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Abstract

Since industrialization, world population is constantly on the rise, and so the demand for
nutritious and healthy food is increasing as well. Traditional agriculture is steadily extended
with and substituted by crop growing in greenhouses, which has better yield, more resistance
against weather extremes, and overall more control over the growing parameters than regular
agriculture. Greenhouses are traditionally controlled by expert growers, but currently there
are not enough experienced growers in the world, and one grower can only handle a limited
number of greenhouses. Autonomous greenhouse control solves this problem by taking over
the task of defining setpoints for the low-level climate controllers, so that a full crop cycle
can be managed with little effort from the grower’s part. Autonomous climate control in
greenhouses can be extended by automatic irrigation, which reduces the workload manual
calculation of irrigation decisions puts on the growers. Furthermore, it has the possibility
of providing better yield than manual control during a crop cycle while reducing the water
usage.

This thesis introduces a new predictive irrigation control approach, which uses forecast
weather data and climate predictions to create irrigation decisions with the use of a Mixed
Logical Dynamical (MLD) Model Predictive Control (MPC) algorithm. The behaviour of
the controller can be changed through costs and constraints, which can be defined according
to the need of greenhouse growers. The water balance model, constituting from a simple
Plant Water Uptake (PWU) model from literature as well as a novel drain model, is used
to predict the water content of the growing substrate accurately for 24 hours ahead. The
MLD MPC exploits the structure of nonlinearities inside the water balance model to create
a Mixed Integer Linear Programming (MILP) optimal control problem, which can be solved
using efficient algorithms with guarantee on optimality. The validation results on data of
multiple greenhouses show, that the created algorithm can be generalized with little effort.
The effectiveness of the control algorithm in open-loop was inspected through simulations.
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Chapter 1

Introduction

In 2017, around 1 out of 9 people was undernourished, which accounts for a total of about 821
million people. Between 2014 and 2017 world hunger was on the rise, reaching levels experi-
enced 10 years before. One of the key drivers of this tendency was identified as the increasing
amount of weather extremes, and its effect on food production [1]. Fortunately, protected cul-
tivation is on the rise [2][3]. Beside the obvious protection against weather extremes, vegetable
growing greenhouse horticulture provides a more resource-efficient alternative to agriculture,
with investments in greenhouses not necessarily increasing the environmental impact, but
even giving the possibility for it to be reduced [4].
The total area of greenhouses in 1980 was around 150.000 ha, and by 2019 it grew to almost
500.000 ha [3]. Fresh vegetable export in the world doubled between 2006 and 2016. In 2016
the top three fresh vegetable exporting countries were China, Mexico, and the Netherlands,
followed by Spain and Canada. The most exported vegetables include tomatoes, sweet and
chili peppers, cucumbers, and onions, and the former three can traditionally be grown in
greenhouses. The area of greenhouses shows a growing tendency in almost all vegetable ex-
porting countries around the world. The Netherlands was a bigger fresh vegetable exporter
than Spain in 2016, although Spain had 14 times the greenhouse area of the Netherlands [2].
Although the research did not consider vegetables sold internally in the country of produc-
tion, the efficiency of Dutch horticultural production over other countries clearly shows how
technology and expertise can improve on crop yield.
Contrary to the extending industry of horticulture, in the Netherlands the number of green-
house growers sank by 85% between 1980 and 2017, and the average managed hectares per
one grower grew from 0.6 ha to 4 ha [5]. This tendency puts pressure on growers, while consid-
erable amount of their time is spent on repetitive decision making, like irrigation scheduling
[6]. A global shortage of skilled greenhouse labor was identified in 2013 [7], and this tendency
did not improve later on in 2018 as well [8]. Because of these reasons, now more than ever,
advancements in greenhouse automation are needed [9].
As [9] highlighted, one of the leading trends in recently built greenhouses is the inclusion of
automation, and not only for climate systems. In the last couple of years, research on au-
tonomous greenhouse control has seen growing popularity so much so, that in the Netherlands
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2 Introduction

the Autonomous Greenhouse Challenge has been organised for the 3rd time in 4 years, chal-
lenging industry specialists and academic researchers alike in a practical greenhouse control
setup. At the time of writing this paper, the 3rd challenge has been concluded, but only the
results of the first two competitions have been published yet [10][11]. Practical viability of
developed autonomous climate control algorithms has been shown, with 1 algorithm gaining
more profit than commercial cucumber growers [10] and all the five algorithms overperforming
commercial tomato growers [11] in real greenhouse growing experiments.

Beside climate control solutions, automated irrigation scheduling is also a well researched
field of greenhouse technology. Researches show various benefits, that with advanced meth-
ods/strategies for irrigation can be achieved. For example, the use of automated and frequent
irrigation scheduling could allow for reduced substrate volume, reducing costs and the envi-
ronmental impact of disposing of the used substrate media [12]. Significant amount of water
can be spared in warmer climates with improved irrigation techniques [13], which would re-
duce the environmental impact of horticulture. In an efficiency aspect, automated decision
making for irrigation could significantly reduce the time growers need to manage irrigation
[6]. Using models of plant water uptake and forecast weather conditions (especially solar
radiation), irrigation can be applied automatically, before water-stress occurs and hinders
photosynthesis for hours ([14], p.51).

Although multiple researches inspected the use of Model Predictive Control (MPC) in agri-
cultural water management [15] [16] [17], only one example of MPC in horticultural irrigation
[18] was found in the literature. One similar algorithm came up in the form of event-based
generalized predictive control [19], which provided good results with reduced water usage.
Because many Plant Water Status (PWS) and Evapotranspiration (ET) models are available
in the literature, either simple or accurate, the use of MPC for irrigation decision making can
promise good results.

The thesis introduces a new way of irrigation control, which uses predictions on Plant Wa-
ter Uptake (PWU) and drain to estimate, how the water content of the growing substrate
changes given climate predictions. Mixed Logical Dynamical (MLD) modelling is used to
incorporate nonlinearities into a linear drain model in a structured way, and thus an accurate
water balance prediction model is created. The proposed MLD MPC is a novel approach for
irrigation scheduling, with modular structure and easily tuned behaviour for a versatile use
in the irrigation of greenhouse grown high-wire crops. The thesis inspects the advantages
and drawbacks of the developed MLD model and the MPC controller with different horizons.
The results show, that the use of MPC for irrigation automation is viable, because it uses al-
ready available greenhouse hardware, it is easy to tune, and it provides irrigation decisions 24
hours ahead, which can greatly improve its acceptance with professional greenhouse growers,
because it is easily supervised.

The thesis is structured as follows: Chapter 2 discusses the implementation of a simple
PWU uptake model and presents unique drain modelling approaches. Chapter 3 shows the
implementation of a linear and a MLD MPC controller. Chapter 4 evaluates the created
models and controllers, and discusses the achieved results. Chapter 5 summarizes the findings
of the thesis, and proposes further research directions.
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1-1 Project scope 3

1-1 Project scope

The project considers the following scope:

• Plants in their generative growth phase are considered, where biomass and Leaf Area
Index (LAI) are nearly constant.

• The Electrical Conductivity (EC) and pH of the substrate are not taken into account.

• Substrate grown tomatoes and cucumbers are considered, which are both high-wire
crops.

• Modern greenhouses are considered, with the following measurements available:
Solar radiation
Indoor humidity and temperature
Irrigation and drain
Slab/gutter scale weights

The reasons behind the items are discussed throughout the thesis.
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Chapter 2

Modeling

To effectively control the water content of the substrate, the processes influencing its change
are modelled. The term of water balance is introduced in detail in Section A-2-2. The water
balance equation is the main process model which describes how the water content of the
substrate changes over time.

yWC(k + 1) = yWC(k) + QIRR(k) − QPWU(k) − QDRN(k) (2-1)

From (2-1) if the starting water content is known, the water content values in the future
can be calculated using predicted values of irrigation, plant water uptake and drain. The
irrigation amounts are the control inputs, so only the plant water uptake and drain needs
to be modelled. In this chapter, the various modelling approaches are introduced, which
were considered during the thesis project. During the data preparation, assumptions were
introduced to make the modeling feasible or to simplify certain elements. The Assumptions
A.1, A.2 and A.3, the need for them, and the reasoning behind their validity is discussed in
Appendix A.

2-1 Evaluation of models

The evaluation of models can be straightforward, if only the error of the predictions/estima-
tions is considered. [20] collected and organized watershed model evaluation methods. From
the inspected measures, authors recommended the use of the Nash-Sutcliffe efficiency (NSE)
[21], the Percent-bias (PBIAS) error index [22], and the Ratio of the Root Mean Square Error
to the standard deviation of measured data (RSR) method. Using the notation, equations
and descriptions of [20], a brief explanation is given on these three methods.

The NSE inspects the relation between the residual variance of simulated and measured data
("noise"), and the measured data variance ("information"). The calculation of the NSE is
given by (2-2):

Master of Science Thesis Csaba Balla-Somogyi



6 Modeling

NSE = 1 −


∑n

i=1

(
Y obs

i − Y sim
i

)2

∑n
i=1

(
Y obs

i − Y mean
)2
 (2-2)

Where Y obs
i is the i-th observation from a dataset with n instances. Y sim

i is the i-th simulated
value of the inspected variable(s), and Y mean is the mean of the observed data. The value of
NSE ranges from −∞ to and inclusive 1, and values between 0 and 1 are generally acceptable
levels of performance. Values under 0 mean, that the mean of the measurements provides
better predictions than the simulated model. The calculation of the coefficient of determi-
nation (R2) is almost identical to the calculation of NSE, the only difference is that R2 is
used to assess the performance on the fit of a statistical model, whereas the NSE evaluates
how well a variable is predicted in simulation. In the following sections, NSE and R2 is used
interchangeably.

The PBIAS measures how often the simulated data is larger or smaller than the measured
variables. Values other than 0 indicate model overestimation (PBIAS<0) or underestimation
(PBIAS>0). (2-3) calculates PBIAS as a percentage value:

PBIAS =

∑n
i=1

(
Y obs

i − Y sim
i

)
· (100)∑n

i=1
(
Y obs

i

)
 (2-3)

with the same variables as defined below (2-2).

The RSR compares the Root Mean Square Error (RMSE) between simulated variables and
measurements to the standard deviation of the measurements. The lower the RSR the more
accurate the model simulation is. The calculation is given in (2-4).

RSR = RMSE
STDEVobs

=

[√∑n
i=1

(
Y obs

i − Y sim
i

)2][√∑n
i=1

(
Y obs

i − Y mean
)2] (2-4)

Other than the three recommended metrics, it is worthy to note Pearson’s correlation coeffi-
cient r. r gives information on the linear correlation between simulated and measured data,
with r = 1 being perfect linear correlation, r = −1 being perfect negative linear correlation,
and r = 0 no linear correlation.

2-2 Plant water uptake modelling

The water uptake of the crop can be a function of many parameters. In relevant literature,
various types of models are proposed to describe, how the amount of water taken up by plants
is the function of climatic variables. [23] highlighted many different types of algorithms. The
gold standard of how Evapotranspiration (ET) is calculated is described by the FAO Penman-
Monteith equation [24]. Simplifications of the Penman-Monteith equation only depend on 1,
2 climatic parameters. [25] introduces a linear model where the amount of water taken
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2-2 Plant water uptake modelling 7

up by the plant is only dependent on the solar radiation and a crop coefficient, as well as
a constant nocturnal water uptake. A slightly more complex model is introduced in [26],
where the plant water uptake is a bi-linear function of the solar radiation and the Vapor
Pressure Deficit (VPD) of the crop. [27] extends the Penman-Monteith equation by taking
into account the Leaf Area Index (LAI) of the crop, which results in a more accurate water
uptake estimation for greenhouse grown crops. All of the mentioned models assume, that
sufficient water is available at the root zone of the plant. This assumption is made for this
thesis as well:

Assumption 2.1 (No drought-stress). The plants are not under drought stress during the
generative growth phase.

The reason why this assumption can be made comes from the growing practices of professional
growers in horticulture: their strategies for irrigation involve measuring around 20-30% drain
relative to irrigation, which keeps the water content of the substrate close to saturation during
daytime, when the Plant Water Uptake (PWU) is the strongest. During nighttime the water
content drops, but not enough to cause drought-stress.

Most of the ET and PWU models are fit for daily, or sometimes hourly predictions. Because
the models are used for a Model Predictive Control (MPC) framework, and the derived PWU
measurements (the process detailed in Section A-2-2) are created with a sampling time of 1
hour, the water uptake models are considered with the same sampling time. Because the water
uptake of the crop was not measured directly, PWU was calculated using irrigation, drain
and gutter scale measurement data. The models in this section are fitted to the calculated
PWU values.

2-2-1 Linear model

First, the simplest model is considered: the linear regression model from [25]. (2-5) shows
the original form of the model:

λE = AoKcR + Bo (2-5)

Where λ is the specific heat of water, R is the radiation, Kc is a coefficient specific to a
crop, and A0 and B0 are regression coefficients. Because the model is only dependent on
the radiation, and during night there is hardly any, B0 is also called nocturnal ET. For the
purpose of this research, AL = A0·Kc

λ is estimated together, and let BL := B0
λ to align the

notation. So the modified linear model is:

E = ALR + BL (2-6)

where E is the water taken up by the plant in l/m2, R is the energy of the total radiation in
J/m2, AL is the regression coefficient in l/J and BL is the nocturnal ET in l/m2. Because
the models are fitted hourly, the above variables describe per hour values. The model fitting
procedure is described in the following subsection together with the Bi-linear model.
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8 Modeling

2-2-2 Bi-Linear model

The main equation of the model from [26] can be seen in (2-7)

λ · E = A · R + B · V (2-7)

Where λ is the specific heat of water, E is the amount of water evaporating, A and B are
linear coefficients, R is the solar radiation and V is the VPD. Because no data was available
on either the VPD or the temperature of the leaves, VPD is not available to use for the
identification. Because of this, it is substituted to Humidity Deficit (HD), which could serve
as an alternative. The notation is changed slightly, with ABL,1 = A

λ , ABL,2 = B
λ , and by

introducing an intercept coefficient BBL for better accuracy. The Bi-linear model now reads:

E = ABL,1 · R + ABL,2 · H + BBL (2-8)

where E is the water taken up by the plant in l/m2, R is the energy of the total radiation
in J/m2, ABL,1 is the first regression coefficient in l/J , H is the average humidity deficit in
g/cm3, ABL,2 is the second regression coefficient in cm3·l

g·m2 and BBL is the intercept coefficient
in l/m2. Because the models are fitted hourly, the above variables describe per hour values.

