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Layman Abstract
It is hard to find the roots of a polynomial with a higher degree than two. When calculating the eigenval-
ues of a matrix, one encounters unfortunately regularly polynomials of such a higher degree. However,
we do want to solve problems for eigenvalues for all types of matrices. Hence it is desirable to have a
method that avoids those difficult computations involving roots of polynomials.

This thesis suggests such a method for a specific type of matrix. When you add a so-called rank-
one matrix to a symmetric matrix, the new eigenvalues are related to the original ones of the symmetric
matrix: they are interlacing. So instead of redoing a lot of calculations you get an estimate for the
eigenvalues for free.

Even though these types of matrices seem very specific, they are actually used in a lot of applica-
tions. Therefore we can use the interlacing method in a lot of different settings.

This thesis has two main goals. The first one is to guide the reader through three of such applica-
tions, all from different mathematical fields to show the versatility of the method.

Yet, as it is still an approximation on the actual eigenvalues, some problems may arise. We don’t
know where the eigenvalues are exactly, only how they more or less behave after a rank-one update.
This creates some new challenges that have to be solved. Those challenges lead us to the second
goal of this thesis: offer some solutions to problems one may encounter with the interlacing method, to
create an intuition in which cases the method can be useful and in which not.
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Abstract
This thesis uses the method of interlacing polynomials to study the behaviour of eigenvalues of a matrix
after a rank-one update. Specifically, interlacing polynomials, common interlacing and interlacing fam-
ilies are exhaustively studied. These are excellent tools to find bounds on the eigenvalues of updated
matrices by keeping track of how they move.

This enables us to prove results in different mathematical fields. We investigate three of them. The
first one is from spectral graph theory: we prove the existence of a sharp 𝜅-approximation for any graph.

The second result is from linear algebra. It states that if a matrix has a high stable rank, it must
contain a large column submatrix with large least singular value.

Lastly, the proof of the Kadison-Singer Problem is discussed. Despite being a problem from analysis,
it was solved with the interlacing method, which is originally a method from discrete mathematics.

This thesis shows how these three seemingly different problems are all connected by the same
method, highlighting its advantages. The objective is to present a clear framework of the different
facets of the interlacing method and provide an insight in the situations where one can expect the said
method to be useful.
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1
Introduction

This thesis provides a review for the method of interlacing polynomials. The method of interlacing
polynomials is actually a collective term for multiple methods that all use either interlacing polynomials
or interlacing families. In short, we say that polynomial 𝑔(𝑥) = ∏𝑑+1𝑖=1 (𝑥 − 𝛼𝑖) interlaces a polynomial
𝑓(𝑥) = ∏𝑑𝑖=1(𝑥 − 𝛽𝑖) if

𝛼1 ≥ 𝛽1 ≥ 𝛼2 ≥ 𝛽2 ≥ 𝛼3 ≥ ⋯ ≥ 𝛼𝑑 ≥ 𝛽𝑑 ≥ 𝛼𝑑+1.
An interlacing family is a tree of interlacing polynomials. It is surprising how such a simple concept on
the roots of polynomials has some highly non-trivial applications. [7]

This thesis discusses three papers that each prove a result with the interlacing method. All proofs
involve characteristic polynomials of matrices. It is in this facet that the reviewed papers are innovative.
Traditionally, eigenvalues are controlled through moments Tr(𝐴𝑘) = ∑𝑖 𝜆𝑖(𝐴)𝑘 or Stieltjes-transforms
Tr(𝐴−𝑧)−1 = ∑𝑖(𝜆𝑖(𝐴)−𝑧)−1. [19] Instead, we are going to consider them as roots of the characteristic
polynomial 𝑝𝐴(𝑥). The main objective is to fully understand the strength of the interlacing method.
Therefore, the main results of each paper are presented sequentially to show the historic evolution of
how these techniques were shaped.

The first chapter shortly explains the most basic notions. First, interlacing polynomials are intro-
duced, followed by common interlacing. Those definitions are then used to rigorously define an inter-
lacing tree.

Since we are mainly going to focus on characteristic polynomials of matrices, it is important to sketch
in which situations one can expect interlacing polynomials or common interlacing when dealing with
these characteristic polynomials before even starting the proofs.

Next, the papers are reviewed. The first one, Twice Ramanujan Sparsifiers by Batson, Spielman
and Srivastava proves a result from spectral graph theory. [1] More precisely, it proves the existence
of a sharp 𝜅-approximation for any graph 𝐺. This was an early paper where the notion of interlacing
polynomials for eigenvalues was introduced. Hence the method is still in its early stages. The proof
uses the idea of iteratively constructing a matrix and at each step keeping track of the zeros of its
characteristic polynomial. This idea will return in a more complicated form later on and hence this proof
is the perfect starting point to explore the method.

The second paper, by Marcus, Spielman and Srivastava, is called Interlacing Families III: Sharper
Restricted Invertibility Estimates and proves a linear algebraic statement. [12] This section will focus
on interlacing families and their advantages when constructing them carefully. The goal of this section
is showing the link between interlacing families of characteristic polynomials on one side and Laguerre
polynomials on the other. The latter show up in multiple fields of mathematics and have their origin in
differential equations. The fact that these highly studied and powerful polynomials will appear in our
interlacing families will support the idea that this method deserves attention and study.

Lastly, the greatest achievement of the interlacing method is discussed: the proof of the Kadison-
Singer problem. This famous open problem was solved in the paper Interlacing Families II: Mixed
Characteristic Polynomials and The Kadison-Singer Problem also by by Marcus, Spielman and Srivas-
tava. [14] This time, the problem has an analytical nature. Notions from the first paper are combined
with notions from the second one. This will enable us to fully understand the proof.

1





2
Core of the interlacing method

Firstly, we are going to review the most important definitions for the method of interlacing polynomials:
interlacing polynomials, common interlacing and an interlacing family.

Definition 2.0.1. A polynomial 𝑔(𝑥) = ∏𝑑+1𝑖=1 (𝑥 − 𝛼𝑖) interlaces a polynomial 𝑓(𝑥) = ∏𝑑𝑖=1(𝑥 − 𝛽𝑖) if
𝛼1 ≥ 𝛽1 ≥ 𝛼2 ≥ 𝛽2 ≥ 𝛼3 ≥ ⋯ ≥ 𝛼𝑑 ≥ 𝛽𝑑 ≥ 𝛼𝑑+1.

That means that the roots of the two polynomials will always look as in Figure 2.1. The blue dots
represent the roots of polynomial 𝑔, the orange ones of 𝑓. Since the inequalities hold, it is clear that
all roots are real. Furthermore, they follow each other sequentially as in the picture, but it is possible
that certain blue and orange roots coincide. There is also no condition on where the polynomials are
positive or negative, only where their roots lie respectively to the roots of the other polynomial.

Figure 2.1: Sketch of how the roots should succeed each other.

Definition 2.0.2. Polynomials 𝑓1, ..., 𝑓𝑚 have a common interlacing if there is a single polynomial 𝑔 that
interlaces 𝑓𝑖 for each 𝑖.

The above are the two most basic concepts involving interlacing polynomials. A third key concept
is an interlacing family. Its definition is a bit less straightforward.
Definition 2.0.3. An interlacing family is a finite rooted tree 𝑇 whose vertices 𝑣 ∈ 𝑇 are labelled by
monic real-rooted polynomials 𝑓𝑣(𝑥) with the following two properties:

1. Every polynomial corresponding to a non-leaf vertex 𝑣 is a convex combination of the polynomials
corresponding to its children.

2. For all nodes 𝑣1, 𝑣2 ∈ 𝑇 with a common parent, all convex combinations of 𝑓𝑣1 and 𝑓𝑣2 are real-
rooted.

Hence, a set of polynomials is an interlacing family if they are the labelling of such a tree.
But why is this called an interlacing family? In first instance, there doesn’t seem to be a clear link

with interlacing polynomials. To see where this name comes from, it is worth noting that the second
condition implies that all convex combinations of the children of a node are real-rooted. That means
that we can apply the following theorem:
Theorem 2.0.4. Let 𝑓1, … , 𝑓𝑚 be real-rooted polynomials of the same degree with positive leading co-
efficient. Then 𝑓1, … , 𝑓𝑚 have a common interlacing if and only if ∑𝑚𝑖=1 𝑡𝑖𝑓𝑖 is real rooted for all convex
combinations 𝑡𝑖 ≥ 0, ∑

𝑚
𝑖=1 𝑡𝑖 = 1.

This theorem will be proven later on in section 5.2.
It implies that for all vertices with common parent in the tree, there exists a common interlacing.

3



4 2. Core of the interlacing method

2.1. Characteristic polynomials
All chapters consider the interlacing method in the setting of characteristic polynomials. The first indi-
cation that the said method is interesting for these polynomials is given by the following basic result:
the eigenvalues of the real symmetric matrix 𝐴 almost interlace those of 𝐴+𝑣𝑣𝑇 where 𝑣 is a non-zero
vector.

Theorem 2.1.1 (Eigenvalue Interlacing Theorem). Let 𝐴 be a real symmetric matrix and 𝑣 any non-zero
vector. If 𝐴 has eigenvalues 𝜆𝑖 and 𝐴 + 𝑣𝑣𝑇 has eigenvalues 𝜇𝑖, then

𝜆𝑛 ≤ 𝜇𝑛 ≤ 𝜆𝑛−1 ≤ 𝜇𝑛−1 ≤ ⋯ ≤ 𝜆1 ≤ 𝜇1.

This sum 𝐴 + 𝑣𝑣𝑇 of a matrix 𝐴 and the rank-one matrix 𝑣𝑣𝑇 formed with any non-zero vector 𝑣 is
called a rank-one update of the matrix 𝐴.

From the proof of the Eigenvalue Interlacing Theorem, an intuitive model can be derived fluently.
But before starting with the proof, we need two lemmas. [6]

Lemma 2.1.2 (Sherman-Morrison Formula). Suppose 𝐴 is a non-singular 𝑛×𝑛matrix and 𝑣 is a vector.
If 1 + 𝑣𝑇𝐴−1𝑣 is non-zero1, then

(𝐴 + 𝑣𝑣𝑇)−1 = 𝐴−1 − 𝐴−1𝑣𝑣𝑇𝐴−1
1 + 𝑣𝑇𝐴−1𝑣 .

Lemma 2.1.3 (Matrix Determinant Lemma). If 𝐴 is non-singular and 𝑣 is a vector, then

det(𝐴 + 𝑣𝑣𝑇) = det(𝐴)(1 + 𝑣𝑇𝐴−1𝑣).

Proof of Eigenvalue Interlacing Theorem. Suppose 𝑝𝐴(𝑥) is the characteristic polynomial of the real
symmetric matrix 𝐴, then the characteristic polynomial of the rank-one updated matrix is given by:

𝑝𝐴+𝑣𝑣𝑇(𝑥) = det(𝑥𝐼 − 𝐴 − 𝑣𝑣𝑇) = det(𝑥𝐼 − 𝐴)(1 − 𝑣𝑇(𝑥𝐼 − 𝐴)−1𝑣).

Now let 𝐴 = ∑𝑗 𝜆𝑗𝑢𝑗𝑢𝑇𝑗 be the diagonalisation of 𝐴. 𝜆𝑗 are the eigenvalues of 𝐴 and 𝑢𝑗 the corre-
sponding eigenvectors. Hence,

(𝑥𝐼 − 𝐴)−1 =∑
𝑗

1
𝑥 − 𝜆𝑗

𝑢𝑗𝑢𝑇𝑗 .

If we plug in this identity in the above expression and replace the determinant by 𝑝𝐴(𝑥), we find

𝑝𝐴+𝑣𝑣𝑇(𝑥) = 𝑝𝐴(𝑥)(1 −∑
𝑗

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

) .

While it may not seem that way, the right-hand side is indeed a polynomial. The 𝑥 − 𝜆𝑗 in the
denominator will cancel out against 𝑝𝐴(𝑥). From this expression, it is clear that the newly obtained
polynomial has two types of zeros:

• 𝑝𝐴(𝑥) = 0

• 1 − ∑𝑗
⟨𝑣,𝑢𝑗⟩2
𝑥−𝜆𝑗

= 0

The first case is when the added vector 𝑣 is orthogonal to an eigenvector 𝑢𝑗 and hence the zero is
equal to 𝜆𝑖. One can verify this by substituting 𝑝𝐴(𝑥) = ∏𝑛𝑗=1(𝑥 − 𝜆𝑗) in the expression for 𝑝𝐴+𝑣𝑣𝑇(𝑥)
and evaluating it at 𝑥 = 𝜆𝑖 . So in this case the corresponding eigenvalue stays equal. Suppose now
that the vector we have added is not orthogonal to any of the eigenvectors.

The second case for the roots considers all the points 𝑥 such that ∑𝑗
⟨𝑣,𝑢𝑗⟩2
𝑥−𝜆𝑗

= 1. This rational
function is continuous everywhere except at the different eigenvalues 𝜆𝑗. In that case one of the terms
is divided by zero. Calculating the different limits is straightforward:
1The case where 1 + 𝑣𝑇𝐴−1𝑣 = 0 is exactly the case where 𝐴 + 𝑣𝑣𝑇 is singular.



2.1. Characteristic polynomials 5

lim
𝑥↑𝜆𝑗

(∑
𝑗

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

) = −∞

lim
𝑥↓𝜆𝑗

(∑
𝑗

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

) = +∞

lim
𝑥→−∞

(∑
𝑗

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

) = 0

lim
𝑥→+∞

(∑
𝑗

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

) = 0

Using these limits we can make a sketch on what the function (∑𝑗
⟨𝑣,𝑢𝑗⟩2
𝑥−𝜆𝑗

) looks like:

Figure 2.2: Sketch of (∑𝑗
⟨𝑣,𝑢𝑗⟩2
𝑥−𝜆𝑗

).

Because of continuity there should be at least one value of 𝑥 for which the function becomes 1
between each 𝜆𝑗 and 𝜆𝑗1 . Furthermore there is also such an 𝑥 larger than 𝜆1. But since the matrix
only has 𝑛 eigenvalues, we can conclude that there is indeed exactly one new eigenvalue between two
successive 𝜆𝑗 and one eigenvalue larger than 𝜆1.This shows that if 𝑣 is not orthogonal to any 𝑢𝑖 the
eigenvalues are even strictly interlacing: 𝜆𝑛 < 𝜇𝑛 < ⋯ < 𝜆1 < 𝜇1.

