
they are positioned close to walls.

5.1.2 Leica ScanStation C10

The Leica ScanStation C10 is an All-in-One device that includes a wide
range of capabilities [Leica Geosystems, 2016]. The laser scanner differenti-
ates strongly from the other scanners used, because it is stationary. Conse-
quently the point clouds have a high accuracy and density. The floor his-
togram peaks are rather low as the surface where the scanner is placed on
is not scanned. Unless you make multiple scans of the same room, there is
a round hole in the point cloud around the scanner’s location. The density
in the point cloud is inconsistent and related to the distance of the reflec-
tion point to the scanner. Additionally there are a lot fewer viewing angles
in a point cloud acquired by stationary laser scanners and the results of
the detection of certain features is strongly depending on the line of sight.
The line of sight needs to be clear and especially for stairs this can cause
problems as only one side of them can be fully scanned. Furthermore, the
scanner provides colour information, however, this did not play any role in
the proposed methodology.

5.1.3 ZEB1 hand-held indoor mapping

The main focus of the workflow and implementation laid on the ZEB1 hand-
held indoor laser scanner. The ZEB1 laser scanner is designed to be hand-
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carried and the data is captured by simply walking around [3D Laser Map-
ping, 2016]. The point cloud which was used for the majority of the imple-
mentation of the workflow was scanned with a ZEB1. The data was acquired
in the entrance area of the fire brigade in Berkel en Rodenrijs. The device
holds several advantages over the other scanners: It does, for example, have
a more precise SLAM technology on board than the Project Tango tablet and
the offset of walls in different storey levels is therefore negligible. On top of
that, the point cloud is complete and handles different viewing angles. The
scanner also provides the path of the scan, which proved to be a powerful
addition to the raw point cloud and can result in an improved semantic
enrichment.

5.1.4 Comparison

The results and experiences with the scanners used should be comparable
to other devices providing a similar point cloud quality and dataset. The
point cloud of the ZEB1 works best with the presented workflow, as can be
seen in Figure 5.1. The semantic enrichment is more complete than with the
other scanners and all stairs can be identified. Other advantages are a fast
acquisition time and the provision of a path of the scanner.

5.2 semantic enrichment
In the following, the results of the implementation (see Section 4.3) of the
conceptual framework for semantic enrichment of the point cloud, presented
in Section 3.2, will be shown and analysed. It puts a focus on the strengths
of the proposed framework, but also points out the open challenges and
limitations.

5.2.1 Identification of floors and separating storeys

In all point clouds the majority of the floors can be found in the octree struc-
ture, as shown in Figure 5.1. Following this, also the storeys in the building
can be enumerated and handled separately, so walls can be distinguished.
Dropped ceilings and tables represent the biggest challenge in separating
the storeys, but if available, this can be solved using the path of the scanner.
Also landings in between stairs flights are treated as separate storeys. This
is necessary for the subdivision and further semantic enrichment, but can
cause a different enumeration as in usual building plans.

5.2.2 Identification of walls

Also the walls can be identified, but the first intention to follow the 1D
histogram approach of Khoshelham and Dı́az-Vilariño [2014] proved to be
insufficient for buildings containing obstacles or other structures like stairs.
Using only this approach, the walls could not simply be projected to the oc-
tree as this could conduct to false assignments as shown in Figure 3.10. The
2D histogram and line detection approach (Figure 3.11, [Okorn et al., 2010;
Oesau et al., 2014]) solved this problem in many cases. It also holds promis-
ing results that might lead to a replacement of the 1D histogram approach
in the future. On the other hand, using both methodologies increases ro-



50 results and analysis

Figure 5.3: Common house floor plan of a building following the Manhattan-World
assumption, image courtesy of Wikimedia Commons [2012]

bustness of the wall detection. The following sections will elaborate on the
findings.

Better classification in regular buildings

Following the Manhattan-World assumption, which limits the building to
only have straight, parallel walls and perpendicular corners, the majority
of the storeys or walls could be identified correctly. In this thesis a regular
building is defined as a construction, where walls appear in all storey, are
long and have only a few gaps. Moreover, they do follow the Manhattan-
World assumption strictly. This is favourable for the peak detection and
for the comparison of the histograms across different storeys. Figure 5.3
shows a floor plan of a building following the Manhattan-world assumption.
Nevertheless some parts of the building are irregular and many walls are
a lot shorter than others, which can cause problems when determining the
minimum peak height of the 1D histograms (see Section 3.2.2). Due to the
small surface of such walls, the peaks might be too small to be detected,
when using solely this approach. Especially in large buildings small walls
are likely to get lost. This is another reason to also use the combination of
2D histograms and line detection to find the walls. Longer walls are still
more likely to be detected using this approach, but the overall size of the
building is less influential.

The more regular the building structure, the easier is it to find the right
parameters, like the maximum wall width. This criterion is difficult to set
as walls in the interior of the building tend to be more narrow, especially in
respect to outside walls. This can, for example, cause problems for the sep-
aration between lockers and walls. For a correct labelling of walls the wall
diameter should be comparable in the whole building. Such inconsistency
causes a false classification in the point cloud of the Bouwpub, shown in Fig-
ure 5.4. The wide walls in the lower left corner of the figure gets wrongly
classified as obstacle. The reason for this is the inconsistency of the wall
width in the building. The wall is a lot wider in this case than elsewhere in
the building and gets therefore partly labelled as obstacle.

