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Preface
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took a bit longer than originally planned, I am proud of the end result.
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By studying which road sections should be restored first and how different recovery strategies lead
to different outcomes, I was able to gain valuable insights. Based on this, I was able to formulate
recommendations on which strategies are preferable, depending on the chosen focus. Given the societal
relevance of this topic, I hope that this thesis contributes to a better understanding of effective recovery
strategies for disasters.

Writing this thesis was an educational, but certainly not always easy process. Programming in particular
was a challenge, as this was not my strong point when I started this research. Analysing complex
networks and developing models required skills that I had to develop along the way. This sometimes
meant struggling with code, tracking down bugs and endless testing before I got the right results.
However, this challenge has made me broaden my technical knowledge and gain a deeper insight into
data analysis and modelling. Looking back, I am proud of the growth I have made and the skills I have
acquired during this process.

This thesis would not have been possible without the support and guidance of a number of people.
First of all, I would like to thank my supervisors Nazli Aydin, Patrick Stokkink and Srĳith Balakrishnan,
whose valuable feedback, critical perspective and expert guidance played an essential role in the course
of my research. Their advice not only helped me to sharpen my research questions and methodology,
but also provided new insights that lifted my thesis to a higher level. In particular, I would like to
thank Patrick and Srĳith for the (bi)weekly meetings and their guidance during this process. These
conversations offered structure and direction and gave me the confidence and motivation to continue,
especially in moments of doubt or getting stuck. I greatly appreciated their willingness to answer
questions, think along about problems and provide constructive feedback.

Finally, I would like to thank my friends, family, rowing team, and the fellow members of the bar
committee for their support throughout the process of writing this thesis. Balancing an intense rowing
schedule, with graduating and helping run the bar committee at the rowing club wasn’t always the
easiest combination. In those busy months, your support really made a difference. Whether it was
lending me a laptop, taking a quick coffee break together, sitting down to study side by side, or simply
giving me the space to share some frustration, it all helped more than you might think. Without their
support, this process would have been a lot harder, and I am incredibly grateful that I could always
count on them.

Thura van der Schans
Delft, April 2025
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Summary

Several (natural) disasters have occurred in recent years, and with the expected increase in extreme
weather events, such events are likely to increase. Warmer weather increases the risk of forest fires,
and the frequency and severity of other disasters will also increase. These disasters cause various
structural damage to road networks, but the functional consequences often show striking similarities,
such as reduced accessibility, delays and disruptions of vital services. In some cases, roads can become
completely or partially impassable, leading to serious disruptions to transport and logistics.

This research aims to analyse the impact of disasters on road networks and to develop recovery strategies
utilising multi-objective graph metric recovery. The primary research question is:

How do disruptions affect road networks, and which recovery strategies are most effective under varying conditions
based on different network metrics?

To address this question, a literature review was conducted to explore existing recovery strategies. This
review identified five distinct recovery strategies, each employing a different approach:

• Recovery based on proximity to centre.
• Recovery based on proximity and road hierarchy.
• Recovery based on proximity and recovery time.
• Recovery based on recovery time and proximity.
• Dynamic simulation of the recovery process based on time-dependent variables.

To evaluate the effectiveness of these strategies, six network metrics were employed: accessibility,
betweenness, connected components, efficiency, resilience, and robustness.

The analysis was performed on four networks: Sioux Falls, Eastern Massachusetts, Anaheim, and
Munich, which differ in size and topology (United States and Germany). The Sioux Falls network served
as a test network for the model code, which was later applied to the other networks. Each network was
tested with four different percentages of edge removal (25%, 50%, 75%, and 100%) to simulate different
disaster scenarios. Instead of analysing only one set of removed roads per percentage, 100 simulations
were performed per network. This approach was necessary because of the unpredictability of which
specific roads would be affected. This increased the reliability of the results and provided a broader
overview of possible combinations of removed connections, which better reflected the variability and
uncertainty of disasters.

The results showed that the effectiveness of recovery strategies seems to be highly dependent on network
structure. In networks with a central or radial structure, such as Sioux Falls and eastern Massachusetts,
strategies based on proximity and hierarchy, recovery time and proximity and dynamic recovery perform well
under limited disturbance. As disturbance increases, effectiveness shifts to strategies that focus on
proximity and hierarchy for the Sioux Falls network, or on proximity to the centre, proximity and hierarchy
and proximity and recovery time for the Eastern Massachusetts network. In networks such as Anaheim
(decentralised) and Munich (ring-radial), strategies focusing on proximity to centre and proximity and
recovery time perform better under larger disturbances. It is important to recognise that these effects
were derived from four networks. There was no opportunity to include multiple networks of the same
structure in the analysis, making it impossible to assert with certainty that the observed effects apply to
all networks of a similar structure.

In addition, the analysis shows that the specific recovery goal also plays an important role in the choice
of an appropriate strategy. If the goal is to improve the accessibility, or the number of nodes that can be
reached from a certain centre node, strategies based on proximity to the centre, proximity and hierarchy,
and proximity and recovery time appear to be beneficial. When the goal is to restore nodes that are on
a lot of shortest paths (betweenness) or reduce network fragmentation, also known as the connected

ii



iii

components, strategies focusing on recovery time and proximity or dynamic recovery seem to be more
appropriate. When the focus is on reducing the shortest distances between nodes as quickly as possible,
i.e. improving efficiency, or on restoring links with the most traffic first, aimed at increasing robustness,
strategies such as recovery time and proximity and dynamic recovery can be considered.

These findings underline that there is no universal recovery strategy that is optimal in all situations.
The study, therefore provides valuable insights into how recovery strategies can be tailored to both
network topology and functional purpose. This is particularly relevant for policymakers and emergency
planners when drawing up recovery plans. They can first determine the specific goal of the recovery and
then choose a strategy that fits that. In addition, they can analyse the type of network and determine
whether the strategy resulting from the metric analysis performs well within their network structure as
expected. However, it is important to emphasise that the results were analysed per network type. This
means that the findings cannot be directly applied to other networks with a similar structure.

By understanding how different networks respond to different levels of disasters, this study provides
valuable tools for optimising recovery strategies. This helps to improve network connectivity and reduce
recovery time after extreme disasters, which is essential for infrastructure recovery and minimising
damage. Furthermore, this study contributes to the existing literature by analysing recovery strategies
across multiple networks with different structures, instead of just one type of network as in previous
studies. This shows that there is no universal strategy and that the effectiveness strongly depends on the
network structure and the type of disruption. While previous studies indicated the dynamic strategy as
the best, this study shows that alternative strategies, such as proximity and hierarchy, perform better in
some cases. The study uses multiple performance indicators and systematically varies the degree of
network disruption, which allows for a more realistic and broadly applicable analysis. This provides
valuable insights for policymakers and emphasises the importance of context-specific choices in network
recovery.

In summary, this study provides detailed insights into the effectiveness of different recovery strategies
in relation to different network topologies and different levels of disasters. It emphasizes that there is no
universal “best” strategy, but that the choice of a specific strategy should be tailored to the structure of
the network and the level of disruption. These findings contribute to a better understanding of how
we can increase the resilience of road networks and reduce the impact of disasters by implementing
efficient recovery strategies.
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1
Introduction

In 2021, Limburg was hit by a severe flood, which was the result of 160 to 180 millimetres of rain that
fell in two days (Kok et al., 2023). The consequences were significant: highways were flooded, campsites
had to be evacuated and soldiers were deployed to provide assistance (NOS, 2021). In addition to the
consequences of floods, the impact of natural disasters is also visible on a larger scale. For example, in
2023, Europe, the Middle East and Africa experienced one of the most severe wildfire seasons in recent
decades (Directorate-General for European Civil Protection and Humanitarian Aid Operations (ECHO),
2024). More than 500,000 hectares of nature reserve were affected by forest fires, which is equivalent to
about half the surface area of the island of Cyprus (San-Miguel-Ayanz et al., 2024). Furthermore, in
2024, a staggering 1,374 earthquakes of magnitude five or greater were recorded worldwide, causing
not only tragic loss of life, but also enormous economic damage, costing billions of dollars in damage to
infrastructure and private property (Statista, 2024).

These examples show that natural hazards can occur anywhere in the world and have far-reaching
consequences. They not only affect people and the environment, but also damage essential infrastructure.
Roads can be damaged or become impassable, severely limiting the accessibility of affected areas.
Restoring road networks after a disaster requires careful consideration of which routes should be
restored first. Such decisions are made based on strategies and trade-off criteria such as resilience,
robustness, efficiency and accessibility of the network. These aspects are essential for effectively dealing
with the aftermath of natural disasters and provide tools for determining priorities during the recovery
process.

This study focuses on applying previous research on recovery strategies of road networks after natural
disasters to four specific cases: the Sioux Falls, Eastern Massachusetts, Anaheim and Munich networks.
The recovery will be analysed using different strategies and measured with various metrics. The central
research question that motivates this research is as follows:

How do disruptions affect road networks, and which recovery strategies are most effective under varying conditions
based on different network metrics?

To answer this main question, the following sub-questions are examined:

1. What are the structural and functional consequences of different types of natural hazards for road
networks?

2. What recovery strategies exist to make damaged road networks functional again?
3. How can different recovery strategies for a disrupted road network be modelled, optimized, and

evaluated using multi-objective graph metric recovery?
4. How do different road network structures influence the performance of recovery strategies under

varying levels of disruption?
5. What recommendations can be made for choosing the most appropriate recovery strategy for a

disrupted network?
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2

This research focuses on road network restoration after disruptions, evaluating the effectiveness
of different restoration strategies using six metrics: accessibility, betweenness centrality, connected
components, efficiency, resilience, and robustness. Using simulations and network models, the four
cities, Sioux Falls, Eastern Massachusetts, Anaheim, Munich, are analysed. These cities represent
diverse network structures and geographic contexts, providing a broad insight into different impacts
of disasters and subsequent restoration strategies. In the simulations, roads are randomly removed at
four different damage percentages (25%, 50%, 75%, and 100%) to simulate the variability of disasters.
Restoration strategies are applied based on factors such as distance to the centre and road priority, and
the effectiveness of these strategies is then measured using the aforementioned metrics.

The reliability of the results is ensured by repeating the simulations 100 times with a fixed random seed
and applying a 95% confidence interval. For the simulations and analysis, Python and the NetworkX
package will be used, taking into account the impact of network topology, road capacity, and speed
on the recovery process. This systematic approach provides valuable insights into how various urban
networks respond to disruptions and which recovery strategies are most effective for maintaining critical
infrastructure.

This research holds both scientific and societal significance, aligning with the CoSEM master’s program
focused on transport and logistics, where complex issues are approached from a multidisciplinary
perspective. By applying the principles of systems engineering and socio-technical analysis to network
recovery following disasters, this study provides both theoretical and practical insights. The evaluation
of recovery strategies offers policymakers valuable guidance in selecting the most appropriate recovery
measures based on the priorities of specific scenarios. This contributes to enhancing the functional
value of the road network for users, which is essential for restoring a network after disruptions.

From a scientific standpoint, it contributes to the expansion of knowledge regarding the resilience and
robustness of urban road networks, particularly in light of the increasing impacts of climate change and
extreme weather events. The inclusion of multiple cities with diverse network conditions allows for
broader applicability of the findings, aiding in the development of more advanced recovery models
globally.

This research holds significant societal relevance due to the increasing frequency of extreme weather
events and the urgent need for rapid and effective responses to natural disasters. The findings from this
study can assist policymakers and urban planners in formulating more resilient recovery strategies that
minimize the recovery time of transportation networks, restore mobility swiftly, and ensure the safety
of urban areas. The applicability of this research extends beyond the American networks examined,
offering broader implications for other geographical contexts, such as the German city of Munich,
thereby providing internationally applicable recommendations for urban infrastructures worldwide.

The structure of this thesis is as follows: Chapter 2 presents a literature review that examines previous
studies on the impact of climate change on natural disasters, the effects of disasters on transportation
networks, and potential recovery strategies. This literature review provides valuable insights into the
variability of impacts and discusses various strategies for the restoration of damaged infrastructure.
Chapter 3 focuses on the methodology employed in this research. It explains how appropriate methods
are applied to address the research questions, with particular emphasis on the networks being analysed,
the recovery strategies considered, and the metric indicators used to evaluate the effectiveness of these
strategies. Additionally, this chapter delves into the execution of the research and the approach taken
in the case studies. The analyses are conducted in chapter 4 on the networks of Sioux Falls, Eastern
Massachusetts, Anaheim and Munich. Chapter 5 offers a reflection on the findings and discusses the
limitations of the study and recommendations for further research. Finally, Chapter 6 presents the
conclusion of this research..



2
Literature study

In this chapter, section 2.1 will first look at the impact of climate change on natural hazards. This is
followed by a discussion of the structural and functional consequences of such hazards in section 2.2.
This section will also look at the distinction between hazard-specific and hazard-agnostic approaches.
Section 2.3 then addresses various strategies for resolving issues in road networks, particularly when
parts of the network become inaccessible due to natural hazards. The chapter wraps up with section 2.4,
which addresses the current knowledge gaps and examines the first two sub-questions of the research,
providing answers to them as well.

2.1. The influence of climate change on natural hazard frequency
In recent years, there has been a notable increase in the frequency and intensity of natural hazards, a
trend often linked to climate change (B. Wang et al., 2020). In addition, climate change will also cause
more intense and more frequent impacts (Bles et al., 2023). Global warming contributes to more extreme
precipitation patterns, rising sea levels, and higher ocean and atmospheric temperatures, all of which
increase the likelihood and severity of various hazards—including floods, tropical cyclones, and storm
surges (Camici et al., 2014; Knutson et al., 2020).

For example, a study focusing on central Dresden, Germany, demonstrates significant shifts in hydro-
logical patterns, with increases in precipitation (17.10%), surface run-off (12.66%), and recorded flood
incidents (63.26%) (Yang et al., 2024). Research also indicates a growing intensity in tropical storms and
hurricanes globally (Knutson et al., 2020). These storms bring not only wind-related destruction but
also vast quantities of rainfall and storm surges, resulting in inland and coastal flooding. As the IPCC
notes, climate change is likely to amplify the effects of such hazards, calling for broader hazard-resilient
planning in infrastructure systems (Camici et al., 2014).

In addition to the impacts of climate change related to flooding, tropical storms and hurricanes, the
risk of wildfires is also increasing. Rising temperatures and prolonged dry spells create increasingly
favourable conditions for the outbreak of wildfires, particularly in regions that are naturally prone to
such events (Fekete & Nehren, 2024). Wildfires can cause significant damage to road infrastructure,
especially unpaved roads. Therefore, implementing appropriate recovery measures is crucial, especially
in steep areas that have been severely affected by fires (Sosa & MacDonald, 2016). This highlights that
climate change can influence various types of hazards and that the repercussions for road networks can
be substantial.

2.2. Impact of natural hazards on road infrastructure
Natural disasters can impact road infrastructure in various ways. These effects can be both functional and
structural. This section will explore the different types of natural disasters and the specific consequences
they may have on road networks. In addition, this section will first look at more hazard-specific impacts,
after which the focus will slowly shift to a more hazard-agnostic approach.

3



2.2. Impact of natural hazards on road infrastructure 4

2.2.1. Structural impact
When analysing different natural hazards, it becomes clear that each type of disaster has unique
structural consequences. Despite these differences, there is a clear connection in the way infrastructure
is affected. Whether it concerns earthquakes, floods, volcanic eruptions or wildfires, each type of
disaster causes disruptions within vital networks and makes it more difficult to reach affected areas.
The structural consequences per natural hazard will be further elaborated on.

Earthquakes often have a devastating effect on the physical infrastructure. The force of seismic shocks
can lead to the collapse of bridges, tunnels and roads, which causes direct damage to the transport
network (Kilanitis & Sextos, 2018). The sudden nature of this disaster causes acute problems with
accessibility and emergency services. The damage is not limited to transport connections; vital networks
such as electricity and telecommunications can also be disrupted. Electricity poles could potentially
collapse as a result of the earthquake, which in turn may lead to the outbreak of wildfires (Fekete &
Nehren, 2024).

Flooding causes various forms of damage to asphalt roads by saturating underlying layers and eroding
the road surface. Common damage effects include rutting, edge cracking, ravelling and potholes (Ashish
et al., 2024; Sultana et al., 2016; W. Wang et al., 2020). In addition, cracks such as alligator cracking,
longitudinal cracking and transverse fractures occur, which indicate structural weakening (Ha et al.,
2022; Helali et al., 2008). These effects significantly reduce the bearing capacity of the road surface
and accelerate the deterioration of the network, leading to higher maintenance costs and reduced
accessibility.

Volcanic eruptions also pose a serious threat to infrastructure. An average of 30 to 40 eruptions are
recorded annually, which in some cases can last for years (Tomassen, 2023). Lava, ash rains and
pyroclastic flows have the potential to completely destroy roads, airports and other transport links
(Hayes et al., 2022). Additionally, volcanic eruptions can lead to a decrease in the skid resistance of roads
(Blake et al., 2017). The impact is often local, but can spread rapidly when essential connections are
disrupted. Even without global attention, these disasters cause long-term disruptions to accessibility
and logistics.

Wildfires affect infrastructure in indirect but significant ways. By increasing erosion on unpaved roads
and increasing run-off, they damage surfaces and exacerbate sediment flows into nearby waters (Sosa &
MacDonald, 2016). Recovery measures are complex, especially in mountainous areas that have been
severely affected. Additional risks arise when wildfires are triggered by other natural phenomena, such
as lightning strikes or earthquakes that knock down power lines. This creates a chain reaction of damage
to various infrastructure elements, including electricity supplies (Fekete & Nehren, 2024). Furthermore,
heat could also lead to the expansion of pavements or bridges (Bles et al., 2023). Consequently, the heat
generated by wildfires may contribute to this effect.

Table 2.1 provides a clear overview of the main structural impacts of these four disasters, including the
associated literature references. This table provides insight into how each natural hazard causes its own
pattern of damage, but ultimately, all contribute to the disruption of critical networks.
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Table 2.1: Structural impact of natural hazards on road networks

Natural hazard Impact Sources
Earthquakes • Collapse of bridges

• Collapse of roads
• Collapse of tunnels
• Collapse of power lines and poles which could

cause fires

Fekete and Nehren, 2024;
Kilanitis and Sextos, 2018

Flooding • Rutting
• Edge cracking
• Ravelling
• Potholes
• Alligator cracking
• Longitudinal cracking
• Transverse fractures

Ashish et al., 2024; Ha et
al., 2022; Helali et al., 2008;
Sultana et al., 2016

Volcanic eruptions • Reduction of skid resistance on roads
• Coverage of roads by ash
• Coverage of roads by lava

Blake et al., 2017; Hayes
et al., 2022

Wildfire • Erosion of road surface
• Increased sedimentation
• Expansion of pavement and bridges

Bles et al., 2023; Sosa and
MacDonald, 2016

2.2.2. The functional impact of natural hazards on infrastructure networks
Due to (natural) hazards, road networks may not be accessible because they have been destroyed and
need to be repaired, as a result, travellers are often unable to reach their intended destinations, are
forced to make extensive detours, or must abandon their journeys altogether. This situation worsens
traffic congestion and significantly decreases vehicle speeds throughout the network (He et al., 2024).
Over time, the persistent risks associated with recurrent hazards can accumulate into substantial costs.
These costs stem from the loss of economic assets and livelihoods, the interruption of public services,
and the adverse effects on business operations and individual well-being (B. Wang et al., 2020).

These hazards disrupt the continuity of origin-destination connections, especially in areas where
alternative routes are lacking. This leads to network fragmentation and limits mobility between critical
locations such as residential areas, workplaces, and hospitals, while also delaying emergency services
due to impassable roads and increased congestion (Wassmer et al., 2024). In the long term, these
recurring disruptions undermine the reliability of the transportation network and disrupt the daily
functioning of both individuals and institutions.

For example, wildfire-related evacuations may require rapid and large-scale road closures; landslides
can isolate mountain communities entirely; and earthquakes can cause structural failures in bridges
and tunnels, making critical connections unsafe or unusable. Between 1989 and 2000, 32.8% of all
recorded bridge failures in the United States were directly related to extreme weather events (Wardhana
& Hadipriono, 2003), highlighting the vulnerability of essential links.

2.2.3. Hazard-specific and hazard-agnostic perspectives on road networks
Although natural disasters such as earthquakes, floods, wildfires and volcanic eruptions differ greatly
in their origins and physical behaviour, they show striking similarities in their impact on critical
infrastructure. They almost always lead to disruptions in connectivity, reduced accessibility and damage
to essential links in the road network. These shared consequences highlight the limitations of traditional,
threat-specific approaches, in which each type of disaster is analysed and addressed separately.
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A more future-proof alternative is the so-called threat-agnostic resilience approach. This focuses on the
ability of a system to maintain essential functions, regardless of the type of threat (Trump et al., 2025).
Instead of assuming specific scenarios, the emphasis is on the robustness, adaptability and redundancy
of the system itself.

The need for a broader approach is reinforced by the increase in so-called multi-hazard disasters,
in which multiple threats follow one another or occur simultaneously, such as a tsunami after an
earthquake (Ba et al., 2021). Such complex situations require models that can analyse multiple threats
simultaneously or sequentially (Zhou et al., 2024).

Yet many studies still focus on only one type of disaster at a time, while the nature and consequences of
natural disasters vary widely. To fully understand damage to infrastructure worldwide and to assess
the value of adaptation measures, a broader and integrated approach is essential (Koks et al., 2019).

Therefore, it is important to focus more on hazard-agnostic approaches. By making risks less dependent
on specific scenarios, resilient systems can be designed that are better able to withstand a wide range of
disasters, even in unpredictable or combined circumstances.

2.3. Recovery strategies
The concept of hazard-agnostic has been explored as an overarching approach to analysing disruptions
within a network. In this section, the focus shifts to the question of how these disruptions can be
effectively resolved. Special attention will be paid to determining the right priorities for recovery efforts,
which can often be a challenge. Several strategies can be applied during the recovery process, especially
when it comes to determining which roads to tackle first. The article by Aydin et al., 2018 offers four
strategies that are further elaborated in this context.

2.3.1. Proximity to main resource centre
The initial strategy to be examined focuses on a singular variable, specifically the "proximity to the main
resource centre." The humanitarian logistics and emergency management services can reach a rural
area from the nearest metropolitan area. In this context, the distance from the resource centre to the
roads that are currently obstructed and require repair will be evaluated. Subsequently, a distribution
plan will be established that prioritizes the closest roads to repair. The primary objective is to accelerate
the restoration of the overall network connectivity.

2.3.2. Proximity and road hierarchy
The second strategy focuses on the concepts of proximity and road hierarchy. This approach builds
upon the first strategy by incorporating an analysis of the classification of roads into primary, secondary,
and tertiary categories. The fundamental premise is that prioritizing repairing the most critical road
segments, specifically the primary ones, will facilitate quicker restoration efforts. Consequently, the
road repair process is determined by two factors: 1) the hierarchical classification of each road segment
and 2) its distance from the nearest emergency centre. For example, the primary road segments closest
to an emergency centre will be addressed first, followed by secondary and tertiary segments, according
to their respective distances to the emergency facility.

2.3.3. Proximity and time to recover
The third strategy builds upon the foundation established by the first strategy. In this approach, the
main consideration is the proximity of the road segments in conjunction with the time required for
recovery. In the article of Dall’Asta et al., 2006, the duration necessary to restore each closed segment
was assessed based on the volume of debris on the roadway, determined through surveys conducted
with the relevant authorities. These surveys were instrumental in identifying response times and
operational capacities, including the work schedules of clearance teams. Although recovery times
for each segment were used to develop cumulative recovery functions in all strategies, this particular
strategy was specifically designed to prioritise the sequencing of road recoveries. The objective is to
clear road segments in an order that minimises recovery time, focusing on those with the least debris
and those located closest to a resource centre.
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2.3.4. Dynamically simulating a sequence based on the time variable
The final strategy does not consider the distance to the resource centre, rather, it focuses solely on the
time aspect. This approach evaluates the duration required to restore a road segment. In this context,
Strategy 4 emphasises the dynamic simulation of a sequence driven by the time variable. Initially, the
time necessary to reopen a closed road segment was determined using probability density functions
(PDFs). Subsequently, these segments were arranged in ascending order according to the identified
time variable to establish the most effective restoration sequence.

2.4. Conclusion drawn from the literature and knowledge gaps
This section examines the structural and functional consequences of multiple natural hazards on road
networks and the recovery strategies currently applied. This chapter addresses the sub-question: "What
are the structural and functional consequences of different types of natural hazards for road networks?"

Natural hazards can damage road networks in a variety of ways, affecting both structural and functional
aspects. The nature and severity of these consequences vary per type of hazard, but ultimately lead to
reduced accessibility of the network and disruption of mobility.

Each hazard has characteristic structural effects. For example, earthquakes can lead to the collapse of
bridges, roads, tunnels or electricity infrastructure. Floods often cause damage such as rutting, edge
cracking, alligator cracking, potholes, and longitudinal or transverse cracks in the road surface. Volcanic
eruptions can cover roads with ash or lava, and also cause a reduction of the skid resistance of the road
surface. Wildfires cause erosion of road surfaces, increased sedimentation, and can cause expansion of
pavements and bridges due to extreme heat.

Despite the diversity of physical damage, a common consequence of these hazards is the reduction in
accessibility of the road network. This translates into functional impacts: reduced accessibility, reduced
connectivity, and disruption of traffic flows. Critical services such as ambulance transport, fire brigades,
and logistics can be severely hampered. From this perspective, the analysis shifts from a hazard-specific
approach to a more hazard-agnostic approach, focusing on the functional consequences of damage,
regardless of the type of hazard underlying it.

