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Performance Evaluation in Obstacle Avoidance
Clint Nous

Delft University of Technology

Abstract—No quantitative procedure currently exists to eval-
uate the obstacle avoidance capabilities of robotic applications.
Such an evaluation method is needed for comparing different
methods, but also to determine the operational limits of au-
tonomous systems. This work proposes an evaluation framework
which can find such limits. The framework comprises two
sets of tests: detection tests and avoidance tests. For each set,
environment and performance metrics need to be defined. For
detection tests such metrics are well known. For avoidance tests
however such metrics are not readily available. Therefore a new
set of metrics is proposed. The framework is applied to a UAV
that uses stereo vision to detect obstacles and three different
algorithms to calculate the avoidance manoeuvre.

Index Terms—Obstacle Avoidance, Evaluation Framework,
Complexity Metrics, Benchmark

I. INTRODUCTION

Autonomous flight with aerial robots has many promising
applications, such as surveillance, inspection or package de-
livery. To carry out such tasks a reliable obstacle avoidance
system is essential. Many obstacle avoidance systems are
available [1], but it is unknown what the performance of these
systems is. No quantitative evaluation procedure to measure
the performance of obstacle avoidance systems is available.

Such a procedure is required to determine the reliability
of obstacle avoidance systems and to find in what conditions
these systems can safely operate. Knowledge of these opera-
tional conditions is crucial when deploying UAVs for practical
applications.

The functioning of an obstacle avoidance system is often
demonstrated in a single environment. Environments found in
literature are diverse, and include: forests [2], buildings [3],
hallways [4] and sparse obstacle courses [5]. It is difficult to
make performance predictions based on a single environment
since the performance of an obstacle avoidance system de-
pends on the environment in which it operates. For the same
reason it is difficult to compare obstacle avoidance methods
which are demonstrated in different environments.

Therefore a standard evaluation procedure is needed. Such
procedure allows us to identify strengths and weaknesses of
an obstacle avoidance system. It could provide a quantitative
measure of the performance of an obstacle avoidance system,
which could be used to compare obstacle avoidance methods
or to determine the state of the art in the field of obstacle
avoidance. Without a good evaluation method the development
of new algorithms are likely to lead to ad-hoc solutions, this
is currently seen in the field of obstacle avoidance.

An attempt to create such an evaluation method is proposed
by Mettler et al. [6]. In this method six simple obstacle courses
and an urban environment are used to test the performance

Fig. 1: The framework is applied for an ARDrone with an
omnidirectional stereo vision system (left). In the framework
environment complexity metrics are introduced, which provide
a guideline for tests in different environment conditions (right).

of an obstacle avoidance algorithm. Unfortunately Mettler
does not motivate the choice for the selected tests and no
explanation is given on how representative these tests are for
the overall performance of a system.

A different approach is followed by Kuchar et al. [7].
Kuchar describes an evaluation method based on the verifi-
cation method of TCAS systems. Millions of simulations are
run to encapsulate all possible scenarios which could occur
during the life-time of an aircraft. For a small UAV however,
the environment can be much more complex. It is therefore
infeasible to run simulations for each scenario.

Besides this work and papers in which detection and
avoidance methods are compared [8], [9], researchers have
not attempted to quantify or benchmark the performance of
obstacle avoidance algorithms. This is remarkable, considering
the countless research contributions done in the field. Such
evaluation methods and benchmark data sets are common
practice in other research fields such as computer vision or
control engineering [10].

In this paper an evaluation framework is proposed, which
makes it possible to quantify the performance of an obstacle
avoidance system. A key aspect of this framework is to quan-
tify the environment using specific metrics. The evaluation
framework and its metrics are discussed in section II to V,
which is applied to a robotic application in section VI to XI.
The framework is evaluated and concluded in sections XII &
XIII.

II. EVALUATION FRAMEWORK

Developing a standardized evaluation method is difficult due
to three aspects:



Fig. 2: Obstacle avoidance control loop in which the performance dependencies of four functions(A-D) are visualised.

1) Performance depends on the complete control loop
2) There is a high variety of operational conditions
3) Each obstacle avoidance method is developed for a

different set of environments.

The first difficulty is caused by the relation between the
obstacle avoidance method and the UAV on which it is applied.
No direct comparison can be made between methods applied
on different UAVs, since the performance is dependent on
the platform. The second and third challenges are caused
by the performance dependency on the environment. These
environment conditions are diverse and sometimes difficult
to quantify. Since each method can be sensitive to different
environment conditions no ‘one size fits all’ test set-up is
possible. Different tests are needed for different methods.

The first challenge is faced by analysing the entire obstacle
avoidance control loop and by identifying which factors influ-
ence the functions in this loop. The complete control loop of
an obstacle avoidance system is shown in Figure 2. In the
figure four main functions are identified (A-D), which are
shown by dotted squares. For each function a ‘cloud’ is drawn
to visualise the factors that impact the performance of each
function. It specifies in which way the performance depends
on the control loop.

The first function (A) is detection, which consist of the
detection sensor. Function B is the calculation of the avoidance
manoeuvre, which is a combination of conflict detection and
avoidance. One could argue to evaluate conflict detection and
avoidance separately, but since the two are often strongly
coupled (conflict detection serving as a trigger for avoidance)
and have the same goal (creating a control reference), the
choice is made to evaluate the blocks as one entity. The
third function is the realisation of the reference state, which
is a combination of the controller and the UAV dynamics,
shown by function C. The final function is the state estimation
represented as function D.

This paper focuses on the obstacle detection function (A)
and the calculation of the avoidance manoeuvre (B), these
are the primary functions of an obstacle avoidance system.

The factors which influence the performance of the detection
function are visualised by the green cloud. It can be seen
that three factors are present: the state, sensor noise and the
environment. The state specifies the distance but also the
velocity with respect to an obstacle, both influence detection
performance. The noise arrow represents the internal noise of
the sensor and has a direct impact on the measurement. Finally
the environment conditions to which the detection sensor is
sensitive is represented by ‘Environment A’.

The factors that influence the performance of function B is
shown by the blue ‘cloud’. All blocks in the control loop effect
this performance. A bad detection for example increases the
chance of colliding with an obstacle, the same holds for a bad
state estimation. Also three types of noise and a disturbance
are included. Lastly the environment for which the perfor-
mance of the avoidance manoeuvre is sensitive is included
and represented as ‘Environment B’. For completeness also
the ‘clouds’ of function C and D are drawn.

Now an overview is presented of what affects the perfor-
mance of obstacle avoidance functions, it can be used to define
evaluation tests. Each factor in the clouds of function A and
B can be used as an independent variable in a performance
test. In this paper the focus is put on the environment factors.
The others factors are assumed to be constant. These constants
should be clearly explained since the performance is dependent
on them.

To quantify the environment factor, (such that it can be
used as an independent variable) it needs to be described
as a metric. When the environment is not described using
specific metrics it becomes difficult to make performance
predictions. The definition of these metrics will be discussed in
the next section. Besides the independent variable a dependent
variable is needed to quantify the performance. So far it has
not been discussed how performance is defined. This can be
done by specifying a performance metric. Both metrics for the
detection (A) and avoidance (B) function are discussed in the
next sections.



Fig. 3: Overview of possible environment and performance
metrics structured by general characteristics.

III. PERFORMANCE AND ENVIRONMENT METRICS

Environment metrics define the environment in which an
experiment is done while the performance metric specifies
what is measured in this environment. The environment and
performance metrics selected for the evaluation measurements
depend on the obstacle avoidance system that is used. There-
fore a broad overview of the field is required. Several surveys
have been conducted [1], [11]–[14]. For each method in these
overviews a set of relevant metrics should be selected to
determine the detection and avoidance performance.

For the detection function these metrics depend on the
sensor and its processing, for the avoidance function these
metrics depend on the avoidance algorithm. Also some general
characteristics influence the type of metric. For instance, an
obstacle avoidance task with static obstacles requires different
environment metrics than an obstacle avoidance task with
dynamic obstacles. In the dynamic case, additional factors
such as the velocities and predictability of the obstacles play
an important role. he characteristic whether the task has the
UAV move in 2D or 3D has a similar influence on the metrics,
as 2D environment metrics may not directly generalize to the
3D case.

Also the performance metrics are influenced by the general
characteristic. For the detection function a different perfor-
mance metric is required when only a boolean variable is
measured than when a distance measurement is performed.
Also the amount of UAVs can have an influence on the
performance metric, extra metrics such as the in-between
distance could be used for example. This general division is
shown in Figure 3. The distinction between 2D and 3D is
omitted in the figure.

Although the framework is applicable to all these cases, the
focus in this paper will be on metrics for a 2D environment
with static obstacles, a single UAV and a detection sensor
that measures the distance to an obstacle. In the following
the specific metrics for the detection and avoidance tests is

discussed.

IV. DETECTION TESTS

The goal of the detection tests is to determine under what
conditions obstacles can be detected. To define the metrics for
these tests a general idea of the available methods is required.
Six main detection sensors can be identified: monocular-
vision, stereo-vision, infrared, ultrasonic, laser and radar. In
this discussion cooperative sensors such as ADS-B are omit-
ted. First the relevant environment metrics for these sensors
are discussed and thereafter the performance metrics.

A. Environment metrics

Each sensor is sensitive to different environment character-
istics. Fortunately these are fairly well known. An overview
of these metrics can be seen in Table I. In the table the
relevant metrics for each sensor are specified. The distance,
for example, is relevant for all sensors but the illumination
is only relevant for monocular and stereo vision. This is not
and extensive list and could be complemented by researchers
using this framework. It should be noted that, even within a
type of sensor, differences are present. For example in stereo
vision different metrics could be needed for different types
of matching algorithms. This table can be used to select the
relevant environment metrics for the performance tests.

TABLE I: Relevant environment metrics for detection sensors.

Monocular vision Stereo Vision Infrared Sonar Laser Radar

Static
Distance ! ! ! ! ! !

Reflectivity ! ! ! ! !

Illumination ! !

Texture Contrast ! !

Texture Angle !

Illumination (Infrared) !

Inclination ! ! !

Transparency ! ! !

Dynamic
Velocity ! ! ! ! ! !

RCS !

B. Performance metrics

Performance metrics often seen in literature for detection
sensors are the distance error and variance. Another metric
is the receiver-operating-characteristic curve, in which true
positives and false positives are plotted as function of a
threshold. This plot is particular useful for a binary detection
sensor. A third performance measure seen in literature is
the computational effort, for which the metric of frames per
second or computation time is used. Since the computational
effort does not depend on the environment, the metric is not
seen as a performance metric.

V. AVOIDANCE TESTS

The goal of the avoidance tests is to determine under which
conditions detected obstacles can be avoided. Again metrics
need to be selected which are dependent on the method that
is being used. Unfortunately no simple division can be made
between the wide diversity of avoidance methods. Methods



vary from simple rule based instructions to complex path plan-
ners. Even within path planning a large variety exist. All these
methods can be sensitive to different environment conditions.
A similar table as Table I needs to be constructed in which the
columns represent the methods and the rows the environment
metrics. But from literature it cannot be determined what these
environment metrics should be. Therefore a novel set of such
metrics is proposed.

A. Environment metric

For detection sensors the relation between environment and
performance is often discussed in literature, but for avoidance
it is not. As mentioned in the introduction, most research
contributions use a specific environment to test their algorithm,
without information on how representative these tests are.
Therefore not much is known about the performance of these
algorithms in different environments.

Only a few environment metrics are seen in literature: the
width of the obstacles, in-between distance or the density
[15], [16]. These metrics do not take the size of the UAV
into account, while this is essential. It is more challenging
for a UAV with a radius of 0.5 m to fly trough obstacles
with an in-between distance of 1.0 m, than it is for a UAV
with a radius of 0.1 m. In the following a new set of
non-dimensional environment metrics is proposed which take
these properties into account. The following five metrics are
proposed: 1) Traversability, 2) Collision state percentage, 3)
Average avoidance length, 4) Dead-End percentage and 5)
Average orientation angle. This is not an exhaustive list and
could be complemented by other researchers.

1) Traversibility: The fist metric is the traversability which
is related to the obstacle density. An obstacle avoidance task
becomes more difficult when the distance between obsta-
cles becomes smaller. This difficulty is quantified by the
traversability.

The traversibility could be represented by dividing the
amount of occupied space by the total flight space (i.e. den-
sity). But such metric would not be able to make a distinction
between an environment with multiple small obstacles and one
large obstacle. The density metric used by [16] is also possible,
in which the amount of obstacle per square meter is used.
But also this metric can be questioned since a room with five
small obstacles is less challenging than a room with five large
obstacles.

Another option, which is independent of the flight space,
is to look at the distances between neighbouring objects.
The average of these distances gives an indication about the
difficulty of the avoidance task.

In this paper a traversibility metric is selected which is
calculated by selecting random positions and headings in a
flight space. For these positions and headings the maximum
straight-flight distance s is determined. In Figure 1 the blue
lines display these distances for four points and four headings.
The average of these distances over n samples gives a measure
of how densely packed the environment is and therefore how
challenging the performance task is. The calculation is shown

by Equation 1. In the equation the average value is divided by
the radius of the UAV (r), to make the metric non-dimensional.

TRAV =
1

n · r
n∑

0

spassageway (1)

2) Collision state percentage: The second metric is the
collision state percentage. This metric combines the dynamical
constraints of the UAV with the available flight space. Flying
inside a room with obstacles becomes more difficult when the
turning radius of the UAV increases, but also when the size of
the room decreases. This effect is quantified by calculating the
percentage of states for which a collision is unavoidable. To
determine these states each state is propagated into the future.
When all propagated trajectories lead to a collision, the state
is marked as a ‘collision state’.

Fig. 4: Visualization collision state factor; ψ = 0 (left), ψ =
0.5π (right).

The propagated trajectories are calculated using a minimum
turning radius which depends on the UAV dynamics and the
velocity. Because the turning radius is influenced by this
reference velocity it is considered as a constant. Also the
reaction time (caused by the detection frame rate, calculation
time or system delays) is taken into account when calculating
the trajectories.

The states selected for the 2D case are the position (x, y)
and the heading (ψ). The velocity is assumed to be constant
and therefore omitted. The yaw, roll and pith angles/rates are
omitted from the state space as well, it is assumed that these
have a negligible effect on the collision ratio. An example can
be seen in Figure 4. The collision positions are shown by the
red dotes, for headings of ψ = 0 and ψ = 0.5π.

3) Average avoidance length: The third proposed metric is
similar to the size of the obstacle. This metric quantifies the
difference between a forest environment with thin obstacles
and a building environment with wide obstacles.

The avoidance length could be specified by dividing the
length of the avoidance path, by the length of the direct path.
This ratio gives an idea of how challenging the avoidance task
is. Since this ratio is very sensitive to the initial and goal state
a different approach is used.

In this paper the average avoidance length is calculated by
averaging the needed lateral movement to avoid obstacles at
each time-step during a flight. The lateral movement is the



sum of the (projected) width of the obstacle and the radius of
the UAV, which is shown by the green lines in Figure 1. Again
the metric is made non-dimensional by dividing it through the
radius of the UAV (Equation 2).

AAL =
1

n · r

∫ n

0

sescapedt (2)

4) Dead-end percentage: The fourth metric is the dead-end
percentage. Dead-ends increase the chance of getting stuck in a
local minimum and therefore influence the overall performance
of the algorithm. A dead-end is defined as a point for which a
heading change higher than 0.5π is required to reach the goal.
This is visualized for two 2D cases in Figure 5.

Fig. 5: Visualization of the dead-end area (yellow) for two
different obstacles (red).

The ratio of the dead-end area (α > 0.5π), with respect to
the total flight area is used to quantify the level of difficulty.

5) Average orientation angle: The final proposed metric
quantifies the orientation of the obstacle(s) relative to the UAV.
One can imagine that it is simpler to avoid an obstacle at a
certain angle, than an obstacle perpendicular to the flight-path.
This metric is calculated by taking the average of the angle
between the tangent plane of the obstacle and the flight path
angle of the UAV.

B. Performance metrics

Besides the environment metrics also performance metrics
are needed. Generally three types of performance metrics are
seen in evaluating avoidance algorithms: computational time,
success rate and path optimality. There exists a hierarchy
between success rate and path optimality, since path optimality
can only be determined when an obstacle is successfully
avoided. Path optimality metrics can therefore be seen as
secondary metrics.

For the success rate three scenarios are distinguished:
successful flights which reach their goal safely, unsuccessful
flights which do not reach the goal but do not collide either
and flights which lead to a collision. The primary performance
metric specifies the percentage for each scenario.

For the secondary performance metrics several suggestions
are made by Mettler et al. [6]: duration of flight, velocity,
energy usage, path smoothness and obstacle clearance. In
this paper the choice is made to focus on two optimality

metrics: travelled distance and average velocity. The duration
and energy usage can be derived from these metrics.

VI. ROBOTIC SERVING APPLICATION

In the following sections the previously discussed frame-
work is applied to a robotic application which is shown in
Figure 1. The shown UAV makes use of six stereo cameras
to detect obstacles and has a choice between three different
avoidance strategies. The chosen general characteristics for the
application are: 2D, static obstacles, single UAV with distance
measurements. The detection and avoidance performance are
discussed in the following sections.

VII. DETECTION PERFORMANCE

The six stereo cameras have a horizontal field of view of
57.4◦, which create an almost complete 360◦ view of the
environment. The cameras have a baseline of 60 mm, a focal
length of 118 px and weigh only four grams [17] . Two small
images of 96× 128 px are produced. The pixels are sparsely
matched on the stereo board. The disparity map is created
using the sum-of-absolute-difference scheme presented in [18].

To evaluate this detection sensor, Table I can be consulted.
In the table five static tests are suggested for stereo vision.
Four of these tests are presented in the following subsections.