A changing ceiling width in the building can cause false classification, too.
The ceiling width changes for example due to dropped ceilings, like it is the
case in the building of the fire brigade. Nonetheless, the previous Chapter
4 has shown that if a path of the scanner is available, such problems can
be solved. The lower right corner of the model in Figure 5.4 shows another
case of inconsistency that causes many false classification. The floor in the
sitting area in the top right corner of the figure is some steps higher than
the rest of the floor in this storey and is therefore not detected as such.
Aforementioned situation could be overcome when this part of the floor
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Figure 5.4: Octree leafs of ZEB1 point cloud of Bouwpub, labelled as floor (yellow),
wall (green) and obstacle (grey)

would be treated as a separate storey. But this would have a negative effect
in many other places because many parameters would need to change. One
of the preconditions (see Section 3.1) was to have horizontal and levelled
floors only. Due to noise, the hough transform finds many lines at this
location and is not able to correct wrong identifications which are caused
by the projection of the 1D histogram’s peaks to the octree. The Bouwpub
would therefore not be an optimal point cloud to start with and the higher
area should be classified as obstacle. The following section looks at such
situations in more detail.

Distinguish walls from other features

The histogram approach of Khoshelham and Dı́az-Vilariño [2014], which
leads to their shape grammar methodology, was only tested on completely
empty buildings. In this research it was aimed to overcome this limitation
and to include buildings with furniture. Even though the majority of the
furniture gets detected as an obstacle using the logic constraints explained
in Chapter 3.2.2 there are still some challenges left. Figure 3.10 shows a
case where the projection to the octree causes a wrong classification of a
wall at the place of another feature (here stairs). Such cases could be widely
eliminated with the introduction of the methodology of Okorn et al. [2010]
and Oesau et al. [2014]. Nevertheless, it remains challenging to distinguish
between walls, furniture or other obstacles. All features that cannot be iden-
tified as either walls, floors or stairs are classified as obstacle.

Regularly shaped furniture with large surfaces can cause problems and
might be wrongly detected as walls. An example where this could happen is
a large cupboard, like a locker standing close to a wall. When such cupboard
covers the majority of the wall’s surface, the wall itself might not occur
as a peak in the histogram. However, assuming that buildings follow a
regular structure, the peak’s location can be compared with the ones in other
storeys. Additionally, the peaks at either side of the histogram represent a
wall to the exterior. These kind of walls are called main walls. The proposed
approach assumes, that peaks close to main walls (but further apart than
the maximum wall width) represent obstacles. Figure 5.5 showcases this
situation.

In case of a low precision in the acquisition data, like in point clouds
acquired with the Project Tango tablet, the wall thickness or width has to be
set to a higher value to make up for the inconsistency causing offsets. This
causes obstacles close to walls to be labelled as walls, too.
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Figure 5.5: Grey obstacle in front of wall (locker in Figure 3.8), which could be dis-
tinguished due to regularity of the building. Figure 3.9 shows a 1D
histogram of this scene

Figure 5.6: Octree leafs labelled as staircase (red), obstacle (grey) and floor (yellow)
with Leica point cloud as source file. The point cloud represents the
same scene as the left one in Figure 5.7

Nevertheless, using precise point clouds the approach has good results.
Figure 5.6 shows that obstacles or furniture can be distinguished in the
point cloud. The grey leafs represent lamps, lockers or cupboards.

Outcomes of wall detection

In emergency cases it can be of high importance whether the way is blocked
by an obstacle or by a wall. Walls are usually immobile and made out of
different materials than obstacles. Especially in fire situations this can be
valuable information, considering the impermeability of walls for smoke.
In addition, it is a lot more likely that an obstacle has moved or is movable
to free a path which was blocked before, than the same is the case for walls.
The Figures 5.1 and 5.8 show that the detection works in almost all cases,
but still has room for improvement.

Relying only on 1D histograms has many down sides and is not recom-
mended. On the one hand, it can give a first impression and is likely to work
in empty buildings without staircases or furniture. On the other hand, the
approach can cause false classifications when there are other features in the
building or when the scene is large or irregular. The larger a building is, the
bigger is the likelihood of small walls which are unique in their direction.
These walls might get lost due to the 1D histogram’s peak approach. Also,
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the projection to the octree has disadvantages and only works if the scene is
small. When there are stairs or obstacles in the same line as walls, the stairs
or obstacles in this directions will also be classified as walls. The usage of
2D histograms of vertical leafs and the line detection with the hough trans-
form is more promising to be scalable, especially referring to the building
size. Moreover, the approach can be extended to non-perpendicular walls.
Completely round walls might still not be identified using this kind of tech-
nique though. The features to be detected need to be straight to some extent
at least to be identified as lines. Although, similar techniques could also be
used to detect round shapes.

There are, however, many open questions, which could not be solved.
First of all, glass windows are not represented in point clouds (this can be
observed in Figure 5.13, where the windows are not represented in the point
cloud), which might lead to a false path or impression of the architectural
scene. But, this is a general disadvantage of laser point clouds. Secondly,
pillars should be treated like walls as well. In the current approach they are
likely to be labelled as obstacles. Regularity in the building can also help to
distinguish them from furniture, as the pillars’ locations are usually shared
with walls or pillars across different storey levels.