To inspect, how well the two linear regression models describe the connection between PWU
and the one or two climatic parameters, for each day in the dataset a model is fitted, which is
then assessed for the NSE of the predictions, also known as the R2. Figure 2-1 shows the daily
achieved R2 values (with the models fitted daily) as a function of the daily sum of radiation.
The results clearly show, that on days with high radiation, the linear dependency between
the variables is strong, and so a regression based model could describe the PWU well. On the
other hand, on low radiation days the linear dependency is considerably lower. It can also
be seen, that as expected the Bi-linear model has better fit if only considered on the training
set.
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2-2 Plant water uptake modelling 9

Partial correlations Today’s radiation Yesterday’s radiation Today’s PWU
Today’s radiation 1 0.13 0.84

Yesterday’s radiation 0.13 1 0.13
Today’s PWU 0.84 0.13 1

Table 2-1: Partial correlation between yesterday’s radiation sum and today’s PWU

500 1000 1500 2000 2500 3000
Radiation sum per day (J/cm2)

0.2

0.4

0.6

0.8

1.0

R2

Daily fits of the models

Linear model
Bi-linear model

Figure 2-1: Water bucket model

A threshold is applied on the data, to filter out days with lower than 1000 J/cm2 daily
radiation. An additional filter is applied on the drain percentage: a drain percentage of
more than 50% a day is considered as an anomaly, and so it is excluded from the model
training. With these, around 16 % of the data was excluded. The remaining days are
taken apart in a ratio of 70% training, 30% validation set. The days can be considered as
independent, meaning, that the radiation of the previous day does not meaningfully influence
the PWU of the actual day. This was verified by inspecting the partial correlation between
the aforementioned variables. As Table 2-1 shows, the partial correlation is negligible between
the mentioned variables.

With the days randomly separated into the training and validation sets, the coefficients of
the linear and bi-linear models are estimated using regular least-squares approach. The fitted
models are then tested on the validation set. Table 2-2 shows the results of the model fitting.

It can be seen, that the bi-linear model performs better in almost every area compared to
the linear model. The improvements are most noticeable on the validation dataset, meaning,
that the generalizability of the bi-linear model is higher. The high R2 value of the Bi-linear
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10 Modeling

Linear model Bi-linear model
Linear coefficient(s) 2.265 · 10−7 [1.482 · 10−7, 0.0255]
Intercept coefficient 0.1052 0.0315
R2 on training set 0.83 0.84

R2 on validation set 0.79 0.86
PBIAS on training set 0% 0%

PBIAS on validation set -2.138% -0.484%
Normalized RMSE on training set 9% 9.1%

Normalized RMSE on validation set 10.7% 7.8%
RSR on training set 0.41 0.4

RSR on validation set 0.45 0.37

Table 2-2: Results of the PWU model fitting

model is above 0.8 on both the validation and training sets, and the normalized RMSE is
under 10%, which is promising. Because of the simplicity of the model and the low amount of
required inputs, this model is selected for the further work in this thesis. More complicated
models require parameters (like convection, LAI, etc.) which were not available during the
project, so their effectiveness was not tested.

2-3 Drain modelling

Another crucial process of the water balance equation is the drain. Because the controller is
going to be used for prediction, drain has to be modelled in order to predict, how much drain
is going to happen for certain combinations of irrigation and PWU.

Drain is the process of water leaving the growing substrate through channels in the bottom of
the gutter. The accumulation of drain is measured and stored in the irrigation group of the
climate computer, as it is seen in Table A-1. Physically, the drain is the excess water inside
the substrate which was not absorbed, and so it is only dependent on the instantaneous water
content of the substrate, ν(t), and the properties of the substrate itself. The process of water
flowing through the substrate, which is not deeper than 0.5 meter, is most probably governed
by a time-constant in the magnitude of minutes, if not seconds. There is a scarceness of drain
models in the literature, which is probably due to the lack of predictive irrigation approaches
which would use them, and the usual 5 minute sampling time in climate controller data, which
does not allow the identification of a process with a faster time constant.

In the following subsections, various approaches are considered to model, how the drain
measurements develop as a function of other measurements.

2-3-1 Water bucket model

Figure 2-2 shows all of the drain measurements from the data, with water deficit on the x
axis. It can be seen, that above a Water Deficit (WD) of 0.4 l/m2 practically no drain is
measured. This knowledge can be used to simplify the model relations considerably with the
following assumption:
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2-3 Drain modelling 11

Assumption 2.2 (No drain above a water deficit threshold). If WD is above a threshold, no
drain is measured.

Figure 2-2: Drain - WD plot

The drain of the growing substrate can be modelled as a water bucket with a hole. As it can
be seen in Figure 2-3, the hole of the bucket is in the upper part of the bucket. If the water
level is below it, there is no drain happening. If the water level is in the level of the hole, the
flow of the drain is a function of the water level. If the water level is above the upper part of
the hole, we assume, that the drain is saturated.

Figure 2-3: Water bucket model 1

Detailed in Section A-2-1, the WD is measured from the top of the bucket, which is denoted
as maximum Volumetric Water Content (VWC). The meaning of WD is, that µ(t) liter of
water per square-meter is missing until the VWC max level is reached. If the WD is above
the flow start point, so µ(t) > yFSP, no drain happens. If µ(t) is between the flow start point
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12 Modeling

and the saturation point, so ySP < µ(t) < yFSP, the drain flow is the function of current
water deficit: q(t) = f(µ(t)). And finally, if the water deficit is below the saturation point,
µ(t) < ySP, we assume, that the maximum drain flow takes up a constant maximum value:
q(t) = qmax. Figure 2-4 shows an illustration of the above explained concept.

Figure 2-4: Water bucket model 2

The behaviour can be written up the following way:

q(t) =


0 IF: µ(t) > yFSP
f(µ(t)) IF: ySP < µ(t) < yFSP
qmax IF: µ(t) < ySP

(2-9)

If we assume a linear behaviour for the drain between the saturation and flow start points,
so f(µ(t)) = a · (µ(t) − yFSP), the system turns into a piecewise affine (PWA) system:

q(t) =


0 IF: µ(t) > yFSP
a · (µ(t) − yFSP) IF: ySP < µ(t) < yFSP
qmax IF: µ(t) < ySP

(2-10)

The water deficit is influenced by not only the drain, but also the irrigation and the water
taken up by the plant. For now, let us denote the drain flow by qDRN(t), the irrigation flow
by qIRR(t) and the water flow which the plant takes up by qPWU(t). Because WD grows as
the substrate gets dryer, in the water balance equation, the drain and plant water uptake
flow have positive signs, while the irrigation has a negative sign.

d

dt
µ(t) = qPWU(t) + qDRN(t) − qIRR(t)

d

dt
µ(t) = qPWU(t) + qDRN(µ(t)) − qIRR(t)

(2-11)
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2-3 Drain modelling 13

The main time-constant of the system is most probably in the magnitude of minutes, if not
seconds, so to correctly represent its dynamics, a sampling-time of 1-10 seconds would be
needed. This is a problem, because the greenhouse data available is sampled every 5 minutes,
h1 = 5min. This means, that the measurements of the volumetric water content yVWC, and
therefore the water deficit measurements yWD as well depict the following process:

yWD(t0 + h1) = yWD(t0) +
∫ t0+h1

t0
qPWU(t)dt︸ ︷︷ ︸

QPWU(t0)

+
∫ t0+h1

t0
qDRN(µ(t))dt−

−
∫ t0+h1

t0
qIRR(t)dt︸ ︷︷ ︸

QIRR(t0)

+
∫ t0+h1

t0
ε(t)dt

(2-12)

Where ε(t) is an error affecting the measurements. Because we can not identify the dynamical
model of drain with a data of this granularity, with the assumption that:

Assumption 2.3 (Water balance equation). The water balance equation holds

we can try to identify an input-output behaviour:

QDRN(t0) =
∫ t0+h1

t0
qDRN(µ(t))dt

QDRN(t0) = f

(
yWD(t0),

∫ t0+h1

t0
qPWU(t),

∫ t0+h1

t0
qIRR(t)

)
QDRN(t0) = f (yWD(t0), QPWU(t0), QIRR(t0))

(2-13)

Because qDRN is a function of only the instantaneous water deficit µ(t), and the water deficit
can be estimated from the water deficit measurement at t0 (yWD(t0)), the amount of irrigation
which was applied between t0 and t0 + h1 (QIRR(t0)), and the water which was taken up by
the plants in that interval (QPWU(t0)). Following the previous equation, the following model
can be written up:

Let: ỹWD(t0) = yWD(t0) − QIRR(t0) + QPWU(t0)
Then:

QDRN(t0) =


0 IF: ỹWD(t0) > yFSP
α · (ỹWD(t0) − yFSP) IF: ySP < ỹWD(t0) < yFSP
β IF: ỹWD(t0) < ySP

(2-14)

This gives us three discrete time models for the water balance equation. Let us handle the
water deficit as a state, and denote it with x. The system can then be written up by:
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14 Modeling

x(t + h1) = aix(t) + Bi

 QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
= Cix(t) + Di

 QIRR(t)
QPWU(t)

1

 for i = 1, 2, 3

(2-15)

With:

IF: x(t) − QIRR(t) + QPWU(t) > yFSP THEN: i = 1

x(t + h1) = 1x(t) +
[
−1 1 0

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1
0

]
x(t) +

[
0 0 0
0 0 0

] QIRR(t)
QPWU(t)

1


IF: ySP < x(t) − QIRR(t) + QPWU(t) < yFSP THEN: i = 2

x(t + h1) = (1 + α)x(t) +
[
−(1 + α) (1 + α) −αyFSP

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[

1
α

]
x(t) +

[
0 0 0

−α α −αyFSP

] QIRR(t)
QPWU(t)

1


IF: x(t) − QIRR(t) + QPWU(t) < ySP THEN: i = 3

x(t + h1) = 1x(t) +
[
−1 1 β

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1
0

]
x(t) +

[
0 0 0
0 0 β

] QIRR(t)
QPWU(t)

1



(2-16)

Because the plant water uptake is calculated hourly, to get estimates for it every 5 minutes,
we assume that:

Assumption 2.4 (Constant intersample PWU). In an hourly interval, the plant water uptake
is constant.

This means, that:

QPWU(t + i · h1) = Q̄PWU(t)
12 for i = 0, 1, ..., 11 (2-17)

where Q̄PWU(t) is the estimated or measured plant water uptake for the upcoming hour.
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2-3 Drain modelling 15

The identifiable parameters in this Piecewise Affine (PWA) system are:

θ =


α
β

yFSP
ySP

 (2-18)

To identify all of the parameters, first yFSP has to be found. The value of this parameter can
be found manually by searching for the first drain moment.

The problem with the above described model is, that for i = 2, the linear model is unstable,
and this makes identifying the model in open-loop impossible. To remedy this, water content
can be used instead of water deficit. The main problem with water content is, that only the
maximal water content is known. There is no gutter scale measurement for a water content
of 0%. Using now the gutter scale measurement yGS(t) variable with unit of l/m2:

yGS(t0 + h1) = yGS(t0) − QPWU(t0) − QDRN(t0) + QIRR(t0) (2-19)

Let: ỹGS(t0) = yGS(t0) + QIRR(t0) − QPWU(t0)
Then:

QDRN(t0) =


0 IF: ỹGS(t0) < yFSP
α · (ỹGS(t0) − yFSP) IF: ySP > ỹGS(t0) > yFSP
β IF: ỹGS(t0) > ySP

(2-20)

Now the PWA system with the gutter scale measurement y(t) as state and an output, and
yFSP and ySP readjusted to the gutter scale measurements:
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16 Modeling

IF: y(t) + QIRR(t) − QPWU(t) < yFSP THEN: i = 1

y(t + h1) = 1y(t) +
[
1 −1 0

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1
0

]
y(t) +

[
0 0 0
0 0 0

] QIRR(t)
QPWU(t)

1


IF: ySP > y(t) + QIRR(t) − QPWU(t) > yFSP THEN: i = 2

y(t + h1) = (1 − α)y(t) +
[
(1 − α) (α − 1) +αyFSP

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[

1
α

]
y(t) +

[
0 0 0
α −α −αyFSP

] QIRR(t)
QPWU(t)

1


IF: y(t) + QIRR(t) − QPWU(t) > ySP THEN: i = 3

y(t + h1) = 1y(t) +
[
1 −1 −β

]  QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1
0

]
y(t) +

[
0 0 0
0 0 β

] QIRR(t)
QPWU(t)

1



(2-21)

When inspecting the data, it was noticed, that there is a delay in the system. This can be
corrected for by introducing a buffer state for the drain, x1:

[
y(t + h1)
x1(t + h1)

]
= Ai

[
y(t)
x1(t)

]
+ Bi

 QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
= Ciy(t) + Di

 QIRR(t)
QPWU(t)

1

 for i = 1, 2, 3

(2-22)

And so with it the parametrized model:
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2-3 Drain modelling 17

IF: x(t) + QIRR(t) − QPWU(t) < yFSP THEN: i = 1[
y(t + h1)
x1(t + h1)

]
=
[
1 0
0 0

] [
y(t)
x1(t)

]
+
[
1 −1 0
0 0 0

] QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1 0
0 1

] [
y(t)
x1(t)

]
+
[
0 0 0
0 0 0

] QIRR(t)
QPWU(t)

1


IF: ySP > x(t) + QIRR(t) − QPWU(t) > yFSP THEN: i = 2[

y(t + h1)
x1(t + h1)

]
=
[

1 −1
α 0

] [
y(t)
x1(t)

]
+
[

1 −1 0
α −α −αyFSP

] QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1 0
0 1

] [
y(t)
x1(t)

]
+
[
0 0 0
0 0 0

] QIRR(t)
QPWU(t)

1


IF: x(t) + QIRR(t) − QPWU(t) > ySP THEN: i = 3[

y(t + h1)
x1(t + h1)

]
=
[
1 −1
0 0

] [
y(t)
x1(t)

]
+
[
1 −1 0
0 0 β

] QIRR(t)
QPWU(t)

1


[

y(t)
QDRN(t)

]
=
[
1 0
0 1

] [
y(t)
x1(t)

]
+
[
0 0 0
0 0 0

] QIRR(t)
QPWU(t)

1



(2-23)

The developed model failed to yield good results. The predicted drain did not follow the
actual drain well, and the predicted water content had scaling and drifting issues. Because
of this a new approach was taken.