A. Distance

For the first test the distance is selected as independent
variable. The performance effect of the distance is measured
by placing an obstacle of 1 × 1 m (Figure 6) in front of the
stereo-camera. The distance to this obstacle is varied from 0.5
m to 4 m. The results can be seen in the right of Figure 6.
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Fig. 6: Test obstacle (left); Results distance test, red =
groundtruth, blue = stereo measurements (right)

The figure shows that an obstacle can be measured accu-
rately up to three meters. For larger distances the standard
deviation increases rapidly. At four meters a standard deviation
of more than 1 m is present. This increase in variance is
fundamental to stereo vision [19]. Though a smaller variance
is possible. Theoretical a resolution of 0.38 m is possible at 4
m distance.

B. Illumination

The second selected environment metric is the illumination.
Measurements were conducted in a theatre in which the light
could be controlled. Tests in an illumination regime from 284
lx to 0.05 lx were conducted.
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Fig. 7: Results illuminance tests at a distance of 2 m (left) and
for several distances (right), 0.5 m = blue to 4 m = red.

The distance measurements of an obstacle at 2 m are shown
in the left of Figure 7. A decrease in illuminance results in
a small increase in detection error, but it remains remarkable
accurate up to an illumination of 10−0.7 lx. For illuminances
lower than 10−1.3010 lx no accurate distance estimates can be
acquired.

The measurements are repeated at different distances, for
which the results are shown in the right of Figure 7. A similar
behaviour can be observed for distances from 0.5 to 3 meters.

A different behavior is seen at 4 m. At an illumination
of 100.85 lx the distance estimate increases up to a value
of 9 m. When the illuminance is lowered further the distant
measurement drops to a value of 0.4 m. So suddenly an
obstacle far away is detected to be very close. This has a
drastic impact on the behaviour of the avoidance manoeuvre.

Fig. 8: Left stereo image (Left), right stereo image(Right)

The reason of this large underestimation can be seen in
Figure 8. The images from the left and right cameras of
the stereo vision system are shown. It can be seen that the
illuminance in the left image is lower than in the right image.
Due to this difference, wrong pixel matches are found. This
effect increases when the illuminance is decreased.

To assure that a similar amount of illuminance is present in
both images the light should be evenly distributed. The relation
between the distribution of light and the illuminance depends
on the light sources in the room.

For the theatre a minimum illuminance of 7 lx was needed
to get an even light distribution. But this number could be
lowered by increasing the number of light sources. Most
rooms will have less light sources than the ones present in
the theatre, so generally an illumination higher than 7 lx is

required. A better understanding is required of the relation
between illuminance and the light distribution to validate this
conclusion.

C. Texture contrast

The third metric which is analysed is texture contrast. One
‘ray’ in Figure 6 is analysed. In each ray the grey-scale is
decreased from white in the centre to black at the edges. By
doing this the contrast increases from zero to a maximum
between black and white.

The distance measurement of the matches found inside the
red area, shown in Figure 9, are analysed. In the right of the
figure it can be seen that from a certain amount of contrast the
stereo algorithm is able to find a match. From this switching
point the distance measurement stays relatively constant.

So the contrast does not influence the accuracy of the
measurement but rather the point at which an obstacle is
detected. This ‘switching point’ occurs halfway the normalized
contrast scale.
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Fig. 9: Disparity map of an obstacle at 2 m (left); Distance
measurements for different amounts of contrast (right).

The amount of contrast in an image is highly dependent
on the amount of light. It would therefore be interesting to
see how this ‘switching point’ changes when the amount of
illumination is changed.
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Fig. 10: Contrast vs illuminance test, blue = required contrast,
red = maximum contrast (left); Average contrast in image
(right).

This relation is shown in Figure 10. The red line in the
figure shows the difference in 8-bit gray-scale value at the
edge of the panel(maximum contrast). This contrast decreases



when the illumination is decreased. The blue line shows the
8-bit gray-scale value at which a first pixel match is found. A
minimum contrast of 20 8-bit gray-scale is required to find a
match. This value increases when the illuminance is decreased.
This effect can be explained by the increase of noise in the
image. This noise can be quantified by the average contrast,
which is shown in the right of Figure 10. A match is only
found when a pixel ‘stand outs’ from this noise. Therefore a
higher contrast is needed to find a disparity.

D. Texture angle

The final selected metric is the texture angle. This perfor-
mance is measured by comparing the measurements form the
different ‘rays’ in Figure 6. The angle is measured with respect
to the horizon as shown by α in the figure.
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Fig. 11: Results texture angle test for an obstacle at 2 m, with
values of a theoretical offset (left); Results texture angle test
for different distances (right).

The distance measurements for an obstacle placed at 2 m is
shown in the left of Figure 11. A drastic effect of the texture
angle can be observed. The stereo-camera is not able to detect
texture angles up to 30◦. For angles between 30◦ and 75◦ an
overestimation of the measured distance is present. For angles
higher than 110◦ an underestimation of the object is present.

This effect can be explained by the vertical alignment of
the left and right image. When the two images are misaligned
a match for an inclined obstacle is found a few pixels later or
earlier (depending on the direction of the misalignment). The
theoretical effect of this misalignment is also plotted in the
left figure. Five theoretical plots are shown with a horizontal
misalignment ranging form 1 to 5 px. It can be seen that the
measurements lie in-between the theoretical line of 1 and 2
px. The stereo-camera should be corrected for this horizontal
misalignment.

Again the measurements are performed at different dis-
tances. The results can be seen in the right of Figure 11.
The figure shows a similar effect for all distances, the effect
enhances when the distance is increased.

VIII. AVOIDANCE METHODS

Now that an idea of the detection performance is present,
the performance of the avoidance manoeuvre can be analysed.
Three avoidance strategies are applied, which are discussed in
the following subsections.

A. Force field method

The force field method calculates the avoidance manoeuvre
by replacing an obstacle by a force. The sum of the forces is
used by a control law to determine the control reference. These
forces and control laws can be be defined in many ways. In this
paper a method similar to Kandil et al. [20] is implemented.
The definition of these forces and the control law is given in
Equation 3.

Ftotal = ko · erf(dg) + kg
∑

i

Ci
di

2

(3a)

Frep,i =

(
Cα(αi) · Cv(vi)

di

)2

(3b)

Ci = F1 + F2 · cos(Cfreq · αi) · erf(dg) (3c)

Two forces are defined, a goal force and an obstacle force.
The goal force is a function of the distance to the goal, the
obstacle force is depended on the relative distance di and a
factor Ci. Several constants are present which can be tuned.
An advantage of this adaptability is that many behaviours can
be realized. In this paper the following constants are used:
Ko = 1, Kg = 1, F1 = 0.1, F2 = 0.9, Cfreq = 1, Vmax = 1
m/s.

B. Potential field method

The second avoidance strategy is similar to the first but uses
potential fields instead of vectors. The control law is based on
a method from Huang et al. [21] and shown in Equation 4.

φ̈ = −bφ̇− kg(φ− ψg)(e
−c1dg + c2) + ... (4a)

...
∑

i

koi(φ− ψoi))(e
−c3|φ−ψoi

|)(e−c4doi )

v = vmax · e−kvψo · erf(0.5dg) (4b)

In Equation 4a the angular rotation is shown as function
of three terms. The first term is a damping term. The second
term is the goal term, similar to the goal force of the previous
method. The third term is the obstacle term which is the sum of
the derivatives of the obstacle potentials. The obstacle potential
is dependent on the distance and heading of the obstacle. A
second control law calculates the velocity reference. This law
is shown by Equation 4b. The velocity reference is a function
of the distance and total potential of the obstacles. Also for this
method many constants can be tuned, the following constants
are selected: kobst = 40, kgoal = 2, c1 = 0.4, c2 = 0.4,
c3 = 5.0, c4 = 0.5, b = 0, vmax = 1, kv = 1, ε = 0.

C. Rule based method

The third method is a rule based method, which uses simple
rules to determine the avoidance manoeuvre. In this method
no velocity reference is created but only a ‘safe’ heading. The
logic used to determine this heading is show in Figure 12.

The first check in the diagram is to see if an obstacle
is present. If an obstacle is detected for the first time a



Fig. 12: Rule Based Logic

left or right bias is selected. After this bias is selected the
heading closest to the goal heading is chosen. This simple
method would be sufficient if no dead-ends are present in the
environment. To also be able to avoid dead-ends extra logic
is added, this logic is shown in the left bottom of the figure.
The method with and without the added logic can be seen in
Figure 13.

The code of the three avoidance methods can be found on
GitHub1. The following section analyses these three methods
using the evaluation framework proposed in section II.

-5 0 5
Y [m]

-5

0

5

10

X
 [m

]

-5 0 5
Y [m]

-5

0

5

10

X
 [m

]

Fig. 13: Rule based avoidance method with and without added
logic

IX. AVOIDANCE ASSUMPTIONS

For these avoidance methods it is not clear which metrics are
relevant. No equivalent table as Table I is available. Therefore
all proposed metrics in section III are used to determine the
avoidance performance. The measurements can be performed
using a simulation or by doing real-flight tests. In this paper
both measurements are performed. In both cases it is important
to state the assumptions made in the complete control loop as
described in section II. Each aspect in the ‘avoidance cloud’
in figure 2 should be clarified before performing a test. These
assumptions are discussed first after which the results of the
performance tests are presented

1github.com/paparazzi/tree/master/sw/airborne/modules/obstacle avoidance

A. Assumptions real-flight

The measurements for the real-flight tests2 were performed
on an AR.Drone 2.0 using the paparazzi autopilot. The control
loop starts with detection, for which the six stereo boards anal-
ysed in section VII are used. The detection noise is estimated
to have a standard deviation of 0.05 m. The avoidance methods
were explained in the previous section. The state realisation
is executed using an INDI attitude controller [22] with a
PID velocity controller. This results in real states through the
dynamics of the AR.Drone. The states are estimated using an
Optitrack system, the state noise is therefore assumed to be
negligible. The actuator noise of the AR.Drone is present but
is assumed to be negligible as well. There were no wind gusts
in the flight arena, but some disturbances were present due to
the airflow created by the UAV itself.

B. Assumptions simulation

When performing simulations more options are available for
testing the performance. In a simulation the dynamics could be
changed or extra noise could be added for example. Also more
simplifying assumptions can be made such as perfect detection
or zero delay. Simulations also give practical advantages, a
wide variety of environments could be tested in a simulation
which are not feasible in real-life.

The simulations presented here attempt to replicate the real-
flight test. To do this a detection sensor is used which has a
standard deviation similar to the sensor used for the real-flight
test. The avoidance methods are the same as for the real flight
test. The only difference are some tuning parameters. The fol-
lowing value is changed for the vector method: Ko = 1.75. For
the potential field method the following values are changed:
kobst = 12, kgoal = 4, kv = 0.1. This different tuning is
needed since a different controller is used in the simulation.
An outer loop PID controller is used. The inner loop control is
embedded in the model. A perfect state estimation is assumed
and no disturbances are present.

X. AVOIDANCE PERFORMANCE

The only aspects not discussed in the previous discussion
is the environment. In the following subsections the perfor-
mance in different environments is analysed using the metrics
discussed in subsection V-A.

A. Traversibility

The first metric is the traversibility. The performance under
five different traversability values is tested. This is done by
decreasing the distance between 1 m square obstacles. The
distance is changed from 3 m down to 1 m. The environment
for the highest and lowest values are shown in Figure 14.

For the real-flight tests three obstacles where used for which
the in-between distance was changed in the same way. A
snapshot of one of the runs and a top-view can be seen in
Figure 15.

For each traversibility value, five flights were performed.
The result of the real and simulated tests can be seen in Figure

2youtube.com/playlist?list=PL KSX9GOn2P8DI viJWg hpG-uBLP-yNK



0 5 10 15 20
Y [m]

0

5

10

15

20

X
 [m

]

0 5 10 15 20
Y [m]

0

5

10

15

20

X
 [m

]

Fig. 14: Simulation environment with a high and low density.

-1 0 1 2 3 4
Y [m]

-1

0

1

2

3

4

X
 [m

]

Fig. 15: Snapshot (left) and plotted top-view (right), of a
traversability performance test.

(a) Real-flight tests

(b) Simulations

Fig. 16: Percentage of flights that reach the goal (green), do
not reach the goal but do not collide (orange) or result in a
collision (red).

16. For the real-tests it can be seen that the three methods are
not able to reach the goal for a traversibility of 3.5. From a
traversibility of 6.1 some runs reached their goal, but still a
collision percentage of 0.4 is present for the force and potential
field method. For the rule based method this probability is
even higher. For a traversibility higher than 8.6 most runs are
successful.

The simulation results show a bigger difference between the
three methods. The rule based methods is less successful at
low traversibility values. This is caused by the relative high
‘safety buffer’ which is used to select a safe heading.
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(a) Real-flight tests
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(b) Simulations

Fig. 17: Path optimality for force field (blue), potential field
(Red) and Rule based (yellow) method.

The secondary performance metrics are shown in Figure
17. The travelled distances are similar for each method for
the real-flight tests. For the simulations the force field method
shows a higher travelled distance than the other methods. This
is caused by several oscillations in the path. The reason less
oscillations are present for real-flight tests can be explained
by the non-homogeneous texture of real obstacles. This results
in unsymmetrical forces, forcing the UAV to fly in a certain
direction.

When looking at the average velocity, it can be concluded
that the rule based method is the fastest method. The force
field method is the slowest. The figure also shows an increase
in the average velocity of the potential field method. This can
be explained by Equation 4b. In the equation the reference
velocity is a function of the sum of the potential fields. For
a dense environment the obstacles are closer to the UAV and



therefore have a higher potential causing the reference velocity
to be lower. This decreases the collision rate but also decreases
the optimality of the path. The average velocity of the vector
field method and the rule based method are not influenced by
the traversibility.

B. Collision state percentage

The second metric is the collision state percentage. The
performance under different collision state percentages is
measured by decreasing the room in which the UAV flies.
To prevent the UAV from flying in straight lines a square
obstacle of 1 m is placed in the middle of the flight arena.
A reference velocity of 1 m/s is selected, which results in a
turning radius of 0.5 m. This turning radius is used to calculate
the collision states. The environments with the smallest and
highest collision state percentage are shown in Figure 18. A
snapshot and top-view of a real-flight is shown in Figure 19.
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Fig. 18: Environments with the highest and lowest collision
state percentage
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Fig. 19: Snapshot (left) and plotted top-view (right), of a
collision state factor performance test.

Again the percentages of the three flight scenarios are
evaluated (Figure 20). Due to practical constraints only two
collision state factors are shown for real-flight tests. The
force field method performed the best. It was able to perform
successful flights for a collision state percentage of 36.2. The
potential field and rule based method are less successful and
not able to avoid obstacles at this percentage.

The simulation results show that the potential field method
gets stuck in local minima for percentages lower than 50.9.

This is due to the corners in the room, from which the method
was sometimes not able to escape. The worst performance
is shown by the rule based method. For the real-flights and
the simulation the rule based method has a high collision
probability for collision state percentage of 36.2 or higher.

(a) Real-flight tests

(b) Simulations

Fig. 20: Percentage of flights that reach the goal (green), do
not reach the goal but do not collide (orange) or result in a
collision (red).

When looking at the path optimality shown in Figure 21,
it can be seen that the plots of the travelled distance and
the average velocity are very similar. This is caused by the
fixed flight time of the tests. For the velocity the same
hierarchy between the three methods can be observed as
the one shown in Figure 17. For the simulations a drastic
performance difference is present between the three methods.
The average velocity of the rule based method is almost twice
the average velocity of the force field method and more than
four times the velocity of the potential field method. For the
real flight tests the difference between the three methods is
still there, but smaller.

Because of this difference, the conclusion that the rule
based method is the worst, should be questioned. It shows
a higher collision probability but it travels further and faster.
A second observation is that the average velocity decreases
as the collision state factor increases. This is caused by the
increased amount of manoeuvres, which is required at higher
collision state factors. A manoeuvre always slows down the
system so a lower average velocity is found.
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(a) Real-flight tests
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(b) Simulations

Fig. 21: Path optimality for force field (blue), potential field
(red) and rule based (yellow) method.

C. Average avoidance length

The effect of the length of the avoidance manoeuvre is
measured by increasing the width of a single obstacle in front
of the UAV. The smallest obstacle has a width of 0.3 m, the
largest a width of 4 m, which are shown in Figure 22.

Fig. 22: Simulation environment with an obstacle width of 1
m (left) and 8 m (right).

The collision percentages are shown in Figure 23. The force
field method is not able to avoid the obstacle for a value of
3.7 or higher. Instead it gets stuck into a local minimum. The
potential field method is able to avoid obstacles for all values.
The rule based method is able to avoid large obstacles but
unable to avoid small ones. A similar behaviour is observed
for the simulations

The path optimality for the different avoidance lengths
is shown in Figure 24. Similar travelled distances can be

(a) Real-flight tests

(b) Simulations

Fig. 23: Probability of Flights that reach the goal(green), do
not reach the goal but do not collide(orange) or result in a
collision(red).
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(a) Real-flight tests
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(b) Simulations

Fig. 24: Path optimality for force field (blue), potential field
(red) and rule based (yellow) method.



observed for the potential and rule based method. The force
field method is less optimal showing larger distances. This
is caused by the oscillatory motion which is typical to this
method. From the average velocities it can again be concluded
that the rule based method is the fastest method.

D. Dead-End percentage

The fourth metric is the dead-end percentage. To increase
the dead-end percentage one could increase the dead-end area
of an obstacle or increase the number of obstacles. In this
paper the second option is chosen. The simulation environment
with the lowest and highest dead-end factor are shown in
Figure 25.
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Fig. 25: Environments with the lowest (left) and highest (right)
dead-end percentage.