5.2.3 Identification of stairs

As stairs come in various shapes and forms it seems to be almost impossible
to find a unique algorithm that works with all of them. Even stairs which
are architecturally identical can be represented differently in the same point
cloud, like shown in Figure 4.4. Despite this, in the majority of the anal-
ysed cases, the identification of stairs works and the leafs in the octree can
be labelled as such. Figure 5.7 shows the identified leafs in red colour in
two different ZEB1 point clouds. Notwithstanding the good results with
the point clouds of the ZEB1, Figure 5.6 shows that the approach does not
always work and is strongly depending on the point cloud. The figure
shows the same scene as Figure 5.7 on the left, but scanned with a station-
ary laser scanner. In the ground level the stairs are not found because they
are oriented differently to the scanner’s position. The filters do not give any
positive response because the horizontal structure is missing in the point
cloud. In the following the findings of the proposed methodology will be
discussed and the limitations analysed.

Open challenges

After the implementation of the proof of concept it is visible that many
laser scanners, and so does the ZEB 1, have difficulties in producing a good
quality point cloud for staircases. Therefore, the methodology to find them
must be robust to noise and artefacts. This is a big challenge, although
it should be noted that one of the preconditions was to have a noise free
point cloud. The implementation however, was tested also with point clouds
which did not fulfil all of them. Furthermore, there are many different kinds
of stairs, which makes it challenging to find an approach that works on
all indoor point clouds at the same time. An example of this difficulty is
shown in Figure 5.8, where the stairs are not labelled as such. In that case
the filters do not give a positive response at the stair’s location, because the
point cloud in this area is too badly conditioned (see Figure 5.9) and noisy.
The plane detection algorithm cannot find horizontal features at the stair’s
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Figure 5.7: Octree leafs labelled as staircase (red) in point clouds of ZEB1 (black)

Figure 5.8: Octree leafs of ZEB1 point cloud of Bouwpub in a bigger extent and dif-
ferent orientation as in Figure 5.4, labelled as floor (yellow), wall (green)
and obstacle (grey). The stairs in the upper left corner could not be
identified

location. Besides the noise and inaccuracy, there are a lot of things, like
furniture or beer crates underneath the stairs. These objects are becoming
problematic for the projection to the 2D histograms and the resulting filter
responses, too.

Besides the challenge of a large variation of stairs, also the methodology
itself has room for improvement. Especially the part using filters to detect
the typical change of plane directions in the point cloud did not provide the
expected results. The vertical filter, whose implementation was unclear (like
explained in Section 4.3.3), has only a negligible influence on the current
result. Even when it was not applied, the stairs could still be found in the
ZEB1 reference point cloud used for large parts of the implementation. The
description of the filter in Bansal et al. [2010, 2011] does not go into much
detail so that many decisions remain unclear. It is unknown how to deal
with different directions of the stairs as well as the step width and height.
The unknown direction can be overcome by applying the filter twice, once in
each direction. However, there are also many cases where stairs do not have
a vertical riser at all, like for example the stairs at the Faculty of Architecture
in Delft, shown in Figure 4.5. The vertical filter would not give a positive
response in such situations.
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Figure 5.9: The Leica C10 point cloud of the Bouwpub, coloured according to the
condition of the point cloud. Good condition (blue) → bad condition
(red)

Outcomes of stair detection

In total, in five out of eight cases the stairs could be identified using the
proposed methodology. The reason, why the stairs could not be found in all
point clouds is because not all of them meet the preconditions set in Section
3.1. The methodology is limited to rectangular stairs, which are placed
in parallel direction of the walls in Manhattan-World structured buildings.
Furthermore, they should be completely represented in the point cloud and
for the best result have a complete riser. In point clouds fulfilling these and
the other conditions, the stairs can be found.

The stairs’ regions contain small gaps and can include adjacent features.
This lays in the nature of the filter responses which might lead to distor-
tions of the regions. Such observations can also be made in the research
of Bansal et al. [2010]. However, pathfinding in this thesis requires only a
fuzzy estimation of the semantics. So the estimated stair location is enough.
If the ultimate goal would be a vector model another methodology is recom-
mended.

Clutter above and under stairs, for example bicycles on the right of Figure
5.7, are wrongly assigned to be stairs due to the 2D projection to the octree.
Nevertheless, in the majority of the tested point clouds the stairs were found
and the area is mostly correctly assigned. The method works on global point
clouds, which means the viewing angle of the scanner does not play a role
and neither does depth or colour. This is an advantage as it can be reused
for many kinds of point clouds and applications. Yet, many methodologies
to detect stairs in point clouds rely on such parameters as discussed in
Section 2.1.2. The attributes of the octree allow quick neighbour finding and
access to relevant points for plane fitting. The additional usage of linearity,
slope and tilt provides a good estimate for stair identification. A positive
response of the horizontal filter can help to distinguish stair features from
ramps, which do not have horizontal surfaces.

