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Abstract

The behavior of software systems can be modeled as state machines by looking at the log data from
these systems. Conventional algorithms, such as L∗, however, require too much memory to process
log data when it gets too large. These algorithms must first load all available data into memory,
which is often way too much.

The approach investigated to deal with this large amount of data is to load the data instead in an
on-disk database. The thesis researches the viability of this approach and proposes an algorithm for
it.

When log data is present in a database, a state machine can be constructed iteratively by gradually
querying more and more data from the database. Each time more data is gathered, partial data can
be used to construct a hypothesis for the state machine in question. Such an approach is thus a
combination of an active learning part that queries more data and an passive learning part that
constructs the state machine from partial data.

Database technologies can contribute to what such an algorithm should look like. Given the vast
landscape of different database technologies, some can shape what kinds of queries can be more
efficiently executed. This should be taken into account when constructing an algorithm that queries
data from a database to construct a state machine.

This thesis starts with an overview of the existing state machine learning algorithms and relevant
database technologies. Then a new algorithm is proposed and it is tested on different datasets and
compared with existing algorithms.



Preface

After almost 10 years, this thesis concludes my academic career at the TU Delft. It was long enough.
After a setdown during the Corona pandemic, I was looking to go back to the basics. I was looking
for a project that was closer to the core of computer science.

This project fitted perfectly with what I had in mind. On top of that, in the meantime I was able to
learn a programming language that is the basis of many of our useful technologies.

As this thesis is an investigation in a fairly new research direction, I mostly tried to write it as an
introduction to all its moving components. This thesis thus could act as a good starting point for
anybody starting a similar project continuing my work. This thesis is thus not only a scientific
report but also an engineering manual.

Preliminary results from the thesis have also been submitted to the LearnAut24 workshop at ICALP in
Tallinn (Estonia), 7th of July 20241. If accepted, I will also have the opportunity to present this work
to experts in the field at this workshop. The paper is included in this thesis after the introduction.

For the people that are reading this because they are pursuing this research direction, I wish them
good luck. You are free to reach out to me if you have any questions. And for those that are reading
this because they have to grade me, I wish you fun reading.

“Learning is all about forgetting.”

Colin de la Higuera - Grammatical Inference (2010)

Hielke Walinga
hielkewalinga@gmail.com
May 2024
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CHAPTER 1

Introduction

1.1 Relevance

In software engineering and cybersecurity, state machines can serve as models for a software system.
How the software system can behave is concisely captured within such a state machine. These state
machines provide a model to reason about the software systems. This model can help to either
find bugs or monitor any unexpected behavior of the software system as a means to protect against
malicious agents in a cybersecurity setting.

A state machine, or specifically a deterministic finite-state machine (DFA), is a mathematical model
consisting of a finite number of states with transitions between them. This machine can be applied
to model what output to expect from a system given a certain input. Another application for a state
machine is to mathematically describe a formal language. For an arbitrary string, the state machine
can be used to tell if that string is part of the language this state machine describes.

After the state machine is constructed for a software system, it proves to be versatile in its usage.
With the statemachine, we can seewhere unexpected transitions are different from the specifications
of the system. This could indicate that there is a bug in your system. We can also test using a state
machine if previous behaviors of the system are not expected and thus can indicate something
malicious. Thus, these state machines can be used to test software systems [1], to look for cyber
attacks [2, 3], to check protocols [4, 5], to reverse engineer protocols [6, 7], or to verify the correctness
of implementations, such as web protocols [8], X11 programs [9], TCP [10], or SSH [11].

Learning such state machines often involves analyzing the output of software systems. For software
systems, there is often log data to look at, but the state machine can also be learned by actively
providing data to the software system to see how it reacts. The amount of data needed to learn a
state machine can be significantly large. So much so that it often cannot be loaded into memory.
However, this data consists of lots of similar data. It also often contains very repetitive structures
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1.2. Context Chapter 1. Introduction

in the data. Finding ways to extract useful information quickly will greatly improve how fast we
can learn state machines from large amounts of data.

This thesis is focused on these ways of learning state machines from very large datasets. It explores
database-based strategies to solve the problems large sets of data entail, by constructing clever
queries to the database to use while learning the state machine.

1.2 Context

Algorithms to infer DFA’s can be divided into two categories. One is active learning, online algorithms
that construct the state machine by actively providing clever inputs to the system and, during that
process, learn the state machine. The other is passive learning, offline algorithms that process a large
amount of inputs and outputs, and infer from that data the underlying states. Active learning has the
disadvantage that the system has to be present to be interrogated during learning. Passive learning,
on the other hand, will often require a substantial amount of data to cover all parts of the system since
you do not have access to the system to explore its unknown territory. Thus for passive learning, all
the initial datamust already provide all the information to construct the corresponding statemachine.

In active learning, you learn the state machine of your system by querying the system you are
interested in. The system here is often a software system and is called the system under learn
(SUL), or sometimes the system under test (SUT). Instead of randomly asking queries to the SUL,
the goal is to only ask specific queries for the information you do not know already, and thereby
limiting the number of queries you ask. This can be used only if a system is available for querying
when learning the model.

Passive learning algorithms utilize a fixed set of traces available to the learner to derive the state
machine from. Due to the fact that learning DFAs from trace data is NP-hard [12], passive learning
algorithms necessitate some kind of heuristic method to be performant. It is thus a goal of passive
learning to identify from a given set of traces, and in accordancewith Occam’s razor, the smallest state
machine that best explains that set of traces. The inherent challenge here is to find a significantly
compact state machine that explains the set of traces well enough without over-fitting to the given
dataset. It is not required to find the smallest state machine to explain the data, but size can be
seen as a performance criterion [13].

1.3 Research gap

Instead of using passive learning algorithms on passive data, we can also use active learning
algorithms that ask questions on the passive data. Here, the passive data acts like the system under
learn without the actual system present, and the passive data does not have to be processed
completely. This can be seen as active learning on passive data.

This allows us to comfortably learn from very large data, as this data can be saved in the database
without utilizing an enormous amount of RAM, and forwhich its query performance scales reasonably
well. Saving to the database and indexing can be seen as a form of pre-filtering on the data. With

8
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the use of clever indexing structures and modified active learning algorithms, we can still learn
state machines from this data in a reasonable amount of time.

The problem this entails is that active learning algorithms often assume that all queries can be
answered fully. However, now there is only partial data available. The algorithms we use, therefore,
should be able to deal with this missing data. In essence, the database provides here what the iMAT
teacher would be (see section 25) [14].

This approach also brings more possibilities on what kind of queries we can ask the database. If the
database is cleverly designed, we can ask more advanced queries directly on the database that can
aid the algorithm in learning the state machine more efficiently.

1.4 Research questions

Our main research question is if this way of learning state machines is possible. This research
question thus boils down to the following:

How can we learn state machines from large sets of trace data using a database?

This question has subquestions. First, we want to look into what kind of queries can we efficiently
ask this database, thus:

RQ1: What kind of queries can we ask a database to learn state machines?

Then, how can we learn from such a database? We look for how to construct an algorithm that
can learn with these kinds of queries, thus:

RQ2: What kind of algorithm can we use to learn a state machine from a database?

Lastly, we want to check the performance of this algorithm. This means we first have to figure out
how to do this and then measure the performance on some datasets.

RQ3: How can we measure the performance of such an algorithm, and how do these
proposed algorithms perform?

1.5 Methodology

First, the current state of state machine learning is given with a description of important algorithms.
Then, an overview of the design of the database and what queries it can answer is given. Second, an
outline of the algorithm that can make use of these queries is given. Subsequently, this algorithm
with the database is tested on various test datasets.

9
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1.6 Contributions

This thesis gives an extensive description of the moving parts this project entails. This includes a
literature review of state machine learning in general, including a focus on specific research related
to the approach to the problem of this thesis. This also comes with a section on the technologically
important details of databases, as this is important for our research.

This project also contributes a component in the FlexFringe active learning part framework that
can load traces in a database and learn from it. The component is made inside the active learning
framework, and the SUL class is wired to a database. This will also make part of the implementation
reusable and extensible for further research.

What now follows first is a scientific contribution in the form of an extended abstract submitted
and accepted to the LearnAut24 workshop at ICALP. This paper contains a brief summary and some
preliminary results. More extensive results can be found in chapter 4 on page 48.

10
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Abstract

This paper presents DAALder (Database-Assisted Automata Learning, with Dutch suffix
from leerder), a new algorithm for learning state machines, or automata, specifically
deterministic finite-state automata (DFA). When learning state machines from log data
originating from software systems, the large amount of log data can pose a challenge.
Conventional state merging algorithms cannot efficiently deal with this, as they require a
large amount of memory. To solve this, we utilized database technologies to efficiently query
a big trace dataset and construct a state machine from it, as databases allow to save large
amounts of data on disk while still being able to query it efficiently. Building on research in
both active learning and passive learning, the proposed algorithm is a combination of the
two. It can quickly find a characteristic set of traces from a database using heuristics from
a state merging algorithm. Experiments show that our algorithm has similar performance
to conventional state merging algorithms on large datasets, but requires far less memory.

Keywords: Active/Passive state machine learning, Incomplete Minimally Adequate Teacher

1. Introduction

Automata can be helpful models for analyzing software systems. For example, state machines
have helped to analyze software for web protocols (Bertolino et al., 2009), X11 programs (Am-
mons et al., 2002), and SSH (Fiterău-Broştean et al., 2017). They have also helped to
test software systems (Hagerer et al., 2001), to check software protocols (Cho et al., 2011;
Comparetti et al., 2009), or for reverse engineering (Antunes et al., 2011; Cui et al., 2007).

Finding a corresponding state machine for a software system is a grammatical inference
problem (de la Higuera, 2010). Techniques for inferring the state machine can be divided
into two categories. One is active learning, algorithms that construct the state machine by
providing clever inputs to the system and, during that process, learn the state machine (An-
gluin, 1987). The other is passive learning, algorithms that process a large amount of inputs
and outputs, and infer from that data the underlying states (Cook and Wolf, 1998).

A problem for passive learning is that all input data has to be present at the start. This
leads to a very large memory footprint at the start because usually, all data present is used to
construct an observation tree (a PTA, prefix tree acceptor). Solutions for this problem could
be sampling the initial data, or learning the automata using a streaming approach (Balle
et al., 2012, 2014; Baumgartner and Verwer, 2022, 2023; Schmidt and Kramer, 2014).

In this paper we present the algorithm DAALder that is a combination of active and
passive learning. Instead of loading all the available data in memory, the data is saved on
disk in a database. Databases allow for efficient querying of the data and frequently is the
original data source. Especially when learning from software logs, the logging information

© 2024 H. Walinga, R. Baumgartner & S. Verwer.
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is frequently stored in a large distributed database, for example, the very popular Splunk
database1. We develop a type of active learning algorithm that, instead of asking membership
and equivalence queries, asks database queries to iteratively construct a state machine.

A key benefit of our approach is that membership queries in traditional active learning
ask for a very specific set of traces. It is likely that several of the asked traces are not
present in the collected data. In this case, it is unclear how to proceed. There is research
on active learning algorithms in a setting where not all queries can be answered. In these
settings, the teacher, the component that answers the query, is referred to as an inexperienced
teacher (Leucker and Neider, 2012) or incomplete teacher (Moeller et al., 2023). These
approaches rely on SAT solving (Grinchtein and Leucker, 2006; Moeller et al., 2023), use
containment queries (Chen et al., 2009), or loosen L* with weakened concepts (Grinchtein
et al., 2006). All these approaches have the CSP (constraint-satisfaction problem) (Biermann
and Feldman, 1972) as a basis for their own approach (Leucker and Neider, 2012). Relying
on SAT solvers, however, can take a lot of time (Moeller et al., 2023).