The results of the flight-tests and simulations can be seen
in Figure 26. The first thing that stands out is the major
difference between the simulation results and the flight test
results. For real tests all three strategies are able to reach the
goal but in simulation the force field method and the potential
field method are not. The force field method crashes for all
dead-end percentages, while the potential field method gets
stuck in local minima. For both measurements (real-flight and
simulation) no influence of the dead-end percentage on the
collision probability can be seen.

The reason for this result is a combination of the non-
homogeneous textures in real-flight and the specific position-
ing of the obstacles. The non-homogeneous textures forces
the methods to turn into one direction. A similar effect occurs
when obstacles are not symmetrically aligned with respect to
the flight-path. This effect can be mitigated by using larger
obstacles. More coherent results are expected when the dead-
end areas for each obstacle are increased.

The optimality of the paths is shown in Figure 27. A large
drop is observed for all methods at a high dead-end percentage.
This occurs due to the positions in which the obstacles where
placed. Due to space constraints the obstacles had to be placed
in a configuration for which no large avoidance manoeuvre
was required.

This points out the difficulty of this metric. The position and
orientation of the obstacle highly influence the performance
outcome but do not influence the dead-end factor. Such effect
is also present in other metrics but to a lesser extend. This can

(a) Real-flight tests

(b) Simulations

Fig. 26: Percentage of flights that reach the goal (green), do
not reach the goal but do not collide (orange) or result in a
collision (red).
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(a) Real-flight tests
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(b) Simulations

Fig. 27: Path optimality for force field (blue), potential field
(red) and rule based (yellow) method.



be solved by performing more flights, with different initial and
goal states, or by flying randomly inside a room as was done
for the collision state percentage.

E. Average orientation angle

The final metric is the orientation of the obstacle, which
is quantified as the average angle between the flight-path and
the obstacle. Again five different values are tested. Two can
be seen in Figure 28.
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Fig. 28: Simulation environment with an angle of 1◦ (left) and
20◦ (right).

One would expect better performance at higher angles. This
effect is indeed seen in the collision probabilities for the force
field method shown in Figure 29a. For an angle of 1◦ a
high probability is present for the UAV to get trapped in a
local minimum. For the potential and rule based method no
influence of the obstacle orientation is seen.

When looking at the optimality of the successful paths it
can be concluded that the obstacle orientation does not have
a large effect on the travelled distance. It does have an effect
on the average velocity.

This effect is mostly visible for the force field method,
which shows an increase in average velocity. The inclined
obstacle ‘pushes’ the UAV in a certain direction, resulting in a
higher average velocity. Also a small velocity increase can be
seen for the potential field method. A smaller heading change
is needed to avoid the obstacle and therefore a higher velocity
can be maintained. No significant effect for the rule based
methods can be seen. Similar conclusion can be drawn from
the simulation results shown in Figure 30.

XI. CONCLUSION EVALUATION

The shown detection and avoidance tests provide a quanti-
tative analysis of an obstacle avoidance system. Such analysis
is new in the field of obstacle avoidance and can be used
to define the operational conditions in which an obstacle
avoidance system can safely fly. The results also provide a
comparison between three avoidance methods. The choice for
which method to use depends on the design requirements.

For detection the found performance limits can be sum-
marised as follows: distance < 4 m, illumiance > 7 lx, texture
> 20 8-bit grayscale and a texture angle > 30◦. For the
avoidance tests the results are summarised in Table II.

(a) Real-flight tests

(b) Simulations

Fig. 29: Percentage of flights that reach the goal (green), do
not reach the goal but do not collide (orange) or result in a
collision (red).

(a) Real-flight tests

(b) Simulations

Fig. 30: Path optimality for force field (blue), potential field
(red) and rule based (yellow) method.



TABLE II: Performance summary

Force Field Potential Field Rule Based

Traversability ≥ 6.1 ≥ 6.1 ≥ 8.6
Collision state percentage ≤ 36.2 ≤ 28.1 ≤ 28.1
Avoidance length ≤ 2.4 ALL ≥ 1.8
Dead-end percentage = 0 = 0 ALL
Orientation angle ≥ 5 ALL ALL

The table shows the conditions under which the algorithm
is able to avoid obstacles. The force field method is able to
avoid obstacles with a higher traversability of 3.9 for example.
When a method was able to avoid obstacles for the complete
range of values it is specified as ‘ALL’. If the method was not
able to avoid any obstacle at all it is specified as ‘=0’. Such
table could be used by engineers to develop obstacle avoidance
systems which can operate under a specific set of operational
conditions.

For example for an environment which consist of a large
open space with sparse poles, the rule based method would
not be the best method. In Table II it can be seen that this
method is not able to avoid obstacles with a smaller average
avoidance length of 1.8. The potential field method would be
a better choice, since it is able to avoid obstacles with a small
average avoidance length. A different choice is made when the
restaurant does not contain poles but small walls. In such case
the rule based method is appealing, since it is able to avoid
such obstacles faster than the potential field method.

XII. EVALUATION OF THE FRAMEWORK

From the measurements a general idea is created in which
the proposed application could operate. A quantified limit is
found which can be used to predict the performance of an
obstacle avoidance system in new environments. The downside
of the framework is that the tests do not provide a complete
‘avoidance envelope’. In the evaluation framework only one
environment metric is changed to see the effect on the perfor-
mance. In real flight these environments happen simultaneous.
So extra tests are needed to determine the performance degra-
dation when environment metrics are changed simultaneously.
To do this the system should be tested in combinations of
environment metrics, but this would require many tests. The
number of tests grows exponential with the amount of metrics,
it is therefore crucial to only select the relevant combinations
of metrics.

By adding relevant combinations to the framework the
evaluation method could be improved. Such relations have
already been presented in this paper. With the relation between
the contrast and the illumination shown in Figure 10 but
also with the relation between distance and the texture angle
(Figure 11). It will be difficult to know all dependencies in
advance, but by using a structured evaluation method such
knowledge can slowly grow.

Another consecutive step is to do a robustness check of
the environment metrics. The collision percentage for example
could be influenced in different ways. It should be checked

if the performance is sensitive to these differences. Also the
sensitivity with respect to the initial and goal state should be
checked. This could be done by randomizing the initial and
goal positions as suggested in subsection X-D.

A final suggestion to the framework is to also look at other
independent variables besides the environment metrics. For
example the tuning variables of an avoidance method or the
amount of detection noise.

XIII. CONCLUSION

A new framework was proposed, which allows the quantifi-
cation of the strengths and weaknesses of an obstacle avoid-
ance system. The framework identifies key obstacle avoidance
functions in the control loop and introduces novel performance
and environment metrics to quantify the performance of these
functions. The application of the framework to a specific UAV
2D avoidance task shows that the metrics allow to identify the
limits of the avoidance system in an objective and quantifiable
manner. In this sense, the framework hopefully forms an
important step towards a more solid design, evaluation, and
comparison of obstacle avoidance methods for robotics.
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Abstract—No quantitative procedure currently exists to eval-
uate the obstacle avoidance capabilities of robotic applications.
Such an evaluation method is needed for comparing different
methods, but also to determine the operational limits of au-
tonomous systems. This work proposes an evaluation framework
which can find such limits. The framework comprises two
sets of tests: detection tests and avoidance tests. For each set,
environment and performance metrics need to be defined. For
detection tests such metrics are well known. For avoidance tests
however such metrics are not readily available. Therefore a
new set of metrics is proposed. The framework is applied to
a UAV that uses stereo vision to detect obstacles. Three different
avoidance methods are compared in environments of varying
difficulty.

Index Terms—Obstacle Avoidance, Evaluation Framework,
Complexity Metrics, Benchmark

I. INTRODUCTION

Autonomous flight with aerial robots has many promising
applications, such as surveillance, inspection or package de-
livery. To carry out such tasks a reliable obstacle avoidance
system is essential. Many obstacle avoidance systems are
available [1], but it is unknown what the performance of these
systems is. No quantitative evaluation procedure to measure
the performance of obstacle avoidance systems is available.

Such a procedure is required to determine the reliability
of obstacle avoidance systems and to find in what conditions
these systems can safely operate. Knowledge of these opera-
tional conditions is crucial when deploying UAVs for practical
applications.

The functioning of an obstacle avoidance system is often
demonstrated in a single environment. Environments found in
literature are divers, with amongst others: forests, buildings,
hallways and sparse obstacle courses. It is difficult to make
performance predictions based on a single environment since
the performance of an obstacle avoidance system depends on
the environment in which it operates. For the same reason it
is difficult to compare obstacle avoidance methods which are
demonstrated in different environments.

Therefore a standard evaluation procedure is needed. Such
procedure would: (1)provide a quantitative measure of the sys-
tem performance, (2)assist in designing engineering solutions,
(3)compare obstacle avoidance methods and (4)allow accurate
assessment of the state of the art. Without a good evaluation
method the development of new algorithms is likely to lead
to ad-hoc solutions, which is currently seen in the field of
obstacle avoidance.

An attempt to create such an evaluation method is proposed
by Mettler et al. [2]. In this method six simple obstacle courses
and an urban environment are used to test the performance

Fig. 1: The framework is applied for an ARDrone with an
omnidirectional stereo vision system (left). In the framework
environment complexity metrics are introduced, which provide
a guideline for tests in different environment conditions (right).

of an obstacle avoidance algorithm. Unfortunately Mettler
does not motivate the choice for the selected tests and no
explanation is given on how representative these tests are for
the overall performance of a system.

Besides this work and some papers in which obstacle
avoidance algorithms are compared [3], researchers have not
attempted to quantify or benchmark the performance of ob-
stacle avoidance algorithms. This is remarkable, considering
the countless research contributions done in the field. Such
evaluation methods and benchmark data sets are common
practice in other research fields such as computer vision or
control engineering.

In this paper an evaluation framework is proposed which
makes it possible to quantify the performance of an obstacle
avoidance system. A key aspect of this framework is to
quantify the environment using specific metrics. First the
evaluation framework and its metrics are discussed (section
II & III) after which the framework is applied to a robotic
application (section IV).

II. EVALUATION FRAMEWORK

Developing an evaluation framework for obstacle avoidance
is difficult due to three aspects: 1. Performance depends on the
complete control loop, 2. There is a high variety of operational
conditions, 3. Each obstacle avoidance method is developed
for a different set of environments.

The first difficulty is caused by the relation between the
obstacle avoidance system and the platform on which it is ap-
plied. The performance is dependent on this relation. Therefore
no direct comparison can be made between obstacle avoidance
methods applied on different platforms. The second and third



Fig. 2: Obstacle avoidance control loop in which the performance dependencies of four functions(A-D) are visualised.

challenges are caused by the performance dependency on the
environment. These environment conditions are diverse and
sometimes difficult to quantify. Since each method can be
sensitive to different environment conditions no ’one size
fits all’ test setup is possible. Different tests are needed
for different methods. In this section, we analyse the entire
obstacle avoidance control loop and identify what parts of
the loop can be evaluated separately, and what factors will
influence the evaluation.

The complete control loop of an obstacle avoidance system
is shown in Figure 2. In the figure four main functions are
identified (A-D), which are shown by dotted squares. For each
function a ‘cloud’ is drawn to visualise the factors that impact
the performance of each function. So it specifies in which way
the performance depends on the control loop.

This paper focuses on the obstacle detection function(A) and
the calculation of the avoidance manoeuvre(B), these are the
primary functions of an obstacle avoidance system. The factors
which influence the performance of the detection function are
visualised by the green cloud. It can be seen that three factors
are present: state, noise and the environment. The state deter-
mines the distance to an obstacles but also the velocity. Both
influence detection performance. The noise arrow represents
the internal noise of the sensor and has a direct impact on the
measurement. Finally the environment conditions to which the
detection sensor is sensitive is represented by ‘Environment A’.

The factors that influence the performance of function B
is shown by the blue ‘cloud’. All blocks in the control loop
effect this performance. Also noise, disturbances and external
conditions are included. Lastly the environment for which
the performance of the avoidance manoeuvre is sensitive is
included and represented as Environment B. For completeness
also the ‘clouds’ of function C and D are drawn.

Now an overview is presented of what affects the perfor-
mance of obstacle avoidance functions, it can be used to define
evaluation tests. Each factor in the clouds of function A and
B can be used as an independent variable in a performance
tests. In this paper the focus is put on the environment factor.
The others factors are assumed to be constant. These constants

should be explained since the performance is still dependent
on them.

To quantify the environment factor, (such that it can be
used as an independent variable) it needs to be described as a
metric. When the environment is not described using specific
metrics it becomes difficult to make performance predictions.
The definition of these metrics will be discussed in the next
section. Besides the independent variable a dependent variable
is needed to quantify the performance. So far it has not been
discussed how performance is defined. This can be done by
specifying a performance metric. Both metrics are discussed
for function A (detection) and function B (avoidance) in the
next section.

III. ENVIRONMENT AND PERFORMANCE METRICS

The environment and performance metrics selected for the
evaluation measurements depend on the obstacle avoidance
system that is used. For the detection function these metrics
depend on the sensor and its processing, for the avoidance
function these metrics depend on the avoidance algorithm.

Also some general characteristics influence the type of
metric. For instance, an obstacle avoidance task with static
obstacles requires different environment metrics than an ob-
stacle avoidance task with dynamic obstacles. In the dynamic
case, additional factors such as the velocities and reactions of
the obstacles play an important role and should be captured by
the environment metrics. The characteristic whether the task
has the UAV move in 2D or 3D has a similar influence on the
metrics, as 2D environment metrics may not directly generalise
to the 3D case. Although the framework is applicable to
different such characteristics, here the focus will be on metrics
for a 2D environment with static obstacles.

A. Detection

The goal of the detection measurement is to determine
under what conditions obstacles can be detected. To define
metrics for these tests a broad overview of detection methods is
required. The main methods can be divided based on the detec-
tion sensor that is used. The six main sensors are: monocular-
vision, stereo-vision, infrared, sonar, laser and radar. In this



TABLE I: Relevant environment metrics for detection sensors

Monocular vision Stereo Vision Infrared Sonar Laser Radar

Distance ! ! ! ! ! !

Reflectivity ! ! ! ! !

Illumination ! !

Texture ! !

Illumination (Infrared) !

Inclination ! ! !

Transparency ! ! !

Radar cross section !

discussion cooperative sensors such as ADS-B are omitted.
First the environment metrics are discussed.

1) Environment metric: Each sensor is sensitive to different
environment characteristics. Fortunately these are fairly well
known. An overview of these metrics can be seen in Table I.
In the table the relevant metrics for each sensor is specified.
The distance, for example, is relevant for all sensors but the
illumination is only relevant for monocular and stereo vision.

2) Performance metric: Performance metrics for detection
seen in literature are the distance error and variance. Another
metric is the Receiver Operating Characteristic (ROC) curve
in which true positives and false positives are plotted as
function of a threshold. A third metric seen in literature is
the computational time. Since the computational time does
not depend on the environment this metric is not seen as a
performance metric in this framework but rather as a condition.

B. Avoidance

The goal of the avoidance tests is to determine under which
conditions detected obstacles can be avoided. Again relevant
metrics need to be selected which are dependent on the method
that is used. Unfortunately no simple division can be made
between the wide diversity of avoidance methods. Methods
vary from simple rule based instructions to complex path
planners. Even within path planning a large variety exist.
All these methods can be sensitive to different environment
conditions. A similar table as Table I needs to be constructed
in which the columns represent the methods and the rows the
complexity metrics. But is unknown what these metrics should
be. In the following a novel set of such metrics is proposed.

1) Environment metric: For detection sensors the relation
between the environment and the performance is often dis-
cussed in literature, but for avoidance algorithms it is not. As
mentioned in the introduction, most research contributions use
a specific environment without a motivation or specific metric.
Therefore not much is known about the performance of these
algorithms in different environments.

Only a few environment metrics are seen in literature: the
width of the obstacles, in-between distance or the density
[4],[5]. These metrics do not take the size of the UAV into
account, while this is essential. It is more challenging for a
UAV with a radius of 0.5 m to fly trough obstacles with an
in-between distance of 1.0 m, than it is for a UAV with a
radius of 0.1 m. In the following a new set of non-dimensional
environment metrics is proposed which take the properties of
the UAV into account.

a) Traversability: The fist metric is the traversability
which is related to the obstacle density. An obstacle avoid-
ance task becomes more difficult when the distance between
obstacles becomes smaller. This difficulty is quantified by
the traversability. The traversability is calculated by selecting
random positions and headings in a flight space. For these
positions and headings the maximum straight-flight distance s
is determined. The average of these distances over n samples
gives a measure of how densely packed the environment is and
therefore how challenging the performance task is. In Figure
1 the blue lines display these distance for four points and
headings. This calculation is shown by Equation 1. In Equation
1 the value is divided through the radius r of the UAV to make
the metric non-dimensional.

Traversability =
1

n · r
n∑

0

s (1)

b) Collision state percentage: The second metric is the
collision state factor, which combines the dynamical con-
straints of the UAV with the available flight space. Flying
inside a room with obstacles becomes more difficult when the
turning radius of the UAV increases, but also when the size of
the room decreases. This effect is quantified by calculating the
percentage of states for which a collision is unavoidable. To
determine these states each state is propagated into the future.
When all propagated trajectories lead to a collision, the state
is marked as a ‘collision state’. For ψ = 0 these are shown
by the red dotes in Figure 1. The propagated trajectories are
calculated using a minimum turning radius which depends on
the UAV dynamics, the velocity and the delay in the system.

c) Average avoidance length: The third proposed metric
is similar to the size of the obstacle. This metric quantifies
the difference between a forest environment with thin ob-
stacles and a building environment with wide obstacles. It
is calculated by averaging the needed lateral movement to
avoid obstacles at each time-step during a flight. The lateral
movement is sum of the (projected) width of the obstacle and
the radius of the UAV, as shown by the green lines in Figure
1. Again the metric is made non-dimensional by dividing it
through the radius of the UAV.

d) Other metrics: Two other metrics, which are not
discussed in detail, are the average orientation of obstacles
and the percentage of dead-ends in a flight space. These have
been inspired by known weak points in force field methods
and path planners. This set of five metrics could be expanded
further by introducing more novel metrics.