2-3-2 Data-driven ARX drain model

Because the "water bucket model" did not bring favorable results, a more general model
identification was used next. Using the inputs and outputs already defined in the previous
section, an Autoregressive with Exogenous Input (ARX) model was fitted on the available
data. A Multiple Input Multiple Output (MIMO) ARX system has the following structure:

A11(q)y1(k) = A12y2(k) + B11(q)u1(k) + B12(q)u2(k)
A22(q)y2(k) = A21y1(k) + B21(q)u1(k) + B22(q)u2(k)

(2-24)

Where Aij(q) and Bij(q) are polynomials of the delay operator q. To ease the notation, the
time index is denoted by k ∈ Z, with t = t0 + k · h1. The polynomials are given by:

Aii(q) = 1 + aii
1 q−1 + . . . + aii

nAii
q−naii

Aij(q) = aij
1 q−1 + . . . + aij

nAij
q−naij for i ̸= j

Bij(q) = bij
1 + bij

2 q−1 + . . . + bij
nBij

q
−nbij for ∀i, j

(2-25)
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18 Modeling

Where the superscripts ij denote, which polynomials the coefficients belong to. To create a
causal system, the following inequalities have to hold:

for a fixed i: nAii ≥ nAij AND nAii ≥ nBij for ∀j (2-26)

We reformulate (2-27) to include the input and output variables defined in the previous
section:

A11(q)yWD(k) = A12(q)QDRN(k) + B11(q)QIRR(k) + B12(q)QPWU(k)
A22(q)QDRN(k) = A21(q)yWD(k) + B21(q)QIRR(k) + B22(q)QPWU(k)

(2-27)

The parameters to be defined for the identification are: nAij and nBij . Beside these, the
identification data was cut to only include measurements below a certain WD level (similarly
to the flow start point in the water bucket model, Assumption 2.2). This is needed, because
above a WD of 0.4 l/m2, no drain happens, and this nonlinearity can cause problems with
the drain prediction. The number of parameters can be written up the following way:

Na =
[
nA11 nA12

nA21 nA22

]
AND Nb =

[
nB11 nB12

nB21 nB22

]
(2-28)

The system was identified with the use of the MATLAB function ’arx()’, which can identify
linear ARX models, given the coefficient matrices Na and Nb. Because the dynamics of the
system can change over time (plant growth, seasonal effects), the identification was made
progressively, using a sliding window. This can be seen in Figure 2-5. Using the available
data, the first 10 days are used first as identification data, and then the model is validated
on the 11th day. After the validation happens, the window slides, starting on the 2nd day,
and ending on the 11th day (including in the training the previous evaluation day). The
reidentified model is the validated on the upcoming day, and so forth. This approach is used
to imitate how the algorithm could be used in real world scenario.
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2-3 Drain modelling 19

Figure 2-5: Progressive identification with sliding window

After a number of experiments, the following values brought the best fits, R2, and total drain
accuracy1:

Na =
[
3 3
2 3

]
AND Nb =

[
3 1
3 1

]
(2-29)

The data used was the part of the days, when the water deficit was below 0.4 l/m2. Because of
the fast dynamics of how the drain happens, only a steady-state response should be measurable
between irrigation and drain. This, however, is not the case, because with only a first order
polynomial for QIRR, the training and validation results were both inferior compared to a 3rd
order polynomial. Because the QPWU input is a constant inside an hour, and only changes
hourly, a first order polynomial was enough to describe its effect. Because of the delays
between the drain sensor and the gutter scale (also mentioned in Section 2-3-1), the effect of
drain on the water deficit was given a 3rd order polynomial. Anything below brought inferior
results. This effect was not present in the influence of water deficit on drain. The number of
autoregression coefficients na11 and na22 was set to 3 to keep the system causal.

With the above setup and progressive identification, the total drain accuracy was maintained
above 70% for almost all days (from a set of 100 days), which is the most important factor
in predicting the water deficit over the course of days in an hourly resolution.

1total drain accuracy is the ratio between the sum of the predicted drain increments and the sum of the
measured drain increments
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The identified ARX model can be transformed into a state-space representation, with the
number of states being equal to nA11 + nA22 . The transformation was done using MATLAB’s
built in ’ss()’ command. The function returns the SS system in an observable canonical form.
Using the command, the obtained system is in the following form:

xDRN(k + 1) = ADRNxDRN(k) + B
[

QIRR(k)
QPWU(k)

]
[

yWD(k)
QDRN(k)

]
= CxDRN(k) + D

[
QIRR(k)
QPWU(k)

] (2-30)

Where x ∈ Rn, with n = nA11 +nA22 , and ADRN ∈ Rn×n, B ∈ Rn×2, C ∈ R2×n and D ∈ R2×2.
D being non-zero shows, that some parts of the response of the system is stationary.

2-4 Water balance modeling

From the results of the last section, we can move on to formulate the prediction model for the
water balance. Although the ARX model has an output for the water deficit, its accuracy is
low, and the whole model is only usable below a certain water deficit level. From this follows,
that it would be better to only use the drain as output in the ARX model, but this lead to
compromised drain accuracy. The imposed structure with the cross dependency of drain and
water deficit lead to an increased drain prediction accuracy, and so keeping the model was
favorable. The water balance equation written on the water deficit is:

yWD(t + h1) = yWD(t) + QPWU(t) + QDRN(t) − QIRR(t) (2-31)

From the above equation, QIRR(t) is the control input, QPWU(t) is acting as a measureable
disturbance, and QDRN(t) is calculated using the model identified in the previous section. In
line with this, we rename QIRR(t) as u(t), QPWU(t) as w(t) and QDRN as yDRN. Now the
water balance equation on the water deficit yWD reads:

yWD(t + h1) = yWD(t) + w(t) + f (xDRN, u(t), w(t)) − u(t)

yWD(t + h1) = yWD(t) + w(t) +
[
0 1

](
CxDRN(k) + D

[
u(t)
w(t)

])
− u(t)

(2-32)

Now, with the matrices B, C and D from (2-30):

CDRN =
[
0 1

]
C and D =

[
∗ ∗
du dw

]
and B =

[
Bu Bw

]
(2-33)

We can write up the water balance equation as:

yWD(t + h1) = yWD(t) + w(t) + CDRNxDRN(t) + duu(t) + dww(t) − u(t)
yWD(t + h1) = yWD(t) + (1 + dw)w(t) + CDRNxDRN(t) + (du − 1)u(t)

(2-34)
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2-4 Water balance modeling 21

And so the new state-space system emerges:

[
yWD(t + h1)
xDRN(t + h1)

]
︸ ︷︷ ︸

x(t+h1)

=
[
1 CDRN
0 ADRN

]
︸ ︷︷ ︸

A

[
yWD(t)
xDRN(t)

]
︸ ︷︷ ︸

x(t)

+
[
du − 1

Bu

]
︸ ︷︷ ︸

B

u(t) +
[
1 + dw

Bw

]
︸ ︷︷ ︸

G

w(t)

yWD(t) =
[
1 0

]
︸ ︷︷ ︸

C

[
yWD(t)
xDRN(t)

] (2-35)

And so

x(t + h1) = Ax(t) + Bu(t) + Gw(t)
yWD(t) = Cx(t)

(2-36)

2-4-1 Hybrid water balance modeling

Because the water-balance model of the previous section is only valid under a specific water
deficit threshold ȳWD, for a hybrid water balance model, the system has to be transformed
into a Mixed Logical Dynamical (MLD) form. Only looking at the identified drain model:

xDRN(k + 1) = ADRNxDRN(k) + Buu(k) + Bww(k)
yDRN(k) = CDRNxDRN(k) + duu(k) + dww(k)

(2-37)

Where k denotes a sample every 5 minutes. The output of this system, yDRN(k) with unit
l

m2·5min , depends on the water deficit, yWD(k). If yWD(k) < ȳWD, then the output is given
by the above output equation, and if yWD(k) ≥ ȳWD, then the output is 0. This can also
be represented (as shown in [28]) by an auxiliary binary variable, δ. If yWD(k) < ȳWD, then
δ = 1, and if yWD(k) ≥ ȳWD, then δ = 0.

xDRN(k + 1) = ADRNxDRN(k) + Buu(k) + Bww(k)
yDRN(k) = CDRNδ(k)xDRN(k) + duδ(k)u(k) + dwδ(k)w(k)

(2-38)

The condition in the previous paragraph can be written as:

δ(k)
(
ymin − ȳWD

)
≤ yWD(k) − ȳWD

δ(k) (ymax − ȳWD + ε) ≤ −yWD(k) + ymax
(2-39)

with ymin being the smallest, and ymax being the largest possible value yWD(k) can take,
and ε being the computational precision (a number really close to 0). Because now the state
equation is nonlinear, new real valued auxiliary variables have to be introduced: z1(k) =
δ(k)CDRNxDRN(k), z2(k) = δ(k)u(k) and z3(k) = δ(k)w(k), with z1, z2, z3 ∈ R. Finally, let
z = [z1, z2, z3]T . Constraints are introduced to keep the values of z connected to the variables:
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z1(k) ≤ CDRNxmax
DRNδ(k)

z1(k) ≥ CDRNxmin
DRNδ(k)

z1(k) ≤ CDRNxDRN(k) − CDRNxmin
DRN(1 − δ(k))

z1(k) ≥ CDRNxDRN(k) − CDRNxmax
DRN(1 − δ(k))

z2(k) ≤ umaxδ(k)
z2(k) ≥ uminδ(k)
z2(k) ≤ u(k) − umin(1 − δ(k))
z2(k) ≥ u(k) − umax(1 − δ(k))
z3(k) ≤ wmaxδ(k)
z3(k) ≥ wminδ(k)
z3(k) ≤ w(k) − wmin(1 − δ(k))
z3(k) ≥ w(k) − wmax(1 − δ(k))

(2-40)

With umin and wmin being the smallest, umax and wmax being the largest irrigation and PWU
input respectively. Now the hybrid system can be written as:

xDRN(k + 1) = ADRNxDRN(k) + Buu(k) + Bww(k)

yDRN(k) =
[
1 du dw

]
︸ ︷︷ ︸

Cz

z(k) (2-41)

We can combine the hybrid drain model with the water balance model, with also observing
the drain occuring (this is important by the MPC formulation):

[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
1 0
0 ADRN

]
︸ ︷︷ ︸

A

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[
−1
Bu

]
︸ ︷︷ ︸

B1

u(k) +
[
Cz

0

]
︸ ︷︷ ︸

B3

z(k) +
[

1
Bw

]
︸ ︷︷ ︸

G

w(k)

[
yWD(k)
yDRN(k)

]
=
[
1 0
0 0

]
︸ ︷︷ ︸

C

[
yWD(k)
xDRN(k)

]
+
[

0
Cz

]
︸ ︷︷ ︸

D3

z(k)
(2-42)

And so the system with concise notation is:

x(k + 1) = Ax(k) + B1u(k) + B3z(k) + Gw(k)[
yWD(k)
yDRN(k)

]
= Cx(k) + D3z(k)

(2-43)

Reorganizing the constraints into the form:
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0 0
0 0
0 −CDRN
0 CDRN
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−1 0
1 0


︸ ︷︷ ︸

E1

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+



0
0
0
0
0
0

−1
1
0
0
0
0
0
0


︸ ︷︷ ︸

E2

u(k) +



0
0
0
0
0
0
0
0
0
0

−1
1
0
0


︸ ︷︷ ︸

E3

w(k)+

+



−CDRNxmax
DRN

CDRNxmin
DRN

−CDRNxmin
DRN

CDRNxmax
DRN

−umax

umin

−umin

umax

−wmax

wmin

−wmin

wmax

ymin − ȳWD
ymax − ȳWD + ε


︸ ︷︷ ︸

E4

δ(k) +



1 0 0
−1 0 0
1 0 0

−1 0 0
0 1 0
0 −1 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 1
0 0 −1
0 0 0
0 0 0


︸ ︷︷ ︸

E5

z1(k)
z2(k)
z3(k)

 ≤



0
0

−CDRNxmin
DRN

CDRNxmax
DRN

0
0

−umin

umax

0
0

−wmin

wmax

−ȳWD
ymax


︸ ︷︷ ︸

g6

E1x(k) + E2u(k) + E3w(k) + E4δ(k) + E5z(k) ≤ g6

(2-44)

And so the complete hybrid system is:

x(k + 1) = Ax(k) + B1u(k) + B3z(k) + Gw(k)[
yWD(k)
xDRN(k)

]
= Cx(k) + D3z(k)

s. t. E1x(k) + E2u(k) + E3w(k) + E4δ(k) + E5z(k) ≤ g6

(2-45)

Where the system has 1 binary variable, and 14 linear constraints.

2-4-2 PWA model

The predictions with the created hybrid model had issues. As can be seen in Figure 2-6, the
prediction closely follows the actual measurements until a water deficit of 0 is reached. Here,
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the model goes into a negative regime, which would not be possible physically.