When we do add a vector 𝑣 orthogonal to 𝑢𝑖 for some 1 ≤ 𝑖 ≤ 𝑛 we have to combine the two types
of roots. The limits of ∑𝑗

⟨𝑣,𝑢𝑗⟩2
𝑥−𝜆𝑗

stay the same for all 𝜆𝑗 except for 𝜆𝑖. Since

⟨𝑣, 𝑢𝑖⟩2
𝑥 − 𝜆𝑖

= 0

for any value of 𝑥, even in its limit at 𝜆𝑖, we can just ignore this term and the rational function
becomes:

∑
𝑗≠𝑖

⟨𝑣, 𝑢𝑗⟩2
𝑥 − 𝜆𝑗

.

The exact same analysis as above applies to this function. So we find such a zero in all intervals
[𝜆𝑛 , 𝜆𝑛−1], … , [𝜆𝑖+2, 𝜆𝑖+1], [𝜆𝑖+1, 𝜆𝑖−1], [𝜆𝑖−1, 𝜆𝑖−2], … , [𝜆2, 𝜆1]. By the same counting argument as before,
we only need to find one more zero.



6 2. Core of the interlacing method

We have already established that there is a zero at 𝜆𝑖 itself, so this ensures that there is a root
in [𝜆𝑖+1, 𝜆𝑖] and another one in [𝜆𝑖 , 𝜆𝑖−1]. Hence also in this case the Eigenvalue Interlacing Theorem
holds. This argument can of course be extended when the added vector is orthogonal to multiple
eigenvectors.

As previously said, this proof enables us to look at the rank-one update of a matrix in a very intuitive
way. Consider the eigenvalues 𝜆 as balls lying on a slope as depicted in Figure 2.3. At each eigenvalue
of 𝐴 a barrier is put. Each ball is resting against such a barrier because of gravity. Hence these are
indeed the locations of the matrix 𝐴.

Figure 2.3: Physical model of eigenvalues

Adding a rank-one matrix corresponds to adding a charge to the barriers. These charges will push
away the balls. The eigenvalues will start rolling until the forces pushing upwards, the forces pushing
downwards and gravity cancel each other out and an equilibrium state is reached, or when it is pushed
against the barrier above and cannot move any further. However, a key observation is that the largest
eigenvalue cannot be stopped by a barrier and it is hence possible that it rolls quite far away until it
reaches its equilibrium. This means that the largest eigenvalue of the rank-one update can end up
much larger than all its other eigenvalues.

In any case, since the eigenvalues are blocked by the barriers one will always have:

𝑝𝐴(𝑥) =
𝑑

∏
𝑖=1
(𝑥 − 𝜆𝑖) and 𝑝𝐴+𝑣𝑣𝑇 =

𝑑

∏
𝑖=1
(𝑥 − 𝜇𝑖)

⇒ 𝜇1 ≥ 𝜆1 ≥ 𝜇2 ≥ 𝜆2 ≥ ⋯ ≥ 𝜇𝑑 ≥ 𝜆𝑑 .
This is why these eigenvalues are almost interlacing. To be really interlacing a 𝜆0 larger than 𝜇1

is still needed. This lack of an upper bound for 𝜇1 will result in some new challenges which will be
discussed and solved in the next chapter.

Using the Eigenvalue Interlacing Theorem, one can easily construct a set of polynomials that have
a common interlacing.
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Lemma 2.1.4. Let 𝐴 be a 𝑑-dimensional symmetric matrix and let 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ ℝ𝑑. The characteristic
polynomials

𝑓𝑗(𝑥) = det(𝑥𝐼 − 𝐴 − 𝑣𝑗𝑣𝑇𝑗 )
have a common interlacing.

Proof. Let 𝑔(𝑥) = det(𝑥𝐼 − 𝐴) = ∏𝑑𝑖=1(𝑥 − 𝜆𝑖) and for arbitrary 𝑗: 𝑓𝑗(𝑥) = ∏𝑑𝑖=1(𝑥 − 𝜇𝑖). As already
established:

𝜇1 ≥ 𝜆1 ≥ 𝜇2 ≥ 𝜆2 ≥ ⋯ ≥ 𝜇𝑑 ≥ 𝜆𝑑
Hence for large enough 𝜆0, (𝑥 − 𝜆0)𝑔(𝑥) interlaces every 𝑓𝑗(𝑥)

Now that we have built up the basic concepts for the method of interlacing polynomials we can look
into their use in more elaborate proofs.





3
Twice-Ramanujan Sparsifiers

Maybe the most obvious advantage of interlacing polynomials is that even though we do not know
what the exact values of the zeros of certain polynomials are, it gives us an approximate idea of their
locations. This is a very strong tool in finding upper and lower bounds on these zeros. That was exactly
the very first reason why this method was used by Batson, Spielman and Srivastava to prove is the
existence of a Twice-Ramanujan Sparsifier for any graph. [1] [16]

3.1. Statement of the problem
A Twice-Ramanujan Sparsifier is - surprise, surprise - a sparsifier. A sparsifier of a graph is an approx-
imation of a graph in a useful way. It is mostly used in computer science. The approximation has less
edges and hence computations on this graphs will become faster. [2] [5] But of course the computa-
tions on this approximation still need to be accurate. Therefore different conditions can be imposed on
the sparsifier, depending on the problem.

This section considers a 𝜅-approximation as type of sparsifier.

Definition 3.1.1. Consider an edge weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) where 𝑤 ∶ 𝐸 → ℝ. 𝐻 = (𝑉, 𝐹, �̃�) is a
𝜅-approximation of 𝐺 if for all 𝑥 ∈ ℝ𝑉:

𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ 𝜅 ⋅ 𝑥𝑇𝐿𝐺𝑥

with 𝐿𝐺 and 𝐿𝐻 respectively the Laplacian matrices of 𝐺 and 𝐻.
A Laplacian matrix of a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with 𝑤(𝑖,𝑗) is the weight of edge (𝑖, 𝑗) is defined

as follows:

𝐿(𝑖, 𝑗) = {
∑𝑧 𝑤(𝑖,𝑧) if 𝑖 = 𝑗
−𝑤(𝑖,𝑗) if 𝑖 is adjacent to 𝑗
0 otherwise

A natural question for such a definition is ”How small can we make 𝜅 such that for any graph 𝐺 there
exists a 𝜅-approximation 𝐻?”

Figure 3.1: A sparsifier is an approximation of a graph while keeping certain properties of the graph.

9



10 3. Twice-Ramanujan Sparsifiers

In the case where 𝐺 is a complete graph, an excellent sparsifier is given by the Ramanujan Graphs:
𝑑-regular graphs whose non-zero Laplacian eigenvalues are in the interval [𝑑 − 2√𝑑 − 1, 𝑑 + 2√𝑑 − 1].
If we have such a Ramanujan Graph on 𝑛 vertices, then we can multiply the weight of every edge by
𝑛/(𝑑 − 2√𝑑 − 1). This gives a 𝜅-approximation for the complete graph on 𝑛 vertices for

𝜅 = 𝑑 + 2√𝑑 − 1
𝑑 − 2√𝑑 − 1

.

However, when the paper Twice-Ramanujan Sparsifiers was written, the existence of a Ramanujan
Graph for any degree 𝑑 wasn’t proven yet. Hence the existence of such a sparsifier wasn’t even proven
for an arbitrary complete graph 𝐺.

In this chapter we are going to prove the existence of a 𝜅-approximation for any graph 𝐺 with a 𝜅
as least as good as the one obtained from Ramanujan Graphs.

Theorem 3.1.2. For every 𝑑 > 1, every undirected weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) on 𝑛 vertices contains
a weighted subgraph 𝐻 = (𝑉, 𝐹, �̃�) with ⌈𝑑(𝑛 − 1)⌉ edges that satisfies

𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤
𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

⋅ 𝑥𝑇𝐿𝐺𝑥.

One can verify that this 𝜅 is indeed slightly better than the one from the Ramanujan Graphs. How-
ever, this construction requires twice as many edges than the sparsifier obtained from the said Ra-
manujan Graphs. Ergo the name Twice-Ramanujan Sparsifiers.

The most important theorem to prove this existence is actually a statement that looks more like
linear algebra than graph theory.

Theorem 3.1.3. Suppose 𝑑 > 1 and 𝑣1, 𝑣2, … , 𝑣𝑚 are vectors in ℝ𝑛 with

∑
𝑖≤𝑚

𝑣𝑖𝑣𝑇𝑖 = 𝐼.

Then there exist scalars 𝑠𝑖 ≥ 0 with |{𝑖 ∶ 𝑠𝑖 ≠ 0}| ≤ 𝑑𝑛 do that

𝐼 ⪯ ∑
𝑖≤𝑚

𝑠𝑖𝑣𝑖𝑣𝑇𝑖 ⪯ (
𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

) 𝐼.

Where 𝐴 ⪯ 𝐵 means that 𝐵 − 𝐴 is positive semi-definite.

3.2. Idea of the proof
To prove Theorem 3.1.3, the matrix 𝐴𝑚 ∶= ∑𝑖≤𝑚 𝑠𝑖𝑣𝑖𝑣𝑇𝑖 will be constructed iteratively. Hence we will
create a sequence 𝐴0 = 0, 𝐴1, … , 𝐴𝑄 (with 𝑄 ≤ 𝑑𝑛) by at each 𝑖th step adding 𝑠𝑖𝑣𝑖𝑣𝑇𝑖 with a nonzero
𝑠𝑖. The reason this approach seems promising is that each step is a rank-one update of the previous
matrix. From section 2.1, we known that the original eigenvalues will almost interlace the new ones.
Hence we have more or less an idea where the new eigenvalues will end up. So the main idea of the
proof is to start with a certain interval. This will be the ”goal” to aim the eigenvalues of 𝐴1 in by choosing
the right 𝑣1 and 𝑠1. Next we will move this interval and aim the eigenvalues of 𝐴2 in this new goal. This
is illustrated in Figure 3.2. These steps will be repeated until we end up with 𝐴𝑚 such that eventually:

𝜆𝑚𝑎𝑥(𝐴𝑄)
𝜆𝑚𝑖𝑛(𝐴𝑄)

≤ 𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

which implies Theorem 3.1.3.
Unfortunately, this aiming of the eigenvalues in the intervals is not always that easy. Problems arise

for example when the eigenvalues end up too close to each other. This may seems counter intuitive,
since if they are close to each other it seems easier to aim them in an interval. Why we don’t want them
too close together is illustrated in Figure 3.3. The real difficulty occurs at the next iteration because of
the almost interlacing. From the figure it is clear that the smallest eigenvalues don’t have any room to
move to the right-hand side.
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Figure 3.2: Sketch of iterations to construct 𝐴𝑚. At each step we choose the right 𝑣𝑖 and 𝑠𝑖 to aim the blue eigenvalues in the
interval.

Figure 3.3: When the eigenvalues are too close, the next iteration encounters difficulties

To use the physical model from Figure 2.3, the first eigenvalues immediately hit the next wall. But
since these walls are so close to each other, the greatest eigenvalue is repelled by the forces of all
the walls behind him. This ball will shoot far away and hence the largest eigenvalue of the rank-one
update will be way larger than the other ones. In this case the quotient of the largest eigenvalue and the
smallest one cannot be bounded by small 𝜅. This is an unfavorable case that we should avoid under
all circumstances. So at each iteration we want the eigenvalues to end up in this interval and also be
spread out. The difficulty lies of course in the fact that this seems to contradict each other.

3.3. The need for barrier functions
To measure this spreading of the eigenvalues we will introduce a new function: the barrier function.
These functions are used a lot in optimisation and in physics and thanks to the physical model we have
built in chapter 2 we can introduce them for eigenvalues as well. [22] [24] We will use an upper and a
lower barrier function:

Definition 3.3.1. For 𝑢, 𝑙 ∈ ℝ and 𝐴 a symmetric matrix with eigenvalues 𝜆1, 𝜆2, ..., 𝜆𝑛, we define:

Φ𝑢(𝐴) ∶= Tr(𝑢𝐼 − 𝐴)−1 =∑
𝑖

1
𝑢 − 𝜆𝑖

(Upper potential)

Φ𝑙(𝐴) ∶= Tr(𝐴 − 𝑙𝐼)−1 =∑
𝑖

1
𝜆𝑖 − 𝑙

(Lower potential)

As long as 𝜆𝑚𝑎𝑥 < 𝑢 and 𝜆𝑚𝑖𝑛 > 𝑙, these potentials measure how far the eigenvalues of 𝐴 are
from the upper barrier 𝑢 and the lower barrier 𝑙 respectively. The really useful property of these barrier
functions is that they tell something about the locations of all eigenvalues combined. For example, one
can verify that if Φ𝑢(𝐴) < 1, then there is no eigenvalue of 𝐴 within distance 1 from 𝑢, nor are there 2
𝜆𝑖 ’s within distance 2, etc. More generally, it tells us that there are no 𝑘 𝜆𝑖 ’s within distance 𝑘 from the
upper bound.

This barrier function is exactly the tool we need to formulate the iterations in such a way that the
eigenvalues don’t come too close to the barrier and are spread out enough.
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3.4. The proof
So let’s make the proof and its iterations more rigorous. At each step, we want to satisfy the following
conditions:

1. Initially, 𝐴0 = 0 and we place a barrier at 𝑢 = 𝑢0 and 𝑙 = 𝑙0. The potentials are

Φ𝑢0(𝐴0) = 𝜖𝑈 and Φ𝑙0(𝐴0) = 𝜖𝐿

2. Each new iteration is obtained by a rank-one update of the previous one:

𝐴𝑞+1 = 𝐴𝑞 + 𝑡𝑣𝑣𝑇 for some 𝑣 ∈ {𝑣𝑖} and 𝑡 ≥ 0

3. At each step we move the lower barrier 𝑙 by 𝛿𝐿 and the upper barrier 𝑢 by 𝛿𝑈. Furthermore, we
don’t want the potentials to increase at any step. For 𝑞 = 0, 1, … , 𝑄:

Φ𝑢+𝛿𝑈(𝐴𝑞+1) ≤ Φ𝑢(𝐴𝑞) ≤ 𝜖𝑈 for 𝑢 = 𝑢0 + 𝑞𝛿𝑈
Φ𝑙+𝛿𝐿(𝐴𝑞+1) ≤ Φ𝑙(𝐴𝑞) ≤ 𝜖𝐿 for 𝑙 = 𝑙0 + 𝑞𝛿𝐿

4. Lastly, we want to make sure that no eigenvalue crosses a barrier. For every 𝑞 = 0, 1, … , 𝑄:

𝜆𝑚𝑎𝑥(𝐴𝑞) < 𝑢0 + 𝑞𝛿𝑈 and 𝜆𝑚𝑖𝑛(𝐴𝑞) > 𝑙0 + 𝑞𝛿𝐿

So the final step in the proof will be to pick positive values for 𝑢0, 𝑙0, 𝛿𝑈 , 𝛿𝐿 , 𝜖𝑈 and 𝜖𝐿 such that after
𝑄 = 𝑑𝑛 steps we obtain 𝐴𝑛 with

𝜆max (𝐴𝑄)
𝜆min (𝐴𝑄)

≤ 𝑢0 + 𝑑𝑛𝛿𝑈
𝑙0 + 𝑑𝑛𝛿𝐿

= 𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

3.4.1. Moving the upper barrier
At each iteration we want to move the upper barrier by 𝛿𝑈. When moving this barrier, the upper potential
Φ𝑢(𝐴) decreases, since all eigenvalues will be situated further away from the barrier. Hence we create
some room to add 𝑡𝑣𝑖𝑣𝑇𝑖 for some 𝑡 > 0 and counteract the decrease due to shifting of the barrier. To
know whether we can always add such a vector and how large we can make 𝑡, we use the following
theorem.