2) Performance metrics: The performance metrics are
again fairly straightforward. Generally three types of per-
formance metrics are seen: computational time, success rate
and path optimality. There exists a hierarchy between success
rate and path optimality, since path optimality can only be
determined when an obstacle is successfully avoided.

For the success rate three scenarios are distinguished:
successful flights which reach their goal safely, unsuccessful
flights which do not reach the goal but do not collide either,



and flights which lead to a collision. The performance metric
specifies the percentage for each scenario.

Two secondary performance metrics evaluate the optimality
of the successful flights. This can be done in multiple ways. In
this framework the choice is made to focus on two optimality
metrics: travelled distance and average velocity. The duration
and energy usage can be derived from these metrics.

IV. EVALUATION OF A ROBOTIC APPLICATION

In this section the framework is applied to a robotic appli-
cation which can be seen in Figure 6. The shown UAV makes
use of six stereo cameras to detect obstacles and has a choice
between three different avoidance strategies. In the following
subsections the performance of this obstacle avoidance system
is determined.

A. Detection Performance

The six 4-gram stereo cameras [6] create a 360◦ view of
the environment. The cameras produce two small images of
96×128 px for which pixels are sparsely matched on the stereo
board to create a disparity map. This map is created using
the Sum-of-Absolute-Difference scheme presented in [7]. For
stereo vision five performance tests are suggested in Table I.
Three of these tests are presented in the following paragraphs.

1) Distance: For the first test the distance is selected as
independent variable. The performance effect of the obstacle
distance is measured by placing an obstacle of 1×1 m (Figure
3) in front of the stereo-camera. The distance to this obstacle
is varied from 0.5 m to 4 m. The result can be seen in Figure 3.
The figure shows that an obstacle can be measured accurately
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Fig. 3: Test obstacle (left); Results distance test, red = ground
truth, blue = stereo measurements (right).

up to three meters. For larger distances the standard deviation
increases rapidly. At four meters a standard deviation of more
than 1 m is present. This increase in variance is fundamental
to stereo vision. So for this detection sensor a range of 3 m
can be assumed.

2) Illumination: The second selected environment metric
is the illumination. Measurements were conducted in a theatre
in which the light exposure could be controlled. Tests in an
illumination regime from 284 lx to 0.05 lx were conducted.
The results of these measurements are shown in Figure 4. A
decrease in illuminance results in a small increase in detection
error, but it remains remarkably accurate for distances of 0.5

to 3 meters. The stereo camera is still able to detect obstacles
up to an illumination of 10−0.7 lx.

A different behaviour is seen at a distance of 4 m. At an
illumination of 100.85 lx the distance estimate increases up to
a value of 9 m. When the illuminance is lowered further the
distant measurement drops to a value of 0.4 m. The reason of
this large underestimation is caused by different illumination
of the left and right camera. So not only the illuminance
is critical in detecting obstacles but also the distribution of
light. According to Figure 4 a minimal illuminance of 7 lx is
required to obtain results at which the different distances can
be well discerned.
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Fig. 4: Results illuminance test, distance of 0.5 = blue to 4 m
= red (left); Disparity map from test obstacle at 2 m (right).

3) Texture contrast: The third metric which is analysed is
texture contrast. One ‘ray’ in Figure 3 is analysed. In each
ray the grey-scale is decreased from white in the centre to
black at the edges. By doing this the contrast increases from
zero to a maximum between black and white. At a certain
contrast the stereo algorithm is able to find a match, which is
shown in Figure 4. The distance measurement of the matches
found inside the red area are shown in Figure 5. The figure
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Fig. 5: Results contrast test (left); Contrast vs illuminance test,
blue = required contrast, red = maximum contrast (right).

shows that the contrast does not influence the accuracy of
the measurement but rather the point at which a detection is
possible. Since a pixel difference depends on the contrast of
the obstacle and the illuminance, it would be interesting to
see how this switching point changes when the illuminance is
decreased.

This relation is shown in Figure 5. The red line in the
figure shows the difference in 8-bit gray-scale at the edge



of the panel. The contrast decreases when the illumination
is decreased. The blue line shows the 8-bit gray-scale value
at which a first match is found. A minimum contrast of
20 8-bit gray-scale is required to find a match. This value
increases when the illuminance is decreased. This effect can
be explained by the increased noise in the image. Since a point
is only accepted when it ’stand outs’ from the other pixels, a
higher value is needed to find a disparity.

B. Avoidance

Now that an idea of the detection performance is present,
the performance of the avoidance manoeuvre can be analysed.
Three avoidance strategies are applied: A force field method
based on the work from Kandil et al. [8], a potential field
method based on the work from Huang et al. [9] and a simple
rule based method. This method selects the heading closest to
the goal heading in which no obstacle is present1.
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Fig. 6: Snapshot (left) and plotted top-view (right), of a
traversability performance test

For these methods it is not clear which metrics are relevant.
Therefore all proposed metrics in section III are used for
the performance test. The measurements can be performed
in a simulation or in real-flight. For both measurements it
is important to state the assumptions made in the complete
control loop as described in section II. Here the results of real-
flight tests are presented2. The measurements are performed
on an ARDrone2.0 using the paparazzi autopilot. An INDI
attitude controller [10] is used combined with a PID velocity
controller. The states are estimated using an Optitrack system.
Detection noise is estimated to have a standard deviation of
0.1 m, state noise, actuator noise and disturbances are assumed
to be zero. In the following the performance is discussed for
three environment metrics: traversability, collision state factor
and average avoidance length.

1) Traversability: The performance under different
traversability values is tested by decreasing the distance
between three obstacles. The obstacles consist of 1 m square
blocks and are changed from an in-between distance of 1 m
up to 3 m. The test with the lowest traversability factor is
shown in Figure 6.

1github.com/paparazzi/tree/master/sw/airborne/modules/obstacle avoidance
2youtube.com/playlist?list=PL KSX9GOn2P8DI viJWg hpG-uBLP-yNK

A total of five tests were performed. Each test consisted of
five flights. The results of these tests can be seen in Figure
7 and 8. Figure 7 shows the percentages of the three flight
scenarios discussed in section III.

Fig. 7: Percentage of runs that reach the goal (green), not reach
the goal but no collision (orange) or result in a collision (red).

It can be seen that all three methods are not able the reach
their goal for a traversability of 3.5. For a value of 6.1 and
higher the majority of flights for the force and potential field
method are successful. The rule based method however still
has a high collision rate at this value. This higher collision
percentage is likely the cost for the relative high velocity. This
velocity difference can be seen in Figure 8. The figures shows
the path optimality of the successful flights for each method.

Fig. 8: Path optimality vs traversability; Force field (blue),
Potential field (Red), Rule based (yellow).

2) Collision state percentage: The performance under dif-
ferent collision state factors is measured by decreasing the
room in which it flies. To prevent the UAV from only flying in
straight lines a square obstacle of 1 m is placed in the middle
of the flight arena. A reference velocity of 1 m/s is used.
An example of a test-flight is shown in Figure 9. Again the
percentages of the three flight scenarios are evaluated, as well
as the path optimality. The force field method performed the
best, it was able to perform successful flights up to a collision
state percentage of 19%. The potential field and rule based
method are less successful and able to avoid obstacles up to
a state factor of 13%. For path optimality the same hierarchy
was present as the one shown in Figure 8. Also a decreased
average velocity for all methods could be observed when the
collision state factor was increased.
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Fig. 9: Snapshot (left) and plotted top-view (right), of a
collision state factor performance test

3) Average avoidance length: The effect of the length of
the avoidance manoeuvre is measured by increasing the width
of a single obstacle in front of the UAV. The smallest obstacle
has a width of 0.3 m, the largest a width of 4 m. The results
of these flights are shown Figure 10.

Fig. 10: Percentage of runs that reach the goal (green), not
reach the goal but no collision (orange) or result in a collision
(red).

Figure 10 shows that the force field method clearly depends
on the avoidance length. For a value of 3.7 or higher it is
not able to avoid the obstacle. Instead it gets stuck into a
local minimum. The potential field method is able to avoid
obstacles for all values. The rule based method is able to
avoid large obstacles but unable to avoid small ones. Again
the path optimality was analysed. Similar travelled distances
were observed for the potential and rule based method. The
force field methods was less optimal, with larger distances.

C. Conclusion performance tests

The shown test results provide a quantitative analyses of
an obstacle avoidance method. Such analysis is new in the
field of obstacle avoidance and can be used to define the
operational conditions in which an obstacle avoidance system
can safely fly. The results also provide a comparison between
three avoidance methods. The choice for which method is the
best depends on the design requirements.

For the detection the found performance limits can be
summarised as follows: Distance < 3 m, Illumiance > 7 lx,

and Texture > 20 8-bit grayscale of contrast. For the avoidance
test the results are summarised in Table II.

TABLE II: Performance summary

Force Field Potential Field Rule Based

Traversability >3.9 >3.9 >5.9
Collision state factor <19 <13 <13
Avoidance length <2.4 ALL >1.6
Orientation angle >1 ALL ALL
Dead-End factor = 0 = 0 ALL

The table shows the limits of the proposed methods for
each metric. The dead-end factor and average orientation are
included as well. Such a table could be used by engineers to
design obstacle avoidance systems which can operate under a
specific set of operational conditions.

V. CONCLUSION

A new framework was proposed, which allows the quan-
tification of the strengths and weaknesses of an obstacle
avoidance system. The framework identifies parts of the entire
obstacle avoidance control loop that can be tested separately,
and introduces novel performance and environment metrics.
The application of the framework to a specific UAV 2D
avoidance task shows that the metrics allow to identify the
limits of the avoidance system in an objective and quantifiable
manner. In this sense, the framework hopefully forms an
important step towards a more solid design, evaluation, and
comparison of obstacle avoidance methods for robotics.
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Chapter 1

Introduction

Autonomous flight with aerial robots has many promising applications, such as surveil-
lance, inspection or package delivery. To accomplish such tasks a reliable obstacle avoid-
ance system needs to be available. Many systems have been developed (Meier et al.,
2012)(Müller et al., 2014), but it is unknown how reliable these systems are and in what
conditions these systems can operate. When deploying practical applications these oper-
ational conditions need to be known. Unfortunately no method exist to determine these
conditions. The goal of this research is to create such a method, which can be applied
to determine operational limits for practical applications.

Besides a way to determine the operational limits of practical applications, a standard
evaluation method gives other benefits as well. These benefits are set out for standardized
evaluation methods in the field of computer vision in (Bowyer & Phillips, 1998), but also
apply to standardized evaluation methods in obstacle avoidance:

1. Provide evidence of the workings of the system to potential users.

2. Assist in designing engineering solutions.

3. Allow accurate assessment of the state of the art.

4. Place obstacle avoidance on a solid experimental background.

Or in other words a standard evaluation method allows us the understand the strengths
and weaknesses of an obstacle avoidance system, which can be used to determine the
focus of research projects. Also comparisons between different methods can be made.
From a design perspective the metrics of an evaluation method would make it possible to
define requirements for obstacle avoidance systems. These requirements can be compared
to those of existing systems and point out where improvements need to be made.
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Also in the work form Brady (2006) the merit of a standard evaluation method is stated:

Only with proper and standardized evaluations advances in the field can be identified and
promoted.

Brady (2006) also concludes that without a good evaluation method the development of
new algorithms are likely to lead to ad-hoc solutions. Something which is currently seen
in the field of Obstacle Avoidance (OA). A lot of different algorithms exist but these
algorithms all apply to specific cases.

In this study an overview of the literature is given to come up with a standardized eval-
uation method. The next chapter discusses the challenges in developing such a method
and specifies the research questions. In chapter 3 a general overview of the aspects
involved in developing an evaluation method are set out. After which detection and
avoidance are further elaborated. (chapter 4 and 5) Finally in chapter 6 the conclusions
are discussed and the steps for future thesis work are laid out.
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Chapter 2

Problem statement and research
questions

2-1 Problem statement

In the introduction the advantages of a standardized evaluation method for obstacle
avoidance are listed. An attempt to develop such a method is done by Mettler et
al. (2010). In his research a standardized method is proposed to evaluate avoidance
methods. In this method several obstacle courses in artificial and urban environments are
used to test the performance of an obstacle avoidance algorithm. Unfortunately Mettler
does not motivate the choice for the selected tests. No explanation is given on how
representative these tests are to determine the overall performance of an OA algorithm.
Another point of critic is that no assumptions are stated about the way obstacles are
detected. It appears Mettler assumes perfect detection, which is not possible in real life
situations. A final note on the method of Mettler is that the method does not consider
dynamic obstacles, but only takes static objects into account.

Another evaluation method for OA is done in a paper by Alexopoulos et al. (2013), no
standardized method is proposed but a comparison between three avoidance methods
is being made. The methods are compared based on computational cost and on the
amount of collisions in thirteen predefined environments. The method could serve as a
standardized evaluation method but has some downsides. Again no explanation is given
on how the environments are selected and how representative these are for the overall
performance. Also the detection of obstacles is not discussed, which is essential for an
OA systems.

The previous two papers give an idea on how a standardized evaluation method for
obstacle avoidance could look like, but are both unsuited because of the critics men-
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tioned in the previous paragraphs. Currently no consensus exist in the field of obstacle
avoidance on how to measure the performance of a system. This is remarkable, consid-
ering the countless research contributions done in the field. Obstacle avoidance is one of
the fundamental problems in robotics and has been a research field since the robot was
invented. So what makes it so difficult to come up with such an evaluation method?

A reason why it is difficult to develop a standardized evaluation method is that per-
formance of an OA algorithm depends on the environment in which it operates. This
environment can be complex and difficult to describe. This challenge is also stated in a
survey from Kuchar & Yang (2000):

Additionally, a consistent benchmarking method for analyzing and validating models is
required. This is difficult due to the variety of operational modes and conditions to which
Collision Detection & Resolution (CDR) systems may be exposed, but will be necessary
in order to select the most effective systems for implementation in the field.

The variety of operational modes is also seen in the field of face recognition. In which the
problem is known as the Pose, Illumination and Expression variant problem. Even for
three characteristics it is difficult to determine the performance. For OA one could easily
think of more than three characteristics. This combined with the fact that researchers are
not always interested in the complete performance, probably explains why no consensus
currently exist in evaluating OA methods.

In computer vision the multidimensionality problem is often solved by using a set of
images which capture a diversity of conditions. An example of such a data-set is the
Middleburry set. Unfortunately such data-sets are not very useful for OA. Since no
direct relation is made between the environment condition and the performance. Due
to the complexity of the environment it is not feasible to create a complete data set
with all conditions and therefore a method is needed which can predict the performance
for untested environments. To do this a test is needed in which structured environment
changes are made, but due to the variety of conditions it might be hard to describe these
changes.

Another factor which makes it difficult to develop a standard evaluation method is that
different OA methods are sensitive for different environments. A system which detects
obstacles with a radar is able to operate in different conditions than a system which
uses stereo-vision to detect obstacles. So different OA methods need different evaluation
methods.

A third challenge can be seen in figure 2-1. In the figure the main control loop of an
obstacle avoidance system for an Unmanned Aircraft Vehicle System (UAV) is shown.
The overall performance of the system is the combination of all these blocks and how
these interact with the environment. It is difficult to decouple the blocks, especially in
real flight. For example, when researcher use different UAVs to demonstrate their OA
algorithm, it becomes difficult to specify if the performance difference is caused by the
OA algorithm or caused by the dynamical constraints of the UAV.
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2-2 Research Questions 33

Figure 2-1: Obstacle avoidance control loop

To summarize, three challenges exist in the development of a standardized evaluation
method:

1. Variety of operational modes and conditions.

2. Different OA methods require different evaluation measurements.

3. Total performance depends on the complete control loop.

To develop an evaluation method two thinks needs to be defined: environment metrics
and performance metrics. Environment metrics define the environment in which an
experiment is done while the performance metric specifies what is measured in this
environment. Specifying the environment metric is directly related to the challenges
described previously.

Also practical issues need to be considered when developing a new evaluation method.
Testing takes time, which most researchers do not have. To come up with a method
that is widely accepted the method should be time efficient and the cost should be
manageable.

To find the needed environment and performance metrics a broad overview of current
OA systems needs to be created, such that all options are taken into account. From this
search experiments can be designed and executed.

2-2 Research Questions

From the previous sections the need and challenges for an evaluation method become
clear. The goal of this research is to develop such a method which can be stated as
follows:
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The objective of this research is to develop a general evaluation method for obstacle
avoidance. The proposed method will be used to select an obstacle avoidance method for
a drone serving application.

So the objective has two parts, one part is to define a method to measure the perfor-
mance and another part that selects the best system for the restaurant application. The
performance part is split into two parts as well. A detection part and an avoidance part.
This division is based on the work of Albaker & Rahim (2010) and will be discussed in
detail in chapter 3. The three central questions become:

1. What is the performance of current detection systems?
2. What is the performance of current avoidance systems?
3. What is the best system for the restaurant application?

These three central questions can be divided into sub-questions. Question one and two
have similar sub-questions, since to answer both questions a similar approach is needed.
Both have three sub-questions in which first an overview of current system is needed
after which the relevant metrics need to be determined. The final step is to find the
relation between the algorithm and the metric of interest.

1.1 Which detection algorithms are currently available?
1.2 Which performance and environment metrics are relevant for assessing detection
performance?
1.3 What is the relation between the environment and performance metrics for the
available algorithms?

2.1 Which avoidance systems are currently available?
2.2 Which performance and environment metrics are relevant for assessing avoidance
performance?
2.3 What is the relation between the environment and performance metrics for the
available algorithms?