Intuitively, our approach avoids asking for this specific set of traces, which eventually
forms a characteristic sample (de la Higuera, 2010). For passive automaton learning
algorithms, the presence of such a sample in the data implies that greedy algorithms such
as RPNI (Oncina and Garcia, 1992) are guaranteed to find a model for (converges to) the
target language (that is assumed to have generated the data). There exist many possible
characteristic samples, but traditional active learning only constructs a specific one. Our
main goal is to use a combination of active and passive learning such that the algorithm
converges to the target when any characteristic sample is present in the database, while
observing only a fraction of the data. Our contributions are:

• A new algorithm, named DAALder, to learn a state machine from a database of traces.

• An implementation2 of this algorithm in the state merging software package FlexFringe
(Verwer and Hammerschmidt, 2017, 2022).

• Results on the performance of DAALder compared with a conventional EDSM
(Evidence-Driven State Merging) algorithm on datasets of increasing size.

2. Algorithm Description

2.1. Queries

For conventional active learning, the membership query and the equivalence query exist. In
practice, it is not feasible to perform an equivalence query exactly. Often, a randomized search
is employed, which is also done for this implementation. (See Appendix A.1.) Membership
queries are used to grow the model. A membership query returns given an input sequence
(a trace) its output symbol. However, using a database enables us the freedom to design
queries that are more powerful than membership queries, yet easy to compute.

The novel query used in this algorithm is the prefix query. This query is noted as
PrefixQuery(t, n, k) with t being the prefix trace, n being the max size of the returning
traces, and k the amount of traces to return. This query returns up to a number of k traces

1. https://www.splunk.com/
2. Available after acceptance of the paper in https://github.com/tudelft-cda-lab/FlexFringe

2



Database-assisted automata learning

alongside their output symbol that has t as their prefix. Parameter n can limit the result by
their length to explore only a specific depth. Implementation details in Appendix A.2.

2.2. Algorithm: DAALder

DAALder, the algorithm presented here, is a form of a state merging algorithm in the
red-blue-framework (Lang et al., 1998). However, instead of constructing a PTA directly
from all the data available, it is constructed iteratively using the at that moment available
traces from the complete data that the algorithm deemed informative.

L# (Vaandrager et al., 2022a,b) was a large inspiration for DAALder. Just like the L#

algorithm, DAALder works directly on a PTA data structure (or observation tree). This
gives rise to an efficient way to search for new states and generate hypotheses.

2.2.1. Outline

Pseudocode and an outline of DAALder are found in algorithm 1 and in figure 1, respectively.

DAALder uses a state merging routine similar to L#. It performs multiple rounds of
state merging, each time with more data. Occasionally, it will present a hypothesis to the
oracle in the hopes of providing the correct hypothesis.

From EDSM, we know that information on the traces that pass through nodes can be
used to determine whether two nodes are equivalent and, thus, can be merged. Given some
scoring heuristics, merges can be compared, and when a merge has the largest score, the
merge is likely merging equivalent states (Lang et al., 1998).

DAALder uses these exact scoring heuristics to, next to selecting merges, also guide
what queries it should ask. If during merging, for the same blue node, merges with a similar
score are encountered, those merges are put on hold. Instead of selecting one of these
uncertain merges, it asks for more data for the nodes involved in them and thus providing
the inconclusive nodes with more information. (in DAALderProcessUnidentified)

DAALder will then ask prefix queries for the nodes involved in these uncertain merges.
Traces returned by these queries will contain more information for the scoring heuristics
when calculating scores again for those nodes. Traces gained by this are added to the
observation tree whenever a new merging routine is started. This new data can then be used
to be more certain about merges to perform in the new round that previously were doubtful.

After merging, DAALder can either present its hypothesis to the equivalence oracle or
reset the tree and start a new round of merging. If there had been a lot of new information,
it is wise just to reset the tree, because a lot of new information might imply the current
hypothesis is wrong and the oracle takes much time. If presented to the oracle, the oracle
can answer ”yes” or present a counterexample to be processed, and the tree is also reset.

In the end, when it finds a sufficiently correct state machine, it has gathered a subset of
traces that contain enough information to construct a correct hypothesis. This is a so-called
characteristic set of traces (de la Higuera, 2010), or tell-tale set (Angluin, 1980).

DAALder is thus a combination of active and passive learning. It performs a search
strategy to find new information based on the state-of-the-art active learning approach from
L# and the highly flexible state-of-the-art implementation of passive learning state merging
algorithms from FlexFringe. This also means that all variations and hyperparameters on
state merging available in FlexFringe are also directly available to DAALder.
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Algorithm 1: DAALder algorithm

Data: A set of traces with an output label
Result: A hypothesis H consistent with the provided traces
Initialize: T a PTA (observation tree) with red core S and blue fringe F
Initialize: S red core nodes, initially with a root node
Initialize: F blue fringe nodes, initialize using some random traces
Loop

state isolated ← false
unidentified ← ∅ (The blue states without merge candidate)
all merges todo ← ∅ (Merges to do, to make the hypothesis state machine)
foreach p ∈ F do

possible merges ← 0
merge candidate ← ?
foreach q ∈ S do

if CheckConsistency(p, q) then
possible merges ← possible merges+ 1
merge candidate ← q

end

end
if possible merges = 1 then

all merges todo add(p, merge candidate) (identified node)
end
if possible merges = 0 then

DAALPromote(p)
state isolated ← true

end
if possible merges > 1 then

unidentified add p (Investigate these states more)
end

end
(explore more, merges todo) ← DAALProcessUnidentified(unidentified)
all merges todo ← all merges todo ∪ merges todo

if explore more or state isolated then
continue (Investigate the added traces and/or a new fringe/frontier)

end
H ← BuildHypothesis(T , all merges todo)
σ ← EquivalenceOracle(H)
if σ then

ProcessCounterExample(T , σ)
continue (Did not found the solution yet)

end
return H (Solution found!)

end

DAALProcessUnidentified and ProcessCounterExample add new traces to the observation tree.
In our implementation DAALProcessUnidentified asks for more information on nodes when the
highest merge score is less than twice the second-largest merge score.
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Start DAALder
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on a PTA

Process uncertainties:
Ask more information
by for example asking
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e.g. randomized query

streaming
Solution found
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prefix query on all new
nodes created by the

counterexample

Figure 1: Graphical representation of DAALder

2.2.2. Explore vs exploit

Besides the choice of state merging heuristics, DAALder provides another way to tweak
its inner workings. This is the DAALProcessUnidentified subroutine. Here, a choice
must be made between adding more data to combat uncertainty or being more daring and
asking the equivalence oracle earlier. This is a choice between exploration (by asking for
more data) and exploitation of the current data (by asking the equivalence oracle). Asking
the equivalence oracle could be a time-consuming process, but so could be asking for more
data, in addition to the memory required to add the data to the observation tree.

3. Algorithm Evaluation

3.1. Data generation

Artificial trace data has been generated by a modified version of FSM-learning from
Giantamidis et al. (2021) available at https://github.com/hwalinga/FSM-learning. The
program is modified to use JSON serializing instead, as its binary format did not work on
Linux. It is also modified to use a streaming approach to output data instead of writing it
at the end of the execution of the program to reduce memory requirements.

Artificial state machines were generated with gen moore.py. The input and output
alphabet were both set to a size of two. The number of states was set to two hundred.
Giantamidis et al. (2021) took inspiration from (Lang et al., 1998) for this program.

The generate program was used to generate traces. The program generates the traces
using a random walk and maintains frequencies of states visited before which it uses to
calculate probabilities of states to visit next during its random walk.
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Every single dataset had its own randomized state machine. The sizes for the datasets
varied from 625 unique traces to 40.960.000 unique traces for the train data. The test set
had a fixed amount of traces of 1.000.000.

3.2. Experiments

The DAALder algorithm is compared with the FlexFringe implementation of EDSM (Evidence
Driven State Merging). For configuration see Appendix B. EDSM is run with low memory
(capped at 16GB with cgroups) and high memory (70GB). These tests show EDSM’s response
to using swap memory. To test the exploration-vs-exploitation balance for DAALder, its
hyperparameter k (see section 2.1) was set at 10, 100, and 1000.

Memory usage in the experiments was measured as virtual memory. This includes the
swap memory. The memory was measured using ps -U postgres -o vsz while running
the algorithms under the postgres user as well. This way, we also include any memory
allocated by the database engine itself.

4. Results

Figure 2 and 3 show the results of the experiments. Figure 2 depicts the relationships
between the amount of traces versus the time the algorithm took to finish and the memory
used by the algorithm, Figure 3 depicts the traces eventually included in the model (for
DAALder) and the percentage that this is of all the traces in the dataset.

Both EDSM and DAALder with the different parameters scored equally well on accuracy.
The algorithms scored perfectly for 80k traces or higher, and for the datasets with 40k and
lower, they scored just as good as guessing (50%).

Some data is missing because for EDSM the biggest datasets ran out of memory (even
using swap), trying to allocate more than 100 GB. For DAALder data is missing around
the 40k data points mark because running it took over 10+ hours and we choose to kill
the program. There are also no data points for memory reading for EDSM for the smallest
datasets, as the program was too quickly done for a memory measurement to finish.
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5. Discussion

5.1. Solvability point

As remarked earlier, there was a clear tipping point in the experiments based on the accuracy
scores. After the 40k data mark, all algorithms scored 100% on accuracy; before that, they
were just as good as just guessing the output class. This means that the sampled data is
after this point now big enough to contain a characteristic set (de la Higuera, 2010). This
amount of data seems to be the solvability tipping point for the algorithms on these kinds
of datasets.

After the solvability point, the EDSM algorithm’s runtime drops briefly. It can now
make the correct automaton, whereas before, it was heavily overfitted on the sparse data it
had to work with, reporting a hypothesis with many more states than necessary. It can also
be seen in the log files that there is no ambiguity in merges to be made anymore. That is,
after the solvability point, there is always only one possible merge.

Around the solvability tipping point, DAALder performs the worst in terms of runtime.
It took so long to finish that it had to be shut down before finishing. As there is not enough
data yet to arrive at a solution, DAALder iteratively keeps including more data until (almost)
all data is included. This takes a lot of time. This can also be seen in figure 2, where there
is a clear peak around this point at the 40.000 traces mark.

5.2. Memory usage

When EDSM runs out of RAM memory, it resorts to swap. This behavior is very visible for
the large datasets between the low and the high memory setups. When EDSM had to resort
to swapping, its runtime increased more steeply. The slope for this increasing runtime was
also significantly more than for DAALder for the largest datasets. However, it seems that
EDSM would perform on par with DAALder if given enough RAM.

The memory usage of EDSM increases exponentially. So much so that not all experiments
could be completed for EDSM. For DAALder, the memory usage remained equal at just a
few GBs. This can be explained by the fact that DAALder ensures that just enough traces
are included to create a correct model. In fact, when k was set to 10, the by DAALder
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selected set of traces was around the same size as the sample size around the solvability
tipping point. Thus, if explore settings are not too aggressive, DAALder is indeed able to
select a set just large enough of the most informative traces to represent the state machine
it tries to learn.

5.3. Finding a characteristic set

It is important to note that these tests were run on data from a statistical uniform sampler.
The effect of this is that for a random sample, the minimum size that contains a characteristic
set is much smaller, than if the data was generated with a non-uniform sampler. If some
transitions of the automaton are only described by a set of rare traces, these are less likely
to be found in random samples of this data. For those datasets, sampling data would not be
a viable strategy.

For our uniform sampled data, DAALder used a set of traces that is somewhat equal in
size to the sample size at a solvability tipping point. However, for a different dataset with
traces that traverse its state machine non-uniformly, we expect that DAALder is able to
find a much smaller characteristic dataset, than the sample size that would be required if it
was randomly sampled.

5.4. Effect of k

Increasing k (including more traces for each prefix query) for DAALder had the effect of
also ending up with more traces in the end (and thus also more RAM). For the sparse
datasets, the runtime decreased with increasing k. However, when the datasets grow larger,
and sparsity decreases, the runtimes for different values of k are very close to each other. It
seems that if sparsity decreases, a smaller set of traces from a prefix query is just as well
able to distinguish a state as a larger set of traces from a prefix query.