Figure 3.4: Shifting the upper barrier creates room to move the eigenvalues without increasing the upper potential Φ𝑢(𝐴)

Theorem 3.4.1 (Upper Barrier Shift). Suppose 𝜆𝑚𝑎𝑥(𝐴) < 𝑢, 𝛿𝑈 a positive constant and 𝑣 is any vector.
If

1
𝑡 ≥

𝑣𝑇 ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2 𝑣

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + 𝑣𝑇 ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−1 𝑣 =∶ 𝑈𝐴(𝑣)

then
Φ𝑢+𝛿𝑈 (𝐴 + 𝑡𝑣𝑣𝑇) ≤ Φ𝑢(𝐴) and 𝜆max (𝐴 + 𝑡𝑣𝑣𝑇) < 𝑢 + 𝛿𝑈 .

This theorem states that if we increase the upper barrier by 𝛿𝑈 and then add 𝑡 that satisfies the
above conditions, we do not increase the upper potential and all eigenvalues stay smaller than the
barrier.
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Proof. To ease notation, let 𝑢′ = 𝑢 + 𝛿𝑈.

Φ𝑢+𝛿𝑈 (𝐴 + 𝑡𝑣𝑣𝑇) = Tr (𝑢′𝐼 − 𝐴 − 𝑡𝑣𝑣𝑇)−1

= Tr((𝑢′𝐼 − 𝐴)−1 + 𝑡
(𝑢′𝐼 − 𝐴)−1 𝑣𝑣𝑇 (𝑢′𝐼 − 𝐴)−1

1 − 𝑡𝑣𝑇 (𝑢′𝐼 − 𝐴)−1 𝑣
)

because of Theorem 2.1.2

= Tr (𝑢′𝐼 − 𝐴)−1 +
𝑡 Tr (𝑣𝑇 (𝑢′𝐼 − 𝐴)−1 (𝑢′𝐼 − 𝐴)−1 𝑣)

1 − 𝑡𝑣𝑇 (𝑢′𝐼 − 𝐴)−1 𝑣
since Tr is linear and Tr(𝑋𝑌) = Tr(𝑌𝑋)

= Φ𝑢+𝛿𝑈(𝐴) + 𝑡𝑣𝑇 (𝑢′𝐼 − 𝐴)−2 𝑣
1 − 𝑡𝑣𝑇 (𝑢′𝐼 − 𝐴)−1 𝑣

= Φ𝑢(𝐴) − (Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴)) + 𝑣𝑇 (𝑢′𝐼 − 𝐴)−2 𝑣
1/𝑡 − 𝑣𝑇 (𝑢′𝐼 − 𝐴)−1 𝑣

≤ Φ𝑢(𝐴)

since 𝑈𝐴(𝑣) ≤
1
𝑡

To prove that 𝜆max (𝐴 + 𝑡𝑣𝑣𝑇) < 𝑢 + 𝛿𝑈 we note that 𝑈𝐴(𝑣) > 𝑣𝑇 (𝑢′𝐼 − 𝐴)
−1 𝑣.

So for 𝑈𝐴(𝑣) ≤
1
𝑡 ,

𝑣𝑇(𝑢′𝐼−𝐴)−2𝑣
1/𝑡−𝑣𝑇(𝑢′𝐼−𝐴)−1𝑣

is finite. Suppose that 𝜆max (𝐴 + 𝑡𝑣𝑣𝑇) ≥ 𝑢 + 𝛿𝑈, then there would

be some positive 𝑡′ ≤ 𝑡 for which 𝜆𝑚𝑎𝑥 (𝐴 + 𝑡′𝑣𝑣𝑇) = 𝑢+𝛿𝑈. For this 𝑡′, Φ𝑢+𝛿𝑈 (𝐴 + 𝑡′𝑣𝑣𝑇) would blow
up, while we have just argued that it should be finite.

3.4.2. Moving the lower barrier
Besides the upper barrier, we also want to shift the lower barrier at each iteration. When we add 𝛿𝐿
to this barrier, we move it closer to the eigenvalues and thus the lower potential Φ𝑙(𝐴) increases. So
in contrast to shifting the upper barrier, where we could move the eigenvalues, now we have to move
them. The following theorem tells us how much of 𝑣𝑣𝑇 we have to add such that the lower potential
decreases again.

Figure 3.5: Shifting the lower barrier takes away room between the barrier and the eigenvalues. Hence we must move the
eigenvalues to decrease the lower potential Φ𝑙(𝐴).

Theorem 3.4.2 (Lower Barrier Shift). Suppose 𝜆𝑚𝑖𝑛(𝐴) > 𝑙,Φ𝑙(𝐴) ≤
1
𝛿𝐿

for some real positive constant
𝛿𝐿 and 𝑣 is any vector. If

0 < 1
𝑡 ≤

𝑣𝑇 (𝐴 − (𝑙 + 𝛿𝐿) 𝐼)
−2 𝑣

Φ𝑙+𝛿𝐿(𝐴) − Φ𝑙(𝐴)
− 𝑣𝑇 (𝐴 − (𝑙 + 𝛿𝐿) 𝐼)

−1 𝑣 =∶ 𝐿𝐴(𝑣)

then
Φ𝑙+𝛿𝐿 (𝐴 + 𝑡𝑣𝑣𝑇) ≤ Φ𝑙(𝐴) and 𝜆min (𝐴 + 𝑡𝑣𝑣𝑇) > 𝑙 + 𝛿𝐿 .

The proof of this theorem is very similar to the one of Theorem 3.4.1:
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Proof.

Φ𝑙+𝛿𝐿 (𝐴 + 𝑡𝑣𝑣𝑇) = Tr (𝐴 + 𝑡𝑣𝑣𝑇 − 𝑙′𝐼)−1

= Tr((𝐴 − 𝑙′𝐼)−1 + 𝑡
(𝐴 − 𝑙′𝐼)−1 𝑣𝑣𝑇 (𝐴 − 𝑙′𝐼)−1

1 − 𝑡𝑣𝑇 (𝐴 − 𝑙′𝐼)−1 𝑣
)

because of Theorem 2.1.2

= Tr (𝐴 − 𝑙′𝐼)−1 +
𝑡 Tr (𝑣𝑇 (𝐴 − 𝑙′𝐼)−1 (𝐴 − 𝑙′𝐼)−1 𝑣)

1 − 𝑡𝑣𝑇 (𝐴 − 𝑙′𝐼)−1 𝑣
since Tr is linear and Tr(𝑋𝑌) = Tr(𝑌𝑋)

= Φ𝑙+𝛿𝐿(𝐴) +
𝑡𝑣𝑇 (𝐴 − 𝑙′𝐼)−2 𝑣

1 − 𝑡𝑣𝑇 (𝐴 − 𝑙′𝐼)−1 𝑣

= Φ𝑙(𝐴) − (Φ𝑙+𝛿𝐿(𝐴) − Φ𝑙(𝐴)) +
𝑣𝑇 (𝐴 − 𝑙′𝐼)−2 𝑣

1/𝑡 − 𝑣𝑇 (𝐴 − 𝑙′𝐼)−1 𝑣
≤ Φ𝑙(𝐴)

since 𝐿𝐴(𝑣) ≥
1
𝑡

Furthermore, note that 𝜆𝑚𝑖𝑛 > 𝑙 and Φ𝑙(𝐴) ≤
1
𝛿𝐿
. This implies that 𝜆𝑚𝑖𝑛(𝐴+) > 𝑙 + 𝛿𝐿, so for any

𝑡 > 0, 𝜆𝑚𝑖𝑛(𝐴 + 𝑡𝑣𝑣𝑇 > 𝑙 + 𝛿𝐿.

3.4.3. Shifting the two barriers at once
We have established what happens when we shift the upper barrier and what happens when we shift
the lower barrier. For the upper barrier we have quantified how much of 𝑣𝑣𝑇 we can add and for the
lower barrier how much we must add. Then big question becomes hence if we can always add more
than we must. This turns out to be the case.

So suppose we are in the iteration and have constructed some matrix 𝐴𝑞 and have a set of 𝑣𝑖 which
we haven’t picked in the 𝑞 iterations before. Then the following theorem tells us how to choose a vector
𝑣𝑞+1 and a positive scalar 𝑡𝑞+1 to add 𝑡𝑞+1𝑣𝑞+1𝑣𝑇𝑞+1 to 𝐴𝑞.

Theorem 3.4.3 (Both Barriers Shift). If 𝜆𝑚𝑎𝑥(𝐴) < 𝑢, 𝜆𝑚𝑖𝑛(𝐴) > 𝑙, Φ𝑢(𝐴) ≤ 𝜖𝑈, Φ𝑙(𝐴) ≤ 𝜖𝐿 and 𝜖𝑈, 𝜖𝐿,
𝛿𝑈 and 𝛿𝐿 satisfy

0 ≤ 1
𝛿𝑈
+ 𝜖𝑈 ≤

1
𝛿𝐿
− 𝜖𝐿

then there exists an 𝑖 and a positive 𝑡 for which:

𝐿𝐴 (𝑣𝑖) ≥
1
𝑡 ≥ 𝑈𝐴 (𝑣𝑖)

𝜆𝑚𝑎𝑥 (𝐴 + 𝑡𝑣𝑖𝑣𝑇𝑖 ) < 𝑢 + 𝛿𝑈

𝜆𝑚𝑖𝑛 (𝐴 + 𝑡𝑣𝑖𝑣𝑇𝑖 ) > 𝑙 + 𝛿𝐿

Proof. We will prove that

∑
𝑖
𝐿𝐴 (𝑣𝑖) ≥∑

𝑖
𝑈𝐴 (𝑣𝑖) .

If this is proven, then it follows that there exists an index 𝑖 and a scalar 𝑡 such that

𝑈𝐴 (𝑣𝑖) ≤
1
𝑡 ≤ 𝐿𝐴 (𝑣𝑖) .
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Firstly, consider ∑𝑖 𝑈𝐴(𝑣𝑖):

∑
𝑖
𝑈𝐴(𝑣𝑖) =

((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2 • (∑𝑖 𝑣𝑖𝑣𝑇𝑖 )

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−1 • (∑

𝑖
𝑣𝑖𝑣𝑇𝑖 )

where • is the inner product.

= Tr ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + Tr ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−1

since ∑
𝑖
𝑣𝑖𝑣𝑇𝑖 = 𝐼

= Tr ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + Φ𝑢+𝛿𝑈(𝐴)

≤ Tr ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + Φ𝑢(𝐴)

since the upper barrier increases when moving the barrier to the left.

≤ Tr ((𝑢 + 𝛿𝑈) 𝐼 − 𝐴)
−2

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + 𝜖𝑈

=
− 𝜕
𝜕𝑢+𝛿𝑈

Φ𝑢+𝛿𝑈(𝐴)

Φ𝑢(𝐴) − Φ𝑢+𝛿𝑈(𝐴) + 𝜖𝑈

≤
− 𝜕
𝜕𝑢+𝛿𝑈

Φ𝑢+𝛿𝑈(𝐴)

𝛿𝑈 (−
𝜕

𝜕𝑢+𝛿𝑈
Φ𝑢+𝛿𝑈(𝐴))

+ 𝜖𝑈

since the barrier function is convex. [14]

= 1
𝛿𝑈
+ 𝜖𝑈

In a similar way we can prove
1
𝛿𝐿
− 𝜖𝐿 ≤∑

𝑖
𝐿𝐴(𝑣𝑖).

So putting both inequalities together, we find

∑
𝑖
𝑈𝐴(𝑣𝑖) ≤

1
𝛿𝑈
+ 𝜖𝑈 ≤

1
𝛿𝐿
− 𝜖𝐿 ≤∑

𝑖
𝐿𝐴(𝑣𝑖).

This is exactly what we wanted, because indeed there is then always an 𝑖 such that

𝑈𝐴(𝑣𝑖) ≤ 𝐿𝐴(𝑣𝑖)

and hence we can always squeeze 1/𝑡 in between for some 𝑡 > 0.

This theorem tells exactly at which step we should choose which 𝑣𝑖 and how large we have to take
𝑡. The last task to prove Theorem 3.1.3 is to choose the right 𝜖𝑈, 𝜖𝐿, 𝛿𝑈, 𝛿𝐿, 𝑢0 and 𝑙0 that satisfy the
conditions from Theorem 3.4.3 as well as

𝜆max (𝐴𝑄)
𝜆min (𝐴𝑄)

≤ 𝑢0 + 𝑑𝑛𝛿𝑈
𝑙0 + 𝑑𝑛𝛿𝐿

= 𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

.
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These magical values are given by

𝛿𝐿 = 1 𝜖𝐿 =
1
√𝑑 𝑙0 =

−𝑛
𝜖𝐿

𝛿𝑈 = √𝑑+1
√𝑑−1 𝜖𝑈 = √𝑑−1

√𝑑(√𝑑+1) 𝑢0 =
𝑛
𝜖𝑈

Where we can check the conditions:

1
𝛿𝑈
+ 𝜖𝑈 =

√𝑑 − 1
√𝑑 + 1

+ √𝑑 − 1
√𝑑(√𝑑 + 1)

= 1 − 1
√𝑑

= 1
𝛿𝐿
− 𝜖𝐿

and

𝜆max (𝐴𝑄)
𝜆min (𝐴𝑄)

≤ 𝑢0 + 𝑑𝑛𝛿𝑈
𝑙0 + 𝑑𝑛𝛿𝐿

=
𝑛
𝜖𝑈
+ 𝑑𝑛𝛿𝑈

−𝑛
𝜖𝐿
++𝑑𝑛𝛿𝐿

=
𝑑+√𝑑
√𝑑−1 + 𝑑

√𝑑+1
√𝑑−1

𝑑 − √𝑑
= 𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

Performing 𝑑𝑛 steps of the iteration with these proposed constants will always result in the matrix
from Theorem 3.1.3.