The third central question is answered by first answering the question what kind of
environment the restaurant is. After which the question is answered which algorithm is
the best fit for this environment.

3.1 In what type of environment is the restaurant operating?
3.2 Which system performs best in this environment?

The following section will focus on sub-questions 1.1, 1.2, 2.1 and 2.2 in which an overview
is given of the available literature in this field.
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Chapter 3

Literature overview and general
evaluation considerations

In this section an overview of the relevant literature is given to find answers to the first
sub-questions stated in section 2-2. First the terminology is discussed after which an
overview of the field of obstacle avoidance is given. The chapter is finalized by discussing
what aspects influence the OA performance.

3-1 Terminology

Before discussing the literature some definitions need to be cleared out. In the literature
the same words are used with different meanings, which can cause confusion. The
following explains how these terms are used in this survey.

3-1-1 General terminology

Obstacle Avoidance, Collision avoidance In this survey the term Obstacle Avoidance
is given to the complete research field in which autonomous vehicles avoid obstacles of
any kind. Collision avoidance is a subset of OA in which the obstacles only consist of
other vehicles. Later in this section collision avoidance will also be referred to as obstacle
avoidance with intelligent agents.

Detection, Conflict detection Detection and conflict detection are sometimes inter-
changed in literature. In this survey detection is the process of measuring the state of
an object. Conflict detection is done in some OA algorithms in which the state of the
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36 Literature overview and general evaluation considerations

agent is predicted and compared to the predicted state of the obstacle. Detection is the
input for conflict detection.

Avoidance, Resolution As will be seen later in this survey, OA consist of two main
parts, detecting obstacles and performing an avoidance maneuver. This later term is
sometimes referred to as the resolution method. Here ’avoidance method’ will be used
instead of resolution, since it seems more fit. This can be confusing when it is used in
combination with the overarching term OA. But for the reader it should be clear which
of the two is meant by its context.

Guidance, Navigation Guidance and navigation are often intertwined, it can therefore
be confusing when the terms are used independently. In this survey navigation is the
process of determining the state of an UAV and the state(position, direction) of the goal.
Guidance is the process to determine the path to get from the current state to the goal.

3-1-2 Avoidance Terminology

Reactive, Non-reactive Reactive control is a system in which the sensor inputs and
control outputs are tightly coupled. No extensive calculations are performed. Reactive
control generally has no memory or internal representation of the world. In Obstacle
Avoidance (OA) this term is used in two ways. In some cases the term is used to state
that only the current measurements of the sensors are used to come up with a control
output. In the second option the term is used to state that no internal model of obstacles
is present, instead the inputs are directly coupled to come up with a control output. In
this survey the second/broader definition of reactive systems will be used.

Online, Offline Online means a calculation is done in real-time, while offline algorithms
are run before a flight takes place. The terms are used to distinguish online mapping
(such as Simultaneous Localization and Mapping (SLAM)) from offline mapping and
online path planning from online path planning.

Local planning , Global planning Local planners are online planners in which the
planned path is constrained to a certain distance or time. A global planner computes
the whole path from the initial state to the goal state. From this it can be concluded
that a global planner is always a system in which OA and guidance are combined.

3-1-3 Relation between terms

Another cause for confusion is that terms are related. But sometimes relations are drawn
which are not valid. These relations can be seen in Figure 3-1. The full lines represent
valid relations while the dotted lines represent invalid relations.
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Figure 3-1: Relations between obstacle avoidance terminology

A first distinction can be made between systems in which guidance and OA are separated
and systems in which they are combined. The last case is sometimes referred to as online
path planning, as can be seen by the dotted arrow, but in this survey a distinction will be
made between a combined system and online path planning. The reason for separating
the two terms is because one could easily think of a system which plans a path around
an obstacle in real time while still having a separate guidance system.

The second term in the figure is path planning. An OA system that uses a path planner
needs a map. So by definition a path planner also has a map which can be developed
online or offline. The converse is not true, if a system has a map it does not necessarily
use a path planner.

The third term is mapping in this survey mapping is used in the context of obstacle
avoidance. So mapless algorithms are methods which do not use a map for obstacle
avoidance. If such a system has a separate guidance algorithm a map could still be used
to create an initial path.

The final distinction is made between reactive and non-reactive methods. A reactive
method is by definition not a path planner. Often a reactive method is used in combina-
tion with an offline global path planner, but this does not have to be the case. Another
invalid relation which is drawn is that a system with a separate OA algorithm is always
reactive. Readers must be careful in making assumptions about a system when seeing
these terms.

3-2 Techniques for algorithm performance analysis

In section 2 it was stated that environment metrics and performance metrics need to
be defined to create a standardized evaluation method. These can be used for different
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types of evaluation techniques.

A broad distinction can be made between empirical and theoretical evaluation tech-
niques. In the first case the goal is to find a theoretical limit in the second case an
experiment is done to find the performance.

Another difference can be made between technology evaluation and scenario evaluation.
In technology evaluation one tries to find the fundamental limits of a system. In scenario
evaluation the researcher only looks at specific cases in which the system will operate.
In this survey the choice is made to create an empirical technology based evaluation
method.

Another choice needs to be made between real flight-tests and simulations. To under-
stand the difference between the two tests one could again look at figure 2-1. In the
figure the main loop of an OA system is shown. In a real flight-test the response is
the result of the complete loop. So the performance depends on all blocks in the loop.
For simulations the influence of detection can be mitigated by assuming perfect sensing.
Also perfect state estimation can be assumed making the system more robust. These
assumptions cannot be made for real flight-tests in which sensor noise and disturbances
are always present. This noise might be the biggest challenge of the OA system. There-
fore assuming perfect sensing or perfect state estimation might result in performances
which are not comparable to real life scenarios. To understand what the biggest effect
on the performance of an OA system is, both simulations and real flight-test should be
done.

3-3 Overview of obstacle avoidance methods

To come up with a standardized evaluation method an overview of the state-of-art in
obstacle avoidance is required. What are the methods currently applied and how are
those methods being evaluated? It is difficult to give a complete literature survey because
of the vast amount of work already done in obstacle avoidance. Or as stated in (Bonin-
Font et al., 2008):

The scope of robotics as a discipline and the huge number of existing contributions make
it almost impossible to make a complete account

Nevertheless an overview can be created. A good starting point is an overview created
by Albaker & Rahim (2010) which breaks an OA system down into five ’design factors’
similar to the ones shown in figure 2-1 namely; sensors, conflict detection, resolution,
maneuver realization and general design factors. A schematic representation is given in
’Figure 3-2.

In the figure the first factor is the sensor. The selection of the sensor has an influence on
what data is available. The second branch uses this raw data to detect conflicts. Part
of this branch is state propagation which is common in air traffic management. The
next step of the obstacle avoidance system is to find an escape trajectory such that the
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3-3 Overview of obstacle avoidance methods 39

Figure 3-2: CAS Design Factors

Micro Air Vehicle (MAV) avoids the detected obstacles. The final step is to realize this
path with a certain control sequence. The scheme is finalized with factors that have an
impact on the OA system, but do not have a direct function.

As said the paper gives a nice overview but is written from a collision avoidance per-
spective. In this study a general perspective for obstacle avoidance is taken. The main
difference is that in collision avoidance the obstacles are always dynamic and the time
between detection and resolution is generally larger. For example for Traffic Alert and
Collision Avoidance System (TCAS) systems the time between detection and resolution
can be several minutes while for a UAV flying indoor the time to avoid an obstacle is
in the order of seconds. Another issue that is not discussed by Albaker, is the type of
environment. How many obstacles are there for example, in a dense environment one
might want to use a different obstacle avoidance strategy than when the obstacles are
sparse.

Another overview is created in the work of Kuchar & Yang (2000). Kuchar makes a
distinction based on five properties; Dimensions, Detection, Resolution, Maneuvers and
Multiple. Similar to the division set out in Figure 3-2. For several algorithms the type in
each property is stated, which can be seen in Appendix V. Kuchar also looks to obstacle
avoidance from an Air Traffic Management (ATM) context and does not consider all
properties of an OA system (the sensors for example). In this survey an attempt is
made to give a complete overview in which all aspects of an OA system are considered.

Subdividing OA algorithms can be done in many ways Desouza & Kak (2002) divides
it between indoor and outdoor approaches. Another division is made by Goerzen et al.
(2010). Goerzen makes a distinction between algorithms which can cope with constraints
or algorithms which cannot. Goerzen compares the algorithms in each category by listing
them in a table. The characteristics in the table are: number of dimension, completeness,
optimality and proven time complexity. The completeness of an algorithm means if a
solution is always found(if it exist). Optimality specifies if the found solution is optimal,
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Table 3-1: OA characterization

Basic Environment Sensors Conflict detection Avoidance
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semi-optimal or non-optimal. Finally the order of complexity is expressed using the
big O notation. Bonin-Font et al. (2008) uses yet another division. Bonin-font divides
it between mapping and mapless algorithms. Bonin-Font et al. (2008) also make a
distinction between the type of vehicle and the type of vision strategy that is chosen.
The tables constructed by Goerzen et al. and Bonin-Font et al. are given in Appendix
V and Appendix V.

Similar to the table of Bonin-Font et al. a table is constructed in this survey to get
insight in the available methods for obstacle avoidance. The way it is divided in this
survey can be seen in Table 3-1. Table 3-1 was constructed after reading 143 papers
on obstacle avoidance. The first part of the table states the basic ’top level’ distinction
between OA algorithms and the type of objects for which the algorithm was constructed.
The first division is made between single agents and multiple agents. Another distinction
is made between systems in which the guidance and obstacle avoidance are combined
and systems in which the guidance and obstacle avoidance are separated, which was also
discussed in section 3-1. The distinction between these two categories was also made by
Mujumdar & Padhi (2011). Who stated it as follows:

The problem of avoiding collision with obstacles online can be perceived in two ways: as
a path-planning problem, and a collision-avoidance maneuvering problem.

Another ’basic’ distinction is made between systems which use data from their sensors
to build an (online) map and systems in which no real-time map is being build. The
later case does not necessarily mean no map is present. A system could still have an
(offline) map of permanent obstacles but does not update it in real-time.

Next to the basic or top-level distinctions between obstacle avoidance systems there is
also a difference in the type of environments for which the systems are designed. First
there are systems in which the environment is known. In which the problem often
boils down to a path planning problem. For unknown obstacles there are two types of
objects ’static’, and ’dynamic’. Dynamic obstacles can be subdivided into Intelligent
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and non-intelligent obstacles. With intelligent obstacles a system is meant that also
has an obstacle avoidance system, which can interact with the OA system of the UAV.
The way in which these OA systems interact can cause problems and therefore these
objects are not the same as ’normal’ dynamic objects. It is assumed that static obstacles
are always non-intelligent. The dynamic intelligent obstacles are divided into obstacles
with communication’ and ’obstacles without communications’. Intelligent obstacles with
communication are typically seen in ATM on which the papers form Albaker and Kuchar
were focused.

Table 3-2: Characterization of performance evaluation

Detection performance Avoidance Performance
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Other parts of the table are ’sensors’, ’conflict detection’ and ’avoidance’. These parts
will be discussed in detail in chapters 4 and 5. Besides the characterization of the
method, also the performance analysis of each paper is characterized. This can be seen
in Table 3-2. Also this part will be discussed in more depth in chapters 4 and 5. The
full table is given in Appendix V.

3-4 Performance incentives

Now a general overview of the field of obstacle avoidance is present one could focus on
what influences the performance of an OA system. To answer this question one could
again look at the general OA loop from figure 2-1. The combination of these blocks
determine the overall performance of the system. To analyze the overall performance
one could try to split the performance measurement into individual blocks. This can be
seen in figure 3-3.

In the figure four blocks are identified for which the performance could be determined
independently. Block A represents the ’detection’ part of an OA algorithm, Block B
represents the determination of the avoidance maneuver. The avoidance maneuver is
determined by the combination of conflict detection and avoidance. This conclusion was
made using the overview discussed in the previous section. Many algorithms do not
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Figure 3-3: Influence on OA performance within the OA loop

Table 3-3: Performance dependencies in OA loop

Block: Dependent on:

A State
B A,C,D,State
C D, State
D State

have an explicit conflict detection method, but if a system does have explicit conflict
detection it is often strongly connected to the way in which an avoidance maneuver is
found. Block C consist of the controller and the UAV dynamics. Finally Block D consist
of the state estimation.

For each block the performance can be analyzed. For example for Block C, the perfor-
mance could be analyzed using classical control theory. Although the performance of
Block C could be analyzed independently from other blocks, it would require input from
a state estimator. Therefore some assumption needs to be made on the performance of
the state estimator. These dependencies are visualized in figure 3-3 by including the de-
pendent blocks in the ’environment’(dotted line) of the block for which the performance
needs to be determined. For example the state estimation is included in ’environment
C’ and therefore some assumptions need to be made about state estimation when deter-
mining the performance of Block C. The dependencies are also listed in table 3-3.

This thesis will focus on determining the performance of Block A and Block B, since
Block C and D are not directly a part of an OA system. In essence the performance of an
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OA system comes down to the performance of the detection part and the performance
of the avoidance part. Such a distinction was also made by Y. Kwag & Kang (2004)
which stated the problem as follows:

One is the awareness problem, the other is the avoidance problem.

For the detection part(Block A) it can be seen in table 3-3 that no assumption need to be
made about the other blocks, but only about the state. It is for example more difficult
to detect obstacles at a larger distance or at a larger speed. For Block B assumptions
need to be made for Block A, C and D, since the performance of Block B is dependent
on all other blocks.

Besides the dependencies on other blocks the performance is also dependent on the envi-
ronment. The environment which influences the performance of each block is different,
therefore a different set of environment conditions is shown for each block in figure 3-3
. For example the environment of Block A is represented by the blue line. The envi-
ronment for which it is sensitive are the conditions A in figure 3-3. The final influence
on the performance is the amount of noise present in the loop. This noise can enter
the loop directly through sensor noise or disturbances. But also indirectly through the
environment which is represented by the dotted red arrows.

Unfortunately the environments for which Block A and B are sensitive are unknown,
which is represented by the colored question marks. Also the metric to measure the
performance is unknown which is represented by the question mark under the black
dotted line.

To come up with a generalized method an answer needs to be find to these question
marks. The question mark are directly related to the sub-question sated in section 2-2.
Sub-question 1.2 is equivalent to filling the question mark below block A and finding
conditions A. While sub-question 2.2 is equivalent to filling the question mark below
block B and finding conditions B. In the following chapters these parts are discussed in
detail. First the detection problem will be addressed, after which conflict detection and
avoidance methods are discussed.

As a final note, the answer to the previous questions depend on the type of obstacle
avoidance method which is used. Which was stated in section 2-1 as: different OA
methods require different evaluation measurements. Therefore an overview of the avail-
able methods is needed for which the table discussed in the previous section can be
used.

The methods chosen in the detection part and the avoidance part determine how the
previous questions are answered. Not only the specific method used in detection or
avoidance determine the environment and performance metrics but also the ’top-level’
choices which were shown in Table 3-1. An OA system which can cope with dynamic
obstacles for examples needs a different set of environment metrics then a system which
can only cope with static obstacles.
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Chapter 4

Detection

The fist step in obstacle avoidance is detection. The performance of an obstacle avoidance
system depends on how well it can detect obstacles. In this section the methods for
detection are set out and their performance limitations are discussed.

To have any detection at all a system needs some sort of sensor. To get insight into differ-
ent types of sensors, one can again look at Figure3-2. In which Albaker & Rahim (2010)
makes a distinction between active an passive sensors. Albaker also makes a distinction
between techniques developed for cooperative agents and systems for uncooperative ob-
stacles. Examples of detection techniques for cooperative agents are ASAS or ADS-B.
This literature review focuses on detection methods for uncooperative obstacles. Since
the UAV serving application needs to be able to maneuver around uncooperative objects.
Uncooperative sensors can be divided into five main methods: vision, Infrared Sensor
(IR), ultrasonic, laser and radar.

The choice for which sensor to use depends on the application. Different types of sensors
have different characteristics. For example the weight, cost, power or range vary between
sensors. Each sensor has different limits and is sensitive to different environments. In
the following the physical principle, the performance limits and OA implementations for
each sensor are discussed.

4-1 Vision

One major field in detection is vision. Many books have been written about computer
vision (Young et al., 1998), (Davies, 2012), (Gool et al., 2011). To determine the per-
formance of vision based algorithms a research was conducted by by Thacker et al.
(2008). In his survey Thacker gives an overview of the performance characterization
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methods used in computer vision. The paper lists the best practices of performance
characterization of several fields in computer vision. Thacker evaluates the performance
characterization by answering five closed questions which are given in Table 4-1.

Table 4-1: Summary Thacker et al.

The first step suggested by Thacker to characterize vision sensors is to consider the
illumination regime in which it operates. But other aspect of the system might influence
the performance of the sensor as well, such as: noise, lens distortion, sensor deformation.
Not all fields of computer vision listed in table 4-1 are useful for obstacle avoidance.
Only optical flow and stereo vision algorithms are currently being used in OA systems.
Generally optical flow is used when one camera is used and stereo vision is used when
two camera’s are present. In the following these two options are discussed in detail.

4-1-1 Monocular vision

principle In monocular vision a single camera is used to detect obstacles, using some
form of Image Processing (IP). The advantage of this system for UAV applications is
that currently a lot of UAVs are equipped with a camera and no hardware changes need
to be made. To detect objects from a single camera several strategies can be chosen. A
nice overview is given in the work of Guzel & Bicker (2009) who defines two fundamental
groups of vision based obstacle avoidance. Namely optical flow based techniques and
appearance based methods.

Appearance based methods are based on the appearance of individual pixels. Only the
information available within one image frame is used. One appearance based method to
detect obstacles for ground robots is to detect pixels which differ from the ground and
classify them as objects. To use this method the ground needs to be homogeneous and
relative flat. A disadvantage of this method is that difference in the ground color are
detected as obstacles as well. For UAVs the sky can be used as the background as was
done by Croon, G.C.H.E. de (2011).