In summary, natural hazards can lead to significant structural damage to road networks, with the main
functional consequence being a reduction in mobility and accessibility. Despite differences in cause,
many hazards result in similar functional disruptions, such as reduced accessibility and accessibility.
This emphasizes the value of a hazard-agnostic approach, where recovery strategies are developed
based on functional impact rather than hazard type.

In addition, this sections also looks at the second sub-question: "What recovery strategies exist to make
damaged road networks functional again? This section shows that different strategies are applied to
minimize the impact of hazards and accelerate the recovery process. In many cases, roads are prioritized
based on their proximity to the main resource centre, their road hierarchy within the network and the
required recovery time. Strategic choices play a crucial role in deploying resources more efficiently and
restoring network connectivity as quickly as possible.

These findings underline the need for well-considered recovery policies and resilient infrastructure
planning. Natural hazards are an increasing threat to road infrastructure, making effective recovery
strategies essential to ensure the connectivity and safety of road networks.

At the same time, the literature review reveals several knowledge gaps that are directly related to the
objective of this study. Although various recovery strategies are described in the literature, there is
a lack of in-depth insight into how these strategies perform when applied to different networks and
tested on different metrics. It was shown that all four strategies have been applied to a network, but
that comparing these strategies is only done using a minimal number of metrics. This leaves it unclear
which strategy would be best when you have different goals. In addition, there is little information
available on how these strategies can be applied to different networks and what the outcome would be.

Existing research often focuses on recovery strategies within the context of a specific hazard, utilizing
empirical damage data. However, this study adopts a hazard-agnostic approach, concentrating on the
functional impact of disruptions regardless of the type of hazard involved. This methodology enhances
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the comparability and generalizability of insights regarding which strategies perform best compared to
the other strategies.

To reduce these knowledge gaps, this study will apply the strategies described in the literature to
multiple networks. Initially, a smaller network will be analysed, after which the study will be expanded
to increasingly larger networks. The effectiveness of the different recovery strategies is assessed using
relevant indicators, providing insight into which strategy is most suitable in different contexts and under
different requirements. In this manner, the study contributes significantly to informed decision-making
for the recovery of road networks following disruptions, irrespective of the nature of the triggering
hazard.



3
Research methology

This chapter first discusses in section 3.1 the research design and methodology underlying this
study. Initially, it addresses the structure and framework of the research, explaining the methods and
approaches used to answer the research question. Subsequently, in section 3.2, a general definition of a
network is explored, which is crucial for understanding the context in which the further analysis occurs.
This definition serves as a foundation for the explanation of various recovery strategies in section 3.3
and also provides a reference framework for evaluating the performance indicators used to analyse
the effectiveness of these strategies. The different performance indicators and which of them will be
elaborated on further in the research will be discussed in section 3.4. This structure provides a logical
and structured picture of the methodology and core concepts central to this study.

3.1. Research design
This section describes how disasters and the resulting road inaccessibilities are modelled, which
simulations and strategies are used, and which parameters and assumptions underlie the model.
Furthermore, the main assumptions and parameters underlying the model are clarified. This provides
an overview of the design of the model and how different network characteristics are taken into account
in the analysis.

3.1.1. Methodological approach
The course of this research can be divided into a number of phases. First, the design of the analysis is
discussed. This looks at the different percentages of edge removal that are included in the simulations,
as well as the number of runs that are performed per simulation to arrive at robust results. Then,
the focus will shift to the strategies that are central to the research and the metrics with which these
strategies are evaluated. Together, these elements form the framework in which the effectiveness of each
strategy can be assessed. Finally, the actual analysis will be performed. The results obtained are then
interpreted and discussed based on the chosen strategies and metrics. Some of the important steps in
the research will be further explained below.

Edge removal percentages
The simulation phase of this research focuses on modelling disasters by randomly removing network
segments (edges). This disturbance represents the variable nature of damage that can occur during
disasters. For this purpose, four levels of damage are applied: 25%, 50%, 75% and 100%. The choice
of these specific steps is based on the need to model a wide range of scenarios without unnecessarily
increasing the complexity of the model.

The chosen 25% steps provide a balanced coverage of the damage range, allowing clear trends in
network functionality to be observed without excessive detail. They make it possible to identify critical
points at which network performance noticeably deteriorates or abruptly collapses. In the context of
hazard-agnostic research, it is also essential to be able to represent the impact of different types of

9
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disasters. For example, an earthquake could damage almost the entire road network (100%), while a
disaster often only affects parts of the network (such as 25% or 50%).

By using four clearly distinct damage percentages, a representative distribution is created that on the
one hand provides sufficient differentiation to analyse trends, and on the other hand keeps the model
manageable. Using too many intermediate percentages could lead to excessive computation time and
possibly confusing results due to too much detail. On the other hand, limiting it to only one or two
damage percentages would risk missing important patterns in the deterioration of the network.

These scenarios need to be independently simulated because each level of damage represents a distinct
state of the network with unique structural characteristics and consequences. Aggregating or overlapping
simulations could obscure the specific effects of each damage level, making it difficult to isolate how
performance metrics evolve in response to increasing disruption. Independent simulation ensures that
the impact of each damage scenario is clearly measurable, allowing for robust comparison and trend
identification. Furthermore, it avoids interaction effects that could arise if simulations were combined,
thereby preserving the integrity and interpretability of the results.

It is also important to note that the damage scenarios are not sequentially linked in a reversible manner.
That is, a simulation in which 75% of the edges are removed cannot simply be ‘converted’ back to the
50% scenario by assuming a 25% recovery. This is because each scenario involves a different random or
strategy-driven selection of edges. The 75% damage scenario may remove a specific set of edges, and
any recovery process (e.g., guided by a prioritisation strategy) will tend to restore the most critical edges
first. In contrast, the 50% scenario may include some of those same critical edges in its initial set of
removals. Therefore, starting from a repaired 75% scenario does not result in the same network structure
as a freshly simulated 50% damage scenario. Each level thus needs to be simulated independently to
maintain consistency and avoid biased or misleading results.

The chosen design therefore forms a deliberate balance between level of detail, feasibility and analytical
value, and makes it possible to draw robust conclusions about the performance of the network under
different forms and degrees of disturbance.

Number of runs
In this analysis, 100 runs were chosen for the 25%, 50%, and 75% removal rates. This number provides
a good balance between reliability and computation time. As networks grow larger, the number of
possible sets of edges to remove increases exponentially, making it impractical to test all sets. With 100
runs, a stable average can be calculated, reducing the influence of random deviations. This number
of runs provides a reliable approximation of the true value without unnecessarily consuming a lot of
computational power. It provides a good balance between accuracy and efficiency, as more runs (such as
1000) are time-consuming, while fewer runs (such as 10) reduce reliability. When looking at removing
100% of the edges, only one run is performed for this. This is because there are no different ways to
remove all edges, the result is always the same. Therefore, performing multiple runs has no added
value in this specific case.

Metrics and recovery strategies
In this study, several metrics are used to analyse the impact of disruptions on the network. The choice of
which metrics are included or excluded is further explained in section 3.4. Based on simulated scenarios,
it is then investigated how the network can be restored as effectively as possible. For this purpose, a
set of recovery strategies has been developed, which are based on three main criteria: the functional
hierarchy of the road segments, the distance to a designated recovery centre, and the estimated recovery
time per segment. By combining these factors, the model attempts to provide a realistic picture of
the priorities and choices that play a role in recovery planning after a disaster. The specific strategies
applied within this study are discussed in detail in section 3.3.

Network modelling and statistical evaluation
This research utilizes Python in conjunction with the NetworkX package to simulate and analyse
network structures. NetworkX is a robust and widely utilized library for modelling, manipulating, and
visualizing complex networks and graphs. It offers a variety of functionalities for network modelling,
algorithm implementation, and the analysis of network statistics.
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In order to compare the analyses from Python, a t-test is performed. This allows us to investigate
whether the different strategies differ significantly under different metrics and edge removal percentages.
According to Wadhwa and Marappa-Ganeshan, 2023, a t-test is a statistical method that determines
the significance of the difference between the means of two groups, taking into account their variance.
There are three main types of t-tests: the one-sample t-test, the independent t-test, and the paired t-test,
depending on the design of the study.

Multiple independent t-tests are performed to determine which strategies specifically differ from each
other. For this test, each pair of strategies is compared for all different statistics. Since the values of each
strategy for that statistic change during the process, the measurements are dependent on each other.
Therefore, the independent t-test is chosen. In addition, a paired samples t-test is also performed. For
the paired t-test, the hypotheses are as follows:

• Null hypothesis: The mean values of the two groups are the same, indicating that there is no
distinction between them.

• Alternative hypothesis: The mean values in the two groups are different, indicating that there is
a distinction between them.

To investigate whether a comparison between two strategies is statistically significant for a given statistic,
both the t-value and the p-value are needed. The t-value can be calculated using the following formula
(DATAtab, n.d.):

𝑡 =
𝑥1 − 𝑥2√
𝑠2
1
𝑛1

+ 𝑠2
2
𝑛2

(3.1)

Where:

• 𝑥1 and 𝑥2 are the mean values of sample 1 and 2
• 𝑠2

1 and 𝑠2
2 are the standard deviations of sample 1 and 2

• 𝑛1 and 𝑛2 are the number of cases in sample 1 and 2

The t-value of the test indicates how large the difference is between the means relative to the spread
of the data. The p-value tells us whether the observed difference between the means is statistically
significant. If the p-value is less than 0.05, we consider the difference to be significant.

Choosing the right significance level is essential for making accurate, data-driven decisions. A commonly
used significance level is 0.05, which means that there is a 5% chance of incorrectly rejecting the null
hypothesis when it is true. Which is a commonly used significance level and strikes a balance between
minimising false positives and detecting real effects (Virag, 2024).

The results of these tests are stored in an Excel file so that the findings can be systematically analysed
and interpreted for further decision-making.

3.1.2. Reliability and validity
To ensure the reliability and validity of the results, three key measures are implemented. One of these is
the use of a fixed random seed for the generator. This ensures reproducibility, as simulations can be
repeated consistently under identical conditions. The seed is assigned an integer, which ensures that the
pseudo-randomly generated outputs are always the same across repeated runs (Nafis, 2021). As long
as no multiple threads are active, reusing the same seed value will always produce the same output.
This is essential to ensure that others can obtain exactly the same results when re-running the code.
Secondly, variability is minimized by conducting each simulation 100 times, effectively capturing the
influence of changing network settings and the impact of disasters. This approach guarantees that the
results are robust, consistent, and scientifically sound. Additionally, the values of the various metrics
are normalized, enabling straightforward comparisons of the performance across different networks
and varying removal rates.
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3.2. General definition of a network
A graph serves as a means to define relationships among a collection of objects. It comprises a set of
objects known as nodes, with specific pairs of these objects connected by edges (Kleinberg & Easley,
2010). In the context of a road network, the nodes can be considered as the junctions, while the sections
of the roads represent the edges.

When an asymmetric relationship is necessary, such as A pointing to B but not vice versa, a directed graph
is used. In a directed graph, each edge possesses a specific direction, represented as an arrow from one
node to another. In contrast, when it is explicitly stated that a graph is undirected, it is referred to as an
undirected graph. In the case of a road network, directed graphs will be utilized, where each connection
from A to B or from B to A is treated as a distinct edge.

Mathematically, a graph G is defined as a collection of nodes and a collection of edges. This is commonly
denoted as can be shown in equation 3.2.

𝐺 = (𝑉, 𝐸) (3.2)

where:

• V represents the set of nodes. Where each node can be denoted as 𝑣1 , 𝑣2 , ..., 𝑣𝑛 , where 𝑖 , 𝑗 , 𝑘, ...
are indices that refer to specific nodes within the set N.

• E denotes the set of edges that connect pairs of nodes. An edge connects two nodes and can be
denoted as (𝑣𝑖 , 𝑣 𝑗), where 𝑣𝑖 and 𝑣 𝑗 are the nodes connected by the edge.

The collection of nodes and edges can be mathematically represented as follows:

𝐺 =
(
𝑉 = {𝑣1 , 𝑣2 , ..., 𝑣𝑛}, 𝐸 = {(𝑣𝑖 , 𝑣 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉}

)
(3.3)

where:

• 𝑉 = 𝑣1 , 𝑣2 , ..., 𝑣𝑛 denotes the set of nodes, with 𝑣𝑖 representing a specific node within the graph.
• 𝐸 = (𝑣𝑖 , 𝑣 𝑗)|𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 signifies the set of edges, where each edge represents a connection between

two nodes 𝑣𝑖 and 𝑣 𝑗 from the set 𝑉 .

This notation is employed to mathematically describe the structure of a graph (Salama et al., 2012). It
can also be stated with these equations that 𝑁 = |𝑉| represents the number of nodes in the graph. This
indicates that 𝑁 reflects the cardinality (size) of the set, or the total number of nodes in 𝑉 .

3.3. Recovery strategies
Section 2.3 outlined four significant recovery strategies for road restoration following disasters. In this
study, in addition to the four strategies presented in the article by Aydin et al., 2018, a fifth strategy
is introduced, which resembles the third strategy, but employs a different order of priorities. These
strategies will be applied to various networks in the later stages of this study and subsequently assessed.
The five strategies included in this research are:

• Proximity to the main resource centre: This strategy focuses on restoring road segments based on
their distance from the main emergency centre. Roads that are closer to the emergency centre are
prioritised in the repair process.

• Proximity and road hierarchy: This approach adds an extra layer of complexity by considering not
only the proximity of road segments to an emergency centre but also the hierarchy of the roads. In
this case, primary roads, which are crucial for network connectivity, are prioritised over secondary
roads. The strategy thus combines both the distance to the emergency centre and the hierarchy of
the road segment.

• Proximity and recovery time: This strategy goes a step further by combining the proximity of road
segments with the estimated recovery time of each segment. The goal is to restore the road
segments with the shortest recovery times and the quickest access to resources first, so that the
overall recovery of the network is achieved more quickly.
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• Recovery time and proximity: This strategy reverses the priority order. It first considers the estimated
recovery time of each road segment, and only then the distance to the resource centre. Road
segments with the shortest repair time are prioritized, regardless of their location, and then it is
determined which of these segments are closest to the resource centre.

• Dynamically simulate a sequence based on the time variable: The last strategy focuses exclusively on the
time variable. Instead of the proximity to a resource centre or the road hierarchy, this approach
considers the expected recovery time for each segment. This approach aims to determine the most
efficient recovery order by focusing on the fastest recoverable road segments, regardless of their
location in the network.

These strategies were chosen to be used in this study because they build on previous research and at the
same time provide sufficient variation to compare different approaches to network restoration. The
strategies all differ in their structure and in the way in which factors such as proximity to a centre, road
hierarchy and recovery time are taken into account. This provides a representative and broad set of
recovery strategies that together can simulate different realistic scenarios.

In previous research, these strategies were applied to a situation where the network was affected by
an earthquake-triggered landslide. In this study, however, the strategies will be applied to a more
hazard-agnostic situation, where the focus is on network restoration independent of the specific type of
natural disaster. This allows for a broader view of the effectiveness of recovery strategies, regardless of
the nature of the disruption.

In addition, a fifth strategy was chosen: a variation on the third strategy, where the priority is on recovery
time, followed by distance to the response centre. This addition allows us to investigate whether the
order in which recovery criteria are applied (first recovery time or first proximity) has an impact on the
efficiency of the recovery process. It also provides insight into whether proximity still plays a significant
role when recovery time is already included as the most important criterion.

By using this combination of existing and adapted strategies, a nuanced comparison can be made
between different recovery approaches and better insight is gained into which factors contribute most to
an effective network recovery – regardless of the type of natural disaster.

3.4. Performance indicators for recovery strategies
When evaluating a network, the concept of resilience frequently arises, particularly in the context of
network recovery. However, there exist additional indicators that can be utilized to assess a network
recovery strategy. In this way, performance-based metrics could also be considered, or more specifically
accessibility. This section will explore the various indicators that can be used to compare different
recovery strategies.

3.4.1. Accessibility
Accessibility is defined as the extent to which nodes within a network can be reached from a specific
node in a fixed number of steps ℎ. A distinction is made between "out-accessibility," the number of nodes
that can be reached from a starting node in ℎ steps, and "in-accessibility," the number of nodes that can
reach the reference node in ℎ steps (Viana et al., 2013). For accessibility, two different approaches will be
investigated. First, betweenness accessibility will be considered, and second, a simplified approach to
accessibility will be investigated by looking at degree centrality. Both approaches are further explained
below.

Betweenness accessibility
Previous discussions have addressed the concept of accessibility; however, in this study, it is relevant to
examine betweenness accessibility. Given that this analysis focuses on road networks, it is logical to
approach accessibility through the lens of betweenness centrality. Betweenness accessibility measures
how often a node is on the shortest routes between other nodes, taking into account the interaction
between these nodes. This is especially useful in transportation networks, where the position of certain
roads or intersections determines how important they are for the flow of traffic. The formula for
betweenness is given in equation 3.4 (Sarlas et al., 2020):
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𝐶𝐵𝑊 (𝑙𝑖) =
∑

𝑗 ,𝑘∈𝑉,𝑗≠𝑘

𝜎(𝑣 𝑗 , 𝑣𝑘 |𝑣𝑖)
𝜎(𝑣 𝑗 , 𝑣𝑘)

𝑤 𝑗𝑘 (3.4)

where:

• 𝜎(𝑣 𝑗 , 𝑣𝑘 |𝑣𝑖) denotes the number of shortest paths between nodes 𝑗 and 𝑘 that pass through node 𝑖.
This indicates how often node 𝑖 is a relay point for traffic between other nodes.

• 𝜎(𝑣 𝑗 , 𝑣𝑘) denotes the total number of shortest paths between nodes 𝑗 and 𝑘, without regard to
whether they pass through node 𝑖. This acts as a normalization factor to prevent nodes with a
higher probability of lying between other nodes from automatically getting a higher value.

• 𝑤 𝑗𝑘 gives a weight factor that represents the degree of interaction between nodes 𝑗 and 𝑘. In the
case of transportation networks, this could be, for example, the number of travellers, vehicles, or
other forms of traffic between these nodes. For social networks, this could be, for example, the
frequency of communication between users or the number of files shared.

In short, this equation calculates the betweenness accessibility of a node 𝑙 by looking at the number of
shortest paths passing through this node, weighted by the degree of interaction between the different
pairs of nodes. In this study, betweenness accessibility is analysed, originally using the formula in
equation 3.4. This formula takes into account the number of shortest paths between nodes and adds a
weighting factor 𝑤 𝑗𝑘 to account for the interaction between nodes.

For practical implementation, a simplified approximation of this formula is used, applying the weighted
interaction term 𝑤 𝑗 𝑘 based on the volume over the road segment. This results in the betweenness
centrality, which indicates how often a node is on the shortest routes between other nodes.

Degree centrality
Degree centrality (DC) serves as a straightforward measure of centrality, representing the number
of direct connections associated with a node (El-Sharkawy et al., 2019). A node exhibiting a high
degree centrality typically possesses numerous connections and often assumes a pivotal role within the
network’s structure. This metric is particularly beneficial for pinpointing nodes that enable rapid access
to multiple other nodes, thereby enhancing the effectiveness of the network restoration process.

The degree centrality of a node 𝑣𝑖 is determined using equation 3.5 (Bamakan et al., 2019):

𝐷𝐶(𝑣𝑖) =
1

𝑁 − 1

𝑁∑
𝑗=1

𝛼𝑖 , 𝑗 (3.5)

In equation 3.5 is 𝛼𝑖 , 𝑗 = 1 if a direct connection exists between 𝑣𝑖 and 𝑣 𝑗 , with 𝑖 ≠ 𝑗. In the context of a
directed network, degree centrality can account for both incoming and outgoing connections. A high
value of 𝐷𝐶(𝑣𝑖) indicates that the node 𝑣𝑖 has numerous direct connections to other nodes within the
network, rendering it essential for overall connectivity (Golbeck, 2015). When applying degree centrality,
the number of nodes that are reachable from a specific node is considered. Since there are different
strategies by which a resource centre (partly) determines the order of recovery, degree centrality can be
used to optimize accessibility. This is done by strategically adding nodes to improve accessibility within
the network.

Choice of accessibility measure
In this analysis, both betweenness accessibility and degree centrality have been selected as metrics
for evaluating accessibility. In this study, betweenness accessibility is referred to as betweenness, while
degree centrality is denoted as accessibility. This choice is made because these two metrics illuminate
fundamentally different dimensions of accessibility within the network.

Betweenness provides insight into the frequency with which a node appears on the shortest paths
between other nodes, which is crucial for understanding flow dynamics and critical connections within
the network. Conversely, degree centrality assesses the number of direct connections a node has, serving
as an indicator of local connectivity. By including both measures, a more complete picture is obtained
of the network structure and how it will recover after disruptions.



3.4. Performance indicators for recovery strategies 15

3.4.2. Connected components
In the context of restoring a road network after a disaster, it is important to assess the extent to
which the network is fragmented. This can be determined by analysing how many separate parts the
network contains after it has been disrupted. Each of these separate parts, also called weakly connected
components, consists of nodes that are interconnected but have no direct connection to other parts of
the network (Memgraph, 2021).

To assess the degree of fragmentation, the focus is on the number of distinct network components (𝑁𝑐𝑐).
A higher value indicates a more fragmented network, while a lower value suggests that the network
remains well-connected, even in the event of damage.

An alternative method for describing the connectivity of the network is to examine the connectivity
score, defined as the inverse of the number of weakly connected components:

𝐶(𝐺) = 1
𝑁𝑐𝑐

(3.6)

This approach is employed because a higher score intuitively signifies a better-connected network. If
there is only one component (𝑁𝑐𝑐 = 1), then the value 𝐶(𝐺) = 1 indicates a fully connected network. As
the network becomes more fragmented (with an increase in 𝑁𝑐𝑐), the value of 𝐶(𝐺) approaches 0. This
metric is thus easier to interpret: a higher value reflects a more robust network, whereas a lower value
indicates significant fragmentation.

This insight is crucial for the recovery process as it indicates the extent to which network components
need to be reconnected to enhance overall accessibility (Ahuja et al., 1993). By utilizing this metric,
it becomes possible to analyse how various strategies contribute to a more efficient restoration of the
network. This is the rationale behind the decision to incorporate this metric.

3.4.3. Efficiency
Efficiency can be measured by looking at how effectively information is exchanged across a network.
This can be done by using the concept of small-world networks, which are efficient at both the global
and local levels (Latora & Marchiori, 2001). In the case of road networks, efficiency refers to the capacity
of a network to transport information or traffic quickly and effectively between different nodes (such
as cities or transport hubs). Efficiency is therefore one of the network characteristics described in the
literature that depends on the shortest path concept and can be measured using the following formula
(Viana et al., 2013):

𝐿 =
1

𝑁(𝑁 − 1)
∑
𝑣𝑖≠𝑣 𝑗

1
𝑑(𝑣𝑖 , 𝑣 𝑗)

(3.7)

Where 𝑑(𝑣𝑖 , 𝑣 𝑗) is the topological distance between nodes 𝑣𝑖 and 𝑣 𝑗 (where 1 ≤ 𝑖 , 𝑗 ≤ 𝑁) along the
shortest path. This formula calculates the efficiency of a network by considering the shortest distances
between all possible pairs of nodes. It takes the inverse of each shortest distance between two different
nodes (the shorter the distance, the greater the contribution to efficiency) and adds them together. Then,
the result is divided by the number of possible pairs of nodes in the network, giving the average. This
average represents the overall efficiency of the network: the shorter the distances between nodes, the
more efficient the network is at moving information or traffic quickly.

This efficiency metric is useful to look at when assessing a network affected by a disaster, as it provides
insight into how well the network functions after the disruption. When a disaster damages parts of the
network, certain nodes and connections (edges) may no longer be reachable. By measuring efficiency,
you can quickly see how severe the impact is on the overall connectivity and therefore efficiency will be
taken into account.
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3.4.4. Performance
When evaluating performance-based network metrics, it is essential to consider several key indicators,
such as total travel time, total travel distance, traffic flow, and traffic capacity (Hosseini et al., 2024).
These indicators offer valuable insights into the effectiveness of a transportation network and are vital
for assessing the impact of any remediation efforts. This section will provide a more in-depth analysis
of the total travel time and total costs.

Total travel time
One of the most important measures of the efficiency of a transportation network is the total travel time
(TTT). This indicates the amount of time vehicles spend in the system and is calculated by summing
the travel times on all roads in the network, weighted by the amount of traffic on those roads (Zhao
& Zhang, 2020). This metric is particularly relevant for recovery measures, as it provides insight into
which roads have the greatest impact on travel time. By minimizing travel time, the efficiency of the
network can be restored more quickly.

Total costs
In addition to travel time, total costs are also an important factor in assessing network performance.
Costs depend on effective planning of recovery activities and efficient allocation of resources (Zhao &
Zhang, 2020). Disasters can impose significant costs on road users, road authorities and the economy as
a whole.

For example, road users face operational costs such as additional fuel consumption and longer travel
times. Road authorities bear the direct costs of infrastructure recovery and may lose budgetary space
due to the reallocation of resources. In addition, disasters can cause indirect economic damage, such as
loss of productivity, reduced competitiveness and a decrease in national income.

Choice of Performance metric
A deliberate choice was made to disregard both total travel time and total costs in this analysis. This
choice was made because disasters affects the accessibility of the edges within a network, resulting in a
reduction in the number of available edges and therefore in re-routing. No data are available on this
re-routing, nor on the associated consequences for travel time, which makes it impossible to include
travel time in the analysis in a valuable way.