3.5. The actual sparsifier
Now that we finally have this result, we can actually prove the existence of the 𝜅-approximations. Sup-
pose we have a graph 𝐺 = (𝑉, 𝐸, 𝑤). Without loss of generality we can assume that 𝐺 is connected. If
we arbitrarily orient its edges, we can write its Laplacian as 𝐿𝐺 = 𝐵𝑇𝑊𝐵 where𝑊 is the diagonal matrix
with𝑊(𝑒, 𝑒) = 𝑤𝑒 and 𝐵 is the signed edge-vertex incidence matrix:

𝐵(𝑒, 𝑣) = {
1 if 𝑣 is 𝑒’s head
−1 if 𝑣 is 𝑒’s tail
0 otherwise

Another type of matrix that we need is the Moore-Penrose Pseudoinverse of a Laplacian 𝐿.
Since 𝐿 is symmetric, we can diagonalise it:

𝐿 =
𝑛−1

∑
𝑖=1

𝜆𝑖𝑢𝑖𝑢𝑇𝑖

.
The Moore-Penrose Pseudoinverse 𝐿+ is then defined as:

𝐿+ =
𝑛−1

∑
𝑖=1

1
𝜆𝑖
𝑢𝑖𝑢𝑇𝑖

.
This is called a pseudoinverse since

𝐿𝐿+ = 𝐿+𝐿 =
𝑛−1

∑
𝑖=1

𝑢𝑖𝑢𝑇𝑖

,
which is the projection onto the span of the nonzero eigenvectors of 𝐿. Hence 𝐿𝐿+ = 𝐿+𝐿 is the

identity on im(𝐿).
So for the rest of the proof we are going to restrict our attention to im(𝐿𝐺) ≅ ℝ𝑛−1. Then we can

apply Theorem 3.1.3 to the columns {𝑣𝑖}𝑖≤𝑚 of

𝑉 = (𝐿+𝐺)
1
2 𝐵𝑇𝑊

1
2 .
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These columns indeed satisfy

∑
𝑖≤𝑚

𝑣𝑖𝑣𝑇𝑖 = 𝑉𝑉𝑇 = (𝐿+𝐺)
1
2 𝐵𝑇𝑊𝐵 (𝐿+𝐺)

1
2

= (𝐿+𝐺)
1
2 𝐿𝐺 (𝐿+𝐺)

1
2 = 𝐼

Applying the aforementioned theorem gives us scalars 𝑠𝑖 ≥ 0 that we can write in the diagonal
matrix 𝑆(𝑖, 𝑖) = 𝑠𝑖. Set 𝐿𝐻 = 𝐵𝑇𝑊

1
2 𝑆𝑊

1
2𝐵. This is the Laplacian of the subgraph 𝐻 of 𝐺 with edge

weights {�̃�𝑖 = 𝑤𝑖𝑠𝑖}. Hence 𝐻 has at most 𝑑(𝑛 − 1) edges. Moreover,

𝐼 ⪯ ∑
𝑖≤𝑚

𝑠𝑖𝑣𝑖𝑣𝑇𝑖 = 𝑉𝑆𝑉𝑇 ⪯ 𝜅 ⋅ 𝐼 for 𝜅 =
𝑑 + 1 + 2√𝑑
𝑑 + 1 − 2√𝑑

.

By the Courant-Fischer Theorem, this is equivalent to:

1 ≤ 𝑦𝑇𝑉𝑆𝑉𝑇𝑦
𝑦𝑇𝑦 ≤ 𝜅 ∀𝑦 ∈ im((𝐿𝐺)

1
2 ) = im(𝐿𝐺)

⟺ 1 ≤ 𝑦𝑇(𝐿+𝐺)
1
2 𝐿𝐻(𝐿+𝐺)

1
2 𝑦

𝑦𝑇𝑦 ≤ 𝜅 ∀𝑦 ∈ im((𝐿𝐺)
1
2 )

⟺ 1 ≤ 𝑥𝑇𝐿
1
2
𝐺 (𝐿𝐺)

1
2 𝐿𝐻(𝐿+𝐺)

1
2 𝐿

1
2
𝐺 𝑥

𝑥𝑇𝐿
1
2
𝐺 𝐿

1
2
𝐺 𝑥

≤ 𝜅 ∀𝑥⊥(1,… , 1)

⟺ 1 ≤ 𝑥𝑇𝐿𝐻𝑥
𝑥𝑇𝐿𝐺𝑥

≤ 𝜅 ∀𝑥⊥(1,… , 1)

and therefore 𝐻 is the 𝜅-approximation we were looking for.

3.6. Conclusion on Twice-Ramanujan Sparsifiers
The greatest challenge for this proof is to keep the eigenvalues relatively close to each other while still
being spread out. Since the characteristic polynomial of a matrix almost interlaces the one of any rank-
one update of the matrix, there is no upper bound on the largest root of this updated matrix. Hence
this largest root can shoot off in the far distance which complicates finding a small interval to fit all
eigenvalues in.

The solution is to introduce barrier functions, which measure the cumulative distance from the roots
to the barrier. The barrier function is originally a function used in physics, but with the physical rep-
resentation of eigenvalues1 it can nicely be implemented in this setting as well. This enables us to
quantify on one hand how far the zeros can move per iteration and on the other hand how far they have
to move. So we can reduce the problem to checking that at each step there is portion of a vector that
we can add to end up in this sweet spot. We prove this to be the case and find an explicit expression
on how much of each vector we can add.

So the insight that the polynomials are almost interlacing is not what actually let us prove the exis-
tence of the sparsifier. Without the iterations and the barrier functions we wouldn’t have come very far.
These two elements will also be very important in chapter 5. But in that chapter a more detailed notion
of interlacing families is needed. This is introduced in the next chapter.

1Figure 2.3





4
Restricted Invertibility

The proof of the Twice Ramanujan sparsifiers gave already a nice insight in the case where we have two
almost interlacing polynomials. Now we will investigate what happens when we have more polynomials.
[12] In that case we can construct an interlacing family. This knowledge will be the base for the next
step in chapter 5.

4.1. Restricted Invertibility Theorem
In short, the theorem states that if a matrix has a high stable rank then it contains a large column
submatrix with large least singular value. So what does that mean?

Definition 4.1.1. The stable rank of a matrix 𝐵 is the quotient of its Frobenius norm squared and its
2-norm squared:

srank(𝐵) ∶= ‖𝐵‖2𝐹
‖𝐵‖22

.

Where the Frobenius norm ‖𝐵‖𝐹 is the square root of the sum of the squares of the entries of 𝐵.
The 2-norm ‖𝐵‖2 is the square root of largest eigenvalue of 𝐵𝑇𝐵.

Definition 4.1.2. The least singular value of a real matrix 𝐵 is the smallest eigenvalue of the matrix
𝐵𝑇𝐵. Equivalently, it can be defined by

𝜎𝑚𝑖𝑛(𝐵) ∶=min
𝑥≠0

‖𝐵𝑥‖
‖𝑥‖ .

From this second definition it is clear that the least singular value is a measure for how far the matrix
is from being singular. When a matrix is singular and has dependent columns, there is always a vector
x such that ‖𝐵𝑥‖ = 0. The smaller the least singular value, the more the columns will come close to
being dependent.

Rigorously, the theorem then becomes:

Theorem 4.1.3 (Restricted Invertibility Theorem). Suppose 𝐵 is an 𝑑 × 𝑚 matrix and 𝑘 ≤ srank(𝐵) is
an integer. Then there exists a subset 𝑆 of [𝑚] such that

𝜎𝑚𝑖𝑛(𝐵𝑆)2 ≥ (1 − √
𝑘

srank(𝐵))

2
‖𝐵‖2𝐹
𝑚 .

While this theorem holds for any matrix 𝐵, we are only going to prove it in a particular case. This
case will turn out to be a very nice example on the use of interlacing families without too many technical
complications. It is called the isotropic case and happens when 𝐵𝐵𝑇 = 𝐼

19
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4.2. The Isotropic Case
When we assume that 𝐵𝐵𝑇 = 𝐼, the theorem becomes a bit simpler. The Frobenius norm, which is also
equal to the square root of the trace of 𝐵𝐵𝑇, then becomes √𝑑. The 2-norm of 𝐵 is clearly 1. Hence
srank(𝐵) = 𝑑 and the bound on the least singular value that we want to prove then becomes:

𝜎𝑚𝑖𝑛(𝐵𝑆)2 ≥ (1 − √
𝑘
𝑑)

𝑑
𝑚

The proof will require interlacing families. As already seen in Definition 2.0.3, an interlacing family
is a tree of polynomials with specific properties. In order to discuss these polynomials and ease the
arguments in this section, we are firstly going to label all the nodes in the tree. A polynomial in the tree
at distance 𝑡 from the root is labelled with with sequences 𝑠1, … , 𝑠𝑡 ∈ [𝑚]𝑡. The empty sequence at the
root is denoted by 𝑓∅.

Figure 4.1: Example of a tree with labelling by sequences

The leaves are denoted by sequences of length 𝑘: 𝑓𝑠1 ,…,𝑠𝑘 . All the intermediate nodes are labelled
by the average of the polynomials of its children.

𝑓𝑠1 ,…,𝑠𝑡(𝑥) =
1
𝑚

𝑚

∑
𝑗=1
𝑓𝑠1 ,…,𝑠𝑡 ,𝑗(𝑥)

So now there is a clear convention on how to label the polynomials, we can start looking at some
properties. The following theorem relates the roots of a polynomial to the roots of its children in the
tree.

Theorem 4.2.1. Let 𝑓1, ..., 𝑓𝑚 be real-rooted degree 𝑑 polynomials that have a common interlacing. Then
for every index 1 ≤ 𝑗 ≤ 𝑑 and for every non-negative 𝜇1, ..., 𝜇𝑚 such that ∑𝑚𝑖=1 𝜇𝑖 = 1, there exists an 𝑎
and a 𝑏 such that

𝜆𝑗(𝑓𝑎) ≥ 𝜆𝑗 (∑
𝑖
𝜇𝑖𝑓𝑖) ≥ 𝜆𝑗(𝑓𝑏)

where 𝜆𝑗(𝑓) denotes the 𝑗th root of the polynomial 𝑓.

Proof. Of course, when 𝜇𝑖 = 0 for some 𝑖, 𝜇𝑖𝑓𝑖 = 0 and we can just ignore that particular 𝑓𝑖. Therefore
we can assume without loss of generality that all 𝜇𝑖 are strictly positive.

The key to solving this problem is to rewrite it as a tree of depth 1. The polynomial given by the
convex combination of the polynomials then becomes the root. Let’s call its zeros 𝛽𝑖:

𝑓∅(𝑥) =∑
𝑖
𝜇𝑖𝑓𝑖(𝑥) =

𝑑

∏
𝑖=1
(𝑥 − 𝛽𝑖)
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So with this notation, we are looking for 𝑎 and 𝑏 for which 𝜆𝑗(𝑓𝑎) ≥ 𝛽𝑗 ≥ 𝜆𝑗(𝑓𝑏). Consider

𝑔(𝑥) =
𝑑+1

∏
𝑖=1
(𝑥 − 𝛼𝑖)

a polynomial that interlaces every 𝑓𝑖 and that has roots 𝛼𝑖. Furthermore, we are firstly going to consider
the case where 𝑓1, ...𝑓𝑚 do not have any zero in common.

All 𝑓𝑖 have positive leading coefficient. That means that for every 𝑖 ∶ 𝑓𝑖(𝑥) > 0 for 𝑥 > 𝛽1. Since
the 𝑓𝑖 have a common interlacing, but no zeros in common, all zeros have multiplicity one. This also
implies that 𝛼1 > 𝛼2 > ... > 𝛼𝑑+1. So we can see that 𝑓𝑖(𝛼𝑘) ≥ 0 for 𝑘 odd and 𝑓𝑖(𝛼𝑘) ≤ 0 for 𝑘 even.
Moreover there is an 𝑖 such that 𝑓𝑖(𝛼𝑘) ≠ 0, because if not, that would also contradict the fact that there
is no zero in common. So given that all 𝜇𝑖 are positive, 𝑓∅(𝛼𝑘) > 0 for 𝑘 odd and 𝑓∅(𝛼𝑘) < 0 for k even.

Additionally, we know there must be an 𝑖 such that 𝑓𝑖(𝛽𝑗) ≠ 0. Since 𝑓∅(𝛽𝑗) = 0 and 𝑓∅ is the convex
sum of the different 𝑓𝑖, there must be an 𝑎 for which 𝑓𝑎(𝛽𝑗) < 0 and a 𝑏 for which 𝑓𝑏(𝛽𝑗) > 0. We can
suppose for now that 𝑗 is odd (the case where 𝑗 is even is exactly the same but 𝑎 and 𝑏 flip). We have
already established that 𝑓𝑎(𝛼𝑗) ≥ 0, so it must have a zero between 𝛽𝑗 and 𝛼𝑗. Since 𝑔 interlaces 𝑓𝑎,
this is the 𝑗th largest zero of 𝑓𝑎. Hence 𝜆𝑗(𝑓𝑎) ≥ 𝛽𝑗.

Similarly, since 𝑓𝑏(𝛼𝑗+1) ≤ 0, it has to have its 𝑗th zero between 𝛼𝑗+1 and 𝛽𝑗. Therefore 𝜆𝑗(𝑓𝑎) ≥
𝛽𝑗 ≥ 𝜆𝑗(𝑓𝑏), which is what we wanted.

To prove the case where 𝑓1, ..., 𝑓𝑚 have a common zero, we let 𝑓0 be their greatest common divisor.
Then we can apply the already proven part to the different ̂𝑓𝑖 =

𝑓𝑖
𝑓0
, which do not have any zero in

common. Then multiplying the ̂𝑓𝑖 again with 𝑓0 adds all the same zeros to 𝑓1, ..., 𝑓𝑚 and 𝑓∅. Hence the
theorem also holds in this case.

Please note that this theorem directly implies one side of Theorem 2.0.4: all zeros of any convex
combination are within real intervals. The other side is more complicated and will be proven in chapter
5, when all further needed concepts are introduced. For now, we will first improve the above theorem
to a slightly stronger result.