Another monocular vision technique is optical flow. Optical flow based techniques are
based on the assumption that the intensity of objects in a scene remain constant. Which
is known as the ’conservation of image intensity’. When an object is moving(or the
camera is moving) the assumption can be used to calculate the velocity of an object.
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This can be done using equation 4-1.

δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t = 0 (4-1)

In this equation I represent the Intensity of an object, δx and δy represent the po-
sition difference in the image frame and δt represent the time difference. The time
difference δt is known based on the frame rate, leaving two unknown variables: δx and
δy. Which is known as the aperture problem. Only one equation is available so addi-
tional assumptions need to be made to solve the problem. Many methods exist to solve
this problem, generally these can be subdivided into four techniques: Differential Tech-
niques, Region-based matching, Energy-based methods and Phase-Based Techniques.
A detailed description of these methods can be found in Barron et al. (1994). Two
widely used methods are Lucas-Kanade and Horn-Schunck, both are differential meth-
ods. Lucas-Kanade solves the aperture problem by assuming the flow in a small pixel
window is constant. Horn-Schunck solves the problem by assuming a certain amount of
smoothness over the complete image. Optical flow methods can be easy to implement
but remain sensitive to illumination conditions.

Performance To analyze the performance of the above described methods a look can be
given to the paper from Thacker, which evaluates performance metrics for optical flow.
According to Thacker current methods evaluate optical flow by measuring the mean
error in magnitude or direction. Thacker advised to also include covariance matrices to
quantify the performance.

Implementation Many researches have proven to be able to successfully avoid obstacles
using monocular vision. When looking at the table in Appendix V several monocular
techniques can be found. In the table no distinction between the monocular methods
is being made. Examples of appearance based methods are Magree et al. (2014), Saha
et al. (2014) and Huang et al. (2006) who uses feature extraction, to determine the
heading and width of obstacles. Unfortunately none of these papers evaluate how well
the algorithm detects the obstacle.

The same holds for optical flow, several implementations are present but none have a
separate detection evaluation. Marlow & Langelaan (2011) use optic flow to determine
range estimates to obstacles. Marlow compares the estimates with the ‘ground truth’
but does not state any quantitative value. Gosiewski et al. (2011) implements an optical
flow algorithm by making use of the Lucas-Kanade algorithm. In another paper from
Sebesta & Baillieul (2012) optic flow is used to estimate the time to collision. The
implementation from Stowers mentioned in the introduction, also makes uses of optical
flow, but does not measure the performance of the algorithm either.
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4-1-2 Stereo Vision

Principle Instead of using one camera also two cameras could be used to detect obsta-
cles. The major advantage of such systems is that it is possible to directly measure the
distance to an object. The distance can be calculated by using Equation 4-2.

∆d =
f · b
Z

(4-2)

In Equation 4-2 ∆d represents the pixel displacement, f is the focal length of the camera
(in pixels), b is the distance between the two camera’s(baseline) and Z is the unknown
distance to the obstacle.

To get an overview of the available algorithms in stereo vision a look is given to a survey
paper from Lazaros et al. (2008). Lazaros points out the vast amount of research effort
currently employed in stereo vision which makes it difficult to keep up. Since a complete
survey is difficult and not completely relevant in this discussion, only the main methods
of stereo vision will be discussed.

Figure 4-1: Categorization of stereo vision algorithms

Lazaros evaluates software and hardware implementations, here only the software im-
plementations will be discussed which can be seen in Figure 4-1. The software imple-
mentation is split into sparse outputs and dense outputs.

Algorithms resulting in sparse outputs focus on features in the images, such as corners
or lines. Poorly textured areas remain unmatched. Because not every pixel is being
matched higher processing speeds are possible.

Dense algorithms can be divided into local and global methods. Local methods calculate
the disparity of each pixel according to the information provided by its local, neighboring
pixels. Global methods use the whole image to calculate the disparity. Lazaros splits
the local methods on the basis of which cost function is used to solve the correspondence
problem. The correspondence problem is the problem to find for each point in the left
image the corresponding pixel in the right image, which is often solved using a Sum of
Absolute Differences (SAD) cost function.
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Global methods produce more accurate results than local methods. The goal is to find
the minimum of a cost function (similar to local methods), but now the whole image
is taken into account. Because an optimization algorithm needs to be run for every
pixel global methods are computationally more demanding. Also for global methods a
subdivision is made. Namely into those performing a global energy minimization and
those pursuing the minimum for independent lines. For both local and global methods
the categorization is completed by specifying if the algorithm makes use of color instead
of a gray-scale and by specifying if the method uses some form of occlusion handling.

Performance Stereo vision has some fundamental performance limits, which are stated
in a paper from Kytö et al. (2011). The theoretical stereo resolution is given in Equation
4-3

dZc =
Z2

f · bdpx (4-3)

In equation 4-3 the variables Z, f and b are the same as in Equation 4-2, dpx represents
the minimum disparity difference that can be measured. Generally this disparity res-
olution is one pixel but also methods exist which make use of sub-pixels in which the
minimum disparity is smaller than one pixel. From this formula it can be concluded
that the resolution decreases with increasing distance which is visualized in Figure 4-2.
The larger the distance the bigger the diamond shape, meaning a lower resolution.

Figure 4-2: Visualization of depth resolution

When the baseline or the focal length becomes smaller the resolution degrades. These
limits should be taken into account when designing a stereo vision system. The limit
represented in Equation 4-3 is the theoretical limit, other factors such as misalignment
and calibration will make the resolution even lower. For an elaborate evaluation between
the theoretical limits and the practical limits the reader is referred to the work of Kytö et
al. (2011).

Another theoretical limit is the maximum range as can be seen in Figure 4-3. In this
figure the disparity is converted to a distance using Equation 4-2. A baseline of 60 mm
and a focal length of 181 px are used. As can be seen the distance goes to infinity for a
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Figure 4-3: Distance as a function of disparity

disparity of zero pixels. The maximum range can be calculated by putting the minimum
disparity in Equation 4-2. In this situation a minimum disparity of one pixel is assumed
giving a maximum range of 11m. In the figure also the decreasing resolution can be
observed by looking at the gradient. The gradient increases for large distances meaning
a lower resolution.

Also in literature the performance of stereo vision is discussed for example by Sabater et
al. (2011), which evaluates the disparity error for several stereo algorithms. It compares
stereo methods by calculating the Root-Mean Squared (RMS) error. The results are
compared to the predicted error based on the estimated noise present in the image. As
shown by Sabater, the type of algorithm can have an influence on the RMS error and
thus on the OA performance of the system.

A paper by Lazaros et al. (2008) also reflects on the performance of stereo vision algo-
rithms. The most common used image set to evaluate stereo-vision is the Middlebury
data-set. The performance metric on this data-set can differ, but according to Lazaros
the preferred metric of evaluation for stereo vision is the percentage of pixels whose ab-
solute disparity is greater than one, in the unoccluded areas of the image. Lazarus gives
a nice overview of the values for several algorithms executed on the Middlebury data-set,
no direct comparison is being made but the disparity error ranges form 0.9% to 7% for
local methods and from 0.1% to 7% for global methods. To complete the performance
evaluation of the algorithms, Lazarus states the frame rate, with the processor on which
the calculation was performed.

Another research which makes use of the Middlebury data-set is conducted by Scharstein
& Szeliski (2002). Scharstein gives an overview of the available algorithms and evalu-
ates them thoroughly. The metric used to evaluate the performance is the Root-Mean
Squared (RMS) error, for which the disparity map is compared to the ground truth.
Another metric used is the percentage of bad matching pixels, which was the preferred
metric for Lazaros et al. (2008).
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To evaluate the performance, Scharstein calculates these metrics for different type of
regions. Three regions are distinguished, textureless regions(T ), occluded regions(O)
and depth discontinuity regions(D). Also the complements of these regions can be
used.(T̄ , Ō, D̄) The performance of 20 algorithms using these metrics and regions is
shown in Appendix V.

Also another approach of determining the performance of stereo-vision algorithms is
mentioned by Scharstein which is know as the prediction error strategy. The method
evaluates stereo algorithms by predicting a third image using the disparity map. This
predicted image is than compared to a third image taken with a camera at a different
baseline. The error between the two images serves as a metric to define the performance
of the algorithm. The advantage of this method is that no ground-truth is needed, but
only an extra set of images. The method is applied by Mahmood et al. (2012). In which
stereo-vision algorithms are analyzed under three different light conditions.

Finally one could look at Table 4-1, in which the survey from Thacker et al. (2008) is
summarized. In the survey the Middlebury data-set is mentioned again as a common
used data-set. But Thacker also mentioned that other data-sets are available and a
consensus still appears to be missing on which set to use. Another relevant finding in
stereo vision performance by Thacker is stated as follows:

No work appears to have been carried out on relating the characteristics of a data set
which would allow the performance on unseen data to be estimated.

Meaning the performance measurements applied on the Middlebury data-set cannot be
used to estimate the performance on other data-sets. In this thesis the goal is to develop
a method which would allow to make such estimations.

Implementation Five implementations make use of stereo vision in Appendix V. One
method takes the performance limits of the stereo detection into account (Frew & Sen-
gupta, 2004). In this method an unsafe region is established, part of this unsafe region is
a diamond shaped region resulting form the error of the stereo system. Other methods
use the stereo vision to build a map (Hrabar, 2008), (Hrabar, 2011),(Jongho & Youdan,
2012) but do not consider the detection performance.

4-2 Infrared

Principle In the previous section visible light is used to detect obstacles, also other
domains of the electromagnetic spectrum can be used such as infrared. To detect obsta-
cles using infrared both active and passive options are possible. In the passive case an
infrared camera is used to collect images in the infrared spectrum. Similar techniques
as the ones described in the previous section can be applied to these images. Also for
infrared cameras monocular and stereo vision is possible.
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Another simpler form of Passive Infrared Sensor (PIR) exist. Such sensors only consist
of a photo-diode which converts the energy in the infrared domain to a voltage. Such
sensors are widely used in alarm systems or light switches.

An active infrared sensor also has a photo-diode to detect infrared radiation, but works
on a different principle. Besides the photo-diode a LED is present emitting at the infrared
frequency. The waves sent from the LED will reflect back from an object resulting in
a peak in the detector. From the time difference between the emitted pulse and the
measured peak the distance can be calculated.

y =
α

x2
cosθ + β (4-4)

To determine the distance between the IR sensor and an object Equation 4-4 can be
used, y is the sensor output, x is the distance, α is a constant which includes the radiant
intensity, spectral sensitivity, the gain of the amplifier and the reflectivity of the target.
The last term θ is the angle of incidence of the obstacle.

Performance As concluded in the work from Benet et al. (2002), uncertainties in any
of the values in Equation 4-4 result in a distance error. It is assumed that α an β can
be determined with sufficient precision. The two remaining errors sources are the noise
in the measurement εy and the uncertainty in the angle of incidence εθ. Both can be
related to the total error using Equation 4-4, which is given in Equations 4-5 and 4-6.
In this equation εx represents the distance error, εxy represents the distance error due
to measurement noise and and εxθ represents the distance error due to the uncertainty
in the angle of incidence.

εx = εxy + εxθ =
δx

δy
εy +

δx

δθ
εθ (4-5)

εx = − x3

2αcosθ
εy −

x

2
tanθ · εθ (4-6)

It can be seen in Equation 4-6 that the error caused by measurement noise grows cubic
with respect to the distance. To mitigate the error of the unknown angle Benet provides
a method to estimate θ using measurements of multiple sensors. Since there is noise
in the sensors an uncertainty will be present in the estimation of θ, which results in a
distance error. The effect of the noise is dependent on the distance and inclination of
the obstacle, which can be seen in Figure 4-4.

The figure represents the relation between the incidence angle and the mean distance
with respect to the RMS error. A noise level of (σy = 6mV ) is assumed. The figure
shows that the error increases rapidly with respect to the distance. At a distance of only
100cm the error already becomes around 10cm, which is large.
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Figure 4-4: Measurement error infra-red sensor

Implementation Because of this increasing error, active infrared sensors, are often only
used for short ranges or as a complementary sensor. An example of such a system is
presented in (Fasano et al., 2006).

4-3 Ultrasonic Range Finders

Principle Infrared detection systems can be passive or active, purely active systems
are ultrasonic sensors. Ultrasonic range finders work similar as active infrared. A (ul-
tra)sound is transmitted after which the receiver ’listens’ for the reflected sound signals.
The strength of the received signal is mapped to a distance between the sensor and the
obstacle. Ultrasonic sensors are light and do not require a lot of computational power.

Figure 4-5: Reflected sound waves on an inclined obstacle

Performance A disadvantage of ultrasonic sensors is interference. Multi-paths but also
other UAVs can cause interference in the signal resulting in wrong measurements. An
advantage of ultrasonic sensors is that they are not sensitive for sunlight that they are
able to detect transparent objects such as windows.
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Ultrasonic range finders have their limits just as every other sensor. Some of these
limits are presented in a paper from Borenstein & Koren (1988). One of the limitations
is caused by the angle of incidence. When the obstacle is inclined most of the sound
energy will be reflected into a different direction, as can be seen in Figure 4-5. Borenstein
concludes that a maximum inclination for a reliable detection of a smooth surface is only
25◦.

The amount of reflected sound energy also depends on the texture of the obstacle. To
obtain a highly diffusive reflection the texture of an obstacle should be comparable to
the wavelength. As can be seen in Figure 4-6, (Kuttruff, 2009). Figure a represents the
case in which the texture is smaller than the wavelength, b represent the case in which
the texture width is similar to the wavelength and c represents the case when the texture
is larger than the wavelength.

Figure 4-6: Scattering of a sound wave

λ =
v

f
(4-7)

To calculate the size of the surface texture which causes a diffusive reflection Equation
4-7 can be used. In this equation λ represents the wavelength, v represents the speed of
sound and f represents the emitted frequency of the sensor. When a sound of 50000Hz
is transmitted the texture should be 6.8mm apart. The frequency could be increased
but would require more power.

Another problem with reflection is that inclined reflection at a short distance can have
a power reflection that is equal to an object which is perpendicular but at a larger
distance. This problem can be minimized by improving the directionality, making the
Field Of View (FOV) of each sensor smaller. However, more sensor are needed for the
same coverage.

To solve the problem of interference between robots Borenstein suggest to use a different
frequency for each robot. Interference could still occur between multiple ultrasonic
sensors on the same robot. To solve this problem a different time delay for each sensor
can be placed between each emitting/listening phase. In this way the signals from
different sensors can be distinguished.
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Another measurement error in ultrasonic systems is caused by the difference in the
speed of sound. This problem is addressed by Müller et al. (2014), which mitigates the
problem by calibrating the sensor for different temperatures. Another problem addressed
by Müller is the effect of two environment conditions: the distance of the obstacle and
the propeller noise. Müller uses a wall as obstacle to perform his measurements. The
propeller noise is increased by increasing the thrust level. The performance of the sensor
is expressed in the mean error and the standard deviation.

Implementation Besides the implementation by Müller et al. (2014) other implemen-
tation can be seen in the literature as well. An example in which multiple ultrasonic
sensors are used is given by Holenstein & Badreddin (1991). In his work 24 ultrasonic
sensors are placed in a circle around the robot. Also in the work of Koren & Borenstein
(1991) such a ring is used.

Ultrasonic sensors are also used in the work from Petillot et al. (2001), sonar is used
to detect and track underwater obstacles. Uncertainties in the measurements are taken
into account using a Kalman filter.

4-4 Laser

Principle Another widely used option for measuring distances are laser range finders.
Laser range finders are active sensors which can give accurate measurements, but gen-
erally have a high weight. Because of its higher accuracy it still is a viable options for
large UAVs that can generate enough lift. But for small UAVs this becomes a problem
(Jongho & Youdan, 2012).

To get an idea of the available techniques one can look at a paper from Amann et al.
(2001). Amann puts the available optical distance measurement methods into three
categories: interferometry, time-of-flight and triangulation. From these methods only
time-of-flight methods are used in airborne applications, therefore interferometry and
triangulation methods will not be discussed here.

Time-of-flight methods can be split into ’pulsed methods’ and ’phase-shift’ methods
which are explained in Thiel & Wehr (2004). Both are active methods. Pulsed meth-
ods send a laser pulse and measure the reflection similar to sonar and active infrared.
In phase-shift methods a continuous laser wave is send. The intensity of the laser is
modulated with a well defined function such as a sinusoidal function. The time-of-flight
is determined by measuring the phase difference between the transmitted and received
intensity.

Performance For time-of-flight systems, the accuracy of the distance measurement
depends on how accurate the time difference can be calculated. To obtain 1mm
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accuracy, the accuracy of the time interval measurement should be 6.7 ps.

An extensive research to evaluate the performance of laser range finders is done by
Reshetyuk (2006). Reshetyuk classifies internal and external errors. Internal errors can
be split into fundamental errors and errors specific to the hardware. Examples of internal
errors are jitter and walk.

Figure 4-7: Jitter and Walk

Jitter and walk are shown in Figure 4-7. Jitter is caused by noise in the system due to
background radiation or due to the electronics. This noise can cause variation in the
amplitude, which has an effect on the time measurement. Also the distance has an effect
on the precision. The amplitude decreases proportional to the square of the distance
resulting in the so called walk error.

External errors can be split between environment effects and object related errors. Ex-
amples of errors caused by the environment are errors caused by humidity or air tem-
perature. Object-related errors are related to the properties of the object such as the
transparency or reflectivity. These classification can cause two types of errors random
errors and systematic errors. An example of a random error is jitter, a systematic error
is walk.

