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Executive summary 
Introduction 

Driving involves communicative interactions where human drivers use communication signals 

(e.g., eye contact, hand gestures) to negotiate their right of way and drive safely on the road. 

The introduction of automated vehicles (AVs) in mixed-traffic environment, where human 

drivers will interact with AVs, will affect the nature of these communicative interactions. AVs 

and human-driven vehicles (HDVs) use different communication forms (e.g., vehicle-to-vehicle 

communication between AVs vs eye-contact between humans). This may affect the social 

acceptance of AVs, traffic safety and efficiency in mixed-traffic environment. In order to 

increase the social acceptance of AVs and reduce potential misinterpretation of AVs intent 

among human drivers, research should investigate whether AVs need to clearly convey their 

intent when interacting with HDVs. A possible solution is to explore the potential of external 

human machine interface (eHMI) to improve the communicative interactions between AVs and 

HDVs. 

Conclusions from previous literature on AV-pedestrian and HDV-HDV interactions vary with 

respect to the need of eHMIs for AVs in mixed-traffic environment. Furthermore, there are 

limited studies which have explored the need for eHMIs in AV-HDV interactions. In addition, 

the effect of eHMIs might differ depending on their placement (e.g., on vehicle or 

infrastructure). No concrete recommendation is available in the literature about the standard 

placement of eHMIs and the impact on their usability and realism.  These gaps introduce 

ambiguity among the stakeholders, who might develop diverse eHMI designs that lead to 

unsafe or inefficient  traffic interactions. This research makes an effort to fill those gaps. First, 

this research investigates the effects of AVs’ eHMI presence on human drivers’ perception and 

behavior when interacting with AVs. Second, it explores the effect of eHMI placement (i.e., on 

vehicle or infrastructure) on human driver interactions. The eHMI concepts were inspired from 

traditional traffic signals. The use case of this research is an unsignalized T-intersection on a 

distributor road outside an urban area with a speed limit of 80 kmph. In particular, human 

drivers perform right-turn maneuvers at unsignalized T-intersections. 

The main research question of this study is: 

What is the effect of eHMIs on AVs’ communicative interaction with human drivers 

who perform a right-turn maneuver at unsignalized T-intersections? 

In order to answer this research question, a driving simulator experiment was designed and 

the collected data were analysed in order to gain insights into the eHMI effects on human driver 

interaction with AVs. 

Method 

This research aims to study communicative interaction of AVs with HDVs using driver 

perception (e.g., trust, user acceptance, emotions) and behavior (e.g., approaching speed, 

crossing decision, critical events). Driver perception variables represent the human driver 

experiences and judgements of eHMIs in the AV interactions. Driver behavior variables 

measure the human driver’s decisions and actions when interacting with AVs that 

communicate their intent using eHMIs.  

In this research, the AVs communicated their intention with HDVs based on one of the following 

three eHMI conditions: baseline, eHMI on the vehicle, and eHMI on infrastructure. The baseline 

condition did not include any eHMI for the AV. eHMI on vehicle was in the form of a display 
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cube on top of the AV roof which displays the AV intention (see Figure 1). eHMI on 

infrastructure delivered AV intent through signalling devices fixed at the intersection (see 

Figure 2). The eHMI signals were conveyed through colors (e.g., purple and green). Purple 

represented an AV intent to cross before the HDV and therefore requested the HDV to yield, 

whereas green exhibited the decision of AV to yield and cross after the HDV. 

 

Figure 1: AV with an eHMI in the form of a cube. The eHMI exhibits green to signal HDVs to cross. 

 

Figure 2: eHMI on the infrastructure where signals communicate AV intent. For instance, AV requests the HDV to 
cross first through a green signal. 

The driving simulator experiments were conducted in July 2021. In total, 46 participants (31 

Males; 15 Females) took part in the experiment. The majority of the participants had at least a 

bachelor’s degree in science. Each participant drove the three defined scenarios: baseline, 

eHMI on the vehicle, and eHMI on infrastructure. The three scenarios were randomly assigned. 

In each scenario, the participants were asked to reach a destination by interacting with AVs at 

T-intersections. Before reaching an intersection, the participants were instructed to reach a 

trigger location at 50 kmph (see Figure 3). This trigger activated the AVs and the eHMIs which 

 

Figure 3: AV starts to move and exhibit eHMI signals when HDV reaches a trigger location (i.e., 70 m from 

intersection) at 50 kmph. 
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were visible to the participant from that point. After crossing the trigger location, the participants 

were allowed to make independent driving decisions during their interaction with the 

approaching AV from the intersecting road. The approaching AVs differed in their driving 

styles. Some AVs were designed to give the right of way to the participants, while others were 

designed not to give the right of way. The driving style of AVs was randomized within and 

across the scenarios. The participants interacted with the AV at 10 interactions in each 

scenario, where five AVs were designed to yield and the other five were designed not to yield 

the right of way. At the end of each scenario, the participants were requested to fill the 

perception questionnaire based on their driving experience in the scenario. The observations 

might depend on the visibility of AVs and its eHMIs to the participant. 

Analysis and results 

In order to understand the effect of eHMIs on driver perception and behavior, statistical 

analysis (e.g., descriptive and inferential statistics) and modelling (e.g., Generalized linear 

mixed modeling) were performed on the measured variables. Three models consisting of 

preference, critical events and crossing time were developed. The preference model was built 

to understand the eHMIs and drive perception implications for social acceptance of AVs. 

Critical events model and crossing time model predicted the combined effect of eHMIs, AV 

driving style and driver perception on traffic safety and efficiency of the AV-HDV interactions, 

respectively. 

Significant differences in perception and behavior were found in pairwise comparisons 

between the eHMI conditions as shown in Figure 4 and Figure 5, respectively. Higher pleasure 

and lower arousal scores were reported by participants with eHMIs compared to the baseline. 

The lowest arousal score was observed with the eHMI on infrastructure. Trust and user  

 

Figure 4: A dashboard illustration of drive perception results that are significant at p-value < 0.05. Among the 

scenarios, B, e_V and e_I represent baseline, eHMI on vehicle and eHMI on infrastructure, respectively. 
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Figure 5: A dashboard illustration of driver behavior results that are significant at p-value < 0.05. The results are 

differentiated for AV driving style (i.e., non-yielding and yielding). Among the scenarios, B, e_V and e_I represent 
baseline, eHMI on vehicle and eHMI on infrastructure, respectively. 

acceptance scores were higher for AVs with eHMIs than baseline. Further, more than 95% of 

participants preferred AVs that communicate intent with at least one form of eHMI. Preference 

for AVs, trust and user acceptance were not significantly different between the two conditions 

of  the eHMIs (i.e., on vehicle or infrastructure).  Regarding the workload measures, mental 

demand of participants was lower with the eHMI on vehicle than the baseline. 

The effect of eHMIs on driver behavior variables was greater in interactions with non-yielding 

AVs than yielding AVs. The participants had lower approaching speed, time to maximum 

braking and proportion of critical events (i.e., Post Encroachment Time between AV and HDV 

< 3s) with AVs that exhibit non-yielding intention with eHMIs compared to baseline. Participants 

took significantly less crossing time during the interaction with AVs that communicate non-

yielding intent via eHMI on vehicle than on infrastructure. 

More participants are compliant to yielding AVs with eHMIs than baseline. No significant 

differences were observed in the crossing decision of participants between the two eHMI 

conditions. In addition, the participants were involved in a lower proportion of critical events for 

eHMI conditions than baseline. In particular, lower critical events were observed for yielding 

AVs with eHMI on vehicle than infrastructure.  

The results of the three developed models are depicted in Figure 6. The preference model 

results show that eHMIs are likely to increase preference for AVs compared to baseline 

scenario without eHMI. In addition, the perceived usefulness of AVs’ communication system is 

likely to increase preference for AVs. The critical events model illustrates that eHMI on vehicle 

has a higher chance to reduce critical interactions between AVs and HDVs, when compared 

to baseline. However, eHMI on infrastructure does not have a significant effect in the critical 

events model when compared to baseline. Furthermore, a yielding AV is likely to reduce critical 
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interactions with HDVs than a non-yielding AV. On the other hand, the crossing time model 

predicts that the effects of eHMIs on the crossing time are not different from the baseline. As 

HDVs wait for the AVs to pass first, a non-yielding AV is likely to increase the crossing time for 

HDVs than a yielding AV. Perception and behavior variables such as usefulness, arousal and 

maximum deceleration are likely to reduce the crossing time of participants. 

 

Figure 6: A dashboard depiction of model results. The reported results in the models are significant at p-value < 

0.05. AV_DS represents automated vehicle driving style. Reference values are expressed as ‘0.00’. 

Discussion and conclusion 

Overall, the findings show that the eHMIs of AV have a significant effect on driver perception 

and behavior while performing right-turn maneuvers at unsignalized T-intersection. eHMIs 

seem to have a positive effect on driver perception in terms of driver emotions, trust and user 

acceptance. In particular, eHMI on vehicles reduces the mental demand, and eHMI on 

infrastructure increases the calmness experience of the drivers. These observations explain 

that explicit information helps the road user to understand AV intent clearly and make decisions 

with more certainty at the T-intersections. As a result, drivers prefer AVs with eHMIs over no 

eHMI. These observations imply that eHMIs can improve the social acceptance of AVs. 

eHMIs affect the driver behavior at a greater level during the different crossing stages in the 

interactions with non-yielding AVs than with yielding AVs. For yielding AVs, eHMIs have a 

significant effect only on the crossing stage variables. Whereas in interactions with non-

yielding AVs, eHMIs have a significant effect on the variables in pre-crossing, crossing, and 

post-crossing stages. A potential explanation is that the non-yielding AVs introduce uncertainty 

in the decision-making of participants. In other words, the effect of eHMIs on driver behavior 

increases with uncertainty in the interactions. This is reflected as a positive effect of eHMIs on 

driver emotions, trust and user acceptance.  

In uncertain interactions, the eHMIs decrease the drivers’ time to maximum braking and 

approaching speed which further reduces the critical interactions between HDVs and AVs. The 

critical events model predicts that AV with eHMI on vehicle reduces the critical interactions 

compared to no eHMI condition, which implies increased traffic safety at T-intersections. This 

could be due to lower mental demand with eHMI on vehicle. However, no such effects were 

found for the eHMI on infrastructure. 

eHMI on infrastructure, which is inspired by traffic signals, leads to calmer experience and 

persuades drivers to further lower their approaching speed which increases the crossing time. 

However, the crossing time model predicts no eHMI effects on the efficiency of AV-HDV 

interactions at T-intersections. Driver crossing decisions show that eHMIs improve driver 

compliance which in turn has positive implications for efficiency and safety of the AV-HDV 

interactions.  
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In conclusion, eHMIs have the potential to enhance communicative interactions of AVs with 

HDVs at unsignalized T-intersections. In particular, eHMI on vehicle can reduce the critical 

interactions between AVs and HDVs. No significant differences were observed between the 

eHMI conditions for the acceptance of AVs and efficiency of the AV-HDV interactions. 

Recommendations 

The results of this research show that eHMIs have the potential to improve traffic safety at T-

intersections and the acceptance of AVs among human drivers. Accordingly, 

recommendations are provided to various stakeholders. 

This research studies a novel (directional) eHMI concept (see Figure 1) that could contribute 

to scalability and higher resolution of communication to other road users. AV manufacturers 

are recommended to further investigate and optimise the design of directional eHMI to make 

it suitable for different on-road interactions (e.g., merging on highways, shared space, X-

intersection). 

Road authorities are recommended to collaborate with AV manufacturers in developing 

industry standards for eHMIs. For instance, such collaboration could aim at standardizing the 

modality and nature of the message (i.e., eHMI signal) that is effective and acceptable among 

road users. As the traffic light design provided a calmer experience for the participants in this 

research, road authorities could explore the methods for successful integration of eHMIs in 

advanced traffic controllers (e.g., intelligent traffic light installations). 

The difficulty arises when human drivers do not show acceptance and trust in AVs despite their 

benefits. This difficulty could increase critical interactions. Our research explored two eHMI 

concepts that could improve driver trust and acceptance of AVs. The participants preferred 

AVs with eHMIs as the design was simple and intuitive. Hence, road authorities and AV 

manufacturers are recommended to investigate eHMI designs that are simple, intuitive and 

acceptable among road users. 

Our findings show that eHMIs could reduce driver workload and positively affect driver 

emotions and acceptance of AVs. Modelling results illustrate that the eHMI on vehicle has the 

potential to reduce critical events at T-intersections, which benefits society. For the betterment 

of society, policymakers are recommended to carry out a cost-benefit analysis to quantify the 

eHMI effects for society at large. 
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1 Introduction 
Driving is a social task where drivers use diverse forms of communication to reduce 

uncertainties and crashes during interactions with other road users (Lamas, Burnett, et al., 

2014; Rasouli et al., 2018; Wolf, 2016). These interactions are referred to as communicative 

interactions that could differ with the advent of automated vehicles (AVs), especially 

driverless AVs. According to Bansal & Kockelman (2017), adoption of AVs range between 

24% and 87% in the United States by 2045. During the early adoption periods, AVs need 

to interact with human-driven vehicles (HDVs) which increases uncertainty on roads. A 

possible reason is that AVs create a social gap as the communication form is different to 

humans (Rasouli et al., 2018; Vinkhuyzen & Cefkin, 2016). For instance, AVs could 

communicate through vehicle-to-vehicle communication; however, human drivers use hand 

gestures and eye contact (among other forms) to communicate with other HDVs. Due to the 

differences in communication, human drivers are likely to misinterpret AVs’ intent. Goodwin 

(2020) mentioned that 3 out of 4 Americans think that driverless vehicles are not ready for 

roads because the road users do not clearly understand the AV intent. Misinterpretation 

between road users may affect social acceptance of AVs, traffic safety and efficiency 

(Rettenmaier et al., 2019). These effects are likely to pronounce in a mixed traffic 

environment with different road users. 

Previous research on communicative interactions among HDVs illustrate that drivers use 

implicit signals (e.g., yielding, non-yielding) and explicit signals (e.g., gestures, eye-contact, 

headlights) to communicate their intent (Ba et al., 2015; Dietrich, 2018; Kitazaki & Myhre, 

2015; Portouli et al., 2019; Risto et al., 2017; Uttley et al., 2020). Most of the previous 

studies on communicative interactions between HDVs are divided on their 

recommendations for the development of communication signals in AVs (Ba et al., 2015; 

Dietrich, 2018; Kitazaki & Myhre, 2015; Portouli et al., 2019; Risto et al., 2017; Uttley et al., 

2020). Some authors suggest that implicit signals are enough to communicate AV intent 

(Lee et al., 2020; Risto et al., 2017; Uttley et al., 2020); whereas, others argue that external 

human machine interface (eHMI; along with implicit signals) communicates a clear intent 

and resolves deadlock situations at intersections and narrow roads (Dietrich, 2018; Kitazaki 

& Myhre, 2015; Portouli et al., 2019; Rettenmaier et al., 2019). Previous studies on HDV-

HDV interactions suggest that eHMIs have the potential to improve social acceptance of 

AVs, traffic safety and efficiency in the mixed traffic environment (Dietrich, 2018; Imbsweiler 

et al., 2018; Portouli et al., 2019). However, there are limited studies that investigate the 

effect of eHMI presence on AV-HDV interactions. 

In addition, no concrete recommendation is available about the standard placement of eHMI 

which affects the realism and usability of AV communication on roads (Dey et al., 2020; 

Mahadevan et al., 2018). In a literature review, Dey et al. (2020) explained that more than 

50 studies investigated eHMI concepts on vehicles, whereas only one study explored eHMI 

on infrastructure. With regard to eHMI placement, each concept has both advantages and 

disadvantages. For instance, eHMI on vehicles requires less visual scanning for the human 

driver to know the AV intention compared to eHMI on infrastructure. On the other hand, 

eHMI on infrastructure exists in the vision line of driver and conveys AV intention even when 

the visibility of AV is occluded. Previous research rarely discusses the optimal location for 

eHMIs and its effects on human driver interactions. This could raise the gap in distinguishing 

the responsibilities of stakeholders (e.g., AV manufacturer and road authority) for 

developing and maintaining the eHMIs. These gaps could lead to the development of 

diverse eHMI designs for a traffic interaction. No standardization of an eHMI concept might 
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increase traffic crashes and inefficiency. Hence, there is a need to investigate the effects of 

eHMI placement in mixed-traffic environment. 

In order to meet the need, research must find out whether an eHMI is necessary for AVs in 

communicative interactions with human drivers to reduce misinterpretation among the 

drivers. In that event, further analysis is required to understand the effect of eHMI placement 

on human driver interactions with AVs. In order to find the optimal location of eHMI, the 

effects are to be studied on social acceptance of AVs, traffic safety and efficiency. 

1.1 Scope of the research  
This research primarily investigates the impact of eHMIs on AVs’ communicative 

interactions with HDVs at T-intersections. The communicative interactions are measured 

with driver perception and behavior in the interactions with AVs that communicate with 

eHMIs. A simulator experiment is implemented to understand if eHMI presence influences 

interactions with human driver. In addition, the research explores the effect of eHMI 

placement (i.e., eHMI on vehicle or infrastructure) on driver perception and behavior in the 

interactions. The research utilizes modelling techniques to understand the implication of 

eHMIs on social acceptance of AVs, traffic safety and efficiency. However, our research 

does not focus on the design aspect (e.g., shape, size, message format) of an eHMI. Our 

research assumes that AVs may or may not follow right-hand rule at the intersections. The 

focus is on one-to-one interaction between HDVs and AVs. These interactions are expected 

to occur in the early phases of automation. The environment of this study includes a bi-

directional distributor road (with a speed limit of 80kmph) with unsignalized T-intersections, 

where the human driver takes a right turn and interacts with an approaching AV on the left 

side.  

1.2 Societal impact 
Through a better understanding of communicative interactions between AVs and HDVs, this 

research contributes to the following user groups: 

Scientific community – Scientific research could involve social aspects of the driving context 

(e.g., communication), besides human psychology, to study mixed traffic interactions, and 

contribute to traffic efficiency and safety. The above aspects support the development of 

human-like AVs and meaningful human control. Our research could help relevant scientists 

to make better predictions on the driving maneuvers and improve the predictability of human 

driving actions. 

AV manufacturers – Many OEMs aim to make AVs socially acceptable among human users. 

Our research contributes to their goals by studying driver acceptance of AVs. In addition, 

this study investigates the human driver viewpoint that plays a vital role to understand driver 

needs for improving interactions with AVs. This could potentially reduce driver errors if AVs 

are designed, accordingly; which makes AVs safer to interact. 

Road authority – Our research involves a novel concept, eHMI on the infrastructure, to 

enhance driver experience in interactions with AVs. Road authorities could make use of this 

concept to design infrastructure requirements for future AVs and improve road safety. 

Policy makers – Our research contributes to social welfare by providing a possibility to 

reduce traffic crashes, save lives, congestion and fuel consumption. Furthermore, decision-

makers could have an understanding on when to permit the AVs, that are more socially 

acceptable, on roads. Before the introduction of socially acceptable AVs, the policy makers 

need to consider the change in responsibilities and liabilities.  
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1.3 Thesis outline 
The remaining chapters are outlined below. 

Chapter 2 reviews the previous literature on communicative interactions to identify the 

research gap. The literature review provides the base to develop the conceptual framework 

for this research. 

Chapter 3 argues the research need and defines the research questions. The chapter 

explains the conceptual framework for communicative interactions of AVs with HDVs. 

Furthermore, the chapter illustrates the hypotheses and research methodology. 

Chapter 4 elaborates on the design of the research method, which includes driving simulator 

and questionnaires. In addition, the chapter explains the procedure for the participant 

recruitment and the experiment. Finally, the chapter discusses the lessons from the pilot 

tests. 

Chapter 5 explains the collected data from the questionnaire and simulator. Further, the 

data is processed to handle the errors and outliers. 

Chapter 6 elaborates the analysis method and reports the results. The analysis method 

includes preliminary analysis, learning effects and modeling. 

Chapter 7 discusses the results and method, critically. The research questions are 

answered, and conclusions are drawn from the findings. The chapter ends with a discussion 

on the limitations of this research. 

Chapter 8 provides recommendations to future research and the stakeholders that are 

responsible for the safe introduction of AVs.  
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2 Literature review 
Automated vehicles are witnessing a significant development since the past decade (Chan, 

2017). One of the reasons is that automotive manufacturers like Tesla, Toyota and Google 

made advancements in the AV technology (Raviteja, 2020). This technology is expected to 

shift the dynamics of transportation systems in terms of user acceptance of AV technology 

and mode choice (Chan, 2017); thereby affecting future mobility (Gruel & Stanford, 2016). 

Furthermore, AVs are expected to improve traffic flow, energy efficiency and traffic safety 

(Fagnant & Kockelman, 2015). These improvements encourage policymakers to consider 

AVs in the formulation of policies (Anderson et al., 2016). In spite of these benefits, AVs still 

have limitations. For example, AVs are not yet capable of communicating their intent with 

other road users, effectively (Vinkhuyzen & Cefkin, 2016). Human drivers, on the other 

hand, use vehicle-based signals such as deceleration and driver-based signals such as 

eye-contact to communicate with other road users (Möller et al., 2016). The current section 

reviews the literature on communicative interactions among human drivers, automated 

vehicles, and methods to measure communicative interactions between AVs and other 

human drivers.  

2.1 Communicative interactions among human drivers 
Drivers use communication in interactions, either to express cooperation or right-of-way in 

space-sharing conflict (Dietrich, 2018). Portouli et al. (2014, p. 1796) explained 

communicative interactions, “in cases of uncertainty […] drivers deliberately seek to interact 

with other drivers, so as to communicate their motion intent and coordinate towards a safe 

future motion plan.” In addition, the authors considered intentional social interactions as 

communicative interactions. In these interactions, drivers use informal rules and 

communication signals to safely interact with road users (Björklund & Åberg, 2005; 

Markkula et al., 2020; Wilde, 1976).  

Previous research studied communicative interactions between human drivers and 

pedestrians for developing social AVs  (e.g., Dey & Terken, 2017; Moore et al., 2019; 

Rasouli et al., 2018). These interactions generally occur at lower speeds and the road users 

have a possibility to communicate using body gestures. However, communicative 

interactions between the human drivers could be different and more difficult (Lamas, 

Harvey, et al., 2014; Renner & Johansson, 2006). Drivers are inside a vehicle, which 

provides a physical barrier to communicate their intents clearly to other drivers. 

Furthermore, roads with high speed provide less time to convey driver messages. These 

limitations might lead to improper interpretation of others’ intent, which causes crashes and 

traffic inefficiency (Risto et al., 2017). Hence, there is a need to study these interactions. 

Table 1 provides an overview of the literature that made an effort to understand 

communicative interactions between human drivers. 

2.1.1 Methods 
Previous research studied communicative interactions through a combination of methods; 

which creates a holistic understanding of cooperation between human road users (Dietrich, 

2018). Common methods from the literature are observation protocol, running commentary, 

video analysis, survey, video-based experiment and driving simulator.  

Observation protocol method involves experimenters positioning at a real-time location and 

manually observing communicative actions in the traffic using the protocol app (Dietrich, 

2018; Lee et al., 2020; Uttley et al., 2020). This method captures the occurrence and 

sequence of implicit and explicit signals during communicative interactions in traffic (Dietrich 
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et al., 2019). This method cannot measure driver perception and kinetic information of 

vehicle movements in communicative interactions. 