Generally, the approach has promising aspects, but can be improved. A
focus on horizontal planes in addition to a rise in height can give a good
indication. The projection to 2D, however, can still lead to false results
when there are obstacles or other features underneath the stairs. Therefore,
the path of the scanner should be taken into consideration as well, as it has
a typical gradient at the stair’s location and can be a good indicator. The
preconditions, however, would needed to be changed to make such data a
necessity.
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Figure 5.10: Walkable underground leafs where the floor has yellow octree leafs
and the stairs are red. The point cloud represents the same staircase,
but with a bigger extent as the right one in Figure 5.7

Figure 5.11: ZEB1 point cloud with octree showing underground which can be used
for pathfinding (floor and stairs). On the floor is a clearance maps,
showing the distance transform (the bluer, the more likely the object
fits)

5.3 derivation of the graph
The semantic enrichment and subdivision of space aims to create a smarter
graph to enable pathfinding for humans through a point cloud. A graph
following the constraints of human movement can be derived, using the
semantically enriched octree. To do so, the walkable surface needs to be
found first. Walkable surface is made up of floor and stairs. Figure 5.10

shows the underground identified on a point cloud, acquired with the ZEB1

laser scanner, which can be used for walking. Furthermore, it has to be
determined, that the human fits through the space as shown in Figure 3.19.
Therefore, a clearance map, holding only nodes which are free up to the
height of the person has to be created. The colours of the clearance map
in Figure 5.11 show the distance transform on floor level to either walls or
obstacles in each direction for all voxels on walkable space in a point cloud.
Depending on the size of the object to be moved (in this case the size or
width of a human) only leafs with a distance value smaller than half the
object’s diameter can be a part of the resulting graph.

Figure 5.12 shows how the route does follow the shortest path possible
according to the size constrains of a human. Instead of taking a direct and
straight way, the path pays attention to the clearance map and the distance
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Figure 5.12: The path (black) takes a small detour around an obstacle (on the left
including the clearance map)

transform to only use leafs which are far enough from the next obstacle or
wall to be used by a human. This proves the concept of semantic enrichment
necessary for a better and more realistic path for humans. The implemen-
tation for the graph at floor level works fine, but the graph-network at the
stairs level and also the connection to different storeys has room for im-
provement. Also, to perform routing, the locational codes of the leafs the
path should connect, have to be known.

5.4 analysis of results
The workflow aimed to achieve a rough estimate for storey separation, the
location of floors, walls, stairs and obstacles. For point clouds following
the preconditions, this could be achieved. For routing and to optimise the
pathfinding for humans a rough estimation of the semantic classification is
enough scene understanding. Figure 5.13 shows the octree and photographs
from the same viewing angle and visualises the success of the semantic en-
richment, furthermore it provides a path through the scene. The workflow
was also tested with point clouds which do not fulfil all requirements. This
has shown that a big part of the created workflow does not only work for
different types of buildings, but also for different kinds of laser scanners.
Nevertheless, the result and its characteristics strongly depends on the qual-
ity of the scan. Furthermore, to what extent the scene meets the precondi-
tions is of a large importance. Therefore, for the current framework these
constraints have to be carefully set. Figure 5.1 shows how the results differ-
entiate form each other for different kinds of laser scanners.

Also a shortest path can be derived which can connect different storeys
(Figure 5.14). The path avoids obstacles and follows the logic of a human
actor, who is only able to use floors and stairs for walking. Figure 5.15 shows
another example of a shortest path through the fire brigade building which
uses the stairs. The region of the stairs is, even though detected, not clean.
This makes the implementation of the distance transform challenging.

The workflow to go from a point cloud to such navigable structure is, be-
sides some small manual actions like the rotation of the point cloud or the
choice of parameters, automated. The choice of parameters, for example
the maximum wall width, cannot be automated because they can be very
different depending on the building and can also not be derived without
determining which parts of the buildings are the walls, first. Other param-
eters like the number of levels in the octree or the minimum peak height
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Figure 5.13: Left: Semantically enriched octree leafs labelled as floor (yellow), wall
(green), staircase (red), obstacle (grey) and a random path through the
scene (black); Right: Photo of original scene at fire brigade in Berkel en
Rodenrijs

are set to a predefined value, which worked good in all point clouds used.
This was further described in the Sections 4.3.1 and 4.2.3. Furthermore, it is
necessary to include the path of the scanner to become less dependent on
such parameters. Otherwise there can be a false floor detection and storey
separation when the predefined values are kept.

Especially the choice to use 1D histograms for walls limits the workflow to
Manhattan-worlds. Furthermore, the projection of the found semantics back
to the octree can cause false classification. That is why it is important to also
use the verification steps explained in Section 3.2.2. A filter methodology
enabled stair detection without having the point of view of the scanner. To
increase the quality of the results also the slope had to be introduced.

To enable pathfinding it is important to know where floors are located
and storeys can be separated in the octree. The location of the stairs are rele-
vant because they connect the different storeys. Furthermore, the distinction
between walls and obstacles is valuable because it adds a lot of scene under-
standing and some obstacles are not permanent. Once all these objects are
classified a graph network can be derived. The combination with the octree
of empty space can be used to derive a pathfinding network following the
constrains of human movement. Especially at this step the octree structure
is beneficial due to its hierarchy.