In another paper from Viswanathan et al. (2007) no fundamental limits are discussed but
a comparison is being made between an active 3D time-of-flight infrared laser range sen-
sor and a 4mm Bumblebee 3D stereo vision camera. The two sensors are compared from
an OA perspective. The sensors are placed on a robot after which runs are performed
to determine to following metrics: Correct Rejects(True Negative (TN))/Hits(True Pos-
itive (TP))/Misses(False Negative (FN))/False Alarms(False Positive (FP)). These are
shown in Table 4-2 Also the mean stopping distances are compared.

The laser range finder and stereo vision show similar results. According to Viswanathan
stereo vision is preferred because it is cheaper and versatile while having modest power
requirements.

Implementation Laser range finders are used for obstacle avoidance in Bachrach et al.
(2010). In his work a laser range finder is used to estimate the vehicle’s motion and build
a high resolution map. In work from Ficuciello et al. (2013) lasers are used to determine

C.W.M. Nous Performance in Obstacle Avoidance



4-5 Radar 57

Table 4-2: Comparison between stereo vision and infra-red

the distance to cars and pedestrians. The performance of the laser is determined, by
measuring the distance in a controlled environment. The error of the laser used by
Ficuciello stays under 30cm. In the work from Ferrick et al. (2012) a laser range finder
is used on an ARDrone. No detection performance is measured, but it shows laser range
finders are possible for UAVs of comparable size. Also in the work of Hrabar (2011) and
Delin et al. (2012) laser range finders are used, but without a detailed description of the
system.

4-5 Radar

principle To complete the detection survey a brief evaluation of radar systems is given.
Radar is a widely used method for detecting obstacles. Many research has been done to
determine the detection performance of radar systems. This knowledge can for example
be used in stealth fighters who need to prevent detection by enemy radar. Radar works on
the same time-of-flight principle as infrared or lasers, the main difference is the frequency
of the electromagnetic waves.

performance The range of a radar system is given by the radar equation given in
Equation 4-8, in which PS represents the transmitted signal, PE the received power, G
the antenna gain, λ the wavelength and σ the Radar Cross Section (RCS).

R = 4

√
PS ·G2 · λ2 · σ
PE(4π)3

(4-8)

The RCS is a property of the object and summarizes the reflectivity. Not only the
radar equation defines the range of the radar, but also the waiting time. The upper
limit determined by the waiting time can be calculated using equation 4-9. The time is
represented by τ and the speed of light is represented by c. The minimum range of the
radar depends on the transmitting time and can be calculated by replacing τ with the
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transmitting time in equation 4-9.

R =
c · τ

2
(4-9)

The minimum distance is also related to the range resolution. To distinguish two obsta-
cles the distance between them should be larger than the minimum range. The angular
resolution depends on the beam width and is represented in Equation 4-10. In this
equation SA is the angular resolution, R is the range and Θ is the beam width.

SA > 2R · sinΘ

2
(4-10)

Equation 4-8 shows the range is dependent on the RCS(σ) of the obstacle. The goal of
stealth fighters is to make the RCS as low as possible. The RCS will change depending on
the orientation of the obstacle with respect to the radar. For specific cases such as flying
planes these changes can be captured in a statistical model. To specify the statistical
properties of the RCS of complex objects the Swerling methods where introduced by
Peter Swerling. Five target models exist, As an example the first Swerling model is
given in Equation 4-11. In this equation the probability of the RCS(σ) is given as a
function of the average RCS, σav.

p(σ) =
1

σav
e−

σ
σav (4-11)

The swerling models are also used in a research by Kwag in which radar systems are
used in a Collision Avoidance System (CAS) for low-altitude UAVs. (Y. Kwag & Kang,
2004), (Y. K. Kwag et al., 2007). A result of the research is presented in Figure 4-8.
The detection probability is shown as a function of the Signal to Noise Ratio (SNR).
In this figure the first Swerling method is used and a false alarm probability of 10−6

is assumed. In the figure the increase in probability between the amount of pulses(np)
can be observed. These kind of curves can be determined for a type of system and
environment to determine the performance of an obstacle avoidance system.

In Figure 4-8 b the relation between the range and the probability of detection is shown
for three type of aircraft.

Again looking at Equation 4-8 one can see that also the wavelength has influence on the
range. In a paper from Kemkemian & Nouvel-Fiani (2009), several frequencies bands
are compared based on coverage, angular accuracy but also weight and cost are taken
into account.

Implementation Also for radar systems several implementations are published. In the
paper from Ariyur et al. (2005) a low resolution radar is used to avoid obstacles with
a UAV. In work from Kandil et al. (2010) a radar sensor width a range from 0.2 to
30 meters is used with an angular coverage of 80 degrees. Unfortunately no extensive
performance evaluation of the used radar system is presented.
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(a) Probability to SNR (b) Probability to Range

Figure 4-8: Detection probability with respect to SNR and range.

4-6 Combination of sensors

In the previous sections vision, infrared, sonar, laser and radar where discussed indepen-
dently. Often UAVs are equipped with multiple sensors, the weakness of one sensor could
be mitigated with a different sensor. An example is given in Fasano et al. (2006), which
uses a radar system, infrared cameras and two vision cameras to avoid collisions. Also in
the work of Matthies et al. (1998) combinations such as, stereo vision with CCD cameras
and stereo with with InSB FLIR cameras, are implemented and compared. Matthies does
not use radar and sonar sensors because of their significantly lower angular resolution.

4-7 Performance evaluation of detection

In the previous sections the available detection methods were discussed. Using this
overview sub-question 1.2 can be answered. First the relevant performance metrics seen
in the literature will be discussed after which the environment metrics are discussed.

Performance metrics To measure the performance some metric needs to be defined.
The performance metrics seen in literature to quantify this consisted mainly of the RMS
error of the distance measurement. In some cases also the variance and covariance are
taken into account. Another metric is the Receiver Operating Characteristic (ROC)
curve in which true positives and false positives are plotted. As a third metric the
computational effort has been taken into consideration, for which the metric of Frames
Per Second (FPS) or computation time was used. Only for stereo vision other metrics
were proposed such as the percentage of disparities which are larger than a certain
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Table 4-3: Parameters which influence the total error, specified for each sensor

Monocular vision Stereo Vision Infrared Sonar Laser Radar
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Multi-path
Temperature
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External noise
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external noise

threshold. So performance metrics are RMS error, refresh rate and ROC curves. Since
it is time consuming to measure the performance metrics in all environmental conditions
it needs to be determined which environments are relevant.

Environment metrics To determine which environment metrics are relevant for assess-
ing the detection performance it needs to be known what influences the performance
metrics. Several causes are mentioned under the ’performance’ paragraphs in the pre-
vious section. To summarize these effects the classification used by Reshetyuk (2006),
which was mentioned in subsection 4-4, is used for each type of sensor. In this classi-
fication a distinction is made between internal errors and external errors. The internal
errors are split between fundamental errors, which are caused by the physical principle,
and hardware specific errors. The external errors are split between object related errors
and environment errors. An overview of the parameters which influence these errors is
given in Table 4-3.

In Table 4-3 it can be seen that stereo vision has some fundamental limits due to the base
line and the focal length of the camera. For sonar the transmitted frequency determines
the maximum size between irregularities which can be detected. For radar it was shown
that the angular resolution depends on the beam width and the range resolution depends
on the transmitting time τ .

The external factors are also shown in Table 4-3. For stereo vision for example the texture
and illumination are important. Texture and illumination have several aspects. For
texture not only the amount of texture but also the angle and repetitiveness is important.
Other light effects such as specularities and shadows have an effect on the detection
error as well. Also transparencies influence the detectability of an obstacle. Lasers, for
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example, are not able to detect fully transparent objects such as windows. For active
systems the orientation of the object has an influence on the detection performance.
For sonar it was stated that a smooth obstacle is detectable until it has an inclination
of about 25◦. Related to this inclination is the shape of the overall object. For radar
such characteristics are summarized in the radar cross section. The Swerling models
can be used to simulate the statistical properties of such objects. Unfortunately no
equivalent model exist for other sensors. Some properties of the environment influence
the performance of all sensors. Such as distance and external noise.

Sub-question 1.2 can be answered by looking at Table 4-3. Each environment which
influences the error is a relevant environment metric to asses the performance of the
sensor. For each sensor a different set of environment metrics is relevant and therefore the
different environment metrics stated in the table can be used to define the performance
tests for each sensor.
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Chapter 5

Avoidance maneuver

The second part of an OA system determines the avoidance maneuver and consist of two
parts: conflict detection and avoidance. Both are discussed in the following sections.

5-1 Conflict detection

The next step in an OA system after detection is conflict detection. Not every OA
system uses conflict detection, which can also be seen in Table V. The first column of
the section conflict detection specifies if such a method is present. A conflict detection
method propagates the state of the UAV into the future, after which a check is done if the
propagated state is in conflict with the detected obstacles. State propagation is mainly
done in three ways. The state could be propagated linearly, in which it is assumed the
UAV will keep flying straight. Also a flight plan/flight path can be used to recognize
conflicts. The third approach is ‘worst case’ propagation in which all possible flight
scenario’s are taken into account. Other characteristics of conflict detection stated in
Table V are: UAV dynamics and Obstacle uncertainty. Both can be taking into account
when detecting a conflict. Finally a distinction is made between binary conflict detection
in which a Boolean (collision/no collision) is calculated and conflict detection in which
a set of safe and unsafe trajectories is calculated.

An example of linear propagation is given by Fiorini & Shiller (1998), in which a Collision
Cone (CC) is constructed to detect a collision. The collision cone can be seen in Figure
5-1. In the figure, Va,b represents the relative velocity between Â and B̂. By drawing

lines from Â tangent to the circle B̂, the collision cone is constructed. When the relative
velocity Va,b lies inside the collision cone a conflict is present. The radius of B̂ depends
on the obstacle sizes of A and B, which are shown in Figure 5-1a. Often a safety region
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(a) (b)

Figure 5-1: Visualization of the collision cone

is added as well. Similar approaches are done by Jongho & Youdan (2012), Watanabe
et al. (2007) and Alejo et al. (2014).

The safety region can be defined around the UAV or the obstacle. A comparison between
the two methods is done by Geng et al. (2013). The two methods are called safety-
ball model and mass point model, which can be seen in Figure 5-2. Geng uses the
collision detection to construct an ’aiming point’ which serves as a temporary waypoint
to avoid the obstacle. This close relation between collision detection and avoidance.
The performance of the two methods is based on the length of the trajectory from which
Geng concludes that the ’safety ball model’ is the preferred method since the length of
the avoidance maneuver is smaller. This is reasonable since to fit a large obstacle into a
sphere, the sphere itself needs to be large. Which results in a larger safety zone for large
obstacles.

(a) (b)

Figure 5-2: Mass Point Model (left) and Safety Ball Model (right)

In a paper from Hrabar (2011) an elliptical shape is fit around the obstacle and a circle
safety region around the UAV. This circle is aligned perpendicular to the flight direction

C.W.M. Nous Performance in Obstacle Avoidance



5-2 Avoidance 65

which is propagated linearly. This creates a cylindrical safety volume for the UAV from
which a collision is checked with the elliptical regions of the obstacles.

A method in which the ’worst-case’ propagation is nicely illustrated is a method by Frew
& Sengupta (2004). The geometric regions defined by Frew can be seen in Figure 5-3.
The yellow rectangle is the obstacle. The purple region is a set of all possible states that
the system can enter from a given state. The blue region is the set of all states which
lead to collision. To account for measurement errors a certain safety margin is added to
the blue region to create the light blue region called the ’unsafe set’. The ’worst-case’
obstacle detection is shown as the green rectangle in the figure. When the UAV is in the
unsafe set a collision will occur.

Figure 5-3: Obstacle (yellow), Detected obstacle (green), Forward reachable set (purple),
Backward reachable set (Blue), Safety region (Light blue)

Finally a method in which a flight path is used to detect collisions is presented by Shah
& Aouf (2009). Shah uses a simple safety distance, if the distance of the flight path with
respect to the obstacle is closer than the safety distance a collision is registered.

5-2 Avoidance

After an obstacle or collision is detected an avoidance maneuver needs to be determined,
this can be done in many ways. In this literature study a division is made based on the
most seen avoidance methods in Appendix V. The following categories will be discussed:
behavior based methods, knowledge based methods, vector field methods and path plan-
ning. Another conclusion from Appendix V can be made which is that most papers do
not discuss the performance of the avoidance method. Therefore only the principle and
implementation will be discussed for each category.
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5-2-1 Behaviour based methods

Principle The first method to be discussed are behavior based methods. In behavior
based methods the sensor identifies a type of environment or condition after which
a certain behavior is selected. These methods include the simplest form of obstacle
avoidance methods in which two scenarios are present: with obstacle and without an
obstacle. An example would be to apply a change in heading (with a predefined value)
when an obstacle is present. The advantage of this system is that the computational cost
is extremely low. Such a method however might not be very efficient. Traveling time
and distance might be larger when applying a simple rule, which can be troublesome
when the power supply is limited.

Often the combination between collision detection and behavior based methods is seen.
The collision detection gives a flag or a set of unsafe trajectories. When an unsafe set is
known also a safe set is known. Often a certain rule is applied to select one of the safe
options. Instead of using a rule to select the velocity vector also a way-point or escape
point can be constructed. This can be done by selecting a point on the edge between
the safe and unsafe set. The latter is sometimes referred to as geometric resolution.

Implementation An implementation of a behavior based method is done in work from
Moufid et al. (2008). Harb detects seven types of environments: corridor, cross roads,
frontal T shaped cross-road, left T shaped junction, right T shaped junction, left corner
and right corner. Based on the detected environment a certain control behavior is
selected such as Keep Right, Pass Cross or Keep Left.

A similar approach is used by Schafer et al. (2005) in which laser range finders and stereo
systems are used to select behaviors such as: KeepDistLeft, KeepDistRight, Evasion
or Obstacle Stop. Another example is given by Delin et al. (2012). In his paper the
behaviors: Hovering, Turning, Forward Flight and Gate Exploration are used to navigate
through an obstacle field. The size of the obstacle-free section determines which mode
is activated. Also in the work of Müller et al. (2014) a behavior based method is used.
Müller makes a distinction between three environments: No wall, one wall and two walls.
If there is no wall present the UAV will hover in its current position. When one wall is
present the distance to the wall is kept constant. With two walls the distance to each
detected wall is equalized.

Another example is given by Fiorini & Shiller (1998). Fiorini creates a set of safe
velocities. To determine which of these velocities is selected three rules are proposed;
highest velocity in line to its goal, maximum velocity within a specified angle α or the
velocity with a minimal risk. Depending on the situation one of the rules is used. A rule
is also applied by Alejo et al. (2014) in which the velocity closest to the desired velocity
is chosen.
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5-2-2 Knowledge based methods

Principle The second type of avoidance method is called knowledge based. Knowledge
based methods are a set of methods which use a ’knowledge base’ to solve the problem.
It can be used to solve a diversity of problems. An example of such a method is fuzzy
based control. In fuzzy based control multiple if/then rules are constructed after which
fuzzy sets are defined to map the input to the output.

Another knowledge based method is a neural network. Neural networks are a (simplified)
mathematical model of the brain. It uses ’neurons’ to perform a mapping between inputs
and outputs. These neurons can be ’trained’ to create the required behavior. The
training can be done online or offline.

A third knowledge based method is reinforcement learning. In reinforcement learning a
specific policy is learned. For each state the optimal control action is determined, this
is done by making using of a reward function. This reward function is dependent on the
interaction with the environment.

Implementation An example of a fuzzy control implementation is given by Dong et al.
(2005). The inputs to the system are the distance and angle to an obstacle, the output
is an angular acceleration. Also in the work form Daŕıo et al. (2014) a fuzzy controller
is used to define the control reference.

An example of reinforced learning is presented by Ross et al. (2013), the policy is trained
by comparing the control policy with the control given by a pilot. In such a way a strategy
is created which is able to successfully avoid obstacles.

5-2-3 Vector field methods

Principle One of the most popular avoidance methods are vector or potential fields
methods. The potential field principle is particularly attractive because of its elegance
and simplicity (Koren & Borenstein, 1991). Detected obstacles result in a repulsive force
or moment as shown in Figure 5-4a. The sum of the forces or potential fields results in
a certain control output.

In a paper from Tilove (1990) an overview of the field is given. As stated in the paper
there are two basic approaches: global and local approaches. In the global approach a
map of the environment is made. In this map each coordinate is assigned a vector(or
a certain potential). The control action is found by searching an optimum path in this
map. In the local approach no map is being made but the vectors are calculated using
the current measurements only.

The forces or potential fields can be defined in several ways. Again two options are
described by Tilove: classical and generalized ways. In the classical option the force or
potential only depends on the position of the robot. Which means that a large repulsive
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(a) (b)

Figure 5-4: Global (left) and local (right) force field methods

force of a nearby obstacle is present even if the velocity vector is not pointing in that
direction. The generalized potential does take the velocity vector into account.

When the potential field is calculated, a control action needs to be determined. Tilove
describes two basic methods to convert the field into a control input: hill climbing and
force control. In hill climbing the robot simply moves in the direction of the resultant
force or in the direction of the steepest descent. In the other method the force is treated
as a physical force acting on the agent resulting in an acceleration. This can be an
angular acceleration or a translational acceleration.

Tilove concludes that a generalized potential field should not be used with hill climbing.
He also states that the biggest downside of force field methods are local minima. When
the resultant force is zero the robot will stay in the same position, but also oscillations
might occur due to the way in which the control and field function interact. Luckily
there are solutions present to solve these kind of issues. To prevent oscillation, damping
terms could be added into the control function, but also more advanced methods have
been developed.