6. Conclusions and Future Work

This paper presents DAALder, a new algorithm combining previous work on active learning
and passive learning. It shows that this algorithm is faster than conventional state merging
algorithms, when these algorithms do not have enough RAM memory for very large datasets.

Future work requires checking how well DAALder performs on different kinds of datasets
and state machines. It will focus on researching different approaches to the explore-exploit
balance, and finding what works best on these different datasets, and eventually learning
from real-life datasets.

What is also of interest, is if we can increase our toolbox of queries. Designing different
kinds of queries that are optimized by different database technologies, opens up more possible
state machine learning algorithms that operate on trace databases.

One of these is to perform an equivalence query directly on the database. Although
regular expressions can be executed on databases, these implementations do not scale.
Furthermore, a consistency test can also directly be evaluated on the database for two states
by comparing the prefix queries of the two access traces with each other.
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Appendix A. Implementation details

A.1. Randomized query

Instead of checking a random primary key one by one, this can be done much more efficiently
by using a pseudo-random streaming approach using libpqxx based on the PostGreSQL
COPY protocol. (https://web.archive.org/web/20231212092242/https://pqxx.org/
development/libpqxx/#2023-01-12-at-last-faster-than-c)

A.2. Prefix query

The prefix query is implemented as follows:

1 SELECT * FROM table WHERE trace LIKE :'t' || '%' AND LENGTH(trace) < :n LIMIT :k;

Snippet 1: Select k traces that start with t and are shorter than n.

The prefix query can be sped up using the SP-GiST indexing, which is a similar data
structure to a PTA, but optimized for disk usage (Eltabakh et al., 2006).

Appendix B. EDSM parameters

EDSM is run with parameters defined in ini/edsm.ini. This specifies that there are no
sink nodes and there is no lower bound. In addition, only the blue node that currently has
the most amount of traces following it, is considered for a merge, or a promotion to a red
node if no merges are available to it.

Appendix C. Setup

The tests are run on a Dell PowerEdge R710 with an Intel Xeon CPU E5620, Seagate
ST3146356SS, and Hynix HMT151R7BFR4C-H9 memory sticks. Memory speed was mea-
sured with sysbench as well as the hard disk read speed with mode rndrd. The CPU speed
was measured under stress from /proc/cpuinfo. The performance is a memory speed of
4100 MiB/s, an HDD random read speed of 2.7 MiB/s, and a CPU speed of 2527 MHz. The
computer ran with Ubuntu 22 and postgresql 14.11, libpqxx 7.9.0, and clang 16.0.6.
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terministic automata from data streams. Machine Learning, 96(1):99–127, July 2014.
ISSN 1573-0565. doi: 10.1007/s10994-013-5408-x. URL https://doi.org/10.1007/

s10994-013-5408-x.

Robert Baumgartner and Sicco Verwer. Learning state machines via efficient hashing of
future traces, July 2022. URL http://arxiv.org/abs/2207.01516.

Robert Baumgartner and Sicco Verwer. Learning state machines from data streams: A generic
strategy and an improved heuristic. In Proceedings of 16th Edition of the International
Conference on Grammatical Inference, pages 117–141. PMLR, July 2023. URL https:

//proceedings.mlr.press/v217/baumgartner23a.html.

Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Automatic
synthesis of behavior protocols for composable web-services. In Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC/FSE ’09, pages 141–150,
New York, NY, USA, August 2009. Association for Computing Machinery. ISBN 978-1-
60558-001-2. doi: 10.1145/1595696.1595719. URL https://dl.acm.org/doi/10.1145/

1595696.1595719.

A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines from
Samples of Their Behavior. IEEE Transactions on Computers, C-21(6):592–597, June
1972. ISSN 1557-9956. doi: 10.1109/TC.1972.5009015. URL https://ieeexplore.ieee.

org/abstract/document/5009015.

Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Learning Minimal Separating DFA’s for Compositional Verification. In Stefan Kowalewski
and Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 5505, pages 31–45. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. ISBN 978-3-642-00767-5 978-3-642-00768-2. doi: 10.1007/978-3-642-00768-2 3. URL
http://link.springer.com/10.1007/978-3-642-00768-2_3.

Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun
Wu, and Dawn Song. {MACE}: {Model-inference-Assisted} Concolic Exploration for
Protocol and Vulnerability Discovery. In 20th USENIX Security Symposium (USENIX
Security 11), 2011. URL https://www.usenix.org/conference/usenix-security-11/

mace-model-inference-assisted-concolic-exploration-protocol-and.

10



Database-assisted automata learning

Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda.
Prospex: Protocol Specification Extraction. In 2009 30th IEEE Symposium on Security and
Privacy, pages 110–125, May 2009. doi: 10.1109/SP.2009.14. URL https://ieeexplore.

ieee.org/abstract/document/5207640.

Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes
from event-based data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, July 1998. ISSN 1049-331X. doi: 10.1145/287000.287001. URL https:

//dl.acm.org/doi/10.1145/287000.287001.

Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer: Automatic Protocol
Reverse Engineering. USENIX Security Symposium, pages 1–14, 2007.

C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. CUP, 2010.

M.Y. Eltabakh, R. Eltarras, and W.G. Aref. Space-Partitioning Trees in PostgreSQL:
Realization and Performance. In 22nd International Conference on Data Engineering
(ICDE’06), pages 100–100, April 2006. doi: 10.1109/ICDE.2006.146.
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CHAPTER 2

Background

2.1 State machines

State machines are also known as finite state machines (FSM) or finite state automata (FSA). These
are formally defined as a set representing the alphabet, a set of states, a function that shows an
output for all states, and a function that shows the transitions for input. Variations exist for how the
output is constructed with the state machine. For a finite state machine, the only two outputs are
accepting and rejecting outputs based on what state the state machine is currently in. For a Moore
machine, the output of the current state can be anything. In comparison, for a Mealy machine, the
output is not only dependent on the current state but also on the previous transition [15].

The finite state machine can be mathematically represented as the tuple (Q, I, δ, λ,O) with:

1. Q is the set of states, including the initial state q0 ∈ Q.

2. I is the alphabet of the input sequence. Where I∗ is used to indicate the set of all finite strings
that can be constructed from this alphabet.

3. δ is the transition function that maps the state transitions given the input: δ : Q× I → Q.

4. λ is the output function that maps each state to an output: λ : Q→ O.

5. O is the set of all possible outputs of each state.

Note that for a simple FSM, the output is just accepting or rejecting thus,O contains only 2 items,
as opposed to the Moore machine, where O can be of arbitrary size. For a Mealy machine, the
transition function and output function are combined, as the output is also dependent on the last
input, thus ⟨δ, λ⟩ : Q × I → O × Q.

State machines can be divided into two types, the deterministic one and the non-deterministic one,
abbreviated with DFA (deterministic finite-state machine) and NFA (non-deterministic finite-state
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Figure 2.1: An example of a state machine that rejects strings with two consecutive b’s. The double
border indicates an accepting state, and the order state is rejecting. Only when two consecutive
symbols are both b, a rejecting state is reached, and you remain there.

machine). For a state machine to be identified as a deterministic one, all of its transitions must be
uniquely defined by the source state and the inputs that follow after arriving at the source state.
An NFA can be transformed into a DFA, but that would result in exponentially more states. For the
purpose of this thesis, only deterministic machines are considered.

Augmenting weights to the transitions of a state machine gives rise to a probabilistic deterministic
finite-state automaton (PDFA). The weights denote the probability of a transition and can be used,
for example, to identify rare transitions within a system. The output of a PDFA is no longer a
set but a function that can assign probability to a set of transitions instead of either rejecting or
accepting it. This allows us to determine if a system is experiencing a very rare set of transitions
but not an impossible one.

2.2 Inference

A pivotal concept in these learning algorithms is the concept of Myhill–Nerode congruence. The
Myhill-Nerode congruence signifies that if two starting strings in a regular language have no
extensions that can distinguish the two, then these two strings must be equivalent in the context of
the language. This means that they end in the same state in the corresponding state machine. We
can also state that all future responses will be the same for two “states” that are Myhill-Nerode
equivalent (or simply equivalent). We also say that these strings are then the access traces for these
states. The Myhill-Nerode theorem further states that if all the strings can be divided into a finite
set of equivalence classes, the language for those strings is regular. If all the equivalence classes are
then found, all the states for the corresponding state machine are also found, establishing a bijection
between regular languages and their corresponding minimal state machines [16]. During inference
of the state machines, in essence these equivalence states are the ones that are searched for.

2.2.1 Active learning

MAT

The most prevalent framework for active learning defines the SUL as the minimally adequate teacher
(MAT). This MAT can only answer the result of a trace from a system (a membership query) or if the
current hypothesis correctly represents the system (an equivalence query). With these different
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kinds of queries alone, themodel can be learned in a polynomial amount of queries [17]. However, the
equivalence query is not trivial to implement and, in practice, will often take a lot of time to answer.

L∗ algorithm

The first developed active learning algorithm is the L∗ algorithm. It iteratively builds and extends
an observation table, which can be used to construct a state machine.

The observation table keeps a set of strings as rows and columns. When building the automaton, the
rows represent the access traces of the states (STA), and the columns represent the experiment set
(EXP). The latter are extensions to the access traces, and they are used to find equivalent strings.

When the content of the table is filled, you can define two different sets of rows of the STA. The
content of the table is the result of the query combined from the access trace and the extension
sequence (OT : STA × EXP). The access traces can then be divided into the Red and Blue states,
where the Red states all have different results for the extensions and thus are the different states
in the resulting state machine. The Blue states are states that have a state in the set of Red states
that have the same outcome for the experiments. When the results in the row for two access traces
are the same, these are called equivalent.

Here follows a brief overview of the L∗ algorithm highlighting some differences from the original
as presented by Angluin [17]. L∗ originally was designed just for learning FSM, but with some
adjustments, it can also learn Mealy machines [19].

First, the observation table must be closed. That means that for every Blue state, there must be an
equivalent Red state. If this is not the case, that Blue state must be promoted to be a Red state. Then,
add all the single-letter extensions of the promoted access trace to the set of Blue states.

Figure 2.2: An iteration on an observation table and the resulting state machine. It learns the state
machine from figure 2.1. The λ indicates the empty string. Image courtesy to de la Higuera [18]
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Next, the observation table must be consistent. That means that for every pair of Red states, the
possible extensions must also be equivalent. Thus ifOT [s1] = OT [s2] butOT [s1a][e] ̸= OT [s2a][e],
then we know that ae must be added to the experiment set.

Finally, when the equivalence query presents a counterexample, this must be processed. In the
original paper presenting L∗, all the prefixes of the counterexample were added to the Red set.
However, by utilizing some clever counterexample processing introduced in later adaptations of the
L∗ algorithm, only the exact data that makes the hypothesis wrong can be added to the observation
table, which can also take into account the consistency check directly. In the classical L∗ learning,
prefixes of the counterexample were also added to the Red states, but by keeping only equivalent
classes in the Red states, any inconsistencies are not introduced. For example in Shahbaz and Groz
[19] a method is proposed that splits the counterexample by removing the longest known prefix that
can be found in the current access traces and adding all suffixes of the remaining trimmed suffix to
the experiment set. Another example in Rivest and Schapire [20] uses binary search to split the
counterexample iteratively until the specific sequence is found that makes the hypothesis deviate
from the system behavior. It then again adds all the suffixes of the remaining sequence to the
experiment set.

The L∗ algorithm is outlined in algorithm 1.