In addition, it is difficult to assign a concrete monetary value to road repair within this model, because
infrastructure repair involves many variables, such as the nature of the damage, the materials needed,
the duration of the work, and the influence of external factors such as weather conditions and labour
costs. Furthermore, there may be different approaches to repairing different types of damage, which
makes cost estimation difficult. The lack of detailed data on these variables makes it difficult to make an
accurate and uniform financial valuation of road repair. Nevertheless, both the total travel time and the
total cost remain crucial factors in making well-considered choices regarding road repair work. It is
therefore important to consider in the future how these elements can be appropriately incorporated into
the decision-making process.

3.4.5. Resilience
A commonly referenced metric for a network is resilience, which can be understood in various dimensions.
Resilience may be categorized based on the mitigation strategies implemented prior to a disaster to
enhance the system’s robustness; the emergency response measures enacted immediately following the
event; and the long-term recovery process, during which the system is progressively restored through
the reconstruction of the affected network (Gokalp et al., 2021). Additionally, resilience can be defined
as the ability of a system to absorb, resist, and swiftly recover from external threats (Meng et al., 2023).
Another perspective on resilience is the capability of a city’s transportation infrastructure, particularly
its road network, to endure, adapt to, and recuperate from various shocks and stressors (Hosseini et al.,
2024).

As shown in paragraph 3.2, the road network can be represented as 𝐺(𝑁, 𝐸), where N signifies the nodes,
such as intersections or cities, and E represents the edges connecting these nodes, which correspond to
the roads. When roads are damaged by, for example a flooding, the affected connections 𝑅 ⊂ 𝐸 are
removed from the graph, resulting in a modified graph 𝐺𝑟(𝑁, 𝐸 \ 𝑅). This revised structure reflects
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the network with the subset R of the total edges E removed. This modification simulates the physical
damage to the network. The consequences of road closures and network breaks can be quantified by
analysing the effect of this change.

In addition to this resilience based on traffic flow metrics, Zhao and Zhang, 2020 identifies two distinct
categories of resilience measures specifically for transportation systems: those based on network topology
and those based on system performance. The measures grounded in network topology encompass several
factors, including origin-destination (O-D) connectivity, average reciprocal distance, average degree,
diameter, cyclicity, betweenness, network coverage, and the diversity of travel alternatives. Conversely,
system performance-based measures focus on aspects such as travel time, travel cost, environmental
considerations, travel demand, and resilience measures derived from consumer surplus.

Some of these metrics could be used to assess a network’s resilience in the disaster case. Further attention
will be given to the following network topology measures: origin–destination (O-D) connectivity, and
travel alternative diversity.

Origin-destination (O-D) connectivity
O-D (origin-destination) connectivity refers to the number of links in a network that support travel
between specific origin and destination pairs (Zhang et al., 2015). In classical connectivity analysis,
an O-D pair is considered connected if there is a path with positive capacity between the origin and
destination. The network is strongly connected if there is a path for each O-D pair.

As elaborated in section 3.2, a graph can be represented as 𝐺 = (𝑉, 𝐸), where the nodes 𝑉 and the edges
𝐸 symbolize the network. The set of O-D pairs𝑊 is then defined as a subset of the Cartesian product of
the nodes.

𝑊 ⊆ 𝑉 ×𝑉 (3.8)

This means that W is a selection of possible connections of nodes, but does not necessarily contain all
possible connections. It only contains the relevant origin and destination pairs that are analysed in the
network.

The resilience in terms of O-D connectivity (ROD) is defined as the highest level of connectivity between
O-D pairs within a specific scenario, divided by the initial connectivity of those O-D pairs. This
relationship is mathematically represented as:

Resilience - O-D connectivity (ROD) = max𝐸𝜉

(
𝑚𝑎𝑥

∑
𝑤∈𝑊

𝜑𝑤(𝜉)
) / ∑

𝑤∈𝑊
Γ𝑤 (3.9)

where:

• 𝑊 is the set of all O-D pairs.
• 𝜑𝑤(𝜉) is a binary variable indicating whether the O-D pair 𝑤 is connected under scenario 𝜉,
• Γ𝑤 is a measure of the original connectivity of the O-D pair 𝑤 (=1 if connected, =0 otherwise).

This formula measures the percentage of O-D pairs that remain connected after a disruption, by dividing
the number of connected pairs by the total number of pairs. Connected O-D pairs are those pairs for
which a path exists in the network, while the total number of O-D pairs includes the total number of
pairs evaluated.

Travel alternative diversity
Travel Alternative Diversity refers to the number of alternative routes between an origin and destination
pair (O-D pair). This metric helps determine the resilience of the transportation system, as more
alternative routes provide more travel options in the event of disruptions. The set of available routes for
an O-D pair (𝑣𝑖 , 𝑣 𝑗) is denoted as 𝐾𝑣𝑖 ,𝑣 𝑗 , where |𝐾𝑣𝑖 ,𝑣 𝑗 | represents the number of routes. For example, if
only one route is available (|𝐾𝑣𝑖 ,𝑣 𝑗 | = 1), a disruption on this route can completely block the connection
(Xu et al., 2015). More alternative routes therefore increase the resilience of the network by providing
additional travel options.
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Choice of resilience metric
Based on the three metrics of O-D connectivity, average degree, and travel alternative diversity, the
decision was made to include O-D connectivity in further analyses. This choice was made because
it serves as a direct indicator of the network’s performance during disruptions. O-D connectivity
provides insight into the network’s ability to maintain transport flows between critical points, even after
significant changes such as road closures. This aspect is particularly vital in urban areas, where the
mobility of people and goods is essential for economic activities and daily necessities. By analysing O-D
connectivity, it becomes possible to identify vulnerabilities within the network and develop strategies to
enhance its resilience in the face of future disasters.

3.4.6. Robustness
Robustness is the ability of a network to maintain its functionality, such as moving people between
nodes, despite unexpected disruptions or the loss of nodes and links (Oehlers & Fabian, 2021). In this
case, robustness means that the network is able to continue to meet necessary transportation needs
even if some parts of the network fail, for example due to a flood. The network remains operational by
providing alternative routes, depending on the degree of redundancy the network has. This means that
the network continues to function even when it is exposed to failures that may eliminate or interrupt
some parts. The degree of robustness is influenced by the existence of critical links: links that, when
removed, severely disrupt the network. A robust network often has redundant routes, so that alternative
paths between nodes remain available if some links fail (Vodák et al., 2015). The degree of robustness is
also influenced by the existence of critical links: links that, when removed, severely disrupt the network.
To assess the robustness of a network, degree centrality on both weighted and non-weighted graphs can
be used, which are further elaborated in the following paragraphs.

Degree centrality
A first way to measure the robustness of a network is by looking at the degree centrality. This metric
indicates the connectivity of individual nodes by looking at the number of direct connections (edges)
from each node (El-Sharkawy et al., 2019). When nodes with high degree centrality fail, this can disrupt
the overall network connectivity, affecting the robustness of the network. Nodes with a high degree
centrality typically have many connections and therefore play a crucial role in the network structure. A
high degree centrality indicates that the node is essential for connecting different parts of the network,
meaning that the failure of such nodes can significantly weaken the network. The average node degree
gives a global picture of the connectivity and thus an indication of the overall robustness of the network.

The Degree Centrality of a node 𝑣𝑖 is determined using the following equation (Bamakan et al., 2019):

𝐷𝐶(𝑣𝑖) =
1

𝑁 − 1

𝑁∑
𝑗=1

𝛼𝑖 , 𝑗 (3.10)

where

• 𝑁 denotes the total number of nodes in the network,
• 𝛼𝑖 , 𝑗 = 1 if a direct connection exists between 𝑣𝑖 and 𝑣 𝑗 , with 𝑖 ≠ 𝑗.

Here we can see that the degree centrality of a node indicates how well it is connected within the
network by counting the number of direct connections (edges) to other nodes. In the context of a
directed network, Degree Centrality can account for both incoming and outgoing connections. A high
value of 𝐷𝐶(𝑣𝑖) indicates that the node 𝑣𝑖 has numerous direct connections to other nodes within the
network, rendering it essential for overall connectivity (Golbeck, 2015).

Degree centrality in weighted graphs
Degree centrality measures the connectivity of a node by counting the number of direct connections
(edges) (El-Sharkawy et al., 2019). However, in this study, it concerns a directed network (directed
graph), in which a distinction is made between in-degree (the number of incoming connections) and
out-degree (the number of outgoing connections) (Powell & Hopkins, 2015).
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In addition, the network is weighted, which means that not only the number of connections counts, but
also their strength. This means that nodes with heavier connections can have a greater influence on the
network. A node with a high in-degree receives a lot of traffic, while a high out-degree indicates that a
node has many connections to other nodes. This helps to identify crucial nodes that have a large impact
on network robustness in the event of disruptions.

Choice of Robustness metric
In this study, the network is not only directed, but also weighted. This means that connections are not
all equally weighted: some roads or nodes play a greater role in the network structure than others.
Degree centrality helps determine which nodes are most connected, but in a weighted network there
will be looked at the number of connections, but also at their strength. This is essential in a transport
network, where some roads carry much more traffic than others.

In addition, the directionality of the network makes an important difference. A node can have a
high in-degree (many incoming connections, such as a busy intersection) or a high out-degree (many
outgoing connections, such as a traffic hub that directs traffic to different destinations). By combining
both aspects, a more realistic picture of which nodes are crucial for the robustness of the network and
where disruptions have the greatest impact can be obtained.

3.4.7. Metrics included in further analysis
The further analysis uses six network parameters: accessibility, betweenness, efficiency, connected
components, resilience, and robustness. These metrics measure respectively: the local reachability of
nodes, the significance of roads in facilitating network flows, the number of fragmented networks, the
shortest distance between nodes, the preservation of O-D connectivity, and the importance of a node
within the network. Each of these parameters is calculated quantitatively based on graph-theoretic
principles, and together they provide a complete picture of the functioning of the network under stress.

3.4.8. Importance of metrics for policymakers and residents
For policymakers, it is essential to understand where the network is vulnerable, which areas should be
prioritized for recovery, and how disruptions affect the daily mobility of residents. The selected network
parameters help to answer these questions in a substantiated manner.

Accessibility indicates how many nodes are accessible from a specific, centrally located node. For
policymakers, this provides valuable information about which areas are quickly isolated after a
disruption. If far fewer locations are accessible from a strategic centre, such as a hospital or public
transport node, there is a direct reason to focus recovery efforts there. This helps to ensure the functional
accessibility of essential facilities for residents in surrounding areas. Betweenness identifies nodes
that are crucial for the flow of traffic. Identifying these ‘critical links’ helps to prioritize recovery or
reinforcement to reduce network delays and congestion, which provides both economic and societal
benefits. Connected components provide a picture of the fragmentation of the network. This information
is valuable in determining how quickly and at what scale the network as a whole needs to be restored to
function as a coherent system again. Efficiency measures how effectively travel within the network is
performed. By identifying areas with low efficiency, policymakers can address bottlenecks that lead to
detours, extra travel time, and higher costs for citizens and businesses. Resilience, expressed in terms of
maintaining O-D connectivity, helps to assess whether people can still get from A to B. Policy measures
can therefore be aimed at restoring essential connections that ensure mobility and accessibility, even
in the event of disruptions. Robustness is measured based on the weighted degree of a node, which
is the sum of the weights of the connected edges. This provides insight into how important a node is
within the network, not only based on the number of connections, but also on their strength or capacity.
For policymakers, this is crucial: nodes with high robustness often play a key role in the network and
are potential ‘single points of failure’. By identifying these nodes, measures can be taken to make the
network more robust.

By combining these parameters, a clear, multidimensional picture of the network emerges that helps
policymakers to set priorities, justify investments and minimize the social impact of disruptions. For
residents, this means faster recovery times, more continuity in their daily journeys, and a future-proof
transport system.
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3.5. Modelling, optimization and evaluation of recovery strategies
This section answers the sub-question: “How can different recovery strategies for a disrupted road network be
modelled, optimized, and evaluated using multi-objective graph metric recovery?"

The restoration strategies in this research were developed using multi-objective graph metric recovery.
This means that the road network was represented as a network (graph) of nodes (e.g. intersections) and
edges (road segments), where different restoration strategies were modelled based on multiple criteria.
For each of these strategies, specific weights and priorities were assigned to restoration criteria such as
proximity to the centre, restoration time and road hierarchy. The strategies are defined as follows:

• Proximity to the centre: Segments the network based on the distance to a central node, determined
via proximity centrality. Nearby roads are prioritized for restoration.

• Proximity and hierarchy: Combines proximity with the classification of roads (primary, secondary,
tertiary). Primary roads are restored first.

• Proximity and recovery time: Prioritizes recovery based on a combination of proximity and expected
recovery time, which depends on segment length and number of lanes.

• Recovery time and proximity: Evaluates recovery time first; if recovery time is equal, segments closer
to the centre are restored first.

• Dynamic recovery: Focuses solely on recovery time, without additional criteria.

These strategies have been optimized by looking at different removal percentages within each network.
A simulation of 25%, 50%, 75% and 100% edge removal is included, so that it became clear which
situation was most effective in a given situation. Different networks are also considered, namely Sioux
Falls, Eastern Massachusetts, Anaheim and Munich.

The strategies were evaluated based on six performance indicators:

• Accessibility: the extent to which nodes remain accessible.
• Betweenness: the importance of roads in network flows.
• Connected components: number of fragments in the network.
• Efficiency: average shortest paths between nodes.
• Resilience: preservation of origin-destination connectivity.
• Robustness: importance of nodes for network coherence.

By modelling recovery strategies using different criteria, optimizing based on network-specific conditions
and evaluating via multi-objective graph metric indicators, insight can be gained into the effectiveness
of different recovery strategies under different disruption scenarios.



4
Analysis of recovery strategies based

on case studies

This chapter will discusses the different networks examined in this study, as well as the application
of the five recovery strategies to these networks. The objective is to analyse how the selected recovery
strategies affect the performance of the networks and how they relate to six key metrics: accessibility,
betweenness, connected components, efficiency, resilience, and robustness. The analysis will initially
be performed for the Sioux Falls network, after which the same methodology will be applied to three
other networks. The chapter concludes with a detailed comparison of the results, discussing both the
similarities and differences between the networks. This comparison provides valuable insights into the
effectiveness of the recovery strategies in different contexts and helps to identify the best performing
strategies for network recovery after disruptions when looking at specific metrics.

4.1. Case descriptions
This section will discuss the networks that will be included in the analyses in more detail. First, the
Sioux Falls network will be discussed, as this network will form the basis for the further analysis. An
initial model will be developed for this network, which can later be applied to the other networks. This
provides a solid starting point for the rest of the research. After discussing the Sioux Falls network, the
other networks that will be included in the analyses will be explained in more detail one by one. This
will provide a clear overview of the networks and their interrelationships.

4.1.1. Sioux Falls network
The Sioux Falls network serves as the basis for the initial analyses. This network originates from Sioux
Falls in South Dakota, United States, and is frequently utilized in transportation research to evaluate,
illustrate, and compare various methods and algorithms (Hackl & Adey, 2019). The network is illustrated
in Figure 4.1. Figure 4.1a, based on Transportation Networks for Research Core Team, n.d. presents the
road network in its original configuration, while Figure 4.1b offers a simplified representation of the
network. This simplified model will be used further in this research. The simplified network model
contains 24 nodes, and 76 edges.

21
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(a) Sioux Falls network map obtained from Transportation
Networks for Research Core Team, n.d. (b) Sioux Falls network modelled

Figure 4.1: Overview of the Sioux Falls Network

For the Sioux Falls network, several parameters were included in the analyses. For each edge, the start
and end node, the recovery time, the priority (whether it is a primary or secondary road), the travel
time (in minutes), the capacity of the road segment, the volume, and the length of the road segment
were considered. The values for volume, capacity, and length are based on the paper by LeBlanc et al.,
1975. The speed limits for this network have been examined in Ukkusuri and Yushimito, 2009, which
also presents the number of lanes.

4.1.2. Eastern Massachusetts
In addition to the Sioux Falls network, another American network is also being considered, namely that
of Eastern Massachusetts (EMA). This network serves as a subset of the overall Eastern Massachusetts
transportation network and represents a subsection of the roads in this area. Massachusetts ranks as
the seventh smallest state in the United States, indicating that the Eastern Massachusetts network is
relatively compact. Nevertheless, it comprises 74 nodes and 258 edges, making it considerably larger
than the Sioux Falls network.

The Eastern Massachusetts network is illustrated in Figure 4.2. However, the visualization of this
network differs from that of the Sioux Falls network due to the unavailability of precise coordinates
for the nodes. Consequently, it is not feasible to create a geographically accurate reconstruction of the
network structure. Instead, an alternative representation is employed to elucidate the interconnections
among the nodes.
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Figure 4.2: Eastern Massachusetts network obtained from Transportation Networks for Research Core Team, n.d.

4.1.3. Anaheim network
The second network to be added is the Anaheim network, located in California. It is significantly larger
than both the Sioux Falls network and Eastern Massachusetts network. The Anaheim network consists
of 416 nodes and 914 edges and is illustrated in Figure 4.3. A notable feature of the Anaheim network is
the prominent road that extends from the upper left to the lower right. This is highlighted by the high
density of nodes along this road. Additionally, significant horizontal lines can be observed at both the
top and bottom of the network, again indicated by thicker blue lines and a substantial concentration
of nodes. Moreover, it is important to note that the Anaheim network is situated inland, resulting in
numerous connections extending outward from all directions.
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Figure 4.3: Anaheim network modelled

4.1.4. Munich network
The final network included in the analysis is that of Munich, a city located in Germany. This inclusion
makes the Munich network particularly noteworthy, as it is the first and only non-American network
featured in this study. With a total of 742 nodes and 1,872 edges, the Munich network is significantly
larger than the Anaheim network. Another distinguishing feature is the type of data available for the
Munich network. Unlike the networks of Sioux Falls and Anaheim, which provide coordinates for
the nodes, the Munich network operates with solely distance data between the nodes. This leads to a
different approach in representation and modelling.

Figure 4.4 illustrates the structure of the Munich network. The characteristic ring-shaped highway is
prominently visible, from which various branches extend outward. The highways are marked in red,
while roads with moderate speeds are depicted in blue. The roads with the lowest speeds are indicated
by gray lines.

Furthermore, the numbering of the nodes in the Munich network differs from that in the other networks.
The node with the lowest number is 73469, while the highest is 2146237932. Several numbers in between
have been omitted, further emphasizing the unique structure of this network.

With this addition, the research not only provides insights into American urban networks but also gains
a broader perspective by integrating a European road network.
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Figure 4.4: Munich network obtained from Saprykin et al., 2022

4.1.5. Comparison of network structures
In this study, betweenness, efficiency and robustness are chosen as the most important metrics to assess
the initial state of the networks. These metrics provide direct insight into the core characteristics of a
network, such as the degree of node centrality, the effectiveness of traffic transport and the resilience to
disruptions. For example, betweenness helps to identify nodes that are essential for communication
between different parts of the network, while efficiency indicates how quickly traffic is distributed and
robustness reflects the stability of the network in the event of disruptions. In the early stages of the
analysis, these metrics provide the most valuable information, as they provide fundamental insights
into the structure and performance of the network.

However, other metrics, such as accessibility, connected components and resilience, often provide little
additional information in the initial state. Accessibility often simply corresponds to the total number of
nodes in the network, which says little about the structure or connections between them. Connected
components gives a value of 1 in all networks, as the network is fully connected; there are no fragmented
parts. Resilience will always return a value of 1 in this case, because in a fully connected network all
connections between the O-D pairs are present, so there is no difference in this metric. Therefore, it
is chosen to focus on the three metrics that provide the most insight into the overall functioning and
resilience of the network. The values of these metrics are summarized in Table 4.1.
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Table 4.1: Performance metrics of selected networks

Network Robustness Efficiency Betweenness
Sioux Falls 36,566.80 0.43 0.091
Eastern Massachusetts 11,882.23 0.29 0.048
Anaheim 4,416.12 0.11 0.026
Munich 5,469.17 0.07 0.025

Table 4.1 shows that the Sioux Falls network scores higher than the other networks for all three metrics,
which can be explained by the smaller size of the network, with the nodes being closer together. This
makes the network more efficient in distributing traffic and increases its robustness. The Sioux Falls
network, with only 24 nodes, has a robustness of 36,566.80 and an efficiency of 0.43, indicating a compact,
centralized network where traffic is distributed quickly and effectively through a few key nodes.

The Munich network has a robustness of 5,469.17 and an efficiency of 0.07, indicating inefficiency in
traffic despite its larger size. This network exhibits a ring-radial structure, with a main road in the
middle acting as a ring, and branches emerging from it, resulting in long routes and low efficiency.
The low betweenness centrality of 0.025 indicates that there are few key nodes that distribute traffic
efficiently.

The Eastern Massachusetts network, with a robustness of 11,882.23 and an efficiency of 0.29, has a radial
pattern. The paths radiate from the centre, and the mixed betweenness centrality of 0.048 indicates
that there are both central and local nodes, which provides a balanced traffic distribution and a flexible
network. The Eastern Massachusetts network is difficult to give any kind of structure to, but it most
closely resembles a network with a clear core, radial structure, and high redundancy.

The Anaheim network has the lowest robustness of 4,416.12 and efficiency of 0.11, which indicates
a decentralized grid. This network is distributed over a grid of nodes without strong main arteries,
causing traffic to spread over many paths without central concentration points, leading to inefficiency
and higher probability of congestion.

The interpretation of the performance in Table 4.1 is well reflected in the structures of the networks as
described in the article by yayun, 2018. The Anaheim network exhibits the characteristics of a grid-mesh
structure, with low robustness and efficiency. The Munich network has the characteristics of a ring-radial
structure, with low efficiency due to long routes and few central nodes. The Sioux Falls network has a
compact centralised structure, resulting in high robustness and efficiency. The Eastern Massachusetts
network follows a radial pattern, with central and local nodes allowing a balanced distribution of traffic.

Table 4.2 summarises the networks with their associated structure and key characteristics. The data
from Table 4.1 is included to provide an overview of the performance per network and how it reflects
the underlying network structure.

Table 4.2: Traffic networks: metrics and structural interpretation

Network Country Structure Key features
Sioux Falls USA Compact, highly

centralised
Small, centralised network with short
paths enabling fast and efficient traffic dis-
tribution.

Eastern
Massachusetts

USA Radial, high
redundancy

Densely connected, mesh-like centre with
radiating connections to the edges, which
are also partly interconnected.

Anaheim USA Grid-mesh,
decentralised

Grid layout without dominant routes
causes dispersed flow and risk of conges-
tion.

Munich Germany Ring-radial, low
centrality

Long paths and few central nodes result
in inefficient, dispersed traffic flow.
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The comparison of the four networks clearly shows how the underlying structure of a traffic network
influences its performance in terms of robustness and efficiency. Compact and centralized networks, such
as Sioux Falls, perform best due to their short distances and efficient traffic distribution. Networks with
a grid structure or ring-radial structure, such as Anaheim and Munich, show that decentralization and
long connecting routes can lead to lower efficiency and reduced robustness. The Eastern Massachusetts
region represents a middle ground, with a mixed structure that provides a reasonably robust and
flexible network. These results underline the importance of well-considered network structure when
designing urban mobility systems.

4.1.6. Network resources, central node determination and recovery methods
This section will delve deeper into the data from the four networks and how it is incorporated into the
analysis. To begin, it will examine the information that serves as the foundation for analysing recovery
strategies and the impact of disruptions on network performance. Furthermore, the identification of the
central node within each network, the removal of edges, and the assessment of recovery time will be
explored.

Data sources and network properties
These networks are expected to offer a detailed understanding of the practical application of the five
different strategies. By examining the various networks, one can conduct a thorough analysis of the
impact of these strategies on different statistical measures. The data for all four networks is sourced
from Transportation Networks for Research Core Team, n.d. which also provides the data for the Sioux
Falls model.

The dataset encompasses several elements, including the starting and ending nodes of the networks, as
well as the recovery times necessary following failures. It also incorporates the prioritization of roads,
distinguishing between primary and secondary routes. Additionally, the analysis utilizes travel times in
minutes, the capacity of road segments, traffic volumes, and the lengths of the road sections to further
model and evaluate the networks.

Determining the central node
When integrating case studies into the research design, there are several key aspects to consider. An
important part of evaluating recovery strategies is to consider both the distance to a resource centre and
the priority of the roads. In the article by Aydin et al., 2018, the Araniko Highway is considered the main
access road within the network and therefore designated as the resource centre for recovery operations.

In the analysed networks, identifying a single central recovery point is not always straightforward.
Consequently, this study focuses on determining the most central node within the network. Various
methods exist for assessing centrality, and this research has opted for closeness centrality. This metric
reflects the average shortest distance from a node to all other nodes in the network (Perez & Germon,
2016). It provides valuable insights into how well a node is connected to the rest of the network, which
can be crucial in identifying which nodes need to be quickly accessible during a recovery process. Since
the coordinates of the nodes are not available for some networks, this method serves as a reliable means
of identifying the most central node. Based on this analysis, the following nodes have been identified as
central: node 10 in the Sioux Falls network, node 23 in East Massachusetts, node 303 in the Anaheim
network, and node 77669 in the Munich network. These nodes are situated at the core of their respective
networks, making them logical starting points for analysing recovery strategies.

When examining the central nodes, it is noteworthy that for Munich, the central node is identified as
node 77669. While this may seem surprising, it can be explained by the fact that the Munich network
employs a different numbering sequence, as discussed in paragraph 4.1.4.