00:00
26-Apr

03:00 06:00 09:00 12:00 15:00 18:00 21:00 03:00 06:00

time_stamp

−0.5

0.0

0.5

1.0

1.5

2.0

(l/
m

2)

Water content deficit estimation

Measurements
Predictions

Figure 2-6: Prediction with the hybrid model 1

To counteract this anomaly, it is worthwile to look at the predicted drain compared to the
actual drain. Figure 2-7 shows, how the drain prediction changes compared to the actual
measured drain. It can be seen, that the predicted drain is less than the actual drain, when
the water deficit measurements are close to 0.
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00:00
26-Apr

03:00 06:00 09:00 12:00 15:00 18:00 21:00 03:00 06:00

time_stamp

0

1

2

Water deficit prediction
Drain prediction
Water deficit measurement
Drain measurement

Figure 2-7: Prediction with the hybrid model 2

To enforce the non-negativity of the water deficit curve and still maintain the water balance
equation, the only possibility is to lead away the excess irrigation water as drain. Similarly
to the water bucket model, three linear models can describe the system in this case. The first
model is active above a water deficit threshold, ȳWD. Here, just as in the previous hybrid
model, no drain happens, and the change in water deficit is the difference between plant water
uptake and irrigation. Additionally, the influence of irrigation and plant water uptake is not
considered on the model of the drain:

[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
1 0
0 ADRN

]
︸ ︷︷ ︸

A1

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[
−1
0

]
︸ ︷︷ ︸

B1

u(k) +
[
1
0

]
︸︷︷︸
G1

w(k)

[
yWD(k)
yDRN(k)

]
=
[
1 0
0 0

]
︸ ︷︷ ︸

C1

[
yWD(k)
xDRN(k)

]
+
[
0
0

]
︸︷︷︸
D1

u(k) +
[
0
0

]
︸︷︷︸
W1

w(k)
(2-46)

The second model is active, when the water deficit is below ȳWD, but the following value,
yWD(k + 1) is above zero. Then, the identified drain model has its effect on the water deficit
as well:
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[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
1 CDRN
0 ADRN

]
︸ ︷︷ ︸

A2

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[
du − 1

Bu

]
︸ ︷︷ ︸

B2

u(k) +
[
dw + 1

Bw

]
︸ ︷︷ ︸

G2

w(k)

[
yWD(k)
yDRN(k)

]
=
[
1 0
0 CDRN

]
︸ ︷︷ ︸

C2

[
yWD(k)
xDRN(k)

]
+
[

0
du

]
︸ ︷︷ ︸

D2

u(k) +
[

0
dw

]
︸ ︷︷ ︸

W2

w(k)
(2-47)

And finally, when yWD(k + 1) is predicted to be below 0, all the excess water has to go out
through drain. This means, that because yWD(k +1) = yWD(k)−u(k)+w(k)+QDRN(k) and
yWD(k + 1) := 0, QDRN(k) = u(k) − w(k) − yWD(k). So the 3rd and final system is:

[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
0 0
0 ADRN

]
︸ ︷︷ ︸

A3

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[

0
Bu

]
︸ ︷︷ ︸

B3

u(k) +
[

0
Bw

]
︸ ︷︷ ︸

G3

w(k)

[
yWD(k)
yDRN(k)

]
=
[

1 0
−1 0

]
︸ ︷︷ ︸

C3

[
yWD(k)
xDRN(k)

]
+
[
0
1

]
︸︷︷︸
D3

u(k) +
[

0
−1

]
︸ ︷︷ ︸

W3

w(k)
(2-48)

Let us write the predicted water deficit according to the drain model as: f̂(x(k), u(k), w(k)) =[
1 CDRN

]
x(k) + (du − 1)u(k) + (dw + 1)w(k), and so the complete PWA representation of

the system is:

x(k + 1) = Aix(k) + Biu(k) + Giw(k)[
yWD(k)
yDRN(k)

]
= Cix(k) + Diu(k) + Wiw(k)

i =


1 IF: yWD(k) > ȳWD AND f̂(x(k), u(k), w(k)) ≥ 0
2 IF: yWD(k) <= ȳWD AND f̂(x(k), u(k), w(k)) ≥ 0
3 IF: f̂(x(k), u(k), w(k)) < 0

(2-49)

2-4-3 MLD formulation of the PWA model

The PWA model can be transformed into an Mixed Logical Dynamical (MLD) formulation,
with the use of the logical rules (modes) introduced in (2-49). Looking now at the original
MLD model with δ1 = δ:

xDRN(k + 1) = ADRNxDRN(k) + Buu(k) + Bww(k)
yDRN(k) = CDRNδ1(k)xDRN(k) + duδ1(k)u(k) + dwδ1(k)w(k)

(2-50)

The two additions to the model are, (I) that when f̂(x(k), u(k), w(k)) < 0 the drain is equal
to QDRN(k) = −yWD(k) + u(k) − w(k), and (II) when yWD(k) > ȳWD, the input u(k) and the
disturbance w(k) are not having an effect on the model of the drain. This is modelled the
following way:
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xDRN(k + 1) = ADRNxDRN(k) + Buδ1(k)u(k) + Bwδ1(k)w(k)
yDRN(k) = CDRNδ2(k)δ1(k)xDRN(k) + duδ2(k)δ1(k)u(k) + dwδ2(k)δ1(k)w(k)+

+ (1 − δ2(k))u(k) − (1 − δ2(k))yWD(k) − (1 − δ2(k))w(k)
(2-51)

With the constraints:

δ1(k)
(
ymin − ȳWD

)
≤ yWD(k) − ȳWD

δ1(k) (ymax − ȳWD + ε) ≤ −yWD(k) + ymax

−yminδ2(k) ≤
[
1 CDRN

]
x(k) + (du − 1)u(k) + (dw + 1)w(k) − ymin

−δ2(k) (ymax + ε) ≤ −
([

1 CDRN
]

x(k) + (du − 1)u(k) + (dw + 1)w(k)
)

− ε

(2-52)

Using the method described in [28], a new binary variable δ3 is introduced, with δ3(k) =
δ1(k)δ2(k). With it (2-51) now reads:

xDRN(k + 1) = ADRNxDRN(k) + Buδ1(k)u(k) + Bwδ1(k)w(k)
yDRN(k) = CDRNδ3(k)xDRN(k) + duδ3(k)u(k) + dwδ3(k)w(k)+

+ (1 − δ2(k))u(k) − (1 − δ2(k))yWD(k) − (1 − δ2(k))w(k)
(2-53)

and 3 constraints are introduced additionally to the already defined ones in (2-52):

−δ1(k) + δ3(k) ≤ 0
−δ2(k) + δ3(k) ≤ 0

δ1(k) + δ2(k) − δ3(k) ≤ 1
(2-54)

Similarly to Section 2-4-1, auxiliary real variables are introduced:

z(k) =



z1(k)
z2(k)
z3(k)
z4(k)
z5(k)
z6(k)
z7(k)
z8(k)


:=



δ1(k)u(k)
δ1(k)w(k)
δ2(k)u(k)

δ2(k)yWD(k)
δ2(k)w(k)

δ3(k)CDRNxDRN(k)
δ3(k)u(k)
δ3(k)w(k)


(2-55)

And so (2-53) gets the following form:

xDRN(k + 1) = ADRNxDRN(k) + Buz1(k) + Bwz2(k)
yDRN(k) = z6(k) + duz7(k) + dwz8(k)+

+ u(k) − yWD(k) − w(k) − z3(k) + z4(k) + z5(k)
(2-56)
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and the following constraints are introduced to keep the real valued auxiliary variables con-
nected to the auxiliary binary variables and the states and inputs:



z1(k)
z2(k)
z3(k)
z4(k)
z5(k)
z6(k)
z7(k)
z8(k)


︸ ︷︷ ︸

z(k)

≤



umax 0 0
wmax 0 0

0 umax 0
0 ymax

WD 0
0 wmax 0
0 0 CDRNxmax

DRN
0 0 umax

0 0 wmax


︸ ︷︷ ︸

E4,1

δ1(k)
δ2(k)
δ3(k)


︸ ︷︷ ︸

δ(k)

z(k) ≥



umin 0 0
wmin 0 0

0 umin 0
0 ymin

WD 0
0 wmin 0
0 0 CDRNxmin

DRN
0 0 umin

0 0 wmin


︸ ︷︷ ︸

E4,2

δ(k)

z(k) ≤



0 0
0 0
0 0
1 0
0 0
0 CDRN
0 0
0 0


︸ ︷︷ ︸

E1,1

[
yWD(k)
xDRN(k)

]
+



1
0
1
0
0
0
1
0


︸︷︷︸
E2,1

u(k) +



0
1
0
0
1
0
0
1


︸︷︷︸
E3,1

w(k) − E4,2

1
1
1


︸︷︷︸

1

+E4,2δ(k))

z(k) ≥ E1,1

[
yWD(k)
xDRN(k)

]
+ E2,1u(k) + E3,1w(k) − E4,11 + E4,1δ(k))

(2-57)

The MLD model is restructured:

xDRN(k + 1) = ADRNxDRN(k) +
[
Bu Bw 0 0 0 0 0 0

]
︸ ︷︷ ︸

Bz

z(k)

yDRN(k) = u(k) − yWD(k) − w(k) +
[
0 0 −1 1 1 1 du dw

]
︸ ︷︷ ︸

Cz

z(k)
(2-58)

Now that the MLD drain model is fully defined, it is combined with the water balance
equation:
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[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
0 0
0 ADRN

]
︸ ︷︷ ︸

A

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[
0
0

]
︸︷︷︸
B1

u(k) +
[
Cz

Bz

]
︸ ︷︷ ︸

B3

z(k) +
[
0
0

]
︸︷︷︸

G

w(k)

[
yWD(k)
yDRN(k)

]
=
[

1 0
−1 0

]
︸ ︷︷ ︸

C

[
yWD(k)
xDRN(k)

]
+
[
0
1

]
︸︷︷︸
D1

u(k) +
[

0
Cz

]
︸ ︷︷ ︸

D3

z(k) +
[

0
−1

]
︸ ︷︷ ︸

W

w(k)
(2-59)

The constraints from (2-52) are further transformed:

E4,3 =


ymin − ȳWD 0 0

ymax − ȳWD + ε 0 0
0 −ymin 0
0 − (ymax + ε) 0

 , g6,1 =


−ȳWD
ymax

−ymin

−ε



E1,2 =


−
[
1 0

][
1 0

]
−
[
1 CDRN

][
1 CDRN

]

 , E2,2 =


0
0

− (du − 1)
(du − 1)

 , E3,2 =


0
0

− (dw − 1)
(dw − 1)


(2-60)

As well as (2-54):

E4,4 =

−1 0 1
0 −1 1
1 1 −1

 , g6,2 =

0
0
1

 (2-61)

The constraining inequalities are also transformed into a linear algebraic form:



0
0

−E1,1
E1,1
E1,2

0


︸ ︷︷ ︸

E1

x(k) +



0
0

−E2,1
E2,1
E2,2

0


︸ ︷︷ ︸

E2

u(k) +



0
0

−E3,1
E3,1
E3,2

0


︸ ︷︷ ︸

E3

w(k) +



−E4,1
E4,2

−E4,2
E4,1
E4,3
E4,4


︸ ︷︷ ︸

E4

δ(k) +



I
−I
I

−I
0
0


︸ ︷︷ ︸

E5

z(k) ≤



0
0

−E4,21
E4,11
g6,1
g6,2


︸ ︷︷ ︸

g6

(2-62)
And so the final system is constructed:

x(k + 1) = Ax(k) + B1u(k) + B3z(k) + Gw(k)[
yWD(k)
yDRN(k)

]
= Cx(k) + D1u(k) + D3z(k) + W w(k)

s. t. E1x(k) + E2u(k) + E3w(k) + E4δ(k) + E5z(k) ≤ g6

(2-63)

The system has 3 auxiliary binary variables and 4 · 8 + 4 + 3 = 39 constraints.

Master of Science Thesis Csaba Balla-Somogyi



30 Modeling

2-5 Summary

The previous sections described the modelling decisions which were made during the project.
In Section 2-2 a linear and a bi-linear PWU model was identified, from which the bi-linear
model was chosen for further work. Section 2-3 showed that the 5 minute sampling time
of the data makes the identification of a physics based model troublesome, and so a linear
dynamical ARX model was identified to model the drain below a water deficit threshold,
which was then transformed into a State-Space (SS) model. In Section 2-4 the water balance
equation was recreated, which was then modified to incorporate the zero-drain assumption
(Assumption 2.2) in Section 2-4-1, and the additional non-zero water deficit rule in Section 2-
4-2. Section 2-4-3 showed the transformation of the PWA model into an MLD form. The
developed MLD formulations are suitable to use for optimal control tasks, because their
evolution can be described through linear equations with the help of the auxiliary variables,
while the inequality constraints ensure, that the models behave according to the defined rules.
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Chapter 3

MPC

The main idea of this thesis project is to use a predictive control approach to influence
the Water Deficit (WD) curve of the growing substrate. In this chapter, specific problem
formulations are introduced which use the models developed in Chapter 2. The ideas and
notation of the Model Predictive Control (MPC) framework used in this chapter are taken
from [29].

3-1 Linear MPC

The first type of MPC considered is a regular tracking MPC for a linear system. It will be
used to benchmark the performance of the Mixed Logical Dynamical (MLD) MPCs, which
are going to be presented later on in this chapter. The linear model considered for this section
has the same structure as described in Section 2-4, but it is fitted on the whole dataset, not
just below a WD of 0.4 l/m2. Because of this, the model is less accurate, but the control
algorithm is less resource intensive to compute.
The linear system is given by:

[
yWD(k + 1)
xDRN(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[
1 CDRN
0 ADRN

]
︸ ︷︷ ︸

A

[
yWD(k)
xDRN(k)

]
︸ ︷︷ ︸

x(k)

+
[
du − 1

Bu

]
︸ ︷︷ ︸

B

u(k) +
[
1 + dw

Bw

]
︸ ︷︷ ︸

G

w(k)

[
yWD(k)
yDRN(k)

]
︸ ︷︷ ︸

y(k)

=
[
1 0
0 CDRN

]
︸ ︷︷ ︸

C

[
yWD(k)
xDRN(k)

]
+
[

0
du

]
︸ ︷︷ ︸

D

u(k) +
[

0
dw

]
︸ ︷︷ ︸

W

w(k)
(3-1)

The optimal control problem is defined by the following cost function:

VN (yN , uN ) = 1
2

N−1∑
k=0

q (yWD(k) − yref(k))2 + ru2(k) (3-2)
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Where N is the control horizon, yref(k) is the reference trajectory for the WD, q is the stage
cost for the tracking, and r is the cost for water usage. It should be noted, that a regular
tracking MPC problem would have u(k) − uref(k) in the stage cost, instead of just u(k). For
this problem however, the cost on the input (irrigation) is used to penalize the water usage,
and so the task of the controller is to find a balance between tracking and resource usage.
The cost function in (3-2) is rewritten into a linear algebraic equation:

VN (yN , uN ) = 1
2 (yN − yref,N )T Q (yN − yref,N ) + 1

2uT
N RuN (3-3)

with:

Q =



[
q 0
0 0

] [
0 0
0 0

]
. . .

[
0 0
0 0

]
[
0 0
0 0

] [
q 0
0 0

]
. . .

[
0 0
0 0

]
...

... . . . ...[
0 0
0 0

] [
0 0
0 0

]
. . .

[
q 0
0 0

]


, R =


r 0 . . . 0
0 r . . . 0
... . . . ...
0 0 . . . r



yN =


y(0)
y(1)

...
y(N − 1)

 yref,N =



[
yref(0)

0

]
[
yref(1)

0

]
...[

yref(N − 1)
0

]



(3-4)

If q > 0, then Q is positive semi-definite, and if r > 0, then R is positive definite. Because
VN (yN , uN ) is a function of the series of outputs, it must be transformed so, that the output
disappears from the cost, and only the decision variable uN , the initial state x0 and the
disturbance vector wN remains in the cost. This can be done using the following formulation:
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yN = PpN + SuN
y(0)
y(1)

...
y(N − 1)

 =
[
Px Pw

]
︸ ︷︷ ︸

P

[
x0
wN

]
︸ ︷︷ ︸

pN

+SuN


y(0)
y(1)

...
y(N − 1)

 =


C

CA
...