Algorithm 1: L∗ algorithm

1 Loop
2 Loop
3 if ObservationTable not closed then
4 LstarClose(ObservationTable)
5 else if ObservationTable not consistent then
6 LstarMakeConsistent(ObservationTable)
7 else
8 break (to make hypothesis)
9 end
10 end
11 Hypothesis← LstarMakeHypothesis(ObservationTable)
12 CounterExample← EquivalenceOracle(Hypothesis)
13 if CounterExample then
14 LstarProcessCounterExample(CounterExample)
15 else
16 return (found solution)
17 end
18 end
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2.2.2 Passive learning

State merging

The prevalent method in passive learning is state merging. In a state merging algorithm first, a(n)
(augmented) prefix tree acceptor ((A)PTA) with all the positive traces is constructed, where each
prefix ends in a state [21]. The APTA is a tree that describes the input traces without any loops
or re-convergent paths. The subsequent step involves merging nodes of the tree that are most
likely to be from two equivalent states given an evidence-driven heuristic. During merging, the tree
will evolve into a smaller and smaller graph. The nodes in this graph represent the equivalence
states of the state machine. This merging continues until all the states of the state machine are
identified. This is often referred to as EDSM (evidence-driven state merging). This method traces
its roots back to the RPNI algorithm [22].

Blue-fringe algorithm

The blue-fringe algorithm, also known as the red-blue framework, is a state merging strategy that
emerged during a state machine learning competition [23]. This strategy is an improvement on the
idea of EDSM.

The outline of this algorithm is presented in algorithm 2.

The difference between the blue-fringe strategy and previous EDSM approaches is that not all possible
merges are considered. Instead, a node coloring strategy is employed to limit the set of merges

Algorithm 2: Blue-fringe algorithm

1 Create PTA from traces
2 Color root of PTA Red
3 Color children of root Blue
4 repeat
5 scores← ∅
6 foreach p ∈ Blue do
7 foreach q ∈ Red do
8 if ConsistentCheck(PTA, p, q) then
9 scores[p, q]← CalculateScore(PTA, p, q)
10 end
11 end
12 end
13 if scores= ∅ (no consistent merges) then
14 Color a Blue node Red. Color its children Blue
15 else
16 Perform the highest scoringmerge between p and q in scores.
17 end
18 until No Blue nodes left;
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considered. Here, the root of the tree is first colored red, and all the children of a red node are
colored blue. All other nodes remain uncolored or simply white.

Now, iteratively, a node from the core red set and one from the blue fringe set that are suspected to
be equivalent are merged. Which nodes are merged are again determined by a certain heuristic,
providing scores for the most likely equivalent nodes. A consistency check ensures that only merges
that do not alter the outcome of the state machine are taken into account. If a blue node cannot be
merged with any red node, the blue node is promoted to be a red node as well, coloring all its
children blue again.

Whenever a node is merged, it is possible that subsequent merges must be executed to make the
state machine deterministic again. This is called folding [18] or determinization [24, 25]. This process
is where a scoring heuristic can be defined. This can, for example, be all the labels that undergo
folding and end up being correct as defined in the original Abbadingo algorithm [23], or all the nodes
that undergo the determinization and end up being correct as in FlexFringe [24, 25].

Notably, this framework can be extended to learn probabilistic state machines, and many different
merging heuristics can be implemented in this framework. These will be further expanded in the
state-of-the-art section (see section 2.4.1). Note that nowadays the node coloring heuristic for this
algorithm as presented in Lang, Pearlmutter, and Price [23] is sometimes just referred to as EDSM [26].

Example Let’s learn the state machine from figure 2.1 with the data:
< 1, a >,< 1, aa >,< 1, ba >,< 0, bb >,< 0, abb >,< 1, bab >.
First, construct the APTA as seen in figure 2.3. (Dashed border indicates an unknown label.)

qλstart qa

qaa

qab qabb

qb qba qbab

qbb

a

a

b b

b

a b

b

Figure 2.3: The APTA for the data: < 1, a >,< 1, aa >,< 1, ba >,< 0, bb >,< 0, abb >,< 1, bab >.
The root with the adjacent nodes has no label associated with them.

Now a merging is possible between< qλ, qa > and< qλ, qb >. Both the merges yield a consistent
(intermediate) automaton. However, when counting the number of subsequent merges during the
determinization process,< qλ, qa >make more subsequent merges. This is the merge between qabb
and qbb and the merge between qa and qaa. For the merge< qλ, qb >, the only subsequent merge
that is counted is between qa and qba. (Merges with nodes that do not have a label do not count.) This
gives the merge< qλ, qa > a higher score in an EDSM algorithm and is thus the preferred merge.
Let’s continue with both merges to see the end result. These are worked out on the next two pages.
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Both continuations yield two different automata. They both describe the data correctly but have
a different structure. The result of< qλ, qb > is, however, a bit more complex. It has more edges
and also does not have the sink state qbb (a state with no outgoing edges). This is eventually the
goal of EDSM. Creating an automaton that is relatively simple. It does not promise the simplest or
smallest automaton. It is just a heuristic to get reasonable results.

The intuition behind this heuristic is that if you are able to merge relative complex structures
with each other (thus gain a large merge score), this merge is the best one to take to result in a
reasonable simple automaton.

qλstart qa
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qab qabb

qb qba qbab

qbb

a

a

b b

b

a b

b

↓
qλstart qb qba qbab
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b a b

b

↓
qλstart qb qba qbab
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b a b
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↓
qλstart qb qbb
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a
b

Figure 2.4: Merging of automaton starting with merge< qλ, qa >
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Figure 2.5: Merging of automaton starting with merge< q, qb >
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2.3 Databases

2.3.1 Indexes

When accessing data from a database, it is important to realize that accessing data on disk is a lot
more time-consuming than data on the (smaller) random-access memory device (RAM). That is why
database algorithms must use specialized indexing structures that are different from conventional
data structures. These algorithms must mostly be optimized to reduce the number of disk pages
they visit. A disk page is a chunk of disk space fetched simultaneously. Such a disk page must contain
a high fanout.

High fanout means that an important disk page must contain enough information to quickly find
the exact disk page to find the information on. Thus, this disk page has many pointers to other
disk pages, which is called a high fanout. With these high fanout disk pages, the total number of
disk pages fetched is reduced as much as possible. If using trees as data structures, these trees
must then have a very small depth [27].

There are many database index structures available with different specializations. We focus on the
use of prefix queries as this is specifically important for learning state machines (see section 3.1.1 on
page 38).

B-tree B-tree is the default index of PostGreSQL. It relies on the order of the data. When traversing
the tree representing this index, for each node, the next child is selected based on whether the
searched key is smaller or larger than the element in the current node. This way, an element
can quickly be found, and a query that searches for a specific range can quickly give all elements
that fall within the range.

GIN GIN is an inverted index. It matches certain features of the data so that for a feature, you
can quickly find what rows have that feature. This way, you can, for example, find all documents
that contain a certain word. A GIN index can be particularly fast for searching but is usually very
slow when updating the index.

GiST GiST is also an inverted index type. However, this indexing is based on containment. When
the tree of the index is traversed, a path is taken based on whether the search query is in some way
contained for it. Then, you can index using an R-tree that creates various levels of containment,
which is useful for, for example, spatial data. Or use it with an RD-tree, which creates for each node
in the tree a containment set, which is useful for, for example, text data1. When using the GiSt with
an RD-tree implementation, it is important to note that the containment set is hashed and the size
of the hash can be controlled by setting the parameter siglen2.

SP-GiST SP-Gist is also a tree, like the B-tree, but allows for specific prefix searches to work
efficiently. Unlike the B-tree there are no connections fromblock to block on the same depth anymore.

1https://soylu.org/indexes-in-postgresql-gist/
2https://alexklibisz.com/2022/02/18/optimizing-postgres-trigram-search
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The adjacency of data is purely based on the clustering it made in the beginning. In that regard,
it is similar to the GIST index. However, for SP-GiST this clustering must be non-overlapping. The
SP-GIST becomes specifically a fast index when the data can easily be clustered in non-overlapping
partitions. For text, this could, for example, be as a radix tree3.

2.3.2 Text search

Full-text search and trigramming Full-text search often relies on lexemes. This is the tokenization
of text into normalized words. This process removes conjugations and casing4. For abstract traces,
this usually does not make sense. (Although it is probably possible for parts of log traces to create
clever conversions to lexemes.)

An alternative for lexemes is trigramming. Trigramming, n-gramming, or q-gramming is not an
index but a technique for performing a full-text search. It splits a string into n size parts, which
in part can be indexed. These parts then represent that string in an index. Trigrams can be used
to fill a GIN and GiST index, which can be used by a prefix search. What is more, trigrams can also
help to search for more than only prefix queries; they help to find a piece of string anywhere in
the full strings. It is thus not limited to the start of the strings [28]. Lastly, it can even be used to
speed up regular expression queries5. This work is based on Cho and Rajagopalan [29], which is
further improved by Google as explained in this blog6.

Operator families Note that for PostGreSQL indexes, the index is more like an indexing framework.
Together with the operator family, it forms the real index. For example, GIN and GiST can use the
operator families from the trigramming extension to be used for text indexing [30]. Installing the
trigramming extension can be done using CREATE EXTENSION pg_trgm, whichmakes thegin_trgm_ops
and gist_trgm_ops operator families available for the GIN and GiST indexes.

Collations The collation refers to the way to sort a set of characters. The default most efficient
collation is the one provided by libc, which relies on the byte order of the character encoding.
However, depending on the locale setting, different collations exist that take into account the localized
order of characters. For example, how to deal with diacritics.

It is important to note that efficiently searching through a B-tree depends on what order is defined
on the B-tree. That is why pattern character operations (such as a prefix search) are only allowed
on B-tree indices when the B-tree index is built with the currently selected collation. This is done
by selecting the text_pattern_ops operator family for the B-tree index7. This is, however, not
needed when the current selected collation is the C collation, but this functionality only recently
got added in PostGreSQL 158 [30].

3https://soylu.org/indexes-in-postgresql-sp-gist/
4https://www.postgresql.org/docs/current/textsearch-intro.html
5https://wiki.postgresql.org/images/6/6c/Index_support_for_regular_expression_search.pdf
6https://swtch.com/~rsc/regexp/regexp4.html
7https://www.postgresql.org/docs/current/indexes-opclass.html
8https://www.postgresql.org/docs/release/15.6/
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2.3.3 Prefix query

Implementation There are multiple ways to make a prefix query in PostgreSQL. There is the
starts_with() function, the ^@ starts-with operator, and the SQL LIKE ’a-random-string%’
operation. All of these are equivalent, but because of implementation details, not all of these will
correctly utilize the indexes that help to speed up these operations. See here9 for a discussion on
this. It is not fully clear what functionality is supported with what index type. Using EXPLAIN can
help to determine if an index is used properly in the query search [30].

B-tree vs SP-GiST B-tree and SP-GiST are very similar in terms of our intended usage. However,
when retrieving a range of results, a B-tree might have to access multiple adjacent blocks to get the
full range, while the SP-GiST contains these results fully to its own children. It is, of course, important
to note that the SP-GiST still performs mostly better when the data is not overlapping too much.

Radix tries and theART index The radix tree that can be implementedwith the SP-GiST framework
is often used in NoSQL key-value databases. These databases will often rely on the newer radix
tree implementation called the ART index [31]. What makes these especially interesting for our
application is that they can also run in a distributed setting.

2.3.4 Miscellaneous

Including columns inside an index When creating an index structure in PostGreSQL, non-key
columns can be included in the index structure with the INCLUDE clause. Now, the values of these
columns are directly available on the index structure. This is especially useful for adding the trace
outcome directly to the index structure of the trace. For PostGreSQL, this is supported for B-tree,
GiST, and SP-GiST, but not for GIN10. The values are only available on the leaves and are not available
for tree navigation.

The COPY protocol of PostGreSQL The COPY protocol is a protocol that allows results to be written
into a file. What makes this especially useful is that programs can hijack this protocol to read results
directly when they arrive instead of when everything is done and also cancel when a satisfying result
has been reached. They can thus "stream" the data instead. This allows more clever use of queries
as you do not necessarily have to wait until they are completely finished. This functionality is only
very recently available in libraries that can build on top of PostGreSQL1112. It is important to note
that the query optimizer will try to optimize your query depending on the total size it is expected
to return, even if you cancel the operation halfway with the COPY protocol [30].