Removal of edges
Earlier in this chapter, it has become evident that the various networks analysed in this study each
possess a distinct number of nodes and edges. Consequently, the effects of edge removal will differ
based on the size and structure of each network. Each network features a unique quantity of connections,
leading to varying amounts of removed edges at different percentages of edge removal. Therefore, the
number of edges eliminated is influenced not only by the percentage applied but also by the overall size
and connectivity of the network.
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Table 4.3 illustrates the number of connections removed for each network at the various removal
percentages applied. This table provides a clear overview of the quantitative changes occurring in the
network’s structure at different levels of edge removal. Understanding this data is essential, as it is
critical for the subsequent analysis of the implications of edge removal and the effectiveness of recovery
strategies across different networks.

Table 4.3: Number of edges removed per scenario per network

Number of edges removed per run
Scenario Sioux Falls Eastern Massachusetts Anaheim Munich

25% 19 65 229 468
50% 38 129 457 936
75% 57 193 685 1404
100% 76 258 914 1872

Method for calculating recovery time
The recovery time of road segments is scaled based on the maximum speed of the segment. Higher
speeds are typically associated with wider roads (SWOV, 2021), resulting in a larger recovery area and
therefore longer recovery time.

To better understand this relationship, one can look at the distinction between highways and non-
highways, as described by Teodorović and Janić, 2017. Non-highways typically have a total width of 7.3
meters, while highways are wider and vary in width depending on the number of lanes. For example,
highways with two lanes in each direction have a total width of 40.2 meters, while for three and four
lanes this is 47.6 and 54.8 meters respectively. This division is in line with the speed limits as defined by
Administration, 2021, where roads in residential areas and school zones have a maximum speed of 40
km/h, while rural highways have a limit of 89 km/h and rural interstate have a speed limit of 113 km/h.

The relationship between speed, road type and width forms the basis for scaling recovery times. For
the Sioux Falls network, the number of lanes on a road is already established, eliminating the need
to consider speed in this context. For other networks, Table 4.4 can be utilized, which provides an
overview of the classification used.

Table 4.4: Relationship between speed, road type, and total width.

Speed (km/h) Road types Total road width (m)
≤ 40 Non-motorway 7.3
> 40 Dual 2 lanes 40.2
> 89 Dual 3 lanes 47.6
> 113 Dual 4 lanes 54.8

The distribution of speeds, the number of lanes and their associated widths can be used to calculate a
scaling factor for the recovery time of the road segments.

4.2. Simulation results by edge removal rate
To gain insight into the effects of different edge removal percentages on networks, this section presents
an in-depth analysis. The impact on each of the four networks is examined for each removal percentage.
The emphasis is on an extensive case study of the Sioux Falls network when removing 25% of the edges.
This specific situation is discussed in detail in subsection 4.2.1. Additional explanations for the other
removal percentages can be found in the appendix. Subsection 4.2.2 discusses the removal of 50% of the
edges, followed by an analysis of the effect of 75% removal in subsection 4.2.3. Finally, subsection 4.2.4
discusses the scenario in which all edges are removed from the network. This last analysis again focuses
specifically on the Sioux Falls network, and also explains the recovery process per strategy.
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4.2.1. Analysis of 25% edge removal
In the scenario where 25% of the edges are removed, a graph is presented showing the evolution of
the different metrics for this network. The main findings per network are discussed, and for the other
networks a similar graph and a more extensive explanation of the analysis can be found in Appendix A.

Sioux Falls
The first network configuration analysed is the Sioux Falls network where 25% of the edges have been
removed. In concrete terms, this means that 19 edges have been removed from the network, leaving
57 nodes. In the context of a disaster scenario, this situation would have a relatively mild impact on
the network compared to other scenarios where a larger number of edges are lost. Figure 4.5 shows
the Sioux Falls network with these 25% edges removed. It shows how all strategies score on different
performance metrics.

Figure 4.5: Impact of 25% edge removal on Sioux Falls network metrics

An extensive analysis of removing 25% of the edges in the Sioux Falls network can be found in Appendix
A, but the key findings are discussed below.
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When examining the impact of removing 25% of the edges from the Sioux Falls network, it becomes
evident from Table E.1 that most metrics do not show significant differences across the various strategies.
Metrics such as robustness, accessibility, efficiency, and betweenness remain statistically insignificant.
However, resilience and connected components demonstrate significant variations, indicating that these
aspects are more sensitive to changes in the network structure.

Connected components and weakly connected components indicate that a higher value reflects a more
interconnected network. Conversely, a lower value suggests that the network is fragmenting into several
isolated components, making travel between certain nodes impossible. Strategies such as dynamic
recovery and recovery time and proximity significantly enhance the cohesion of the network, effectively
preventing it from breaking apart into separate clusters.

Resilience measures the extent to which the original origin-destination (OD) pairs can be restored after
a disruption. A high resilience score indicates that travellers can still find connections between most OD
pairs, even when 25% of the links are lost. The findings reveal that strategies incorporating recovery
components, such as recovery time and proximity and dynamic recovery, perform notably better in this
regard. This implies that these strategies help maintain the majority of OD traffic, which is essential for
the network’s usability.

The results highlight that strategies featuring active recovery processes offer better protection against
fragmentation and preserve a larger percentage of the original OD traffic. Practically, this means
that during disruptions, the transport network remains operational, minimizing inconvenience for
travellers. In contrast, a strategy lacking a recovery component, such as Proximity to Center, results
in significantly greater fragmentation and reduced accessibility. This emphasizes the critical role of
recovery-oriented strategies like recovery time and proximity and dynamic recovery in network planning,
ensuring that a transport network is resilient to disruptions and can adapt swiftly and efficiently to
maintain functionality

Eastern Massachusetts
When looking at removing 25% of the edges in the Eastern Massachusetts network, several changes
appeared to be visible, but that these effects were not statistically significant. The statistical test, from
which the results can be found in Table E.1, showed that no significant differences could be found in
the 25% edge removal network for the accessibility, connected components, efficiency, resilience and
robustness metrics. This suggests that although there may be a visual or numerical difference, there
is insufficient evidence to conclude with certainty that this difference is not simply due to random
variation.

When looking at the metric betweenness, a statistically significant difference appears between the
strategies. In particular, the strategies proximity and recovery time and dynamic recovery perform better
than the other strategies examined. The t-values for betweenness for these strategies are respectively
12.78 higher than for the strategy proximity to centre, and 12.66 higher than for proximity and recovery time.
The difference is smallest for the strategy proximity and hierarchy, with a t-value of 3.41.

In the case of the Eastern Massachusetts network, it appears that the strategies based on recovery time
yield the best results. These strategies ensure a rapid increase in betweenness, which can be positive in
terms of network recovery. However, a high betweenness can also indicate that a small number of nodes
play a disproportionately large role in the flow. This makes the network sensitive to disruptions at these
crucial points, and can therefore also indicate increased vulnerability.

Anaheim network
When 25% of the edges are removed from the Anaheim network, Table E.1 shows that the proximity and
hierarchy strategy consistently outperforms others across all metrics. This combined approach maintains
strong reachability and network integrity while balancing utilisation and recovery.

While proximity to centre and proximity and recovery time perform well on specific metrics, they fall
short overall. Recovery time and proximity and dynamic recovery offer little advantage compared to those
two strategies, when looking at the betweenness and robustness, but are still less effective compared
to proximity and hierarchy. In conclusion, proximity and hierarchy offers the most robust and balanced
performance.
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Munich network
When analysing the performance of the recovery strategies for the Munich network, where 25% of the
edges were removed, it is noticeable from Table E.1, that proximity and hierarchy strategy performs best
on several metrics, including accessibility, betweenness, connected components, efficiency, resilience,
and robustness. This strategy shows significant improvements over the other strategies, indicating
that combining proximity and hierarchy results in a more resilient network that is more resilient to
disruptions.

The strategies recovery time and proximity and dynamic recovery outperform strategies proximity to centre
and proximity and recovery time on the accessibility, betweenness, connected components, resilience and
robustness, but still perform worse than strategy proximity and hierarchy.

In summary, the strategy proximity and hierarchy is the most robust choice for preserving network
functionality when removing 25% of the edges in the Munich network. It provides significant
improvements on several critical metrics and is more resilient to link loss than the other strategies.
The strategies recovery time and proximity and dynamic recovery also perform well, but do not always
match the results of the strategy proximity and hierarchy. In contrast, the strategies proximity to centre and
proximity and recovery time do not show significant advantages in this specific scenario and prove to be
less effective.

4.2.2. Analysis of 50% edge removal
In the same way as for the removal of 25% of the edges, the networks can be looked at when 50% of the
edges are removed. The extensive analyses of this can be found in Appendix B.

Sioux Falls
When 50% of the edges are removed from the Sioux Falls network, the impact on performance is more
pronounced than with 25% removal, particularly in terms of betweenness and connected components.
Strategies recovery time and proximity and dynamic recovery, significantly outperform proximity-based
strategies. These recovery strategies are notably more effective in maintaining network control and
influence after a disruption.

In terms of connected components, recovery time based strategies also demonstrate greater resilience,
better preserving the network’s connectivity and weakly connected components. In contrast, proximity-
based strategies struggle to maintain these components effectively.

Overall, strategies recovery time and proximity and dynamic recovery prove to be far more effective at
restoring the network’s original structure and ensuring connectivity after significant edge removal.

Eastern Massachusetts
Removing 50% of the edges in the Eastern Massachusetts network reveals significant differences in
robustness, resilience, and betweenness. However, the differences in accessibility, connected components,
and efficiency are not statistically significant.

In terms of robustness, the strategies proximity to centre and proximity and recovery time are better than
proximity and hierarchy, with a difference of 3.75. In terms of resilience, or the recovery of the original
OD pairs, the strategies proximity to centre, proximity and hierarchy, and proximity and recovery time are
found to significantly reduce the difference the most, although there is no significant difference between
these three. For betweenness, proximity to centre and proximity and recovery time show lower values
than the other strategies. The difference with proximity and hierarchy is 7.89, and with recovery time
and proximity and dynamic recovery causes 6.72 and 6.73. However, there is no statistically significant
difference between proximity and hierarchy, recovery time and proximity, and dynamic recovery.

In summary, the analysis shows that strategies that induce recovery mechanisms, such as recovery time
and proximity, in many cases outperform the more proximity-oriented strategies, especially in terms of
robustness and resilience. This suggests the importance of recovery-oriented strategies for maintaining
network structure after disruptions.
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Anaheim
When removing 50% of the edges from the network, the proximity and hierarchy strategy is found, in
Table E.2, to consistently perform best on all of the metrics. This strategy clearly shows superior results
compared to the other strategies, suggesting that combining proximity and hierarchy provides a robust
approach to improving network performance under disruptions.

When looking at the other four strategies, it can be seen that they do not perform best on any of the
metrics. In summary, it appears that the proximity and hierarchy strategy is the best choice for improving
overall network performance.

Munich
When 50% of the edges in the Munich network are removed, the different strategies show significant
differences in all of the metrics. The more detailed explanation of removing 50% of the edges in the
Munich network can be found in Appendix B or Table E.2. Strategies recovery time and proximity and
dynamic recovery score lower on accessibility than strategies proximity to centre and proximity and recovery
time.

When looking at the comparison of the different strategies, it can be seen that strategy proximity and
hierarchy performs best of the five strategies for a number of metrics. For example, it performs best for
betweenness, efficiency and robustness. Regarding accessibility and resilience, proximity to centre and
proximity and recovery time perform better and regarding the connected components, strategies recovery
time and proximity and dynamic recovery perform better.

4.2.3. Analysis of 75% edge removal
Similar to the analysis for the removal of 25% and 50% of the edges, the networks are also evaluated
after removing 75% of the edges. The detailed analyses can be found in Appendix C.

Sioux Falls
In the Sioux Falls network, the proximity and hierarchy strategy significantly outperforms the other
strategies for accessibility, betweenness, and resilience. For the connected components, recovery time and
proximity and dynamic recovery are the best performing strategies. However, no significant differences
were found for efficiency and robustness.

When looking at the Sioux Falls network, it can be seen that for accessibility, betweenness and resilience,
strategy proximity and hierarchy performs significantly better than the other four strategies. This means
that this strategy ensures that other nodes are reachable from the central node sooner, that a number of
nodes in the network are important for facilitating network flows and that the connections between
origin and destination points are restored faster. For the connected components, these are strategies
recovery time and proximity and dynamic recovery. This means that these strategies are better able to reduce
the number of separate components in the network sooner. For robustness, no statistically significant
differences can be seen.

Eastern Massachusetts
In terms of accessibility for removing 75% of the Eastern Massachusetts network, proximity to centre and
proximity and recovery time perform significantly better than the other strategies. This suggests that these
two strategies best enable the network to quickly access nodes even after loss of connections. The same
holds true for connected components. Here, proximity to centre and proximity and recovery time perform
best. This suggests that these strategies can best restore the network, optimally preserving the network’s
connectedness despite loss of edges. In terms of efficiency, the results also show that proximity to centre
and proximity and recovery time are the most efficient. This indicates that these strategies ensure a more
effective distribution of network resources and a faster recovery of the network after disruptions.

However, for betweenness and robustness, other strategies perform better. In both cases, proximity and
hierarchy, as well as recovery time and proximity and dynamic recovery, are found to perform statistically
significantly better than the other strategies. This means that when the focus is on betweenness or
robustness, these strategies are preferred because they are better able to preserve the intermediate
connections in the network and keep the network robust in the event of disruptions.
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In terms of resilience, proximity to centre, proximity and hierarchy and proximity and recovery time are found
to perform best. This indicates that these strategies are able to quickly and effectively restore the network
to its original state, even after removing a large number of connections.

Anaheim
When analysing the performance of the strategies for the Anaheim network, where 75% of the edges
were removed, Table E.3 shows that the proximity and hierarchy strategy performed best on almost all
metrics. For the metrics connected components and efficiency, several other strategies also achieved
similar scores.

The proximity and hierarchy strategy showed significant improvements over the other strategies, indicating
that the combination of proximity and hierarchy creates a stronger and more resilient network that is
better able to withstand connection loss.

In addition, the proximity to centre and proximity and recovery time strategies also performed well. They
scored significantly better than recovery time and proximity and dynamic recovery on efficiency, but did not
always outperform proximity and hierarchy.

Interestingly, recovery time and proximity and dynamic recovery actually outperformed proximity to centre
and proximity and recovery time on maintaining connected components. However, again, no statistically
significant difference was found compared to proximity and hierarchy.

Munich
In terms of betweenness and robustness, following from the results of the statistical test, which can be
seen in Table E.3, it can be found that proximity and hierarchy performs significantly better than the other
four strategies.

In terms of accessibility, efficiency and resilience, both proximity to centre and proximity and recovery time
performed better than the other strategies, indicating that recovery mechanisms play an essential role in
improving network resilience. This suggests that the combination of proximity and recovery time not
only optimises network resilience but also efficiency. Recovery mechanisms provide a better distribution
of network resources.

When looking at the connected components, strategies recovery time and proximity and dynamic recovery
perform the best over the five strategies.

4.2.4. Analysis of 100% edge removal
As with the analyses for removing 25%, 50% and 75% of the edges, the networks were also evaluated
after removing 100% of the edges. The detailed analyses of this can be found in Appendix D. However,
there is an important difference here: because all edges are removed, there are no simulations over 100
runs, since there is only one way to empty the entire network. For the Sioux Falls network, the edge
recovery process was also specifically examined. This allows for a detailed analysis per strategy in
which parts of the network and at what point in the recovery process new connections are made. This
provides valuable insights into the effectiveness and behaviour of the different recovery strategies.

Sioux Falls
In the Sioux Falls network, the proximity and hierarchy strategy significantly outperforms the other
strategies in terms of accessibility and resilience. In terms of betweenness, proximity and hierarchy and
dynamic recovery are found to perform best. This is remarkable, since for most conventional removal rates,
recovery time and proximity and dynamic recovery often show identical results. In this case, however, there
is no statistically significant difference between these two strategies. While dynamic recovery typically
performs significantly better than proximity to centre and proximity and recovery time, this is not the
case for recovery time and proximity. In terms of connected components, recovery time and proximity and
dynamic recovery are the best performing strategies. However, no significant differences were observed
for efficiency and robustness.

In summary, the proximity and hierarchy strategy ensures that nodes are faster to reach from the central
node, that important nodes for network flows are used effectively, and that the connections between
origin and destination points recover faster. For the connected components, it is recovery time and
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proximity and dynamic recovery that connect the network faster by reducing the number of separate
components. However, for robustness, there is no significant variation between the strategies.

In addition to examining the impact of removing all edges on the six metrics, an overview of the recovery
process can also be made. This overview offers a clear understanding, as there is no variation in the
edges removed across different iterations. The recovery process is illustrated in Figure 4.6. Here, the
dark purple color indicates which edges are restored first and the yellow color indicates which edges
are restored last. It shows that different recovery strategies lead to different outcomes. Notably, the
majority of strategies prioritize the restoration of inner edges, whereas strategy proximity and hierarchy
emphasizes the outer edges earlier in the process. This is because outer edges often have a higher speed
and, therefore receive a higher priority within this strategy. This makes it more important to recover
these first when looking at proximity and hierarchy.

(a) Proximity to centre (b) Proximity and hierarchy (c) Proximity and recovery time

(d) Recovery time and proximity (e) Dynamic recovery

Figure 4.6: Recovery order for five different strategies, visualised with edge-based colouring based on recovery step.

The recovery patterns of strategy proximity to centre and proximity and recovery time exhibit similarities.
This similarity accounts for the comparable outcomes observed across the six metrics during analysis.
Such results align with the inherent definitions and network structure of these strategies. Strategy
proximity to centre focuses on recovering edges based on their proximity to the central node, whereas
strategy proximity and recovery time prioritises proximity before considering edges with the shortest
recovery times. Given the minimal variation in recovery times within the Sioux Falls network, the
similarities between these strategies are pronounced.

When evaluating these five strategies, it is important to emphasise that a different choice for the centre
node can lead to different results. This would mainly affect the strategies in which proximity plays a
major role. These would therefore deviate more from the other strategies. For example, if node 1 were
chosen as the central node (a node that is not in the physical centre of the network, but can be seen
strategically as a resource centre node), the recovery pattern would look significantly different. Strategy
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dynamic recovery would remain unchanged, because it works independently of the central node and
focuses exclusively on the shortest recovery time. In contrast, strategies proximity to centre, proximity and
hierarchy and proximity and recovery time would be strongly affected, because they recover from the new
central node. This would result in a delayed recovery of the more distant parts of the network.

If for example in the Sioux Falls network, node 1 is chosen as the central node, which is in the upper left
part of the network, than the lower right part of the network will be recovered significantly later in some
of the strategies, because it is further away from the central node. This shows that the location of the
resource centre node plays a crucial role in the recovery process and has a significant effect on the final
recovery time of the network.

Eastern Massachusetts
Based on the statistical analyses, the results of which are shown in Table E.4, the following conclusions
can be drawn for the Eastern Massachusetts network after removing 100% of the edges. For the metrics
accessibility and connected components, the strategies proximity to centre and proximity and recovery
time appear to perform best. Both strategies provide a more accessible network structure and preserve
network connectivity most effectively after removing the edges.

For betweenness and robustness, proximity and hierarchy appears to perform significantly better than the
other strategies. This suggests that this strategy is the most robust against disruptions and effectively
protects the network against loss of connections. For efficiency and resilience, the strategies proximity to
centre, proximity and hierarchy, and proximity and recovery time show better performances than the other
strategies. These three provide the best balance between network efficiency and resilience to disruptions.

Anaheim
The analysis of the different strategies for removing 100% of the edges in the Anaheim network provides
important insights into how each strategy performs on different metrics. The proximity and hierarchy
strategy emerges as the best choice for some of the analysed metrics. This is evident from the significant
improvement it provides in betweenness, resilience, and robustness. In particular, the high t-values
compared to the other strategies suggest that combining proximity and hierarchy is a robust approach
for improving network performance and maintaining network connectivity after removing edges. This
strategy thus appears to be the most balanced and robust approach for optimising the network in the
face of disruptions.

When looking at accessibility and efficiency, there can be seen that the strategies proximity to centre,
proximity and hierarchy and proximity and recovery time perform best. This makes sense for accessibility,
as these strategies focus on recovery from a specific node, while accessibility is also calculated from
this node. In terms of efficiency, this combination makes travelling between two points in the Anaheim
network easier.

For the connected components metric, the analysis shows that the proximity and hierarchy, recovery
time and proximity, and dynamic recovery strategies contribute most effectively to quickly recovering
disconnected components, which restores the network structure after connection loss.

Munich
When removing 100% of the edges in the Munich network, it turns out that different strategies perform
better for different metrics. For accessibility, efficiency, and resilience, the strategies proximity to centre
and proximity and recovery time perform best. This means that these strategies recover the network faster,
make nodes more reachable, and maintain network functionality after disruptions. They especially help
to improve connectivity and efficiency when the network is completely disrupted.

For betweenness and robustness, proximity and hierarchy performs best. This strategy provides better
protection for the network by preserving important nodes even after losing all edges. For connected
components, recovery time and proximity and dynamic recovery perform best, because they make the
network function as a whole faster. This shows that there is no strategy that performs best everywhere;
each strategy has strengths depending on the specific metric.
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4.3. Comparison of networks at different edge removal rates
When analysing different recovery strategies and their performance on various metrics, it is noticeable
that the degree of fragmentation within a network has a significant impact on the performance differences
between strategies. As a network becomes more fragmented, the statistically significant differences
between strategies increase. This is first visible by the increase in red boxes in Table 4.5, indicating that
there is no statistically significant difference between some strategies and others. In addition, it can be
seen that the best-performing strategy strongly depends on the network structure and the degree of
fragmentation.

To provide a clear overview of the performance of the different strategies, Table 4.5 summarises the
performance per network and per removal percentage. Colour coding is used to visually emphasise the
best strategies:

• Red : a strategy is not statistically significantly better than another strategy for any metric.

• Orange : A strategy performs statistically significantly the best out of the five strategies on at
most two of the six metrics.

• Yellow : A strategy performs statistically significantly the best out of the five strategies on three
or four of the six metrics.

• Green : A strategy performs statistically significantly the best out of the five strategies on five or
six of the six metrics.

This colour coding allows for quick identification of which strategies perform better under different
network conditions. The different network conditions will also be included later as scenarios. In this
study, there are 16 different scenarios, of the four networks with each of the four different removal
percentages.
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Table 4.5: Comparison of strategies with different removal percentages across four networks.

Network 25% 50% 75% 100%

Sioux
Falls

Proximity to centre Proximity to centre Proximity to centre Proximity to centre
Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Dynamic recovery Dynamic recovery Dynamic recovery Dynamic recovery

EMA

Proximity to centre Proximity to centre Proximity to centre Proximity to centre
Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Dynamic recovery Dynamic recovery Dynamic recovery Dynamic recovery

Anaheim

Proximity to centre Proximity to centre Proximity to centre Proximity to centre
Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Dynamic recovery Dynamic recovery Dynamic recovery Dynamic recovery

Munich

Proximity to centre Proximity to centre Proximity to centre Proximity to centre
Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Proximity and
recovery time

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Recovery time and
proximity

Dynamic recovery Dynamic recovery Dynamic recovery Dynamic recovery

Sioux Falls network: compact and centralised
The Sioux Falls network has a compact, centralised structure, which allows the network to exhibit both
the highest robustness (36, 566.80) and efficiency (0.43). The proximity and hierarchy strategy is found to
be most effective as the network becomes more fragmented. In centralised networks, restoring central
connections is critical because these nodes carry the most traffic and provide the most connections
between different network components. The proximity and hierarchy strategy is particularly effective in
this network because it focuses on restoring the connections closest to the central nodes. This approach
makes sense because the centralised nature of the network means that restoring connections between
central nodes has the most impact on overall network performance. Quickly restoring these central
connections minimises disruption to network functionality and allows the network to quickly regain its
efficiency..

Eastern Massachusetts network: radial and high redundancy
The Eastern Massachusetts network has a radial structure, meaning that there is a central node with
connections extending to the edge of the network. The network also has high redundancy, meaning
that there are multiple routes to different nodes, which increases the resilience of the network. This
network exhibits a mixed betweenness centrality (0.048), indicating a balanced distribution of traffic
between both central and peripheral nodes. At 25% link removal, strategies that focus on proximity
and hierarchy, recovery time and proximity, and dynamic recovery appear to perform best. In a radial
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structure, it is important to quickly restore connections to and from the central node, especially when
significant fragmentation occurs. Restoring connections leading to and from the centre ensures that
communication within the network can be quickly re-established, which is essential for maintaining
overall network functionality. As the degree of fragmentation increases, it becomes even more effective
to restore connections from the centre, which provide the fastest and most robust routes for traffic. This
highlights the critical role of the central node in radial networks such as Eastern Massachusetts, where
restoring connections to the centre of the network is essential to maintaining the robustness of the entire
system.

Anaheim network: grid-like structure
The Anaheim network has a decentralised grid-mesh structure, meaning that there are no clear central
nodes and connections are evenly distributed across the network. This results in low robustness
(4, 416.12) and efficiency (0.11), as the network is vulnerable to disruptions without central nodes to
coordinate traffic. In such a network, it is essential to employ multiple recovery strategies that focus on
restoring connections at different levels and areas of the network. The proximity and hierarchy strategy
proves to be the most effective in this network, as it focuses on restoring connections that connect the
network at different levels. This is important in decentralised networks, as the network has no central
nodes to focus on. Restoring connections at different layers of the network ensures that traffic can be
distributed effectively and that the network maintains its robustness even when multiple connections
are lost. This approach enables the network to be rebalanced by restoring connections that route traffic
to different parts of the network, which is essential for maintaining overall network functionality.