Theorem 4.2.2. Let 𝑓 be an interlacing family of degree 𝑑 polynomials with root labeled by 𝑓∅ and
leaves by {𝑓𝑙(𝑥)}𝑙∈𝐿. Then for all indices 1 ≤ 𝑗 ≤ 𝑛, there exist leaves 𝑎 and 𝑏 such that

𝜆𝑗(𝑓𝑎) ≥ 𝜆𝑗(𝑓∅) ≥ 𝜆𝑗(𝑓𝑏)

Proof. We can use induction on the height of the tree and Theorem 4.2.1. If the tree height is 1, the
result immediately follows. If the tree has a greater height, the theorem states that there are children
of the root 𝑣�̂� and 𝑣�̂� whose 𝑗th zero satisfies the inequality. Since 𝑣�̂� is not a leaf, it is the root of its
own interlacing family and hence by the induction hypothesis should have a leaf 𝑣𝑎 such that

𝜆𝑗(𝑣𝑎) ≥ 𝜆𝑗(𝑣�̂�) ≥ 𝜆𝑗(𝑓∅).

This argument can be repeated for 𝑣�̂�.

The theorems above provide us the tools to prove Theorem 4.1.3. First of all, 𝐵𝐵𝑇 = 𝐼 is equivalent
to ∑𝑖 𝑢𝑖𝑢𝑇𝑖 = 𝐼 with 𝑢𝑖 the columns of 𝐵. That means that for a set 𝑆 of size 𝑘 of these columns:

𝜎𝑚𝑖𝑛(𝐵𝑆)2 = 𝜆𝑘(𝐵𝑇𝑆 𝐵𝑆) = 𝜆𝑘(𝐵𝑆𝐵𝑇𝑆 ) = 𝜆𝑘 (∑
𝑖∈𝑆
𝑢𝑖𝑢𝑇𝑖 )

The main idea of the proof will be to pick the columns of 𝐵 at random to form the column submatrix
𝐵𝑆. After having picked a column we will replace it amongst the choices, so it will be possible to add
a column multiple times to 𝐵𝑆. This may not seem as the best thing to do: when a column is picked
twice, 𝜎𝑚𝑖𝑛(𝐵𝑆) = 0 because it clearly has dependent columns. However, this case will not bother us
too much as we are going to prove there is always a way to pick the columns in such a way that the
inequality holds.
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To do so, consider the expected characteristic polynomials of the outer products of the chosen vec-
tors. These polynomials will form an interlacing family where the expected characteristic polynomials
after having chosen 𝑘 vectors from 𝑚 possible choices form the leaves.

𝑓𝑠1 ,...,𝑠𝑘(𝑥) ∶= det [𝑥𝐼 −
𝑘

∑
𝑖=1
𝑢𝑠𝑖𝑢𝑇𝑠𝑖]

The root polynomial then becomes the weighted sum over all these leaves:

𝑓∅(𝑥) =
1
𝑚𝑘 ∑

𝑠1 ,...,𝑠𝑘∈[𝑚]𝑘
𝑓𝑠1 ,...,𝑠𝑘(𝑥)

So the different levels in the tree correspond to the number of picked vectors. At the root, we
haven’t picked anything yet, so we have the average polynomial of all different possible characteristic
polynomials. At the first level, the 𝑗th node corresponds to the average polynomial of the characteristic
polynomials given that we picked the 𝑗th vector as a first column.

This tree forms an interlacing polynomial by Lemma 2.1.4: each level of the tree has a common
interlacing and every non-leaf node is a convex combination of its children. And in the isotropic case
the tree actually becomes even nicer: the root polynomial has an explicit formula. [12]

𝑓∅(𝑥) = (1 −
1
𝑚𝜕𝑥)

𝑘
𝑥𝑑

From this formula one can see that as long as 𝑑 ≥ 𝑘, the polynomial 𝑓∅ is divisible by 𝑥𝑑−𝑘. So the
𝑘th largest root of 𝑓∅ is equal to the smallest zero of

𝑥−(𝑑−𝑘)𝑓∅(𝑥) = 𝑥−(𝑑−𝑘) (1 −
1
𝑚𝜕𝑥)

𝑘
𝑥𝑑 .

This is the step that shows why this isotropic case is so interesting. The expression resembles the
famous Laguerre polynomial of degree 𝑛 and parameter 𝛼: [18]

𝐿(𝛼)𝑛 = 𝑥−𝛼
𝑛! (𝜕𝑥 − 1)

𝑛𝑥𝑛+𝛼 .

Indeed,

𝑥−(𝑑−𝑘)𝑓∅(𝑥) = (−1)𝑘
𝑘!
𝑚𝑘 𝐿

(𝑑−𝑘)
𝑘 (𝑚𝑥).

This link between our root polynomial and the Laguerre polynomial is quite surprising and shows the
great strength of this method. The root polynomial is an average over characteristic polynomials, while
the Laguerre polynomial is the solution to a differential equation. This polynomial appears in different
fields in mathematics: quantum mechanics, random matrix theory and now also interlacing families.
This raises the idea that there is a larger mathematical structure behind this method of interlacing
families. Moreover, since these polynomials are heavily studied, there are already known bounds on
the roots, which is exactly what we need.

More specifically, we are going to use the bound on the smallest root of a Laguerre polynomial due
to Krasikov. [10]

Theorem 4.2.3 (Krasikov’s bound). For 𝛼 > −1,

𝜆𝑘(𝐿(𝛼)𝑘 (𝑥)) ≥ 𝑉2 + 3𝑉4/3(𝑈2 − 𝑉2)−1/3

where 𝑉 = √𝑘 + 𝛼 + 1 − √𝑘 and 𝑈 = √𝑘 + 𝛼 + 1 + √𝑘.
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Corollary 4.2.4.
𝜆𝑘(𝑓∅(𝑥)) >

1
𝑚(√𝑑 − √𝑘)

2

Proof. When applying Theorem 4.2.3 with 𝛼 = 𝑑 − 𝑘 and hence 𝑉 = (√𝑑 + 1 − √𝑘), we obtain

𝜆𝑘(𝑓∅(𝑥)) = 𝜆𝑘(𝐿(𝑑−𝑘)𝑘 (𝑚𝑥)) = 1
𝑚𝜆𝑘(𝐿

(𝑑−𝑘)
𝑘 (𝑥)) ≥ 𝑉2 > 1

𝑚(√𝑑 − √𝑘)
2.

So now that we have a bound on the zeros of the root polynomial, we can use Theorem 4.2.2 to tell
something about the zeros of one of the leaf polynomials: there exists a sequence 𝑠1, ..., 𝑠𝑘 , ∈ [𝑚]𝑘 for
which

𝜆𝑘(𝑓𝑠1 ,...,𝑠𝑘) ≥ 𝜆𝑘(𝑓∅) >
(√𝑑 − √𝑘)2

𝑚 .

We know that 𝑓𝑠1 ,...,𝑠𝑘 is the characteristic polynomial of ∑𝑘𝑖=1 𝑢𝑠𝑖𝑢𝑠𝑖𝑢𝑇𝑠𝑖 , so it is impossible to have
picked the same vector twice. If that would be the case, the matrix would have at most rank 𝑘 − 1,
which implies 𝜆𝑘 = 0.

This shows that there has to be a set 𝑆 ⊂ [𝑚] of 𝑘 different vectors such that

𝜎𝑚𝑖𝑛(𝐵𝑆)2 = 𝜆𝑘 (∑
𝑖∈𝑆
𝑢𝑖𝑢𝑇𝑖 ) >

(√𝑑 − √𝑘)2
𝑚 = (1 − √𝑘𝑑)

2
𝑑
𝑚

which is exactly the Restricted Invertibility Theorem.

4.3. Conclusion on the Restricted Invertibility Theorem
This chapter focuses on interlacing families as trees of polynomials. The first important result holds for
any such tree. It relates the zeros of the roots with the zeros of the leafs: every 𝑗th zero of the root
polynomial is bounded above by the 𝑗th zero of a leaf polynomial and bounded below by the 𝑗th zero
of another leaf polynomial. This theorem will also play a crucial role in the next chapter.

Next, we concentrate on a specific choice for the polynomials. Just as in the previous chapter, we
use the characteristic polynomial of a rank-one update of a matrix. The greatest difference is now that
we have multiple choices in which vector is used to construct this update, since we don’t need to aim
the eigenvalues in an interval. Therefore we keep track of all possible matrices by putting them in a tree.
One can walk from the root to the leaf by at each node picking one of the vectors, with replacement. The
final leaf polynomial is then the characteristic polynomial of the matrix obtained by all these rank-one
updates.

It turns out that the root polynomial in the Isotropic case of the Restricted Invertibility Theorem has
a very nice explicit expression, which is similar to the Laguerre polynomial. This is a crucial point in the
proof. The link between on one hand the characteristic polynomial of a matrix and on the other hand
the Laguerre polynomial, which is a solution to a differential equation. This is an indicative example
that interlacing polynomials have a strong structure and appear in different settings.

Since Laguerre polynomials are heavily studied, there is a known bound on its zeros. Using then
the relation with the zeros of the leaf polynomials we proved the existence of a choice of vectors giving
the column submatrix in the theorem.





5
The Kadison-Singer problem

The last theorem that we are going to prove with the method of interlacing polynomials is probably
the most important one: the Kadison-Singer problem. [9] This problem posed by Kadison and Singer
in 1959 remained unsolved for years until in 2014 Marcus, Spielman and Srivastava finally found a
solution thanks to their interlacing method. [14] In this chapter, we combine the concepts from chapter
3 with those from chapter 4. Specifically, we will use a proof with iteration and barrier functions, but this
time the polynomials will be multivariate instead of univariate. This will complicate things to keep track
of locations of the zeros and bring us back to interlacing families.

Question 5.0.1 (Kadison-Singer Problem). Does every pure state on the (abelian) von Neumann alge-
bra 𝔻 of bounded diagonal operators on 𝑙2 have a unique extension to a pure state on 𝐵(𝑙2), the von
Neumann algebra of all bounded operators on 𝑙2?

This question is not similar at all to the previous theorems that we have proven: it seems more
analytical and algebraic. And that is also how, at first, this problem was approached. The Kadison-
Singer problem became famous when one of the more known analytical mathematicians of that time,
Jean Bourgain, didn’t succeed in proving the positive result. [21] [20]

Using modern analytical methods was apparently not the right approach. This was the realisation
of Weaver, so he went for a different approach. [25] He proposed the following conjecture, called 𝐾𝑆2.

Conjecture 5.0.2 (𝐾𝑆2). There exists universal constants 𝜂 ≥ 2 and 𝜃 > 0 so that the following holds.
Let 𝑤1, ..., 𝑤𝑛 ∈ ℂ𝑑 satisfy ‖𝑤𝑖‖ ≤ 1 for all 𝑖 and suppose

𝑚

∑
𝑖=1
|⟨𝑢, 𝑤𝑖⟩|2 = 𝜂

for every unit vector 𝑢 ∈ ℂ𝑑. Then there exists a partition 𝑆1, 𝑆2 of {1, ..., 𝑚} so that

∑
𝑖∈𝑆𝑗

|⟨𝑢, 𝑤𝑖⟩|2 ≤ 𝜂 − 𝜃

for every unit vector 𝑢 ∈ ℂ𝑑 and each 𝑗 ∈ {1, 2}.

This conjecture is equivalent to the Kadison-Singer problem, yet it does not look very similar. And
that is the great strength of Weaver’s Conjecture. Because of this new formulation, Weaver hoped that
more discrete mathematical methods could be used to finally prove the problem.

And this turns out to be the case. As said, the proof was given by Marcus, Spielman and Srivastava
by the following theorem.

25
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Theorem 5.0.3 (Marcus-Spielman-Srivastava Theorem). If 𝜖 > 0 and 𝑣1, ..., 𝑣𝑚 are independent random
vectors in ℂ𝑑 with finite support such that

𝑚

∑
𝑖=1
𝔼𝑣𝑖𝑣∗𝑖 = 𝐼

and

𝔼‖𝑣𝑖‖2 ≤ 𝜖 for all 𝑖,

then

ℙ [‖
𝑚

∑
𝑖=1
𝑣𝑖𝑣∗𝑖 ‖ ≤ (1 + √𝜖)2] > 0.

This theorem is stated in a way that will enable us to prove Weaver’s Conjecture. However, with
the current phrasing, it is hard to use the method of interlacing polynomials: there are no polynomials
in the statement and hence certainly no roots of polynomials.

The largest part of the proof will actually be to step-by-step rewrite it in similar statements that when
tracing back our steps will eventually imply the theorem above. First of all we are going to replace the
𝑣𝑖𝑣∗𝑖 by Hermitian rank-one matrices 𝐴𝑖.

Theorem 5.0.4. Let 𝐴1, ..., 𝐴𝑚 be jointly independent random rank-one Hermitian positive semi-definite
𝑑 × 𝑑 matrices such that the sum 𝐴 ∶= ∑𝑚𝑖=1 𝐴𝑖 has mean

𝔼𝐴 = 𝐼

and such that

𝔼Tr[𝐴𝑖] ≤ 𝜖
for some 𝜖 > 0 and all 𝑖 = 1, ...𝑚.

Then

ℙ [‖𝐴‖ ≤ (1 + √𝜖)2] > 0.

This makes it easier to include polynomials. Since for a Hermitian positive semi-definite matrix ‖𝐴‖
is the largest eigenvalue of 𝐴, we will prove 𝜆𝑚𝑎𝑥 (𝑝𝐴(𝑥)) ≤ (1 + √𝜖) with positive probability. [19]
However, we don’t have a lot of information on this characteristic polynomial. Since 𝐴 is the sum of all
random matrices, it is hard to directly find a bound on its eigenvalues. Therefore we are going to use
the following result to reformulate the theorem once more. But this time, the rephrasing is a bit more
complicated and we will need two new formulas.

5.1. Mixed characteristic polynomial
First of all, we are going to use a new formula for the characteristic polynomial 𝑝𝐴(𝑥) of a matrix 𝐴. [14]

Proposition 5.1.1. Let 𝐴 be the sum of deterministic rank-one 𝑑 × 𝑑 matrices 𝐴1, ..., 𝐴𝑚. Then

𝑝𝐴(𝑥) = (
𝑚

∏
𝑖=1

1 − 𝜕𝑧𝑖)det(𝑥𝐼 +
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖) |

𝑧1=...=𝑧𝑚=0

This polynomial is called the mixed characteristic polynomial and is denoted by 𝜇 [𝐴1, ..., 𝐴𝑚] (𝑥).
The main reason why this formula is interesting is because now we include that 𝐴 is the sum over all
the different 𝐴𝑖. Another advantage is that if we take the expected characteristic polynomial we get the
following lemma.
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Lemma 5.1.2. Let 𝐴 be the sum of jointly independent rank-one 𝑑 × 𝑑 matrices 𝐴1, ..., 𝐴𝑚. Then we
have

𝔼𝑝𝐴(𝑥) = 𝜇 [𝔼𝐴1, ..., 𝔼𝐴𝑚] (𝑥).
Proof. Since 𝑥 is not a random variable, we can keep it fixed. In that case det (𝑥𝐼 + ∑𝑚𝑖=1 𝑧𝑖𝐴𝑖) is a
polynomial combination of the different 𝑧𝑖𝐴𝑖. Furthermore, ∏𝑚𝑖=1(1 − 𝜕𝑧𝑖) is a linear combination of the

differential operators 𝜕𝑗
𝜕𝑖1 ...𝜕𝑖𝑗

for 1 ≤ 𝑖1 < ... < 𝑖𝑗 ≤ 𝑑. So we can rewrite the mixed characteristic

polynomial as a linear combination of terms. And each of these terms is a multilinear combination of
𝐴𝑖1 , ..., 𝐴𝑖𝑗 for 1 ≤ 𝑖1 < ... < 𝑖𝑗 ≤ 𝑑. So if we take the expectation at both sides, we firstly take the
expectation over the different terms. Of course this will result in the sum over the expectations. Then
using the joint independence of the different 𝐴𝑖, the result follows.