CAN−1


︸ ︷︷ ︸

Px

x0 +


D 0 . . . 0

CB D . . . 0
...

... . . . ...
CAN−2B CAN−3B . . . D


︸ ︷︷ ︸

S


u(0)
u(1)

...
u(N − 1)



+


W 0 . . . 0
CG W . . . 0

...
... . . . ...

CAN−2G CAN−3G . . . W


︸ ︷︷ ︸

Pw


w(0)
w(1)

...
w(N − 1)



(3-5)

With the use of the prediction matrices S and P, the cost function from (3-3) is reformulated:

VN (uN , yN ) = 1
2 (yN − yref,N )T Q (yN − yref,N ) + 1

2uT
N RuN

VN (uN , pN ) = 1
2 (PpN + SuN − yref,N )T Q (PpN + SuN − yref,N ) + 1

2uT
N RuN

VN (uN , pN ) = 1
2
(
uT

N ST QSuN + uT
N RuN

)
+ 1

2
(
pT

N PT QPpN + yT
ref,N Qyref,N

)
+

+
(
pT

N PT QS − yT
ref,N QS

)
uN − pT

N PT Qyref,N

VN (uN , pN ) = 1
2uT

N

(
ST QS + R

)
︸ ︷︷ ︸

H

uN +
(
pT

N PT QS − yT
ref,N QS

)
︸ ︷︷ ︸

hT

uN +

+ 1
2
(
pT

N PT QPpN + yT
ref,N Qyref,N − 2pT

N PT Qyref,N
)

︸ ︷︷ ︸
c

VN (uN , pN ) = 1
2uT

N HuN + hT uN + c

(3-6)

The resulting optimal control problem (minuN VN ) is convex if H is positive-semi definite.

3-1-1 Constraints

One of the big advantages of MPC compared to other linear control approaches is that con-
straints can be imposed on the inputs, states and outputs. First, the input constraints are
considered.
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The amount of irrigation which can be applied can not be negative. This means, that u = 0.
We can also impose an upper limit on irrigation, which is denoted by ū. The formulation of
these constraints is:

AuuN ≤ bu[
−I
I

]
uN ≤

[
−

¯
u1

ū1

]
(3-7)

Where 1 = [1, 1, . . . , 1]T of appropriate size. Constraints can also be imposed on the water
deficit and drain, y(k). One constraint is non-negativity

¯
y = [0, 0]T . A maximum constraint

can also be imposed to avoid drying out the substrate or flushing it out too much, ȳ. Because
yN can be predicted using the already defined matrices, the constraint can be written as:

ÃyyN ≤ by[
−I
I

]
yN ≤

[
−(1 ⊗ I )

¯
y

(1 ⊗ I )ȳ

]
Ãy (PpN + SuN ) ≤ by

ÃyS︸︷︷︸
Ay

uN ≤ by − ÃyP︸ ︷︷ ︸
Fy

pN

AyuN ≤ by − FypN

(3-8)

Where ⊗ denotes the Kronecker product of two matrices. Besides the minimum and maximum
constraints, the total amount of irrigation and drain can also be restricted. Defining ūTOT and
ȳTOT, DRN as the total irrigation and drain respectively in l/m2 for the prediction horizon:

1T uN ≤ ūTOT (3-9)

and

(1T ⊗
[
0 1

]
)yN ≤ ȳTOT, DRN

(1T ⊗
[
0 1

]
) (PpN + SuN ) ≤ ȳTOT, DRN

(1T ⊗
[
0 1

]
)S︸ ︷︷ ︸

ATOT,y

uN ≤ ȳTOT, DRN − (1T ⊗
[
0 1

]
)P︸ ︷︷ ︸

FTOT,y

pN

(3-10)

The optimal control problem is extended with the constraints:

min
uN

VN (uN , pN ) = 1
2uT

N HuN + hT uN + c

s. t.


Au

Ay

1T

ATOT,y


︸ ︷︷ ︸

Aieq

uN ≤


bu

by

ūTOT
ȳTOT, DRN


︸ ︷︷ ︸

bieq

−


0

Fy

0
FTOT, y


︸ ︷︷ ︸

Fieq

pN
(3-11)
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Because the constraints are linear, the problem stays convex, and so convex optimization can
be used to solve it without the need of a multi-start approach.

3-1-2 Move-blocking

Considering, that h1 = 5min, A control horizon of 48 hours is N = 60/5 · 48 = 576 steps, and
so 576 free optimization variables (irrigation inputs). Because the accuracy of the predictions
drops going further into the future, reducing the granularity of predictions in the future could
reduce the computational complexity. 5 minute granularity can be maintained until 2-3 hours
ahead, and then an hourly amount of irrigation should be calculated which would be applied in
a fixed pattern. Let us now denote the total prediction horizon in hours by: Ht, e.g. Ht = 48.
Let h1 = 5min and h2 = 60min. Let the hours of fine granularity (h = h1) be denoted
by Hf. Now we can calculate the number of predictions by: Nt = Hf · h2/h1 + Ht − Hf =
(h2/h1 − 1)Hf + Ht. The prediction problem has to be restructured for the different sampling
times. Using the same notation as before:

yN = PpN + SuN (3-12)

But now with Nf = Hf · h2/h1, the input vector is:

ũN =



u(0)
u(1)

...
u(Nf − 1)

ũ(Nf)
ũ(Nf + 1)

...
ũ(Nt − 1)


(3-13)

Where u(k) is the amount of irrigation for the upcoming h1 minutes if k < Nf, and ũ(k) is
the amount of irrigation for the upcoming h2 minutes if k ≥ Nf. When k ≥ Nf, the irrigation
input ũ(k) is per hour, and so a matrix is used to distribute the irrigation in a fixed pattern,
e.g. every 10 minutes:

uk·h2,(k+1)·h2 = T ũ(k)


u(k)

u(k + 1)
...

u(k + h2 − 1)

 =



2h1
h2
0

2h1
h2...

2h1
h2
0


︸ ︷︷ ︸

T

ũ(k) (3-14)

Now for the whole horizon:
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uN = T̄ ũN
u0,Nf

uNf,Nf+h2
...

uNt−h2,Nt

 =


I 0 . . . 0
0 T . . . 0
... . . . ...
0 0 . . . T


︸ ︷︷ ︸

T̄


u0,Nf

ũ(Nf)
...

ũ(Nt − 1)

 (3-15)

And so the only change to the predictions is in the S matrix:

yN = PpN + ST̄ ũN (3-16)

And by the constraints the Aieq matrix:

AieqT̄uN ≤ bieq − FieqpN (3-17)

With the introduced changes, the decision variables of the problem can be reduced signifi-
cantly. E.g. with Ht = 48 hours and Hf = 3 hours, Nt = (60/5 − 1) · 3 + 48 = 81 samples and
free decision variables, compared to the original 576 free decision variables.

3-2 Hybrid MPC

To use the model from Section 2-4-1, the problem formulation from (3-3) is used, which is
a combined economic and tracking problem. The MLD model from (2-45) has 5 different
variables: x is the real-valued state vector of the system, u is the irrigation input, w is the
Plant Water Uptake (PWU). The last two variables are auxiliary, meaning that they have
been introduced because of the MLD framework. δ is an auxiliary binary variable vector
and z is a real-valued auxiliary vector. For prediction purposes, it is assumed, that the
initial state of the system x0 is known, as well as the predicted disturbance vector wN . The
irrigation input and auxiliary variables are however calculated through optimization, where
they are the decision variables. Because the MLD water balance system is deterministic, yN

can be written as a function of the optimization variables vN =
[
uT

N , δT
N , zT

N

]T
and the fixed

parameters: initial state x0 and series of disturbances wN .
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yN = PpN + SvN
y(0)
y(1)

...
y(N − 1)

 =
[
Px Pw

]
︸ ︷︷ ︸

P

[
x0
wN

]
︸ ︷︷ ︸

pN

+
[
Su 0 Sz

]
︸ ︷︷ ︸

S

uN

δN

zN


︸ ︷︷ ︸

vN
y(0)
y(1)

...
y(N − 1)

 =


C

CA
...

CAN−1


︸ ︷︷ ︸

Px

x0 +


D1 0 . . . 0

CB1 D1 . . . 0
...

... . . . ...
CAN−2B1 CAN−3B1 . . . D1


︸ ︷︷ ︸

Su


u(0)
u(1)

...
u(N − 1)

+

+


D3 0 . . . 0

CB3 D3 . . . 0
...

... . . . ...
CAN−2B3 CAN−3B3 . . . D3


︸ ︷︷ ︸

Sz


z(0)
z(1)

...
z(N − 1)

+

+


W 0 . . . 0
CG W . . . 0

...
... . . . ...

CAN−2G CAN−3G . . . W


︸ ︷︷ ︸

Pw


w(0)
w(1)

...
w(N − 1)



(3-18)

The cost function has the same form as in (3-11), with uN replaced by vN , and with a
modified R̄ matrix:

VN (vN , pN ) = 1
2vT

N

(
ST QS + R̄

)
︸ ︷︷ ︸

H

vN +
(
pT

N PT QS − yT
ref,N QS

)
︸ ︷︷ ︸

hT

vN +

+ 1
2
(
pT

N PT QPpN + yT
ref,N Qyref,N − 2pT

N PT Qyref,N
)

︸ ︷︷ ︸
c

VN (vN , pN ) = 1
2vT

N HvN + hT vN + c

(3-19)

with

R̄ =

R 0 0
0 0 0
0 0 0

 (3-20)

The constraints defining the auxiliary variables are extended for the whole horizon N :
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Ẽ1xN + Ẽ2uN + Ẽ3wN + Ẽ4δN + Ẽ5zN ≤ g̃6

s. t. Ẽi =


Ei 0 . . . 0
0 Ei . . . 0
... . . . ...
0 0 . . . Ei

 for i = 1, . . . , 5 and g̃6 =


g6
g6
...

g6

 (3-21)

As yN , xN can also be defined as a linear combination of the other variables:

xN = P̃pN + S̃vN
x(0)
x(1)

...
x(N − 1)

 =
[
P̃x P̃w

]
︸ ︷︷ ︸

P̃

[
x0
wN

]
︸ ︷︷ ︸

pN

+
[̃
Su 0 S̃z

]
︸ ︷︷ ︸

S̃

uN

δN

zN


︸ ︷︷ ︸

vN

xN =


I
A
...

AN−1


︸ ︷︷ ︸

P̃x

x0 +


0 0 . . . 0

B1 0 . . . 0
...

... . . . ...
AN−2B1 AN−3B1 . . . 0


︸ ︷︷ ︸

S̃u

uN +

+


0 0 . . . 0

B3 0 . . . 0
...

... . . . ...
AN−2B3 AN−3B3 . . . 0


︸ ︷︷ ︸

S̃z

zN +


0 0 . . . 0
G 0 . . . 0
...

... . . . ...
AN−2G AN−3G . . . 0


︸ ︷︷ ︸

P̃w

wN

xN = P̃xx0 + S̃uuN + S̃zzN + P̃wwN

(3-22)

Rewriting the inequalities for vN and pN :

Ẽ1xN + Ẽ2uN + Ẽ3wN + Ẽ4δN + Ẽ5zN ≤ g̃6

Ẽ1
(
P̃xx0 + S̃uuN + S̃zzN + P̃wwN

)
+ Ẽ2uN + Ẽ3wN + Ẽ4δN + Ẽ5zN ≤ g̃6

Ẽ1P̃xx0 +
(
Ẽ1S̃u + Ẽ2

)
uN +

(
Ẽ1P̃w + Ẽ3

)
wN + Ẽ4δN +

(
Ẽ1S̃z + Ẽ5

)
zN ≤ g̃6

[
Ẽ1P̃x Ẽ1P̃w + Ẽ3

]
︸ ︷︷ ︸

F2

[
x0
wN

]
+
[
Ẽ1S̃u + Ẽ2 Ẽ4 Ẽ1S̃z + Ẽ5

]
︸ ︷︷ ︸

F1

uN

δN

zN

 ≤ g̃6

F1vN ≤ g̃6 − F2pN

(3-23)

And with this the optimal control problem is assembled:
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min
vN

VN (vN , pN ) = 1
2vT

N HvN + hT vN + c

s. t. F1vN ≤ g̃6 − F2pN

(3-24)

Although move-blocking can only simplify the irrigation inputs, not the auxiliary variables,
it can be worthwhile to introduce it for the hybrid model as well. The predictions change by:

yN = PpN + SvN
yWD(0)
yWD(1)

...
yWD(N − 1)

 =
[
Px Pw

]
︸ ︷︷ ︸

P

[
x0
wN

]
︸ ︷︷ ︸

pN

+
[
SuT̄ 0 Sz

]
︸ ︷︷ ︸

S

ũN

δN

zN


︸ ︷︷ ︸

vN

(3-25)

And by the constraints the S̃u matrix:

xN = P̃pN + S̃vN
x(0)
x(1)

...
x(N − 1)

 =
[
P̃x P̃w

]
︸ ︷︷ ︸

P̃

[
x0
wN

]
︸ ︷︷ ︸

pN

+
[̃
SuT̄ 0 S̃z

]
︸ ︷︷ ︸

S̃

ũN

δN

zN


︸ ︷︷ ︸

vN

(3-26)

and the F1 matrix:

[
Ẽ1P̃x Ẽ1P̃w + Ẽ3

]
︸ ︷︷ ︸

F2

[
x0
wN

]
+
[(

Ẽ1S̃u + Ẽ2
)

T̄ Ẽ4 Ẽ1S̃z + Ẽ5
]

︸ ︷︷ ︸
F1

ũN

δN

zN

 ≤ g̃6

F1vN ≤ g̃6 − F2pN

(3-27)

3-2-1 Constraints

Because the constraints in Section 3-1-1 are only imposed on the inputs and outputs of the
system, the change in the formulation is not substantial:

AuvN ≤ bu[
−I 0 0
I 0 0

]uN

δN

zN

 ≤
[
−

¯
u1

ū1

]
(3-28)
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ÃyyN ≤ by[
−I
I

]
yN ≤

[
−(1 ⊗ I )

¯
y

(1 ⊗ I )ȳ

]
Ãy (PpN + SvN ) ≤ by

ÃyS︸︷︷︸
Ay

vN ≤ by − ÃyP︸ ︷︷ ︸
Fy

pN

AyvN ≤ by − FypN

(3-29)

The constraints on the total amounts are:

ATOT,uvN ≤ ūTOT

[
1T 0T 0T

]
︸ ︷︷ ︸

ATOT,u

uN

δN

zN

 ≤ ūTOT
(3-30)

and

(1T ⊗
[
0 1

]
)yN ≤ ȳTOT, DRN

(1T ⊗
[
0 1

]
) (PpN + SvN ) ≤ ȳTOT, DRN

(1T ⊗
[
0 1

]
)S︸ ︷︷ ︸

ATOT,y

vN ≤ ȳTOT, DRN − (1T ⊗
[
0 1

]
)P︸ ︷︷ ︸

FTOT,y

pN

(3-31)

And so the constraints are assembled:


Au

Ay

ATOT,u

ATOT,y


︸ ︷︷ ︸

Aieq

uN ≤


bu

by

ūTOT
ȳTOT, DRN


︸ ︷︷ ︸

bieq

−


0

Fy

0
FTOT, y


︸ ︷︷ ︸

Fieq

pN (3-32)

And the optimal control problem is extended with the constraints:

min
vN

VN (vN , pN ) = 1
2vT

N HvN + hT vN + c

s. t.
[

F1
Aieq

]
vN ≤

[
g6
bieq

]
−
[

F2
Fieq

]
pN

(3-33)

The optimal control problem in (3-33) is an Mixed Integer Quadratic Programming (MIQP)
optimization problem. Because the constraints are all linear, if H is positive semi-definite,
the relaxed problem is convex, which is exploited by GUROBI[30] to provide a bound on the
optimal solution, thus guaranteeing optimality. The formulation introduced in this section is
used for both the original and the modified MLD model.
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3-2-2 Linear cost function

The quadratic cost function which was introduced in (3-33) puts a big computational load on
the solver. For long prediction (and control) horizons, meaning 24-48 hours, the complexity
of the systems grow substantially. Although this complexity is reduced by the reduced gran-
ularity of the irrigation inputs after Hf hours, the number of auxiliary variables δN and zN

stays the same. This means, that even for the simpler hybrid model with a 48 hour prediction
with a sampling time of h1= 5 min, there is 48*60/5=576 binary and 3*48*60/5=1728 real
valued auxiliary variables. Considering that the MIQP is NP complete [28], which means
that its complexity grows exponentially with the size of the problem, a branch-and-bound al-
gorithm would in worst case have to solve 2576 ≈ 10173 regular Quadratic Programming (QP)
problems to arrive at the optimum. This is unfeasible. One way to circumvent this problem
is a linear cost function. Instead of:

VN (yN , uN ) = 1
2

N−1∑
k=0

q (yWD(k) − yref(k))2 + ru2(k) (3-34)

the absolute value of the differences is minimised:

VN (yN , uN ) =
N−1∑
k=0

q · |yWD(k) − yref(k)| + r · |u(k)| (3-35)

Which is then transformed into:

VN (yN , uN ) = ||Q (yN − yref,N )| |1 + · ||RuN | |1 (3-36)

And with yN = PpN + SvN :

min
vN

VN (vN , pN ) = ||Q (PpN + SvN − yref,N )| |1 +
∣∣∣∣∣∣R̄vN

∣∣∣∣∣∣
1

s. t.
[

F1
Aieq

]
vN ≤

[
g6
bieq

]
−
[

F2
Fieq

]
pN

(3-37)

The 1-norm of the cost function can be transformed into a new optimization problem with
additional constraints. The resulting problem is Mixed Integer Linear Programming (MILP),
meaning, that both the cost function and the constraints are linear. This way, the computa-
tional complexity of the algorithm is reduced.

3-2-3 Reducing complexity with heuristics

The complexity of the optimization problem can further be reduced by actively using heuris-
tics during the assembly of the optimization problem. The two biggest drawbacks of an MLD
formulation are the high number of binary variables and the amount of constraints. The num-
ber of constraints can hardly be reduced because the MLD formulation is based on connecting
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auxiliary real and binary variables with inequality constraints. The number of binary vari-
ables per timestep is also fixed, and so it can only be reduced by making the control horizon
shorter. On the other hand, the binary variables can be fixed to certain values each timestep
using equality constraints, which then the solver can substitute in and presolve, making the
problem less complex. Figure 2-6 is a general shape of WD curve which can be seen in most
greenhouses: Dutch growers tend to prefer maximal water content during the day to ensure,
that all the gutters inside a compartment have sufficient water supply, while during the night
they aim for a certain drydown to let the root zone of the plants get enough oxygen.

Figure 3-1: Interval of simplification

The cost function in (3-37) is based on the deviation from the reference trajectory yref,N ,
and if the reference trajectory has a similar shape as Figure 2-6, it is likely that the provided
solution is going to follow that trajectory accurately, given that there are no restricting
constraints, such as maximal irrigation amount or maximal WD. In Figure 3-1 the two ends
of the interval are marked, where the WD is below a threshold of 0.4 l/m2. Outside this
interval, it is possible to use only the simple "drainless" model, which means that δ = 0 in
the model of Section 2-4-1, and that δ1 = 0, δ2 = 1, and consequently δ3 = 0 in the model of
Section 2-4-3. The interval where the simplified model can be used is denoted by the green
opaque area. The constraints are formulated in the following way:

AHvN = 1 ⊗ 0

[
0 AH,δ 0

]
︸ ︷︷ ︸

AH

uN

δN

zN

 = 1 ⊗ 0 (3-38)

or:
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AHvN = 1 ⊗

0
1
0


[
0 AH,δ 0

]
︸ ︷︷ ︸

AH

uN

δN

zN

 = 1 ⊗

0
1
0


(3-39)

Where AH,δ selects only the δ values which are outside the described interval. The matrix
depends on the time of calculation, the length of the control horizon as well as the length and
relative position of the described interval. To avoid faulty calculations, the assumption of the
WD being above the threshold can be enforced using inequality constraints on the output
yN :

ÃH,yyN ≤ −1 ⊗ ȳWD

ÃH,y (PpN + SvN ) ≤ −1 ⊗ ȳWD

ÃH,yS︸ ︷︷ ︸
AH,y

vN ≤ −1 ⊗ ȳWD − ÃH,yP︸ ︷︷ ︸
FH,y

pN

AH,yvN ≤ −1 ⊗ ȳWD − FH,ypN

(3-40)

Where ÃH,y (similarly to AH,δ) selects the WD values outside the interval. To counter pos-
sible degradation of solutions and to avoid conflicts with the constraints, the interval can be
extended by 1 hour on both ends, providing flexibility to the optimisation algorithm. Fig-
ure 3-2 shows with opaque green area the possible values WD can take during the simplified
optimisation.

Figure 3-2: Interval of simplification with constraints

3-3 Summary

The chapter used the formulated models from Chapter 2 to create the optimal control prob-
lems needed for the use of Model Predictive Control (MPC). Section 3-1 detailed, how a
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regular linear MPC was created for the irrigation problem, with cost and constraint defini-
tions, as well as move-blocking. Section 3-2 showed, how the optimal control problem can be
reformulated to accommodate the use of MLD models. A linear cost function was presented
to reduce the complexity of the mixed integer problem, creating a MILP problem, which
can be efficiently solved with modern optimization software. Further simplification was done
using heuristics which reduced the number of auxiliary binary variables.
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Chapter 4

Validation

The previous two chapters introduced both the modeling and the control design of the irri-
gation system. Although the accuracy of the individual models (Plant Water Uptake (PWU)
and drain) was discussed in Chapter 2, the combined performance of the water balance model
is still a question, which is answered in Section 4-1. In Section 4-2 the controller is assessed
in terms of feasibility, run-time, and with comparing the created irrigation decisions to the
grower’s strategies.

4-1 Model validation

Chapter 2 introduced 4 water balance models, of which 2 describe the same system but in
different ways. The first model was introduced in Section 2-4-1 in (2-36), which is a linear
State-Space (SS) model. The second model from (2-45) is a Mixed Logical Dynamical (MLD)
model, which is only identified below a certain Water Deficit (WD) threshold, and above that
the drain is set to 0. The third and fourth models describe the same system: the second
model extended with the condition, that the WD can not sink below 0. The model validation
handles the Piecewise Affine (PWA) representation of the system from (2-49).

For the evaluation of the models a number of tests are conducted. First, the models are
trained on a part of the dataset and are then evaluated on the other part, without retraining.
Then the models are trained and evaluated in a progressive manner (as discussed in Figure 2-
5), which simulates how the controller could be used in real-life. To test the accuracy of the
models, the same historic irrigation inputs are used as in the data, and the WD, PWU and
drain predictions are compared with the measurements. Both approaches are evaluated on
different greenhouse datasets. These can be found in the appendix B. In general, the following
metrics are used by the evaluation:

• R2 of the predictions

• Normalized Root Mean Square Error (RMSE) of the predictions
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• Accuracy of the daily accumulates

• Moving average of RMSE

4-1-1 Static identification

The first dataset for the evaluation is the one which was used during the project to create
the models and the controller. It is detailed at the beginning of Chapter A. Figure 4-1 shows
a 48 hour prediction of WD on the validation data. From the 3 models, the PWA model is
the most accurate, followed by the first type of hybrid model. The linear model is the least
accurate. The bottom subplot shows the moving average of the normalized RMSE with a
sliding window of 20 samples. It can be seen that with the PWA model, the moving average
of the RMSE stays below 20% for the whole 48 hours.
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Figure 4-1: Example prediction on the first dataset - WD

Figure 4-2 shows the measured and predicted cumulative values of drain and PWU. There
is only one PWU prediction because it is a static regressional model, which provides the
disturbance input w(k) to the different dynamical models. It can be seen, that although
the PWA model predicts the WD the most accurately, the drain is best predicted by the
hybrid model. It can also be seen, that the PWU model underestimates the actual PWU.
To understand, how the PWA model predicts the most accurately, it is enough to look at its
logical structure: if the water deficit would go below 0, the excess water from the irrigation
leaves through drain. Because the PWU is underestimated, the irrigation would push the
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WD to a negative regime, which in turn results in more drain. The mismatch in PWU is
added to the drain and so the water output is balanced out, and the WD prediction stays
accurate. This behaviour can keep the system in line if the PWU is underestimated, but not
if it is overestimated.
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Figure 4-2: Example prediction on the first dataset - PWU and drain

The models were trained on 70% of the data. The validation was done on the remaining 30%.
The 2 days accuracy: RMSE, R2 and accuracy of the cumulative values in the end can be
seen in Figure 4-3. The R2 of the predictions stays high with the PWA model, but a slight
drop can be noticed after around 15 days from the end of the identification set (beginning
of the validation set). The RMSE of the predictions is also low with the PWA model. The
end-of-prediction cumulative values of the drain differ the least with the hybrid model. It
is interesting to notice, that the cumulative errors of the PWU are almost like the drain
errors of the PWA model mirrored on the x axis, and that the PWU model is constantly
underestimating the actual water uptake of the plants. This supports the argument from the
previous paragraph.
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Figure 4-3: Accuracy with the static identification approach

The per sample errors can also be inspected. This can give a general idea on how the errors
are distributed, when are the models the least and the most accurate. Figure 4-4 shows
the mean of the WD errors with a band of ±σ (standard deviation) around it. As shown
in Figure 4-3, the PWA model has both the lowest mean of error and the lowest standard
deviation of errors. It is interesting, that compared to the linear and hybrid models, the PWA
model does not suffer from a growing σ band nor a drift of mean error. This is explained
by the extra nonlinearity (maximal drain outflow if the WD would go to zero) that was
added to the model. The PWA model provides unbiased predictions, except for the early
hours in the morning, when the first irrigation shots happen. During these early hours the
model overestimates the WD. The other two models provide unreliable predictions with a
big standard deviation, and with an additional drift by the hybrid model.
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Figure 4-4: Error distribution of the predictions with the static identification approach

From the presented results it is shown, that from the three models the PWA model is by far
the most accurate. Its introduced nonlinearity to output the excess irrigation water via drain
makes it robust against drift in the WD predictions.

4-1-2 Progressive identification

In Section 2-3-2 it was mentioned, that the dynamical model of the drain prediction was
identified through the use of a progressive (sliding window) approach, which is illustrated
in Figure 2-5. To test the approach, the first 10 days were used to identify the models.
Predictions are calculated using the identified models, and the data of the next 2 days are
used to validate the predictions. After the validation, the identification data is extended with
an additional day and the earliest day is removed, so the number of days in the training
dataset stays the same. This is referred to as sliding window identification. For the validation
the same days were used as with the static identification, but with the progressive approach.
This means, that the identification of the models started 10 days before the validation set
(this means a considerably lower data quantity than with the static identification). On the
other hand the algorithm had the advantage, that it could constantly reidentify the models
using the days before the actual validation data of 2 days.

Figure 4-5 shows the accuracy of the progressive identification approach. As it can be seen,
the accuracy of all of the algorithms is considerably lower than with the static identification.
There are days where even the PWA model’s R2 drops below 0.
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Figure 4-5: Accuracy with the progressive identification approach

Figure 4-6 shows, how the WD prediction errors are distributed throughout the prediction
horizon. The progressive identification shows more bias and bigger standard deviation than
the static identification. The reason behind these results could be the fact, that the progressive
identification is susceptible to local model mismatches.
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Figure 4-6: Combined error distribution of the predictions

The appendix contains the same validation figures for other greenhouse datasets. The gener-
alizability of the approach seems to be high: compared to the original set there were slightly
better and also slightly worse performing models. It is interesting to note, that although the
static identification proved better with the original dataset, the validation on the "Greenhouse
2" dataset showed, that the progressive identification provided better overall accuracy with a
lower amount of drift.

4-1-3 Prediction using forecast parameters

The previous sections showed how the models perform under ideal circumstances, when both
the radiation and the humidity deficit are known beforehand. In real-life application, only
estimates (forecasts) are available on these parameters. The radiation predictions are usually
supplied by local meteo stations, to which the effect of scheduled lighting strategy can be
added. Humidity Deficit (HD) on the other hand is an indoor climate parameter, which is
constantly influenced by the processes inside the greenhouse. Certain climate control algo-
rithms have the ability to predict, how the humidity deficit inside the greenhouse is going
change, and therefore forecasts on HD can be obtained. During the thesis project I had access
to the data and results of one of these algorithms.