Table 1: Overview of current studies on communicative interactions between human drivers  

Authors 
(year) 

Title Country Method 

Ba et al. 
(2015)  

The effect of communicational signals on 
drivers' subjective appraisal and visual 
attention during interactive driving 
scenarios 

China Driving simulator with on-
road films, questionnaire 

Dietrich et 
al. (2018) 

interACT D.2.1. Preliminary description of 
psychological models on 
human‐human and human‐automation 
interaction 

Germany, 
Greece, 
UK 

Observation protocol, 
video analysis, verbal 
protocol analysis 

Imbsweiler 
et al. (2018) 

Insight into cooperation processes for 
traffic scenarios: modeling with naturalistic 
decision making 

Germany Questionnaire 

Kauffmann 
et al. (2018) 

“What makes a cooperative driver?” 
Identifying parameters of implicit and 
explicit forms of communication in a lane 
change scenario 

Germany Driving simulator 

Kitazaki et 
al. (2015) 

Effects of Non-Verbal Communication 
Cues on Decisions and Confidence of 
Drivers at an Uncontrolled Intersection 

United 
States 

Interview  

Portouli et 
al. (2014) 

Drivers' communicative interactions: on-
road observations and modelling for 
integration in future automation systems 

Greece Verbal protocol analysis 

Portouli et 
al. (2019) 

Field observations of interactions among 
drivers at unsignalized urban intersections 

Greece Video-assisted 
observational study with 
retrospective 
commentary 

Risto et al. 
(2017) 

Human-vehicle interfaces: the power of 
vehicle movement gestures in human road 
user coordination 

United 
States 

Video analysis 

Stoll et al. 
(2018) 

Social interactions in traffic: the effect of 
external factors 

Germany Video-based experiment 

Uttley et al. 
(2020) 

Road user interactions in a shared space 
setting: priority and communication in a 
UK car park 

United 
Kingdom 

Observation protocol, 
video analysis 

Vinkhuyzen 
& Cefkin 
(2016) 

Developing socially acceptable 
autonomous Vehicles 

United 
States 

Video analysis, interview 

Lee et al. 
(2020) 

Road users rarely use explicit 
communication when interacting in today’s 
traffic: implications for automated vehicles 

United 
Kingdom 

Observation protocol, 
questionnaire 

 

Video analysis of on-road interactions enables researchers to understand communicative 

interaction patterns on roads in simple terms (Risto et al., 2017; Uttley et al., 2020; 

Vinkhuyzen & Cefkin, 2016). Video recordings are observed through a first-person or 

stationary ground-based cameras. First-person cameras (e.g., dashboard mounted 

cameras) capture communicative interactions from the viewpoint of the driver (Risto et al., 

2017). On the other hand, a stationary-ground based camera positioned at a bird view 

provides an overview of multiple interactions from different vehicles (Portouli et al., 2019; 
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Risto et al., 2017). Limitations of this method include privacy concerns, homography and 

image distortion in a few cases (Portouli et al., 2019). Video analysis does not capture driver 

perception in communicative interactions. 

Portouli et al. (2014, 2019) implemented verbal protocol analysis to understand driver 

perception. Verbal protocols provide a way to record the human thoughts while driving on 

road. However, real-time commentaries may remain incomplete in high-density traffic 

environments (Portouli et al., 2019). In addition, this method requires trained participants as 

it increases the cognitive workload on drivers (Grahn et al., 2020). If the participants are not 

trained, the cognitive workload might affect their driving tasks and road safety. 

Questionnaire and interview methods are not likely to affect participant safety during the 

study. These methods are implemented to investigate driver perception and decision-

making during communicative interactions (Kitazaki & Myhre, 2015; Strömberg et al., 2018). 

These interactions are introduced either through scenario description, sketch or simulated 

videos (Imbsweiler et al., 2018; Kitazaki & Myhre, 2015; Stoll et al., 2018; Stoll et al., 2019). 

However, the results of these studies suffer from low fidelity compared to others. For 

instance, Stoll et al. (2019) explained that participants overestimate the use of explicit 

signals in a survey than observational study. The results might require validation through 

driver behavior from an observational or field study (Imbsweiler et al., 2018).  

Driving simulator is a safe and feasible alternative to measure driver perception and 

behavior (Mullen et al., 2011). According to Kaptein et al. (1996), driving simulator enables 

to study the impact of non-existent road elements on driver behavior with high fidelity. 

Previous research concluded that driving simulators provide accurate observations on 

driver decisions and behavior, which is based on the context (Alicandri, 1994; Desmond & 

Matthews, 1997; Fraser et al., 1994; Kaptein et al., 1996; Lee, 2003; Meuleners & Fraser, 

2015). In the context of communicative interactions, some studies implemented driving 

simulator to study preferred cooperation behavior and effects of signals on driver perception 

(Ba et al., 2015; Kauffmann et al., 2018; Stoll et al., 2020). In these studies, drivers are 

asked to watch scenario videos on the driving simulator displays. Participants are then 

asked to fill relevant questionnaires to study driver perception and choices in communicative 

interactions. However, these studies did not study driver behavior in communicative 

interactions. Rettenmaier et al. (2020) filled this gap. The authors studied the passing 

behavior of HDV on narrow roads when interacting with eHMI equipped AVs. Further 

studies should investigate driver perception and behavior in communicative interactions 

with AVs in different driving contexts, using a driving simulator. 

2.1.2 Vehicle signals 
Vehicle signals act as the major source for an on-road communication between drivers (Ba 

et al., 2015). From the literature,  

Table 2 provides a summary of vehicle signals in driver-driver communicative interactions. 

The signals convey driver intent (Renge, 2000). Ba et al. (2015) illustrated that vehicle 

signals have an effect on drivers’ emotions, attitude, visual attention, and perception of 

others’ behavior. Kitazaki & Myhre (2015) investigated that these signals affect driver’s 

yielding decisions and confidence at an intersection. The interpretation of these signals, 

however, differs with the context (Ba et al., 2015; Björklund & Åberg, 2005; Moore et al., 

2019; Renge, 2000). In addition, diversity in the signals is likely to affect driver perception 

and decisions (Kitazaki & Myhre, 2015; Uttley et al., 2020); which ultimately influences 

driving behavior and traffic safety (Ba et al., 2015; Ceunynck et al., 2013). These studies 

imply that vehicle signals have a relationship with traffic safety and efficiency. 
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Table 2: Summary on vehicle signals for driver-diver communicative interactions 

Driving 
context 

Maneuver 
type 

Speed Vehicle signal 

Implicit signal Explicit signal Combined signal 

T- 
intersection 

Straight Low Acceleration, 
deceleration, 
stop, 
maintaining 
speed 

Headlight flash, 
direction 
indicator, hand 
gesture, horn  

NA 

Left Low Acceleration, 
deceleration, 
stop, 
maintaining 
speed 

Headlight flash, 
direction 
indicator, hand 
gesture, horn, 
head movements 

Turn indicator + edging, 
turn indicator + edging 
+ headlight flash, turn 
indicator + gesture, turn 
indicator + gesture + 
advancing, stop + 
gesture, stop + 
headlight flash, stop + 
horn, decelerate + 
gesture, decelerate + 
headlight flash 

Right Low Acceleration, 
deceleration, 
stop 

Turn indicator, 
hand gesture, 
head movements, 
headlight flash 

Turn indicator + 
advancing, decelerate 
+ gesture, decelerate + 
headlight flash + 
gesture, stop + gesture 

X-
intersection 

Straight, 
Left, right 

Low Acceleration, 
maintain speed, 
deceleration, 
stop 

Headlight flash, 
hand gesture 

NA 

Narrow 
road 

Straight Low Acceleration, 
deceleration, 
maintaining 
speed, stop 

Headlight flash, 
direction 
indicator, hand 
gesture, horn 

NA 

Shared 
space  

Car-
parking 

Low Maintaining 
speed, 
deceleration, 
stop 

Indicator (turn 
and reverse), 
headlight flash, 
hand movements, 
head movements, 
looking towards 
another driver 

NA 

Highway Lane 
change, 
merging 

High Acceleration, 
deceleration, 
maintaining 
speed 

Indicator, 
indicator + arrow 
on the AR 
display, hazard 
lights 

NA 

 

Ceunynck et al. (2013) and Moore et al. (2019) classified vehicle signals from human driver 

into implicit and explicit signals. Implicit signals include vehicle driving styles such as 

yielding and non-yielding; whereas, explicit signals include horn, indicator lights, and driver-

based signals such as eye-contact, hand and head gestures. Both of the signal types are 

relevant for communicative interactions to improve traffic safety (Dietrich, 2018). 



8 
 

Certain studies illustrate that human drivers prefer implicit over explicit signals in 

communicative interactions with other drivers (Dietrich, 2018; Imbsweiler et al., 2018; 

Portouli et al., 2019; Risto et al., 2017; Uttley et al., 2020). Drivers use implicit signals to 

establish a common meaning with other drivers (Risto et al., 2017). For instance, 

acceleration without vehicle indicator trigged other drivers to yield at an intersection 

(Portouli et al., 2019). In addition, Risto et al. (2017) illustrated that a slow moving car at an 

intersection indicates yielding and accelerating indicates that the driver will take the right of 

way. Most of the drivers rarely use explicit signals (Lee et al., 2020; Moore et al., 2019; 

Portouli et al., 2019). Moore et al. (2019) explained that the absence of explicit signals does 

not have a major impact on the safety of interactions with other road users.  

On the other hand, some authors explain that explicit signals are likely to affect driver 

perception of other’s cooperation in the interactions (Imbsweiler et al., 2018; Kauffmann et 

al., 2018; Portouli et al., 2019; Stoll et al., 2020, 2018; Uttley et al., 2020). Interpretation of 

explicit signals might differ with context and culture. According to Imbsweiler et al. (2018), 

explicit signals convey the defensive action of drivers. However, other authors explain that 

some drivers use explicit signals to make others yield (Portouliet al., 2019; Uttley et al., 

2020). Another observation is that the explicit signals are likely to influence driver decisions 

to change speed and lane (Stoll et al., 2020, 2018). In a study by Stoll et al. (2018), indicator 

signal with arrow (i.e., direction of turn) has the largest effect on cooperation behavior. 

These observations imply that explicit signals influence driver decisions in the interactions. 

However, these studies did not study the effect of AV signals on driving behavior in 

communicative interactions. 

Some studies suggest that drivers use explicit signals to resolve deadlock situations and 

negotiations (e.g., Dietrich, 2018; Kitazaki & Myhre, 2015; Portouli et al., 2019). Alongside 

implicit signals, driver-based explicit signals are likely to convey clear intent of driver in low-

speed interactions (Dietrich, 2018; Imbsweiler et al., 2018; Uttley et al., 2020). However, 

driver-based explicit signals are unlikely to occur in higher levels of AVs due to the shift in 

user role (i.e., driver to passenger). The literature on human driver interactions suggested 

considering eHMI with implicit signals to improve traffic safety and efficiency (Dietrich, 2018; 

Imbsweiler et al., 2018; Kitazaki & Myhre, 2015; Möller et al., 2016; Portouli et al., 2019).  

2.2 Automated vehicles 
According to the Society of Automotive Engineers (SAE; 2018), AVs are classified into 6 

levels of automation based on the system capabilities such as execution of dynamic driving 

tasks (lateral and longitudinal control, object and event detection and response, and 

fallback) and operational design domain (ODD; limited to certain road environment, type of 

behavior and state of the vehicle). Based on its capability, AV functionality differs with the 

levels of automation. Accordingly, the human user needs to take over the driving task. As 

the user role differs, communicative interactions between AVs and other road users are 

likely to vary.  

The user is responsible as a driver for AVs with Level 1, 2 and 3 automated systems (SAE, 

2018). The user, in Level 4 and 5, acts as a passenger in driverless AVs (SAE, 2018). When 

the automation is in control, users are unlikely to use the driving seat. This implies that the 

human driver is absent. Road users cannot use eye-contact or other forms of human-based 

informal signals in communication with driverless vehicles. Driverless vehicles, referred as 

AVs henceforth, build a ‘social interaction void’ (Rasouli et al., 2018). Rothenbucher et al. 

(2016) study showed that pedestrians are uncertain about the driverless car behavior in 

interactions. A probable explanation is that vehicle signals of driverless cars are different to 

conventional vehicle signals.  
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A possible solution is to use the concept of eHMI to convey the intent of AVs. This section 

explains the concept of eHMIs briefly, and then discusses the application of eHMIs in 

interaction with different human road users from the literature.  

2.2.1 External human machine interfaces 
Peng (2016) and Vinkhuyzen & Cefkin (2016) coined the term external human machine 

interface in 2016 (Winter & Dodou, 2021). eHMIs aim to reduce the communication void 

with other road users through “human-like” features to AVs (Peng, 2016; Vinkhuyzen & 

Cefkin, 2016). The interfaces offer a possibility to replace eye-contact and gestures in 

communication with human road users. eHMIs, however, are not just limited to adding 

“human-like” features to AVs. Schieben et al. (2019) suggested that eHMIs could serve as 

a multi-purpose tool in the interactions. For instance, eHMIs could convey information on 

AV intent, driving mode, perception of the environment, and cooperation capabilities. On 

similar lines, Winter & Dodou (2021) supported eHMIs through 4 arguments: 

1. eHMIs could provide superhuman performance to human road users 

2. Participants value AVs with eHMI than without eHMI 

3. eHMI could provide more information than just AV intent 

4. Implicit signals have limitations 

eHMIs could potentially improve communicative interactions and enhance traffic safety, and 

efficiency in the mixed traffic environment. 

2.2.2 Communicative interactions with pedestrians 
Many studies (see Figure 7) explored communicative interactions between AVs and 

pedestrians (e.g., Bazilinskyy et al., 2020; Böckle et al., 2017; Cefkin et al., 2019). Farber 

(2016) and Lee et al. (2020) explained that a prerequisite for AVs is to use vehicle signals, 

that effectively communicate with road users. If not, traffic safety and efficiency are reduced 

in a mixed traffic environment (Lee et al., 2020). A possible solution is to understand the 

effect of different signals that road users use when interacting in traffic and suggest the 

relevant signals (e.g. Farber, 2016; Kitazaki & Myhre, 2015; Lee et al., 2020).  

The literature is divided on suggesting the vehicle signals for pedestrian interactions. Few 

studies emphasize that pedestrians prefer to use implicit signals over explicit signals in 

communicative interactions with other drivers (e.g. Dey & Terken, 2017; Lee et al., 2020; 

Moore et al., 2019). Moore et al. (2019) utilized Wizard of Oz and Ghostdriver car methods 

to illustrate that the implicit signals, by itself, is a powerful eHMI during an interaction with 

pedestrians. Here, the Ghostdriver car did not use driver cues or eHMI to interact with the 

pedestrians. 

On the other hand, most researchers suggest that AV requires an explicit eHMI to 

compensate for driver’s inability to communicate with pedestrians (Habibovic et al., 2019; 

Lagström & Lundgren, 2016; Li et al., 2018; Matthews et al., 2018; Mirnig et al., 2017). 

These studies illustrate that an eHMI, alongside implicit signals, improves perceived safety, 

comfort and reaction time of pedestrians while crossing an AV. Habibovic et al. (2019) 

explained that eHMI is vital in negotiations as eHMI reduces ambiguity. This implies that the 

combined vehicle signals (i.e., implicit signals and eHMI) of an AV have a significant and 

positive effect on pedestrian interactions in negation situations. An explanation is that eHMI 

has the capability to support human road users in interpreting future AV behavior. These 

observations are rarely explored in communicative interactions between AVs and HDVs. 
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Dey et al. (2020) discussed various locations for the placement of eHMI to convey AV intent 

(see Figure 8). An eHMI could be mounted on the vehicle (e.g., roof, body grills); projected 

on the road as a message (e.g., symbols, trajectories, intention); placed on the 

infrastructure (e.g., smart roads, traffic lights) and attached to the pedestrians (e.g., smart 

watch, phone, tablet).  

 

Figure 7: Studies on AVs’ communicative interaction with pedestrians and human driven vehicles (HDVs). 

 

Figure 8: Placement of eHMI concepts differed in various studies (Dey et al., 2020). Most of the previous 
research studied eHMI concepts on vehicle. Least focus was given to eHMI concept on infrastructure. 
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Literature studied the impact of eHMI placement on pedestrians (e.g., Böckle et al., 2017; 

Dey et al., 2018; Mahadevan et al., 2018). Most of the studies focused on placing an eHMI 

on the vehicle (e.g., Böckle et al., 2017; Faas & Baumann, 2019; Habibovic et al., 2019). 

However, there is limited research on eHMI placement on the road infrastructure 

(Mahadevan et al., 2018). A possible explanation is that eHMI on infrastructure on street 

require high investments than eHMI on vehicle. 

Mahadevan et al. (2018) illustrates that the pedestrians prefer eHMI on the street 

infrastructure besides eHMI on the vehicle. Infrastructure eHMI provides higher resolution 

and scalability of communication than eHMI on vehicle (Dey et al., 2020). Resolution of an 

eHMI conveys the clarity on which road user is the message intended, whereas scalability 

refers to the number of road users using an eHMI. Higher resolution and scalability improves 

communicative interactions between pedestrians and AVs (Dey et al., 2020). These 

observations are not yet studied for interactions between AVs and HDVs. Resolution and 

scalability play a vital role in communicative interactions with human drivers. For instance, 

eHMI on vehicle might offer poor resolution than eHMI on infrastructure at X-intersections. 

However, the challenge lies in assigning the signal to a specific vehicle. There is a need for 

to study the effect of eHMI placement on AV interactions with HDVs. 

2.3 Communicative interactions with HDVs 
Limited research (see Figure 7) explored communicative interactions between AVs and 

HDVs in the mixed traffic environment (Avsar et al., 2021; Rettenmaier et al., 2020). 

Rettenmaier et al. (2020) and Avsar et al. (2021) studied the effect of eHMI on the passing 

behavior of human driver on narrow roads, and gap-acceptance behavior at the 

intersections, respectively. Results of the studies show that eHMI improves human driver 

performance in a communicative interaction with AVs. However, all these studies used 

unidirectional eHMIs which are less relevant on roads, where multiple interactions occur in 

the mixed traffic environment. The studies focused on driver behavior, one of the two 

concepts of communicative interaction, but not on driver perception. In addition, the effect 

of eHMI placement on human driver performance is not studied. eHMI placement affects 

the resolution and scalability of communication in the interactions (Dey et al., 2020). Hence, 

there is a need to explore the effect of eHMI placement and form on communicative 

interactions with human drivers. 

2.4 Measuring communicative interactions 
Wilde (1976) studied communicative interactions between drivers with two crucial concepts: 

perception and communication of intent. In most of the communicative interactions, drivers 

communicate their intent through their driving behavior (Imbsweiler et al., 2018). 

Parasuraman et al. (2000) explains a relationship between driver perception and behavior. 

Previous research measured driver perception and behavior to understand communicative 

interactions between human drivers (e.g., Dietrich, 2018; Portouli et al., 2019; Stoll et al., 

2019). Considering this, the following sub-sections focus on driver perception and driver 

behavior. 

2.4.1 Driver perception 
Human perception involves recognizing environmental elements and making judgements 

(Broadbent, 1958; Endsley, 1995; Steinfeld et al., 2006). Ram & Chand, (2016) explained 

that human perception of driving tasks (i.e., driver perception) influences the safety of traffic 

interactions. An explanation is that driver perception influences driving decisions and 

actions, thereby affecting the safety in interactions (Parasuraman et al., 2000). Literature 

widely studied driver perception on vehicle signals of HDVs in lane-change and 

unsignalized intersection scenarios (Imbsweiler et al., 2018; Kauffmann et al., 2018; 
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Kitazaki & Myhre, 2015; Portouli et al., 2019; Stoll et al., 2020). There are, however, limited 

studies that investigate driver perception on AV signal types (i.e., implicit signals and 

eHMIs) at unsignalized intersections. 

Previous research analysed driver perception through qualitative methods such as verbal 

protocol analysis (Dietrich, 2018; Portouli et al., 2019). Interpretation of qualitative methods 

require higher inter-reliability and help from other researchers. On the other hand, semantic 

differential scale measures driver perception quantitatively (Zimmermann & Wettach, 2017). 

Takahashi & Kuroda (1996) explained that semantic differential scale (SDS) is easier and 

useful to measure human perception of robots in multiple dimensions such as experience 

and usability. A widely applied SDS to understand driver experience of an interaction is 

perceived criticality (Kauffmann et al., 2018; Neukum, 2003). Avsar et al. (2021) observed 

that eHMIs reduce perceived criticality of interactions with AVs. Emotions, another SDS, 

helps to understand human intention and perception in human-robot interactions (Fiore et 

al., 2013). Lundgren et al. (2017) and Zoellick et al. (2019) explained that emotions have a 

relationship with driver attitudes and behavior in the communicative interactions on road. 

However, emotions and perceived criticality are unlikely to reflect the workload experienced 

by the driver in communicative interactions. Perceived workload measures the discomfort 

level of drivers in the interactions. Some studies suggest a relationship between AV 

interactions and the perceived workload of driver (Eriksson et al., 2019; Heikoop et al., 2019; 

Stapel et al., 2019). As an eHMI provides AV intent, the information is likely to reduce the 

perceived workload of road user. However, perceived workload is rarely studied in human 

driver interactions with eHMI equipped AVs. 

Driver perception is likely to have a relationship with human factor variables, such as trust 

and user acceptance (Zoellick et al., 2019). Trust plays a vital role in human-automation 

interactions (Lee & See, 2004). For instance, Zhang et al. (2019) illustrates that trust has a 

positive and significant effect on human adoption and acceptance of AVs.  

eHMIs are likely to improve the social acceptance of AVs (Vinkhuyzen & Cefkin, 2016). 

Social acceptance could be measured through user acceptance and preferences (e.g., 

Beggiato & Krems, 2013; Hecht et al., 2020; Heesen et al., 2014). Zoellick et al. (2019) 

used user acceptance to measure the usability of AV technology in the communicative 

interactions with pedestrians. In these communicative interactions, Zoellick et al. (2019) 

observed that behavioral intention is influenced by perceived criticality, emotions, trust, and 

user acceptance of participants. This finding implies that the above perception variables, 

including human factors, are likely to affect road user preferences of AVs in the interactions. 

However, the perception variables are rarely explored to study the interactions between 

human drivers and AVs with eHMIs.  

2.4.2 Driver behavior 
Human driving behavior is complex and unpredictable. Previous research investigated 

driver behavior models for developing AVs, and relieve driver stress, reduce uncertainty, 

improve traffic safety and efficiency (Pathivada & Perumal, 2017; Riaz et al., 2018; Salvucci, 

2006; Talebpour et al., 2016; Wang et al., 2014). These models make an effort to develop 

human-like AVs by adapting vehicle behavior to human driver behavior (Basu et al., 2017). 

Human-like AVs aim to reduce human error and improve social acceptance. One of the 

many challenges for human-like AVs is to execute communicative interactions with human 

drivers. Preliminary research developed decision-making algorithms to make the AVs more 

sociable, and safe (Möller et al., 2016; Riaz & Niazi, 2017; Schwarting et al., 2019). These 

models, however, assumed and simplified driver behavior. Very few studies explored driver 

behavior in communicative interactions (Dietrich, 2018). These interactions are generally 
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observed at unsignalized T-intersections (Dietrich, 2018; Portouli et al., 2014; Risto et al., 

2017). However, there are limited studies that examine driver behavior in communicative 

interactions at unsignalized T-intersections. 

Driver behavior at unsignalized intersections (i.e., crossing behavior) determines the 

capacity and movement of vehicles at these intersections (Vinchurkar et al., 2020). Crossing 

behavior was measured using approaching speed and minimum speed (Choudhary & 

Velaga, 2019; Li et al., 2020), maximum acceleration and deceleration (Choudhary & 

Velaga, 2019; Li et al., 2020; Pawar & Patil, 2018), time to maximum braking, crossing 

decision, post encroachment time (Killi & Vedagiri, 2014; Li et al., 2020) and crossing time 

(Devarasetty et al., 2012; Li et al., 2020). These measures were selected by studies 

focusing on modeling driver behavior and predicting driver intent at unsignalized 

intersections.  
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3 Research need and questions 
This section discusses research gaps in the literature and establishes the research need, 

and objective. Further, the main research question and sub-questions are explained. 

Finally, the hypotheses are mentioned. 

3.1 Research need and objective 
Automated vehicles interact with HDVs in a mixed traffic environment. These interactions, 

however, could be different than HDV-HDV interactions. The lack of human control or in 

some cases the human presence in AVs result in a social gap. This gap increases the 

difficulty for a human driver to clearly understand the vehicle signals of an AV (Rasouli et 

al., 2018). Improper communication with human drivers could lead to an increase in travel 

delays and road crashes, which ultimately reduces the social acceptance of AVs. Previous 

literature on driver-driver (Dietrich, 2018; Imbsweiler et al., 2018; Kitazaki & Myhre, 2015; 

Möller et al., 2016; Portouli et al., 2019), pedestrian-driver (Dietrich, 2018; Kitazaki & Myhre, 

2015; Uttley et al., 2020) and pedestrian-AV (Habibovic et al., 2019; Li et al., 2018; 

Lundgren et al., 2017; Matthews et al., 2018; Mirnig et al., 2017; Vinkhuyzen & Cefkin, 2016) 

interactions suggest the application of eHMI, in addition to implicit signals, for AVs in mixed 

traffic environment. The purpose is to enhance AVs’ social acceptance and reduce 

uncertainty in communicative interactions with human road users. Such suggestions, 

however, are questionable as the studies did not explicitly investigate the effect of eHMI in 

AV-HDV interactions. The question arises whether eHMIs are likely to improve 

communicative interactions. However, limited studies exist. In addition, AV interactions with 

road users are affected with the placement of eHMI on vehicle or infrastructure (Mahadevan 

et al., 2018). The placement of eHMI rises the question of “who” is responsible to develop 

and maintain the eHMI. For instance, whether road authority or AV manufacturer is 

responsible for constructing and maintaining the eHMI? Existing research did not make 

efforts to answer the question. Hence, there is a need to investigate the effect of eHMI 

placement on AV-HDV interactions. 