9https://www.postgresql.org/message-id/flat/232599.1633800229%40sss.pgh.pa.us
10https://www.postgresql.org/docs/current/sql-createindex.html
11https://web.archive.org/web/20231212092242/https://pqxx.org/development/libpqxx/

#2023-01-12-at-last-faster-than-c
12https://www.psycopg.org/articles/2020/11/15/psycopg3-copy/
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2.4 State of the art

Here, we discuss the state of the art for passive learning (Flexfringe) and the state of the art for
active learning (L# and iMAT).

2.4.1 FlexFringe

The blue-fringe algorithm proved to be a very good heuristic for what merges to consider, but still
leaves a lot of room for how to calculate the scores for these merges [23]. Instead of just counting,
there are various other methods available. These methods are for example Alergia [32], AIC [33],
MDI [34], and many more.

FlexFringe [25, 24] is a state machine learning software framework that tries to be extendable for
different scoring heuristics. It is intended to learn a state machine from a fixed set of traces, by
implementing the blue-fringe algorithm. It provides an interface for new scoring heuristics.
FlexFringe already comes with various score and consistency routines and allows you to easily write
your own.

FlexFringe allows for different settings to tweak the blue-fringe algorithm. The order in which
promotion is done can be set from the most shallow nodes to the most frequent blue nodes. It
can also be configured to perform merges between two blue nodes. Next to that, you can add sink
nodes. These are nodes that are not considered during the merging because there is not enough
information available for them. You can also set final probabilities, which should be set when the
ending of sequences contains information as opposed to learning from traces from a sliding window.
Moreover, you can alter settings to consider when consistency should be considered. Lastly, you can
alter the mode to learn with a Markovian property or to model the kTails algorithm [35]. Lastly, it
contains different modes to learn from batches or streams Finally, it also has a "predict" routine
to how other traces are classified with a given model.

Most importantly, Flexfringe is the framework by which the algorithm presented in this thesis is
implemented.

2.4.2 More research on L∗

There have been several improvements to the L∗ algorithm. There is, for example, research on more
advanced counterexample processing [20, 19, 36, 37, 38]. There are also deviations in the algorithm,
such as using different kinds of queries [39], learning from statistical queries [40, 41, 42], using
adaptive distinguishing sequences [43, 44], or learning infitary languages instead [45]. There are
also extensions on the algorithm such as learning for, for example, symbolic state machines [46, 47],
extended state machines [48], or non-deterministic state machines [49, 50].

The current existing state of the art is the TTT algorithm that replaces the observation table with
tree structures [51]. A more recently published algorithm is L#, which performs its operations
directly on an observation tree [52, 53]. The latter is discussed in more detail in the next section,
as it forms the basis of the proposed algorithm in this thesis.
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Algorithm 3: L# algorithm

1 T (observation tree with core S and fringe F )
2 Loop
3 foreach p ∈ F do
4 if p is isolated then
5 LsharpClose(T , p)
6 end
7 if p is not identified then
8 WeakCoTransivity(T , p)
9 end
10 end
11 if isolated states in F then
12 continue (promote more isolated states)
13 end
14 H ← BuildHypothesis(T )
15 σ ← CounterExampleMilking(H) if σ then
16 ProcessCounterExample(H, σ)
17 continue (Found counterexample without asking the equivalence oracle)
18 end
19 σ ← EquivalenceOracle(H)
20 if σ then
21 ProcessCounterExample(H, σ)
22 continue (Did not yet find the solution)
23 end
24 return (Solution found!)
25 end

L# Algorithm

L# is an active learning algorithm that operates directly on the observation tree [52, 53]. It does not
use any auxiliary data structures and makes most of its decisions based on the notion of apartness.
An outline for the algorithm is found in algorithm 3.

Apartness is defined for two states if there is evidence (called the witness) that the two states are not
equivalent to each other, and thus apart from each other. This is similar to comparing the different
rows in an observation table, but now it is defined on the observation tree instead. Apartness is
indicated by stating p#q. Here the states p and q are apart from each other. Inmathematical notation,
we indicate the witness σ as σ ⊢ p#q. The witness is also known as a separating sequence [54].

In the observation tree, states are divided into three categories. The first category is the identified
nodes in the observation tree indicated by S. The notion of identifiedmeans that these nodes are
separate states in the resulting state machines. These are the same as the Red rows in the observation
table for L∗, or the Red nodes in the Blue-fringe algorithm. The second category is the frontier
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nodes, indicated by F . The frontier nodes are one node further than the identified nodes. These are
comparable to the Blue rows in the observation table, or the Blue nodes in the Blue-fringe algorithm.

The first step ofL# is to check if there are any isolated states inF . An isolated state is a state inF that
is apart from all states in S. If an isolated state exists, it is promoted to S, and all its transitions to
other states are queried and added to F . This operation is very similar to the closeness check in L∗.

There is also an operation in L# that is similar to the consistency check in L∗. This is the weak
co-transitivity check in L#. Weak co-transitivity states that if two states (p#q) are apart from each
other by witness σ and the transitions for σ are known for another state r, then this state r must
also be apart from either p or q. Thus, for any state r in F that is not yet identified, we can find
two apart states (p#q), and then the witness for these can help to identify state r, as that witness
will make r apart from either p or q.

At some point, the hypothesis is made to check for equivalence. ForL#, the hypothesis is made when
there are no more isolated states in F . All the states in F don’t need to be identified. Thus, there
might still be weak co-transitivities to be resolved. However, for states that are not yet identified, a
choice h : F → S is made to merge these states to a state from S these states are not apart from.

L# performs another subroutine before sending this hypothesis to the equivalence checker, and
that is the operation of counterexample milking [55]. Mistakes made from choice h are still corrected.

Then, the hypothesis is accepted or not. When rejected the counterexample processing subroutine is
started. For L∗, the counterexample subroutine is based on Rivest and Schapire [20] counterexample
processing. This routine splits the separating sequence using binary search. It will make a query for
each split and recursively call the routine until the apartness relation is within the frontier.

iMAT

Most active learning techniques rely on the concept of MAT as a teacher (see section 2.2.1 on page
24 for MAT), but Moeller et al. [14] present a new framework called iMAT, which loosens up on the
concept of MAT. In this framework, the teacher has become an incomplete teacher.

The incomplete teacher is a teacher who cannot answer all queries anymore. The paper makes the
following changes to the teacher to be incomplete. First, it changes the membership queries. It
loosens the requirement that the teacher should always be able to answer the membership queries.
Instead, it can also answer with a "Don’t Know". It also loosens the requirement that the teacher
should be able to answer equivalence queries. Instead, it adds a new type of query, namely the
distinguish query: Queries that only answer if two states are the same or not.

In the paper presenting iMAT,Moeller et al. [14] also present an algorithm to learn statemachines from
iMAT, called LstarBlanks. LstarBlanks is a modified L∗ algorithm (see section 2.2.1 on page 25 for L∗)
that uses an SMT solver to propose solutions to the observation table with the missing entries. Then,
from the solutions called the worklist, the smallest state machine is picked, and the search continues.
Picking the smallest solution ensures that the resulting answer is always the smallest state machine.

With the new concept of iMAT, you can learn state machines from a fixed set of traces with an active
learning approach. It is as Moeller et al. [14] describes a "bridge between active and passive learning".
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Moreover, iMAT is easier to implement in practical settings than MAT. The requirements for MAT
can just not always be fulfilled in real-world settings.

There have been other older papers presenting a loosened version of iMAT. In these papers, they
called the teachers the inexperienced teachers. For example, Grinchtein and Leucker [56] present
a very similar case with an algorithm that also relies on SAT solving. Unfortunately, it misses a
description of the exact algorithm and has no source code. The paper Leucker and Neider [57] review
related work on inexperienced teachers, such as Grinchtein, Leucker, and Piterman [58] who define
weak versions of closed/consistent and Chen et al. [59] who introduce containment queries. All these
approaches have the CSP (constraint-satisfaction problem) [35] as a basis for their own approach [57].

37



CHAPTER 3

Methods

3.1 Database queries

The following database queries are written for PostGreSQL. They use table as the table name, trace
as the trace name, and res as the outcome of that trace. They also use variables where :n is the
variable and :'n' is the variable quoted (Since PostGreSQL 9.1). In PostGreSQL || indicates the
joining of two strings. For all queries, you can limit the amount by canceling the operation in a
streaming operation or using the LIMIT keyword.

3.1.1 Prefix query

The first proposed query is the prefix query. This query takes a prefix trace and finds all the other
traces that start with this trace. The prefix query thus finds all the future responses for the state
corresponding to the access trace used in the prefix query.

With the SP-GiST indexing, this query is expected to be fairly fast. That index would put the traces
in an index that is very similar way to how a PTA would organize them.

For small access traces, this can return the whole database. We thus have to limit it to a certain
n. It will then only return an extension of the prefix of the maximum number of symbols. This
query is thus noted as PrefixQuery(t, n, k) with t being the access trace, n being the max size of
the returned traces, and k the amount of traces to return.

1 SELECT * FROM table WHERE trace LIKE :'t' || '%' AND LENGTH(trace) < :n LIMIT :k;

Snippet 1: Select k traces that start with t and are shorter than n.
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3.1.2 Distinguish query

The second type of query is the distinguishing query, as also explained by Moeller et al. [14]. This
query can find for two states, as presented by their access trace, different outcomes corresponding
to the same extension. This different outcome then indicates that these states are not equivalent. In
L#, this query returns the same as an apartness check would do if it tries to look for a witness [52, 53]

With this query, we can implement an equivalence oracle, but it could also aid with state merging.
We can also limit this search again up to a certain n. This query is then noted as
DistinguishQuery(t1, t2, n1, n2) with t1 and t2 the two different access traces and n1 and n2 the
max size of the returning traces.

1 SELECT * FROM (
2 SELECT * FROM table WHERE trace LIKE :'t1' || '%' AND LENGTH(trace) < :n1) q1
3 INNER JOIN (
4 SELECT * FROM table WHERE trace LIKE :'t2' || '%' AND LENGTH(trace) < :n2) q2
5 ON substring(q1.trace FROM (LENGTH(:'t1') + 1)) = substring(q2.trace FROM LENGTH(:'t2') + 1)
6 WHERE q1.type != q2.type;

Snippet 2: With two prefix sub-queries, we join them on equal suffix string and then check if the
outcome is different.

3.1.3 Regex query

A state machine can be completely captured within a regular expression (regex) [16]. Such a regular
expression describes all the possible edges and paths in a single string. The database can be queried
using a regex as well. Given the regex and the outcome of a state of a set of states, the database
can check if the traces it holds agree with that outcome.

This query is noted as RegexQuery(r, o) with r the regex and o the expected outcome for that regex.
Note that the regex must be anchored with "start" (ˆ) and "end" ($) anchors. The performance of
the regex query can be increased by using indexes based on trigramming1.

1 SELECT * FROM table WHERE trace ~ '^(' || :'r' || ')$' and res != :o;

Snippet 3: Select all queries that match the regex but do not match the outcome.

Regex construction

However, constructing the regex from a DFA is not a trivial task. There exists a plethora of different
regex constructing algorithms [16, 60, 61, 62, 63] which all behave different and have different

1https://wiki.postgresql.org/images/6/6c/Index_support_for_regular_expression_search.pdf
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(equivalent) outcomes from the same problem.

The most intuitive method is the state elimination method [16]. This method removes the states of
the state machine in some order and replaces their edges by creating new edges that represent the
regex between the states surrounding the state to remove. Figure 3.1 depicts how this would work
for a (part) of a state machine. The order of the states to remove can result in a different regex with
a smaller size. One of the heuristics that seems to work very well is selecting the state to remove
that has the smallest number of connecting edges [64].