Munich network: ring radial with low centrality
The Munich network exhibits a ring-radial structure, where the connections are organised in a ring
shape around a few central nodes. The network has low efficiency (0.07) and relatively low robustness
(5, 469.17), which makes the network vulnerable to disruptions, especially given the long routes and
the limited number of central nodes. The low efficiency is caused by the fact that there are long routes
between the nodes and that the central nodes are not optimally utilised. When 25% of the connections
are removed, the proximity and hierarchy strategy is found to perform best, because it focuses on restoring
the central connections. This makes sense since the ring structure of the network relies on the central
nodes to maintain connections between different parts of the network. At higher levels of fragmentation,
when the central nodes have less influence, the strategy that focuses on proximity to the centre and
proximity and recovery time is found to be more effective. This indicates that while central nodes are
important, restoring connections that reconnect peripheral nodes to the centre is essential to maintaining
network robustness. Restoring these peripheral connections prevents further network fragmentation
and ensures that the network retains its resilience and functionality even after significant disruption.

Relation between network structure, fragmentation and the choice of recovery strategies
In a network such as Sioux Falls, with a more centralised structure, it can be seen that recovery strategies
that focus on proximity and hierarchy are particularly effective. Because a relatively small number of
central nodes carry a large portion of the traffic, restoring these central connections allows network
performance to be restored quickly. In a network such as Eastern Massachusetts, with a radial structure
and high redundancy, it seems especially important to quickly restore connections to and from the centre.
This helps maintain the overall functionality of the network, especially as fragmentation increases. In
a network such as Anaheim, with a more decentralised structure, where there is no clear centre and
traffic flows are scattered across the network, it appears that employing multiple recovery strategies,
focusing on both proximity and hierarchy, is necessary to effectively restore connections. Finally, in a
ring-radial network such as Munich, it can be seen that maintaining connections around the central ring
is initially important, but that with greater fragmentation, restoring connections to peripheral nodes
becomes increasingly crucial to ensure network robustness.

As the degree of fragmentation increases, the effectiveness of the different recovery strategies changes
significantly. At low fragmentation, it is often sufficient to strategically restore a few key connections to
quickly improve network functionality. However, at higher fragmentation, when larger parts of the
network become disconnected, the restoration of multiple connections, and often also of less central or
peripheral nodes, becomes increasingly important. Especially in networks with a clear central structure,
such as Sioux Falls and Eastern Massachusetts, the importance of robust and redundant connections
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around the centre becomes increasingly important when fragmentation is severe. In decentralised or
ring-radial networks such as Anaheim and Munich, the focus shifts to restoring connections that can
connect regional clusters, in order to prevent parts of the network from becoming completely isolated,
when fragmentation is high. Fragmentation therefore, forces a more differentiated and dynamic recovery
strategy, where the choice of which connections to restore depends strongly on the structure and the
degree of damage to the network.

4.4. Comparison of strategies when looking at the metrics
The results can be presented in another way, where we look at the different removal rates and networks
to determine how often each strategy comes out on top per metric. This is visually represented in Figure
4.7, which shows the different strategies on the x-axis and their corresponding scores on the y-axis.
The procedure is as follows: when a strategy scores best on a specific metric, it is given a value of 1.
However, if two strategies achieve the same, statistically significant result, they are both given a value of
1. The same is true when one strategy outperforms three others, but there is no statistically significant
difference between the two best-performing strategies.

Furthermore, there are also a number of situations in which there are no statistically significant
differences between the different strategies. This is for example the case for the robustness metric in the
Sioux Falls network. Here, the comparison of the different pairs of strategies shows that there is no
statistically significant difference for any of the removal percentages. In these cases, it was decided not
to include the strategic comparisons without a significant difference in the score.

To further illustrate this, consider the network where 75% of the edges of the Sioux Falls network are
removed. In this case, the analysis of the resilience metric shows that the proximity to centre and proximity
and recovery time strategies perform statistically worse than the proximity and hierarchy strategy. However,
there is no statistically significant difference between the other strategies. Therefore, only the strategy
proximity and hierarchy is given a value of 1, as this strategy performs statistically significantly better
than two of the other strategies, while for the other comparisons, no clear statistical difference can be
observed.
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Figure 4.7: Stacked bar chart showing scores per strategy across six metrics

In the analysis of the different networks, presented in Table 4.7, it is seen that the proximity and hierarchy
strategy achieves the highest score. This means that this strategy performs best across all networks
and for the different removal rates, and can therefore be considered the most robust choice in various
scenarios.

When looking at accessibility, which measures the degree of network reachability from central nodes, it
can be seen that the strategies proximity and hierarchy, proximity to centre, and proximity and recovery time
perform best. This is because these strategies focus on restoring connections that are close to the centre
and restoring important nodes within the network. This means that these strategies help to improve
the reachability of the network, especially when the network is disrupted. For policymakers, it can be
important to focus on accessibility, especially when accessibility from a certain point is important.

Betweenness measures how important a node is to the flow of traffic or information by looking at nodes
that are on many shortest paths. Strategies such as proximity and hierarchy, recovery time and proximity, and
dynamic recovery score high on betweenness because they prioritise the recovery of these critical nodes.
However, because nodes with high betweenness are so important, they also make the network more
vulnerable. A disruption at these nodes can lead to delays or downtime in the entire network. Therefore,
despite lower betweenness scores, strategies such as proximity to centre or proximity and recovery time
may sometimes be a better choice. These strategies focus on quickly restoring connections close to the
network centre, which improves overall accessibility and reduces network vulnerability. Policymakers
should consider finding a balance between optimising betweenness and enhancing overall network
stability so that the network is less susceptible to disruptions.

Connected components measure how the network is fragmented in the event of disruptions. It is
crucial that the network reconnects quickly to continue to function as a single entity. The recovery
time and proximity and dynamic recovery strategies are most effective here. These strategies focuses on
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restoring edges based on the recovery time, which helps to quickly restore key connections and prevent
large parts from becoming isolated. For policymakers, this means that these strategies reduce network
fragmentation and promote overall stability. This helps to quickly restore residents’ mobility and access
to vital services, even in the event of disruptions.

Efficiency measures how effectively travel is performed within the network by evaluating the shortest
distances between nodes. Strategies such as proximity to centre, proximity and hierarchy, and proximity
and recovery time perform best here. These strategies ensure that connections close to the centre of the
network are quickly restored, leading to a decrease in the average shortest distance between nodes.
This results in higher network efficiency, allowing people to travel faster between different points. For
policymakers, this means that networks that rely on fast throughput and travel time minimisation can
benefit from these strategies. Improving efficiency can not only reduce travel time, but also strengthen
the overall connectivity within the network, optimising network performance.

Resilience is measured by the ability of the network to maintain connectivity between key origin and
destination (O-D) points, even in the face of disruptions. While each strategy performs well in certain
scenarios, proximity and hierarchy is the best choice for improving network resilience in most cases. This
strategy ensures that connectivity between key points is quickly restored, resulting in a rapid restoration
of mobility. By focusing on networks that can quickly recover from disruptions and quickly restore
essential routes, policymakers can ensure that the impact of disruptions on the mobility and accessibility
of residents is minimised.

Robustness measures the ability of the network to withstand disruptions, especially when key nodes or
connections fail. In terms of robustness, it is notable that the proximity to centre and proximity and recovery
time strategies do not perform best in any of the scenarios. In contrast, the proximity and hierarchy strategy
performs best in many different scenarios. This strategy focuses on quickly restoring key connections
(edges), especially those that carry a lot of traffic. Restoring these strategic connections increases the
robustness of the network because these connections are essential for maintaining overall network
functionality. The more traffic a connection carries, the more important it becomes to the robustness of
the network. By prioritising the restoration of these key connections, the network can quickly resume
operation, even if some parts fail.

The choice of a strategy is highly dependent on which network metric is given the highest priority.
Each metric emphasises a different aspect of the network, meaning that different strategies perform
better depending on the situation. However, the analysis shows that the proximity and hierarchy strategy
performs well in almost every scenario. This strategy ensures that important nodes and connections can
be quickly restored, increasing the overall resilience and robustness of the network. Since proximity and
hierarchy performs consistently well across multiple metrics, it can be considered a safe and reliable
choice for network management. For policymakers, this strategy offers the assurance of a robust,
resilient and efficient network structure, regardless of the specific situation or disruption.

4.5. Conclusions and implications for recovery strategies
In this chapter, five recovery strategies for disaster-affected road networks were evaluated using multi-
objective methods. These strategies used different priorities such as proximity to the centre, hierarchy,
recovery time, or a combination of these. The performance of these strategies was tested on four
networks, Sioux Falls, Eastern Massachusetts, Anaheim, and Munich, at different levels of disturbance.

The analyses show that the effectiveness of a strategy strongly depends on both the network structure and
the level of disturbance. Networks like Sioux Falls with a centralised structure or Eastern Massachusetts
with a radial structure show different recovery patterns than networks like Munich with a more
decentralised networks. It also appears that recovery strategies that focus on proximity and hierarchy,
or on recovery time, yield varying results under different conditions.

The next chapter will further interpret and contextualise these findings by systematically answering the
research questions and by comparing the results with existing literature and real-world applications.



5
Discussion

In this chapter, the main findings of this research are analysed and put into perspective. First, the results
are summarized and compared with existing literature to determine to what extent they correspond
with previous studies. Next, the limitations of the research are discussed. Finally, suggestions are made
for future research to gain further insights within this research area.

5.1. Reflection on the Results
This section of the discussion presents and analyses the main findings of this research, with a focus on
the recovery of networks after a disaster. First of all, it is important to note that the findings based on
the graphs showing the trajectory of the strategies on different metrics differ somewhat from the results
that actually prove to be statistically significant. Although the graphs sometimes give the impression
that certain results are significant, the detailed statistical analysis shows that the statistically significant
findings provide a more nuanced picture.

In examining the fourth research question: “How do different road network structures influence the performance
of recovery strategies under varying levels of disruption?", several findings can be highlighted. The analysis
showed that the structure of a road network does indeed play a role in the effectiveness of recovery
strategies. This was evident from the analysis of the network structures summarised in Table 5.1,
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Table 5.1: Network structures and recommended recovery strategies by edge removal percentages

Best recovery strategy

Network Structure 25% 50% 75% 100%

Sioux Falls Compact,
centralised

Proximity and
hierarchy,
Recovery time and
proximity,
Dynamic recovery

Proximity and
hierarchy,
Recovery time and
proximity,
Dynamic recovery

Proximity and
hierarchy

Proximity and
hierarchy

Eastern
Massachusetts

Radial, high
redundancy

Proximity and
hierarchy,
Recovery time and
proximity,
Dynamic recovery

Proximity to
centre,
Proximity and
hierarchy,
Proximity and
recovery time

Proximity to
centre,
Proximity and
hierarchy,
Proximity and
recovery time

Proximity to
centre,
Proximity and
hierarchy,
Proximity and
recovery time

Anaheim Grid-mesh,
decentralised

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Proximity and
hierarchy

Munich Ring-radial,
low centrality

Proximity and
hierarchy

Proximity and
hierarchy

Proximity to
centre,
Proximity and
recovery time

Proximity to
centre,
Proximity and
recovery time

Table 5.1 shows that networks such as Sioux Falls, which has a more centralized structure, or a network
such as Eastern Massachusetts, which has a more radial structure, tend to perform well with recovery
strategies that focus on proximity and hierarchy, especially under larger disruptions. These networks
clearly show that recovery focused on restoring connections to the centre is prioritised under larger
disruptions, while this is less important under smaller disruptions.

On the other hand, a network such as Anaheim, which has a more decentralised structure, tends to
perform better under recovery strategies that focus on overall network connectivity, regardless of the
level of disruption. This suggests that the degree of centrality in a network is an important element
in choosing the right recovery strategy, underscoring the relevance of network structure in recovery
strategies.

Furthermore, analysis of networks such as Munich, which has a ring-radial design, indicates that
recovery strategies that focus on restoring connections to the centre are more effective for larger
disruptions. This is an important observation because it shows how this lower centrality network
structure seems to require different recovery strategies than more centralised networks.

In summary, the effectiveness of recovery strategies seems to be strongly dependent on network structure.
Centralised networks seem to benefit more from recovery strategies that focus on the centre, while
decentralised networks may benefit from strategies that maintain overall connectivity. It is essential to
tailor recovery strategies to the specific network structure and disruption conditions.

This section also addresses the final sub-question: "What recommendations can be made for choosing the most
appropriate recovery strategy for a disrupted network?" In this context, it appears that recovery strategies are
highly dependent on the specific network parameters. Table 5.2 provides an overview of these metrics,
briefly explains what they measure within the network, and links the most effective strategies to them
based on the analyses performed.
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Table 5.2: Recovery strategies linked to network metrics

Metric Description of the metric Recommended strategy/strategies
Accessibility How connected the network is from the

centre node.
Proximity to centre, Proximity and recov-
ery time, Proximity and hierarchy

Betweenness The importance of particular roads in
facilitating network flows.

Proximity and hierarchy, Recovery time
and proximity, Dynamic recovery

Connected
components

Number of fragmented networks Recovery time and proximity, Dynamic
recovery

Efficiency The average shortest distance between
nodes.

Proximity to centre, Proximity and hier-
archy, Proximity and recovery time

Resilience The extent to which connections between
origin and destination points are
restored.

Proximity and hierarchy (mostly), other
strategies sometimes also

Robustness Recovery of the most important
connections with the highest volume
(critical infrastructure).

Proximity and hierarchy, Recovery time
and proximity, Dynamic recovery

Overall
performance

Average performance across all
scenarios and metrics.

Proximity and hierarchy

The choice of recovery strategy depends largely on the specific network properties and the disruption.
To improve accessibility, i.e. the number of nodes reachable from the centre, strategies such as proximity
to the centre, proximity and recovery time, and proximity and hierarchy are most effective. These strategies
provide fast access to the network, especially for larger disruptions.

For betweenness (importance of connections for network flows), proximity and hierarchy, recovery time and
proximity, and dynamic recovery are best, because they restore critical connections quickly. When the goal
is to restore connected components, so to reduce the number of fragmented networks, recovery time and
proximity and dynamic recovery are the recommended choices.

When improving efficiency, the average shortest distance between nodes, strategies focused on proximity
to the centre and proximity and hierarchy are most suitable, because they restore the shortest connections.
For resilience, i.e. restoring connections between origin and destination points, proximity and hierarchy
usually provide the best results.

To increase network robustness, recovery of key connections, proximity and hierarchy, recovery time and
proximity, and dynamic recovery are most effective. Finally, for overall network performance, proximity and
hierarchy prove to have the broadest applicability, providing a good balance between speed and stability.

In summary, recovery strategies should always be tailored to the specific network properties and
disruption conditions. A combination of proximity, hierarchy, recovery time, and dynamic recovery can
restore the network quickly and efficiently.

5.2. Findings in relation to existing literature
An important contribution of this study is the broader approach it takes compared to the literature.
While previous studies, such as that of Aydin et al., 2018, focused on specific networks, this study
extends the analysis to four different networks. This allows us to investigate how the effectiveness of
recovery strategies varies depending on the structure and scale of the network. This extension provides
a broader and more detailed insight into how different networks respond to disruptions and which
strategies are most suitable for different contexts.

In the existing literature of Aydin et al., 2018, the dynamic recovery strategy is was considered the
most preferred strategy for restoring road networks after disruptions. However, the findings in this
study suggest that in most cases this strategy is not always the most suitable choice. This may mainly
depend on the specific network structure or the metrics that are analysed. In some cases, a different
recovery strategy, such as proximity and hierarchy, was found to be more effective, depending on the level
of disruption or the complexity of the network.
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This study distinguishes itself by taking a more holistic approach, examining different networks with
different topologies and functionalities. The effectiveness of recovery strategies appears to vary greatly
in this broader context, suggesting that the choice of recovery strategy is context-dependent. This may
also explain why the dynamic recovery strategy is not always the best choice for all network types. For
example, while a network with a high degree of redundancy is better able to recover quickly via dynamic
recovery methods, a network with a lower degree of interconnectivity may benefit from a different
approach.

Furthermore, the literature has often focused on a limited number of metrics for evaluating recovery
strategies. This study extends this by integrating multiple metrics, including network accessibility,
betweenness, connected components, efficiency, resilience and robustness. This comprehensive approach
allows to not only determine which strategy is generally most effective, but also to analyse which strategy
is best suited for networks of different sizes and complexity. This allows for a more nuanced analysis
that takes into account different performances and scenarios.

What further distinguishes this study from previous studies is the integration of varying degrees of
disaster impact. Many studies have limited themselves to networks directly affected by a specific type of
disaster, analysing damage based on specific impact data. However, this study takes a more systematic
approach by removing different percentages of network components, which provides the flexibility
to investigate how networks perform under different disruption scenarios. This provides a valuable
addition, especially considering that detailed damage data are often not always available.

In conclusion, this study provides a valuable addition to the existing knowledge by not only evaluating
the effectiveness of recovery strategies but also by testing them in different networks and under different
levels of damage. The findings reinforce the methodological approaches in the literature and provide
practical insights that can contribute to strengthening the resilience of transport networks to extreme
disruptions. It shows that recovery strategies should be chosen context-specifically and that more
flexibility in the decision-making process is needed to maximize the effectiveness of recovery in complex
networks.

5.3. Limitations of the study
This chapter addresses the limitations of the research. It examines various factors, including the available
data, the strategies employed, the selected networks, and the metrics utilized. These limitations may
impact the results and conclusions of the study.

5.3.1. Available data from the networks
In this study, there was a lack of realistic data for the networks studied. This meant that network
elements were removed arbitrarily rather than based on actual disaster patterns. This affects the
representativeness of the results, as the disruptions in the network do not reflect the actual impact of
a disaster. For example, the edges are currently randomly removed throughout the network, but a
disaster could also cause more local damage. Furthermore, detailed information on the actual damage
to the infrastructure was lacking and no direct data on recovery time was available for the affected road
segments. As a result, assumptions had to be made, assuming that the damage was the same for all
networks, regardless of the actual disaster conditions. The recovery time was then estimated based on
the size of the road segments, which was derived from the length and number of lanes. This simplified
approach does not take into account the actual damage or the complexity of the recovery process, which
may affect the accuracy of the findings.

In addition, there was inconsistent data availability between the different networks used in this study.
For example, for some networks, such as the Munich and Eastern Massachusetts networks, there were no
coordinates available, which made the analysis of the geographic locations and distribution of network
elements a bit more difficult. Also, direct speed information was not provided for each network. Instead,
speed was derived based on the free flow time of the road segments, which may affect the accuracy of
the speed analysis.

These incomplete and inconsistent data sets contribute to the uncertainty of the findings and may affect
the effectiveness of the recovery strategies. Additional and more consistent data, such as detailed
coordinates, speed information, and realistic damage data, would significantly improve the quality of
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the study.

5.3.2. Overview of selected strategies, networks, and metrics
This study discusses five strategies for road network recovery after disasters. However, alternative
strategies are also mentioned, such as minimizing recovery costs or reducing total operational time. Cost
minimization would prioritize recovery of the lower-cost parts of the network. Minimizing operational
time would use online optimization and real-time decision making to achieve rapid recovery.

In addition to these strategies with different focal points, this research only looks at the step-by-step
recovery of a network. In this case, only one edge is recovered per step, while in reality, multiple edges
can probably be recovered at a time.

There are limitations to implementing the current strategies, particularly the proximity and road
hierarchy strategy. Here, the hierarchy of the road section is investigated, but no data was available.
Therefore, a classification was made based on the speed of the road sections. This classification of
hierarchy for the road sections can influence the results, and a different classification of the hierarchy
can possibly lead to other priorities.

The metrics included in this study can also be considered. Namely, six metrics were considered:
accessibility, betweenness, connected components, efficiency, resilience, and robustness. While these
metrics provide useful insights, additional data on costs and operational time would better clarify the
effectiveness of the recovery strategies if that information were available.

The study includes four networks of different sizes, but due to the variations in scale, it is difficult to
make direct comparisons. The limited computing power made it impossible to analyse larger urban
networks, making the findings not easily applicable to larger networks such as those in megacities.

5.4. Recommendations for future research
While this research has provided important insights into recovery strategies for transportation networks
after disasters, there are several areas that require further investigation. Future studies could focus
on expanding the recovery strategies, improving the metrics used, and analysing larger and more
diverse networks. Using realistic data, such as recovery duration data, could also increase the reliability
and effectiveness of the strategies. By implementing these recommendations, further research could
contribute to developing more effective solutions for infrastructure recovery after disasters.

5.4.1. More in-depth analysis about the recovery times
An important recommendation for future research is to pay more attention to the recovery times of road
sections after a disaster. At present, little is known about how long it actually takes to repair a damaged
road section. However, this is of great importance, since three of the strategies considered in this study
explicitly make use of these recovery times. A different estimate or distribution of these times across
the network could therefore lead to substantially different results. It is therefore essential to further
investigate how long repair work takes in practice.

5.4.2. Parallel recovery of multiple edges
Another relevant point of attention for future research is the possibility of restoring multiple road
sections (edges) simultaneously. This research assumes a scenario in which the network is built up
step by step, one connection at a time. In practice, however, it will often be possible to perform
multiple restoration operations in parallel. It is important to realize that in realistic situations there is no
infinite amount of available resources. Certainly, in larger networks, not all connections can be restored
simultaneously. Nevertheless, it is plausible that more than one edge can be tackled simultaneously. By
including this limitation in future research, a more realistic and applicable picture can be sketched of
the recovery process after a disruption.

5.4.3. Utilization of realistic data
Future research could benefit significantly from the use of empirical disaster data. This would involve
using historical data after a variety of disasters to more accurately model road damage and analyse
which segments of the network are most vulnerable. By looking at historical data, researchers can better
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understand which road segments are frequently affected and which specific characteristics, such as
location, elevation, or infrastructure, influence the vulnerability of certain parts of the network. This
information would help prioritize recovery efforts and identify the most vulnerable points in a network,
which could improve the effectiveness of recovery strategies.

5.4.4. Expansion of the analysis
Future research could extend recovery strategies by focusing on cost minimization or accelerating
recovery. A cost minimization strategy could include cost analysis and optimization models for the
recovery procedure, while a rapid recovery strategy could use online optimization and real-time
utilization.

There is also scope for the statistics used to be overly biased by economic and economic factors, which is
why cost and operational time were not available in this study. Future research could focus on collecting
these data to better assess the sustainability of recovery strategies.

Finally, it would be useful to investigate larger and more complex networks, such as those in large cities
like Chicago or Sydney, as well as simultaneous networks from other regional regions such as Africa or
Asia. This would help to better understand the dispersion of recovery strategies in different contexts.



6
Conclusion

This thesis investigated how disruptions of road networks affect the functioning of mobility systems and
how recovery strategies can be effectively deployed under different circumstances. The central research
question was: How do disruptions affect road networks, and which recovery strategies are most effective under
varying conditions based on different network metrics?

The analysis first shows that natural disasters can cause significant structural and functional damage
to road networks. Although the nature of the physical damage varies by disaster type and location,
the functional consequences, such as reduced accessibility, delays and disruptions of critical services,
show striking similarities. This underlines the importance of a risk-agnostic approach, where recovery
strategies are not dependent on the type of disaster, but focus on the functional recovery of the network
structure.

Within this framework, five different recovery strategies were modelled, each with its own prioritisation
mechanism: based on proximity to the centre, hierarchy, recovery time, or combinations thereof,
including a dynamic approach. These strategies were evaluated using six network metrics: accessibility,
betweenness, efficiency, connected components, resilience and robustness. By using a multi-objective
approach, it became possible to measure not only the speed of recovery, but also the quality of recovery
in terms of network functionality.

The results convincingly show that the effectiveness of recovery strategies is strongly dependent on
the underlying network structure. The Sioux Falls network, which is more centrally organised, and the
Eastern Massachusetts network, which has a more radial structure, clearly benefit from strategies based
on recovery time or proximity and hierarchy at the lower removal percentages. For the Sioux Falls network,
it applies that as the network becomes more fragmented, proximity and hierarchy becomes more important.
For Eastern Massachusetts, a shift can also be seen as the network becomes more fragmented, only then
more towards the strategies proximity to centre, proximity and hierarchy and proximity and recovery time.
Networks such as Anaheim with a grid-mesh, decentralised structure, can respond better to strategies
that focus on recovery based on proximity and hierarchy. The Munich network with a more ring-radial
network and low centrality shows that as the network becomes more fragmented, the strategies based
on proximity to centre and proximity and recovery time would be preferred.

In addition, it appears that the functional objective of the recovery process also determines the choice of
strategy. For example, for improving accessibility, strategies such as proximity to the centre. proximity and
hierarchy and proximity and recovery time are most suitable. If the focus is on restoring important traffic
arteries with high betweenness, proximity and hierarchy, recovery time and proximity and dynamic recovery
are more suitable. For restoring OD paths (resilience), proximity and hierarchy usually provide the best
results. When reducing network fragmentation (connected components), strategies based on recovery
time and proximity and dynamic recovery are most valuable. For efficiency, i.e. the shortest path between
two nodes, strategies proximity to the centre. proximity and hierarchy and proximity and recovery time the
most suitable. When looking at repairing the roads with the largest volume, in other words, robustness,
the strong preference is for proximity and hierarchy.
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In short, this study shows that there is no one-size-fits-all strategy. The effectiveness of recovery
depends on the network topology, the degree of disruption, and the chosen optimisation objective.
The contribution of this study therefore lies in explicitly linking strategies to specific network types
and performance objectives within a simulated, multi-objective evaluation framework. As such, this
study not only provides scientific insights into modelling network recovery, but also practical tools
for policymakers and crisis planners who need to realise rapid and targeted infrastructure recovery in
emergency situations.
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A
Simulation results of 25% edge

removal

A.1. Sioux Falls 25% edges removed
The first network configuration analysed is the Sioux Falls network where 25% of the edges have been
removed. In concrete terms, this means that 19 edges have been removed from the network, leaving
57 nodes. In the context of a disaster scenario, this situation would have a relatively mild impact on
the network compared to other scenarios where a larger number of edges are lost. Figure A.1 shows
the Sioux Falls network with these 25% edges removed. It shows how all strategies score on different
performance metrics.