On road studies suffer from low experimental control. On the other hand, qualitative 

methods (e.g., online questionnaire and survey) produce results that are different from 

reality (Imbsweiler et al., 2018; Stoll et al., 2019). Hence, there is a need to study AV-HDV 

interactions with a research method (e.g., driving simulator) that has optimal validity and 

experimental control. 

In order to address these aspects, the main objective of this research is to study the effect 

of eHMIs in communicative interactions between HDV and AVs. This provides an 

understanding on whether eHMIs could improve traffic safety and interaction efficiency for 

AVs in a mixed traffic environment.  

3.2 Conceptual framework 
The conceptual framework of this research is exhibited in Figure 9 and is developed using 

the literature findings and the research objective. This framework explains communicative 

interactions between human drivers and interacting vehicles (i.e., HDV and AV), that are 

based on AV driving styles (i.e., yielding and non-yielding) and explicit signals (i.e., eHMI 

on vehicle and eHMI on infrastructure).  

AVs could use eHMIs to convey intent with HDVs in the communicative interactions. Such 

interactions differ with human driver characteristics, driver presence, road infrastructure, 

driving style, and the existence and type of eHMI of AVs. Driver presence in vehicles  
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Figure 9: Conceptual framework of communicative interactions between human drivers and AVs. 

influences other driver expectancy on the type of vehicle signals. For instance, human driver 

expects and uses human-based signals such as eye-contact, if they see a driver in the other 

vehicle. While interacting with an AV, a human driver understands the AV intention through 

driving style and eHMIs. AV driving style, in terms of vehicle movements, convey 

information on the future trajectory of the vehicle. eHMIs inform the human driver about AV 

intent. Green display requests human drivers to cross first, and purple advises human 

drivers to yield. eHMIs differ in the placement, either on vehicle or infrastructure.  

AV driving style and eHMIs affect communicative interactions, in terms of perception and 

behavior, with human drivers. If the information of AV signals does not meet driver 
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expectations, then they might experience the situation as critical and AVs as unsafe. 

Accordingly, drivers behave differently than expected. 

Human driver characteristics affect their communicative interactions with AVs. Personal 

characteristics such as age, gender, profession, driving experience and social preferences 

affect drivers’ understanding and their interactions with HDVs and AVs. Social preference 

of drivers influences their driving behavior. For instance, altruistic drivers give priority to 

other vehicles and take more time to maneuver. In addition, driver trust and knowledge of 

AV influence their judgement and interaction with AVs. 

In addition, external factors such as road infrastructure and presence of other road users 

influence communicative interactions between vehicles. Road infrastructure, such as an 

intersection, offers conflict space that is shared by human and automated driven vehicles. 

The road users negotiate their right-of-way through communication in the conflict space; 

which determines driver behavior in the interactions (Wilde, 1976). For instance, a driver 

cooperates and decelerates to provide right-of-way to other vehicles at an intersection. 

Similarly, the presence of other road users affects driver behavior (Uttley et al., 2020). An 

example, a vehicle stops to let the pedestrians cross. 

Human drivers study the intent of other vehicles using their signals (i.e., driving styles and 

eHMIs) in communicative interactions. Driver perception of others’ intent is reflected in their 

judgement of situation criticality, emotions, perceived workload, trust and acceptance of AV 

based on its signals. The above perception variables also influence driver preferences. 

Furthermore, drivers’ perception of a situation influences their actions (e.g., crossing 

behavior). These actions differ with the type of driver maneuver and conflict space on road. 

While crossing at unsignalized T-intersections, drivers communicate their intent through 

driving behavior at three stages, namely pre-crossing, crossing, and post-crossing stages. 

Pre-crossing stage includes driver behavior variables such as approaching speed, 

maximum acceleration, maximum deceleration, minimum speed, and time to maximum 

braking. Crossing stage includes crossing decision and post encroachment time. Post-

crossing stage includes crossing time. Observations at different stages give a deeper insight 

into the effect of eHMIs on driver behavior. Driver behavior is influenced by their perception 

of AV in the interaction (Parasuraman et al., 2000). If a driver sees the eHMI and perceives 

the AV as non-yielding then the driver waits and takes more time to cross. On the other 

hand, driver behavior and experience with an AV influences perception, such as trust and 

acceptance of an AV. For instance, if a driver faces a safety issue during a communicative 

interaction with an AV, then the driver develops a low trust and acceptance score for AV 

signal. Hence, the relation between driver perception and behavior is cyclic. 

3.3 Research questions 
Following the identified research gaps, the main research question of this study is: 

What is the effect of eHMIs on AVs’ communicative interaction with human drivers who 

perform a right-turn maneuver at unsignalized T-intersections? 

To answer it, five sub-questions are developed: 

1. What are the effects of eHMI on driver perception? 

2. What are the effects of eHMI on driver behavior with respect to AV driving style? 

3. Which factors related to eHMI conditions, driver characteristics and perception 

influence driver preference for AVs? 

4. Which of the AV and driver characteristics, perception, and pre-crossing behavior 

variables influence the critical events during right turn maneuver? 
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5. What is the effect of AV characteristics, driver characteristics, perception, pre-

crossing and crossing behavior on the time drivers take to complete right turn 

maneuver? 

Sub-question 1 explores the relationship between the eHMI conditions and each of the 

perception variables. Perception variables, including situation criticality, emotions, trust, 

user acceptance, workload, and preferences, provide driver judgements of the AV 

interactions. First, the question focuses on whether an eHMI enhances driver perception in 

the interactions. Second, the question studies the effect of eHMI placement on driver 

comprehension.  

Sub-question 2 examines the effect of eHMI presence and its placement on human driver 

behavior in the interactions. The relationship with human behavior is studied over AV driving 

style (i.e., non-yielding and yielding). Human driver behavior is observed across pre-

crossing, crossing, and post-crossing stages. The question aids the researcher to 

understand the interaction patterns between human drivers and AVs. The driving behavior 

in the interactions could be used to understand the variation in traffic safety and efficiency 

of the HDV-AV interactions. 

Sub-question 3 identifies the relevant factors, among the eHMI conditions, driver 

characteristics, and perception variables, that predict the driver preferences for AVs. The 

identified variables improve the social acceptance of AVs. 

Sub-question 4 predicts the combined effect of AV characteristics (i.e., driving style and 

eHMI), driver characteristics (e.g., age, gender, education), perception (e.g., emotions, rust, 

user acceptance), and pre-crossing behavior (e.g., approaching speed, maximum 

deceleration, time to maximum braking). The predicted variable is the critical events from 

Post Encroachment Time (PET) in the crossing stage. The critical events (from PET) 

provide inference for traffic safety. 

Sub-question 5 understands the combined effect of sub-question 4 variables, in addition to 

crossing behavior variables (i.e., crossing decision, and post encroachment time). The 

target variable for the prediction is crossing time from the post-crossing stage. The results 

contribute to understand the efficiency of AV-HDV interactions. 

3.4 Hypothesis 
In order to answer the research questions, various hypotheses are formulated and tested 

to understand the effect of eHMIs on driver perception and behavior. Literature findings are 

used to compose the following hypotheses: 

1. eHMIs improve driver perception of AV in the interactions. 

2. Driver compliance with AV instruction increases for the eHMI conditions and more 

specifically for the eHMI on infrastructure. 

3. Drivers are likely to prefer AVs with eHMIs, where more preference is given to eHMI 

on vehicle. 

4. eHMI on vehicle is likely to reduce critical events between HDVs and AVs than eHMI 

on infrastructure and baseline conditions. 

5. eHMI on infrastructure is probable to decrease the crossing time of drivers than 

eHMI on vehicle and baseline conditions. 

3.5 Research methodology framework 
Figure 10 illustrates the stepwise approach of research methodology to achieve the 

objective. 
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Figure 10: Research methodology framework.  



19 
 

4 Experiment 
This section describes in detail the research methodology and experiment setup, including 

participant recruitment, apparatus, design, experimental procedure and lessons learnt from 

the pilot. This experiment involves variables that require a controlled environment to study 

communicative interactions between human drivers and AVs. A driving simulator, supported 

by an online survey, is used as the experimental method. 

4.1 Participant recruitment 
The eligibility criteria were that the participants have a driving license and at least a year of 

driving experience. Participants were recruited through an advertisement which was shared 

on social media, RHDHV employee groups, and a participant list from another driving 

simulator experiment1 at the Department of Transport and Planning (T&P), TU Delft. Human 

Research Ethics Committee (HREC), TU Delft approved the experiment.  

4.2 Apparatus 
This research involved a two-phase experiment. First, participants answered a Qualtrics 

survey on demographics and social preferences through their own input devices. Second, 

participants drove in a fixed-base driving simulator (see Figure 11) located at the T&P 

department. The simulator had 3 ultra-HD (High-Definition) resolution screens with 180° 

field of view. The simulator was equipped with Fanatec steering wheel, brake and gas pedal. 

Pre-, mid- and post-experiment surveys were answered on a tablet. 

 

Figure 11: Participant driving in a fixed-base simulator. 

4.3 Design 
Scenarios, experimental layout and questionnaires were designed to answer the research 

question in section 3.3. Scenarios and experimental layouts were designed with Unity 3D 

(version – 5.5f.2.1). Questionnaires were developed in Qualtrics. 

4.3.1 Scenarios 
The experiment consisted of 3 scenarios2 that differ in the placement of eHMI for driverless 

AV (see Figure 12). Interaction with an AV, equipped with no eHMI, acted as the baseline 

 

1
 Recruitment trick: Parallel to my thesis, I worked as a student assistant for a PhD’s driving simulator experiment. I organised 

both the experiments in a cyclic process to recruit more participants despite COVID-19. In the first two weeks, I organised the 
PhD’s experiment. I invited those participants for my experiment in the following weeks. Later, I invited the participants from 
my experiment to the PhD experiment, which resumed later. 
 
2
 To view video scenarios, click here. The videos illustrate a participant driving in a simulator for 3 scenarios: baseline, eHMI 

on vehicle, and eHMI on infrastructure. 

https://unity.com/
https://www.qualtrics.com/nl/?rid=ip&prevsite=en&newsite=uk&geo=NL&geomatch=uk
https://drive.google.com/drive/folders/1bNvzN86SKr0NY4Wc8LOi9MHHD8gjY0dH?usp=sharing
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condition (Figure 13). The second condition included an eHMI on the roof of AV (Figure 14 

and Figure 15); whereas, eHMI on infrastructure (Figure 16) represented the third condition. 

Figure 12: Scenarios for each participant in the simulator experiment. 

 

Figure 13: AV with no eHMI on the roof top. 

Figure 14: AV with an eHMI exhibiting purple to 
signal HDVs to yield. 

Figure 15: AV with an eHMI exhibiting green to signal 
HDVs to cross. 

 

Figure 16: eHMI on the infrastructure where signals communicate AV intent. For instance, AV requests the 
HDV to cross first through a green signal. 

Simulation 
experiment

Baseline
eHMI on 
vehicle

eHMI on 
infrastructure
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eHMIs represented AV intention. In the first condition (i.e., baseline), AV conveyed its intent 

implicitly (i.e., yielding or non-yielding) but not explicitly. For the remaining two eHMI 

conditions, AV informed intent implicitly and explicitly. Explicit communication (i.e., eHMI) 

was in the form of light display rather than direction arrows, laser projection and text. These 

forms of communication are less likely to be visible from a farther distance (Hensch et al., 

2019; Rettenmaier et al., 2019).  

eHMI on vehicle, the second condition, exhibited AV intent in the form of a light displaying 

cube placed on the top of AV (see Figure 14 and Figure 15). Each cube’s face, which 

represented the direction of information propagation, provided a better resolution of 

communication than unidirectional eHMIs. For instance, if the cube was illuminated along 

North and East faces (see the left picture in Figure 17) then the AV communicated its intent 

to vehicles in its North-East direction only. 

 

Figure 17: eHMI signalling AV intent in the form of colour display. Green display on North-East faces (left 
figure) signal the vehicles coming from North-East direction to cross at the intersection. Grey display on South 

face (right figure) indicates that eHMI is inactive in that direction. 

The final condition, eHMI on infrastructure, conveyed AV intent through street infrastructure 

(see Figure 16, [Mahadevan et al., 2018]) in the form of light display; that was similar to 

eHMI on vehicle. eHMI on infrastructure was inspired by the concept of regular traffic 

signals. Two signals were placed at the intersection to make the identification of eHMI 

convenient for participants. eHMI on infrastructure updated the light display with the 

communication signal from AV. 

AV displayed purple (see Figure 14) to signal ‘yield’ (i.e., please do NOT cross) and green 

(see Figure 15) to signal ‘do not yield’ (i.e., please cross; [Bazilinskyy et al., 2020]). Red 

and cyan were not used as the colors confuse other road users about AV intent (Bazilinskyy 

et al., 2020; Dey et al., 2020). 

Participant vehicle (i.e., HDV) and AV interacted on a distributor road of speed limit 80 

kmph. According to SWOV (2016) and Wegman & Aarts (2006), 50 kmph is the safe speed 

at a distributor road intersection with potential side impact between cars. In this experiment, 

an advisory speed limit sign of 50 kmph was placed 100 m away from the intersection. AV 

started at 50 kmph when it was visible to the participant. After its visibility, AV differed in 

driving style (i.e., non-yielding vs yielding). A non-yielding vehicle moves at 50 kmph 

throughout the intersection. On the other hand, the yielding vehicle decelerates with 3.0 

m/s2. This was in line with a driving simulator study by Yan et al. (2008), who identified 3.0 

m/s2 as the mean maximum deceleration rate at an intersection. The yielding AV 

decelerated from 50 kmph (at 50 m before the intersection) to 15 kmph (at 20 m before the 

intersection) in Figure 18. The braking distance and time were 30 m and 3.2 s. Once the 

AV reached 15 kmph near the intersection, it maintained the speed until the exit of the 

intersection. 
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Figure 18: Yielding behavior of an AV which approaches the intersection at 50 kmph. AV starts to yield at 50 
m from the intersection with 3.0 m/s2 (approximately). The braking distance is 30 m and the final speed of AV 

is 15 kmph. 

4.3.2 Experimental layout 

The experimental layout was designed in Unity 3D (version – 5.5.2f.1). In the experiment, 

HDV and AV interacted at unsignalized T-intersections (see Figure 19). Participants 

performed right turn maneuvers and interacted with AV on the left. AV movement and eHMIs 

were trigged when HDV reached 70 m, referred to as trigger distance, from the intersection. 

ASVV 2012 (CROW, 2012) recommended 70 m as the minimum clear sight distance for a 

distributor road of 50kmph advisory speed limit near the intersection. If the participant drove 

at 50 kmph (variation within +/- 10 kmph) and reached the trigger distance, AV was visible, 

and it started at same speed and 70 m from the intersection (c.f. Yang et al., 2019). HDV 

drivers identified the trigger location through a right-turning sign (see Figure 20). Another 

right-turning sign was placed at the intersection (10 m from the center) to remind the 

participants about the next maneuver to reach the destination. 

 

Figure 19: HDV and AV interact at unsignalized T-intersection. AV starts to move and exhibit eHMI signals 
when HDV reaches trigger location, placed at 70 m from the intersection. 
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Figure 20: HDV drives at 50 kmph and reaches the trigger, which initiates the eHMI and AV on the other road. 
The trigger is identified by the driver with a right-turning sign, which was placed 70 m from the intersection. A 

plantation prevents the participant from noticing the immediate appearance of AV. The figure represents a 
scene view in Unity. 

Every participant drove in an 8 km-road network for each scenario (see Figure 21). The 

network consisted of ten right-turns and four left-turn intersections to reduce monotony. In 

addition, some road sections of the network were designed longer (1500 m) than the others 

(400 m). 

To make the experimental design more realistic, an obstruction in the form of a building or 

plantation (see Figure 20) existed along the roadside of AV and at 70 m from the 

intersection. The plantation prevented the participant from noticing the abrupt appearance 

of AV due to the trigger. In addition, randomized traffic was generated in the opposite lane 

of AV to introduce complexity in the interaction. Certain design aspects were made to 

improve the visibility of eHMI to the participant. For instance, the ground was colored dark-

brown, the sun was set at 90 degrees to the ground, and a wheat plantation was placed 

opposite the intersection.  

 

Figure 21: Road network for a scenario, where the participant interacts with AV at right-turn intersections. 
Participant starts at the start line and drives 8 kms before reaching the finish line. 

Start 

Line 

Finish 
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AV 
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Right-turning sign 
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4.3.3 Questionnaire 
Questionnaire acts as a simple tool to capture information from the participants (McLeod, 

2018). Participant information included social demographics, driving experiences and initial 

trust on AVs. This experiment implemented questionnaires (see Appendix B) at three 

stages: 

a) Pre-experiment questionnaire 

The initial step was to recruit participants based on eligibility and gain insights into their 

driver characteristics. A recruitment questionnaire (see Appendix B.1) was developed to 

collect driver characteristics, social preferences, general trust and knowledge on AVs. In 

addition, participants were provided with brief information on simulator experiment and 

regulations on data protection and COVID-19. Participants were then asked to fill the 

recruitment questions, consent form (see Appendix B.2) and read the instructions (see 

Appendix B.3). 

b) Mid-experiment questionnaire 

Sub-question 1 focused on comparing driver perception of AV between different scenarios. 

At the end of each scenario, participants filled an 8-minute-long questionnaire on their 

perceived criticality, trust, user acceptance, emotions and NASA-TLX workload. Appendix 

B.4 illustrated the questions, measured on an ordinal scale. The observations might depend 

on the visibility of AV and its eHMIs to the participant. 

c) Post-experiment questionnaire 

Finally, a post-experiment questionnaire (see Appendix B.5) was developed to understand 

the participants’ decision-making, perceived changes in driving behavior and general trust 

in AVs and driving simulator experience. The driving simulator might induce discomfort in 

some candidates (Mourant & Thattacherry, 2000). Hence, they were asked to fill a simulator 

sickness questionnaire at the end of the experiment, which consisted 16 items to measure 

nausea, oculomotor disturbances and disorientation (Kennedy et al., 1993). Visual fidelity, 

involvement, realism and interface quality of driving simulator were observed through a 19-

item presence questionnaire (Jerome & Singer, 2005). 

4.4 Procedure 
This experiment was conducted in two phases. In the first phase, the pre-experiment 

questionnaire was shared using social media platforms. On the first page of questionnaire, 

participants were provided with basic information on the research. They consented to 

participate in phase two, the driving simulator experiment. Participant information from both 

phases was required to answer the research questions. 

Participants were requested to perform the driving simulator experiment. Initially, 

participants were briefed about the experiment and eHMIs of AV. eHMIs represented AVs’ 

intent but not traffic rules. So, participants had the right to not comply with AV’s intent. 

Before the actual experimental, they performed a test drive to become familiar with the 

vehicle and environment (Kauffmann et al., 2018). This was expected to reduce the effect 

of creating a learning curve while driving in the simulator. Once the participants felt confident 

in the test drive, they started the actual experiment. Participants were requested to reach 

the trigger distance with 50 kmph, observe the AV, follow the direction signs to the 

destination and repeat it for three scenarios. The order of scenarios was randomised among 

the participants to account for the learning effect. In each scenario, they performed ten right-

turning maneuvers when merging with an AV approaching from their left-hand side (see 

Figure 22). Participants were requested to follow traffic rules and drive close to speed limits. 
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Further, participants were not informed whether AV (un)follows right-hand rule to reduce 

anxiety (Pawar & Patil, 2018). In each scenario, five AVs yield and the other five do not yield 

the right of way for the participant. The appearance order of the yielding and non-yielding 

AVs was randomised across the scenarios. After each scenario, participants were asked to 

answer a mid-experiment questionnaire. While the participants were filling the 

questionnaire, the researcher saved experimental data and loaded the following scenario. 

The total experimental duration was approximately 70 minutes.  

Figure 22: Participant side view (left figure) and front view (right figure) of AV with eHMI on vehicle. 

Participants were requested not to perform any secondary tasks while driving as this affects 

driver cognition and behavior (Stoll et al., 2020). If the participants felt unwell, they were 

requested to quit the experiment. On competition of driving task, participants were asked to 

fill a post-experiment questionnaire to measure their overall experience with the experiment. 

In addition, they were asked interview questions to understand their preference for AVs and 

suggestions. Finally, participants were debriefed (see Appendix B.6), thanked, and gifted a 

10-euro bol.com voucher for participation.  

4.5 Lessons from the pilot 
Five pilot tests were conducted before the start of experiment. The main aim of these tests 

was to identify loopholes in the experimental and scenario design. These loopholes reduced 

the realistic experience of the experiment for the participants. In addition, the researcher 

identified practical challenges and practised communication with the participants. 

The pilot tests were organised in two different batches. Feedback from the first batch of 

participants was implemented in the scenarios for the next batch. This technique aided in 

evaluating the lessons from the pilot. Pilot tests were conducted in the first week of June 

and July 2021. The main lessons learned were: 

1.  Some participants expressed that the steering wheel and brake pedal were too rigid 

to use. This problem affected the driver decision while performing a right turning 

maneuver. The researcher increased sensitivity and reduced rigidity of the steering 

wheel and brake pedal. Due to a firmware issue, the steering wheel did not have 

power steering. Hence, steering wheel data were not analysed. 

2.  A single eHMI on infrastructure reduced the convenience for pilot participants, as 

they needed to focus on multiple objects such as AV, eHMI and road to make a 

decision. Hence, participants expressed that they did not consider eHMI on 

infrastructure for decision-making. A solution was to place two eHMIs on either side 

of the road near the intersection, which increased the convenience for the second 

batch of participants. 

3.  Initially, the differences in eHMI conditions were not exhibited as figures in pre-

briefing. Participants had difficulty in identifying it during the experiment. Alongside 

the purpose of eHMI, pictures were shown in the pre-briefing document. 

4.  Initially, the trigger distance was 30 m as suggested by Rettenmaier et al. (2020) for 

vehicular interactions on a 30 kmph speed limit road in a driving simulator. However, 
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three participants in our pilot study expressed 30 m as a short distance, which did 

not allow them to react, make a decision and perform a maneuver. A possible 

explanation was the difference in speed limits of both studies. Our experiment has 

an advisory speed limit of 50 kmph at the intersection. AVSS 2012 (CROW, 2012) 

suggested a clear sight distance of 70 m, which was tested to be sufficient for the 

participants to make a decision before they reach the intersection. 

5.  All the participants differentiated yielding from non-yielding vehicles when the AV 

decelerated at 3.0 m/s2 and 50 m from the intersection. 

6.  During the experiment, pen and paper-based questionnaires were adapted to an 

online format on a tablet to reduce data collection errors. 

4.6 Analysis method 
Experimental data was analysed to answer the research question. Analysis methods in this 

experiment included preliminary analysis and analytical modelling (Oskina, 2019). 

Preliminary analysis provided a basic understanding of significant interactions between the 

scenarios and measured variables. Preliminary analysis included descriptive and inferential 

statistics. Descriptive statistics were performed with bar charts, box-violin plots, and speed 

profiles in R program. The plots depicted possible trends in data across scenarios. 

Significance and inferences of the trends were studied through inferential statistics (Gonick 

& Smith, 1993). Garth (2008) provided steps to conduct inferential statistics in SPSS 

(version 26.0). Application of inferential statistics relied on analysis purpose, data format 

and parametricity (Oskina, 2019). 

On the other hand, analytical model used mathematical analytic function to describe and 

predict changes in the measured variables (Mazur, 2006). Selection of model relied on the 

target variable and its parametricity, and hierarchical design (e.g., repeated measures) of 

the experiment (Dickey et al., 2010). In this research, target variables were non-parametric 

and the experiment followed a repeated measures design. Hence, a generalized linear 

mixed model (GLMM) was used (Dickey et al., 2010). GLMM expressed a linear relationship 

between the independent variables and target variables. Analysis method was further 

discussed in section 6.   
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5 Data processing 
In the previous section, the experimental method and procedure were discussed. The 

driving simulator experiment was conducted for 3 weeks from July 5th, 2021. Experimental 

data was collected through questionnaires, interviews and driving simulator. The collected 

raw data, extraction of relevant variables and data cleaning procedure are explained in this 

section. Further an overview of processed data is provided. The data was later analysed to 

gain insights on the effect of AV’s eHMI on human-driver interactions. 

5.1 Description of raw data 
Raw data collected from multiple questionnaires, interviews and driving simulator is 

discussed in this section.  

5.1.1 Survey data 

As discussed in section 4.3.3, survey data from interviews and multiple questionnaires were 

collected at different phases of the experiment. Questionnaires shared during the 

recruitment phase, mid-experiment, and after the experiment provide the required 

subjective information on participant perception and behavior. However, questionnaires in 

this experiment might not provide the reasoning behind the participant driving choices. 