In this subsection the accuracy of the forecasts is inspected using a dataset from a Dutch
tomato growing greenhouse between 01-04-2022 and 22-06-2022, which is just above 80 days.
First, the accuracy of the forecasts is inspected, then PWU predictions made using the forecast
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variables are compared to PWU predictions made with the actual variables. The performance
of predicting the WD trajectory is also compared.
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Figure 4-7: 2 day forecast of radiation and indoor HD

Figure 4-7 shows a forecast of 2 days where the first day is inaccurate and the second day
is accurate in terms of radiation. The inaccuracy during the first day is possibly caused by
cloud movements. The forecasts used by the greenhouse did not take into account the cloud
movements, and so independent on how far in the future the forecasts are, the radiation
predictions have the same shape as can be seen in the figure.

Figure 4-8 shows the average and standard deviation of errors every 5 minute of a 48 hour
forecast taken at midnight, for every day in the validation dataset. It can be seen, that both
of the climatic parameters are forecast with a maximum of around 30% standard deviation.
With radiation forecasts, there is a small positive bias around noon, which means, that the
forecasts overestimate the radiation. This can happen because the forecasts do not take into
account cloud movements, which reduce the amount of actual solar radiation landing on the
greenhouse. The HD forecasts do not have a structured bias.
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Figure 4-8: Mean and standard deviation of the error of climate forecasts

Figure 4-9 shows predictions made on a day with low forecast errors. It can be seen, that
the models produce quite similar results. Both predictions precede the actual PWU, but the
daily cumulative amounts are close to eachother.
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Figure 4-9: PWU predictions on an accurate forecast day

Figure 4-10 shows the error plot of the models with and without forecast climate data. Making
predictions at midnight for 48 hours ahead shows, that the PWU model has a clear positive
bias. Comparing the two models reveals, that both the mean and the standard deviation of
errors is on par with each other, implying that the use of forecast climate data did not hinder
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the accuracy of the predictions, at least on this dataset. Figure 4-11 shows, that the errors
during a 48 hour WD prediction do not change significantly with forecast data.

Figure 4-10: Mean and standard deviation of the error of PWU predictions

Figure 4-11: Mean and standard deviation of the error of WD predictions

4-2 Controller validation

Because during the project there was no possibility to test the controller in a real green-
house, and because accurate greenhouse irrigation simulation models were not available, the
assessment of the controllers was done in a different way. The controllers were tested in an
open-loop on the available data. The following measures were considered:

• Input recreation accuracy on historical data

• Computation time of the optimal control problem

For the tests in this section the GUROBI[30] optimizer was used with an academic licence.
The optimization algorithm was run on a laptop PC with 8GB of RAM and an Intel Core
i5-7300HQ CPU with 4 physical cores.
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4-2-1 Input recreation accuracy

Because closed-loop validation was not possible during the project, the inputs the controllers
calculate are compared to the original historical inputs. For these experiments, only non-
negativity constraints were imposed on the irrigation shots and the WD output, and the
reference WD trajectory is set to the historical WD values which were realized during the
day of the measurement. Cost (q) on the deviation of the WD from the predefined trajectory
was set to 1, as well as the cost on irrigation (r). For the PWU estimation, the historical
indoor HD and solar radiation data were used. The experiment was done on a day in the
validation dataset where the model fits were good. The control horizon was 8 hours, from
5am until 1pm. The models were identified using the static identification approach presented
in Section 4-1-1

Figure 4-12 show the WD output which the Model Predictive Control (MPC) algorithms
calculated. It can be seen, that the trajectories match the reference perfectly. This comes
from the fact, that each controller found an optimal input sequence regarding its own model.
As can be seen in Figure 4-13, although each controller realized the predefined trajectory, the
inputs are substantially different.
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Figure 4-12: Realized WD trajectories with the MPC algorithms
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Figure 4-13: Irrigation inputs created by the MPC algorithms

The calculated inputs do not match the historical irrigation decisions completely, but the
cumulative values are really close. Table 4-1 shows the statistical measures of the fit between
the historical and calculated values.

Input comparison Linear MPC Hybrid MPC Modified hy-
brid MPC

Normalized RMSE of the ir-
rigation shots

22% 17% 20%

R2 of the irrigation shots 0.43 0.63 0.52
Normalized RMSE of the
cumulative irrigation

6.5% 4.7% 4.5%

R2 of the cumulative irriga-
tion

0.95 0.98 0.98

Normalized end-of-day dif-
ference of cumulative values

-2% 2% -11%

Table 4-1: Accuracy of recreated irrigation schedules

From the algorithms, the hybrid MPC performed the best, achieving the highest fits and,
except for the RMSE of cumulative irrigation, the lowest errors. It is interesting to note, that
all the three algorithms recreated the irrigation decisions quite accurately, independent on
the performance of their respective models. From the algorithms only the modified hybrid
MPC was able to accurately predict the drain trajectory.
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The input recreation was also inspected using forecast radiation and HD variables (similarly
as in Section 4-1-3). As mentioned in Section 4-1-3, the dataset used for forecast validation is
different than what was used in the previous tests in this section, so it is only meaningful to
compare the results of the forecast variable based prediction to the historical variable based
one. Figure 4-14 shows the recreated inputs for a day when the forecasts were accurate,
while Figure 4-15 shows the results for a day with less accurate forecasts. Considering that
the irrigation decisions are made in the morning for the whole day, both figures depict an
acceptable irrigation schedule. In Figure 4-14 only a minor difference can be seen between
the irrigation decisions made with and without forecasts. Figure 4-15 shows bigger difference
between the irrigation decisions, and also between the predictions and the historical irrigation
decisions, and the error of the end-of-the-day cumulative irrigation is around 10% for the
regular predictions and around 16% for the predictions made with forecasts.
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Figure 4-14: Irrigation inputs created by the hybrid MPC algorithm for a day with accurate
forecasts
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Figure 4-15: Irrigation inputs created by the hybrid MPC algorithm for a day with inaccurate
forecasts

4-2-2 Computation time

One of the biggest drawbacks of Mixed Integer Linear Programming (MILP) and Mixed
Integer Quadratic Programming (MIQP) is the time it takes to compute solutions. Table 4-2
shows how the computation time of the algorithms change as the control horizon of the system
grows. For these experiments, only non-negativity constraints of the irrigation and WD were
imposed on the optimization problem. The same costs were used as in the previous section.
The starting time of the MPC was 6 am, which means, that with every horizon length the
interval under the WD threshold was included.
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Computation time in (s) Ht = 2
hour

Ht = 5
hour

Ht = 12
hour

Ht = 24
hour

Linear MPC with QP 0.024 0.033 0.084 0.256
Hybrid MPC with MIQP 0.264 - - -
Modified hybrid MPC with
MIQP

0.330 314.8 >1000 >1000

Hybrid MPC with MIQP
and heuristics

0.117 - - -

Modified hybrid MPC with
MIQP and heuristics

0.281 209.8 >1000 >1000

Hybrid MPC with MILP 0.141 1.97 190.3 >1000
Modified hybrid MPC with
MILP

0.326 30.41 >1000 >1000

Hybrid MPC with MILP
and heuristics

0.079 1.66 169.3 376.1

Modified hybrid MPC with
MILP and heuristics

0.128 12.51 >1000 >1000

Table 4-2: Computation time of optimal solutions

The results show, that the most accurate modified hybrid model suffers the most from high
computation time. The linear MPC provides optimal results the quickest. A quadratic
cost function put an extra load on the mixed integer optimization algorithm, but its early
convergence is higher than the MILP problems. For optimal solutions, the linear cost function
is recommended, but for suboptimal solutions the use of the quadratic cost function could
yield acceptable results faster. The calculation of the MIQP failed during the validation with
the hybrid MPC algorithm for a control horizon equal to or longer than 5 hours because
of convexity issues. Using a linear cost function, heuristics for simplification, an optimal
irrigation schedule can be created for 24 hours ahead in less than 7 minutes.

4-3 Summary

The validation results show, that from the developed models, the modified hybrid MLD or
PWA models (which are the same) could be used effectively for prediction purposes. Although
48 hour predictions could sometimes be accurate, the validation on other greenhouse data
showed, that 24 hour predictions are still accurate, 48 hour ones not that much. The shorter
horizon length is also favorable for the hybrid MPC controllers, because of the computational
time.

The controller validation showed big similarities between historical and calculated inputs,
which is promising for the real world application of the algorithm. Using forecast parameters
does not hinder model accuracy substantially, and the created irrigation decisions are close to
the ones made using historical climate variables. Because of the high computational times and
the availability of weather forecasts (which is hourly), the controller could be used most effec-
tively in a receding horizon, where every 1 hour new irrigation decisions are created. Although
the modified hybrid model was the most accurate in terms of prediction, the regular hybrid
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model provided very accurate reproductions of the historical irrigation decisions. Paired with
the heuristics the run-time of this algorithm can be significantly reduced, therefore even 24
hour long irrigation schedules can be created with it.
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Conclusion

In the previous chapters, the process of modeling and identification, control design, and the
evaluation of the models and control algorithms was presented. The following few paragraphs
summarize the findings of this research.

The modelling of the Plant Water Uptake (PWU) relied on a simple bi-linear regression model
structure from the literature. On the other hand, different unique approaches were created
to model the dynamics of drain in the system. From the developed models, the Piecewise
Affine (PWA) model with 3 modes proved to be the most accurate, which was also able to
counteract the occasional inaccuracy of PWU predictions. The validation results showed,
that the model was able to predict quite accurately for at least 24 hours ahead the evolution
of the Water Deficit (WD) curve, given climatic parameters and fixed irrigation decisions.
The use of forecast radiation and Humidity Deficit (HD) data did not hinder the accuracy
of the models substantially, which is a promising result towards the real-world application
of the control algorithm. It should be noted, that both the training and validation data
had a narrow band of variations, which comes from the fact, that professional growers prefer
having consistent irrigation decisions throughout the growing season. Although the water
balance equation keeps the individual models in check, the low variation of the data may
cause the developed models to perform poorly in situations, where the WD trajectory differs
considerably from the training dataset.

The inspected control algorithms offer great flexibility in their application. Through the
adjustment of costs and constraints, the behaviour of the Model Predictive Control (MPC)
can be changed substantially, which gives the developed controller the opportunity to satisfy
different goals, or make a trade-off between multiple targets. The models define the basis
of what kind of optimization problems can be written up. The validation results showed,
that although the simple linear model resulted in a regular quadratic program, which is the
fastest to solve, the linear model fails to describe the water balance of the system accurately.
The use of the modified Mixed Logical Dynamical (MLD) model lead to either a Mixed
Integer Quadratic Programming (MIQP) problem or a Mixed Integer Linear Programming
(MILP) problem, which were both by orders of magnitude slower to solve, especially for
long horizons. Move-blocking was effectively used to reduce the complexity of the regular
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linear MPC problem, but it failed to reduce the complexity of the MLD MPC approaches.
To successfully reduce the complexity of the MLD optimal control problems, heuristics were
applied to simplify the models during high WD hours. Although the modified hybrid model
was the most accurate in terms of prediction, the regular hybrid model provided very accurate
reproductions of the historical irrigation decisions. Paired with the heuristics the run-time of
this algorithm can be significantly reduced, therefore even 24 hour long irrigation schedules
can be created with it.

5-1 Recommendation for future research

The developed controller showed, that MPC could be viable in creating an autonomous ir-
rigation controller, the behaviour of which is easily adjusted to the preference of greenhouse
growers. Although the thesis project showed how the created framework could be used, nu-
merous options for development are present which could further enhance the performance of
the algorithm, or decrease its computational complexity. In the following paragraphs, recom-
mendations are given on future research possibilities, as well as on how to apply the control
algorithms on real greenhouses.

The main weakness of every model based control approach is the model itself. To achieve
better performance, measurements of Vapor Pressure Deficit (VPD) could be used instead of
HD, if available. This minor change could contribute to better accuracy for long term predic-
tions. Advanced PWU models, such as [27], [31] and [24] could also be used to substitute the
bi-linear approach, given that there are additional measurements available on e.g. convec-
tion, Leaf Area Index (LAI) etc. The use of more complicated and nonlinear models would
not hinder the computational performance of the system, because the PWU predictions are
independent from the water balance as long as the plants are not under drought-stress.

As validation showed, the choking point of MLD MPC is the number of constraints and
binary variables the optimization algorithm has to handle. Koopman operators can depict
nonlinear systems such as the PWA water balance model into a high order linear system.
The created linear system could be used for linear MPC, so that only a regular Quadratic
Programming (QP) problem has to be solved, which would greatly improve the computa-
tional speed and prediction horizon of the system. Additionally, move-blocking could be used
to further improve the computational speed. [32] summarizes the application of Koopman
operators in a really concise manner, and [33] already showed, how Koopman operator theory
can be used for MPC.

Nonlinear MPC could also be used to solve the optimal control problem with the PWA model.
Although there are clear drawbacks of non-convex nonlinear optimization, with good initial
guesses on irrigation, and with effective solvers, nonlinear MPC could be viable for suboptimal
MPC, which could handle the trade-off between computation time and control performance.

The developed algorithms provide an output of irrigation amounts in l/m2 for every 5 minutes
in the control horizon. This can be translated to an irrigation schedule, which could then be
automatically supplied to climate computers. During every hour, a new irrigation schedule
is made using actual measurement data, and this is then uploaded in the climate computer,
overwriting the previous set of decisions. In case of network problems, or computational
issues, the previously uploaded irrigation schedules would define the irrigation strategy, or a
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fallback could be initiated, during which the decision making would return to the standard
radiation influence based irrigation.

During an interview with a professional Canadian tomato grower, the possibility of including
Electrical Conductivity (EC) of the drain or substrate inside the models was brought forward,
as well as the inclusion of daily radiation-irrigation ratio as a controllable parameter. A big
disadvantage of the developed algorithm was also discussed: small irrigation shots are not
realistic to use because they result in uneven watering through the length of the gutter and
the pressurized drippers. Using an extra auxiliary binary variable, a minimal irrigation shot
amount can be set up, which would correct this behaviour.
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Appendix A

Data preparation

The data used in the project comes from a greenhouse experiment in the Netherlands, where
long truss tomatoes were grown. The greenhouse was equipped with a meteorologic station, a
climate measurement box and additionally an irrigation actuation and measurement group. In
the greenhouse, two slab weighing scales were present, both of which collected data during the
whole experiment. The experiment lasted a whole growing season, but the data was heavily
corrupted at many places, so only a part of it was used in this project: from 11/04/2021
until 01/08/2021. The data has a sampling time of h1=5 minutes, and n = 32257 available
samples. Table A-1 shows the available and for the project relevant measurements from the
data. The column ’% of N.a.’ gives the percentage of "not-a-number" (faulty) measurements
in the data.