All things considered, it can be concluded that the semantic enrichment
works for many cases. The chosen methodologies proved to be working and
the experience gathered during the implementation process and analyses of
the results led to conclusions on how to improve or replace them. The
derivation of the path is able to prove the concept.
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Figure 5.14: Path as octree leafs (black) across two (left) and three levels (right), for
a better visualisation some walls, floor and obstacles are not shown

Figure 5.15: Path as octree leafs of another point cloud scene in the fire brigade
building





6 CONCLUS ION AND
RECOMMENDAT IONS

This thesis aimed to design a workflow that takes a 3D indoor point cloud
and identifies objects, which are given semantic meaning, like the stairs and
floors. Next, a graph can be derived which connects different storeys in the
building. Due to the semantic enrichment, the graph is able to adapt to the
constrains and size of a moving human actor. Before the conclusions can be
drawn, the research questions defined in Section 1.3 need to be answered
and the choice of methodologies will be discussed (Section 6.2). Following
this, the future work and recommendations will be presented.

6.1 research questions
In this section the research questions posed in Chapter 1.3 are addressed.
First the sub research questions will be answered, before finally the main
research question can be answered as well.

• Can floors and walls be distinguished in the octree structure of a 3D indoor
point cloud containing stairs and furniture?
As shown in Section 5.2 floors and walls can be distinguished in the
octree structure of a 3D point cloud, also when there are stairs and
furniture in the scene. Nevertheless, the building should follow the
preconditions set in Section 3.1, like the Manhattan-World assump-
tion. The main challenges are irregularities like dropped ceilings or
furniture. Irregular or unusual building structures can cause confu-
sion for the detection of storeys and floors. If available, the path of the
scanner can provide powerful additional information to differentiate
between floors, dropped ceilings and tables. Even though they can all
appear as a peak in the 1D histogram which is used in the proposed
approach.

Similar to the distinction between dropped ceilings and floors, the
biggest challenge in identifying walls is the differentiation from obsta-
cles and furniture like cupboards or lockers. The location of the 1D
histogram peak can be an indicator. Additionally, line detection with
hough transform on 2D histograms of vertical planes to detect and
distinguish walls in the model can verify the classification. The combi-
nation of algorithms and methodologies proposed in Chapter 3 create
a powerful set to detect the large majority of the walls. Nevertheless,
finding the right parameter for the maximum wall width is challeng-
ing, especially as the width of walls can differ a lot within the same
building. Along with wall shaped obstacles this is the main reason for
false classifications.

Altogether, walls and especially floors can be found in the octree of
the 3D point cloud, but the building structure has to follow the pre-
conditions. Like shown in Section 5.2 the results are better when the
building follows a regular architectural structure.

61
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• What methodology can be used to detect stairs in the octree structure derived
from a 3D indoor point cloud?
Stairs come in many different shapes and can differentiate within the
same point cloud, even if they follow the same architectural design in
reality. Point clouds of different kinds of laser scanners differ strongly
in the region of stairs. Not having a viewing angle or depth infor-
mation in the point cloud complicates matters and excludes many
methodologies introduced in Section 2.1.2.

Yet, the suggested methodology is still able to find the stairs’ region
in all tested cases which met the preconditions. Provided that floor
and walls are identified, all not yet labelled octree leafs are taken into
consideration. First of all, it is checked if there is either a vertical or
horizontal plane found in the leafs and its neighbours. These leafs
are taken into account for a 2D histograms showing the respective ori-
entation. Secondly, matched filters are applied and the positive filter
response is segmented using region growing. Thirdly, the regions are
tested on slope, tilt and evenness, which has to meet the requirements
typical for stairs to be able to tell whether a region represents stairs or
not.

The introduction of slope as indicator for stairs was necessary, as the
suggested filter approach [Bansal et al., 2010, 2011] found not to be
sufficient in this case. Notwithstanding the limitations of the method-
ology to only work for a limited types of stair structures, it does work
where the point cloud and scene meets the preconditions.

• What is the influence of the three different scanners on the result of the se-
mantic enrichment?
There are many differences in point clouds of the same architectural
scene which are acquired with a different kind of laser scanner. First
of all, there is a distinction between stationary and mobile laser scan-
ners. Throughout this research the point clouds of a stationary (Leica
C10) and two mobile (ZEB1 and Project Tango Tablet) laser scanners
were tested.

For a stationary laser scanner, like the Leica C10, the point of view
and line of sight can cause a big discrepancy of point representations
for the same feature. The point of view of the scanner to the stairs can
cause the point cloud representation to have different characteristics
even though they are architecturally identical. Mobile laser scanners
can give a more regular representation of the world. It is less likely
that important attributes are hidden from the line of sight of the scan-
ner, because it moves around. Also the density of the points can be
more evenly spread if a smart route through the building is chosen. A
point cloud of a stationary scanner typically has holes where the line
of sight is blocked. This can even be the floor around the scanner’s
location and causes the histogram peaks to be less distinctive when
not multiple scans of the same room were made. Such situations do
not happen with mobile laser scanners. Furthermore, the ZEB1 can
provide the valuable path of the scanner and not just a coordinate
like a stationary one. In terms of accuracy and cleanliness, the sta-
tionary scanner gives much better results especially compared to the
point cloud of the Project Tango tablet. The Tango’s point cloud has
an offset across different storeys which can even lead to a violation of
the Manhattan-World assumption. Furthermore, the offset can make it
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hard to use the assumption that wall directions are often shared across
multiple storeys and to distinguish walls from obstacles.