Interview questions filled this gap. Table 3 provides a list of variables which are extracted 

from the questionnaire and interview data. 

Table 3: Extracted variables from the questionnaire and interview data. 

Pre-experiment Mid-experiment 
(after every 
scenario) 

Post-
experiment 

Interview 

• Age 

• Gender 

• Education 

• Employment 

• Driving experience 
in years 

• Driving exposure in 
kilometres per year 

• Social preferences 
(SP) 

• General trust on 
AVs 

• Driver knowledge 
on AVs 

• Perceived 
criticality 

• Trust 

• User 
acceptance 

• Emotions 

• NASA-TLX 
workload 

• General 
trust on AVs 

• Virtual 
presence 

• Simulator 
sickness 

• Self-reported effect 
of eHMI on their 
decision-making 

• Preference for AVs 
based on eHMIs 

• Experienced 
difference in AV 
driving style 

• Suggestions to 
improve 
communication 
systems of AVs 

 

5.1.2 Behavior data 
Behavior data were collected from the driving simulator after each scenario for a participant. 

Data, which was available in JSON format, contains 50 observations for every second of 

driving. Each observation recorded timestamp, velocity, acceleration, direction, and position 

coordinates of HDV and AVs. Timestamp (s) recorded the time-series when interactions 

between HDV and AVs occur. Velocity (m/s), heading (°), position (m) and acceleration 

(m/s2) of HDV and AVs were measured along 3 dimensions (i.e., X, Y and Z). 
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5.2 Survey data pre-processing 
This section explains the method to pre-process the questionnaire and interview data from 

section 5.1.1. Initially, the data was processed to remove personal information of 

participants. Responses from the pre-experiment questionnaire were synchronised with 

interviews, mid- and post-experiment questionnaires. Finally, survey data is described. 

5.2.1 Initial processing 
Personal information of the participants, such as name and email address, was removed 

from the synchronised dataset and anonymous IDs were assigned. All the questionnaire 

data was compiled into a CSV file format. Another file included participant comments. 

During the experiment, participants revealed relevant information that reduce errors in the 

collected data (see section 5.4.1). 

Pre-experiment questionnaire on participant socio-demographics included Social Value 

Orientation (SVO) to understand social preferences (e.g., altruistic, prosocial, individualistic, 

and competitive) of participants. SVO was measured with a slider measure. The slider 

measure had 6 items (see Appendix B.1) on a continuous scale to evaluate social 

preferences (see Murphy et al. [2011] for procedure). The participant allocated resources 

for oneself and others’ outcomes using the tool. Resource allocation determined the social 

preference of the participant.  

5.2.2 Calculation of driver perception variables 
This section explains the methods from the literature to calculate perception variables from 

the mid-experiment questionnaire for each scenario. The following variables were 

calculated: 

• Perceived criticality: During AV-HDV interaction, Kauffmann et al. (2018) measured 

driver perception of criticality using a single-item question. The responses were 

measured on an ordinal scale of 1 to 10. Based on the responses, the situation was 

categorized as harmless (1 to 3), unpleasant (4 to 6), dangerous (7 to 9), or 

uncontrollable (10).  

• Trust: Soni (2020) observed trust on an ordinal scale using a single-item question 

on AV-HDV interaction.  

• User acceptance: Van Der Laan et al. (1997) measured user acceptance of AV 

technology in two dimensions: usefulness and satisfaction. These dimensions were 

measured using 9 questions on a scale of -2 to +2.  

• Emotions: Bradley & Lang (1994) assessed emotions along three dimensions: 

pleasure, arousal and dominance. Pleasure expressed whether a participant was 

sad or happy in the scenario. Arousal measured the excitement and calmness levels 

of a participant; whereas dominance assessed the control level of participant in the 

scenario. These dimensions were measured on an ordinal scale ranging between 1 

to 9. 

• NASA-TLX workload: Hart & Staveland (1988) measured subjective workload on six 

dimensions: mental demand, physical demand, temporal demand, frustration, 

performance and effort. These dimensions were observed, on a scale of 1 to 20, 

using 6 questions. Later, the responses in each dimension were reduced to 

percentages and their mean is used to compute overall workload (Clercq et al., 

2019). 

• Preferences: During post-experiment, an interview question was asked to 

understand the participant preference for AVs based on eHMI conditions. 

Participants expressed their preference in terms of a rank for each condition. If an 

AV with eHMI on vehicle received rank 1 then the participant showed high 
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preference towards that AV. On the other hand, rank 2 represented medium 

preference and rank 3 represented least preference. Later, participants explained 

their reasons for preferred choices. 

5.3 Behavior data pre-processing 
During the experiment, data from each driving scenario was saved with an anonymous id. 

Each scenario file of a participant was converted from JSON format to CSV format. 

Conversion algorithm was developed in an open-source programme based on JSON, 

Jupyter Notebook. All the files were combined into a single CSV based on anonymous id 

and scenario. Combination algorithm was created in the R Program. The combined data file 

contained 132 rows and 21 columns. The file was used to calculate the driver behavior 

variables. 

Driver behavior variables were extracted for each AV-HDV interaction per scenario per 

participant. The driving behavior was also differentiated for the AV driving style: non-yielding 

and yielding. Furthermore, the behavior variables were studied at different stages of 

crossing at the intersection (Li et al., 2020). The stages were pre-crossing, crossing and 

post-crossing. Pre-crossing stage occurred when the participant crossed the trigger location 

and was approaching the intersection. Next, participant made a crossing decision and 

executed the right-turn maneuver in the crossing stage. Finally, the participant exited the 

intersection in the post-crossing stage. A deeper understanding of driver behavior was 

made through observations at multiple-crossing stages. Table 4 defines the driver behavior 

Table 4: Definition of driving behavior variables. 

Driving 
stage 

Behavior 
variable 

Unit Definition 

Pre-
crossing 

Approaching 
speed 

m/s Average speed of HDV from the moment when AV 
was triggered to the moment when HDV reached 
the intersection. 

Minimum 
speed 

m/s Minimum speed of HDV before reaching the 
intersection but after AV was triggered. 

Maximum 
acceleration 

m/s2 Maximum acceleration of HDV before it reached 
the intersection. 

Maximum 
deceleration 

m/s2 Maximum deceleration of HDV before it reached 
the intersection. 

Time to 
maximum 
braking 

s Time from the moment when AV was triggered to 
the moment when HDV reached maximum 
deceleration. 

Crossing Crossing 
decision 

Binary Decision made by the HDV to cross before (0) or 
after (1) the AV. 

Post 
Encroachment 
Time (PET) 

s Time headway between the HDV and AV at the 
moment when the HDV entered the intersection. 

Critical events Binary An interaction is classified as critical (1) if PET < 3 
s or non-critical (0) if PET > 3 s. 

Post-
crossing 

Crossing time s Time from when the AV was triggered to the time 
when the HDV crossed the intersection. 

 

variables at different crossing stages. Definitions were adapted from the literature 

(Choudhary & Velaga, 2019; Devarasetty et al., 2012; Li et al., 2020; Pawar & Patil, 2018). 

Among these variables, Post Encroachment Time (PET) is a surrogate safety measure. An 

interaction was classified as critical if the PET score was less than 3 s, and non-critical if 

https://jupyter.org/
https://www.r-project.org/
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the PET score was greater than 3 s (FHWA, 2003; Gettman & Head, 2003; Peesapati et 

al., 2018). 

5.4 Data cleaning and validation 
Erroneous observations were identified and removed to improve data quality for the analysis 

and interpretations. Data also contained outliers due to diverse reasons. Irrelevant outliers 

were trimmed to increase the statistical power. The handling procedure is discussed below 

for erroneous observations and outliers. 

5.4.1 Handling erroneous observations 

Errors included response errors by participants, improper recording of data and participant 

bias. These errors reduced the validity of data. Hence, erroneous observations were either 

corrected or removed from the data. Erroneous observations were: 

• Some of the perception questions were measured on a reverse order of scale to: reduce 

agreement bias and improve the complete measurement of opinions (Hopper, 2013). 

Three participants mentioned their response mistakes with reverse order questions. The 

comments were noted and later corrected. 

• As the HDV did not have power steering, participants either crashed or lost control of 

vehicle for a brief period in 3 runs. The data of these participants was excluded. 

• Behavior data for a couple of participants were incorrectly recorded. These observations 

were removed from the data. 

• An older female participant, who did not have experience with driving simulator, took 

more than 40 minutes for the test drive. Due to time constraints, post-experiment phase 

was not completed. The post-experiment data of the participant was omitted. 

• Experimental data of two female participants, who experienced simulator sickness 

symptoms, were excluded from the survey and behavior data. 

• Few participants did not comply with the instructions and approached the trigger location 

with speeds higher than 60 kmph or less than 40 kmph in certain scenarios. These 

observations were removed from the data. 

5.4.2 Handling outliers  
Behavior data had outliers that were identified through the box and whisker plots. Some of 

these outliers belonged to the participants that were not compliant with AV intention. Results 

of Spearman correlations indicated that there was a significant negative correlation between 

non-compliance of HDV and perceived-interface quality of driving simulator when AV was 

non-yielding, r = -.826, n = 10, p = .003. Similarly, a negative but insignificant correlation 

existed when AV was yielding, r = -.825, n = 5, p = .086. These results imply that a lower 

perceived-interface quality increased the chance for HDVs’ non-compliance, which led to 

outliers. However, there were few outliers that were not significantly affected by the interface 

quality. These outliers were found to be valid when verified through participant comments 

and research observations. Hence, these outliers existed in the behavior dataset. Median 

values of behavior variables were analysed to account for the outlier effect. 

5.5 Overview of processed data 
Processed survey data contained a CSV file with 132 rows and 32 columns. Each row 

represented observation for an individual scenario in the experiment. Survey data included 

pre-, mid-, and post-experiment data and AV preferences from the interview. Processed 

behavior data contained a CSV file with 12 columns and 607 rows, when AV was non-

yielding and 569 rows, when AV was yielding. Each observation represented a valid AV-

HDV interaction in the Table 5. 
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Table 5: Number of observations for driving behavior variables and scenarios in the final dataset. eHMI_V 
represents eHMI on vehicle and eHMI_I represents eHMI on infrastructure. 

  AV non-yielding AV yielding  
Baseline eHMI_V eHMI_I Total Baseline eHMI_V eHMI_I Total 

Approaching 
speed (m/s) 

203 200 204 607 192 187 190 569 

Maximum 
acceleration 
(m/s2) 

203 200 204 607 192 187 190 569 

Maximum 
deceleration 
(m/s2) 

203 200 204 607 192 187 190 569 

Minimum 
speed (m/s) 

203 200 204 607 192 187 190 569 

Time to 
maximum 
braking (s) 

203 200 204 607 192 187 190 569 

Crossing 
decision 
(binary) 

203 200 204 607 192 187 190 569 

Critical 
events 
(binary) 

203 200 204 607 192 187 190 569 

Crossing 
time (s) 

203 200 204 607 192 187 190 569 
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6 Analysis 
Experimental data in different forms and stages were collected and processed, as 

discussed in section 5. The processed data were analysed to gain insights on driver 

perception and behavior in the interaction with AVs equipped with eHMIs.  

As discussed in section 4.6, different analysis methods were implemented to answer the 

research questions. First, participant demographics were studied to understand the 

population sample in terms of driving knowledge, experience, and gender, among others. 

Second, a preliminary analysis was performed on the measured variables (i.e., perception 

and behavior) to understand the effect of eHMI conditions. Third, learning effects were 

studied between measured variables and the number of interactions in a scenario. Finally, 

modelling was applied to predict the effect of eHMI conditions on global traffic measures, 

such as traffic safety, efficiency of the AV-HDV interactions, and preferences for AVs. 

6.1 Participant demographics 
Forty-six participants (Male = 31; Female = 15) with driving experience between 2 and 53 

years (M(SD) = 14.5(14.7)) participated in the experiment. Thirty-seven participants 

exhibited prosocial preferences, whereas the remaining participants demonstrated 

individualistic preferences. None of the participants expressed altruistic and competitive 

social preferences. Participants were fairly familiar (M(SD) = 3.7(0.8)) with the concepts of 

AVs and Advanced Driver Assistance Systems; where 35 reported experience with Cruise 

Control, 11 with Adaptive Cruise Control and the remaining with Lane Keeping Assistance. 

Among these participants, 47.8% were aged between 25 and 45 years and 34.8% were 

aged below 24 years. Thirty-seven participants completed PhD, Masters or equivalent, 5 

participants completed bachelor’s or equivalent and 4 participants completed Secondary 

education. 24 participants were full-time students, 17 were employed, 2  were nonworkers 

and 4 were retired. Participant driving exposure (kms/year) is represented in Figure 23. 

 

Figure 23: Histogram of average kilometres driven per year by the participants. 

General trust on driverless car was measured before (Mdn = 3.8) and after (Mdn = 3.7) 

experiment using the Kaur & Rampersad (2018) questionnaire. No significance difference 

was indicated by a Wilcoxon signed-rank test, T = 227.5, z = -1.209, p > .227.  

After the experiment, simulator fidelity was measured using the 19-item presence 

questionnaire by Jerome & Singer (2005). Questions on sound quality, localization and 

haptic fidelity were not applicable for this study. Overall, the scores in Figure 24 represented 

moderate virtual presence in comparison to Nuñez Velasco et al. (2019). Furthermore, 

simulator sickness was measured with the 16-item SSQ questionnaire (Kennedy et al., 

1993) after the competition of the experiment. For all the categories of SSQ in Figure 25, 
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the mean scores represented low severity of simulator sickness. No participants expressed 

severe sickness symptoms in the questionnaire responses. 

 

Figure 24: Presence questionnaire with error bars indicating SD. Involvement, visual fidelity, 
adaptability/immersion, interface quality are the contributing factors for presence. Scores range between 1 (no 

presence) to 7 (extreme presence). 

 

Figure 25: SSQ questionnaire with error bars indicating SD. Sickness symptoms include disorientation, 
nausea, oculomotor, and total severity. Scores range on a scale of 0 to 100. 0 to 25 = None, 25 to 50 = Slight, 

50 to 75 = Moderate, 75 to 100 = Severe. 

6.2 Preliminary analysis 
Preliminary analysis, which contained descriptive and inferential statistics, aimed to study 

the effect of scenarios on driver perception and behavior. Descriptive analysis was 

performed through bar charts for categorical variables (nominal and ordinal) and box-violin 

plots for continuous variables (interval and ratio). Relevant inferential statistics were 

analysed through data formats and parametricity. Data format of perception and behavior 

variables is illustrated in Table 6. Data parametricity is discussed in section 6.2.1. 

Table 6: Data formats of perception and behavior variables. 

Data format Perception and behavior variables 

Nominal Crossing decision, critical events 

Ordinal Perceived criticality, trust, user acceptance, emotions, NASA-TLX 
workload 

Ratio Approaching speed, maximum acceleration, maximum deceleration, 
minimum speed, time to maximum braking, crossing time 
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6.2.1 Statistical tests 
Statistical tests differ in data format, parametricity, and the number of observations (Soni, 

2020). The appropriate steps and methods were identified from the literature (Garth, 2008; 

McCrum-Gardner, 2008; Sheskin, 2003; Siegel, 1956). Initially, the distribution of perception 

and behavior data was checked for normality. Shapiro and Kolmogorov-Smirnov tested the 

null hypothesis for normality: no difference exists between variable (i.e., perception and 

behavior) distribution and normal distribution. Results from normality tests rejected null 

hypothesis at 95% confidence level (i.e., p < 0.05). Hence, perception and behavior data 

were treated as not normally distributed.  

Statistical tests include parametric and non-parametric tests. Perception and behavior data 

required non-parametric tests as the data was not-normal. In addition, the data were paired 

as each participant was subjected to three scenarios or eHMI conditions. Before performing 

the statistical tests, data were averaged for multiple interactions over the scenario and AV 

driving style. Data of each participant represented an observation in the dataset. This 

technique reduced the random variations in the data due to unexplored factors (Soni, 2020).  

6.2.2 Analysis of perception variables 
Our research studies the effect of eHMIs on AV-HDV communicative interactions, which 

are measured in driver perception and behavior, as discussed in section 2. This section 

focuses on analysing the effect of eHMI conditions on driver perception variables. 

Significant effects were identified with non-parametric statistical tests. Table 7 presents the 

Friedman test results for different driver perception variables within scenarios. Perceived 

criticality, trust, user acceptance (usefulness and satisfaction), emotions (pleasure and 

arousal), workload (mental demand) and preferences had significant differences with eHMI 

conditions. Significant perception variables were further subjected to a post-hoc test (i.e., 

Wilcoxon signed rank test) to study the pairwise comparisons. These results are reported 

in Table 8 with Bonferroni correction. The correction reduces the probability of type-I errors 

that arise due to multiple statistical tests. The obtained results are discussed below. 

Table 7: Overview of Friedman test results for the perception variables over scenarios. Critical p-value is 0.05. 
Asterisks indicate significant p-values. The mean ranks vary with number of conditions (i.e., 1 for the smallest 
variable score and 3 for the largest variable score). eHMI_V represents eHMI on vehicle. eHMI_I represents 
eHMI on infrastructure. Workload performance is measured on an inverted scale where the highest and least 

scores represent low and high performance, respectively. Similar inverted scale applies for preference. 

Variables 
Mean ranks 

Z P-value Baseline eHMI_V eHMI_I 

Perceived Criticality 2.31 1.81 1.89 7.503 0.023* 

Trust 1.35 2.35 2.30 30.924 <0.001* 

User 
acceptance 

Usefulness 1.32 2.39 2.30 34.38 <0.001* 

Satisfaction 1.43 2.27 2.30 23.018 <0.001* 

Emotions 

Pleasure 1.50 2.23 2.27 21.412 <0.001* 

Arousal 2.45 1.95 1.59 23.484 <0.001* 

Dominance 1.89 2.01 2.10 1.583 0.453 

Workload 

Mental demand 2.35 1.73 1.92 10.232 0.006* 

Physical demand 2.24 1.86 1.90 5.163 0.076 

Temporal demand 2.06 1.78 1.95 3.280 0.194 

Performance 2.09 1.99 1.92 1.018 0.601 

Frustration 2.26 1.91 1.83 5.641 0.060 

Effort 2.25 1.90 1.85 5.133 0.077 

Overall workload 2.28 1.80 1.92 5.836 0.054 

 Preference for AVs 2.77 1.52 1.70 40.136 <0.001* 
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Table 8: Post hoc test results for the significant perception variables scenarios. Significant perception 
variables are selected from Table 7. The p-value denotes the significance with a Bonferroni correction (p-
values were multiplied by the number of hypotheses of 3). The critical p-value is 0.05. Asterisks indicate 

significant p-values. eHMI_V represents eHMI on vehicle. eHMI_I represents eHMI on infrastructure. 

  
Variables Pairs Z P-value 

  
Perceived Criticality 

Baseline - eHMI_V -2.248 0.074 

Baseline - eHMI_I -1.262 0.621 

eHMI_V - eHMI_I -.924 1.067 

  
Trust 

Baseline - eHMI_V -4.279 <0.001* 

Baseline - eHMI_I -4.529 <0.001* 

eHMI_V - eHMI_I -.075 2.821 

User acceptance Usefulness Baseline - eHMI_V -5.006 <0.001* 

Baseline - eHMI_I -4.594 <0.001* 

eHMI_V - eHMI_I -.792 1.284 

Satisfaction Baseline - eHMI_V -4.543 <0.001* 

Baseline - eHMI_I -4.308 <0.001* 

eHMI_V - eHMI_I -.046 2.891 

Emotions Pleasure Baseline - eHMI_V -3.877 <0.001* 

Baseline - eHMI_I -4.209 <0.001* 

eHMI_V - eHMI_I -.287 2.322 

Arousal Baseline - eHMI_V -3.074 0.006* 

Baseline - eHMI_I -3.909 <0.001* 

eHMI_V - eHMI_I -2.524 0.035* 

Workload Mental demand Baseline - eHMI_V -2.535 0.034* 

Baseline - eHMI_I -2.201 0.083 

eHMI_V - eHMI_I -.785 1.297 

  
Preference for AVs 

Baseline - eHMI_V -5.118 <0.001* 

Baseline - eHMI_I -4.707 <0.001* 

eHMI_V - eHMI_I -1.023 0.919 

 

Perceived criticality 

The results of the perceived criticality showed no dangerous interactions (i.e., scores above 

7) for all the three scenarios. Figure 26 depicts the mean (SD) perceived criticality for the 

 

Figure 26: Perceived criticality scores over scenarios with error bars indicating standard deviation (SD). On a 
scale of 1 to 10, 1 represents harmless interaction and 10 represents uncontrollable interaction. 
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baseline, eHMI on vehicle (eHMI_V) and eHMI on infrastructure (eHMI_I) conditions. Mean 

scores explained that criticality of eHMI_V (M = 2.9,  SD = 1.6) and eHMI_I (M = 3.3,  SD = 

2.0) conditions was perceived lower than baseline condition (M = 3.8,  SD = 1.9), 

respectively. Interactions in eHMI_V condition were classified as harmless based on mean 

scores (for procedure see section 5.2.2), whereas interactions in eHMI_I and baseline 

conditions were classified as unpleasant experiences. Pairwise comparisons with 

Bonferroni correction, however, showed no statistically significant differences among the 

three conditions (see Table 8). 

Trust 

Figure 27 exhibited a gradually higher trust for eHMI_V (M = 7.1, SD = 1.7) and eHMI_I (M 

= 7.2, SD = 1.8) conditions, when compared to baseline (M = 4.9, SD = 2.1) condition. 

Significant differences existed in trust on AVs over eHMI conditions using Friedman’s test 

(see Table 7). Post hoc analysis (see Table 8) showed a statistically significant difference 

for the baseline condition with the eHMI_V and eHMI_I conditions. However, no significant 

difference (see Table 8) was observed in the reported trust between eHMI_V and eHMI_I 

conditions. 

 

Figure 27: Reported trust scores on AVs for the three scenarios. On a scale of 1 to 10, 1 represents no trust 

on AVs and 10 represents extremely high trust on AVs. Error bars indicate SD. 

User acceptance 

Friedman’s test results showed that user acceptance, measured in usefulness and 

satisfaction, was significantly different among the three scenarios (see Table 7). The mean 

(SD) usefulness scores (see Figure 28) for the baseline, eHMI_V, eHMI_I scenarios was -

0.2(0.8), 0.7(0.6), and 0.6(0.6), respectively. On the other hand, the mean (SD) satisfaction 

scores (see Figure 28) for the baseline, eHMI_V, eHMI_I scenarios was -0.1(0.9), 0.8(0.7), 

and 0.7(0.8), respectively. Similar variation in scenarios was observed for usefulness and 

satisfaction scores. Post hoc analysis (see Table 8) and mean scores showed significantly 

higher usefulness and satisfaction scores for eHMI_V and eHMI_I than baseline scenario. 

However, post hoc analysis (see Table 8) exhibited no significant difference in the 

usefulness and satisfaction scores between eHMI_V and eHMI_I scenarios. 

Emotions 

Emotions were measured in three dimensions: pleasure, arousal, and dominance. 

Friedman’s test results showed that pleasure and arousal were significantly different within 

the scenarios (see Table 7). The mean (SD) pleasure scores (see Figure 29) for the 
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baseline, eHMI_V, eHMI_I conditions was 4.9(1.7), 6.5(1.5), and 6.4(1.4), respectively. Post 

hoc analysis (see Table 8) and mean scores showed significantly higher pleasure scores 

for eHMI_V and eHMI_I than baseline conditions. However, post hoc analysis (see Table 

8) exhibited no significant difference in the pleasure scores between eHMI_V and eHMI_I 

scenarios. 

 

Figure 28: Scores on the user acceptance, which includes usefulness and satisfaction, for three scenarios. On 
a scale of -2 to +2, +2 represents highly acceptable and -2 represents unacceptable eHMI condition. Error 

bars indicate SD. 

 

Figure 29: Scores on the emotions, including pleasure, arousal, and dominance, for the three scenarios. On a 
scale of 1 to 9, 1 represents no experience, and 9 represents the full experience of an emotion. Error bars 

indicate SD. 

Post hoc analysis (see Table 8) and mean scores (see Figure 29) showed significant 

differences among the three scenarios for the arousal scores. The lowest arousal score (M 

= 3.7, SD = 1.6) was observed for eHMI_I, whereas the highest arousal score (M = 5.0, SD 

= 1.9) was observed for baseline among the three scenarios (see Figure 29). The mean 

arousal score for the eHMI_V scenario (M = 4.2, SD = 1.2) was significantly higher than 

eHMI_I scenario (M = 3.7, SD = 1.6), and significantly lower than baseline scenario (M = 

4.9, SD = 2.1). 