Table A-1: List of available parameters from the greenhouse

Parameter name Unit % of N.a. Details

Radiation sum J/cm2 2.3 Sum of outside radiation and in-
door lights

Outdoor absolute humidity g/cm3 6.1 From weather station

Global radiation W/m2 8 From weather station

Total radiation W/m2 16.7 From weather station

Indoor absolute humidity g/cm3 24.6 From climate computer

Indoor temperature ◦C 4.4 From climate computer

Indoor relative humidity % 4.4 From climate computer

Indoor humidity deficit g/cm3 4.4 From climate computer

Drain percentage % 4.3 From irrigation group

Cumulative drain l/m2 3.6 From irrigation group
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Table A-1: List of available parameters from the greenhouse

Parameter name Unit % of N.a. Details

Cumulative irrigation l/m2 3.4 From irrigation group

Cumulative absorption l/m3 5.7 From irrigation group

Irrigation EC dS/m 3.6 From irrigation group

Irrigation pH − 3.4 From irrigation group

Slab weight 1 kg/m2 0 From irrigation group

Slab weight 2 kg/m2 0 From irrigation group

A-1 Data cleaning

As with all real-world problems, the available data of a system is noisy, some parts are missing,
and sometimes it is inaccurate. In this section a short summary is given on the data cleaning
steps which were taken to increase the usability of the available data.
Some measurements, e.g. the radiation sum (J/cm2) and the cumulative irrigation (l/m2)
contained spikes in the data. These were removed by inspecting their numerical derivatives,
and in places where the derivatives showed a successive positive-negative, or negative-positive
jump above a pre-defined threshold, the measurements were removed. An example can be
seen in Figure A-1.
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Figure A-1: Removing spikes from the data
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After the removal of spikes, the missing datapoints were reconstructed using interpolation.
For cumulative irrigation and drain measurements a hybrid interpolation approach was used:
during daytime, linear interpolation was used, and during nighttime the gaps were filled using
backfill. Other measurements were interpolated using regular linear interpolation.

The cumulative measurements from Table A-1 were all originally reset to 0 every morning.
Looking at the numerical derivatives this caused big negative valued jumps which had to be
cleared. To remedy this, the accumulated measurements were reconstructed by inspecting
their numerical difference. Because of the measurements cumulative nature, the difference
only went into a negative regime when the value of the measurement was reset to 0. Using this
knowledge, negative jumps below a certain threshold value were cleared from the difference
and set to 0, and then the cumulative values were reconstructed by creating the cumulative
sum of the difference series.

The missing points in the data were filled using linear interpolation. New measurements were
derived using the existing cumulative data. Taking the numerical differences, increments were
created of irrigation, drain and radiation sum.

A-2 Derived measurements

Table A-1 Contains the list of the most important variables, which were available in the
greenhouse dataset. For the project, new measurements were derived from the existing ones.
This section goes over how these new measurements were created.

A-2-1 Water deficit

The gutter scale measurements of the dataset had many different problems. One of them was,
that they were not normalized to m2 values, as any other measurements in the greenhouse.
The other problem was, that the interval the measurements were in changed over the course
of weeks, so to the same water content two different gutter scale measurements could be
matched depending on the day. For the first problem, the following problem is written up:

yVWC(k) = yGS(k) − yPW(k) − cSW
rGS · ρ

(A-1)

Where yVWC(k) is the volumetric water content of the substrate in l/m2 at time k, yGS(k)
is the gutter scale measurement in kg at time k, yPW(k) is the weight of the plant taken by
the substrate (and not the wires) in kg at time k, and cSW is the constant weight of the dry
substrate in kg. ρ is the density of the irrigation water in kg/l, and rGS is the gutter scale
coefficient in m2. rGS defines, how many m2-s of substrate the gutter scale measures, and
this is the coefficient which needs to be calculated.

The idea behind the solution is, that during the early hours, when the first irrigation shot
is applied, the plants are the least active in terms of water uptake. Because of this, the
assumption is made:
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Assumption A.1 (Constant plant weight on small interval). (i) For sufficiently short time
interval [k, k + N̄ ], yPW = yPW(k + N̄) = constant
(ii) The water uptake of the plant on this interval is 0

This assumption is made to avoid circular dependencies between the Water Deficit (WD)
and Plant Water Uptake (PWU) calculations. The first assumption is reasonable, because
high-wire crops like tomatoes and cucumbers only have a small amount of weight on their
stems, which after a few complete trusses are hanging horizontally beside the gutter, as can
be seen in Figure A-2

Figure A-2: Substrate grown tomato crop at the end of the crop cycle

Now if the difference is made between (A-1) at time k + N̄ and k, we can write:

yVWC(k + N̄) − yVWC(k) =

(
yGS(k + N̄) − yPW(k + N̄) − cSW

)
− (yGS(k) − yPW(k) − cSW)

rGS · ρ

yVWC(k + N̄) − yVWC(k) = yGS(k + N̄) − yGS(k)
rGS · ρ

(A-2)

Using the assumption, that the plant does not take up water in the time interval, the change
in Volumetric Water Content (VWC) can come from only irrigation and drain, and so:
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(
yIRR(k + N̄) − yDRN(k + N̄)

)
− (yIRR(k) − yDRN(k)) = yGS(k + N̄) − yGS(k)

rGS · ρ

rGS = yGS(k + N̄) − yGS(k)(
yIRR(k + N̄) − yIRR(k) − yDRN(k + N̄) + yDRN(k)

)
· ρ

(A-3)

Where rGS can be calculated using the available data, and the assumption that the irrigation
water has the density of ρ = 1kg/l. Through experimentation, N̄ was chosen to be 3, which
corresponds to 3·h1 = 15 minutes. After doing the calculation for different days, and checking
the distribution of the collected coefficient values rGS, there were some relatively big outliers,
which deviated from the mean of the data considerably. Assuming, that the noise on the
estimates was unbiased, a Gaussian kernel density function was fitted on the estimates, and
the value chosen for rGS was the value where the density function had its maximum.

Now with rGS known, the right side of (A-1) has only 2 other unknown parts: the plant
weight yPW(k) and the constant substrate weight cSW. Because not any of them is available,
and no gutter scale measurements are available of a dry substrate, a trick is used. Taking
the highest gutter scale measurement ymax

GS each day, the current gutter scale measurement
yGS(k) is subtracted from it, and corrected with ρ and rGS a new variable emerges: the water
content deficit yWD(k):

yWD(k) = ymax
GS − yGS(k)

rGS · ρ
(A-4)

Let us now assume, that the maximum of the gutter scale measurements happened at time
j0. If (A-4) is expanded, we get:

yWD(k) = yGS(j0) − yGS(k)
rGS · ρ

yWD(k) = (rGS · ρ · yVWC(j0) + yPW(j0) + cSW) − (rGS · ρ · yVWC(k) + yPW(k) + cSW)
rGS · ρ

yWD(k) = rGS · ρ · (yVWC(j0) − yVWC(k)) − (yPW(j0) − yPW(k))
rGS · ρ

(A-5)

Because the plant weight changes much slower than the water content of the substrate, a
simplification is made, that in a day’s interval, yPW(j0) − yPW(k) ≈ 0. With it, ymax

VWC =
yVWC(j0), and so:

yWD(k) = ymax
VWC − yVWC(k) (A-6)

yWD(k) has the physical meaning of how much water is missing until the substrate has reached
saturation, and its unit is in l/m2. Two weaknesses of this derived measurement are substan-
tial: In a predictive setup, ymax

GS is not known beforehand, so an assumption has to be made
on its value:
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Assumption A.2 (Similarity of daily maximal slab weight). Today’s ymax
GS is equal to yes-

terday’s ymax
GS

This is a risky assumption, because sometimes there can be considerable changes between
days. However, the value of ymax

GS can be updated late morning, when the maximal water
content was reached. The second problem is, that yPW(j0) − yPW(k) ≈ 0 could not hold all
the time. Adjustment in the wiring of the crop, harvest, and just regular plant growth can all
influence the instantaneous value of yPW(k). However, as Figure A-2 shows, in the generative
growth phase of high-wire crops, the weight of plant growth does not greatly affect the gutter
scale measurements, because it is mostly held by the wires. With these changes recorded and
with cSW known beforehand however, a more accurate estimate on the VWC of the substrate
can be given.

A-2-2 Plant water uptake

To accurately estimate, how much water the crop takes up, a reference (or ground truth) value
needs to be available. From Table A-1 the cumulative absorption is the closest to describe
the water uptake process.
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Figure A-3: Cumulative absorption data

As it can be seen on Figure A-3 The absorption is nothing else, but the difference between the
cumulative irrigation and drain measurements. Because of some delay between the irrigation
and drain measurements, the absorption can have negative slope. This is not favorable.
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To calculate, how much water the plants take up, the following water balance equation can
be used:

yWC(k + 1) = yWC(k) + QIRR(k) − QPWU(k) − QDRN(k) + ε(k) (A-7)

Where yWC is the water content, QIRR(k) is the amount of irrigation water supplied, QDRN(k)
is the amount of water lost through drain and QPWU(k) is the amount of water taken up by
the plant in the interval between [k, k + 1]. ε(k) is an unmeasured disturbance which can
come from rewiring of the hanging crop, plant swelling, fruit harvest, delays between the
sensors, etc.

Because ε(k) can not be estimated accurately, an assumption is made:

Assumption A.3 (Declining cumulative water balance error). with enough time as N → N̄ ,∑N
i=k ε(i) → 0.

Reformulating the water balance equation:

QPWU(k) = yWC(k + 1) − yWC(k) − QIRR(k) + QDRN(k) − ε(k) (A-8)

It is not easy to guess, when the influence of ε(k) has been mitigated. One way, is to make
the assumption, that QPWU(k) > 0, which is reasonable, because tomato plants should not
be able to push water out through their roots. The best guess for the other Q variables is the
difference between their corresponding measurements at time k and k + 1:

QPWU(k) = yWC(k + 1) − yWC(k) − (yIRR(k + 1) − yIRR(k))+
+ (yDRN(k + 1) − yDRN(k)) − ε(k)

(A-9)

With yIRR(k) being the cumulative irrigation and yDRN(k) the cumulative drain measurement
at time k. The problem arises: finding a small enough N̄ ∈ Z+, s.t. the percentage of negative
plant water uptake values is minimal:

Q̄PWU(k) = yWC(k + N̄) − yWC(k) − (yIRR(k + N̄) − yIRR(k))+

+ (yDRN(k + N̄) − yDRN(k)) −
N̄∑

i=k

ε(i)︸ ︷︷ ︸
≈0

(A-10)
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Figure A-4: Ratio of negative PWU values

As Figure A-4 depicts, the percentage of negative values sinks more slowly after around 1
hour. This is ideal, because the meteorological forecasts are usually provided per hour. Now,
with h2=1 hour=60 minutes, N̄ = 12, and so, the water taken up by the plant is calculated
per hour, using the following equation:

Q̄PWU(l) = yWC(k + 12) − yWC(k) − (yIRR(k + 12) − yIRR(k))+
+ (yDRN(k + 12) − yDRN(k))

(A-11)

With l = 12k. Because of some irregularities, the estimated water uptake is still very noisy.
Using Fast Fourier Transform (FFT), the series of estimated hourly plant water uptake values
q̂ =

[
Q̄PWU(0), Q̄PWU(1), . . . , Q̄PWU(n/12 − 1)

]
are transformed into frequency domain. This

was done using the process described in [34]. Figure A-5 shows the Power Spectral Density
(PSD) of the series.
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Figure A-5: Power spectral density of the plant water uptake calculations

As it can be seen in Figure A-5, there are well defined peaks in the power spectrum of the
signal. After experimentation, the frequency content above 20/day was cut, and the series was
transformed back to time-domain by an inverse FFT. A sample of the resulting filtered series
can be seen in Figure A-6, where it is both compared to the original unfiltered calculation,
and the absorption data.
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Figure A-6: Filtered PWU values

As it can be seen, the PWU curve has smoothed out considerably, which is more in line with
the expectations on how plants consume water. The smoothing did not change long term
accuracy however, so the cumulative water uptake curve follows both the absorption and the
unfiltered PWU curves.

A-3 Resampling

The calculation of PWU requires the resampling of the data to h2= 1 hour. The resampling
was done using the cumulative sums of the incremental data (drain, irrigation, gutter scale
measurements and water deficit). After the resampling, the PWU was calculated using (A-
11), and then filtered as described in Section A-2-2. Non cumulative measurements, like
the humidity deficit and temperature were resampled taking the average of the intersample
period.
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Validation on other greenhouse data

B-1 Greenhouse 2

The greenhouse is located in the Netherlands. Long truss tomatoes were grown in the com-
partment, and the data was recorded between 11/04/2021-01/08/2021. The figures show
validation data between 27/06/2021-01/08/2021
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Figure B-1: Accuracy with the static identification approach
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Figure B-2: Accuracy with the progressive identification approach

Figure B-3: Error distribution of the predictions

B-2 Greenhouse 3

The greenhouse is the same as greenhouse 2, and the crop is also long truss tomato. The data
was recorded between 11/04/2022-20/06/2022. The figures show validation data between
01/06/2021-22/06/2022. This greenhouse data was used during the validation of forecast
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climate parameters because it was the only dataset where it was possible to access the forecast
parameters. The figures below show the accuracy measures regarding historical data, not
forecast.
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Figure B-5: Accuracy with the progressive identification approach
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Figure B-6: Error distribution of the predictions

B-3 Greenhouse 4

The greenhouse is located in Canada. The crop is cherry tomato. The data was recorded
between 16/04/2022-27/06/2022. The figures show validation data between 01/06/2021-
27/06/2022.
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Figure B-7: Accuracy with the static identification approach
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Figure B-8: Error distribution of the predictions
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Glossary

List of Acronyms

ARX Autoregressive with Exogenous Input
EC Electrical Conductivity
ET Evapotranspiration
FFT Fast Fourier Transform
HD Humidity Deficit
LAI Leaf Area Index
MILP Mixed Integer Linear Programming
MIMO Multiple Input Multiple Output
MIQP Mixed Integer Quadratic Programming
MLD Mixed Logical Dynamical
MPC Model Predictive Control
NSE Nash-Sutcliffe efficiency
PBIAS Percent-bias
PSD Power Spectral Density
PWA Piecewise Affine
PWS Plant Water Status
PWU Plant Water Uptake
QP Quadratic Programming
RMSE Root Mean Square Error
RSR Ratio of the Root Mean Square Error to the standard deviation of measured

data
SS State-Space
VPD Vapor Pressure Deficit
VWC Volumetric Water Content
WD Water Deficit
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