Figure 3.1: Reducing a (part) of a state machine to a regex. Please note that alternation is indicated
with a plus (+) instead of the vertical bar (|). This is because it is written with Kleene algebra instead
of what is conventionally used for regular expressions [62]. Also note that this is just part of the state
machine, as it is unknown where the outgoing edges of q3 go to. Finalizing of the regex happens by
placing the start (ˆ) and end ($) anchors. Modified picture from StackExchange2

3.2 Algorithm: DAALder algorithm

3.2.1 Motivation

The proposed algorithm in this thesis, called DAALder, is inspired by the L# algorithm (see section
2.4.2). The reasoning for that is as follows. The database as discussed here can be seen as the system
under learn (SUL) and a form of the iMAT teacher (see section 25) [14]. However, the SMT solver
used by Moeller et al. [14] in the algorithm to learn from iMAT seems to be too heavy to have a
performant algorithm. Instead, the following paragraph explains that a modified state-merging
algorithm like L# seems to be the better choice.

L# performs its search directly with the observation tree. As this observation tree is the same data
structure that also underlies the blue-fringe algorithm in the form of an APTA tree, it seems possible
to combine active learning and passive learning this way with the L# algorithm. In this algorithm,

2https://cs.stackexchange.com/q/28517/113084
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exploration of the new states follows a similar structure as proposed by the L# algorithm. Creating
hypotheses from the emerging observation tree can then be done by state-merging algorithms.
Moreoever, this would also allow to extend the state merging scoring heuristics with more data that
is present in the database. When data is saved to an observation table, it is not directly evident how
extensions to state merging algorithms can be added to the observation table as they are usually
designed with trees as datastructures in mind.

Important insights and properties that arise to formulate this algorithm are: (1) the observation
tree in L# is similar to the APTA tree in the red-blue framework, (2) apartness is somewhat the
same an consistency check, (3) L# operates on a partial Mealy machine, just like you would with
an iMAT, (4) merge probability in the red-blue framework can be used to guide exploration, and (5)
extending existing merge heuristics can help research further to improve this specific algorithm,
even including more information present in the database or using different database queries.

3.2.2 DAALder algorithm outline

A sketch of the algorithm is depicted in figure 3.2, and an outline of the pseudocode of the DAALder
algorithm is presented in algorithm 4.

Start DAALder

Present hypothesis

Unsure: ask more informationMerging routine
inspired by L#

on a PTA

Process uncertainties:
Ask more information
by for example asking

a prefix query on nodes
with low merge scores

No counterexample foundFound counterexample

Equivalence Oracle
e.g. randomized query

streaming
Solution found

Process counterexample
By for example asking a
prefix query on all new
nodes created by the

counterexample

Figure 3.2: Graphical representation of DAALder

3.2.3 Differences with L#

Blue node completion

In the original implementation of L# [52, 53] every time a node was labeled blue, the incomplete
transitions were asked as well. For L#, this perfectly makes sense and can, with some alteration,
also be done in DAALder. Instead of asking for the next transitions, a prefix query can find n traces
that start with the node’s access trace. We call this BlueNodeCompletion.
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Algorithm 4: DAALder algorithm
Data: A set of traces with an output label
Result: A hypothesisH consistent with the provided traces

1 Initialize: T a PTA (observation tree) with red core S and blue fringe F
2 Initialize: S red core nodes, initially with a root node
3 Initialize: F blue fringe nodes, initialize using some random traces
4 Loop
5 state_isolated← false

6 unidentified← ∅ (The blue states without merge candidate)
7 all_merges_todo← ∅ (Merges to do, to make the hypothesis state machine)
8 foreach p ∈ F do
9 possible_merges← 0

10 merge_candidate← ?

11 foreach q ∈ S do
12 if CheckConsistency(p, q) then
13 possible_merges← possible_merges+ 1

14 merge_candidate← q

15 end
16 end
17 if possible_merges= 1 then
18 all_merges_todo add(p, merge_candidate) (identified node)
19 end
20 if possible_merges= 0 then
21 DAALPromote(p)
22 state_isolated← true

23 end
24 if possible_merges> 1 then
25 unidentified add p (Investigate these states more)
26 end
27 end
28 (explore_more, merges_todo)← DAALProcessUnidentified(unidentified)
29 all_merges_todo← all_merges_todo ∪ merges_todo
30 if explore_more or state_isolated then
31 continue (Investigate the added traces and/or a new fringe/frontier)
32 end
33 H ← BuildHypothesis(T , all_merges_todo)
34 σ ← EquivalenceOracle(H)
35 if σ then
36 ProcessCounterExample(T , σ)
37 continue (Did not found the solution yet)
38 end
39 returnH (Solution found!)
40 end

DAALProcessUnidentified and ProcessCounterExample add new traces to the observation tree.
In our implementation DAALProcessUnidentified asks for more information on nodes when the highest merge score is
less than twice the second-largest merge score.
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Another advantage we have in FlexFringe, is that there are multiple access traces available for each
node. This is because of the union-find structures that quickly give access to all previously merged
nodes [24, 25]. This thus allows for a complete list of access traces that all end in this specific node
to be completed, except for just one node.

A FlexFringe limitation

There is one big problem with this and with other exploring during merging techniques. FlexFringe
is not designed to handle new information when a part of the state machine is already constructed.
This messes up the links (if information is added to red nodes) and the statistics (if information
is added to blue nodes). It has to be noted that this is not a theoretical limitation, but rather a
mere implementation obstacle that would require a significant portion of refactoring in the current
implementation. To circumvent this refactoring process, which is out of scope of this work the
following steps are taken: Whenever new information should be added, the state machine must
be unrolled to be an APTA tree again, and then new information can be added again. With the
union-find implementation, this can, however, be quite efficiently done [24, 25], but should still
be done in batches for performance reasons.

Other differences

In L#, there are additional checks on consistency when the hypothesis is constructed. This is
because in L#, if a blue node is unidentified, it is merged according to some choice h. For FlexFringe,
a merge is only considered viable if it is indeed consistent. Consistency is thus kept in check
throughout all the mergers.

3.2.4 Exploration during merging

Discovering the unidentified portions

A part of the algorithm that is left open is what to do whenever it is unclear where a blue node should
be merged. This is the subroutine DAALProcessUnidentified, which is what to do when a state is
unidentified. In the description of the L# algorithm, it is also left unclear what merge should be
made. In the L# algorithm, it is referred to as choice h without any clear description of whether this
is, for example, random or not. Here, we explore a few strategies that can be employed.

Staying close to passive learning Instead of doing something somewhat more intricated, we
could just take the best merge as given by the scoring of merge heuristics. We call this approach
simply JustTakeBestMerge.

In fact, all the iteration steps that are done by the DAALder can just be skipped and the best merge
by score can always be taken. Then, the algorithm would be alternating between taking the merges
associated with the best scores and then asking an equivalence query. We call this approach
AlwaysTakeBestMerge
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These approaches do not rely on any additional exploration. These approaches, thus, would rely
much more on the equivalence query. Since the equivalence queries are usually quite compute-
intensive to execute, it is not one of the best approaches. However, for database-assisted learning,
how compute-intensive this is is dependent on the size of the database.

Adding exploration A better approach would be to take a look at how exploration can be built
into this subroutine. When a set of merges is considered, merge heuristics can tell which one is
most likely to be made. Moreover, it can also tell, given the scores, how certain it is that the best
merge is indeed the best. Then, if a merge is the best, but the second-best merge is fairly close,
additional action can be taken instead of naively merging.

If there is doubt between a pair of merges, you can ask for more information for these nodes. You
could, for example, ask a prefix query for the access traces of these nodes. You could even ask prefix
queries for the list of access traces that are represented by that node. This way, you can gather more
information that will help you decide which one of the merges should be taken.

In the implementation that is tested, this happens when the factor between the best merge and the
second best merge is two. When a merge is indeed the best, it should be fairly obvious what the best
merge is. However, this number can be tweaked if it is set too high or too low.

Example For an example of this, let us look back at the example from section 18 on page 28. If we
remove aa from the example, it is no longer clear what merge to make. Now, instead of making
an arbitrary merge, DAALder asks a PrefixQuery on a and b. Then, when aa is found with this
PrefixQuery, there is now a clear merge to be made. The intuition behind this exploration is
that when it is not clear what merge to make from the merge heuristics, it is likely that after
asking for more data starting with one of the access traces of the nodes involved, it will be clear
what the correct merge is.

With distinguishing queries Alternatively, given an uncertain merge, it is also possible to ask
the database whether that merge could be possible. For two nodes, a distinguishing query on the
access traces can be made to check if two nodes can be merged. If this query returns any traces,
you can be sure that these nodes must not be merged. To be even more rigorous, you can also
check all the combinations of access traces of the two nodes, not just the representative access
trace. This additional check could be very compute-intensive, but it is no longer necessary to
use an equivalence query.

Equivalence oracles

Checking the equivalence of a state machine is usually the most compute-intensive part of an active
learning algorithm. Using a database could make things somewhat easier as large chunks of data can
be checked at once. However, it is probably best to call the equivalence oracle as little as possible.

Regular expression A regex query can be used to check equivalence in one query. The regex itself
can be constructed to represent the state machine for a specific outcome. Now, you only have to find
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qλstart qa qab qabb

qb qba qbab

qbb

a b b
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qab qabb

qb qba qbab
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a

b b

b

a b

b

Figure 3.3: In this example, aa was found when asking a PrefixQuery on a.

a trace that matches the regex but has a different outcome. That will then be your counterexample.
Checking this for the complete set of outcomes completes the equivalence query. For improved
searching, the order of outcomes to check could be randomized. Considering all the nodes that are
associated with a certain outcome for the regex construction could result in fairly large regexes.
Instead, you could review the nodes one by one or consider only a subsection at a time.

Distinguishing queries The equivalence oracle can be built similarly to how it is built in Moeller
et al. [14] with distinguishing queries. In FlexFringe, every node contains a list of access traces that
are bookmarked and associated with this node during training process. These list of access traces
must thus be all equivalent. Calling a distinguishing query for all possible combinations of these
access traces must return nothing. If something is returned, this is a counterexample.

The only condition for this to work is that the base of the APTA must consist of a specific set of nodes.
These nodes must have two or more access traces bookmarked (because only then a distinguishing
query can be called on the two). Then these access traces must have all possible ways a possible trace
can start. If these conditions are met, this method can find a counterexample.

To see why this is the case let’s start with the most simple case. A simple set of traces that contain all
possible ways a trace can start is simple the set of the empty trace λ or ϵ. By definition all traces
start with the empty trace. This means that any possible counterexample also starts with the empty
trace. Now, whenever a distinguishing query is called on the node that contains an access trace
that is the empty trace, the counterexample can be found. By extension, if the empty trace is not
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involved in any merged nodes, another set that does contain for example all traces with one symbol
that covers the complete alphabet is sufficient.

This specific condition makes a bit hard to verify the correctness of this method. In general the
empty trace is often involved making this a possible method. But if this is not the case extracing
the set of all possible prefixes is not trivial to find. It should also be noted that this set of possible
prefixes is smaller than the theoretical set of possible prefixes, because a specific prefix is just not
present in the particular dataset that is learned from.

Randomized queries Lastly, amethod that provides themost reliable bound on runtime is checking
a randomly selected trace until a counterexample is found. To prevent checking a trace multiple
times, it should be tracked what traces have already been checked. It should be noted that every
time the oracle is requested again with a different hypothesis, this set of checked traces must be
reset, since a new hypothesis could have changed previously correct traces that are now falsely
categorized. The only traces that always can be excluded are the ones that are used during the
construction of the hypothesis.

3.3 Experiments

3.3.1 Test data

Stamina

First, there is the stamina dataset [26]. The stamina set, unfortunately, does not come with solutions
for its test set. Even an inquiry over email to the corresponding author did not yield us the solution
to the test set. Therefore, the train set has been split into a train and a test set. This split is the same
as in the paper by Dieck and Verwer [65] and can be found at Github3.

FSM-learning generator

The second test is a generated test that used the code from Giantamidis, Tripakis, and Basagiannis
[13], which can be found at Github4. For additions such as a fix on Linux, a converter for Abbadingo,
and a variation with non-uniform sampling, see my fork5.