The mean (SD) dominance scores (see Figure 29) for the baseline, eHMI_V, eHMI_I 

scenarios was 5.0(1.9), 5.1(2.0), and 5.3(2.1), respectively. Participants experienced 

slightly higher mean dominance in eHMI_I than eHMI_V and baseline scenarios. 
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Friedman’s test results, however, showed that dominance scores were not significantly 

different among the three scenarios (see Table 7). 

NASA-TLX workload 

NASA-TLX workload (see Figure 30) was measured in mental demand, physical demand, 

temporal demand, performance, frustration, effort, and overall workload. Among these 

measurers, mental demand was significantly different among the three scenarios using 

Friedman’s test (see Table 7). Mean scores in Figure 30 showed lower mental demand 

scores for eHMI_V (M = 44.8%, SD = 22.5), and eHMI_I (M = 46.8%, SD = 22.2) than 

baseline scenario (M = 57.1%, SD = 23.6). 

 

Figure 30: Scores on the NASA-TLX workload for the three scenarios. The scores are represented as a 
percentage and vary from Very low (0%) to Very high (100%) for the mental demand, physical demand, 

temporal demand, frustration, and effort dimensions, and from perfect (0%) to failure (100%) for the 

performance dimension. Error bars indicate SD. 

Post hoc analysis confirmed a significantly lower mental demand score for eHMI_V than the 

baseline scenario by 12.4% (see Table 8). However, post hoc analysis (see Table 8) 

exhibited no significant difference in the mental demand scores between the scenario pairs: 

eHMI_V vs eHMI_I, and baseline vs eHMI_I. 

The mean (SD) scores of the remaining workload dimensions for the baseline, eHMI_V, 

eHMI_I scenarios were illustrated in Figure 30. In comparison to the baseline, eHMI_V and 

eHMI_I recorded slightly lower mean scores in physical demand, temporal demand, 

performance (measured on an inverted scale), frustration, effort, and overall workload. 

Fridman’s test observed that the above workload scores were not significantly different 

among the three scenarios (see Table 7).  

Preference for AVs 

Participant preferences for AVs with different eHMIs were illustrated in Figure 31. In total, 

95.45% of participants preferred AVs with at least one form of eHMI. Two participants 

(4.55%) expressed high preference for baseline, 24 participants (54.55%) for eHMI_V, and 

18 participants (40.9%) for eHMI_I conditions. On the other hand, 36 participants (81.82%) 

least preferred baseline, 3 (6.82%) for eHMI_V, and 5 (11.36%) for eHMI_I conditions. AVs 

with eHMIs were highly preferred over the baseline condition. Friedman’s test results 

showed a significant difference in preferences among the three scenarios (see Table 7). 

Post hoc analysis (see Table 8) showed a significantly higher preference for AVs with 

eHMI_V, and eHMI_I than the baseline condition. No significant differences were observed 
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in preference for AVs between eHMI_V and eHMI_I conditions using post hoc analysis (see 

Table 8). 

 

Figure 31: Participant preferences (%) for AVs with different scenarios. 

6.2.3 Analysis on behavior variables 
Behavior variables were calculated for each participant interaction over different scenarios 

and AV driving styles, as discussed in section 5.3. Figure 32 illustrates the inter-vehicle 

distance perceived by a participant with AVs over different driving styles and crossing 

stages in a scenario. The inter-vehicle distance between HDV and AV is lower with non-

yielding than yielding behavior. The inter-vehicle distance decreases as the driver 

approaches and crosses the intersection. 

 

Figure 32: Inter-vehicle distance between AV and HDV over driving style and crossing stages. The HDV is 
driven by participant 5 in scenario 1 for interaction 3 with yielding AV, and interaction 7 with non-yielding AV. 

In both the interactions, participant crossed before the AV. (1) represents the period in which the participant is 
approaching the trigger location, (2) shows the period when the participant is in the pre-crossing stage, (3) is 

the period when the participant is in crossing stage, and (4) represents the period in which the participant 

exited the intersection.  

The behavior variables were subjected to box-violin plots and non-parametric statistical 

tests to identify the effect of eHMIs. The results were reported in this section. Friedman’s 

test (see Table 9) was performed to identify the variables that differ significantly with eHMIs. 

Post hoc analysis was performed for the significant variables with Wilcoxon paired rank test 

and Bonferroni correction (see Table 10). 
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Table 9: Overview of Friedman's test results for driver behavior variables over eHMI conditions and AV driving style. Critical p-value is 0.05. Asterisks indicate significant p-
values. The mean ranks vary with the number of groups (i.e., 1 for the smallest variable score and 3 for the largest variable score). eHMI_V represents eHMI on vehicle. eHMI_I 

represents eHMI on infrastructure. 

    Non-Yielding Yielding 

Crossing stage  Variables Mean ranks Z P-value Mean ranks Z P-value 

Baseline eHMI_V eHMI_I Baseline eHMI_V eHMI_I 

Pre-crossing Approaching speed 2.34 2.12 1.55 66.7 <0.001* 1.98 2.07 1.95 0.495 0.474 

Maximum 
acceleration 

1.92 1.98 2.1 3.22 0.2 2.02 1.87 2.11 5.857 0.053 

Maximum 
deceleration 

2.03 2.07 1.9 3.22 0.2 1.96 2.03 2.01 0.476 0.789 

Minimum speed 2.08 2.04 1.88 4.48 0.106 1.95 2.06 1.98 1.258 0.533 

Time to maximum 
braking 

2.29 1.9 1.82 24.9 <0.001* 2 2.04 1.96 0.527 0.768 

Crossing Crossing decision 2.06 1.96 1.98 4.2 0.122 1.89 2.05 2.06 27.793 <0.001* 

Critical events (from 
PET) 

1.71 2.1 2.2 26.8 <0.001* 1.64 2.02 2.34 45.559 <0.001* 

Post-crossing Crossing time 1.89 1.87 2.25 18 <0.001* 2.05 1.92 2.03 1.882 0.39 
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Table 10: Post hoc test results for the significant behavior variables over scenarios. Significant perception 
variables are selected from Table 9. The p-value is the significance with a Bonferroni correction (p-values were 
multiplied by the number of hypotheses of 3). The critical p-value is 0.05. Asterisks indicate significant p-values. 

eHMI_V represents eHMI on vehicle. eHMI_I represents eHMI on infrastructure. 

    Non-Yielding Yielding 

Crossing 
stages 

Variable Pairs Z P-value Z P-value 

Pre-crossing Approaching 
speed 

Baseline - eHMI_V -2.703 0.021* - - 

Baseline - eHMI_I -6.526 <0.001* - - 

eHMI_V - eHMI_I -4.105 <0.001* - - 

Time to 
maximum 
braking 

Baseline - eHMI_V -3.473 0.002* - - 

Baseline - eHMI_I -4.256 <0.001* - - 

eHMI_V - eHMI_I -.685 1.480 - - 

Crossing Crossing 
decision 

Baseline - eHMI_V - - -3.800 <0.001* 

Baseline - eHMI_I - - -4.426 <0.001* 

eHMI_V - eHMI_I - - -.707 1.439 

Critical events 
(from PET) 

Baseline - eHMI_V -5.088 <0.001* -4.519 <0.001* 

Baseline - eHMI_I -5.712 <0.001* -7.638 <0.001* 

eHMI_V - eHMI_I -1.536 0.374 -3.964 <0.001* 

Post-crossing Crossing time Baseline - eHMI_V -.592 1.661 - - 

Baseline - eHMI_I -4.026 <0.001* - - 

eHMI_V - eHMI_I -3.199 0.004* - - 

 

Pre-crossing stage 

Approaching speed, maximum acceleration, maximum deceleration, minimum speed, and time 

to maximum braking were the analysed variables in this stage. Preliminary analysis results 

were reported below. The results were segregated for each AV driving style. 

Approaching speed 

Approaching speed profiles of HDVs (see Figure 33 and Figure 34) were generated for every 

5m interval in the approach distance (i.e., distance from trigger location to the start of 

intersection). The speed profiles were analysed to briefly understand the effect of eHMIs. A 

general observation, approaching speed of HDV varied in eHMI scenarios when compared to 

the baseline. 

 

Figure 33: Approaching speed profile of HDVs for three scenarios where AV is not yielding at the intersection. 
Error bars indicate SD.  

Non-yielding AV 
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Figure 34: Approaching speed profile of HDVs for three scenarios where AV is yielding at the intersection. Error 
bars indicate SD. 

When the AV was not yielding, HDVs approached the intersection with a lower mean speed in 

the eHMI_V and eHMI_I scenarios than baseline in Figure 33. For a yielding AV in Figure 34, 

however, the difference in mean approaching speed was less pronounced among the three 

scenarios. In order to understand the mean approaching speed of HDVs over the approach 

distance to the intersection, the box-violin plot is illustrated in Figure 35.  

Non-yielding: Mean approaching speed of participants was the highest in the baseline 

condition, and the least in the eHMI_I scenario in Figure 35. The approaching speed of HDVs 

in the eHMI_V scenario was gradually lower than baseline by 0.34 m/s, and higher than eHMI_I 

by 0.54 m/s. Friedman test results (see Table 9) showed significant differences in the 

approaching speed within the three scenarios. Post hoc analysis (see Table 10) showed 

significant differences between the scenario pairs: baseline vs eHMI_I; baseline vs eHMI_V; 

eHMI_I vs eHMI_V.  

Yielding: Mean approaching speed is illustrated in Figure 35 for the baseline, eHMI_I, eHMI_V  

 

Figure 35: Approaching speed (m/s) of participants over the scenarios and the AV driving styles. The approaching 

speed is represented with a box-violin plot with outliers. 

Yielding AV 
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scenarios. In comparison to the baseline, mean approaching speed was slightly lower in 

eHMI_V and eHMI_I by 0.06 m/s and 0.11 m/s, respectively. The approaching speed was 

slightly higher in the eHMI_V than eHMI_I. Friedman test (see Table 9) showed that the 

approaching speed in the three scenarios was not significantly different. 

Maximum acceleration 

Non-yielding: The maximum acceleration in the baseline scenario was 2.15 m/s2, increased to 

2.57 m/s2 for eHMI_V, and 2.90 m/s2 for eHMI_I in Figure 36. The highest maximum 

acceleration was observed in eHMI_I among the three scenarios. Friedman’s test results 

showed no significant difference among the three conditions in Table 9.  

Yielding: In accordance with the above result, maximum acceleration of the eHMI_I was 0.5 

m/s2, slightly higher than eHMI_V by 0.15 m/s2, and baseline by 0.2 m/s2 in Figure 36. No 

major difference was observed between eHMI_V and baseline scenarios. The maximum 

acceleration in the three scenarios was not significantly different using Friedman’s test in Table 

9. 

 

Figure 36: Maximum acceleration (m/s2) of participants over the scenarios and the AV driving styles. The 
maximum acceleration is represented with a box-violin plot with outliers. 

Maximum deceleration 

Non-yielding: The maximum deceleration of HDVs (see Figure 37) depicted a lower value for 

the eHMI_V condition than eHMI_I and baseline by 0.6 m/s2 and 0.9 m/s2, respectively. Slightly 

lower maximum deceleration was observed in the eHMI_I condition than the baseline by 0.3 

m/s2. Friedman test results in Table 9 reported that the three conditions were not statistically 

different. 

Yielding: On similar lines with the above results of maximum deceleration, eHMI_V condition 

obtained the lowest value of -3.56 m/s2 among the three scenarios in Figure 37. HDVs in the 

eHMI_I condition, however, had a gradually higher maximum deceleration of 0.05 m/s2 than 

the baseline condition. Friedman’s test results exhibited no significant difference among the 

three scenarios in Table 9. 
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Figure 37: Maximum deceleration (m/s2) of participants over the scenarios and the AV driving styles. The 

maximum deceleration is represented with a box-violin plot with outliers. 

Minimum speed 

Non-yielding: Minimum speed of participants in the eHMI_V scenario was higher than eHMI_I 

and baseline by 0.22 m/s and 0.2 m/s, respectively in Figure 38. No major difference existed 

in the minimum speed of HDVs between the eHMI_I and baseline scenarios. No significant 

differences among the three scenarios were observed in Table 9 using Friedman’s test. 

Yielding: On similar lines with the above result, participants maintained a higher minimum 

speed in the eHMI_V scenario than eHMI_I by 0.39 m/s, and baseline by 0.44 m/s in Figure 

38. Friedman’s test results in Table 9 showed no significant differences in minimum speed 

among the three conditions. 

 

Figure 38: Minimum speed (m/s) of participants over the scenarios and the AV driving styles. The minimum speed 

is represented with a box-violin plot with outliers. 

Time to maximum braking 

Non-yielding: Box-violin plot (see Figure 39) depicted that the time to maximum braking for the 

baseline condition was higher than eHMI_V and eHMI_I by 0.15 s and 0.23 s, respectively. 
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HDVs took the least time to brake in the eHMI_I condition among the three scenarios in Figure 

39. Friedman’s test (see Table 9) showed significant differences for the three scenarios. Post 

hoc analysis in Table 10 showed statistically significant differences for the scenarios: baseline 

vs eHMI_I; baseline vs eHMI_V. Post hoc analysis reported no significant differences between 

the eHMI_I and eHMI_V conditions in Table 10. 

 

Figure 39: Box-violin plot for time to maximum braking (s) over the scenarios and the AV driving styles. The box-
violin plot contains outliers. 

Yielding: In line with the above result, the baseline scenario had higher time to maximum 

braking than eHMI_V and eHMI_I scenarios in Figure 39. On the other hand, HDVs in the 

eHMI_V scenario had slightly lower time to maximum braking than baseline by 0.15 s and 

eHMI_I by 0.08 s. Friedman’s test in Table 9 showed that the three conditions were not 

significantly different. 

Crossing stage 

Crossing decision and critical events (from PET) were the analysed variables in this stage. The 

results are reported below. 

Crossing decision 

Crossing decision of HDV was initially measured in 0 (yielding) and 1 (crossing) for each 

interaction with AV. As the observations over multiple interactions were averaged for a 

participant (see section 6.2.1), crossing decision was transformed into a proportion measure 

for HDVs crossed before AV. This estimation was performed for each eHMI condition and AV 

driving style. 

Non-yielding: The proportion of HDVs crossed before AVs (see Figure 40) for the baseline 

scenario was 18.6%, which decreased to 12.5%, and 13.4% for the eHMI_V and eHMI_I 

scenarios, respectively. Friedman’s test (see Table 9) showed that the three scenarios were 

not significantly different. 

Yielding: The proportion of HDVs crossed before AVs (see Figure 40) for the baseline scenario 

was 86.2%, increased to 96.8%, and 97.9% for the eHMI_V and eHMI_I scenarios, 

respectively. The three scenarios were significantly different using Friedman’s test in Table 9. 

Post hoc analysis (see Table 10) showed statistically significant differences between the 
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scenarios: baseline vs eHMI_I; baseline vs eHMI_I. No significant difference existed between 

the eHMI_V and eHMI_I scenarios. 

 

Figure 40: Bar chart for HDV decision to cross before AV (%) over the scenarios and the AV driving styles. 

Critical events 

PET scores were used to classify the AV-HDV interactions as critical events in terms of 0 (not 

critical) and 1 (critical). The critical events for multiple interactions were transformed as 

proportions for each participant, similar to crossing decision. Figure 41 illustrates the crossing 

decision for the scenarios and AV driving styles.  

Non-yielding: The proportion of critical events (see Figure 41) in the baseline scenario was 

87.7%, decreased to 66%, and 70.1% for the eHMI_V, and eHMI_I scenarios, respectively. 

eHMI_V had the least proportion of critical events among the three scenarios, whereas 

baseline condition had the highest proportion. There were significantly differences in the 

proportion of critical events among the three scenarios using Friedman’s test (see Table 9). 

 

Figure 41: Bar chart for critical events from PET (%) over the scenarios and the AV driving styles. An interaction is 
considered as critical if the PET score < 3s, else non-critical if the PET score > 3s. 
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Post hoc analysis (see Table 10) showed statistically significant differences between the 

scenario pairs: baseline vs eHMI_I; baseline vs eHMI_V. However, the differences were not 

statistically significant between the eHMI_I and eHMI_V scenarios with the post hoc test (see 

Table 10). 

Yielding: The proportion of critical events (see Figure 41) for the baseline scenario was 39.5%, 

reduced to 12.4%, and 5.9% for the eHMI_V, and eHMI_I scenarios, respectively. The baseline 

scenario had a higher proportion of critical events over the two scenarios, which is similar to 

non-yielding AV. On the other hand, eHMI_I had the lowest proportion of critical events among 

the three scenarios. Friedman’s test results (see Table 9) showed significant differences in the 

proportion of critical events among the scenarios. Post hoc analysis (see Table 10) showed 

significant differences between the pairs: baseline vs eHMI_I; baseline vs eHMI_V; eHMI_I vs 

eHMI_V. 

Post-crossing stage 

Crossing time 

Non-yielding: The crossing time of HDVs (see Figure 42) in the eHMI_I scenario was higher 

than the baseline and eHMI_V by 0.22 s and 0.33 s, respectively. HDVs in eHMI_V had slightly 

lower crossing time than baseline by 0.11 s. Friedman’s test results (see Table 9) showed the 

crossing time was different in the three scenarios. The results of post hoc analysis (see Table 

10) showed that HDVs in the eHMI_I condition had a statistically significant difference with the 

eHMI_V and baseline conditions. However, the difference between the two scenarios (i.e., 

eHMI_I vs eHMI_V) were not statistically significant in Table 10. 

Yielding: The crossing time of HDVs in the baseline scenario was 7.64 s, decreased to 7.55 s 

for eHMI_V, and 7.63 s for eHMI_I in Figure 42. Friedman’s test results showed no significant 

differences among the three scenarios in Table 9. 

 

Figure 42: Box-violin plot for crossing time (s) over the scenarios and the AV driving styles. The box-violin plot 

contains outliers. 

6.2.4 Summary 
Table 11 provides an overview of scenarios in the horizontal axis and perception variables in 

the vertical axis. On the other hand, Table 12 represents an overview of scenario effects for 

behavior variables. The type of scenario variable analysed was mentioned in row 2 (“Effect  
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Table 11: An overview of scenario effects on perception variables. eHMI_V and eHMI_I represents eHMI on 
vehicle and infrastructure, respectively  

Variables Effect of scenario 

Effect studied for eHMI_V eHMI_I eHMI_V 

In comparison with Baseline eHMI_I 

Perceived criticality - - - 

Trust Higher Higher - 

User acceptance Usefulness Higher Higher - 

Satisfaction Higher Higher - 

Emotions Pleasure Higher Higher - 

Arousal Lower Lower Higher 

Dominance - - - 

Workload Mental demand Lower - - 

Physical demand - - - 

Temporal demand - - - 

Performance - - - 

Frustration - - - 

Effort - - - 

Overall workload - - - 

Preference for AVs Higher Higher - 

 

Table 12: An overview of scenario effects on behavior variables. eHMI_V and eHMI_I represent eHMI on vehicle 
and infrastructure, respectively. 

Variables  Effect of AV scenario with respect to AV driving style  

AV driving style Non-yielding Yielding 

Effect studied for eHMI_V eHMI_I eHMI_V eHMI_V eHMI_I eHMI_V 

In comparison with Baseline eHMI_I Baseline eHMI_I 

Pre-
crossing  

Approaching 
speed 

Lower Lower Higher - - - 

Maximum 
acceleration 

- - - - - - 

Maximum 
deceleration 

- - - - - - 

Minimum 
speed 

- - - - - - 

Time to 
maximum 
braking 

Lower Lower - - - - 

Crossing Crossing 
decision 

- - - Higher Higher - 

Critical 
events (from 
PET) 

Lower Lower - Lower Lower Higher 

 Post-
crossing 

Crossing 
time 

- Higher Lower - - - 
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studied for”), whereas the comparing scenario variable was exhibited in row 3 (“When 

compared with”). The scenario effects were observed for behavior variables with respect to AV 

driving style. From row 4, variables in columns 1 and 2 of Table 11 and Table 12 represented 

driver perception and driver behavior variables, respectively.  

On a general scale, participants expressed higher trust, user acceptance, pleasure, arousal, 

and preference for AVs with eHMI than baseline. Participants were less involved in critical 

interactions with AVs with eHMIs than baseline. Driver compliance was higher with AVs that 

instruct to cross with eHMI. 

6.3 Learning effects 
External human machine interface is relatively a new concept for AVs on the road. In this 

experiment, all the participants experienced interactions with eHMI equipped AVs for the first 

time. Participants were likely to change their perception and behavior over multiple interactions 

with AVs. This could lead to a learning effect, which was studied through a correlation analysis 

for each driver perception and behavior variable with the interaction number (Soni, 2020). The 

correlations analysis was performed for each eHMI condition. No significant correlations were 

observed. The correlation plots and results are presented in Appendix C.  

6.4 Modelling 
Modelling obtains a better understanding of the combined effect of scenarios, driver 

characteristics, perception, and behavior variables on participant preferences, crossing time 

and critical events. Predicting variables were identified from the sub-research questions and 

conceptual framework in section 3. Participant preferences, crossing time, and critical events 

were the models’ target (i.e., predicted) variables. In this section, the model selection criteria 

are explained first. Next, the model results are reported. 

6.4.1 Model selection criteria 
Generalized linear mixed model (GLMM) was proposed as the data were non-parametric and 

the experiment had a hierarchical design. Due to this design, data were repeatedly collected 

from the same participant. Participant responses were likely to correlate (West, 2009). To 

account for the hierarchical design, mixed effects were considered (Dickey et al., 2010). Mixed 

effects included fixed and random effects. Fixed effects were assumed to occur due to 

differences between participants, and random effects were assumed to occur due to within-

participant differences (Garth, 2008; West, 2009).  

Modelling steps included multicollinearity test, sorting data structure, identification of link 

distribution of target variable, identification of random and fixed effects, and model selection 

(Garth, 2008; Zoellick et al., 2019). First, a multicollinearity test was performed to identify the 

highly correlated predicting variables; where r > 0.80, tolerance < 0.2, and variance inflation 

factor (VIF) >= 5 (Garson, 2012; Garth, 2008). These variables lead to infinite standard errors 

and reduce statistical power (Garson, 2012). Hence, highly correlated predicting variables 

were not considered for the models. Second, the model was prepared in SPSS version 26.0 

and R program by sorting the data structure. Participant ID and scenario order were selected 

as subjects and repeated measures, respectively. Third, the distribution of target variables was 

identified through the EasyFit app and R program. Fourth, random effects were observed 

through a parameter. Participant ID was included as a subject combination for the random 

effects. The relevant fixed effects were included in a step-wise iterative method based on lower 

Alkaline Information Criteria (AIC) and Bayesian Information Criteria (BIC) criteria (Zoellick et 

al., 2019). Finally, a model with the least AIC and BIC criteria was selected for a better fit 

(Oskina, 2019).  
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The formulation of GLMM is shown as follows:  

yn = βΧn + un + εn 

where: 

yn Preference or critical events or crossing time (predicted variable) 

Χn Vector of fixed effects (predicting variables) 

β Vector of fixed effect coefficients 

un Random effect parameter 

εn Error term 

n Observation number 

  

6.4.2 Models 
Analysis results of preference, crossing time, and critical events models are presented in this 

section. In addition, a list of predicting variables post multicollinearity test, target variable 

distribution, AIC and BIC criteria for the best-fit model are reported. 

Preference model 

The preference model aimed to predict which scenarios and perception variables affect 

preference for AVs. The model was analysed in SPSS version 26.0. Preferences were reduced 

to a binomial scale, where 1 and 0 represented high and low preference for an eHMI condition, 

respectively. Target variable (i.e., preference) link distribution was selected as binomial logit. 

As shown in section 3, predicting variables for the preference model included driver 

characteristics and perception variables.  A perception variable, satisfaction had a tolerance 

of 0.183 and VIF of 5.460 using the multicollinearity test (see Appendix D). Satisfaction was 

excluded from the predicting variables. Next, predicting variables were added for fixed effects 

in a stepwise forward selection procedure. This procedure was carried out for 22 model 

iterations before exhausting all the combinations. The final model (see Table 13 for 

coefficients) had the least AIC and BIC values of 621.815, and 632.544, respectively. Low 

preference was set as the reference category. The random effect parameter was 0.000. The 

fixed effects analysis (see Table 13) exhibited a significant relationship between scenarios and  

Table 13: Fixed effects for high preference – GLMM. Asterisks represent significant estimates at 95%. SP 
represents the social preference of participants. 