Generally a high density of points is not necessary, because they are
getting generalised in the same octree leaf. In fact, the majority of the
algorithm was performed on the octree structure only (disregarding
the actual points) and thinned point clouds were used to speed up
calculation time. Even though, comparing results with different laser
scanners provides interesting insights for mobile scanning of indoor
scenes, future research about reconstruction should focus on one kind
of scanner. Once this workflow is optimised it can be extended to
other scanning methodologies.

• Is the semantically enriched octree sufficient to derive a pathfinding model for
humans?
The semantically enriched octree structure is able to provide a better
scene understanding, which enables to derive a path for humans from
point clouds. Therefore it is important, to differentiate between floors,
stairs, walls and obstacles. Floors and stairs make up the walkable
part, while walls and obstacles should be excluded from the graph.
The distinction between obstacles and walls is not always necessary
just to get a path for humans. But, it can provide valuable information
to orientate yourself or whether an object is permanent or not. The
derived graph network is constrained to follow the floor and the stairs
and keeps a clearance to all obstacles or walls. Moreover, it considers
also hanging obstacles, when they are not high enough to walk under-
neath. On top of that, the subdivision does not provide only one node
per room, but is further subdivided in the whole area/ This allows the
path to freely use all available space. On the one hand, if there is a
large open space only, the octree structure assures, that the path does
not get too complex. On the other hand, close to obstacles or at the
location of stairs, the graph network and the derived shortest path is
very precise.

The implementation of the graph derivation above stairs needs to be
improved to follow the same standards, like the distance transform, as
the graph above floors. However, it works as a proof of concept and
shows how this additional information can provide a realistic path for
humans in multi-storey buildings. The path avoids obstacles and only
uses walkable space.

• Which semantics improvements are necessary to establish a link between in-
door and outdoor networks?
According to van der Marel [2016] there is no obstacle in using real
world coordinates inside buildings. However, there is a problem deter-
mining those coordinates as GPS does not work inside buildings. Tra-
ditional survey techniques using a tachometer work inside and so do
mobile laser scanners equipped with IMU. Control points with known
coordinates and bundle adjustment software are necessary to georef-
erence the point clouds. It can be estimated, that it is sufficient to
provide three control points, especially since the distances within the
point clouds, as well as in real world coordinate systems like the RD
New, are metric. However, it is always good to have more and evenly
spread control points.

Once the transformation parameters are known, the conversion can be
performed for every coordinate in the point cloud. The workflow and
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implementation in this work makes use of such a transformations and
the point cloud get converted into a local reference system to increase
performance [Broersen et al., 2016]. Theoretically the whole workflow
proposed in Chapter 3 also works using real world coordinates only.
The transformation is also similar, just the parameters would needed
to be adjusted accordingly. Adding a georeference to a point cloud
makes the data semantically richer.

In brief, a number of control points whose coordinates are known
in both reference systems are necessary to establish a link between
indoor and outdoor networks. However, the actual implementation is
a matter of future work (Section 6.4).

In conclusion to the responses of the sub research questions the main
research question can be answered as well:

”To what extent can an octree support semantic enrichment of point
clouds for the purpose of multi-storey pathfinding?”
Point clouds are unstructured and besides geometry they do not contain
any semantic information. An octree can help to not only give structure to
the points, but also to the empty space. The ultimate goal of this thesis is
to support multi-storey pathfinding and therefore it is necessary to identify
useful features, like the empty space, storeys, floors, stairs walls and obsta-
cles. Instead of directly classifying the points, the octree leafs are classified.
For the pathfinding network it is not only necessary to determine whether
there is empty space, but also what the surrounding features represent. The
result is a path through the empty space that follows the constrains of hu-
man movement.

Using the octree enables the workflow to be less dependent on the laser
scanner, as for the majority of calculations the octree leafs are used instead
of the points. There is still a variation in quality of the results, which are
dependent on the accuracy of the scan, rather than the density of the points.
The floor and wall identification uses 1D histograms, which are built using
the octree data structure only. The octree generalises the point cloud to leafs
and adds a structure to the empty space. This does not only improve the
performance, but also provides more distinguishable results. Furthermore,
with an octree data structure, the path is less detailed when it is further
away from obstacles or walls. In free and open space less information is
necessary to navigate collision free than in proximity to obstacles. Therefore
the resulting graph is more precise when necessary. If there is a lot of free
space, the octree and thus the path do not go that much into detail.

However, for walls and stairs, relying purely on the octree data structure
shows limitations, because for plane fitting the points are necessary. On the
other hand, the octree facilitates fast access to the points and allows neigh-
bour finding or addressing other points in the proximity. Also the stairs can
be found which enables multi-storey pathfinding. The characteristics of the
octree data structure, like quick neighbour finding, addressing, etc. proves
to be beneficial for the implementation as well. Furthermore, the octree
allows to find a good cutting height on where to apply the Poincaré duality.