This generates Moore traces (traces where the output of every step is known), not Abbadingo
traces. For the conversion to Abbadingo traces, a small conversion script is written that takes
a few random steps from the Moore trace and creates the Abbadingo sequence from it. It is made
sure no duplicates are produced.

The generator, by default, tries to visit every node as uniformly as possible. We also wanted to
test non-uniform distributions, so we changed the code to create a weighted state machine with a
corresponding sampler. This is found in the no-uniform-sampling branch.

3https://github.com/SimonDieck/Syntactic_Monoid_Passive_Learner/blob/-/data/staminadata
4https://github.com/ggiorikas/FSM-learning
5https://github.com/hwalinga/FSM-learning
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3.4 Implementation

The implementation of the algorithms is done in C++ and is an extension of FlexFringe [25, 24]. The
FlexFringe code is available on Github6. My extension is written in the active learning framework
written by Robert Baumgartner who based his work on the improvements on FlexFringe from Tom
Catshoek. Currently, this is not publicly available in the FlexFringe repository, but this should be in
the future. If this is still the case and you look for my code, send me an email at
hielkewalinga@gmail.com.

6https://github.com/tudelft-cda-lab/FlexFringe
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CHAPTER 4

Results and discussion

4.1 Failures

Some experiments were failures and were not further expanded on. I summarize these failures
here for good reference.

Stamina

When testing on Stamina, it appeared to be very hard to learn an equivalent state machine from
the data. The data was too demanding to solve to really test the performance of the algorithm, and
it was also too little to see where the new algorithm would really shine.

Regex

When using regex for performing the equivalence query, the program quickly failed on a too-large
regex for PostGreSQL. This happened around 20 states.

Regex is known to cause exponential blow-up [66], and even with the heuristics that should mitigate
this [64]. What’s more, even when choosing only a single end node for the regex, instead of all nodes
with the correct label, the regex still turns out way too large.

One data source

For a subset of experiments, a new dataset was generated at each size step. Initially, a gigantic dataset
was made at first and then sampled for smaller sets. This resulted in very long runtimes for DAALder,
and a lot of experiments did not create a consistent state machine.

Possibly, this is a side effect of the sampler not outputting a trace that has already been output. As a
result smaller traces will be output first, and more complex traces come out last. When sampling,
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these smaller traces are much less likely to end up in the dataset used, and are mixed more with the
complex ones. This results in a much harder dataset to learn from. That is why for every datapoint
in the comparison between algorithms a new dataset has been generated.

4.2 Database performance

Here I test some of the queries with some different index types. This was one of the first tests done.
These tests were run onmy Elitebook 8470p laptop. The hardware for this PC is an Intel Core i5-3320M,
Samsung SSD 870, and two 8GB Kingston memory sticks. The performaance is a memory speed of
5000 MiB/s, SDD random read speed of 74.35 MiB/s, and a CPU clock speed of 3 Ghz (measured).
These tests are run with postgresql 15.6, libpqxx 7.9.0, and clang 16.0.6 on Debian 12.

4.2.1 Index types performance

To test the performance of the index types, I create a test database. In this database there are 2174725
entries with a size of 36, in total 90MB. The size of the alphabet is 4. I create the indices B-tree with
the text_pattern_ops, the SP-GiST index, and the gin and gist indices with the trigram extension.
In figure 4.1, we can see the time it took to create the index and its size.

Next, I test the time it took the different queries I have devised using the different index types. For
testing, I make a separation between three different types of testing. One is the cold cache, which
means that the database accesses data for the first time. There is now no caching available. The
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Figure 4.1: Size of the index and duration of building it
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Figure 4.2: Timings of different queries for hot and semi-hot with different index types, error bars
are standard error
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Figure 4.3: Timings of different queries for cold with different index types, error bars are standard
error

second type is the hot cache, which means that the data was very recently accessed and is now in
the cache. I call an in-between type the semi-hot query, meaning that the exact data is not in the
cache but its index is. The test performed by the cold query is done by shutting down PostGreSQL
and emptying the cache (send 3 to )/proc/sys/vm/drop_caches. The hot query is performed by
first running the same query five times. The same is done for the semi-hot query, but different traces
are used each time to make it semi-hot. The result can be found in figure 4.2 and 4.3.
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Discussion

The B-tree and the SP-GiST index perform very similarly. It was expected that the SP-GiST would
perform better, but perhaps because of the small alphabet size, too many blocks had a very large
overlap. The same problem of a too-small alphabet was also likely why the trigram-based indices
performed so much worse.

4.3 Performance of algorithms

4.3.1 Comparing algorithms

Results

The algorithms that are compared are an implementation of EDSM, a modified version of an iMAT
algorithm, and of course DAALder itself. For EDSM default settings from ini/edsm.ini from
Flexfringe itself are used (from commit f5d4175. The modified version of the iMAT algorithm is a
variant where the missing values are seen as wildcards and ignored during closeness and
consistency checks. This is sometimes also called weak closeness and weak consistency [57]. Finally,
to get hypotheses from the observation table with gaps the state merging routine of EDSM is used.
The iMAT implementation uses the same counterexample oracle as DAALder. For DAALder the
hyperparameter k is set to 10, 100, and 1000. This will help to compare the explore-exploitation
trade-off.

The data consists of 17 datasets constructed from 17 different state machines. For each data point
a single dataset is used. This data is sampled from randomly generated state machines. The state
machine is different for each dataset. The size of the datasets is exponentially increasing, starting
with 625 traces and then doubling each time all the way to 40960000 traces. Code to create the state
machines and the sampler can be found at Github.1.

On page 52, the figures for the results on the uniform data can be found, and on page 53, the results
on the non-uniformly sampled data can be found.

Whenever a data point ismissing, the experiment was stopped. This is because, in the case of DAALder,
it took too long, at around 24 hours. Or for EDSM, there was no more memory available of the in
total 100 GB, including the 30GB swap memory.

Except for the low memory run (brown line), all the tests are run on a Dell PowerEdge R710 with a
Intel(R) Xeon(R) CPU E5620, Seagate ST3146356SS, and Hynix HMT151R7BFR4C-H9 memory sticks,
in total 70GB. The performance of the memory speed was measured with sysbench as well as
the hard disk read speed with mode rndrd. The CPU speed was measured under stress from
/proc/cpuinfo. The performance is a memory speed of 4100 MiB/s, HDD random read speed of
2.7 MiB/s, and a CPU speed of 2527 MHz. The computer ran with Ubuntu 22 and PostGreSQL 14.11,
libpqxx 7.9.0, and clang 16.0.6.

1https://github.com/hwalinga/FSM-learning
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Figure 4.4: Results for data with a uniform sampling approach
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Figure 4.5: Results for data with a non-uniform sampling approach
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Discussion

Solvability point When examining the figures there is a clear turning point in the data. This is
the point from 40k to 80k traces. Before this point, the algorithms are unable to find the correct
state machine as seen in figures 4.4e and 4.5e. After this point, the runs on the uniform data sets
find the correct state machine, and for the non-uniform data, only a few traces are misclassified.
The 80k seems to be the amount of data that is the solvability tipping point for the algorithms
on these kinds of datasets.

After the solvability point, the runtime of the EDSM algorithm drops briefly, as can be seen in
figures 4.4a and 4.5a. Before the solvability point, EDSM makes wrong merges which result in a state
explosion, as can be seen in figures 4.4f and 4.5f. This state explosion makes EDSM take slightly
longer to process the datasets before the solvability point.

For DAALder and iMAT the datasets around the solvability point take the longest to process. Around
these points these algorithms try to include every trace one by one, instead of only a subset of traces.
It takes a long time to find all the traces in the exploring manner of these algorithms.

Runtime comparison The runtimes vary widely for the different algorithms as can be seen in
figures 4.4a and 4.5a. For small datasets, EDSM is much faster than the active learning algorithms.
This makes sense as EDSM loads everything in memory and there is not so much to load in memory.
When the data grows too big to load inmemory, the runtime of EDSM suffers greatly. This is especially
true for when the RAMmemory is completely used and EDSM resorts to swapping as can be seen
in the final data point for EDSM.

The active learning algorithms have a hard time during the solvability point and the datasets leading
up to that. After the datasets are large enough to extract a state machine, the runtimes for the active
learning algorithms become much shorter. This can be explained by the fact that the active learning
algorithms now do not have to include every trace in their model. This can be seen in figures 4.4c
and 4.5c for the total traces included and figures 4.4d and 4.5d for the percentage of all traces.

While for the uniform sampled data, the runtimes for the active learning based algorithms continue
to grow linearly, this does not happen for the non-uniformly sampled data. Instead, as can be seen in
figure 4.5a the runtimes seem to stay the same. It is not fully clear to me why this is the case. I think
it might be that it is more likely that the traces that explain some unclear places in the tree can be
much less frequent, while for uniformly sampled data, the frequency was always similar.

A characteristic set A characteristic set [18], or tell-tale set [67] of traces is a subset of traces
that are sufficient to extract the corresponding state from that can explain the full set of traces.
When running the active learning based algorithms, in essence, a characteristic subset is the one
that is found. For DAALder on k = 10 and iMAT, the size of this subset is relatively constant, as
can be seen in 4.4c and 4.5c. For iMAT, this is around 20k-60k traces, and for DAALder, around
55k-160k. This is indeed a bit less than the solvability point, the point where the data starts to
contain a characteristic set of traces.
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Memory usage Memory usage is depicted in figures 4.4b and 4.5b. Memory usage for EDSM quickly
explodes exponentially. For DAALder the memory usage is in the beginning still higher than EDSM,
but remains somewhat constant for the larger datasets. The iMAT algorithm uses the least amount
of memory. Implementing observation tables can happen in vectorized memory, which is much
more memory efficient than maintaining a tree with pointers.

Effect of k A larger number for k makes the DAALder algorithm include more traces more
aggressively. This results in a shorter runtime while using somewhat more memory. However, when
the datasets become much larger, the effect of k diminishes. The fact that the sparseness drops is
likely to make the runs with a smaller k find the correct traces just as fast as with a large k. In fact
for the uniformly sampled data, the runtimes are almost the same again for different values of k.

Accuracy comparison For accuracy the amount of misclassified traces is summed. For the data
points below the solvability point the accuracy is as good as guessing, meaning that roughly half
of the traces were misclassified. After the solvability point, for the uniformly sampled data, the
accuracy becomes directly 100% as can be seen in figure 4.4e. For the non-uniformly sampled data,
this did not happen immediately as seen in figure 4.5e. For these datasets, a few traces remained
wrongly classified until after 2.5M traces were in the train set. What is remarkable is that EDSM
performed slightly better in this regard than the other algorithms. This makes sense as EDSM
considers all the data at once.

4.4 Miscellaneous

4.4.1 Data loading

The running of the DAALder algorithm did not include loading the data into the database. This would
increase the runtime much, as writing to disk and building the index would take a very long time. It
is assumed that when these algorithms are used, the data will already be saved in a database. The
runtime for loading the data on the database is depicted in figure 4.6.
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Figure 4.6: Loading times for loading trace data into a database
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4.4.2 Does sampling work?

Instead of searching for the correct traces, it might also be possible to just select a random set of
traces from a very large set of traces and learn from this. If this set is large enough there is a good
chance it is sufficient to learn the equivalent state machine. For this research a trace data set with
the size of 20.48M traces is sampled. The result are depicted in figure 4.7.

103 104 105 106

Amount of traces in train dataset

0

100

101

102

103

104

105

106

M
is

cl
as

si
fi
ed

Scoring on the test set

103 104 105 106

Amount of traces in train dataset

0

2000

4000

6000

8000

10000

12000

14000

A
m

o
u
n
t 

o
f 
st

at
es

 i
n
 f
in

al
 m

o
d
el

States present in the final model

Figure 4.7: Accuracy and amount of states when learning from sampled data.

Sampling seems to be a viable method as well to deal with larger data. The size of the data required
is still pretty large. At around 640k traces were required to learn the equivalent state machine. This
is ten fold larger than the previously investigated datasets. It is, however, still in the range where
EDSM is (slightly) more performant than DAALder. It should be noted that for real life datasets,
it could be that a single trace covers a particular important path in the state machine. There is a
high chance the sampling approach would miss this.