Model term 
  

Coefficient 
  

Standard 
error 

t 
  

P-value 
  

95% confidence 
interval 

Lower Upper 

Intercept -3.667 0.984 -3.723 <0.001* -5.617 -1.716 

Scenario = eHMI_V 3.051 0.944 3.231 0.002* 1.181 4.920 

Scenario = eHMI_I 2.609 0.948 2.752 0.007* 0.732 4.486 

Scenario = Baseline (Reference value) 

SP = Prosocial 0.225 0.541 0.416 0.678 -0.847 1.297 

SP = Individualist (Reference value) 

Usefulness 0.879 0.388 2.263 0.025* 0.110 1.648 

Probability distribution: Binomial 
Link function: Logit 

Reference category: Low preference 

Number of observations: 44 
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“high preference” for AVs. The estimates were positive (eHMI_V coefficient = 3.051, eHMI_I 

coefficient = 2.609), which represent a higher probability of preference for AVs. In other words, 

when compared to the baseline scenario, eHMI_V and eHMI_I scenarios were more likely to 

result in a high preference for AVs. Social preferences did not have a significant (p = 0.678) 

relationship with a high preference for AVs. In simple terms, AV preferences of prosocial 

participants were not significantly different from individualistic participants in this research. 

Furthermore, “usefulness” had a positive estimate (0.879), and a significant  (p = 0.025) 

relationship with a high preference for AVs. In other terms, the perceived usefulness of a 

communication system has a higher probability to result in a higher preference for AVs. 

Critical events model 

The critical events model aims to understand the effect of predicting variables on traffic safety. 

From section 3.2, predicting variables contained driver characteristics, perception variables, 

and behavior variables in pre-crossing, and crossing stages. Among the predicting variables, 

driver experience (years), satisfaction, approaching speed, and minimum speed were highly 

correlated in the multicollinearity test (see Appendix D). These highly correlated variables were 

excluded from the model. Next, target variable (i.e., critical events) distribution was identified 

as beta distribution and the link distribution was selected as log (see Appendix D). Predicting 

variables were then selected for fixed effects in a forward selection process, which was carried 

for 24 model iterations. The final model (see Table 14 for coefficients) had the least AIC and 

BIC values of -345.3, and -254.4, respectively. The random effect parameter was less than 

0.001. 

The fixed effects analysis (see Table 14) showed a significant relationship between critical 

events and the eHMI_V scenario, with respect to the baseline scenario. The estimate was 

negative (-1.761), which represent a lower probability for critical events. In simple terms, the 

eHMI_V scenario had a lower probability for critical events than baseline. eHMI_I also had a 

negative coefficient (-0.658) but insignificantly (p = 0.273) different from baseline. Furthermore, 

a yielding AV had a negative coefficient (-3.870) and was significantly (p < 0.001) different to 

a non-yielding AV. In other terms, a yielding AV was more likely to reduce critical events than 

a non-yielding AV which was in line with the expectation. 

Table 14: Fixed effects for critical events – GLMM. Asterisks represent significant estimates at 95%. AV_DS 

represents automated vehicle driving style. 

Model Term 
  

Coefficient 
  

Standard 
error 

t 
  

P-value 
  

95% confidence 
interval 

Lower Upper 

Intercept 1.710 0.444 3.849 <0.001* 0.839 2.580 

Scenario = eHMI_V -1.761 0.591 -2.982 0.003* -2.918 -0.604 

Scenario = eHMI_I -0.658 0.600 -1.097 0.273 -1.834 0.518 

Scenario = Baseline (Reference value) 

AV_DS = Yielding -3.870 0.633 -6.114 <0.001* -5.111 -2.630 

AV_DS = Non-yielding (Reference value) 

Probability distribution: Beta 
Link function: Log 

Number of observations: 244 

 

Crossing time model 

The crossing time model predicts the combined effects of predicting variables on efficiency of 

the AV-HDV interactions. From section 3.2, predicting variables for the preference model 
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included driver characteristics, perception variables, and behavior variables in pre-crossing 

and crossing stages. Among these variables, driver experience (years), satisfaction, 

approaching speed, minimum speed, crossing decision, and critical events were highly 

correlated in the multicollinearity test (see Appendix D). Thus, these predicting variables were 

excluded. Target variable (i.e., preference) distribution was identified as gamma distribution 

and the link function was log (see Appendix D). Predicting variables were then selected from 

28 model iterations. The best-fit model (see Table 15 for coefficients) had the AIC and BIC 

values of -315.669, and -301.952, respectively. The random effect parameter was 0.005. 

The model results (see Table 15) illustrated that the eHMIs did not have a significant effect on 

the crossing time compared to baseline. Crossing time did not have a stronger relationship 

(|coefficients| < 0.5) with the model terms (see Table 15). Among the model terms, perception 

variables such as usefulness and arousal had a negative coefficient (-0.019 and -0.018, 

respectively) and also a significant (p = 0.044 and p < 0.001, respectively) relationship with the 

crossing time. In other terms, perceived usefulness and arousal were found to decrease the 

crossing time. Among the pre-crossing behavior variables, maximum deceleration had -0.032 

coefficient and significant (p < 0.001) relationship with the crossing time. An implication, 

maximum deceleration was likely to reduce the crossing time. However, maximum acceleration 

had no significant (p = 0.163) relationship. On the other hand, the yielding style had a negative 

coefficient (-0.144) and significant (p < 0.001) effect on the crossing time when compared to 

the non-yielding driving style of AV. A non-yielding AV was not likely to increase the crossing 

time than a yielding AV. 

Table 15: Fixed effects for crossing time – GLMM. Asterisks represent significant estimates at 95%. AV_DS 
represents automated vehicle driving style. 

Model Term 
  

Coefficient 
  

Standard 
error 

t 
  

P-value 
  

95% confidence 
interval 

Lower Upper 

Intercept 2.126 0.0414 51.381 <0.001* 2.045 2.208 

AV_DS = Yielding -0.144 0.0275 -5.236 <0.001* -0.198 -0.090 

AV_DS = Non-yielding (Reference value) 

Usefulness -0.019 0.0095 -2.023 0.044* -0.038 -0.001 

Arousal -0.018 0.0046 -3.856 <0.001* -0.027 -0.009 

Maximum acceleration 0.013 0.0091 1.400 0.163 -0.005 0.031 

Maximum 
deceleration 

-0.032 0.0048 -6.604 <0.001* -0.041 -0.022 

Probability distribution: Gamma 
Link function: Log 

Number of observations: 244 

 

6.4.3 Summary 

The modeling results are summarized in Table 16. Each column represents a model with its 

significant variables. eHMI_V and eHMI_I were found to have a significantly greater effect on 

driver preference for AVs when compared to baseline. Among the perception variables, 

usefulness had a positive impact on preference for AVs. The critical events model explained 

that eHMI_V a yielding AV had a lower effect when compared to baseline condition and non-

yielding AV, respectively. The crossing time model predicted that usefulness, arousal and 

maximum deceleration variables were less likely to affect the crossing time of participants. A 

non-yielding AV had a major impact on crossing time than a yielding AV. 
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Table 16: An overview of GLMM results. eHMI_V and eHMI_I represent eHMI on vehicle and infrastructure, 
respectively. ‘+’ or ‘-‘ show a significantly positive or negative effect of a variable on the model, respectively. ‘>’ or 

‘<’ explains a greater or lower effect of a scenario in comparison to others, respectively. 

Preference for AVs Critical events Crossing time 

eHMI_V > Baseline 
eHMI_I > Baseline 
+ Usefulness 

eHMI_V < Baseline 
Yielding < Non-yielding 

Yielding < Non-yielding 
- Usefulness 
- Arousal 
- Maximum deceleration 
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7 Discussion and conclusion 
This section discusses the study overview, answers to sub-research questions, and reflects 

on the findings and method. Further, the section provides conclusions and limitations of this 

research. 

7.1 Research overview 
Automated vehicles are expected to arrive in the next few decades on our road network, where 

AVs will interact with HDVs (Bansal & Kockelman, 2017; Southfield, 2016). During these 

interactions, the human role differs in interactions with AVs (Vinkhuyzen & Cefkin, 2016). 

Human drivers and AVs use different forms of communication, and their interaction could lead 

to a communication void on road. In order to fill the void, this research explores the potential 

of eHMIs for AVs’ communicative interactions with HDVs. 

The research scope was to understand the effect of eHMIs on the communicative interactions 

with AVs at unsignalized T-intersections. In this study, communicative interactions referred to 

the use of communication signals by AV to negotiate the right-of-way with an HDV at the 

intersection. Communicative interactions were measured with driver perception and behavior 

variables. In order to study these variables, participants drove in a simulator and answered 

questionnaires on their experiences with eHMIs. The eHMI conditions included baseline and 

eHMIs that differed with their placement. The eHMI was either placed on vehicles or road 

infrastructure. The experimental data in all the scenarios were compared to understand the 

scenario effects on driver perception and behavior. 

By studying the eHMI effects in the driving domain, this study filled a literature gap on AV 

interactions with different road users. Understanding the placement effect of eHMIs provided 

a step to identify the responsible authorities (e.g., road authority and AV manufacturer) for 

constructing and maintaining eHMIs. This research measured driver perception and behavior 

that provided a detailed view of driver interactions with AVs. In this research, the preference 

model identified the factors that improve social acceptance of AVs. Furthermore, this research 

used models to predict and estimate the impact of eHMIs on traffic safety and efficiency of the 

AV-HDV interactions. Based on eHMI implications for traffic safety and efficiency of the 

interactions, recommendations were provided to road authorities, AV manufacturers, and 

policymakers for better infrastructure design, AVs, and new policies. 

7.2 Answers to sub-research questions 
The main research question (see section 3.3) could be answered through sub-research 

questions. This sub-section aims to answer the sub-research questions using the analysis 

results from section 6. 

Sub-question 1: What are the effects of eHMI conditions on driver perception? 

The impact of each eHMI condition on driver perception variables were studied and the impacts 

were compared between the different eHMI conditions (i.e., baseline, eHMI on vehicle and 

eHMI on infrastructure). 

The analysis of driver perception variables revealed significant differences among the three 

conditions in the user acceptance, trust, emotions, and workload. When compared with 

baseline (i.e., no eHMI) condition, participants expressed higher user acceptance and trust in 

AVs with eHMIs (i.e., eHMI on vehicle or infrastructure). Participants felt more pleasant and 

calmer in the interactions that included eHMIs. Among the two eHMIs, participants felt calmer 

with eHMI on infrastructure than on the vehicle. Participants reported significantly lower mental 

demand in the scenarios with eHMI on the vehicle than baseline condition. Furthermore, 
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drivers preferred AVs with eHMIs. These observations were in line with hypothesis 1 as the 

eHMIs improved driver perception, in terms of user acceptance, trust, pleasure, calmness and 

mental demand, during the interactions with AV. 

Sub-question 2: What are the effects of eHMI conditions on driver behavior with respect to 

AV driving style? 

In order to gain insights on driver behavior, each behavior variable was analysed for 

differences among the scenarios in section 6.2. The analysis was carried separately for each 

driving style of AV. 

Non-yielding AV: Among the behavioral variables in the pre-crossing stage, approaching 

speed and time to maximum braking were significantly different among the eHMI conditions. 

In comparison with baseline condition, participants approached the intersection with lower 

speed when AV signals to yield through eHMIs. Participants maintained a lower approaching 

speed with the eHMI on infrastructure than eHMI on the vehicle. When AV signals the 

participants to yield, they took less time to reach maximum baking with eHMIs than baseline 

condition. This observation indicated that participants brake early to yield the right-of-way for 

the AVs that use eHMIs. 

Among the behavioral variables in the crossing and post-crossing stages, critical events, 

measured by Post-Encroachment Time, and crossing time had significant differences among 

the eHMI conditions. Participants had lower critical interactions with non-yielding AVs that 

communicate with eHMIs compared to AVs without eHMI. Crossing time was measured from 

the moment when HDV triggered the AV and its signals to the moment when HDV took the 

right turn and exited the intersection. Participants took less time to cross with eHMI on 

infrastructure than the other two conditions. 

Yielding AV: Participants had differences in the behavioral variables of crossing stage across 

the three conditions. Participants showed higher compliance with eHMIs than with the baseline 

condition, which was partly in line with hypothesis 2. However, participants’ compliance did not 

significantly differ between the two eHMIs. Participants had fewer critical interactions with 

yielding AVs that communicate via eHMIs when compared with the baseline condition. 

Specifically, participants had fewer critical interactions with AVs that convey intent with eHMI 

on infrastructure. 

Sub-question 3: Which factors related to eHMI conditions, driver characteristics and 

perception influence driver preference for AVs? 

A preference model was developed to predict the social acceptance of AVs. eHMIs were 

probable to improve participant preference for AVs, as expected in hypothesis 3. More 

specifically, eHMI on vehicle has a positive and higher effect size than the other conditions. 

Furthermore, preference was likely to increase when participants perceived an AV 

communication system to be useful. However, none of the driver characteristics had a 

significant effect on the preference for AVs.  

Sub-question 4: Which factors related to AV and driver characteristics, perception, and pre-

crossing behavior influence the critical events during right turn maneuver? 

A critical events model was developed to understand the implications for traffic safety during 

right-turn maneuvers. In comparison to the baseline condition, eHMI on the vehicle was found 

to reduce the critical interactions between the participants and AVs. This result was in line with 

hypothesis 4 as the participants knew the AV intent and speed with eHMI on vehicle. However, 

the critical interactions did not seem to differ with eHMI on infrastructure and baseline 

condition. Furthermore, yielding AVs were probable to reduce the critical interactions with 
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participants than non-yielding AVs. The driver characteristics and pre-crossing behavior have 

no significant impact on the model output. 

Sub-question 5: What is the effect of AV characteristics, driver characteristics, perception, 

pre-crossing and crossing behavior on the time drivers take to complete right turn maneuver? 

AV-HDV interaction efficiency implications were predicted with a crossing time model for right-

turn maneuvers. None of the eHMIs probably influenced the time to cross the intersection when 

compared with the baseline condition. This was not in compliance with hypothesis 5 as the 

eHMI on infrastructure did not convey AV speed to the human driver. Furthermore, the driver 

characteristics were found not to affect the crossing time. A non-yielding AV was more likely 

to increase the participants’ time to cross the intersection than a yielding AV. Participants 

perceived usefulness of communication system was not found to increase the time to cross. 

On similar lines, participant excitement level and maximum deceleration were not found to 

increase the participants’ time to cross the intersection. 

7.3 Discussion 
The principal purpose of this research is to understand the effect of AVs’ eHMIs on human 

driver interactions, where eHMIs differ in placement. This research, however, makes an 

assumption that AV driving style is similar to HDV. This research studies the AV-HDV 

interactions at unsignalized T-intersections. 

The key findings of this study are as follows. eHMIs have a significant effect on driver 

perception and behavior in the interaction with AVs. In interactions with eHMIs, drivers express 

significantly higher trust, user acceptance, pleasant and calmer experiences. In particular, 

eHMI on vehicle reduces mental demand and eHMI on infrastructure improves calmness of 

drivers. The effect of eHMIs on driver behavior is significantly higher in the interactions with 

uncertainty. Drivers break early and are less likely to involve in critical interactions with AVs 

that communicate with eHMIs. In particular, eHMI on vehicle is found to reduce the critical 

interactions between AVs and HDVs. Drivers also show compliance with AVs that signal to 

cross with eHMIs. These observations are consistent with the previous studies on eHMIs.   

This sub-section provides a scientific and critical reflection on the method and findings of the 

research. First, the section critically evaluates and discusses the results with support from the 

literature. Next, the section discusses the implications of the method on results. 

7.3.1 Reflection on findings 

This sub-section discusses and evaluates the research findings with the literature. In order to 

understand the effect of AV eHMIs on communicative interactions with HDVs, driver perception 

and behavior results are discussed. 

Perception: eHMIs influence driver perception in a positive direction. Among the perception 

variables, drivers express higher user acceptance and trust on AVs with eHMIs. An explanation 

is that drivers want to receive information on AV intent for decision-making. In addition, drivers 

find it easier to learn eHMI signals and useful for future interactions. On similar lines, Avsar et 

al. (2021) and Rettenmaier et al. (2020) discussed that drivers find the eHMI signals as simple 

to learn and beneficial for decision-making in bottleneck situations such as T-intersections and 

narrow roads, respectively. In our study, the trust and user acceptance do not differ significantly 

between eHMI on vehicle and infrastructure. This result suggests that the eHMI placement 

does not affect user acceptance and trust in AVs at intersections. 

For eHMI conditions, drivers experience the interactions with AVs as pleasant and calm. This 

result implies that drivers are relaxed to explicitly know the AV intent. This result is supported 

with the post-experiment interview, where few drivers mentioned that they made decisions with 



57 
 

confidence in the scenarios with eHMI. This observation was reflected in Habibovic et al. 

(2018), where the pedestrians felt better to know the AV intent with eHMIs. These observations 

explain that explicit information helps the road user to understand AV intent clearly and make 

decisions with certainty. In addition, our results suggest that drivers feel calmer when the eHMI 

design is inspired by traditional road infrastructure (e.g., traffic signal). This suggestion was 

observed when the drivers expressed a lower arousal score with eHMI on infrastructure than 

on the vehicle. 

Perceived criticality of the interactions did not differ significantly between baseline and eHMI 

conditions. On contradictory terms, Avsar et al. (2021) observed that drivers perceived AV 

interactions as significantly safer with eHMI. A possible reason for the difference is that HDV-

drivers experience an interaction as critical based on a possible collision course with AV. HDVs 

in Avsar et al. (2021) follow a different collision course when compared to our research. The 

authors instructed drivers to start from a stand-still position before crossing at the intersection. 

Our study allows the driver to approach the intersection at their desired speed. 

eHMI on vehicles reduces the mental demand of drivers in the interactions when compared to 

baseline. An explanation is that driver receives more information from AV, namely intent and 

vehicle behavior, when eHMI is on the vehicle. This observation was underpinned from the 

interviews, where a few drivers explained that they know the AV intent and speed when they 

look at an AV with eHMI on top. However, mental demand with eHMI on infrastructure was not 

found to significantly differ from baseline. A reason is that the eHMI on infrastructure and AV 

are in different lines of driver vision. During the interview, some drivers mentioned that they 

looked in two different directions to know AV intent. These observations suggest that the 

placement of eHMI affects the mental demand of the driver. 

Preference model predicts that drivers are likely to prefer AVs with eHMIs over baseline 

conditions. In addition, the perceived usefulness of an AV communication system (e.g., eHMI) 

affects the driver preference for AVs. These results suggest that AVs with eHMIs, which are 

perceived beneficial, have the potential to raise social acceptance of AVs. This suggestion is 

in line with Vinkhuyzen & Cefkin (2016), who illustrated that eHMIs could lead to the 

development of socially acceptable AVs. However, social acceptance of AVs among human 

drivers is likely to remain unaffected with eHMI placement. This is observed when the driver 

preferences do not differ significantly with different eHMI placement.  

Behavior: The effect of eHMIs on driver behavior differs with AV driving style. During the HDV 

interactions with non-yielding AVs, behavior variables in the pre-, mid- and post-crossing 

stage, such as approaching speed, time to maximum braking, critical events and crossing time, 

have significant differences. However, none of the behavior variables has significant 

differences in the pre- and post-crossing stage for the yielding AVs with eHMIs. An explanation 

is that eHMIs are beneficial in uncertain interactions that need negotiations. This explanation 

was also reflected in on-road studies as mentioned by Habibovic et al. (2019). This could also 

be due to the positive effect of eHMIs on driver emotions, trust and user acceptance.  

Non-yielding AVs: Significant differences are identified in variables across different crossing 

stages. Drivers have lower approaching speed and time to maximum braking with eHMIs than 

baseline conditions. Probable critical events are lower with eHMIs. These results explain that 

drivers brake early, approach the intersection with lower speed and reduce critical interactions 

for eHMI conditions. These observations suggest an improvement in driver performance with 

eHMIs, which is in line with other studies (Clercq et al., 2019; Rettenmaier et al., 2020; Winter 

& Dodou, 2021). Clercq et al. (2019), and Winter & Dodou (2021) explained that the safety 

performance of other road users increases with eHMIs in the pedestrian-AV interactions. 
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Rettenmaier et al. (2020) observed a reduction in narrow-road crashes in the AV-HDV 

interactions with eHMIs. 

For non-yielding AVs, lower approaching speed is observed with eHMI on infrastructure than 

on the vehicle. This is also reflected in the crossing time. Drivers took more crossing time with 

eHMI on infrastructure. This could be that eHMI on infrastructure, which is inspired by a traffic 

signal and provides calmer experience to human drivers, persuades the driver to reduce the 

approaching speed when eHMI signals yield. Another possible reason is that eHMI on 

infrastructure is in the driver’s line of sight, whereas eHMI on the vehicle is not in the line of 

vision. 

Yielding AVs: Significant differences are observed in crossing stage variables, namely crossing 

decision and critical events. More drivers cross the intersection before the AV with eHMIs than 

AV without eHMI. Probable critical events are lower with eHMIs. These results suggest that 

eHMIs have the potential to affect driver decision to cross before AVs, safely. On similar lines, 

Avsar et al. (2021) observed that eHMIs and AV driving styles influence driver decision to cross 

safely and accept lower gaps at T-intersection. A study on pedestrian-AV interactions by 

Clercq et al. (2019) show that road users feel safer to cross before AV when it signals to cross. 

Traffic safety and interaction efficiency implications: Critical events and crossing time models 

are developed to understand the combined effects (e.g., AV driving style, eHMIs, driver 

perception) on traffic safety and interaction efficiency. The critical events model explains that 

a yielding driving style and eHMI on the vehicle are likely to reduce the critical interactions at 

the intersections. This could be due to lower mental demand with eHMI on vehicle compared 

to baseline. The model suggests that traffic safety is achieved when AV is yielding and signals 

to cross with an eHMI on the vehicle when compared to a non-yielding AV with no eHMI.  

The crossing model explains that a yielding driving style of AV, perceived usefulness of AV 

communication system, driver arousal and maximum deceleration are found not to increase 

the crossing time. The model also suggests that the eHMIs have no implications for interaction 

efficiency through crossing time. Efficiency of AV-HDV interactions could be understood from 

driver compliance at the intersections. Our study exhibits that eHMIs improve driver 

compliance when AV is yielding, suggesting that eHMIs have the potential to improve the 

efficiency of AV-HDV interactions, at the T-intersection. In line with Avsar et al. (2021), who 

observed that drivers accept smaller gaps with eHMIs, which has positive implications for 

efficiency at the intersections. 

7.3.2 Reflection on method 
This sub-section provides a critical view of the driving simulator method. The assessment of 

methodology reflects on the effect of design choices on results. 

The experimental layout, in this research, consisted of distributor roads with a speed limit of 

80 kmph. Other road types exist based on different speeds. Interactions between vehicles can 

occur on high-speed roads such as motorways, where drivers have less time to perceive and 

act (Risto et al., 2017). This may influence the road users to rely more on implicit signals than 

explicit signals such as eHMIs. eHMI effects on driver perception and behavior are expected 

to be less prominent on high-speed roads. 

This research experiment involved participants performing right turns at unsignalised T-

intersections. However, different types of maneuvers (e.g., merging, turning left) and road 

layouts (e.g., X-intersection, shared space) exist. Different road conditions could lead to 

different driving behavior (Soni, 2020). The results of this research, hence, require validation 

with relevant studies on other road conditions. 
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During the experiment, participants had minimum interaction with other road users. For 

instance, vehicles in the opposite lane of AV disappear on participants reaching the 

intersection to reduce mental workload. However, other vehicles or vulnerable road users 

interact with HDVs in mixed traffic environments on road. In such complex interactions, the 

scalability and resolution of eHMIs are expected to affect driver decisions (Dey et al., 2020). 

This could lead to more significant differences in driver perception and behavior between eHMI 

on vehicles and infrastructure. 

To make the participants interact with AV at the intersection, the participants were instructed 

to arrive at the trigger location (see Figure 19) with 50 kmph. However, on-road HDVs are likely 

to arrive at the intersections with different deceleration rates and speeds (El-Shawarby et al., 

2007). eHMIs are expected to affect the deceleration rates of HDVs when approaching the 

intersection on road. 

The weather in the driving simulator experiment was set to be clear and no objects obstruct 

the participant view of the intersection. AVs and their intentions were clearly visible to the 

participants when they reach 70 m from the intersection, as suggested by CROW (2012). 

These design choices increase the recognizability of AV intent through eHMIs. However, 

visibility, in reality, is affected by several external factors such as weather, buildings, and trees. 

These factors are likely to obstruct the visibility of eHMIs. Participant compliance with AVs is 

expected to reduce with eHMIs in sub-optimal conditions. 

Two novel eHMI concepts were designed in this research. Both eHMIs convey AV intent 

through light displays. However, Dey et al. (2020) explained that different forms (e.g., text, 

speech, display) and colour formats (e.g., red, cyan, purple) could be used to convey AV intent. 

The design of eHMIs has the potential to affect driver interactions. If AV conveys intent through 

text, participants might find it difficult to interpret the message from a farther distance and might 

distract them from the task of driving. In such situations, participants do not rely on eHMIs 

which are unlikely to increase trust and user acceptance. 