This lemma seems very promising: while we have no info on what 𝐴 looks like, we do know that
𝔼𝐴 = ∑𝑖 𝔼𝐴𝑖 = 𝐼. Using this condition, we can simplify the mixed characteristic polynomial.

Lemma 5.1.3. Let 𝐴1, ..., 𝐴𝑚 be Hermitian positive semidefinite matrices satisfying ∑𝑖 𝐴𝑖 = 𝐼. In that
case

𝜇 [𝐴1, ..., 𝐴𝑚] (𝑥) = (
𝑚

∏
𝑖=1

1 − 𝜕𝑦𝑖)det(
𝑚

∑
𝑖=1
𝑦𝑖𝐴𝑖) |

𝑦1=...=𝑦𝑚=𝑥

Proof. The expression for the mixed characteristic polynomial was given by

𝜇[𝐴1, ..., 𝐴𝑚](𝑥) = (
𝑚

∏
𝑖=1

1 − 𝜕𝑧𝑖)det(𝑥𝐼 +
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖) |

𝑧1=...=𝑧𝑚=0

= (
𝑚

∏
𝑖=1

1 − 𝜕𝑧𝑖)det(
𝑚

∑
𝑖=1
(𝑧𝑖 + 𝑥)𝐴𝑖) |

𝑧1=...=𝑧𝑚=0

= (
𝑚

∏
𝑖=1

1 − 𝜕𝑦𝑖)det(
𝑚

∑
𝑖=1
𝑦𝑖𝐴𝑖) |

𝑦1=...=𝑦𝑚=𝑥

Where the last expression is obtained by substituting 𝑦𝑖 = 𝑧𝑖 + 𝑥.

5.2. Comparison with mean
It seems a good idea to rewrite the theorem to a statement including the expected characteristic poly-
nomial 𝔼𝑝𝐴(𝑥). The following theorem will allow us to do so, but to prove it on its turn we will need
some new concepts and results.

Theorem 5.2.1. Let 𝐴 be a randommatrix, which is the sum of 𝐴 = ∑𝑚𝑖=1 𝐴𝑖 of𝑚 independent Hermitian
rank-one 𝑑 × 𝑑 matrices 𝐴𝑖, each taking a finite number of values. Then,

ℙ [𝜆𝑚𝑎𝑥(𝑝𝐴(𝑥)) ≤ 𝜆𝑚𝑎𝑥(𝔼𝑝𝐴(𝑥))] > 0

and
ℙ [𝜆𝑚𝑎𝑥(𝑝𝐴(𝑥)) ≥ 𝜆𝑚𝑎𝑥(𝔼𝑝𝐴(𝑥))] > 0

The most important notion needed is the one of stable polynomials.

Definition 5.2.2. A polynomial 𝑝 ∶ ℂ𝑚 → ℂ is stable if it has no zeros in the region {(𝑧1, … , 𝑧𝑚) ∶ Im(𝑧1) >
0,… , Im(𝑧𝑚) > 0}.

A polynomial is real stable if it is stable and has real coefficients.

Note that when a polynomial of one variable is real stable, the polynomial is real-rooted because of
the symmetry of the roots. Only a minority of polynomials is real stable, but if you ever encounter them
in the wild, it is a reason to be very happy. They have very nice properties that we are going to exploit.
The polynomials that we are going to consider are real stable. [3]
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Proposition 5.2.3. If 𝐴1, ..., 𝐴𝑚 are positive semi-definite Hermitian matrices, then the polynomial

det (∑𝑧𝑖𝐴𝑖)

is real stable.

Now we are mostly interested in the mixed characteristic polynomial, which still has a product of all
1 − 𝜕𝑧𝑖 in front of it. To investigate in which cases the mixed characteristic is stable, the next theorem
will turn out to be useful. [15]

Theorem 5.2.4. If all the zeros of a degree 𝑑 polynomial 𝑞(𝑧) lie in a closed circular region 𝐴, then for
𝜆 ∈ ℂ, all zeros of

𝑞(𝑧) − 𝜆𝑞′(𝑧)
lie in the convex region obtained by translating 𝐴 in the magnitude and direction of the vector 𝑑𝜆.

We are particularly interested in what happens when we take 𝜆 = 1.

Corollary 5.2.5. If 𝑝 ∶ ℝ𝑚 → ℝ is real stable, then so is

(1 − 𝜕𝑧1)𝑝(𝑧1, ..., 𝑧𝑚)
.

Proof. Let 𝑥2, ..., 𝑥𝑚 be numbers with positive imaginary part. Then the univariate polynomial

𝑞(𝑧1) = 𝑝(𝑧1, 𝑧2, ..., 𝑧𝑚)|𝑧2=𝑥2 ,...,𝑧𝑚=𝑥𝑚
is stable. If that would not be the case, it would imply that 𝑝 has a root where all 𝑧𝑖 have positive
imaginary part. That contradicts the stability of 𝑝. Hence all zeros of 𝑞 lie in the circular region consisting
of numbers with negative imaginary part. Since translating this region by 𝑑 will once again give a region
of numbers with negative imaginary part, (1−𝜕𝑧𝑖)𝑞(𝑧) is stable. Hence (1−𝜕𝑧𝑖)𝑝 has no roots of which
all variables have positive imaginary part and is stable as well.

Another property of real stable polynomials that we will need is preservation when setting variables
to real numbers. [23]

Proposition 5.2.6. If 𝑝 ∶ ℝ𝑚 → ℝ is real stable and 𝑎 ∈ ℝ, then 𝑝|𝑧1=𝑎 ∶ ℝ𝑚−1 → ℝ is real stable as
well.

If we combine the above results, the following corollary follows immediately:

Corollary 5.2.7. If 𝐴1, ..., 𝐴𝑚 are positive semi-definite matrices then 𝜇 [𝐴1, ..., 𝐴𝑚] (𝑥) is real stable.

One of the reasons why this real stability is interesting, is because there is a clear link with interlacing
polynomials.

It will actually enable us to finally prove Theorem 2.0.4. [17]

Proof of Theorem 2.0.4. As already mentioned, Theorem 4.2.1 proves that if 𝑓1, … , 𝑓𝑚 are real-rooted
polynomials of the same degree with positive leading coefficients and with a common interlacing, then
∑𝑖 𝑡𝑖𝑓𝑖 is real rooted for any convex combination of 𝑡𝑖. So now we still have to prove the converse.

Consider two polynomials 𝑓 and 𝑔 such that ℎ𝑡 = 𝑡𝑓+(1−𝑡)𝑔 has real roots for any 0 ≤ 𝑡 ≤ 1. We
will show that 𝑓 and 𝑔 have a common interlacing.

To start, suppose 𝑓 and 𝑔 have no common zero and the zeros have multiplicity one. In this case,
when 𝑡 goes from 0 to 1, the roots of ℎ𝑡 trace from the roots of 𝑔 to the roots of 𝑓. The 𝑛 different roots
hence trace in 𝑛 different intervals 𝐼𝑖 and each 𝐼𝑖 contains exactly one root from 𝑔 and one from 𝑓. If
such an interval would without loss of generality contain two zeros from 𝑔, there would be a 𝑡 ≠ 0 and
an 𝑥 ∈ ℝ such that ℎ𝑡(𝑥) = 𝑔(𝑥) = 0. This implies that 𝑓(𝑥) = 0, contradicting the assumption of
having no common zeros. Therefore the 𝐼𝑖 should have pairwise disjoint interiors and 𝑓 and 𝑔 have a
common interlacing. For the case where there are roots in common, we apply the same reasoning as
in Theorem 4.2.1: let 𝑓0 be their greatest common divisor.
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Then we can apply the already proven part to ̂𝑓 = 𝑓
𝑓0

and �̂� = 𝑓
𝑓0
, which do not have any zero in

common. Then multiplying all the ̂𝑓𝑖 again with 𝑓0 adds all the same zeros to 𝑓 and 𝑔, which we can
also add to the common interlacing. Hence the theorem also holds in this case.

The last thing we have to deal with is root multiplicity. We need an intermediate result. Consider an
𝜖 > 0 and 𝑓 a real-rooted polynomial of degree 𝑛. Then the polynomial

𝑓𝜖 = (1 − 𝜖𝜕)
𝑛 𝑓

is real-rooted and has simple roots.
We have already established that 𝑓𝜖 is real rooted, so now we still have to count the roots. Consider

(1 − 𝜖𝜕)𝑓. This polynomial is zero whenever 𝑓′
𝑓 = 1/𝜖. Furthermore 𝑓′

𝑓 = ∑𝑖
𝑚𝑖
𝑥−𝑧𝑖

where 𝑚𝑖 is the
multiplicity of root 𝑧𝑖 of function 𝑓. This expression allows us to do the exact same analysis as we did
for Figure 2.2. Hence we find that 𝑓

′

𝑓 = 1/𝜖 exactly once between each root of 𝑓. So applying (1 − 𝜖𝜕)
to 𝑓 decreases the multiplicity of each root by 1. Applying it 𝑛 times ensures that we have simple roots.

Therefore we can consider a sequence of polynomials 𝑓𝜖 and 𝑔𝜖 defined as above. These have
simple, real roots for any 𝜖 > 0 and converge respectively uniformly to 𝑓 and 𝑔 on any bounded interval
as 𝜖 → 0. Using continuity on roots as a function of the coefficients, we can conclude that the theorem
also holds if 𝑓 or 𝑔 has roots with multiplicity ≥ 2.

Lastly, we have to prove the case where we have more than two polynomials. Suppose that we
have 𝑓1, … , 𝑓𝑚 such that for any non-negative convex combination of 𝑡𝑖, ∑𝑖 𝑡𝑖𝑓𝑖 is real rooted. Then by
choosing two of the 𝑡𝑖 to be 0.5 implies that any pair of 𝑓𝑖 have a common interlacing. This implies in
its turn that all 𝑓𝑖 have a common interlacing.

To see this, suppose there is no common interlacing. Then it is impossible to construct closed
intervals such that there is exactly one root of each polynomial in each interval. So that means there
are two polynomials 𝑓𝑖 and 𝑓𝑗 such that

𝜆𝑎(𝑓𝑖) ≤ 𝜆𝑎+1(𝑓𝑖) ≤ 𝜆𝑎(𝑓𝑗)

for some 𝑎 which obstruct the construction of the above mentioned intervals. But this contradicts
the common interlacing of 𝑓𝑖 and 𝑓𝑗.

Theorem 4.2.1 will also enable us to link the characteristic polynomial with its expectation: Theorem
5.2.1 follows by iterating the following result.

Lemma 5.2.8. Let 𝐴1, … , 𝐴𝑚 be jointly independent random rank-1 positive semi-definite Hermitian
matrices, with each 𝐴𝑖 taking finitely many values. For any 1 ≤ 𝑗 < 𝑚 and any fixed choice 𝐴1, ..., 𝐴𝑗−1
we have

ℙ [𝜆𝑚𝑎𝑥 (𝜇[𝐴1, ..., 𝐴𝑗−1, 𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚]) ≤ 𝜆𝑚𝑎𝑥 (𝜇[𝐴1, ..., 𝐴𝑗−1, 𝔼𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚])] > 0

and

ℙ [𝜆𝑚𝑎𝑥 (𝜇[𝐴1, ..., 𝐴𝑗−1, 𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚]) ≥ 𝜆𝑚𝑎𝑥 (𝜇[𝐴1, ..., 𝐴𝑗−1, 𝔼𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚])] > 0

Proof. 𝔼𝐴𝑗 is a convex combination over all values of 𝐴𝑗 that occur with positive probability. Hence by
the same properties we exploited for Lemma 5.1.2, we obtain that 𝜇[𝐴1, ..., 𝐴𝑗−1, 𝔼𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚] is a
convex combination of the 𝜇[𝐴1, ..., 𝐴𝑗−1, 𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚] over the possible 𝐴𝑗. Moreover, by Corollary
5.2.7 all possible combinations are real stable. Therefore we can construct an interlacing family of level
one with 𝜇[𝐴1, ..., 𝐴𝑗−1, 𝔼𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚] as root polynomial.

The children are then the 𝜇[𝐴1, ..., 𝐴𝑗−1, 𝐴𝑗 , 𝔼𝐴𝑗+1, ...𝔼𝐴𝑚] for the different possibilities of 𝐴𝑗. Hence
we can apply Theorem 4.2.1 to obtain the result we want.
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5.3. Proof of Weaver’s Conjecture
Combining section 5.1 and section 5.2, Theorem 5.0.4 becomes:

Theorem 5.3.1. Let 𝐴1, ..., 𝐴𝑚 be jointly independent random rank-one Hermitian positive semi-definite
𝑑 × 𝑑 matrices such that the sum 𝐴 ∶= ∑𝑚𝑖=1 has mean

𝔼𝐴 = 𝐼

and such that

𝔼Tr[𝐴𝑖] ≤ 𝜖
for some 𝜖 > 0 and all 𝑖 = 1, ..., 𝑚.

Then
𝜆𝑚𝑎𝑥(𝔼𝑝𝐴(𝑥)) ≤ (1 + √𝜖)

2

which would indeed imply the Marcus-Spielman-Srivastava Theorem.
So now we are going to use our built up knowledge on the mixed characteristic polynomial to plug

in the explicit expression of 𝔼𝑝𝑎(𝑥). The problem is that we will replace a univariate polynomial by
a multivariate one. That means that an upper bound for the largest root is not well defined anymore,
since we are dealing with vectors. Therefore we will use the notion of being above the roots.