Robustness
The analysis of robustness based on cumulative recovery time shows that the strategies based on recovery
time and proximity and recovery times show many similarities, while the strategies based on proximity
to centre and proximity and recovery time also show similar trends. The strategy based on proximity and
hierarchy, on the other hand, deviates from the other strategies.

The results shown in Figure A.1 seem to suggest a preference for strategies based on recovery time and
proximity, as well as the strategy focused solely on dynamic recovery, in comparison to other strategies.
However, an examination of the statistical test outcomes, as shown in Table E.1, reveals that there is
no statistical significance among the various pairs of strategies. This indicates that the effect observed
in the figure lacks statistical support. Consequently, due to the robustness of the test results, it is not
possible to favour any particular strategy over another strategy in the Sioux Falls network with a 25%
edge removal.

Resilience
When analysing resilience, it is noticeable that the 95% confidence intervals are significantly larger. This
indicates that a different set of removed connections can have a different impact on the recovery of the
network in terms of resilience. The uncertainty in this metric is therefore higher. The use of the 95%
confidence interval is essential to better understand the variability of the measurements and to assess
whether observed differences between strategies are significant or could be due to random fluctuations.
The larger the interval, the greater the uncertainty and the potential variation in the performance of a
strategy.

Based on the analysis of the statistical tests in Table E.1, it appears that the performance of the strategies
differs significantly. This evaluation is supported by the significance values, where strategies proximity
to centre and proximity and recovery time perform less well than proximity and hierarchy with t-values of
2.13 and 2.15 respectively. They also perform less well than recovery time and proximity with t-values of
2.58 and 2.61 and than dynamic recovery with t-values of 2.72 and 2.75.

54
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The differences here are not very large everywhere, but clear enough to say that strategies proximity to
centre and proximity and recovery time perform the least of the five strategies.

Furthermore, there is no statistically significant difference between proximity and hierarchy and recovery
time and proximity, just as there is between proximity and hierarchy and dynamic recovery. So it can be said
that the differences here are not very large, but clear enough to say that strategies proximity to centre and
proximity and recovery time perform the least of the five strategies.

Accessibility
Further analysis of the accessibility shows that this metric increases very strongly for all five strategies.
This means that it is possible to reach all other connections in the network from the central node (node
10) quite quickly. In addition, the model quickly ensures that a large number of nodes become accessible
again, which explains why the accessibility metric increases so quickly.

When evaluating the effectiveness of various strategies at a 25% removal rate within the Sioux Falls
network, it becomes evident that the five strategies yield similar results, complicating the identification
of a definitive superior option. This observation is also reflected in Table E.1, where none of the effects on
accessibility are statistically significant. This indicates that the differences observed are not substantial
enough to conclude that one strategy is superior to another.

Connected components
During the simulation with 25% of removed connections, it was noticed that the number of connected
components was slightly above 1. Due to the way the value is calculated and subsequently normalised,
it may be slightly above 1. Although this effect was not fully anticipated, it is likely to have a limited
impact on the overall analysis and interpretation of the results.

In addition to resilience, the results of the statistical tests in Table E.1 show significant differences
between the strategies in terms of connected components, i.e. the extent to which the network becomes
fragmented after disruption. This shows that strategies that implement recovery mechanisms generally
outperform strategies that focus solely on proximity.

The analysis shows that proximity to centre performs significantly worse than both proximity and hierarchy
with 𝑡 = −3.22, recovery time and proximity with a t-value of −4.91 and dynamic recovery with 𝑡 = −5.43.
This suggests that a single focus on proximity is insufficient to ensure coherence within the network.

In contrast, proximity and hierarchy significantly outperforms proximity and recovery time with 𝑡 = 3.57,
showing that a combination of hierarchy and proximity has a beneficial effect on network structure after
disruption. However, proximity and hierarchy underperforms dynamic recovery with 𝑡 = −2.37, implying
that a dynamic recovery strategy is more effective in maintaining a well-connected network.

Furthermore, there is a significant difference between proximity and recovery time and recovery time and
proximity (𝑡 = −5.35), as well as between proximity and recovery time and dynamic recovery with 𝑡 = −5.94,
with the latter two strategies maintaining a more robust network structure.

In summary, strategies that integrate dynamic recovery, such as recovery time and proximity and dynamic
recovery, are shown to maintain network cohesion significantly better than strategies that rely solely on
proximity. This emphasises the importance of flexible and adaptive recovery mechanisms for limiting
network fragmentation after disruptions.

Efficiency
When analysing the robustness and efficiency graphs, they show a similar pattern. Efficiency is
calculated as a measure of the shortest distances between nodes. Normally, a decreasing graph would
be expected, since the loss of connections leads to longer distances between nodes. However, because
an inverse normalization is used here, the graph shows an increasing pattern.

Figure 4.5 seems to indicate that the strategies based on recovery time and proximity, as well as the strategy
based on dynamic recovery alone, outperform the other three strategies. However, when the results in
Table E.1 are analysed, it appears that there is no statistically significant difference between the different
strategies. This implies that no clear conclusion can be drawn from this analysis about which strategy is
superior to the other in this case.
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Betweenness
Another important metric is betweenness centrality. It shows that the value initially starts above 1 and
then slowly decreases towards 1. Although one might expect that the fully restored network would have
the optimal betweenness centrality, this is not necessarily the case. In the Sioux Falls network, removing
certain connections can cause some nodes to have high betweenness centrality. This is because these
nodes are then on many shortest paths and therefore become more important in the network structure.
An extremely high betweenness centrality value for a particular connection can have a strong effect on
the average. When a connection is subsequently restored, this can cause the betweenness centrality of
that specific connection to decrease sharply, while the betweenness centrality of other connections only
increases slightly. As a result, the average betweenness centrality can decrease when a new connection
is added. This effect is also visible in the Sioux Falls network.

The results in Table E.1 show that there are no significant differences between the strategies in terms of
betweenness, or the degree to which certain nodes play a central role in network traffic.

All t-values are close to zero and the p-values are significantly higher than the threshold of 0.05,
suggesting that no strategy has a statistically significant impact on this metric. This may imply that
betweenness is a less suitable metric to distinguish the effectiveness of the strategies, or that the
adjustments within the strategies do not directly affect the structural centrality of the network.
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Figure A.1: Impact of 25% edge removal on Sioux Falls network metrics

A.2. Eastern Massachusetts 25% edges removed
When 25% of the edges are removed from the Eastern Massachusetts network, the network performance
is affected. In this case, removing 25% of the edges means that 65 edges disappear, leaving 193 edges.
This scenario can be interpreted as a mild disruption, such as a partial disaster, where most of the
network remains functional. In this section, the impact of different recovery strategies on the six metrics
is analysed.

Robustness
Robustness, or the importance of a node within the network based on the weights of its edges, is restored
fastest by strategies recovery time and proximity and dynamic recovery. This is because these strategies
prioritize restoring high-volume roads or important connections before tackling weaker connections.
This means that if the goal is to restore the roads with the highest volume first, strategies recovery time
and proximity and dynamic recovery are the best choices.

When examining the robustness of the network, as illustrated in Table E.1, it is evident that there are no
statistically significant differences among the various strategies for the Eastern Massachusetts network.
This indicates that, despite the differences in how each recovery strategy restores connections within



A.2. Eastern Massachusetts 25% edges removed 58

the network, none of the strategies significantly outperforms the others in enhancing the network’s
robustness.

Resilience
In the first half of the recovery process, all strategies show a similar development in resilience. From
the halfway point of the process, however, strategies recovery time and proximity and dynamic recovery
perform better than the rest. This means that when the goal is to restore OD pairs (origin-destination
relationships) as quickly as possible, strategies recovery time and proximity and dynamic recovery are
preferred. For the further recovery process, the choice is less clear-cut, because strategy proximity and
hierarchy initially scores better than strategies proximity and proximity and recovery time, but later lags
behind.

When examining the robustness of the network, as illustrated in Table E.1, it is evident that there are no
statistically significant differences among the various strategies for the Eastern Massachusetts network.
This indicates that, despite the differences in how each recovery strategy restores connections within
the network, none of the strategies significantly outperforms the others in enhancing the network’s
robustness.

Accessibility
Figure A.2 shows that in the first phase of the recovery process, the five strategies are close to each
other in terms of accessibility. Later in the process, strategies recovery time and proximity and dynamic
recovery outperform strategies proximity and proximity and recovery time, while strategy proximity and
hierarchylags behind. This means that with strategies recovery time and proximity and dynamic recovery, a
larger number of nodes become accessible from the central node more quickly. This can be desirable in
situations where the network needs to be fully connected again as quickly as possible.

When examining the accessibility of the network, as illustrated in Table E.1, it is evident that there are no
statistically significant differences among the various recovery strategies for the Eastern Massachusetts
network. This indicates that the differences in how these recovery strategies enhance network accessibility
are not substantial enough to be deemed statistically significant.

Connected components
Looking at the connected components, it can be seen that the range of the 95% confidence interval is a
lot larger than with the other metrics. This means that there is more uncertainty in the value of the
connected components and that another set of 25% of the edges that are removed can produce quite
different results. However, it can be said that if the goal is to ensure that the network becomes a whole
again as quickly as possible and that there are therefore no separate components, then it is best to look at
strategies recovery time and proximity and dynamic recovery. These have a higher value for the connected
components more quickly and will therefore ensure that the network is connected sooner than strategies
proximity, proximity and hierarchy and proximity and recovery time.

An analysis of the connected components within the network, as illustrated in Table E.1, reveals that
there are no statistically significant differences among the various recovery strategies for the Eastern
Massachusetts network. This indicates that the differences in the effectiveness of these strategies in
restoring the number of connected components are not substantial enough to be deemed statistically
significant.

Efficiency
Efficiency, or the speed at which someone can travel between two points, is recovered fastest by strategies
recovery time and proximity and dynamic recovery, followed by strategies proximity and proximity and
recovery time. Strategy proximity and hierarchy lags behind and contributes least to a fast return to the
original network structure. This means that strategies recovery time and proximity and dynamic recovery
are best suited for situations where a fast recovery time of the shortest routes is crucial.

When examining the efficiency of the network, as shown in Table E.1, it becomes evident that the
Eastern Massachusetts network also does not exhibit any statistically significant differences between the
different recovery strategies. This suggests that the variations in the performance of these strategies in
terms of restoring connected components are insufficient to be considered statistically significant.
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Betweenness
The betweenness decreases as the recovery process progresses. This is probably because after removing
25% of the edges, some nodes are on a disproportionately high number of shortest paths, leading to
high betweenness. Restoring connections distributes traffic more evenly, which reduces betweenness.
Strategies proximity and proximity and recovery time cause a rapid decrease in betweenness, which is
beneficial because the network becomes less vulnerable to the failure of a specific node. If the intention
is to keep some nodes on many shortest paths, then strategies proximity and hierarchy, recovery time and
proximity, and dynamic recovery are more suitable.

When examining the betweenness, Table E.1 reveals that most of the comparisons among the various
strategies are statistically significant. The strategies labelled as proximity and proximity and recovery time
demonstrate significantly better performance compared to the strategies proximity and hierarchy, recovery
time and proximity, and dynamic recovery, with average values that are higher by 0.05, 0.08, and 0.08,
respectively.

Figure A.2: Impact of 25% edge removal on Eastern Massachusetts network metrics
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A.3. Anaheim 25% edges removed
When 25% of the connections in the Anaheim network are removed, different recovery strategies are
compared based on their impact on various network metrics. Below is an analysis by metric following
from Figure A.3, discussing the performance of the strategies in relation to their impact on the network.

Robustness
Here, strategies proximity and hierarchy, recovery time and proximity, and dynamic recovery perform best,
while strategies proximity to centre and proximity and recovery time score significantly lower. Strategy
proximity and hierarchy has a strong start and initially shows the best performance. Later in the process,
strategy dynamic recovery performs slightly better, but overall strategy proximity and hierarchy remains the
most effective choice for robust network restoration.

Looking at Table E.1, the robustness analysis shows that proximity and hierarchy significantly outperforms
the other strategies, with t-values of 7.09, 7.09, 10.25, and 10.21 compared to proximity to centre, proximity
and recovery time, recovery time and proximity, and dynamic recovery, respectively. Furthermore, proximity
to centre and proximity and recovery time outperform recovery time and proximity and dynamic recovery, with
t-values of 2.83 and 2.78, respectively. This indicates that strategies emphasizing a balanced distribution
of proximity and recovery opportunities are more robust in terms of structural stability.

Resilience
There is no clear winner here: initially, strategy proximity and hierarchy performs best, but later in the
recovery process, strategy dynamic recovery takes over. This means that if the goal is to increase resilience
as quickly as possible, strategy proximity and hierarchy is the best choice. However, if it is more important
to ultimately have a more robust and resilient network, strategy dynamic recovery is the better option.
The other strategies clearly lag behind.

The proximity and hierarchy strategy again shows a clear advantage in terms of resilience within the
network. The t-values for the comparison with proximity to centre, proximity and recovery time, recovery time
and proximity and dynamic recovery are 5.99, 5.99, 6.13 and 6.02, respectively. This implies that strategies
combining hierarchical and proximity factors generate a higher degree of resilience to disturbances. No
significant differences were observed between the other strategies.

Accessibility
Strategy proximity and hierarchy performs best here, meaning that it ensures that many other nodes are
reachable from the central node as quickly as possible. This is followed by strategies recovery time and
proximity and dynamic recovery, and then strategies proximity to centre and proximity and recovery time.
It is notable that strategy recovery time and proximity initially outperforms strategy dynamic recovery,
but later in the recovery process, strategy dynamic recovery becomes more effective. This suggests that
strategy recovery time and proximity provides a faster initial reconnection, while strategy dynamic recovery
ultimately ensures a more sustainable recovery.

The proximity and hierarchy strategy shows significantly superior performance in terms of accessibility
compared to other strategies. The differences compared to proximity to centre and proximity and recovery
time are both significant with a t-value of 7.86. Furthermore, proximity and hierarchy outperforms recovery
time and proximity and dynamic recovery, with respective t-values of 7.97 and 7.75. This suggests that
combining proximity and hierarchy provides a more robust approach for accessibility improvements.
No statistically significant differences were observed between the remaining strategies.

Connected components
Strategy proximity and hierarchy starts out very strong, indicating that it quickly restores a large part of
the network. However, this improvement tapers off later in the process. Strategy dynamic recovery shows
a strong increase halfway through, while strategy recovery time and proximity performs similarly at first
but lags behind later. This means that strategy proximity and hierarchy is preferable when a fast initial
recovery is desired, while strategy dynamic recovery is better when a sustainable and rapid increase in
long-term connectivity is desired.

The results for connected components show that proximity and hierarchy again significantly outperforms
all other strategies. The t-values for the comparisons with proximity to centre and proximity and recovery
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time are 12.21, while compared to recovery time and proximity and dynamic recovery they are 11.58. This
implies that strategies with a strong emphasis on hierarchical connectivity can create more coherent
networks. No significant differences were found between the other strategies, indicating that these
strategies have a similar impact on the network topology.

Efficiency
Strategies recovery time and proximity and dynamic recovery perform best here, with strategy dynamic
recovery being the slightly better option. Strategy proximity and hierarchy follows at some distance, while
strategies proximity to centre and proximity and recovery time clearly lag behind. This means that strategies
recovery time and proximity and dynamic recovery are the most effective for a network that recovers quickly
in terms of travel speed and efficiency.

In terms of efficiency, proximity and hierarchy also achieves superior results compared to the other
strategies. The differences with proximity to centre, proximity and recovery time, recovery time and proximity,
and dynamic recovery are significant with respective t-values of 2.95, 2.95, 3.97 and 4.03. This suggests
that combining proximity and hierarchy results in a more optimal utilisation of network efficiency. No
significant differences were found for the other strategies.

Betweenness
Strategy proximity and hierarchy causes a strong spike in this metric, indicating that some paths are
restored that are crucial for many shortest paths. However, this can also introduce vulnerability, as a
sudden dependency on certain nodes makes the network more susceptible to disruptions. Strategies
recovery time and proximity and dynamic recovery have a more gradual increase and recover faster than
strategies proximity to centre and proximity and recovery time. Of these strategies, dynamic recovery performs
best, indicating that it provides a balanced recovery process with reduced dependency on individual
nodes.

When looking at table E.1, in terms of betweenness, proximity and hierarchy significantly outperforms
proximity to centre and proximity and recovery time, with a t-value of 18.21. This strategy also outperforms
recovery time and proximity and dynamic recovery, with t-values of 15.02 and 14.07, respectively. Interestingly,
both recovery time and proximity and dynamic recovery in turn outperform proximity to centre and proximity
and recovery time. The t-values of these betweenness differences are 6.88 for recovery time and proximity
and 7.59 for dynamic recovery. This emphasises that strategies that combine recovery with proximity
can be more robust in terms of network betweenness. The differences between proximity to centre and
proximity and recovery time, as well as between recovery time and proximity and dynamic recovery, were not
found to be significant.
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Figure A.3: Impact of 25% edge removal on Anaheim network metrics

A.4. Munich 25% edges removed
When 25% of the connections in the Munich network are removed, different recovery strategies are
compared based on their impact on various network metrics. Below is an analysis by metric following
from Figure A.4, discussing the performance of the strategies in relation to their impact on the network.

Robustness
When looking at the robustness of the network, measured by removing 25% of the edges in the Munich
network, we see that the proximity to centre and proximity and recovery time strategies show the worst
performance. This means that when a significant percentage of the connections within the network
are removed, these strategies are less able to bridge the loss of connections and effectively recover the
network. This may indicate an insufficiently resilient structure, where important connections are not
restored quickly enough, leading to larger disruptions in the network.

In contrast, the recovery time and proximity and dynamic recovery strategies are the most robust. These
strategies seem to react faster to the loss of connections and recover more efficiently, keeping the network
relatively stable even in the face of disruptions. This suggests that with these strategies, the network is
better able to maintain connectivity or recover quickly after removing edges. The proximity and hierarchy
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strategy is in the middle, indicating that this approach has moderate resilience: the network can recover
with some delay, but does not perform as well as the previously mentioned strategies.

The results in table E.1 show that proximity to centre performs significantly worse than proximity and
hierarchy (t = -9.79). This indicates that a hierarchical structure makes the network more robust to
disturbances.

In addition, there is no significant difference between proximity to centre and proximity and recovery time (t
= 0.01), suggesting that recovery mechanisms do not directly improve robustness.

Resilience
When looking at the resilience of the network, we see a similar pattern. Strategies recovery time and
proximity and dynamic recovery again perform best. This means that these strategies are able to quickly
recover the network after disruptions, making the network more resistant to long-term or repeated
damage.

The proximity and hierarchy strategy scores third, indicating that the network also has some resilience
here, but not on the same level as the top strategies. At the bottom of the scale are the strategies
proximity to centre and proximity and recovery time, which are the least effective in maintaining stability
after disruptions. This suggests that these strategies are less flexible in their recovery capacity and may
be more vulnerable to network risks.

The results show that proximity to centre performs significantly worse than proximity and hierarchy (t =
-5.53). This means that a hierarchical structure helps to maintain resilience in the network.

In addition, proximity to centre performs worse than both recovery time and proximity (t = -5.54) and
dynamic recovery (t = -5.53), suggesting that recovery strategies are important for resilience.

However, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.01), which means that both strategies have similar effects.

Accessibility
When looking at the accessibility of the network, we see that the recovery time and proximity and
dynamic recovery strategies again perform best. These strategies ensure that the network remains quickly
accessible, even when parts of the network are disrupted. Access points remain open, and the network
remains user-friendly despite the loss of connections.

The proximity and hierarchy strategy again comes in third, suggesting that the network retains some
degree of accessibility with this approach, but may be less efficient at recovering access points than the
top strategies. Strategies proximity to centre and proximity and recovery time are the least effective, meaning
that users in these networks will often have more difficulty gaining access, especially in disrupted
conditions.

The results show that proximity and hierarchy significantly outperforms proximity to centre with a t-value
of -14.34. This suggests that a hierarchical structure significantly increases the accuracy of the network.

In addition, proximity to centre significantly underperforms both recovery time and proximity (t = -5.91)
and dynamic recovery (t = -5.90), suggesting that recovery strategies play an important role in improving
accuracy.

Furthermore, the comparison between proximity and hierarchy outperforms both recovery time and proximity
(t = 6.89) and dynamic recovery (t = 6.90). This confirms that hierarchy is a determining factor in improving
accuracy.

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.01), indicating that both strategies have similar effects on accuracy.

In summary, proximity and hierarchy is the most effective strategy for accuracy, while strategies based on
recovery times provide an improvement over a simple proximity strategy.
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Connected components
For the connected components we again see a clear pattern where the strategies recovery time and
proximity and dynamic recovery perform best. These strategies ensure that the network remains well
connected, even when parts of the network are removed. This means that the network is less likely to
split into smaller, isolated components, which improves the overall robustness and performance.

The strategy proximity and hierarchy is between the top strategies and the weaker options. This indicates
that the network in this strategy has slightly more fragile connections, but it remains relatively well
connected compared to the weaker strategies. The strategies proximity to centre and proximity and recovery
time perform worst, but the difference between proximity and hierarchy and the weaker strategies is
smaller than for the other metrics. This may indicate that the hierarchy in these strategies provides
some stability, but not enough to keep the network topology robust under stress.

The results in table E.1 show that proximity and hierarchy significantly outperforms proximity to centre (t =
-11.18). This indicates that hierarchy contributes to preserving network structure during disruptions.

In addition, proximity to centre underperforms recovery time and proximity (t = -16.14) and dynamic recovery
(t = -16.14). This suggests that recovery strategies play a crucial role in preserving connected network
components.

Furthermore, the comparison between proximity and hierarchy and recovery strategies shows a mixed
picture. Although proximity and hierarchy outperforms proximity and recovery time (t = 11.17), and it is
inferior to recovery time and proximity (t = -6.89) and dynamic recovery (t = -5.90).

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.00).

In summary, recovery time and proximity and dynamic recovery perform best in preserving network
components, while proximity to centre is the least effective.

Efficiency
With regard to efficiency, the pattern is again consistent: the strategies recovery time and proximity and
dynamic recovery perform best. This suggests that these strategies allow the network to function efficiently
even when part of the network infrastructure is lost. Efficiency is not only maintained, but in some cases
also optimized by the fast recovery and the effective distribution of resources within the network.

The strategy proximity and hierarchy again comes in third, suggesting that this approach does provide
some efficiency, but not on the same level as the top strategies. Strategies proximity to centre and proximity
and recovery time score lowest, indicating that they function less efficiently in situations of disruption,
possibly due to a less dynamic approach to recovery and redistribution of network resources.

The results show that proximity and hierarchy performs significantly better than proximity to centre (t =
-5.77). This indicates that a hierarchical structure contributes to a more efficient network.

In contrast, recovery strategies do not show a significant improvement, as there is no difference between
proximity to centre and proximity and recovery time (t = 0.01), and there is also no statistical significance
between recovery time and proximity and dynamic recovery (t = 0.00).

Betweenness
When analysing the betweenness, we see that the strategies proximity and hierarchy, recovery time and
proximity, and dynamic recovery show a steep increase in betweenness at the beginning, which then levels
off. This means that these strategies quickly generate influential connections in the network, but this
influence decreases as the network recovers. This points to a strategy that quickly becomes effective, but
then shows a stabilizing trend.

The strategies proximity to centre and proximity and recovery time have a more exponential curve, with
the betweenness in the network increasing gradually. This means that these strategies exert influence
more gently, possibly through a more gradual approach to recovery and the strengthening of network
connections. This allows the network to recover more slowly, but ultimately in a more stable and
controlled manner.
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The results show that proximity and hierarchy significantly outperforms proximity to centre, with a t-value
of -35.28. This indicates that hierarchy helps to more effectively utilize the central nodes in the network.

In contrast, there is no significant difference between proximity to centre and proximity and recovery time (t
= -0.01), suggesting that adding a recovery mechanism does not directly affect betweenness centrality.
Also, the comparison with recovery time and proximity and dynamic recovery (t = 0.00) shows that these
strategies do not provide a decisive improvement.

Furthermore, proximity and hierarchy outperforms proximity and recovery time (t = 35.29) and also
outperforms recovery time and proximity (t = 8.57) and dynamic recovery (t = 8.57). This confirms that
hierarchy plays a crucial role in maintaining central nodes in the network.

In summary, proximity and hierarchy offers the best performance, while proximity to centre and proximity
recovery time and do not offer significant improvement.

Figure A.4: Impact of 25% edge removal on Munich network metrics
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removal

B.1. Sioux Falls 50% edges removed
Removing 50% of the edges in the Sioux Falls network has a significant impact on the structure and
functionality of the network. Figure B.1 shows the modified network, which shows how removing these
connections affects various network metrics.