7.4 Conclusion 

The main research question is answered with the observations from sub-questions. The main 

research question is: 

What is the effect of eHMIs on AVs’ communicative interaction with human drivers 

who perform a right-turn maneuver at unsignalized T-intersections? 

Communicative interactions are measured in driver perception and behavior at the T-

intersections.  

Among the driver perception variables, drivers experience pleasure and calmness in the 

interactions with AVs that signal with eHMIs. In particular, eHMI on vehicles reduces the mental 

demand, and eHMI on infrastructure increases the calmness experience of the drivers. Drivers 

expressed higher user acceptance and trust in AVs with eHMIs. As the eHMIs have a positive 

effect on driver perception, the preference model predicts that drivers choose AVs with eHMIs 

over no eHMI. These observations imply that eHMIs are likely to improve social acceptance of 

AVs at T-intersections. 

The effect of eHMIs on driver behavior differs with AV driving style. The eHMIs have a 

significant effect on the crossing stage variables for yielding AVs. Whereas in interactions with 

non-yielding AVs, eHMIs have a significant effect on behavior variables in the pre-crossing, 

crossing, and post-crossing stages. These observations suggest that the effect of eHMIs is 

significant on driver behavior in interactions with higher uncertainty. Drivers brake early and 

approach the intersection with lower speed to prevent critical interactions with non-yielding 
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AVs that communicate intent through eHMIs. Specifically, among the eHMIs, eHMI on 

infrastructure reduces the approaching speed and increases the crossing time of HDVs. For 

yielding AVs, drivers are less involved in critical interactions with AVs that signal with eHMIs 

than baseline. 

eHMI on the vehicle is found to reduce critical interactions between HDVs and AVs compared 

to no eHMI condition. However, this finding was not reflected for the eHMI on infrastructure 

based on the critical events model. These observations imply that eHMI on the vehicle has 

positive implications for traffic safety at the T-intersections. Though the crossing time model 

does not provide implications of eHMIs on the interaction efficiency, drivers’ crossing decisions 

could provide a sense of the driver compliance. As drivers cross before AVs, driver compliance 

is higher when AVs yield and send eHMI signals to HDVs. Hence, eHMIs improve driver 

compliance that can positively affect the efficiency of AV-HDV interactions at the T-

intersection.  

In conclusion, eHMIs have a positive impact on AVs’ communicative interactions with HDVs at 

T-intersections. In particular, eHMI on vehicle can reduce the critical interactions between AVs 

and HDVs at T-intersections. No significant differences were observed between the eHMI 

conditions for the acceptance of AVs and interaction efficiency. 

7.5 Limitations  
In order to provide insights for future research, the limitations of this research are discussed. 

Some limitations were explained in section 7.3.2. The other limitations were: 

• A high proportion of participants had at least a bachelor’s degree in science. These 

participants have experience with ADAS systems and they might understand the eHMI 

concepts quickly and clearly. Hence, the findings are valid for a similar population group 

only. 

• This research focuses on eHMIs that communicate the AV intent correctly. There could 

be interactions where the eHMIs miscommunicate AV intent to HDVs due to system 

malfunction. Rettenmaier et al. (2020) observed that eHMI miscommunication reduces 

user acceptance and trust in AVs. The study on eHMI miscommunication is out of this 

research scope.  

• This research involves two driving styles of AVs, namely yielding and non-yielding. 

Some studies (Ackermann et al., 2019; Imbsweiler et al., 2018; Uttley et al., 2020) 

explain that vehicle driving style differs with acceleration and deceleration rates that 

have a significant impact on driver behavior. However, the effects of different AV 

movements and eHMIs were not studied on driver interactions in this research. 

• The application of the right-hand rule (i.e., yielding to vehicles on right) differs with the 

culture and context on road. The non-yielding AVs do not follow the right-hand rule in 

this research. Few participants expressed that the non-yielding AVs influence their 

perceived criticality of the interactions. This research did not observe driver perception 

with respect to AV driving style. 

• Steering wheel data is required to understand the lane deviation behavior of the 

vehicle. The ‘Fanatec wheelbase’ steering wheel of the driving simulator does not 

support power steering. Few participants oversteer while crossing at the intersection. 

Hence, this research did not analyse the lane deviation behavior of HDVs.  
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8 Recommendations 
This section presents recommendations to various stakeholders (e.g., road authorities, AV 

manufacturers, policymakers) that aim to improve and implement AV technology for the 

betterment of society. This section also suggests research areas for future studies. 

8.1 Recommendations for future research 
Previous studies (e.g., Clercq et al., 2019; Eisma et al., 2020; Winter & Dodou, 2021) explain 

a performance improvement for pedestrian-AV interactions with eHMIs. On similar lines, our 

findings show an improvement in human driver performance and on-road safety with eHMIs. 

Future experimental investigations, therefore, are required to understand the potential of eHMI 

for interactions with multiple road users such as pedestrians, human drivers, cyclists, and AVs.  

Our findings show that the preference for AVs and interaction efficiency are not significantly 

different between the eHMI on vehicle and infrastructure at T-intersections. Future research is 

recommended to explore the two eHMI concepts in different on-road interactions (e.g., merging 

on highways, narrow roads, X-intersections). 

Novel eHMI concepts are created in this research to communicate AV intent with higher 

resolution and scalability on roads. Future research could adapt and implement the novel eHMI 

concepts for interactions in a mixed traffic environment with multiple road users. Besides 

different road users, the mixed traffic environments differ with penetration rates and platooning 

of AVs. eHMI with higher scalability could inform the platoon intent to other road users. For 

instance, a leader AV can use an eHMI to communicate the intent of a platoon of 10 follower 

AVs. If the driver is informed with the intent of the AV platoon using eHMIs, further studies 

could assess if the traffic efficiency improves with intent communication in AV-HDV platoon 

interactions.  

Previous research (e.g., Schoenmakers et al., 2021; Soni, 2020; D. Yang et al., 2019) 

observed that human drivers adapt their behavior in interactions with AVs. Our study does not 

explore the behavioral adaptation with eHMIs in the long-term application. As the human 

drivers know the AV intention with eHMI, they might drive closer to the AVs that leads to critical 

interactions. Further research is required to determine whether the long-term application of 

eHMIs have negative implications for traffic safety in mixed-traffic environment. 

Our study implements GLMM models to understand the combined effect of driver 

characteristics, perception and eHMI conditions on behavior variables that influence traffic 

safety and efficiency of the interactions. The behavior variables in our study do not facilitate 

understanding the implication on traffic efficiency at a vehicle trajectory level. Further work 

needs to implement other modelling techniques, such as machine learning models and 

microsimulation models, and micro-simulation packages (e.g., Simulation of Urban Mobility) to 

generate driver trajectories, and understand the impact of eHMIs on traffic efficiency at a finer 

level. 

Our research provides findings and qualitative, and quantitative datasets that could be used to 

validate future research and better understand the eHMI effects on human-driver interactions 

in different driving conditions. 

8.2 Recommendations for transportation specialists 
The models in this study explore the human factors and the relation between human driver 

cognition and behavior in the interactions with AVs. In addition, the driver behavior is studied 

at different crossing stages which provide a deeper insight into driver decisions at T-

intersections. The transportation specialists could widen the applicability of their simulation 
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models with the inclusion of human factors, perception and behavior insights from this 

research. However, inclusion of all the human factors, perception and behavior variables might 

lead to overfitting and complexity of models. Further research is required to investigate the 

relevant variables that improve clarity and prediction power of simulation models. 

Further analysis is needed to explore the relation between the driver perception (e.g., trust, 

perceived criticality, emotions) and behavior variables (e.g., approaching speed, post 

encroachment time, crossing time). For instance, a GLMM model could identify the human 

factors that have a significant effect on the driver behavior. In this research, GLMM shows that 

the usefulness of AV’s communication system and driver arousal have an effect on crossing 

time. Transportation specialists need to explore such models to better understand the reason 

behind the driver actions. The experimental data from this research could be used by the 

transportation specialists for further analysis.  

Our study observed that AVs with eHMI influence the driver behavior. However, current 

simulation models do not include the change in human driver behavior with AV communication 

type (e.g., no eHMI, eHMI on vehicle or infrastructure). Future simulation models might need 

to consider the eHMI effects for mixed traffic environment. In order to consider the eHMI 

effects, transportation specialists could include an attribute for the driver behavior that differs 

with the presence or type of an eHMI for the AV. 

8.3 Recommendations for AV manufacturers 
Our research studies a novel (directional) eHMI concept placed on the vehicle in the mixed-

traffic environment. This eHMI design could contribute to scalability and higher resolution 

through a clear communication with other road users. Hence, AV manufacturers are 

recommended to further investigate and optimise the design of the directional eHMI to make it 

suitable for different on-road interactions. 

The preference model predicts the effect of eHMI conditions and driver perception on social 

acceptance of AVs. In order to improve the acceptance, AV manufacturers can exploit and 

better understand the predicting factors. In this research, the preference model exhibits that 

the social acceptance of AVs is influenced by predicting factors, such as eHMIs and perceived 

usefulness of the communication system. AV manufacturers are recommended to consider the 

mentioned predicting variables (from this research) in the AV design to test and develop 

socially acceptable AVs.  

AV manufacturers are recommended to consider the traffic rules while designing the eHMIs. 

eHMIs need to supplement the traffic rules but not redefine it. If not, uncertainty and unsafety 

on roads could increase. As the eHMI on vehicle is a novel concept, drivers of higher age 

groups expressed trouble adapting to the eHMI in our study. AV manufacturers are suggested 

to develop simple eHMIs with a goal to minimise the learning effects across all the socio-

demographics. 

8.4 Recommendations for the road authority 
Road authorities are expected to face challenges to implement the eHMI on roads. The 

recommendations are provided to handle three challenges, namely technical, legal and 

acceptance. The challenges were briefed by a senior consultant from CROW. 

Recommendations for the technical challenges: A technical challenge lies in standardizing 

eHMIs. Road authorities are recommended to collaborate with AV manufacturers in developing 

industry standards for eHMIs. For instance, such collaboration could aim at standardizing the 

modality and nature of the message (i.e., eHMI signal) that is effective and acceptable among 

the road users. Another difficulty stems from synchronizing the eHMI with the current road 
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infrastructure (e.g., traffic lights). The road authority and AV manufacturer collaboration is 

suggested to explore the hardware communication systems that effectively transmit eHMI 

information between AV and the smart infrastructure. As the traffic light design provided 

calmness to the participants, road authorities could explore the methods for successful 

integration of eHMIs in advanced traffic controllers (e.g., intelligent traffic light installations). 

Recommendations for the legal challenges: A challenge exists with the liability of crashes 

between AVs and HDVs. This could occur when the eHMI signal does not accurately inform to 

the human driver. Before the installation of eHMIs, a failure analysis could distinguish the 

liabilities of the involved parties (e.g., road authorities and AV manufacturers). Another 

recommendation is to develop failsafe plans to prevent crashes in the first place. For instance, 

eHMI remains inactive to prevent miscommunication when there are network latency issues. 

Another challenge lies in data security and privacy of AV messages. Road authorities could 

assign an anonymous ID for each AV message. These IDs need to regenerate for every fixed 

time period.  

Recommendations for the acceptance challenges: The difficulty arises when the human drivers 

do not show the trust and acceptance for AVs despite their benefits. This difficulty could 

increase critical interactions in mixed-traffic environment. Our research explored two eHMI 

concepts that could improve driver trust and acceptance of AVs. The participants preferred 

AVs with eHMIs as the design was simple and intuitive. Hence, road authorities are 

recommended to further explore the eHMI designs that are simple, intuitive and acceptable 

among the road users. Higher acceptance in the society could boost the largescale 

development and application of eHMIs on the road. 

8.5 Recommendations for policymakers 
Our findings show that eHMIs could reduce driver workload and positively affect driver 

emotions. Modelling results illustrate that the eHMI on vehicle has the potential to reduce 

critical events at T-intersections, which benefits society. Policymakers are recommended to 

carry out a cost-benefit analysis to quantify the eHMI effects for society at large. In addition, 

policymakers are recommended to introduce policies that improve the AV communication with 

human road users. For instance, the policymakers could provide grants to the collaboration of 

AV manufacturers, road authorities and research institutes that explore simple and intuitive 

eHMIs to communicate AV intention with human drivers. 
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Appendices 
Appendix A: A thesis in six posts 
This appendix illustrates the master thesis in six social-media (Facebook) posts to provide a 

quick thesis overview with a backdrop of memes for a fun and informal setting. 
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Appendix B: Questionnaires 
 

B.1 Recruitment Questionnaire 
 

Opening statement 

You are being invited to participate in research to understand the interactions between human 

drivers and automated vehicles. This is a master thesis project which is being done by Shiva 

Nischal Lingam. The project is supported by the Delft University of Technology and Royal 

HaskoningDHV. The project is approved by the Human Research Ethics Committee (HREC), 

TU Delft. 

This research involves two phases. Initially, you are requested to answer the questionnaire on 

details such as name, email address, gender, profession, driving experience, social 

preferences, and initial trust in automated vehicles. This will take you around 10 minutes to 

complete. Then you are selected for the second phase, based on your responses. You are 

contacted using your email address. The second phase involves a driving simulator 

experiment, where you are asked to drive in a driving simulator and answer questions on your 

driving experience. The experiment will take you around 60 minutes to complete. 

The driving simulator experiment is planned to conduct at CiTG, TU Delft from the 2nd week 

to 4th week of July between 08:00 – 17:00. You can book a timeslot based on your availability. 

You will receive an email that details more information about the experiment once you submit 

this questionnaire. 

Your participation is completely voluntary and you have the right to withdraw at any moment. 

You are free not to answer any question. I encourage you to participate in both phases of 

research because both of them are necessary in completing the research. On successful 

completion of the experiment, you receive a reward worth of €10 euros (from bol.com) as a 

kind gesture. 

Risks and safety: We believe that there are no major risks associated with this research study. 

However, some of the participants might experience minor nausea while driving in the 

simulator. To minimise nausea, the driving scenarios are designed for shorter duration. If you 

experience discomfort, you can withdraw from the experiment at any instance. 

Strict approved measures are followed to ensure the safety of participants and researcher and 

minimise the risk of spreading coronavirus. The social distancing of 1.5 meters will be 

maintained throughout the experiment. You are asked to wear gloves before driving the 

simulator. All the study equipment will be sanitized after every participant use. In accordance 

with RVIM-guidelines for COVID-19, we request you not to travel via public transport for the 

experiment. Please do not travel to the experiment if you have COVID-19 symptoms. 

Data storage and confidentiality: We will safely store the data in a secured research 

repository called Project Storage at TU Delft. The data is regarded as confidential and it will 

not be shared will external users beyond study group researchers. A month after the end of 

experiment, the data from both phases is anonymized and personal data such as name and 

email addresses will be deleted from the database. If you need information on your data, 

please contact the researcher within a month after the experiment. After this period, we cannot 

trace back and provide you the data as the processed data will not have your personal 

information. The processed data will be used to generate observations that might be published 
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in the academic proceedings. The processed data will be shared on 4TU.Research for future 

research purposes. 

 

If you have any questions, feel free to contact us. 

 

Shiva Nischal Lingam 

S.N.LINGAM@student.tudelft.nl 

Dr. ir. Haneen Farah 

h.farah@tudelft.nl 

Ir. Anastasia Tsapi 

anastasia.tsapi@rhdhv.com 

 

1. By clicking the button below, you acknowledge: 

a. Your participation is voluntary 

b. You are more than or equal to 18 years of age 

c. You have a valid driving license (from any country) 

d. You have at least 3 years of driving experience 

 

2. You are aware that you can choose to terminate your participation at any time and withdraw 

without any reason. 

a) I consent, begin the study 

b) I do not consent, I do not wish to participate 

 

Questionnaire 

3. What is your name?  

 

 

4. What is your gender? 

a. Male 

b. Female 

c. Prefer not to say 

 

5. What is your email address? 

(It is needed to reach you back for the second phase) 

 

 

 

 

 

mailto:S.N.LINGAM@student.tudelft.nl
mailto:h.farah@tudelft.nl
mailto:anastasia.tsapi@rhdhv.com
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6. What is your age? 

a. 18 – 24 years 

b. 24 – 45 years 

c. 45 years 

7. What is your highest level of education? (include ongoing education) 

a. None 

b. Primary education 

c. Secondary education 

d. Bachelors or equivalent 

e. Masters or equivalent 

f. Doctoral or equivalent 

 

8. Social preferences 

In this task, imagine that you have been randomly paired with another person, whom we will 

refer to as the other. This other person is someone you do not know and will remain mutually 

anonymous. All of your choices would be completely confidential. 

You will be making a series of decisions about allocating resources between you and this other 

person. For each of the following questions, please indicate the distribution you prefer most by 

selecting the button below the payoff allocations. You can only make one selection for each 

question. Your decisions will yield money for both yourself and the other person. In the example 

below, a person has chosen to distribute the payoff so that he/she receives 81 dollars, while 

the anonymous other person receives 69 dollars. 

 

There are no right or wrong answers, this is all about personal preferences. After you have 

made your decision, select the resulting distribution of money by clicking on button below your 

choice. As you can see, your choices will influence both the amount of money you receive as 

well as the amount of money other receives.  

9. What is your employment status? 

a. Employed full-time 

b. Full-time student 
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c. Unemployed / Job seeker 

d. Retired 

e. Other: _______ 

10. How many kilometres do you generally drive in a month? 

a. < 100 

b. 101 – 1000 

c. 1001 – 3000  

d. 3001 – 5000  

e. 5001 – 7000  

f. 7001 – 9000  

g. 9001 – 11000  

h. 11001 – 13000 

i. 13001 

11. How many years of experience do you have with driving a car? 

 

 

12. Level of trust you have on the driverless vehicles that interact with other human driven 

vehicles 

S. 
No. 

Item Strongly 
disagree 

Rather 
disagree 

Neither 
disagree nor 
agree 

Rather 
agree 

Strongly 
agree 

1 Driverless vehicle can be 
trusted to carry out journeys 
effectively. 

     

2 I trust driverless vehicle to 
keep my best interests in 
mind. 

     

3 My trust in a driverless 
vehicle will be based on the 
car manufacturer’s reputation 
for safety and reliability. 

     

4 My trust in driverless vehicle 
will be based on the reliability 
of the underlying 
technologies. 

     

 

13. How familiar are you with the concept of automated vehicles? 

(Rating from 1 to 5, where 1 is never heard of and 5 is closely following the development 

of AVs) 

 

14. Do you have any driver assistant feature such as cruise control in your car? Which ones? 

(You may choose more than one option) 

a. Cruise Control: A device in a vehicle which can be switched on to maintain a 

selected constant speed without the use of the accelerator pedal. 

b. Adaptive Cruise Control: A driver assistance technology that sets a maximum 

speed for vehicles and automatically slows the speed of the car when traffic is 

sensed in front of the vehicle. 

c. Lane Keeping Assist: It uses a video camera to detect the lane markings ahead of 

the vehicle and to monitor the vehicle's position in its lane. When the vehicle begins 
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to move out of its lane, the system gently, but noticeably counter-steers in order to 

keep the vehicle in the lane. 

d. Automated Lane Change: These systems detect other vehicles using onboard 

sensors such as camera, radar, and ultrasonic. When it is safe, the system steers 

automatically and performs the lane change. 
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B.2 Information sheet for participants and consent form 
Please read this information sheet carefully before signing the consent form. If you decide to 

participate, your signature will be required. If you desire a copy of this information sheet and 

consent form, you may request one. 

Research title 

Understanding interactions between automated vehicles and human drivers 

Researchers 

Shiva Nischal Lingam – MSc student, TU Delft 

Email: S.N.LINGAM@student.tudelft.nl 

Phone: +31 645432197 

Dr. ir. Haneen Farah 

Email: h.farah@tudelft.nl 

Ir. Anastasia Tsapi 

Email: anastasia.tsapi@rhdhv.com 

 

Purpose of study  

The purpose of this research study is to understand the interactions between human drivers 

and automated vehicles. The interactions are studied to improve traffic safety and efficiency. 

Experimental procedure and instructions 

In this research study, you will be asked to drive in a driving simulator on a designated route 

that contains routine driving situations along with other traffic.  

You will be asked to fill in an online questionnaire during and after the experiment. This 

experiment will take about 70 minutes of your time. This time also includes briefing to explain 

the experiment and breaks between different scenarios. Further instructions will be provided 

during the experiment. 

Before the experiment 

On the day of the experiment, you will be briefed shortly about the experiment where other 

instructions will be made clear to you. 

During the experiment 

First, you will be allowed to drive freely in the driving simulator to get familiarize and 

comfortable with the equipment and environment. At the start of every scenario, you will 

receive an indication from the researcher to start driving (in the simulator). You are expected 

to perform right-turns at every intersection that you see on the route. While driving, you are 

free to make your driving decisions. Your only objective during the driving would be to reach 

the destination as quickly as possible by following all traffic rules. 

Once you reach the destination, which is one scenario, you will be asked four questions about 

your experience while driving. Similar task will be provided to you in all the 12 driving scenarios, 

excluding the familiarisation drive. 

mailto:S.N.LINGAM@student.tudelft.nl
mailto:h.farah@tudelft.nl
mailto:anastasia.tsapi@rhdhv.com
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After the experiment 

After 12 scenarios of driving and a small break, you will be asked to fill a 2-minute-long online 

questionnaire related to your driving experiences. On successful competition of the 

experiment, you will receive a €10 bol.com voucher as a kind gesture. 

Risks and safety 

We believe that there are no major risks associated with this research study. However, some 

of the participants might experience minor nausea while driving in the simulator. To minimise 

nausea, the driving scenarios are designed for shorter duration. If you experience discomfort, 

you can withdraw from the experiment at any instance. 

Strict approved measures are followed to minimise the risk of spreading coronavirus and 

ensure safety of participants and researcher. Social distancing of 1.5 meters will be maintained 

throughout the experiment. You are asked to wear gloves before driving the simulator. All the 

study equipment will be sanitized after every participant use. In accordance with RVIM-

guidelines for COVID-19, we request you not to travel via public transport for the 

experiment. If you have symptoms, we request you not to attend the experiment for the safety 

of you and others. 

Data storage and confidentiality 

We will safely store data in a secured research repository called Project Storage at TU Delft. 

The data is regarded as confidential and it will not be shared with external users beyond study 

group researchers. A month after the end of experiment, the data from both phases is 

anonymized and aggregated. During this process, personal data such as name, age group, 

profession, driving experience, gender, social preferences and email addresses will be deleted 

from the database. If you need information on your data, please contact the researcher within 

a month after the experiment. After this period, we cannot trace back and provide you the data 

as the processed data will not have your personal information. Observations will be generated 

from the processed data and the observations might be published in the academic 

proceedings. The processed data will be shared on 4TU.Research for future research 

purposes.  

Participant rights 

Your participation in this experiment is voluntary. So, you have the right to refuse to follow 

instructions of the experiment. You also have a right to ask questions about this research at 

any stage of the experiment. In addition, you have the right to withdraw at any stage of this 

research. If so, your data will not be used for analysis and it will be deleted from all the 

databases. 

Please express your consent by filling the questionnaire below. 

Consent Form for the study – “Understanding interactions between automated vehicles and 

human drivers” 

Please tick the appropriate boxes Yes No 

Taking part in the study   

I have read and understood the study information dated [DD/MM/YYYY], or it has been 

read to me. I have been able to ask questions about the study and my questions have 

been answered to my satisfaction. 

□ □ 
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I consent voluntarily to be a participant in this study and understand that I can refuse to 

answer questions and I can withdraw from the study at any time, without having to give 

a reason.  

 

□ □ 

 

I understand that taking part in the study involves driving in a driving simulator and 

completing questionnaires before, during and after the experiment that will include 

questions related to experiences during the experiment. 

 

Risks associated with participating in the study 

□ 

 

□ 

 

I understand that the study in a driving simulator could cause minor nausea and that I 

can stop the experiment at any time I so desire. 

  □  □ 

 

Use of the information in the study 

  

I understand that information I provide will be used in reports, scientific publications or 

may be presented in conferences on traffic safety, traffic psychology, or relevant fields 

□ 

 

□ 

 

I understand that personal information collected about me that can identify me, such as 

my name, email address or contact details, gender, age group, profession and education 

level will not be shared to anyone beyond the study team.  