Definition 5.3.2. Let 𝑝(𝑧1, ..., 𝑧𝑚) be a multivariate polynomial. We say that 𝑧 ∈ ℝ𝑚 is above the roots
of 𝑝 if

𝑝(𝑧 + 𝑡) > 0 for all 𝑡 = (𝑡1, ..., 𝑡𝑚) ∈ ℝ𝑚 , 𝑡𝑖 ≥ 0
So if we can prove that the vector ((1 + √𝜖)2, ..., (1 + √𝜖)2). is above the roots of

𝑄(𝑥, ..., 𝑥) ∶= 𝔼𝑝𝐴(𝑥) = 𝜇[𝔼𝐴1, ..., 𝔼𝐴𝑚](𝑥) = (
𝑚

∏
𝑖=1

1 − 𝜕𝑦𝑖)det(
𝑚

∑
𝑖=1
𝑦𝑖𝔼𝐴𝑖) |

𝑦1=...=𝑦𝑚=𝑥

then we prove the theorem above.
To do this, we use the same idea as in chapter 3: we are going to iteratively apply an operator to a

polynomial while keeping track of the roots of the zeros. More precisely, we are going to start with the
polynomial

det(
𝑚

∑
𝑖=1
𝑦𝑖𝐴𝑖)

and the operator at hand is multiplying with (1 − 𝜕𝑖) for some direction 𝑖 that hadn’t been used before.
In short, we are going to prove the following theorem:

Theorem 5.3.3. Let 𝐴1, ..., 𝐴𝑚 be symmetric positive semi-definite 𝑑 × 𝑑-matrices such that

𝑚

∑
𝑖=1
𝐴𝑖 = 𝐼

and

Tr[𝐴𝑖] ≤ 𝜖
for some 𝜖 > 0 and all 𝑖 = 1, ..., 𝑚.

Let 𝑝(𝑧1, ..., 𝑧𝑚) be the polynomial

𝑝(𝑧1, ..., 𝑧𝑚) ∶= det(
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖)

.
Then ((1 + √𝜖)2, ..., (1 + √𝜖)2) lies above the roots of (∏𝑚𝑖=1(1 − 𝜕𝑖))) 𝑝.
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From the previous section, we know that the starting polynomial 𝑝 is real stable and multiplying with
(1 − 𝜕𝑖) keeps it that way. That means that at no iteration there are roots of which all variables have
positive imaginary parts.

However, that still doesn’t give a lot of insight on how the roots behave during the iterations. There-
fore we are going to reintroduce the barrier functions from section 3.3. But in the mentioned section the
upper and lower barrier were enough because the polynomials were univariate. For the multivariate
polynomial now, we need redefine the barrier functions to keep track of the zeros in all directions.

Definition 5.3.4. Given a real stable polynomial 𝑝 and a point 𝑧 = (𝑧1, ..., 𝑧𝑚) above the roots of 𝑝. The
barrier function of 𝑝 in direction 𝑖 at 𝑧 is

Φ𝑖𝑝(𝑧) =
𝜕𝑧𝑖𝑝(𝑧)
𝑝(𝑧) = 𝜕𝑧𝑖 log𝑝(𝑧)

.
There is an equivalent definition that resembles more Definition 3.3.1:

Φ𝑖𝑝(𝑧1, ..., 𝑧𝑚) =
𝑞′𝑧,𝑖(𝑧𝑖)
𝑞𝑧,𝑖(𝑧𝑖)

=
𝑟

∑
𝑗=1

1
𝑧𝑖 − 𝜆𝑗

where the univariate restriction

𝑞𝑧,𝑖(𝑡) = 𝑝(𝑧1, ..., 𝑧𝑖−1, 𝑡, 𝑧𝑖+1, ..., 𝑧𝑚)
has roots 𝜆1, ..., 𝜆𝑟 which are real by Proposition 5.2.6.

Once again, the barrier functions are very useful. Two nice properties that they have are monotonic-
ity and convexity: [14]

Proposition 5.3.5. Suppose 𝑝 is real stable and 𝑧 is above the roots of 𝑝. Then for all 𝑖, 𝑗 ≤ 𝑚 and
𝛿 ≥ 0:

• Φ𝑖𝑝(𝑧 + 𝛿𝑒𝑗) ≤ Φ𝑖𝑝(𝑧)

(monotonicity)

• Φ𝑖𝑝(𝑧 + 𝛿𝑒𝑗) ≤ Φ𝑖𝑝(𝑧) + 𝛿 ⋅ 𝜕𝑧𝑖Φ𝑖𝑝(𝑧 + 𝛿𝑒𝑗)

(convexity)

From these properties, we almost immediately find a result that tells us something about the roots
when applying the operator.

Lemma 5.3.6. Suppose that 𝑝 is real stable, that 𝑧 is above its roots and that Φ𝑖𝑝(𝑧) < 1. Then 𝑧 is
above the roots of 𝑝 − 𝜕𝑧𝑖𝑝

Proof. Let 𝑡 have non-negative entries. Using the monotonicity of Φ𝑖𝑝 we obtain:

Φ𝑖𝑡(𝑧 + 𝑡) < 1
⇒ 𝜕𝑧𝑖𝑝(𝑧 + 𝑡) < 𝑝(𝑧 + 𝑡)
⇒ (𝑝 − 𝜕𝑧𝑖𝑝)(𝑥 + 𝑡) > 0

While this lemma allows us to prove that a vector is above the roots of 𝑝−𝜕𝑖𝑝, it is not strong enough
to iterate this argument. The problem is that we have no control over Φ𝑗𝑝−𝜕𝑖𝑝 for any other direction 𝑗.
So it is very well possible that Φ𝑗𝑝−𝜕𝑖𝑝(𝑧) becomes larger than one and then we are stuck.

The solution to this problem lies in taking another bound on the barrier functions. [14]
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Proposition 5.3.7. Suppose that 𝑝(𝑧1, ..., 𝑧𝑚) is real stable, that 𝑥 is above its roots and that 𝛿 > 0
satisfies

Φ𝑗𝑝(𝑥) ≤ 1 −
1
𝛿 .

Then 𝑥 + 𝛿𝑒𝑗 lies above the roots of 𝑝 − 𝜕𝑗𝑝 and furthermore,

Φ𝑖𝑝−𝜕𝑗𝑝(𝑥 + 𝛿𝑒𝑗) ≤ Φ
𝑖
𝑝(𝑥)

for all 1 ≤ 𝑖 ≤ 𝑚.

This proposition is the one we need, because now we know that at each step the barrier function
will decrease in every direction. Hence we can require that the barrier function is less than 1 − 1/𝛿 for
all directions and apply the result iteratively to easily find

Lemma 5.3.8. Suppose that 𝑝(𝑧1, ..., 𝑧𝑚) is real stable, that 𝑥 = (𝑥1, ..., 𝑥𝑚) is above its roots and that
𝛿 > 0 satisfies for all 1 ≤ 𝑗 ≤ 𝑚

Φ𝑗𝑝(𝑥) ≤ 1 −
1
𝛿 .

Then 𝑥 + (𝛿, ..., 𝛿) lies above the roots of (∏𝑚𝑖=1(1 − 𝜕𝑖)) 𝑝.

So to prove Theorem 5.3.3 using the above lemma, the only elements that we still need to find are
a vector 𝑥 that lies above the roots of

det(
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖)

and a 𝛿 > 0 such that
Φ𝑗𝑝(𝑥) ≤ 1 −

1
𝛿

for every direction 𝑗.

Proof of Theorem 5.3.3. Let

𝑝(𝑧1, ..., 𝑧𝑚) = det(
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖)

It turns out that finding a vector that is above the roots of 𝑝 is not that hard. Since all matrices 𝐴𝑖
are positive semidefinite and for any 𝑡 > 0

det(𝑡∑
𝑖
𝐴𝑖) = det(𝑡𝐼) > 0

the all-𝑡 vector (𝑡, ..., 𝑡) lies above the roots 𝑝 as long as 𝑡 is strictly positive.
Finding an appropriate 𝛿 requires some more work, but to keep the essence in the proof, the techni-

cal computations with identities from linear algebra are left out. One can verify that the barrier function
for the specific polynomial becomes:

Φ𝑖𝑝(𝑧1, ..., 𝑧𝑚) = Tr((
𝑚

∑
𝑖=1
𝑧𝑖𝐴𝑖)

−1

𝐴𝑖)

So if we plug in the all-𝑡 vector in this barrier function we obtain

Φ𝑖𝑝(𝑡, ..., 𝑡) =
Tr(𝐴𝑖)
𝑡 ≤ 𝜖

𝑡
for any direction 𝑖.
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Hence if we choose 𝑡 and 𝛿 such that 𝜖𝑡 +
1
𝛿 ≤ 1, Lemma 5.3.8 tells us that (𝑡+𝛿, ..., 𝑡+𝛿) lies above

the roots of (∏𝑚𝑖=1(1 − 𝜕𝑖)) 𝑝.
Choosing 𝑡 = √𝜖 + 𝜖 and 𝛿 = 1 + √𝜖 gives

𝜖
𝑡 +

1
𝛿 = 1

and
𝑡 + 𝛿 = (1 + √𝜖)2

as required.

As previously discussed, from Theorem 5.3.3 we can work our way back to eventually proof the
original formulation of the Marcus-Spielman-Srivastava Theorem (Theorem 5.0.3).

So the only thing left to prove is Weaver’s Conjecture 𝐾𝑆2, starting from this theorem.
To do this, we need one more corollary:

Corollary 5.3.9. Let 𝑟 be a positive integer and let 𝑢1, … , 𝑢𝑚 ∈ ℂ𝑑 be vectors such that

𝑚

∑
𝑖=1
𝑢𝑖𝑢∗𝑖 = 𝐼

and ‖𝑢𝑖‖2 ≤ 𝛿 for all 𝑖. Then there exists a partition {𝑆1, ..., 𝑆𝑟} of [𝑚] such that

‖∑
𝑖∈𝑆𝑗

𝑢𝑖𝑢∗𝑖‖ ≤ (
1
√𝑟

+ √𝛿)
2
for 𝑗 = 1,… , 𝑟.

Proof. For each 𝑖 ∈ [𝑚] and 𝑘 ∈ [𝑟], define 𝑤𝑖,𝑘 as the direct sum of 𝑟 vectors from ℂ𝑑, where every
vector is the 0-vector in ℂ𝑑 except for the 𝑘th one, which is a copy of 𝑢𝑖. That is,

𝑤𝑖,1 = ⎛

⎝

𝑢𝑖
0𝑑
⋮
0𝑑
⎞

⎠

,𝑤𝑖,2 = ⎛

⎝

0𝑑
𝑢𝑖
⋮
0𝑑
⎞

⎠

,… ,𝑤𝑖,𝑟 = ⎛

⎝

0𝑑
⋮
0𝑑
𝑢𝑖

⎞

⎠

.

Next, we let 𝑣1, … , 𝑣𝑚 be independent random vectors where 𝑣𝑖 takes values {√𝑟𝑤𝑖,𝑘}𝑟𝑘=1 each with
probability 1

𝑟 . We define these vectors in this way because then they satisfy

𝔼𝑣𝑖𝑣𝑖∗ = (
𝑢𝑖𝑢𝑖∗ 0𝑑×𝑑 … 0𝑑×𝑑
0𝑑×𝑑 𝑢𝑖𝑢∗𝑖 … 0𝑑×𝑑
⋮ ⋱ ⋮

0𝑑×𝑑 0𝑑×𝑑 … 𝑢𝑖𝑢∗𝑖

) .

So
𝑚

∑
𝑖=1
𝔼𝑣𝑖𝑣∗𝑖 = 𝐼𝑟𝑑 .

Furthermore,
‖𝑣𝑖‖2 = 𝑟‖𝑢𝑖‖2 ≤ 𝑟𝛿

which means we can apply Theorem 5.0.3 with 𝜖 = 𝑟𝛿 and find an assignment of each 𝑣𝑖 so that

(1 + √𝑟𝛿)
2
≥ ‖

𝑚

∑
𝑖=1
𝑣𝑖𝑣∗𝑖 ‖ = ‖

𝑟

∑
𝑘=1

∑
𝑖∶𝑣𝑖=𝑤𝑖,𝑘

(√𝑟𝑤𝑖,𝑘) (√𝑟𝑤𝑖,𝑘)
∗ ‖.
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So if we now set 𝑆𝑘 = {𝑖 ∶ 𝑣𝑖 = 𝑤𝑖,𝑘}, we obtain for every 𝑘:

‖ ∑
𝑖∈𝑆𝑘

𝑢𝑖𝑢∗𝑖‖ = ‖∑
𝑖∈𝑆𝑘

𝑤𝑖,𝑘𝑤∗𝑖,𝑘‖ ≤
1
𝑟‖

𝑟

∑
𝑘=1

∑
𝑖∶𝑣𝑖=𝑤𝑖,𝑘

(√𝑟𝑤𝑖,𝑘) (√𝑟𝑤𝑖,𝑘)
∗ ‖ ≤ ( 1

√𝑟
+ √𝑑)

2
.

This allows us to finally prove 𝐾𝑆2.

Proof of Weaver’s Conjecture. Set 𝑟 = 2 and 𝛿 = 1
18 in the corollary above. We will prove that this

implies Weaver’s Conjecture for 𝜂 = 18 and 𝜃 = 2.
Set 𝑢𝑖 =

𝑤𝑖
√𝜂

. The condition ∑𝑚𝑖=1|⟨𝑢, 𝑤𝑖⟩|2 = 𝜂 for every unit vector 𝑢 ∈ ℂ𝑑, implies that

∑
𝑖=1
𝑤𝑖𝑤∗𝑖 = 𝜂𝐼.

Substituting 𝑢𝑖 in this expression gives ∑𝑖 𝑢𝑖𝑢∗𝑖 = 𝐼.
Moreover, the 𝛿 from Corollary 5.3.9 becomes in that case 𝛿 = 1/𝜂 and hence 𝜂 = 18.
If we now multiply the result from the corollary back with 𝜂, we obtain the result for Weaver’s Con-

jecture with 𝜂 − 𝜃 = 16, which in its turn shows that 𝜃 = 2. And this finally concludes the proof.

And so by combining the idea of iterative proof and barrier functions from chapter 3, the notion
of interlacing families from chapter 4 and the mixed characteristic polynomial, we were finally able to
prove the Kadison-Singer problem. The fact that this method could solve a famous open problem from
analysis once more highlights its use and its value.

5.4. Conclusion on Kadison-Singer
To prove the Kadison-Singer Problem we have shownWeaver’s conjecture to be true using the Marcus-
Spielman-Srivastava Theorem. The largest part of the proof of is actually rewriting the statement step
by step where each steps implies the previous one. Hence if we then prove the last formulation, we
can trace our steps to prove the theorem.