The problems occurring in potential field methods are also discussed by (Koren & Boren-
stein, 1991), in which the Virtual Force Field (VFF) method is analyzed. The VFF is a
global method which uses a 2D grid and a confidence value on each point of this grid to
represent the probability of a point being an obstacle. It uses force control to determine
the output control. Koren states the following problems:

• Trap situations due to local minima

• No passage between closely spaced obstacles

• Oscillations in the presence of obstacles

• Oscillations in narrow passages
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The problems are the same as the ones stated by Tilove, but Koren comes with a solution
which is stated at the end of his paper:

For these reasons we have abandoned potential field methods altogether, and developed a
new method for fast obstacle avoidance. This method, called the Vector Field Histogram
(VFH) method produces smooth, non-oscillatory motion.

The VFH method is explained in (Borenstein & Koren, 1991). The VFH method em-
ploys a two-stage data-reduction technique instead of one. The Cartesian grid used in
the virtual force field is transformed into a one dimensional polar histogram. In the
histogram ’valleys’ are found, these valleys are used to steer the robot. When a robot is
approaching an obstacle head on, the velocity is reduced.

Another method to solve the problem of local minima is stated by Park et al. (2001).
Park solves the problem by making use of simulated annealing. In simulated annealing
a new direction is chosen randomly, this direction will be chosen if the potential is
lower then its current potential. If this is not the case the new direction still might be

accepted based on a probability of e−
∆
T . In which T represent the temperature, when

the temperature is high the probability a higher potential will be accepted is higher.
The simulated annealing is activated when a system is in a local minima. It starts with
a high temperature after which it decreases with a certain cooling rate .

Figure 5-5: Simulated paths from Huang et al.

Implementation In Appendix V six implementations of potential field methods can be
seen. Chen et al. (2013) implements a vector field method by making use of Lyapunov
functions. To determine its performance Chen compares the desired trajectory to the
actual trajectory. In another paper written by Marlow & Langelaan (2011) a local
occupancy grid is used. It uses a generalized function and a ’hill climbing’ approach to
find the control output.

Huang et al. (2006) uses a reactive method and force control to steer the agent. Its
performance is tested on a specific obstacle course which is successfully avoided. Also
the length of the avoidance maneuver is compared between several tuning variables which
can be seen in Figure 5-5
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In a paper from Stowers et al. (2011) no direct performance is measured, but the output
of the algorithm is shown. The last paper mentioned in the table is a work from Kandil et
al. (2010). Kandil uses a reactive general method which uses force control to calculate a
moment that is applied to a helicopter. Unfortunately also in this paper no performance
is being measured.

5-2-4 Path Planning

Principle Another method often used for creating avoidance maneuvers is path plan-
ning. Many approaches exist to solve the path planning problem. A distinction can
be made between local and global path planning. Which is explained by Mujumdar &
Padhi (2011). In global path planning the total path from current position to the goal
is created. In local planning only part of this path is generated.

Several global path planners are mentioned by Mujumdar. The first method mentioned
are so called Graph Search Methods, which search for a feasible path in the given en-
vironment. Methods such as A*, D*, Voronoi graphs or probabilistic road-maps can be
used. The A* method finds the optimal path by expanding the path which has the lowest
cost function. This cost function consist of a path-cost function and a ”heuristic estimate
” of the future path cost-function. The search is ended when the goal is reached and no
other expansions lower the cost function. Other graph searches use similar approaches.

Another method described by Mujumdar is the Rapidly exploring Random Tree (RRT)
method. In RRT a random sample of the environment is generated at each step. The
node that lies closest to his point is selected to grow an incremental distance in the
direction of the random point. If this new node is feasible (collision-free and reachable)
the node is accepted. The iteration continuous until the goal is reached.

The disadvantage of graph search methods and RRT methods is that they require a lot of
memory and computational power. Also the RRT solution is not optimal. To lower the
computational cost, the map used by the algorithm could be represented as quadtrees
(Mujumdar & Padhi, 2011), which is a data structure to represent the environment
efficiently. In this representation the environment is divided unto quadrants until a
quadrant is filled with the obstacle.

As a pure local method Mujumdar mentions Model Predictive Control (MPC). Again
a big research field. Model predictive control performs online optimization over a finite
receding horizon. Collision avoidance is built into the optimization problem by adding
an extra cost term into the cost function. The MPC cost function is represented in
Equation 5-1, which could be optimised using Dynamic Programming (DP).

L(x, u) =
1

2
(xr − x)TQ(xr − x) +

1

2
(ur)

TR(ur) + S(x) + ΣO
l=1P (xv, nl) (5-1)

In this equation the first term is the state of the system(Q), the second term the control
inputs(R), S represent the penalties due to state constraints and P represent the penalty
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of the obstacle. Another survey about path planning from Goerzen et al. (2010) was
mentioned in section 3-3. In this survey similar approaches as the ones set out by
Mujumdar & Padhi (2011) are discussed. The two survey papers give a good overview
of the available techniques but both do not discuss specific implementation. For specific
implementation one can again look at Appendix V.

Implementation One of the papers in the table written by Hrabar (2008) implements
the D* lite graph search method. In this method an initial path is planned which is
updated when an obstacle is detected. The performance of the algorithm was evaluated
by the amount of runs that reached the target. For Hrabar this success-rate was 21 out
of 27.

A method that was not discussed in detail in the previous discussion is implemented
by Yang & Wenjie (2014). Yang uses a genetic algorithm. Genetic algorithms are
randomized search algorithms based on natural selection. A grid is created in which
each node has a value of one or zero. A node is one if it’s part of the path and zero when
it’s not. By using a fitness function several paths are compared, the most ’fit’ paths
are used to create new paths. Two genetic algorithms are compared by Yang and are
evaluated based on path optimality.

Model predictive control is implemented by Joelianto et al. (2013). In which the trajec-
tory and control input are presented. No real flights are being performed and because
of the abstract description of the obstacles it might be hard to implement the method
in real life. In (Lee et al., 2011) a model predictive controller is used as well. The paper
compares MPC with a regular PID controller. Lee concludes that the path of the model
predictive control is more optimal. Another MPC implementation is done by Boivin et
al. (2008), Boivon does not use a penalty in the cost function but avoids the obstacles
by adding constraints to the optimization process.

5-3 Performance evaluation of the avoidance maneuver

So can the information presented in the previous sections be used to answer sub-question
2.2 from section 2-2. First the performance metrics are discussed after which the envi-
ronment metrics will be addressed.

Performance metrics To determine the performance of the avoidance method again
some performance metrics need to be defined. Metrics initially thought of were compu-
tational time, probability of collision and path optimality. These metrics were indeed
found in the literature although most cases do not specifically determine the performance
of the algorithm. Most papers plot the covered distance and additionally plot the states
or the control input. When no obstacle is hit the conclusion is made that the algorithm
works well. Some papers perform multiple runs and determine some sort of success rate.
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Table 5-1: Parameters which influence performance

Behavior Based Knowledge Based Vector fields Path Planning

Fundamental ? ? ? ?

Environment ? ? ? ?

Another often seen metric is the separation distance, which can be seen as a path op-
timality measure. So to conclude three types of metrics are present: The success rate,
path optimality and computational effort. The success rate consist of the percentage of
successful flights. Unsuccessful flights can be split into flights which lead to a collision
and flights which get stuck into a local minimum. There exist some hierarchy in the first
two metrics since path optimality can only be determined for successful flights. Also
from a design perspective the first goal of a system would be to prevent collisions after
which the optimality of the path can be improved.

Environment metrics To determine which environment metrics are relevant for assess-
ing the avoidance performance one could take a similar approach as was done for detec-
tion. For detection the environments for which the sensors are sensitive were selected
and summarized in table 4-3. A similar table could be constructed for the avoidance
methods. Unfortunately the fundamental and environmental parameters are not well
known. These limits are barely discussed in literature and therefore Table 5-1 is filled
with question marks. Instead of describing the limits researchers test the algorithm in a
specific environment, these environments can still serve as inspiration for defining a set
of environment metrics. The environments used by researchers are listed in appendix V.

In appendix 1-2 a distinction is made between real environments and simulated environ-
ments. For simulated environments two types can be observed. In the first type a large
field of obstacles is being created. These can be predefined or created based on random
processes. This difference is also illustrated in figure 3-3, in which an overview of the
OA loop is given. In the figure it can be seen that the performance of the avoidance
part(B), is dependent on the environment conditions B. These conditions can be fixed
but also variable which is represented by ”∆ Conditions B” and the red arrow.

Examples of these variable environments are the Markovian obstacle field from Sebesta
& Baillieul (2012), fast-time Monte Carlo Simulation in (Kuchar & Kuchar, 2005) or the
ergodic forest created in Karaman & Frazzoli (2012). The advantage of such methods
is that the environment can be described using statistical metrics and a relation can be
found between the performance of the obstacle avoidance system and these metrics.

The other type of simulation environment is when only one, maybe two objects are
present. These objects are most of the time sphere or walls. Most of the papers only
use one type of object, which does not say a lot about the performance of the system.
These type of environments often lack a metric to describe the environment.

Also a subdivision can be made for real flight tests. First of all between indoors and
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outdoors. For indoor environments two types exists. One in which a UAV flies through
a hallway and environments in which a specific obstacle course is set out. For outdoor
environments also two options are present. Environments in which a UAV has to fly up
and around buildings and forest environments. Unfortunately none of the papers uses
a metric to describe the environment or a motivation why that specific environment is
used. Also no structured changes in the environment are being made.

So from the environments seen in literature only the randomly generated simulated
environment make use of specific environments metrics. Sebesta & Baillieul (2012) uses
the width of the obstacle and the with of the open space between the obstacle. Which
are practical environment metrics to determine the performance. In Kuchar & Kuchar
(2005) a set of 30 random parameters is used to simulate the environment. Examples of
these parameters are, heading, velocity and miss distance. Finally, Karaman & Frazzoli
(2012) uses a ’tree-density’ to describe the environment.

These metrics and the environments seen in literature were used to come up with a set
of four environments metrics which are explained in the following paragraphs.

1. Length of the avoidance maneuver

The first environment metric specifies the length of the avoidance maneuver. Which is
similar to the width of the obstacle used by Sebesta & Baillieul (2012), it could quantify
the difference between the forest environment and the building environment discussed
previously. The avoidance length can be specified by dividing the length of the path
with obstacles by the length of the path without obstacles. Which is represented as the
Avoidance Ratio (AR) in equation 5-2.

AR =
P ∗

P̂
(5-2)

In equation 5-2, P ∗ represent the optimal path in the obstacle field and P̂ represents
the distance to the goal without obstacles. Another way to specify the length of the
avoidance maneuver is by averaging the minimum distance to avoid obstacles, which is
represented in equation 5-3

DCE =
1

n · r

∫ n

0
sescapedt (5-3)

In which Distance to Closest Escape (DCE) is the average of the escape distance. The
escape distance is the distance between the edge of the projected obstacle (plus the
UAV radius), and the intersection between the obstacle and the goal heading. Which
can be seen in figure 5-6.
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Figure 5-6: Distance to closest escape

2. Density of obstacles

The second chosen metric is the density of the obstacle. This density could be represented
by dividing the amount of obstacles by the total space or surface (dependent if the test is
for 3D or 2D applications). Another way to look at the density of obstacles is to measure
the ease from which one could move from a to b. This can be quantified by selecting
a random point and random direction in the flight space. For this point and direction
the maximum distance which can be flown in a straight line can be determined. The
average of these distances gives a measure of how densely packed the environment is. A
third option is to only look at the closest distances between objects and average overall
neighboring objects. Which is represented in Equation 5-4.

APD =
1

n · r
n∑

0

spassageway (5-4)

In Equation 5-4, the Average Pass-through Distance (APD) is given. In the equation n
represent the amount of passages, r represent the radius and spassageway represents the
closest distance between obstacles.

3. Percentage of dead-ends

The third metric is the percentage of dead-ends. Dead-ends especially increase the chance
of getting stuck in a local minimum and therefore influence the overall performance of
the algorithm.

DEF =
1

πr2

∑
Adeadends (5-5)

The percentage of dead-ends can be calculated using Equation 5-5. In this equation
Adeadends represents the total surface of positions in which a UAV could get trapped
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and r represents the radius of the UAV.

4. Freedom of movement

The fourth metric represents the freedom of movement. An OA task is ’easier’ when a lot
of space is available or in other words when many escape maneuvers are possible. An OA
task becomes more difficult when conducted in a small room. Also an increased velocity
lowers the amount of possible escape maneuvers. This difficulty can be quantified by
adding the amount of states which cause certain collision. To get an idea on how to
calculate such measure one could look at figure 5-7.
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Figure 5-7: Dynamical limits

In this figure the time to collision is plotted as a function of the relative velocity between
the UAV and the obstacle. The available time depends on the distance from which
obstacles can be detected. For detection distances from 1m(red) to 10m(blue), the time
to collision is plotted. The black lines represent specific time durations of an avoidance
maneuver. If the time duration of the avoidance maneuver is larger than the time
to collision a collision will occur. Also more advanced calculation could be done, for
example the work of Karaman & Frazzoli (2012) shows that at certain velocity/density
pairs a collision will certainly happen.

The amount of states at which a collision is certain depends on the dynamics of the UAV,
the velocity and the overall delay in the system. So there is a lot of information hidden
in this metric, but it could give a quantification on how difficult certain environments are.

(5. Curvature of the obstacles)

A fifth optional metric is the curvature of the obstacles. In such a way a distinction can
made between circles and square sized obstacles. But it remains an open question if this
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really increases the difficulty of an OA algorithm. Therefore the focus will be put on the
first four metrics.
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Chapter 6

Conclusion

To develop an obstacle avoidance system for a serving application a method is needed to
determine the performance of such systems. The goal has therefore been set to define,
measure and compare the performance of obstacle avoidance systems. To come up with
such a method a literature survey was conducted to get an overview of the obstacle
avoidance field. Also the methods used to analyze these methods are elaborated.

Many types of obstacle avoidance exist which were summarized in a table. The types of
obstacle avoidance were categorized on top-level aspects; Single/Multiple, Online Nav-
igation/Separate CO and mapping/no-mapping. Next to that the methods where split
based on the type of object it was able to avoid: Static/Dynamic and collaborative/non-
collaborative.

The method itself is split between a detection part and a part which calculates the
escape trajectory. Both parts were investigated to determine which performance and
environment metrics are relevant to asses the performance of the algorithm.

The detection part is split between the type of sensors used. Vision, Infrared, Sonar,
Laser and Radar. Each sensor had its advantages and disadvantages. Also the per-
formance of each sensor is sensitive to different external characteristics. For vision the
light conditions are very important, while for active sensor such as radar and sonar the
inclination of the object is critical. The performance metric used for detection stayed
restricted to distance errors, variances, ROC curves and update rates.

For the determination of the escape trajectory four methods where distinguished: be-
havior based, knowledge based, potential fields and path planning. Also for this part it
can be said that each method has its advantages and disadvantages. Several implemen-
tations were evaluated, but most papers do not discuss the performance of the algorithm
and lack a metric to describe the environment. Some papers have a statistical method
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to describe the environment. The performance metrics seen in literature were success
rate, path optimality/(separation distance) and computational power.
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Additional Results
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1 Overview test scenarios
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Figure 1-1: Traversibility tests
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Figure 1-2: Collision state percentage tests
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Average Avoidance Length
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Figure 1-3: Average Avoidance Length tests

Dead-End Percentage

-5 0 5 10
Y [m]

0

2

4

6

8

10

12

14

16

X
 [m

]

-5 0 5 10
Y [m]

0

2

4

6

8

10

12

14

16

X
 [m

]

-5 0 5 10
Y [m]

0

2

4

6

8

10

12

14

16

X
 [m

]

Figure 1-4: Dead-End Percentage tests
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Figure 1-5: Average Orientation Angle tests
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2 Results of the simulations and real-flight tests

Results of the ’Traversibility’ tests
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Figure 2-6: Results traversibility simulations without noise
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Figure 2-7: Results traversibility simulations with detection noise
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Figure 2-8: Results traversibility simulations with detection and state noise
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Figure 2-9: Results traversibility flight test
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Results of the ’Collision State Percentage’ tests
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Figure 2-10: Results collision state percentage simulations without noise
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Figure 2-11: Results collision state percentage simulations with detection noise
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Figure 2-12: Results collision state percentage simulations with detection and state noise
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Figure 2-13: Results collision state percentage real-flight states
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Results of the ’Average Avoidance Length’ tests
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Figure 2-14: Results average avoidance length simulations without noise
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Figure 2-15: Results average avoidance length simulations with detection noise
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Figure 2-16: Results average avoidance length simulations with detection and state noise
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Figure 2-17: Results average avoidance length real-flight tests
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Results of the ’Dead-End Percentage’ tests
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Figure 2-18: Results dead-end percentage simulations without noise
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Figure 2-19: Results dead-end percentage simulations with detection noise
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Figure 2-20: Results dead-end percentage simulations with detection and state noise
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Figure 2-21: Results dead-end percentage real-flight tests
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Results of the ’Average Orientation Angle’ tests
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Figure 2-22: Results average orientation angle simulations without noise
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Figure 2-23: Results average orientation angle simulations with detection noise
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Figure 2-24: Results average orientation angle simulations with detection and state noise
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Figure 2-25: Results average orientation angle real-flight tests
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3 Bootstrap hypothesis test

Confidence intervals
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Figure 3-26: Bootstrap analysis

Hypothesis test

TABLE: Hypothesis test between two avoidance methods with a certain collision percentage.
#No significant difference, Xsignificant difference.

0 20 40 60 80 100

0 # # X X X X
20 # # # X X X
40 X # # # X X
60 X X # # # X
80 X X X # # #

100 X X X X # #

C.W.M. Nous Performance in Obstacle Avoidance
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Table 1-3: Overview table Kuchar et al.
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Table 1-4: Overview table Bonin-Font et al.
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Table 1-5: Table Goerzen et al. without constraints
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Table 1-6: Table Goerzen et al. with constraints
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Table 1-7: Comparison using three performance measures
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