□ 

 

□ 

 

I agree that my answers in the survey questionnaires can be quoted in research outputs 

anonymously 

 

□ 

 

□ 

Future use and reuse of the information by others   

I give permission that all the data collected during the experiment and questionnaires 

filled by me can be archived anonymously in the repository of TU Delft so it can be used 

for future research and learning 

□ 

 

□ 

 

Distancing 

I will maintain at least 1.5 meters distance from the researcher during the experiment 

□ 

 

□ 

 

Travelling 

I will avoid taking public transport when travelling to and from the experiment location 

□ 

 

□ 

 

Exclusion 

I do not participate if I have cold-like symptoms, or cough, or experience a shortness of 

breath, loss of smell or taste, or have a fever 

□ 

 

□ 

 

 

Hygiene 
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All objects and surfaces a participant can come into contact during the experiment will 

be disinfected before and after the experiment. 

 

Signatures 

 

_____________________             _____________________ ________  

Name of participant                                  Signature                 Date 

  

 

 

 

I have accurately read out the information sheet to the potential participant and, to the 

best of my ability, ensured that the participant understands to what they are freely 

consenting. 

 

Shiva Nischal Lingam           __________________  ______  

Researcher name                Signature                 Date 

 

  

In case of any questions / doubts / clarifications regarding the study or your rights as a 

research participant, contact: 

Shiva Nischal Lingam, +31 645432197, S.N.LINGAM@student.tudelft.nl 

  

 

  

mailto:S.N.LINGAM@student.tudelft.nl
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B.3 Pre-experiment briefing 
 

Hi, 

Thank you for being a part of our research. This sheet briefs you about the experiment and the 

steps that you need to take. So, please read it carefully. 

About the experiment 

The purpose of this study is to understand the interactions between human driven vehicles 

and automated vehicles. Throughout this experiment, you will drive in different scenarios 

where you will interact with automated vehicles consisting of different communication systems. 

Time required 

This experiment will take a maximum of 70 minutes. There are three runs where you are asked 

to drive on a route (around 8kms with T-intersections). Each run takes around 10 minutes to 

drive and hence overall driving time would be 30 minutes. The rest of the time will be utilised 

in performing familiarizing drive, taking short breaks, and filling out questionnaires.  

Risks and safety 

We believe that there are no major risks associated with this research study. However, some 

of the participants might experience minor nausea while driving in the simulator. If you 

experience discomfort, you can report the researcher and withdraw from the experiment at any 

instance. 

Once you read the above instructions, you are ready to start the experiment. 

Experiment steps 

First, drive in a demo run where you will familiarize yourself with the vehicle controllers (e.g., 

steering and pedals), and the driving environment. The familiarization drive takes around 10 

minutes.  

Second, imagine a situation for this experiment 

“You are traveling to the office for an important meeting. You travel 8 kms (roughly) by following 

the mandatory turn signs at the intersections along the route. During the right turn, you interact 

with vehicles on other lanes. These vehicles may or may not yield. Reach the office by driving 

close to the speed limits.”  

After indication by researcher, you will start to drive. The speed limit of the roads is 80kmph 

and the advisory speed limit at the intersections is 50kmph. You will approach the first right 

turn sign at a speed of 50kmph. After passing the turn sign, you are free to make any driving 

decisions.  

Please keep an eye on other traffic and drive responsibly by adhering the traffic rules. At the 

intersections, the interacting automated vehicles will drive in a driverless mode. These vehicles 

communicate in a form that differs with each run. In our experiment, driverless vehicles 

communicate explicitly through a display on top of vehicle (see  Figure 43) or a signalling 

device on road (see Figure 44) at the intersection. These communication forms represent 

vehicles’ intent but not traffic rules. The colour purple expresses the vehicles’ intent to cross 

the intersection first and maintains speed around 50kmph. On the other hand, green 

represents its intent to slow down. You are free to comply or not with the intent of driverless 

vehicles in our experiment. 
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Your ultimate aim is to reach the office by driving near speed limit, following the traffic rules, 

and driving as you would do in real life. 

 

 

Figure 43: Automated vehicle with the absence of human in the driver seat. A light display on top of vehicle 
expresses vehicle intent to drive first (purple), or second (green) at intersection. 

 

Figure 44: Signalling device expresses intent of automated vehicle to drive first (purple), and second (green) at 
intersection. 

Finally, once you reach the destination, stop your car. You are asked to fill a questionnaire on 

your experiences in the last run. Similar process is repeated for three times.  

End of experiment 

You are provided with a post-experiment questionnaire and a researcher asks few questions 

about your experiences during the experiment. This step marks the end of experiment.  
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B.4 Mid-experiment questionnaire 
 

Participant ID: ________________________________________ 

 

Please circle your choices for every scenario. 

1. What is the scenario? 

a) Scenario 1 

b) Scenario 2 

c) Scenario 3 

 

2. How critical was the situation in this scenario? 

Harmless Unpleasant Dangerous Uncontrollable 

          

 

Note: The “interacting vehicle” is the driverless blue car that drives from your left at the 

intersection. 

 

3. On a scale of 1 to 10, What is your level of trust with the interacting vehicles with (or without) 

communication system in this scenario? 

 1 = Not at all                                                                                                   10 = Extremely                                             

1 2 3 4 5 6 7 8 9 10 

 

 

4. My judgements of the interaction system [i.e., communicating display (if any) + vehicle 

behavior of driverless blue cars] is…. 
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5. On a pictorial scale, what is your overall feeling with the interacting vehicles in this run? 

 

 

 

6. Please select the point on each scale that best indicates your experience in this scenario. 

 

Low High

Mental Demand: How much mental and perceptual activity was required (e.g., thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the mission easy or demanding, simple or 

complex, exacting or forgiving?

Low High

Physical Demand: How much physical activity was required (e.g., pushing, pulling, turning, 

controlling, activating, etc.)? Was the mission easy or demanding, slow or brisk, slack or strenuous, 

restful or laborious?

Low High

Temporal Demand: How much time pressure did you feel due to the rate or pace at which the 

mission occurred? Was the pace slow and leisurely or rapid and frantic?

HighLow

Performance: How successful do you think you were in accomplishing the goals of the mission? How 

satisfied were you with your performance in accomplishing these goals?

Low High

Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance?

Low High

Frustration: How discouraged, stressed, irritated, and annoyed versus gratified, relaxed, content, 

and complacent did you feel during your mission?
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B.5 Post-experiment questionnaire 
 

Dear participant,  

Now, you are one step away from completing the experiment. Please answer the following 

questions that help the researchers to understand your overall experience. 

1. What is your current level of trust on the driverless vehicles that interact with normal 

vehicles (i.e., human driven vehicles)? 

 

Item Strongly 
disagree 

Rather 
disagree 

Neither 
disagree 
nor agree 

Rather 
agree 

Strongly 
agree 

Driverless vehicles can be 

trusted to carry out journeys 

effectively. 

     

I trust driverless vehicles to keep 

my best interests in mind. 

     

My trust in a driverless vehicles 

will be based on the car 

manufacturer’s reputation for 

safety and reliability. 

     

My trust in driverless vehicles 

will be based on the reliability of 

the underlying technologies. 

     

 

2. Please answer the following questions on your virtual experience. 

Instructions: Circle how much each symptom below is affecting you right now. 

General discomfort None Slight Moderate Severe 

Fatigue None Slight Moderate Severe 

Headache None Slight Moderate Severe 

Eye strain None Slight Moderate Severe 

Difficulty focusing None Slight Moderate Severe 

Salvation increases None Slight Moderate Severe 

Sweating None Slight Moderate Severe 

Nausea None Slight Moderate Severe 

Difficulty 
concentrating 

None Slight Moderate Severe 

Fullness of the head None Slight Moderate Severe 

Blurred vision None Slight Moderate Severe 

Dizziness with eyes 
open 

None Slight Moderate Severe 

Dizziness with eyes 
closed 

None Slight Moderate Severe 

*Vertigo None Slight Moderate Severe 

**Stomach 
awareness 

None Slight Moderate Severe 

Burping None Slight Moderate Severe 
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* Vertigo is experienced as loss of orientation with respect to vertical upright 

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of 

nausea 

 

3. Do you think that your driving behavior was different in interactions with a driverless vehicle 

with communication system when compared to those vehicles without communication 

system? 

☐ Yes 

☐ No 

 

4. Please answer the following questions on virtual presence. 

 
None 
at all  

           
A 
great 
deal 

How much were you able to 
control events?  o  o  o  o  o  o  o  
How responsive was the 
environment to actions that you 
initiated (or performed)?  o  o  o  o  o  o  o  
How natural did your 
interactions with the 
environment seem?  o  o  o  o  o  o  o  
How much did the visual 
aspects of the environment 
involve you?  o  o  o  o  o  o  o  
How natural was the 
mechanism which controlled 
movement through the 
environment?  

o  o  o  o  o  o  o  
How compelling was your sense 
of objects moving through 
space?  o  o  o  o  o  o  o  
How much did your experiences 
in the virtual environment seem 
consistent with your real-world 
experiences?  

o  o  o  o  o  o  o  

How compelling was your sense 
of moving around inside the 
virtual environment?  o  o  o  o  o  o  o  
How involved were you in the 
virtual environment experience?  o  o  o  o  o  o  o  
How closely were you able to 
examine objects?  o  o  o  o  o  o  o  
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How well could you examine 
objects from multiple 
viewpoints?  o  o  o  o  o  o  o  
Were you able to anticipate 
what would happen next in 
response to the actions that you 
performed?  

o  o  o  o  o  o  o  
How completely were you able 
to actively survey or search the 
environment using vision?  o  o  o  o  o  o  o  
How much delay did you 
experience between your 
actions and expected 
outcomes?  

o  o  o  o  o  o  o  
How quickly did you adjust to 
the virtual environment 
experience? o  o  o  o  o  o  o  
How proficient in moving and 
interacting with the virtual 
environment did you feel at the 
end of the experience?  

o  o  o  o  o  o  o  
How well could you concentrate 
on the assigned tasks or required 
activities rather than on the 
mechanisms used to perform 
those tasks or activities?  

o  o  o  o  o  o  o  

How much did the visual display 
quality interfere or distract you 
from performing assigned tasks 
or required activities? 

o  o  o  o  o  o  o  
How much did the control 
devices interfere with the 
performance of assigned tasks 
or with other activities?  

o  o  o  o  o  o  o  
 

Interview questions 

1. Did you find the communication systems of driverless vehicles helpful in your decision 

making? If yes, how? 

2. How do you rank the communication systems based on your preference? Why? 

3. Why did (did not) change your driving behavior when interacting with different 

communication systems? 

4. What additional information do you need during the interaction that helps you to 

understand the intention of driverless vehicle easily and feel safer? 

5. Do you think that there was a difference in the driving style of driverless vehicles – 

aggressive vs defensive? If so, which scenarios helped you to distinguish it? 

6. What is your overall experience of the experiment?  
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B.6 Post-experiment debriefing 
 

“Your participation in the research builds our future.” 

 

Hurrah! You have successfully completed the experiment. Before the start of experiment, you 

were provided with information on the research and the experiment. However, some parts of 

information is concealed to minimize any changes in your driving behavior and perception.  

First, the actual aim of this research is to investigate the effects of automated vehicles’ explicit 

communication signals (i.e., external human-machine interfaces) on human drivers’ 

interactions. We are focusing on your perception and response (i.e., crossing behavior) to 

these signals at intersections.  

Second, display on top of vehicle and traffic signal at intersections is one of the many forms to 

communicate the intention of driverless vehicle. You could argue that your perception of 

signals and driving behavior might differ with the design of the communication forms. However, 

our research does not focus on the design of these communication signals. Instead, this study 

focuses on whether the driverless vehicle should have an explicit communication signal. If so, 

where should it be placed (i.e., on vehicle vs on road infrastructure) such that the signal 

improves driver acceptance and response in the interactions. The reason for not providing this 

information is as follows: 

Variation in opinion: We are humans and we have curiosity. Sometimes, curiosity leads to 

searching for answers even before the questions are asked. This could lead to biased opinions. 

For instance, consider that a curious participant is informed in advance that this experiment 

focuses on communicative interactions with automated vehicles. He/she might have done 

some research before experiment to know the available forms of communication signals for a 

driverless car. If this communication signal is different to that in the experiment, he/she might 

form a different opinion. Change in opinion might alter their perception; which might lead to a 

different driving behavior while interacting with automated vehicle. This defeats the purpose of 

research as it leads to unrealistic observations. 

Your participation is invaluable and we are thankful from the bottom of our hearts. Your 

contribution will help the scientific community in understanding the human driver perception 

and behavior in an effective way. This research offers a direction to improve the social 

interactions with automated vehicles; thereby, leading to traffic safety and efficiency. 

In case you have any questions or curious about the results, please contact 

Shiva Nischal Lingam – MSc student, TU Delft 

Email: S.N.LINGAM@student.tudelft.nl 

 

 

 

 

 

mailto:S.N.LINGAM@student.tudelft.nl
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Appendix C: Learning effects 
 

Table 17: Correlation of driver behavior variables with yielding AVs over number of interactions.  

 
AV interaction number 

 Behavior variables Correlation 
Coefficient 

Sig. (2-tailed) N 

Approaching speed (m/s) -0.030 0.465 607 

Maximum acceleration (m/s2) 0.038 0.350 607 

Maximum deceleration (m/s2) 0.005 0.896 607 

Minimum speed (m/s) -0.058 0.154 607 

Time to maximum braking (s) 0.038 0.349 607 

Crossing decision (0 or 1) -0.011 0.795 607 

Crossing time (s) 0.034 0.401 607 

Critical events (0 or 1) 0.051 0.208 607 

 

Table 18: Correlation of driver behavior variables with yielding AVs over number of interactions (as per scenario). 

 
AV interaction number 

 Baseline eHMI on vehicle eHMI on infrastructure 

Behavior 
variables 

rs Sig. 
(2-
tailed) 

N rs Sig. (2-
tailed) 

N rs Sig. (2-
tailed) 

N 

Approaching 
speed (m/s) 

0.000 0.998 203 -0.086 0.227 200 0.005 0.940 204 

Maximum 
acceleration 
(m/s2) 

-0.003 0.967 203 0.030 0.676 200 0.083 0.239 204 

Maximum 
deceleration 
(m/s2) 

0.001 0.987 203 -0.008 0.909 200 0.027 0.700 204 

Minimum 
speed (m/s) 

-0.069 0.326 203 -0.072 0.313 200 -0.032 0.650 204 

Time to 
maximum 
braking (s) 

0.061 0.384 203 -0.038 0.592 200 0.102 0.149 204 

Crossing 
decision (0 or 
1) 

0.030 0.673 203 -0.006 0.928 200 -0.064 0.365 204 

Crossing time 
(s) 

0.019 0.784 203 0.076 0.288 200 0.004 0.952 204 

Critical events 
(0 or 1) 

0.116 0.100 203 -0.005 0.947 200 0.051 0.471 204 
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Figure 45: Mean approaching speed with yielding AVs over multiple interactions (as per scenario). 

 

Figure 46: Mean maximum acceleration with yielding AVs over multiple interactions (as per scenario). 

 

Figure 47: Mean maximum deceleration with yielding AVs over multiple interactions (as per scenario). 
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Figure 48: Mean minimum speed with yielding AVs over multiple interactions (as per scenario). 

 

Figure 49: Mean time to maximum braking with yielding AVs over multiple interactions (as per scenario). 

 

Figure 50: Mean crossing decision with yielding AVs over multiple interactions (as per scenario). 
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Figure 51: Mean critical events with yielding AVs over multiple interactions (as per scenario). 

 

Figure 52: Mean crossing time with yielding AVs over multiple interactions (as per scenario). 

 

Table 19: Correlation of driver behavior variables with non-yielding AVs over number of interactions. 

 
AV interaction number 

 Driver behavior variables Correlation 
Coefficient 

Sig. (2-tailed) N 

Approaching speed (m/s) 0.031 0.459 569 

Maximum acceleration (m/s2) 0.003 0.950 569 

Maximum deceleration (m/s2) 0.047 0.258 569 

Minimum speed (m/s) 0.048 0.255 569 

Time to maximum braking (s) -0.053 0.204 569 

Crossing decision (0 or 1) 0.002 0.971 569 

Crossing time (s) -0.107 0.111 569 

Critical events (0 or 1) 0.030 0.480 569 
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Table 20: Correlation of driver behavior variables with non-yielding AVs over number of interactions (as per 
scenario). 

 
AV interaction number 

 Baseline eHMI on vehicle eHMI on infrastructure 

Driver 
behavior 
variables 

rs Sig. 
(2-
tailed) 

N rs Sig. (2-
tailed) 

N rs Sig. (2-
tailed) 

N 

Approaching 
speed (m/s) 

0.083 0.255 192 0.049 0.502 187 -0.039 0.591 190 

Maximum 
acceleration 
(m/s2) 

-0.006 0.939 192 0.061 0.406 187 -0.042 0.567 190 

Maximum 
deceleration 
(m/s2) 

0.058 0.426 192 -0.013 0.855 187 0.100 0.170 190 

Minimum 
speed (m/s) 

0.052 0.477 192 0.047 0.527 187 0.047 0.516 190 

Time to 
maximum 
braking (s) 

-0.051 0.478 192 -0.022 0.770 187 -0.084 0.250 190 

Crossing 
decision (0 or 
1) 

-0.015 0.839 192 -0.055 0.458 187 0.083 0.254 190 

Crossing time 
(s) 

-0.112 0.122 192 -0.120 0.102 187 -0.091 0.212 190 

Critical events 
(0 or 1) 

0.016 0.829 192 0.046 0.532 187 0.048 0.514 190 

 

 

 

Figure 53: Mean approaching speed with non-yielding AVs over multiple interactions (as per scenario). 
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Figure 54: Mean maximum acceleration with non-yielding AVs over multiple interactions (as per scenario). 

 

Figure 55: Mean maximum deceleration with non-yielding AVs over multiple interactions (as per scenario). 

 

Figure 56: Mean minimum speed with non-yielding AVs over multiple interactions (as per scenario). 
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Figure 57: Mean time to maximum braking with non-yielding AVs over multiple interactions (as per scenario). 

 

Figure 58: Mean critical events with non-yielding AVs over multiple interactions (as per scenario). 

 

Figure 59: Mean crossing time with non-yielding AVs over multiple interactions (as per scenario). 
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Appendix D: Modeling 
 

Table 21: Multicollinearity test results for preference model. 

Variables Standardized 
Coefficients 

t Sig. Collinearity 
Statistics 

  

Beta     Tolerance VIF 

(Constant)   -0.201 0.841     

Gender 0.012 0.125 0.901 0.871 1.148 

Age 0.106 0.668 0.505 0.316 3.164 

Education -0.015 -0.143 0.887 0.719 1.390 

Exposure (kms) 0.020 0.191 0.849 0.749 1.336 

Employment 0.030 0.259 0.796 0.575 1.738 

Social preferences 0.002 0.016 0.987 0.836 1.196 

Driver knowledge on AVs 0.017 0.172 0.863 0.862 1.160 

Initial trust on AVs -0.025 -0.259 0.796 0.877 1.140 

Scenario 0.326 3.652 0.000 0.996 1.004 

Experience (yrs) -0.145 -0.832 0.407 0.263 3.800 

Perceived criticality 0.089 0.812 0.418 0.532 1.880 

Trust 0.225 1.823 0.071 0.423 2.366 

Usefulness 0.247 1.525 0.130 0.246 4.062 

Satisfaction 0.044 0.234 0.816 0.183 5.460 

Pleasure -0.026 -0.184 0.854 0.327 3.061 

Arousal -0.104 -1.003 0.318 0.597 1.674 

Dominance -0.009 -0.105 0.916 0.856 1.169 

Mental demand -0.220 -1.563 0.121 0.326 3.070 

Physical demand 0.025 0.180 0.858 0.334 2.991 

Temporal demand 0.062 0.544 0.588 0.501 1.996 

Performance -0.187 -1.979 0.050 0.723 1.383 

Frustration 0.144 1.063 0.290 0.350 2.859 

Effort -0.107 -0.992 0.323 0.558 1.792 

 

 

Figure 60: Beta distribution of critical events data. 
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Table 22: Different distribution test results for the critical events. The distribution with the least AIC and BIC 
values is a better fit.  

Distributions Loglikelihood AIC BIC 

Poisson -5336.48 10674.95 10678.45 

Binomial  -1176.21 2356.424 2363.418 

Exponential -62.0195 126.038 129.536 

Gamma -44.0826 92.165 99.159 

Beta 99.19033 -194.381 -187.386 

 

Table 23: Multicollinearity test results for critical events model. 

Variables Standardized 
Coefficients 

t Sig. Collinearity 
Statistics 

  

Beta     Tolerance VIF 

(Constant)   3.500 0.001     

Gender -0.040 -0.702 0.484 0.620 1.612 

Age -0.026 -0.288 0.774 0.249 4.024 

Ed -0.011 -0.176 0.861 0.538 1.859 

Exp(kms) -0.102 -1.402 0.164 0.375 2.664 

Exp(yrs) 0.051 0.505 0.615 0.196 5.111 

Emp -0.088 -1.268 0.208 0.415 2.412 

SV -0.018 -0.275 0.784 0.463 2.162 

K 0.040 0.674 0.502 0.569 1.757 

IT -0.080 -1.453 0.150 0.656 1.525 

Run 0.321 5.633 0.000 0.616 1.624 

PC 0.020 0.289 0.773 0.417 2.397 

Trust -0.048 -0.612 0.542 0.329 3.041 

Usefulness 0.002 0.025 0.980 0.207 4.831 

Satisfaction 0.049 0.415 0.679 0.143 7.001 

Pleasure -0.009 -0.098 0.922 0.246 4.061 

Arousal -0.115 -1.815 0.073 0.493 2.027 

Dominance 0.025 0.382 0.703 0.470 2.129 

Mental demand -0.069 -0.808 0.421 0.271 3.691 

Physical demand 0.197 2.277 0.025 0.268 3.732 

Temporal demand -0.138 -1.984 0.050 0.413 2.422 

Performance -0.076 -1.151 0.253 0.460 2.175 

Frustration -0.002 -0.023 0.982 0.312 3.205 

Effort 0.030 0.440 0.661 0.418 2.391 

Approaching speed 0.026 0.135 0.893 0.052 19.098 

Maximum acceleration 0.102 1.172 0.244 0.263 3.799 

Maximum deceleration -0.006 -0.068 0.946 0.235 4.254 

Minimum speed -0.259 -1.528 0.130 0.069 14.394 

Time to maximum 
braking 

0.104 1.735 0.086 0.558 1.791 

Crossing decision -0.249 -1.776 0.079 0.102 9.838 
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Table 24: Gamma distribution test results for the crossing time data. 

 Kolmogorov-Smirnov test Anderson-Darling test 

Critical value 0.123 2.501 

Statistic 0.09 0.882 

Reject null hypothesis No No 

 

Table 25: Multicollinearity test results for crossing time model. 

Variables Standardized 
Coefficients 

t Sig. Collinearity 
Statistics 

  

Beta     Tolerance VIF 

(Constant)   19.775 0.000     

Gender 0.023 1.051 0.296 0.624 1.602 

Age 0.027 0.801 0.425 0.250 3.999 

Education -0.031 -1.337 0.185 0.548 1.823 

Exposure(kms) -0.046 -1.670 0.098 0.379 2.640 

Experience(yrs) 0.033 0.855 0.395 0.197 5.084 

Employment -0.033 -1.250 0.214 0.414 2.414 

Social preferences -0.050 -2.038 0.044 0.483 2.069 

Driver knowledge on AVs 0.018 0.790 0.431 0.570 1.754 

Initial trust 0.006 0.271 0.787 0.641 1.559 

Scenario 0.055 2.228 0.028 0.481 2.077 

Perceived criticality -0.036 -1.361 0.177 0.425 2.352 

Trust -0.039 -1.329 0.187 0.334 2.996 

Usefulness -0.010 -0.278 0.782 0.207 4.827 

Satisfaction 0.067 1.513 0.134 0.146 6.842 

Pleasure -0.087 -2.632 0.010 0.265 3.774 

Arousal -0.049 -2.029 0.045 0.498 2.010 

Dominance 0.028 1.150 0.253 0.476 2.102 

Mental demand -0.015 -0.457 0.649 0.270 3.709 

Physical demand 0.039 1.173 0.244 0.257 3.886 

Temporal demand -0.057 -2.142 0.035 0.416 2.405 

Performance -0.028 -1.118 0.267 0.459 2.177 

Frustration 0.012 0.392 0.696 0.313 3.199 

Effort 0.021 0.796 0.428 0.420 2.380 

Approaching speed -0.278 -4.059 0.000 0.062 16.174 

Maximum acceleration -0.121 -3.923 0.000 0.303 3.298 

Maximum deceleration -0.017 -0.482 0.631 0.236 4.243 

Minimum speed -0.077 -1.191 0.237 0.069 14.537 

Time to maximum 
braking 

0.024 1.038 0.302 0.547 1.828 

Crossing decision -0.305 -6.938 0.000 0.150 6.657 

Critical events -0.103 -2.690 0.009 0.196 5.098 
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Figure 61: Gamma distribution of crossing time data. 