In this rewriting quite some new concepts are introduced. First of all, instead of the usual character-
istic polynomial, the mixed characteristic polynomial is considered. This because we want to include
the expected characteristic polynomial, since we don’t know what the actual characteristic polynomial
of the random matrix looks like. This in contrast with the expected characteristic polynomial which is
the mixed characteristic polynomial over the expected rank-one matrices.

Of course, it has to be investigated if we can just replace the characteristic polynomial by its expec-
tation. One of the reasons why this proof works out so nicely is because this is indeed possible. The
fact that the mixed characteristic polynomial is real stable ensures that we can take the expectation
without too much trouble.

But by rewriting the univariate polynomial as a multivariate one, it is made impossible to say that its
largest root is smaller than a constant. Hence the introduction of being above the roots. This leads to
the final form of the theorem that we can finally prove.

In this chapter there are clearly quite a lot concepts that come together. The idea of a proof with
iteration and barrier functions from chapter 3 is refined. The fact that the polynomials form an interlacing
family, studied in chapter 4, is needed to take the expectation of the characteristic polynomial. All is
then combined with the mixed characteristic polynomial and real stability.

This makes it the perfect apotheosis for my study of the interlacing method.



6
Discussion and conclusion

My thesis reviewed the method of interlacing polynomials. But unlike the name suggests, this is not
just one method. It is a collective term for all sorts of methods using interlacing polynomials, common
interlacing and interlacing families.

Since these three concepts allow for a great range of applications, the method can be used in a
large amount of problems. The versatility was shown by considering three papers from three different
mathematical fields: spectral graph theory, linear algebra and analysis. Of course, since the results
of all papers could be shown using related methods, their cores could be boiled down to pretty similar
mathematics.

In all problems we considered the roots of a matrix, constructed by rank-one matrices. The eigen-
values of a rank-one update of matrix are almost interlaced by the eigenvalues of the original matrix.
That makes that we have more or less control on how these eigenvalues behave.

This control is used to iteratively construct matrices whose eigenvalues are bounded in a small
interval (chapter 3) or bounded above by a small value (chapter 5). In both chapters we keep track on
how these eigenvalues move at each step in every direction with barrier functions. Those functions
were originally used in physics, but through the physical representation of eigenvalues after a rank-one
update they also found their way to linear algebra.

Chapter 4 also considers eigenvalues of a matrix built up with rank-one matrices. However, we don’t
keep track of the zeros using barrier functions, but by constructing a tree of polynomials. This tree forms
an interlacing family. The leaves of the tree are the characteristic polynomials of the possible matrices
after having chosen 𝑘 columns. The levels above become average polynomials over their children.
This construction resulted in the root polynomial being a Laguerre polynomial. In each interlacing
family there is a relation between the zeros of the root polynomial and those of the leaf polynomials.
The beautiful correspondence between the root polynomial and the Laguerre polynomial provided us
with a bound on the zeros of the root polynomial. Using the said relationship we are able to pick a
certain leaf polynomial with exactly the bound on its zeros that we wanted.

There is a clear evolution through the paper in how the interlacing method is used. In Twice Ra-
manujan Sparsifiers the set of vector from which we construct rank-one updates is deterministic. There
is no probability theory involved, we are only constructing an order to add the different updates in such
a way that we control the behaviour of the eigenvalues. This absence of probability theory allows us to
just keep working with the univariate characteristic polynomial.

In the chapterRestricted Invertibility the idea of picking vectors at random is introduced the first time.
We prove that if you pick the vectors with replacement, there is a possible choice of vectors with the
wanted properties. We use the most basic probabilistic method: we just keep track of all possibilities
and then pick the one that we like.

In the last chapter, on the Kadison-Singer Problem the probabilistic method is more complicated. To
prove there is a possible choice of vectors we use the expected characteristic polynomial. This resulted
in the multivariate mixed characteristic polynomial which also complicated the use of similar methods
to the those of the chapter on the sparsifiers.

35
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Of course, this should not be the end of the evolution of research on the interlacing method. There
are still problems worth investigating. Professor Marcus suggested a follow-up question to the Marcus-
Spielman-Srivastava theorem.

Question 6.0.1. Theorem 5.0.3 proves that the largest eigenvalue of the matrix is bounded above by
a constant. Can we find a sharp lower bound on the smallest eigenvalue as well?

The reason why this is an interesting question is that it is in the first place very similar to the men-
tioned theorem. However, it is not that straightforward.

A possible first step would be to note that the smallest root of a polynomial 𝑝(𝑥) is (−1) times the
largest root of 𝑝(−𝑥). So one could try to prove that a certain vector is above the roots of 𝜇[𝐴1, … , 𝐴𝑚](−𝑥).
But then the operator in each iteration becomes (1+ 𝜕𝑖). Hence a new investigation is needed on how
the zeros behave at each step. This would be very interesting because besides a lower bound on the
eigenvalues it would also give insight in the different bounds one can construct using barrier functions
for different operators.

A second possible continuation of the research is to dive in the proof of the existence of bipartite
Ramanujan graphs for any number of vertices and any degree. As stated in chapter 3, these graphs
are notorious for being excellent sparsifiers for the complete graph.

Question 6.0.2. Does there exist a Ramanujan graph for any degree 𝑑 and any number of vertices 𝑛?

This turns out to be the case. Their existence was proven by Marcus, Spielman and Srivastava by
again considering the mixed characteristic polynomial. So even though it isn’t an open problem, the
papers on this topic are a nice extension for people interested in the interlacing method. [13] [11]

A more computational continuation could be to implement the proofs discussed in code. In the
papers polynomial run time algorithms are suggested. But of course it is interesting to actually write
the code and research whether the run time can be further reduced.

Question 6.0.3. How fast can we make algorithms implementing the problems from the three papers?

Lastly, method of interlacing polynomials is a tool to keep track of the zeros of a polynomial. The
most famous problem involving roots of a function is of course the Riemann hypothesis. [4] There are
people looking in the similarities between the method and this hypothesis. [8] The probability of actually
proving the hypothesis with a related method is extremely low, but beating those odds would without a
doubt be a interesting continuation in the evolution of the interlacing method.



Acknowledgement
First and foremost I would like to thank my two supervisors: Anurag Bishnoi and Adam Marcus. It was
only because of their time, input and guidance that I was able to get a full insight in the interlacing
method. I am extremely grateful that they both accepted my request to do a project on this theme.

I would like to extend my sincere thanks to Bas Janssens. Even though he is not one of the of-
ficial supervisors he attended the intermediate presentations and his feedback was highly valuable.
Moreover, I am really thankful for him being part of my graduation committee.

I’d also like to express my appreciation for all the support received frommymentor Jan van Neerven.
He has guided me in all my important decisions regarding my studies so far, of which the exchange to
the EPFL was one.

Lastly, I would like to thank Olof Lissmats for proofreading my thesis, his incredible knowledge on
Latex and just being an amazing friend.

Lander Verlinde
Delft, June 2022

37





Bibliography
[1] J.D. Batson, D.A. Spielman, andN. Srivastava. Twice-Ramanujan Sparsifiers. 2008. URL: https:

//doi.org/10.48550/arXiv.0808.0163.
[2] A. Benczur and D. R. Karger. Randomized Approximation Schemes for Cuts and Flows in Ca-

pacitated Graphs. 2002. URL: https://doi.org/10.48550/arxiv.cs/0207078.
[3] J. Borcea and P. Brändén. Applications of stable polynomials to mixed determinants: Johnson’s

conjectures, unimodality, and symmetrized Fischer products. 2006. URL: https://doi.org/
10.48550/arxiv.math/0607755.

[4] B. Conrey.Riemann’s hypothesis. 2019. URL: https://aimath.org/~kaur/publications/
90.pdf.

[5] T. Gale, E. Elsen, and S. Hooker. The State of Sparsity in Deep Neural Networks. 2019. URL:
https://doi.org/10.48550/arxiv.1902.09574.

[6] G.H. Golub and C.F. Van Loan. “Matrix Analysis”. In: Matrix Computations. 3rd ed. The Johns
Hopkins University Press, 1996, pp. 48–52.

[7] W.H. Haemers. “Interlacing eigenvalues and graphs”. In: Linear Algebra and its Applications 226–
228 (1995), pp. 593–616. URL: https://doi.org/10.1016/0024-3795(95)00199-2.

[8] A. Higashitani, M. Kummer, and M. Michałek. “Interlacing Ehrhart polynomials of reflexive poly-
topes”. In: Selecta Mathematica 23.4 (2017), pp. 2977–2998. URL: https://doi.org/10.
1007/s00029-017-0350-6.

[9] R.V. Kadison and I.M. Singer. “Extensions of Pure States”. In: American Journal of Mathematics
81.2 (1959), pp. 383–400. URL: http://www.jstor.org/stable/2372748.

[10] I. Krasikov. On extreme zeros of classical orthogonal polynomials. 2003. URL: https://doi.
org/10.48550/arxiv.math/0306286.

[11] A. W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing Families IV: Bipartite Ramanujan
Graphs of All Sizes. 2015. URL: https://doi.org/10.48550/arxiv.1505.08010.

[12] A. W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing Families III: Sharper Restricted
Invertibility Estimates. 2017. URL: https://doi.org/10.48550/arxiv.1712.07766.

[13] A.W Marcus, D. A. Spielman, and N. Srivastava. Interlacing Families I: Bipartite Ramanujan
Graphs of All Degrees. 2013. URL: https://doi.org/10.48550/arxiv.1304.4132.

[14] A.W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing Families II: Mixed Characteristic
Polynomials and the Kadison-Singer Problem. 2013. URL: https://doi.org/10.48550/
arxiv.1306.3969.

[15] M. Marden. “Combinations of a polynomial and its derivatives”. In: Geometry of polynomials.
American Mathematical Society, 1949, pp. 81–89. URL: https://doi.org/http://dx.doi.
org/10.1090/surv/003.

[16] N. Srivastava. “Graph Sparsification II: Rank one updates, Interlacing, and Barriers”. [Slides].
Aug. 26, 2014. URL: https://simons.berkeley.edu/sites/default/files/docs/
1772/slidessrivastava2.pdf.

[17] N. Srivastava. Restricted Invertiblity by Interlacing Polynomials. Apr. 15, 2014. URL: https://
windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-
polynomials/.

[18] G. Szegö. “Laguerre and hermite polynomials”. In: Orthogonal polynomials. Vol. 23. American
Mathematical Society, 1939, p. 101. URL: https://doi.org/http://dx.doi.org/10.
1090/coll/023.

39

https://doi.org/10.48550/arXiv.0808.0163
https://doi.org/10.48550/arXiv.0808.0163
https://doi.org/10.48550/arxiv.cs/0207078
https://doi.org/10.48550/arxiv.math/0607755
https://doi.org/10.48550/arxiv.math/0607755
https://aimath.org/~kaur/publications/90.pdf
https://aimath.org/~kaur/publications/90.pdf
https://doi.org/10.48550/arxiv.1902.09574
https://doi.org/10.1016/0024-3795(95)00199-2
https://doi.org/10.1007/s00029-017-0350-6
https://doi.org/10.1007/s00029-017-0350-6
http://www.jstor.org/stable/2372748
https://doi.org/10.48550/arxiv.math/0306286
https://doi.org/10.48550/arxiv.math/0306286
https://doi.org/10.48550/arxiv.1505.08010
https://doi.org/10.48550/arxiv.1712.07766
https://doi.org/10.48550/arxiv.1304.4132
https://doi.org/10.48550/arxiv.1306.3969
https://doi.org/10.48550/arxiv.1306.3969
https://doi.org/http://dx.doi.org/10.1090/surv/003
https://doi.org/http://dx.doi.org/10.1090/surv/003
https://simons.berkeley.edu/sites/default/files/docs/1772/slidessrivastava2.pdf
https://simons.berkeley.edu/sites/default/files/docs/1772/slidessrivastava2.pdf
https://windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-polynomials/
https://windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-polynomials/
https://windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-polynomials/
https://doi.org/http://dx.doi.org/10.1090/coll/023
https://doi.org/http://dx.doi.org/10.1090/coll/023


40 Bibliography

[19] T. Tao. Real stable polynomials and the Kadison-Singer problem. Nov. 4, 2013. URL: https:
//terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-
kadison-singer-problem/.

[20] T. Tao. “Jean Bourgain, problem solver”. In: Proceedings of the National Academy of Sciences
116.28 (2019), pp. 13717–13718. URL: https://doi.org/10.1073/pnas.190196511.

[21] L. Tzafriri and J. Bourgain. “On a problem of Kadison and Singer.” In: Journal für die angewandte
Mathematik 420 (1991), pp. 1–44. URL: https://doi.org/10.1515/crll.1991.420.1.

[22] V.S. Vassiliadis and C.A. Floudas. “The modified barrier function approach for large-scale op-
timization”. In: Computers & Chemical Engineering 28.8 (1997), pp. 855–874. URL: https:
//doi.org/10.1016/S0098-1354(96)00313-4.

[23] D. G. Wagner. Multivariate stable polynomials: theory and applications. 2009. URL: https://
doi.org/10.48550/arxiv.0911.3569.

[24] G.W. Watson et al. “Lattice Energy and Free Energy Minimization Techniques”. In: Computer
Modeling in Inorganic Crystallography. Academic Press, 1997, pp. 55–81. URL: https://doi.
org/10.1016/B978-012164135-1/50004-6.

[25] N. Weaver. “The Kadison–Singer problem in discrepancy theory”. In: Discrete Mathematics 278.1
(2004), pp. 227–239. URL: https://doi.org/10.1016/S0012-365X(03)00253-X.

https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://doi.org/10.1073/pnas.190196511
https://doi.org/10.1515/crll.1991.420.1
https://doi.org/10.1016/S0098-1354(96)00313-4
https://doi.org/10.1016/S0098-1354(96)00313-4
https://doi.org/10.48550/arxiv.0911.3569
https://doi.org/10.48550/arxiv.0911.3569
https://doi.org/10.1016/B978-012164135-1/50004-6
https://doi.org/10.1016/B978-012164135-1/50004-6
https://doi.org/10.1016/S0012-365X(03)00253-X

	Introduction
	Core of the interlacing method
	Characteristic polynomials

	Twice-Ramanujan Sparsifiers
	Statement of the problem
	Idea of the proof
	The need for barrier functions
	The proof
	Moving the upper barrier
	Moving the lower barrier
	Shifting the two barriers at once

	The actual sparsifier
	Conclusion on Twice-Ramanujan Sparsifiers

	Restricted Invertibility
	Restricted Invertibility Theorem
	The Isotropic Case
	Conclusion on the Restricted Invertibility Theorem

	The Kadison-Singer problem
	Mixed characteristic polynomial
	Comparison with mean
	Proof of Weaver's Conjecture
	Conclusion on Kadison-Singer

	Discussion and conclusion