Robustness
The robustness metric shows that the network initially has difficulty recovering, but as the recovery
time progresses, robustness steadily increases. This suggests that the network is slowly able to restore
larger connections and become functional again. The initial decrease in robustness is caused by the
large loss of connections, which means that fewer alternative routes are available.

Table E.2 shows that there is no statistically significant difference between the different strategies for
robustness. This means that no conclusions can be drawn from these results about the superiority of
one of the strategies compared to the other.

Resilience
The resilience metric shows that the recovery continues in a slowly increasing line. This indicates that
the network is resilient, but that the speed at which the number of functional routes recovers is relatively
low. The 95% confidence interval is wider here, which indicates that there is greater uncertainty about
the exact recovery speed.

When looking at resilience, the effects that are shown in E.2 are also not statistically significant, so here,
can also not be demonstrated clear preference for a particular strategy based on significance.

Accessibility
The accessibility of the network increases rapidly as more connections are restored. This means that
most nodes are reachable again relatively quickly, despite the large number of removed edges. The
central nodes in particular are restored quickly, which makes other parts of the network accessible again.

Although these effects appear to be visible, they are also not statistically significant according to Table
E.2, so no difference in average between the different strategies can be confirmed.

Connected Components
The connected components metric shows that initially many separate network elements emerge after
removing 50% of the edges. This indicates that the network has been split into smaller, disjoint parts.
During the recovery period, these components are reassembled, eventually resulting in a maximum
value of the restored network.

66
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Based on the reanalysis of the statistical tests in Table E.2, it appears that the performance of the
strategies differs significantly. This evaluation is supported by the significance values, where strategies
proximity to centre and proximity and recovery time perform less well than proximity and hierarchy, recovery
time and proximity and dynamic recovery.

For all these effects, the difference between the strategies lies between 2.13 and 5.22 standard deviations,
indicating a moderate to large effect. In particular for connected components, i.e. the ability to keep
the network structure intact in the event of disruption, strategies that integrate recovery mechanisms
perform significantly better than strategies that focus exclusively on proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows a
significant negative effect (𝑡 = −4.84), implying that proximity to centre is inferior in terms of connected
components. Likewise, proximity to centre shows a significantly worse performance compared to dynamic
recovery (𝑡 = −5.21).

In addition, proximity and hierarchy is shown to perform significantly better than proximity and recovery
time (𝑡 = 2.04), demonstrating that adding a hierarchical structure within the recovery process is
beneficial for the network structure.

In summary, it is found that strategies that adopt recovery time as a core principle, such as recovery time
and proximity and dynamic recovery, maintain a more robust network structure compared to strategies
that rely solely on proximity. This emphasizes the importance of recovery-oriented methodologies for
effectively recovering the network components.

Efficiency
The efficiency metric shows that the shortest paths between nodes are drastically affected by removing
50% of the edges. Initially, efficiency is greatly reduced, but recovery strategies increase it again. This
indicates that as more connections are restored, the average range within the network improves.

When examining Table E.2, it becomes evident that no significant differences can be identified among
the various strategies in terms of efficiency. This analysis indicates that the efficiency levels of the
different strategies are comparable, suggesting that they perform similarly in this regard.

Betweenness
The betweenness centrality of certain nodes initially increases greatly, indicating that some nodes play a
crucial role in redistributing traffic. Then, the value decreases again as alternative routes are restored
and the dependency on these nodes decreases. This shows that in the early stages of recovery, some
nodes are very important to the network structure, but that this dependency decreases later.

Based on the reanalysis of the statistical tests in Table E.2, it appears that the performance of the
strategies differs significantly. This evaluation is supported by the significance values, where strategies
proximity to centre and proximity and recovery time perform less well than strategies proximity and hierarchy,
recovery time and proximity and dynamic recovery in terms of betweenness, i.e. the degree of influence or
control over the shortest paths between other nodes in the network.

For all these effects, the difference between the strategies lies between 3.91 and 5.64 standard deviations,
indicating a moderate to large effect. In particular, for betweenness, or the extent to which a strategy
maintains connectivity and influence within the network, it appears that strategies that integrate
recovery mechanisms perform significantly better than strategies that focus solely on proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows a
significant negative effect (𝑡 = −5.64), implying that proximity to centre is inferior in terms of betweenness.
Similarly, proximity to centre shows a significantly worse performance compared to dynamic recovery
(𝑡 = −5.59).

In addition, proximity and hierarchy is shown to perform significantly better than proximity and recovery
time (𝑡 = 3.91), demonstrating that adding a hierarchical structure within the recovery process is
beneficial for betweenness.

In summary, strategies that use recovery time as a core principle, such as recovery time and proximity and
dynamic recovery, show higher betweenness compared to strategies that rely solely on proximity. This
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emphasizes the importance of recovery-oriented methodologies for maintaining network control and
influence during disruptions.

Figure B.1: Impact of 50% edge removal on Sioux Falls network metrics

B.2. Eastern Massachusetts 50% edges removed
In addition to removing 25% of the edges for the Eastern Massachusetts network, the effect of removing
50% of the edges can also be considered. This scenario represents a larger disruption to the network,
such as a more severe flood, making the impact on network connectivity and robustness more significant.
The findings regarding removing 50% of the edges can be found in Figure B.2.

Robustness
For robustness, strategies recovery time and proximity and dynamic recovery perform better than the other
strategies. Strategy proximity and hierarchyscores better than strategies proximity and proximity and recovery
time, which perform the least well. This indicates that strategies recovery time and proximity and dynamic
recovery prioritize restoring the most important and robust connections within the network.

When comparing the findings from the figures with the results of the statistical test, it can be seen that
there is a significant difference between strategy proximity and proximity and hierarchy with respect to
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robustness. and also between proximity and hierarchy and proximity. In both comparisons, the effect
is the same and it can be concluded that strategies proximity and proximity and recovery time perform
significantly better than strategy proximity and hierarchy, which has a lower average value of 0.07.
Furthermore, no statistically significant differences can be found with respect to robustness.

Resilience
With resilience, it appears that in the initial phase all strategies have a similar course, but from one third
of the recovery process strategies recovery time and proximity and dynamic recovery perform best. Strategies
proximity and proximity and recovery time perform less well, while strategy proximity and hierarchyfalls in
between. This means that if the goal is to restore the original OD pairs as quickly as possible, strategies
4 or 5 are the most effective choices.

When looking at resilience, Table E.2 shows that strategy proximity and hierarchy performs less well than
strategies recovery time and proximity and dynamic recovery. There is a difference of 0.07 in the average
value for resilience, so it can be said for resilience that the strategies recovery time and proximity and
dynamic recovery are preferred, with a fast recovery of resilience.

Accessibility
When looking at accessibility, it appears that strategies recovery time and proximity and dynamic recovery
have a similar progression and are close to each other. Strategy proximity and hierarchy, on the other
hand, shows a slower increase. This means that if the goal is to make the network accessible again from
the central node as quickly as possible, strategies proximity, proximity and recovery time, recovery time and
proximity or dynamic recovery are the best choices. Strategy proximity and hierarchywould be less suitable
if fast connectivity from the centre node is desired.

Regarding accessibility, there is also a significant difference between some strategies. For example,
proximity performs significantly worse than strategies recovery time and proximity and dynamic recovery
and has a lower average value for both of 0.06. Furthermore, the same effect can be seen for proximity
and recovery time, also with a difference in average value of 0.06. Due to the way these strategies are
defined, this effect was also to be expected.

Connected components
The analysis of the connected components shows that strategies recovery time and proximity and dynamic
recovery reconnect the network completely the fastest. If the primary goal is to get the network functioning
as a whole again as quickly as possible, then these strategies are preferred. For strategies proximity,
proximity and hierarchy and proximity and recovery time, the choice depends on preference: strategy
proximity and hierarchyprovides a faster connection of parts of the network at the beginning of the
recovery process, while strategies proximity and proximity and recovery time have a more gradual increase
in the connected components at the beginning, but eventually reach a higher value of the connected
components more quickly.

An analysis of the connected components within the network, as depicted in Table E.2, reveals that
there are no statistically significant differences among the various recovery strategies for the East
Massachusetts network. This indicates that the variations in the effectiveness of these strategies in
restoring the number of connected components are not substantial enough to be deemed statistically
significant.

Efficiency
For efficiency, or shortest travel time between nodes, strategies recovery time and proximity and dynamic
recovery perform best, meaning they achieve the fastest improvement in network connectivity. Strategies
proximity and proximity and recovery time follow, and strategy proximity and hierarchyscores the lowest.
This implies that strategies recovery time and proximity and dynamic recovery are preferred when a rapid
increase in efficiency and improved accessibility is a priority.

An analysis of the efficiency of the different restoration strategies, as illustrated in Table E.2, shows that
there are no statistically significant differences between the strategies within the Eastern Massachusetts
network. This implies that the variations in restoration time, resource requirements, and operational
costs are not substantial enough to have a significant impact on the overall efficiency of the restoration
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process. This suggests that none of the strategies offers a clear operational or economic advantage over
the others in terms of efficiency.

Betweenness
For betweenness, it can be seen that strategies proximity and hierarchy, recovery time and proximity and
dynamic recovery show a strong increase in the initial phase, while strategies proximity and proximity and
recovery time show a more moderate increase. If the goal is to have certain nodes play a prominent role
in shortest paths within the network, strategies proximity and hierarchy, recovery time and proximity and
dynamic recovery might be preferred. However, if a more even distribution of network traffic is desired,
making the network less vulnerable to disruptions, strategies proximity and proximity and recovery time
would be a better choice.

The analysis of betweenness reveals that, as shown in Table E.2, the relationship between the strategies
proximity and proximity and recovery time is not statistically significant. However, both strategies do exhibit
statistically significant differences when compared to the strategies proximity and hierarchy, recovery time
and proximity, and dynamic recovery, with average value differences of 0.14, 0.13, and 0.13, respectively.

Therefore, based on the betweenness analysis for the 50% edge removal scenario in the Eastern
Massachusetts network, it can be concluded that the strategies proximity and proximity and recovery time
are preferred. Nonetheless, the subsequent ranking of the strategies cannot be statistically substantiated.
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Figure B.2: Impact of 50% edge removal on Eastern Massachusetts network metrics

B.3. Anaheim 50% edges removed
Another option is to remove 50% of the edges from the Anaheim network. This is shown in Figure B.3.
Below we will explain what happens for each metric and which strategy performs best.

Robustness
In this context, strategies proximity and hierarchy, recovery time and proximity, and dynamic recovery
demonstrate superior performance, whereas strategies proximity to centre and proximity and recovery time
exhibit significantly lower scores. Strategy proximity and hierarchy begins with a strong performance,
showcasing the best results initially. As the process progresses, strategy dynamic recovery slightly
outperforms the others; however, strategy proximity and hierarchy remains the most effective option for
ensuring a resilient network recovery overall.

In terms of robustness, which measures the structural stability of the network after perturbations,
proximity and hierarchy significantly outperforms the other strategies, with t-values of 10.02 for proximity
to centre, 10.02 for proximity and recovery time, 14.45 for recovery time and proximity, and 14.39 for dynamic
recovery. This suggests that the proximity and hierarchy strategy makes the network the most robust
against connection loss. Furthermore, both proximity to centre and proximity and recovery time outperform
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recovery time and proximity and dynamic recovery, with respective t-values of 3.96 and 3.95 for proximity to
centre, and 3.89 and 3.88 for proximity and recovery time.

Resilience
Here, all five strategies are relatively close, but strategies proximity to centre and proximity and recovery
time perform slightly worse. This suggests that while there is no clear winner, strategies recovery time
and proximity and dynamic recovery may provide a more robust recovery.

In the area of resilience, which measures the network’s resistance to perturbations, proximity and hierarchy
is found to perform significantly better than all other strategies, with t-values of 7.05 for proximity
to centre, 7.06 for proximity and recovery time, 7.81 for recovery time and proximity, and 7.68 for dynamic
recovery. This suggests that combining proximity and hierarchy makes the network more resilient to
perturbations. No statistically significant differences were observed between the other strategies.

Accessibility
Strategy proximity and hierarchy ultimately performs best, followed by strategies recovery time and
proximity and dynamic recovery, and then strategies proximity to centre and proximity and recovery time.
Interestingly, however, strategy proximity and hierarchy initially performs worse than the other three
strategies, indicating that the recovery process is initially slower but becomes more effective later on.

In terms of accessibility, Table E.2 shows that the proximity and hierarchy strategy significantly outperforms
the other strategies. The t-values of 5.80 and 5.81 for proximity to centre and proximity and recovery time
respectively indicate a more robust approach to accessibility, with these strategies being better able to
reach nodes quickly and efficiently after removing 50% of the edges. Furthermore, the proximity and
hierarchy strategy is also better than recovery time and proximity and dynamic recovery, with t-values of 8.32
and 8.77 respectively. This suggests that combining proximity and hierarchy significantly improves
the accessibility of network components. As for the remaining strategies, it is found that proximity to
centre and proximity and recovery time outperform recovery time and proximity and dynamic recovery, with
respective t-values of 3.07 and 3.63 for proximity to centre, and 3.07 and 3.62 for proximity and recovery time.

Connected components
All strategies start out pretty much the same here, but in the end strategy dynamic recovery performs
best, followed by strategy recovery time and proximity, then strategy proximity and hierarchy, and finally
strategies proximity to centre and proximity and recovery time. This indicates that strategy dynamic recovery
is the most effective in reducing network islands and increasing network connectivity.

The connected components metric measures the degree of network coupling after removing edges. Here,
Table E.2 shows that the strategy proximity and hierarchy significantly outperforms all other strategies,
with respective t-values of 8.34 for proximity to centre, 8.35 for proximity and recovery time, 6.15 for recovery
time and proximity, and 5.63 for dynamic recovery. This indicates that the strategy combining proximity
and hierarchy preserves the most coherence in the network. Furthermore, recovery time and proximity
outperforms proximity to centre and proximity and recovery time, with t-values of 2.14 and 2.15, respectively.
Also, dynamic recovery outperforms proximity to centre and proximity and recovery time, with t-values of
2.52 and 2.53, respectively.

Efficiency
Strategies recovery time and proximity and dynamic recovery demonstrate superior performance in this
context. Strategy proximity and hierarchy ranks next, albeit with a noticeable gap, while strategies
proximity to centre and proximity and recovery time significantly trail behind. Consequently, it can be
concluded that strategies recovery time and proximity and dynamic recovery are the most efficient for a
network that prioritises rapid recovery in travel speed and overall effectiveness.

In terms of efficiency, proximity and hierarchy is found to significantly outperform the other strategies,
with t-values of 2.71 for proximity to centre, 2.74 for proximity and recovery time, 6.07 for recovery time
and proximity, and 6.24 for dynamic recovery. This indicates that the combination of proximity and
hierarchy leads to a more optimised utilisation of the network capacity. Furthermore, proximity to
centre outperforms both recovery time and proximity and dynamic recovery, with t-values of 3.32 and 3.51,
respectively. Proximity and recovery time also outperforms recovery time and proximity and dynamic recovery,
with respective t-values of 3.32 and 3.51.
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Betweenness
Strategy proximity and hierarchy results in a strong spike in this metric, suggesting that some paths are
restored that are essential for numerous shortest paths. However, this can also introduce a vulnerability,
as a sudden reliance on specific nodes makes the network more susceptible to disruptions. Strategies
recovery time and proximity and dynamic recovery exhibit a more gradual increase and recover more quickly
than strategies proximity to centre and proximity and recovery time. Among these strategies, strategy
dynamic recovery performs the best, indicating that it offers a balanced recovery process with reduced
dependence on individual nodes.

For the betweenness metric, which indicates the degree of intermediateness of nodes in the network,
Table E.2 shows proximity and hierarchy significantly outperforms proximity to centre and proximity and
recovery time, with a t-value of 19.66. This means that the proximity and hierarchy strategy provides a
more efficient distribution of intermediate links throughout the network, which contributes to better
network functionality after edge removal. This strategy also outperforms recovery time and proximity
and dynamic recovery, with t-values of 15.15 and 15.06, respectively. As for the other strategies, recovery
time and proximity and dynamic recovery are shown to outperform proximity to centre and proximity and
recovery time, with t-values of 5.82 and 5.83 for recovery time and proximity, respectively, and 5.72 for both
compared to dynamic recovery. However, the effects between proximity to centre and proximity and recovery
time, as well as between recovery time and proximity and dynamic recovery, are not statistically significant.
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Figure B.3: Impact of 50% edge removal on Anaheim network metrics

B.4. Munich 50% edges removed
When 50% of the connections in the Munich network are removed, different recovery strategies are
compared based on their impact on various network metrics. Below is an analysis by metric following
from Figure B.4, discussing the performance of the strategies in relation to their impact on the network.

Robustness
When removing 50% of the edges in the Munich network, it is noticeable that the proximity to centre and
proximity and recovery time strategies are the least robust. This means that the network fragments faster
and is less resilient to disruptions with these strategies. In contrast, recovery time and proximity and dynamic
recovery perform best, suggesting that these strategies are better able to maintain network functionality.
The proximity and hierarchy strategy is in between these two extremes in terms of performance and shows
moderate robustness.

The results in Table E.2 for robustness show that proximity and hierarchy performs significantly better
than proximity to centre and proximity and recovery time, with both t-values of 9.79. This indicates that a
hierarchical network structure produces a more robust network under disturbances.



B.4. Munich 50% edges removed 75

In contrast, there is no significant difference between proximity to centre and proximity and recovery time (t
= 0.01), suggesting that recovery mechanisms by themselves do not directly improve robustness. Also
the comparison between strategies recovery time and proximity and dynamic recovery (t = -0.02) shows that
these strategies do not yield significant gains.

Furthermore, proximity and hierarchy also recovery time and proximity (t = 11.00) and dynamic recovery (t =
10.98). This confirms that hierarchy is a decisive factor in increasing network robustness.

In summary, proximity and hierarchy provides the most robustness, while recovery strategies do not show
a significant improvement over proximity strategies.

Resilience
When assessing the resilience of the network after removing 50% of the edges, a different pattern is
visible. Strategies proximity to centre and proximity and recovery time show relatively good performances
here, while proximity and hierarchy scores the worst. This means that in the event of a disruption, the
network with proximity and hierarchy is less able to recover and regain its original functionality.

The results in Table E.2 show that proximity and hierarchy significantly outperforms proximity to centre in
terms of resilience, with a t-value of 9.91. This indicates that hierarchical structures contribute to a more
robust network under disturbances.

However, proximity to centre performs better than both recovery time and proximity (t = 6.80) and dynamic
recovery (t = 6.80), indicating that recovery strategies based on proximity to the centre significantly
improve network resilience.

Interestingly, there is no significant difference between proximity and hierarchy and recovery time and
proximity (t = 1.18) or dynamic recovery (t = 1.18), suggesting that although hierarchy is beneficial, it is not
clearly superior to recovery strategies.

Furthermore, proximity and recovery time performs significantly better than recovery time and proximity (t
= 6.80) and dynamic recovery (t = 6.80), confirming that combining proximity and recovery time and
proximity is a more powerful strategy than a strategy that focuses on recovery alone.

In summary, strategies proximity to centre and proximity and recovery time remain the more resilient
strategies.

Accessibility
When looking at the accessibility of the network after removing 50% of the edges, proximity to centre and
proximity and recovery time initially perform best. The proximity and hierarchy strategy initially performs
the lowest, indicating that the network remains less accessible after a disruption with this strategy.
However, as the recovery process progresses, from about two-thirds of the way through, proximity
and hierarchy starts to outperform proximity to centre and proximity and recovery time. This suggests that
although proximity and hierarchy may initially seem like a less effective strategy, it may yield better results
in the long run.

The results in Table E.2 show that proximity and hierarchy significantly outperforms proximity to centre in
terms of accessibility, with a t-value of 2.85. This suggests that adding a hierarchical structure within
the strategy results in a more accessible network structure.

In contrast, proximity to centre significantly outperforms both recovery time and proximity (t = 7.80) and
dynamic recovery (t = 7.81), implying that strategies that include proximity to centre mechanisms maintain
better accessibility than a recovery time strategy.

An interesting pattern is visible when comparing proximity and hierarchy with the recovery-oriented
strategies. Although proximity and hierarchy underperforms proximity and recovery time (t = -2.85), it
remains superior to recovery time and proximity (t = 4.25) and dynamic recovery (t = 4.27). This suggests
that hierarchy plays a more important role in accessibility than recovery mechanisms.

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.01), suggesting that both strategies have similar effects on accessibility.
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In summary, strategies proximity to centre and proximity and recovery time perform the best on accessibility,
while recovery time and proximity and dynamic recovery are the least effective. Recovery strategies provide
some improvement, but cannot match the benefits of hierarchy within the network.

Connected components
For maintaining connected components in the network, the strategies proximity to centre, proximity and
recovery time and proximity and hierarchy show a similar pattern. During much of the recovery process,
the values remain low, indicating that the network remains highly fragmented. However, at a certain
point in the recovery process, the values suddenly increase to the final recovery level. This indicates
that the network recovers in a short time, rather than gradually over the entire process.

The results in Table E.2 show that proximity and hierarchy significantly outperforms proximity to centre in
the area of connected components, with a t-value of 5.51. This indicates that a hierarchical network
structure contributes to maintaining network coherence in the event of disruptions.

In addition, proximity to centre significantly underperforms both recovery time and proximity (t = -11.66)
and dynamic recovery (t = -11.66). This suggests that recovery strategies play a more important role in
maintaining network structure than mere proximity principles.

Strategy proximity and hierarchy outperforms proximity and recovery time (t = 5.51), recovery time and
proximity (t = 7.19) and dynamic recovery (t = 7.19). This suggests that hierarchy has a positive effect.

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.00), indicating that both strategies have a similar impact on network connectivity.

Efficiency
In terms of efficiency, the proximity to centre and proximity and recovery time strategies generally outperform
the other strategies. The proximity and hierarchy strategy achieves the lowest score, but remains relatively
close to the other two. This indicates that while proximity and hierarchy may not be the most efficient
strategy, the difference with proximity to centre and proximity and recovery time is not very large.

The results for efficiency shown in Table E.2, show that there is no significant difference between
proximity to centre and proximity and hierarchy (t = 1.15). There is also no significant difference between
proximity and hierarchy and proximity and recovery time (t = -1.15).

There is also no significant difference between proximity to centre and proximity and recovery time (t =
0.00), which means that adding a basic recovery mechanism does not directly improve efficiency. The
comparison of proximity to centre and recovery time ans proximity and dynamic recovery show that proximity
to centre outperform those other two strategies with t-values of both 8.59.

It is noteworthy that proximity and hierarchy not only outperforms recovery time and proximity (t = 7.19)
but also dynamic recovery (t = 7.19). This confirms that hierarchy is a determining factor in improving
network efficiency.

Finally, the results show that there is no significant difference between recovery time and proximity and
dynamic recovery (t = 0.00), indicating that these strategies have similar effects.

In summary, proximity and hierarchy is the most efficient strategy, while recovery strategies do not provide
significant improvement over proximity strategies.

Betweenness
For betweenness, the strategies recovery time and proximity and dynamic recovery show a strong increase
early in the recovery process, after which the values level off or even decrease. This indicates that
these strategies initially contribute strongly to network reconnection, but that their effect decreases
thereafter. The strategy proximity and hierarchy shows a similar pattern, but only starts to increase later
in the recovery process and then decreases more deeply. In contrast, proximity to centre and proximity and
recovery time show a more gradual, exponential growth. This suggests that these strategies contribute
more consistently to network betweenness throughout the recovery process.

The results in Table E.2 for betweenness show a clear pattern where proximity and hierarchy significantly
outperforms proximity to centre, with a t-value of 16.81. This indicates that a hierarchical structure leads
to a more efficient distribution of network loads and fewer central nodes that become overloaded.
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Furthermore, proximity to centre performs significantly worse than both recovery time and proximity (t =
-7.17) and dynamic recovery (t = -7.17). This means that the lack of recovery mechanisms has a negative
effect on the distribution of network traffic, which can lead to more vulnerable nodes in the network.

Interestingly, proximity and hierarchy not only significantly outperforms proximity and recovery time (t =
16.81), but also recovery time and proximity (t = 7.25) and dynamic recovery (t = 7.24). This confirms that
hierarchy is an important factor in distributing network load and preventing bottlenecks.

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.00), indicating that these two strategies distribute network load in a similar way.

In summary, proximity and hierarchy is most effective in reducing node load, while proximity to centre
leads to an uneven distribution of network traffic. Recovery mechanisms improve distribution, but
cannot match the effectiveness of hierarchy.

Figure B.4: Impact of 50% edge removal on Munich network metrics



C
Simulation results of 75% edge

removal

C.1. Sioux Falls 75% edges removed
Removing 75% of the edges in the Sioux Falls network has a significant impact on the structure and
functionality of the network. It means that there will be 57 edges removed. Figure C.1 shows the
modified network, which shows how removing these connections affects various network metrics.

Robustness
Strategies recovery time and proximity and dynamic recovery score highest on robustness, indicating that
these strategies focus on restoring highly connected nodes. This results in a network that stabilizes
more quickly. Strategies proximity to centre and proximity and recovery time show a slower increase
in robustness, indicating that these strategies may have a less structured approach to restoring key
connections. Strategy proximity and hierarchy takes an intermediate position, with a steady but less steep
increase in robustness.

When looking at the effects of the different strategies, Table E.3 shows that none of the comparisons are
statistically significant. This means that the observed differences between the strategies are not large
enough to be considered reliable and reproducible effects. In other words, the variations between the
strategies could be coincidental or the result of other, unexamined factors, and cannot be attributed with
certainty to the specific strategies that were used. Since there is no statistically significant difference, no
clear conclusion can be drawn about which strategy performs better than the other.