Generally, the success of the implementation is depending on custom pa-
rameters. The depth of the octree is dependent on the size of the building
and the smallest leaf. The size of the leaf after the last subdivision proved
to give the best results for the tested point clouds when the length of the
smallest leafs was around five centimetres. Furthermore, the building needs
to be regular and to follow the preconditions set earlier. However, also point
clouds not fulfilling all requirements, were used for testing. They indicated
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challenges for data exceeding the preconditions, which should be solved in
future research. For example non-Manhattan-World structures do not only
have a negative influence on the octree as there are more smaller leafs, but
also large parts of the workflow are not applicable to them. Due to the large
variety of architectural structures, like different kinds of stairs, not all can
be detected.

Altogether, the workflow results in a path through a semantically en-
riched indoor point cloud scene which is following navigation constraints
of humans. The octree enables the path to be more detailed close to the
points. Furthermore, the octree makes the approach less dependent on the
point cloud attributes, adds speed and is used in almost the entire workflow.
The graph network derived from the octree is not limited to a single storey.
Additionally, the graph could even be connected to the outside to facilitate
transition free pathfinding in different environments.

6.2 discussion
In this section the choice of methods used in this research will be discussed.
A linear octree was chosen because of the experiences of Broersen et al.
[2016]. Especially the hierarchical structure of empty space is beneficial
in terms of for example storage space compared to other approaches like
a complete voxelisation. The octree structure proved to be supportive in
many steps of the workflow. In the part of the octree with empty space,
where uniform leafs are as big as possible, the workflow makes use of the
merging of uniform empty space. It does not only enable the resulting
graph to be more detailed in proximity of obstacles, but also simplifies the
implementation and adds speed. The non empty leafs have an advantage
as it can be beneficial to work with them directly in many cases, instead of
with the points.

Storeys and floors are identified with histogram peaks. The approach was
based on Okorn et al. [2010], Oesau et al. [2014] or Khoshelham and Dı́az-
Vilariño [2014]. Such approach is not only widely used in literature, but also
proved to work fast and reliable. A path of the scanner can verify the results,
especially when there are for example hanging ceiling or many tables this
is necessary.

The detection of walls was also based on this approach. This has the ad-
vantage that it was easy to implement, because only the histogram direction
had to be changed, but also clutter like furniture could be excluded from
being detected as walls. However, due to the projection of the semantic
classification to the octree structure and the regularity constraints explained
in Section 5.2 the approach can not be recommended (see also Figure 3.10).
In this thesis a method of plane fitting, 2D histograms and line detection
which was based on the methods of Okorn et al. [2010] and Oesau et al.
[2014] was added. This approach is more error prone to clutter, however,
the combination of both approaches provided the best results.

The approach for the detection of stairs is based on Bansal et al. [2010,
2011]. The method was chosen due to its implementation overlaps with the
previous steps and the independency from the point of view of the scanner.
However, it had to be extended to meet the requirements of this thesis, like
it was explained earlier. For future research, it might be better to put more
focus at the path of the scanner to find the stairs’ locations. The derivation of
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the graph works good for its purpose. Nevertheless, a full implementation
of the graph derivation on the stairs is complex.

The usual approach to enable indoor pathfinding is to create complex vec-
tor models of the building. Such complexity is not necessary though, if the
octree method of this work is used. The data can be structured, semanti-
cally enriched and a graph can be derived. For visual aspects, end user
experience or manual corrections a vector model should still be the ultimate
goal. The semantically enriched octree structure can be a good base for a
semantically enriched vector model as well.

6.3 conclusion
As shown above, using the octree and the workflow storeys and walls can be
found in a 3D point cloud of an indoor scene. Furthermore, obstacles can be
distinguished, and stairs can be identified in almost all cases. Also a graph
can be derived that enables multi-storey pathfinding, following constraints
for humans. On top of that, the network can potentially be connected to the
environment.

Nevertheless, indoor environments differ strongly and it is a challenge
to find a workflow for semantic enrichment that does not only work for
point clouds acquired by different kinds of laser scanners, but also for a
wide range of architectural scenes. Even the same scene can be represented
completely different depending on the scanner used to acquire the data. To
achieve the best results all preconditions for scenes and point clouds should
be met. The most important requirements are a Manhattan-World assump-
tion for walls, floors and stairs and that the point cloud include furniture,
but should be free of noise. Combining different works helped to apply
the workflow to more scenes accordingly. Furthermore, the methodology to
identify the stairs by Bansal et al. [2010, 2011] was found to be not sufficient
for the tested cases and had to be extended like described in Section 3.2.3.

For many parts of the workflow projecting the data to 2D simplifies the
problem. On the other hand, information might get lost as not everything
in the scene is aligned. Regular buildings do not have this problem. The
proposed methodology and workflow add structure and semantics to 3D
indoor point clouds. These semantics in combination with the octree enable
multi-storey pathfinding following the restrictions for humans.

All things considered the fire brigade can use such a concept as a first
step to provide additional information for people in an emergency situation.
After the fire brigade arrives at the site, they are able to scan a large part
of the building before other parts of it also catch fire. In many cases the
fire brigade might even be prepared and have a scan from only a couple
of months ago. These are still far more up to date than the majority of old
floor and emergency plans, which were not updated for decades. From the
point cloud they can now quickly derive a model which allows them to cal-
culate the shortest path to any scanned location in the building, across mul-
tiple storeys. The path can be provided in a way, which shows the firemen
whether a route is free to use also with large equipment. Having knowledge
about the shortest route can be a decision making factor, especially in large
and complex constructions. If there is a pre-installed localisation hardware
available they are even able to navigate themselves through the building in
real time.
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6.4 recommendations
A set of new research questions, insights and ideas arose throughout the
work on this thesis and will be introduced in the following. Generally it
is recommended for future research to put the focus on one scanner and
one part of the workflow only and optimise the methodology. Once the
results are stable and reusable the workflow can be extended to other kinds
of scanners or scenes.