4.5 When to pick DAALder

For iMAT, the runtimes do not drop directly on the non-uniformly sampled datasets. While for the
uniformly sampled datasets, iMAT quickly becomes faster than DAALder again, this is not the case
for the non-uniformly sampled datasets. Here, iMAT performs on par with the DAALder algorithm.
This is likely because the sparseness of the dataset becomes a problem for iMAT. This results in too
many empty spots in the observation table, which slows down iMAT.

DAALder would thus only be an appropriate algorithm for this specific case. On non-uniformly
datasets when the data is too large for EDSM but still sparse enough that an algorithm such as iMAT
performs worse. Ideally the data is also already in a database present.
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CHAPTER 5

Future work

Since this is more explorative research in a relatively new field, there is still plenty more work to
do. This is a list of ideas that came to me during my brainstorming sessions with Sicco Verwer
and Robert Baumgartner.

5.1 Braoder comparison with different algorithms and datasets

5.1.1 Different algorithms

The current research still misses comparison with different algorithms. For example, FlexFringe also
comes with a stream module and a batch module. These modules have the same goal as my research,
but this research misses a comparison with the performance of these modules.

5.1.2 Different datasets

The current research alsomisses an analysis of the performance of the algorithm on different datasets.
For example, how the algorithms would perform when the alphabet is much larger. It is expected
that algorithms based on tree algorithms can better deal with larger input algorithms than the
algorithms that rely on tables. Trees are better at saving data with this sparsity, while tables have to
reserve spots for all extensions, which can get really big with bigger input alphabets. Also, it would
be interesting to see how the algorithms perform when the corresponding state machine is more
sparse. In that case, tree algorithms would also be expected to perform better. If a future reader is
interested in how these algorithms deal with larger output alphabets. In that case, it must be noted
that FlexFringe’s current implementation of EDSM is hardcoded for an output alphabet of two.
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5.2 Implementation improvements

5.2.1 Improved regex building

Different regex constructing algorithms

When converting a DFA to a regular expression (regex), there are many ways to get an equivalent
regular expression. There has been some research into what the best method for finding this regular
expression is [64]. For this project, the most simple intuitive way with a simple heuristic has been
implemented. This is the state elimination algorithmwhere the least connected node at each iteration
is selected for removal. However, it could be that implementing the subautomaton decomposition
that is mentioned in that paper could yield even smaller regexes.

There also exists another regex algorithm next to the implemented node elimination algorithm.
These are the Brzozowski andMcCluskey algorithm [60], Arden’smethod [61], Kleene’s algorithms [62]
and the McNaughton and Yamada algorithm [63]. One thing all these methods have in common,
however, is that there is a chosen order of states to eliminate. What’s more is that the chosen order
of which states to eliminate first, will result in a different regex with a different size. It could be
that depending on what kind of state machine you are dealing with different algorithms result in
a regex with a smaller size. Finding the smallest regex is, unfortunately, a PSPACE-hard problem.
Although that statement seems to be part of the folklore of Automata Theory1.

Selecting the most important parts

Instead of constructing a regex for the complete DFA, a smaller regex can be achieved by making only
a regex for a part of the automaton. One improvement has already been made, where a selection of
the final states is chosen to construct a regex. However, you might be able to construct even smaller
regexes by removing some of the unimportant edges from the DFA. This would help to find only
counterexamples that show where the core of the current state machine is wrong. Alternatively, it
might be better to keep some of the uncertain edges instead, so that you can find counterexamples
that disprove those uncertain edges.

5.2.2 Being able to add traces to a partial mealy machine

One of the limitations of FlexFringe is that it cannot add more traces to a partially constructed
state machine (as described in section 40). The merges must be undone before new data can be
added. This is just not implemented for FlexFringe. With this implemented, you can learn state
machines with FlexFringe actually incrementally growing the state machine. However, this is not the
most engaging thing to do and is, at the moment, not a real bottleneck as the find-union structure
of the APTA in FlexFringe can be very simply unrolled. Although, in terms of runtime, this can
be a significant improvement.

1https://cstheory.stackexchange.com/a/3983

58

https://cstheory.stackexchange.com/a/3983


5.3. Extensions Chapter 5. Future work

5.3 Extensions

5.3.1 Investigation into more query types

This thesis proposed a few different kinds of queries that could be used on the database to learn state
machines, but there might be other queries we can implement on such a database. Maybe we are
able to a subset query [39] or implement a form of a statistical query [42, 41, 40]. Lastly, the regex
query is not extensively tested, and the distinguishing query is only partially implemented.

5.3.2 Investigation into the search algorithm

The DAALder algorithm proposed in this thesis is just one approach of many. There might be more
approaches, as well as using different heuristics within DAALder to better guide the explore-exploit
trade-off. Also, when you take into account that there are different queries could be possible.

5.3.3 Other forms of the state machine

Next to simple Moore machines, there are different forms of state machines, such as PDFA, but also
extended state machines [48] and symbolic state machines [46]. It would be interesting to see if the
algorithm can be adapted to learn these kinds of state machines as well.

Using the guards of FlexFringe

For extended state machines, FlexFringe already keeps track of guards in the core of its state merging
algorithm. It should thus not be so hard to rewire data from the database towards places where
the guard logic of FlexFringe can be applied.

Adding statistics to the database

Merge heuristics can be aided by using statistics for what traces come next. Based on these statistics,
the algorithm can then consider if a merge should be taken. PDFAs can only reliably be constructed
with these statistics present.

These statistics can be calculated on the fly, but that would require the database to do these counts
very frequently. However, it would be better if these statisticswere cached. In such an implementation
these statistics are available for every access trace. To improve the calculation, these statistics can
first be added from the leaves, and subsequent calculations can then use the already existing counts
from the downstream nodes. To decrease disk size, you could make these statistics only available at
a selected range of depths (with an increased frequency at the base of the tree), and getting these
statistics by performing a join on the table that holds these statistics.

5.3.4 Incorporating data integration techniques

In a real-world setting, there will be a lot of information available for all the traces, perhaps even
scattered among different data sources [68]. The trick will be to find out how to combine these
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different data sources to find enough support to block or pass a potential merge. Data integration
techniques could help with combining the correct information [69].

5.4 Different implementations

5.4.1 Using another database more tailored towards the problem

Different database implementations may improve the algorithm’s performance and open up more
possibilities for designing new types of queries. In addition to the standard relational databases, there
are also ones specialized for text search,most often built on top of the Apache Lucene framework. Text
search specialized databases are ElasticDB (and its fork OpenSearch), CrateDB, Solr, or Sphinx, which
can cooperate with PostgreSQL, MariaDB (shipped by default), and MySQL. Moreover, document-
based databases, such as MongoDB, or key-value stores, such as ScyllaDB DynomaDB, or RocksDB,
are very popular and scale extremely well on different machines since sharding is a lot easier to
implement for document-based databases. What’s more, some databases are designed for graph
structures, such as NitrosBase, Blazegraph, Ontotext, Neptune, Virtuoso (with SPARQL), Nabulagraph,
InfinityGraph, OrientDB, Giraph (with Java), ArongaDB (also has support for text search, based on
RocksDB), Neo4j (with Cypher), and OrangaDB. There are also some graph databases based on key-
value store RocksDB, which are Oxigraph and ArongaDB uses a precise vector space model for its
search engine and also supports text search directly. Finally, one could hack something with XPath
on BaseX for XML searching. Selecting one of these databases would open a lot more possibilities
for building your own data structures on these databases.

5.4.2 RIIR

I am just joking. I think the codebase is perfectly fine in C++. However, you could probably find
someone eager to do this, and create more appeal for others to work on it.

5.4.3 Circumventing implementation details altogether using Datalog

When reflecting back on what this research actually did, the research seemed to boil down mostly on
the rewiring of how data is organized for the evidence-driven merging algorithm. Some alteration
is made to limit the amount of data that is examined, but in essence, it is mostly the rewiring of
how the data creates a minimal state machine. Take a look, for example, at how the data is indexed
inside a PostGreSQL database. It is already indexed using graphs. In fact, it should be possible to
use these graph structures on disk directly instead of only querying on them.

One of the big reasons this is a problem is because the graph data structure is a difficult data
structure. There are many ways to implement a graph, and its implementation has a direct effect on
the performance of the algorithm that uses it. An efficient implementation will differ depending on
the graph’s sparsity or size. One of the issues is that for a graph a relation must be implemented.
A natural way to implement a relation is using a pointer. However, vectorized algorithms will be
more cache-friendly and thus much faster than pointer following.
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This was all outlined in an extensive blog2 post of Hillel Wayne (recommended!). The conclusion
is somewhat grim: You cannot have a universal graph implementation. However, a few days later
somewhat claimed that "the missing datatype" does indeed exist3. It has only been in development
since the 70’s. The proposed framework you should seek this solution in is Datalog, a variant of Prolog.

The idea of Datalog is that the graph algorithm is written in a declarative language (Datalog) and
the exact execution is left over to a Datalog execution engine. This engine can then decide what
the optimal execution is given statistics on the data. What is more, there even exists a way to make
the execution run on the GPU.

The idea is thus towrite an evidence-based driven statemerging algorithmonDatalog and by selecting
a correct execution engine, get most improvements I tried to do in this thesis, just automatically.
The only problem is in the implementation: Prolog is not taught anymore on the TU Delft, and
improving just the implementation holds less scientific value.

2https://hillelwayne.com/post/graph-types/
3https://tylerhou.com/posts/datalog-go-brrr/
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CHAPTER 6

Conclusion

6.1 Research questions

6.1.1 RQ1: What kind of queries can we ask a database to learn state machines?

Next to normal membership queries, we can ask different queries as well. We can ask prefix queries,
which can also be supported by database indexes. We can ask distinguishing queries, relying on the
same kind of indexes. Lastly, a regex query can be used as an equivalence query. However, for regex
queries, the current state machine has to be significantly small for the regex to be manageable. That
is why for an equivalence query, distinguishing queries, or just random membership queries can be
used as well.

6.1.2 RQ2: What kind of algorithm can we use to learn a state machine from a
database?

We can learn from the database using a combination of active learning and passive learning. The
algorithm should contain a part that selects what queries to ask from the database (active learning)
as well as a part that creates a state machine from this data. One such algorithm is the DAALder
algorithm. Some variations can be made to this algorithm as well. It has parts, such as the
DAALProcessUnidentified subroutine, that can take on various forms. This part must take into
account an explore-exploitation trade-off. Creating an equivalence query remains a challenge, but it
can be circumvented by leaning more towards exploring the algorithm such that equivalence
queries are not asked often.
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6.1.3 RQ3: How can we measure the performance of such an algorithm and how does
this algorithm perform

Performance can be measured by providing a significantly large dataset and seeing how well it
performs, and how well it performs over time. In this thesis, we looked at the performance of
uniformly and non-uniformly sampled datasets. We compared our algorithm with EDSM and an
iMAT inspired algorithm. DAALder performed worse when the dataset does not contain enough
information to construct the correct state machine, as then it takes a long time to include all traces
from the dataset. When the dataset becomes much larger DAALder performs much better than
EDSM as EDMS runs out of memory and starts swapping. The iMAT inspired algorithm also performs
very similar as DAALder. However, this algorithm has a weakness when the data is too sparse and
its observation table contains too many blanks. Thus DAALder is the best-performing algorithm
when the data is too large to fit completely into memory, but is still sparse enough that it is not
outperformed by an iMAT inspired algorithm.

6.2 About learning

Machines that learn try to generalize from the given data. They try to compress all the data to some
form that generalizes it. In a sense, this compression is a form of forgetting parts of the data [18].
However, in this thesis, we can see that not only should we forget what we learn to gain insight,
we should also limit ourselves to a selection of what’s worth it to learn. In a sense, we should not
only learn how to learn but also learn what to learn.
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