• One of the main recommendations is to extend the current workflow
to non-Manhattan-Worlds. Fitting planes through the octree leafs and
projecting them to 2D grid histograms is a promising approach. Oesau
et al. [2014] show among others how the hough transform can be used
to detect lines which represent walls in the building. In this thesis such
approach was limited to a verification of identified walls, but should
be extended further in future research. Such method is not limited to
Manhattan-Worlds only. The majority of the buildings do not follow
Manhattan-World structures and new constructions become more and
more complex.

• Furthermore, also the identification of stairs has to be extended to more
cases. The ZEB1 mobile mapping system includes the path of the scan-
ner, which could offer valuable information for the detection of stairs
as well. It is recommended to conduct a research, which has the fo-
cus solely on identification of stairs. Also, using high density point
clouds, and not thinned ones as throughout this research can enable
better plane fitting. Additionally, the octree itself, which has a distinc-
tive accumulation and distribution of leafs at the stairs’ regions can
provide further information. As point clouds from different kinds of
scanners represent stairs in an unlike manner, it is recommended to
focus on on scanner only.

• Moreover, the semantic enrichment could follow a more human understand-
able classification. Rooms could get a label, so empty leafs enclosed by
the same walls would have a common attribute. In a like manner, the
storey count needs to be adapted. Landings between the stairs’ flights
are counted as a normal storey in the current workflow. This might
lead to misunderstandings and false interpretation by the users. The
semantic enrichment can also be extended to more features like doors.
Doorways can only be used for pathfinding at this moment, if they
were open during the scan. Also elevators were not identified, but
they are not recommended for usage in emergency cases.

• The graph needs to be improved and the distance transform on stairs imple-
mented. The connection between the floors is important to provide a
fluent transition in between storeys. The implementation of the graph
derivation has limitations at the moment. For example, depending on
the orientation of the stairs, a separate algorithm is necessary and the
distance transform is not available at stairs. This needs to be imple-
mented in the future because the time of this research was too limited.

• Additionally the network could be connected to outdoor worlds, which has
not been done as there were no control points set when the scans were
made. The methodologies proposed in Section 3.4 can be used for this
implementation.
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• Lastly, the results of this research could be combined with development of
other works of the SIMs3D project, like for example of Rodenberg [2016].
In the future the proposed model might not only be improved in terms
of accuracy, but also made updatable in real time.



B IBL IOGRAPHY

3D Laser Mapping (2016). Geo Slam ZEB1. http://

www.3dlasermapping.com/zeb1/. Accessed 16.02.16.

Adler, D. (1999). Metric Handbook: Planning and Design Data. Architectural
Press.

Ahrens, J., Geveci, B., and Law, C. (2005). 36 - paraview: An end-user tool
for large-data visualization. In Johnson, C. D. H. R., editor, Visualization
Handbook, pages 717 – LXXII. Butterworth-Heinemann, Burlington.

Bansal, M., Matei, B., Southall, B., Eledath, J., and Sawhney, H. (2011). A
LIDAR streaming architecture for mobile robotics with application to
3D structure characterization. In 2011 IEEE International Conference on
Robotics and Automation (ICRA), pages 1803–1810.

Bansal, M., Southall, B., Matei, B., Eledath, J., and Sawhney, H. (2010).
LIDAR-based Door and Stair Detection from a Mobile Robot. In SPIE,
the International Society for Optical Engineering. Proceedings. Society of
Photo-Optical Instrumentation Engineers.

Becker, S., Peter, M., and Fritsch, D. (2015). Grammer-supported 3D indoor
reconstruction from point clouds for ”as-built” BIM. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(3):17.

Becker, T., Nagel, C., and Kolbe, T. (2009). Supporting contexts for indoor
navigation using a multilayered space model. In Tenth International
Conference on Mobile Data Management: Systems, Services and Middleware,
2009. MDM ’09., pages 680–685.

Bergeon, Y., Hadda, I., Krivanek, V., Motsch, J., and Stefek, A. (2015). Low
cost 3d mapping for indoor navigation. In 2015 International Conference
on Military Technologies (ICMT), pages 1–5.

Boguslawski, P., Gold, C. M., and Ledoux, H. (2011). Modelling and
analysing 3D buildings with a primal/dual data structure. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 66(2):188–197.

Borgefors, G. (1986). Distance transformations in digital images. Computer
vision, graphics, and image processing, 34(3):344–371.

Brock, O., Trinkle, J., and Ramos, F. (2009). Planning long dynamically-
feasible maneuvers for autonomous vehicles. In Robotics:Science and Sys-
tems IV, pages 214–221. MIT Press.

Broersen, T., Fichtner, F. W., Heeres, E. J., de Liefde, I., Rodenberg, O. B.
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