Resilience
The resilience score shows significant differences between the strategies. Strategies recovery time and
proximity and dynamic recovery show a faster increase, indicating that these strategies contribute to a
more robust network in the short term. Strategies proximity to centre and proximity and recovery time lag
slightly behind, suggesting that these strategies only contribute to a more resilient network later. This
may mean that they give less priority to restoring critical connections in the early stages, leaving the
network temporarily more vulnerable to disruptions.

Based on the reanalysis of the statistical tests in Table E.3, it appears that the performance of the
strategies differs significantly. Strategies that integrate recovery mechanisms, such as proximity and
hierarchy, perform significantly better than strategies that focus solely on proximity, such as proximity to
centre.

For example, the comparison between proximity to centre and proximity and hierarchy shows a significant
negative effect (𝑡 = −2.18), implying that proximity to centre is inferior in terms of resilience.

In addition, the comparison between proximity and hierarchy and proximity and recovery time shows that
proximity and hierarchy performs significantly better (𝑡 = 2.18), which shows that adding a hierarchical
structure promotes the recovery of the original OD pairs.

78
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In summary, strategies that integrate recovery time and hierarchy show better resilience than strategies
that focus on proximity alone.

Accessibility
At 75% of the connections removed, accessibility shows a strong increase as strategic connections are
restored. Strategies recovery time and proximity and dynamic recovery score highest here, suggesting that
these strategies connect important nodes in the early stages. This means that they focus on crucial
corridors, which makes the network functional faster. Strategies proximity to centre and proximity and
recovery time restore accessibility more slowly, suggesting that these strategies first tackle secondary
connections before they strengthen the core structure of the network.

Based on the reanalysis of the statistical tests in Table E.3, it appears that the performance of the
strategies differs significantly. Strategies that integrate recovery time, such as recovery time and proximity
and dynamic recovery, perform significantly better than the strategies that are based solely on proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows a
significant positive effect (𝑡 = 2.52), which shows that recovery time and proximity performs better in
terms of accessibility. Similarly, proximity to centre is found to perform significantly better than dynamic
recovery (𝑡 = 2.60), which also points to the advantage of recovery strategies in terms of accessibility.

In addition, proximity and hierarchy performs significantly better than proximity and recovery time (𝑡 = 2.64)
and dynamic recovery (𝑡 = 2.72), implying that adding a hierarchical structure improves accessibility.

In summary, strategies that integrate recovery time and/or hierarchy perform better in terms of
accessibility than strategies that rely on proximity alone.

Connected Components
The connected components graph shows that the network is initially highly fragmented. Strategies
recovery time and proximity and dynamic recovery cause the number of connected components to increase
more quickly towards 1, which means that these strategies are more effective in reconnecting the network.
Strategies proximity to centre and proximity and recovery time also perform well, while strategy proximity
and hierarchy takes longer to fully recover the network. This suggests that strategies recovery time and
proximity and dynamic recovery recover highly connected nodes more quickly, allowing the network to
function as a whole at an earlier stage.

Based on the reanalysis of the statistical tests in Table E.3, it appears that the performance of the strategies
differs significantly. Strategies that integrate recovery time and dynamic recovery, such as recovery time
and proximity and dynamic recovery, perform significantly better than strategies that are based solely on
proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows a
significant negative effect (𝑡 = −5.03, 𝑝 = 1.86 × 10−6), implying that proximity to centre is inferior in
terms of connected components. Similarly, proximity to centre performs significantly worse than dynamic
recovery (𝑡 = −5.24, 𝑝 = 7.42 × 10−7), again showing that recovery mechanisms perform better.

In addition, proximity and hierarchy is found to perform significantly worse than proximity to centre
(𝑡 = −2.14, 𝑝 = 0.0342), but here too the effect is still relatively small compared to the recovery strategies.

In summary, strategies that use recovery time and dynamic recovery as a core principle perform
significantly better in terms of connected components than strategies that focus solely on proximity.

Efficiency
Efficiency increases steadily for all strategies, but with clear differences. Strategies recovery time and
proximity and dynamic recovery again show the fastest increase, meaning that these strategies restore
shorter routes faster. Strategies proximity to centre and proximity and recovery time follows slightly later,
while strategy proximity and hierarchy lag behind. This confirms the previous pattern where strategies
recovery time and proximity and dynamic recovery prioritize the most impactful connections, contributing
to a more efficient network recovery.

When examining Table E.3, it becomes evident that there are no statistically significant differences in
efficiency within the Sioux Falls network following a 75% edge removal. Consequently, it is not possible
to determine which of the strategies performs better in comparison to the others.
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Betweenness
The initial betweenness centrality is relatively low; however, it experiences a rapid increase for strategies
recovery time and proximity and dynamic recovery. This observation indicates that these strategies introduce
nodes early in the recovery phase that play a significant role in the distribution of flows. These nodes
are likely to appear on numerous shortest paths, thereby enhancing their importance. As the recovery
process progresses, the betweenness values for strategies recovery time and proximity and dynamic recovery
begin to decline, which facilitates a more equitable distribution of traffic. In contrast, strategies proximity
to centre, proximity and hierarchy, and proximity and recovery time exhibit a more gradual rise in betweenness
centrality, implying that they incorporate nodes that are present on fewer shortest paths, resulting in a
less pronounced increase in average betweenness.

The analysis of the betweenness value, as shown in Table E.3, shows significant differences between
the strategies. Strategies that integrate recovery mechanisms, such as recovery time and proximity and
dynamic recovery, perform significantly better than strategies that are based solely on proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows a significant
negative effect (𝑡 = −3.03), implying that proximity to centre is inferior in terms of betweenness. Similarly,
proximity to centre performs significantly worse than dynamic recovery (𝑡 = −3.05), again demonstrating
the advantage of recovery strategies.

In addition, proximity and hierarchy is found to perform significantly better than proximity to centre
(𝑡 = 3.82), demonstrating a clear advantage of adding hierarchy to the network for betweenness.

In summary, strategies employing recovery time or dynamic recovery are found to perform significantly
better in terms of betweenness than strategies focusing solely on proximity, with proximity and hierarchy
being the exception for betweenness.
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Figure C.1: Impact of 75% edge removal on Sioux Falls network metrics

C.2. Eastern Massachusetts 75% edges removed
In addition to removing 25% and 50% of the edges in the Eastern Massachusetts network, the effect of
removing 75% of the edges can also be considered. This means that 193 edges are removed, leaving
only 65 edges. This scenario represents a severe disruption to the network and provides insight into
how different recovery strategies perform under extreme conditions. The results of this scenario are
shown in Figure C.2.

Robustness
In terms of robustness, strategies recovery time and proximity and dynamic recovery consistently outperform
the other strategies. Strategy proximity and hierarchydemonstrates superior performance compared to
strategies proximity and proximity and recovery time, which exhibit the least effectiveness. This indicates
that strategies recovery time and proximity and dynamic recovery are more adept at reinforcing the primary
and most resilient connections within the network.

Analysis of Table E.3 shows that the strategy proximity and hierarchy performs statistically significantly
better than the strategies proximity to centre and proximity and recovery time, both with a t-value of 4.58.
In addition, it can be seen that the strategies recovery time and proximity and dynamic recovery perform
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statistically significantly better than proximity to centre and proximity and recovery time in parallel, with a
t-value of 2.82.

Based on this, it can be concluded that, with respect to robustness and the removal of 75% of the
connections in the Eastern Massachusetts network, the strategies based on proximity and hierarchy,
recovery time and proximity and dynamic recovery perform best.

Resilience
In the context of resilience, strategies recovery time and proximity and dynamic recovery demonstrate the
highest performance. Strategies proximity and proximity and recovery time exhibit slightly better outcomes
than strategy proximity and hierarchyduring the initial phase of the recovery process; however, in the
latter half, they perform worse than all other strategies. This indicates that if the objective is to restore
the original OD pairs as swiftly as possible, strategies recovery time and proximity and dynamic recovery
are the most effective options.

Based on the results in Table E.3, it appears that the strategy proximity to centre performs significantly
better than the strategies recovery time and proximity and dynamic recovery, with t-values of both 3.52. It
is also visible that proximity and hierarchy performs significantly better than these two strategies, with
t-values of 4.08. In addition, proximity and recovery time performs statistically significantly better than
both recovery time and proximity and dynamic recovery, both with a t-value of 3.46.

In contrast, no significant differences were found between the strategies proximity to centre, proximity and
hierarchy and proximity and recovery time. There is also no significant difference between recovery time and
proximity and dynamic recovery (t = 0.00).

Based on these results, it can be concluded that, in terms of robustness, the strategies that rely solely on
proximity or proximity in combination with hierarchy or recovery time (proximity to centre, proximity
and hierarchy, and proximity and recovery time) outperform strategies that rely heavily on recovery time
(recovery time and proximity and dynamic recovery). This suggests that at high levels of perturbation (such
as removing 75% of connections), proximity strategies yield more robust network results.

Accessibility
When looking at accessibility, or the number of nodes that are reachable from the centre node, it appears
that strategies proximity and proximity and recovery time perform slightly better than strategies recovery
time and proximity and dynamic recovery at the beginning of the recovery process. This means that these
strategies initially restore connections that provide direct access to a large number of nodes more quickly.
What is striking here is that this effect is mainly visible at the beginning of the process, while later the
differences become smaller. Strategy proximity and hierarchy clearly performs worse here than the other
strategies, which indicates that the recovery process with this strategy starts more slowly and that few
connections remain reachable from the centre node for a longer period of time.

The analysis of statistical significance reveals that the strategies labelled as proximity to centre and
proximity and recovery time demonstrate a markedly superior performance compared to the strategies
proximity and hierarchy, recovery time and proximity, and dynamic recovery. The t-values for proximity and
recovery time in relation to proximity and hierarchy, recovery time and proximity, and dynamic recovery are
recorded at 4.75, 6.76, and 6.76, respectively. In a similar vein, the t-values for proximity to centre against
these strategies are 4.72, 6.73, and 6.73, respectively.

These findings suggest that, with respect to accessibility, the strategies proximity to centre and proximity
and recovery time significantly surpass the other three strategies evaluated in this study.

Connected components
The network in this scenario is initially characterized by significant fragmentation, which is under-
standable given the substantial number of removed edges. This condition results in the presence of
numerous isolated clusters, leading to segments of the network being disconnected from one another.
Strategies recovery time and proximity and dynamic recovery are found to be the most effective in rapidly
mitigating this fragmentation, as they facilitate a swift reduction in the number of isolated clusters.
This outcome is advantageous, as it allows the network to regain functionality more quickly. Following
the implementation of strategies recovery time and proximity and dynamic recovery, strategies proximity
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and proximity and recovery time demonstrate the next best performance, while strategy proximity and
hierarchycontinues to lag in terms of the speed at which the network is restored.

The results for connected components show that the proximity to centre strategy performs significantly
better than proximity and hierarchy (t = 4.25), as well as compared to recovery time and proximity and
dynamic recovery (both t = 2.24).

Furthermore, proximity and recovery time performs significantly better than proximity and hierarchy (t =
-4.28), as well as compared to recovery time and proximity and dynamic recovery (both t = 2.27). Finally,
there is no significant difference between recovery time and proximity and dynamic recovery (t = 0.00).

Based on these results, it can be concluded that strategies that are strongly based on proximity (proximity
to centre and proximity and recovery time) are more effective in terms of connected components. This suggests
that these strategies are better able to preserve network structure under disturbances.

Efficiency
In terms of efficiency, it is evident that strategies recovery time and proximity and dynamic recovery demon-
strate a significant improvement from the outset of the recovery process, consistently outperforming the
other strategies throughout the entire duration. This indicates that these strategies are more effective in
reducing the average shortest distances between nodes at a faster rate. Initially, strategies proximity and
proximity and recovery time exhibit superior performance compared to strategy proximity and hierarchy;
however, in the latter half of the recovery process, strategy proximity and hierarchybegins to catch up,
resulting in a reduction of the performance gap among these three strategies.

For efficiency, the results in Table E.3, show that proximity to centre performs significantly better than
both recovery time and proximity and dynamic recovery (both t = 2.39). In addition, proximity and recovery
time performs significantly better than recovery time and proximity and dynamic recovery (both t = 2.37).

No significant difference was found between the strategies proximity to centre and proximity and hierarchy
(t = 0.80), as well as between proximity and hierarchy and proximity and recovery time (t = -0.78). Nor is
there a significant difference between recovery time and proximity and dynamic recovery (t = 0.00).

These results indicate that strategies that rely heavily on proximity (proximity to centre) or a combination
of proximity and recovery time (proximity and recovery time) maintain network efficiency better under
disruptions than strategies that focus primarily on recovery time (recovery time and proximity and dynamic
recovery).

Betweenness
The betweenness metric reveals that strategies recovery time and proximity and dynamic recovery exhibit
a rapid increase, characterized by a distinct peak. This observation indicates that the restored nodes
within these strategies are positioned on numerous shortest paths early in the process. However, this
concentration can also represent a vulnerability, as a network with a few critical nodes is more susceptible
to disruptions if any of these nodes fail. In contrast, strategy proximity and hierarchy demonstrates a less
pronounced peak and a more gradual increase, while strategies proximity and proximity and recovery time
display a much flatter progression. This suggests that the shortest paths in the latter two strategies are
more evenly distributed across various nodes, potentially contributing to a more resilient network.

The results show that the strategy proximity to centre performs significantly worse than proximity and
hierarchy (t = -2.89), as well as compared to recovery time and proximity and dynamic recovery (both t =
-2.07). This means that proximity and hierarchy outperforms proximity to centre, as well as the other two
strategies.

Furthermore, it turns out that proximity and recovery time performs significantly worse than both proximity
and hierarchy (t = 2.90) and recovery time and proximity and dynamic recovery (both t = -2.08). No significant
difference was found between recovery time and proximity and dynamic recovery (t = 0.00), as well as
between proximity and hierarchy and the other strategies recovery time and proximity and dynamic recovery
(both t = 0.67, not significant).

Based on these results, it can be concluded that the strategies containing proximity and hierarchy and
recovery time and proximity, as well as dynamic recovery, significantly outperform the strategies based
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on proximity only, such as proximity to centre and proximity and recovery time. This suggests that using
hierarchy or recovery time is more beneficial for betweenness centrality in the network.

Figure C.2: Impact of 75% edge removal on Eastern Massachusetts network metrics

C.3. Anaheim 75% edges removed
The effect of the different strategies can also be seen when looking at removing 75% of the edges. This is
shown in Figure C.3 and can be seen as a severe flood.

Robustness
When examining robustness, it is evident that strategies proximity and hierarchy, recovery time and proximity,
and dynamic recovery demonstrate superior performance, while strategies proximity to centre and proximity
and recovery time significantly underperform. Strategy proximity and hierarchy exhibits a strong initial
performance, showcasing the best results at the outset. As the process progresses, strategy dynamic
recovery matches this level of performance; however, strategy proximity and hierarchy remains the most
effective option for robust network recovery overall. This indicates that strategy proximity and hierarchy
prioritizes the restoration of the more critical connections within the network.
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Finally, on robustness, strategy proximity and hierarchy is found to significantly outperform strategy
proximity to centre, strategy proximity and recovery time, strategy recovery time and proximity and strategy
dynamic recovery, with t-values of 12.25, 12.26, 17.64 and 17.56, respectively. Strategy proximity to centre
and strategy proximity and recovery time also significantly outperform strategy recovery time and proximity
and strategy dynamic recovery, with t-values of 4.81 and 4.80 for strategy recovery time and proximity,
and 4.72 and 4.71 for strategy dynamic recovery, respectively. This suggests that strategy proximity and
hierarchy, together with strategy proximity to centre and strategy proximity and recovery time, produces
more robust networks that are more resilient to disruptions and loss of connections.

Resilience
As for the resilience, it can be seen that all five strategies perform about equally well. This means that
the amount of OD pairs is recovered at about the same rate across all strategies.

In terms of resilience, Table E.3 shows that strategy proximity and hierarchy significantly outperforms
strategy proximity to centre, strategy proximity and recovery time, strategy recovery time and proximity and
strategy dynamic recovery, with respective t-values of 3.53, 3.53, 7.92 and 7.64. Furthermore, strategy
proximity to centre outperforms strategy recovery time and proximity (t-value 4.69) and strategy dynamic
recovery (t-value 4.43), and strategy proximity and recovery time does the same, with t-values of 4.68
and 4.43, respectively. This emphasizes the resilience of the strategies that exploit the combination of
proximity and hierarchy, which create more robust networks under disturbances.

Accessibility
For accessibility, it is clear that strategies proximity to centre and proximity and recovery time perform better
at the beginning of the recovery process. But over time, strategies proximity and hierarchy, recovery time
and proximity and dynamic recovery show a significant increase and thus make a catch-up leap. So if the
intention is to increase accessibility and thus the number of nodes that can be reached from the centre
node as quickly as possible, then strategies proximity to centre or proximity and recovery time should be
chosen, but if the goal is to reach as many nodes as possible as quickly as possible, then it would be
better to look at strategies proximity and hierarchy, recovery time and proximity or dynamic recovery.

For accessibility, strategy proximity and hierarchy performs significantly better than strategy recovery time
and proximity and strategy dynamic recovery, with t-values of 10.63 and 11.30, respectively. Also, strategy
proximity to centre and strategy proximity and recovery time outperform strategy recovery time and proximity
and strategy dynamic recovery, with strategy proximity to centre achieving better t-values of 10.85 and
11.61, and strategy proximity and recovery time achieving similar performances with t-values of 10.85 and
11.61, respectively. This indicates that the combination of proximity and hierarchy is more effective in
maintaining network accessibility when removing a large percentage of edges.

Connected components
The initial approach to all strategies is largely consistent; however, the final results reveal that strategy
dynamic recovery yields the highest performance, succeeded by strategy recovery time and proximity, then
strategy proximity and hierarchy, with strategies proximity to centre and proximity and recovery time trailing
behind. This outcome suggests that strategy dynamic recovery is the most proficient in minimizing
network islands and enhancing overall network connectivity.

Regarding connected components, strategy proximity and hierarchy significantly outperforms strategy
proximity to centre and strategy proximity and recovery time, with t-values of 3.99. Furthermore, strategy
recovery time and proximity outperforms strategy proximity to centre (t-value 2.23) and strategy proximity
and recovery time (t-value 2.24), while strategy dynamic recovery outperforms strategy proximity to centre
(t-value 2.53) and strategy proximity and recovery time (t-value 2.53). This suggests that strategies
combining both proximity and recovery are more effective in preserving network components after
edge removal.

Efficiency
In this context, strategies recovery time and proximity and dynamic recovery exhibit the highest levels of
efficiency. Following them, strategy proximity and hierarchy occupies the next position, though there is
a clear disparity in effectiveness. Meanwhile, strategies proximity to centre and proximity and recovery
time fall considerably short in comparison. Therefore, it can be inferred that Strategies recovery time
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and proximity and dynamic recovery are the most effective options for a network that emphasizes swift
recovery in travel speed and overall efficiency.

In terms of efficiency, Table E.3 shows that proximity and hierarchy significantly outperforms strategy
recovery time and proximity and strategy dynamic recovery, with t-values of 9.24 and 9.40, respectively.
Furthermore, strategy proximity to centre outperforms strategy recovery time and proximity (t-value 8.82)
and strategy dynamic recovery (t-value 8.99), and strategy proximity and recovery time also achieves better
results than strategy recovery time and proximity (t-value 8.82) and strategy dynamic recovery (t-value 8.99).
These results indicate that combining proximity and hierarchy leads to a more efficient use of network
resources, especially when removing a large percentage of edges.

Betweenness
The implementation of strategy proximity and hierarchy leads to a significant increase in this metric,
indicating the restoration of certain pathways that are crucial for many of the shortest routes. Never-
theless, this approach may also create a potential weakness, as an increased dependence on particular
nodes renders the network more vulnerable to interruptions. In contrast, strategies recovery time and
proximity and dynamic recovery demonstrate a more gradual improvement and achieve recovery at a
faster pace compared to strategies proximity to centre and proximity and recovery time. Notably, Strategy
dynamic recovery stands out as the most effective among these options, suggesting that it provides a more
balanced recovery mechanism while minimizing reliance on specific nodes.

For betweenness, strategy proximity and hierarchy shows significantly better performance than strategy
proximity to centre and strategy proximity and recovery time, both with t-values of 18.33. Strategy proximity
and hierarchy also outperforms strategy recovery time and proximity and strategy dynamic recovery, with
t-values of 19.15 and 18.71, respectively. The remaining effects do not show statistically significant
differences, suggesting that the advantages of strategy proximity and hierarchy in terms of betweenness
are significant.
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Figure C.3: Impact of 75% edge removal on Anaheim network metrics

C.4. Munich 75% edges removed
When 75% of the connections in the Munich network are removed, different recovery strategies are
compared based on their impact on various network metrics. Below is an analysis by metric following
from Figure C.4, discussing the performance of the strategies in relation to their impact on the network.

Robustness
When removing 75% of the edges in the Munich network, the recovery time and proximity and dynamic
recovery strategies perform best, indicating that these strategies make the network more resilient to
large-scale disruptions. In contrast, the proximity to centre and proximity and recovery time strategies
perform worst, indicating that the network fragments faster with these strategies. The proximity and
hierarchy strategy performs between these two groups and shows moderate robustness.

The results shown in Table E.3 show a clear pattern in which proximity and hierarchy significantly
outperforms proximity to centre, with a t-value of 17.19. This suggests that a hierarchical structure allows
for a more efficient allocation of resources, which in turn better manages bottlenecks in the network.

In addition, both recovery time and proximity and dynamic recovery significantly outperform proximity to
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centre and proximity and recovery time. Specifically, recovery time and proximity is better than proximity to
centre (t = 3.47) and better than proximity and recovery time (t = 3.48). Strategy dynamic recovery outperforms
proximity to centre (t = 3.51) and proximity and recovery time (t = 3.52). This emphasizes the importance of
recovery mechanisms in reducing vulnerability and improving network stability.

Interestingly, proximity and hierarchy not only clearly outperforms proximity to centre and proximity and
recovery time, but also recovery time and proximity (t = 13.47) and dynamic recovery (t = 13.45). This confirms
that hierarchical ordering within the network plays a decisive role in the efficiency of distribution
processes.

In summary, it appears that proximity and hierarchy is the most effective strategy to distribute the network
load evenly, while proximity to centre leads to a less efficient structure. Recovery mechanisms provide a
clear improvement, but are less powerful than a hierarchical approach.

Resilience
When 100% of the edges in the Munich network are removed and the recovery process is analysed, it is
found that the strategies recovery time and proximity and dynamic recovery perform best. These strategies
ensure that the network recovers relatively quickly and efficiently.

In contrast, the strategies proximity to centre and proximity and recovery time perform the least well,
indicating that these methods are less effective in restoring the network structure. The strategy proximity
and hierarchy is in between the previously mentioned groups in terms of performance. This suggests
that although the network recovers partially under these strategies, the recovery process is less efficient
and less robust.

The results show that proximity to centre and proximity and recovery time perform significantly better in
terms of resilience than proximity and hierarchy, with a t-value of 13.64 for both strategies. This suggests
that a focus on proximity and recovery time is more beneficial for network resilience than a hierarchical
structure.

In addition, proximity to centre outperforms both recovery time and proximity (t = 15.19) and dynamic
recovery (t = 15.19). This implies that a strategy that is primarily based on proximity without recovery
mechanisms can still provide strong resilience.

Furthermore, proximity and hierarchy is also shown to outperform recovery time and proximity (t = 2.28)
and dynamic recovery (t = 2.28). This means that although hierarchy is inferior to strategies that rely
solely on proximity, it still contributes to better resilience compared to recovery-oriented methods.

Finally, proximity and recovery time is shown to outperform both recovery time and proximity (t = 15.19)
and dynamic recovery (t = 15.19), underlining that a combination of proximity and recovery time is more
effective than strategies that rely primarily on recovery mechanisms.

In summary, proximity to centre and proximity and recovery time are the most effective strategies for
improving network resilience, while recovery-oriented approaches underperform compared to proximity-
based methods.

Accessibility
Regarding network accessibility, the strategies recovery time and proximity and dynamic recovery again
show the best results. The strategies proximity to centre and proximity and recovery time perform slightly
worse, while proximity and hierarchy is the least effective. Interestingly, this last strategy only starts to
improve from about two-thirds of the recovery process. This indicates that the accessibility of proximity
and hierarchy is significantly more limited early in the recovery process than the other strategies.

Table E.3 shows that proximity to centre and proximity and recovery time perform significantly better in
terms of accessibility than proximity and hierarchy, with a t-value of 9.93 for both strategies. This suggests
that proximity and recovery time play a larger role in accessibility than hierarchical ordering.

In addition, proximity to centre, proximity and hierarchy and proximity and recovery time all perform better
than both recovery time and proximity and dynamic recovery. Specifically, proximity to centre is better than
recovery time and proximity (t = 17.42) and dynamic recovery (t = 17.44). Similarly, proximity and hierarchy
outperforms recovery time and proximity and dynamic recovery, with t-values of respectively 5.47 and 5.49.
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Finally, proximity and recovery time also outperforms recovery time and proximity (t = 17.42) and dynamic
recovery (t = 17.44).

In summary, strategies that primarily rely on proximity – with or without recovery time – are most
effective for accessibility, while strategies that emphasize recovery time show less favourable results.

Connected components
When analysing the connected components in the network, the results for all strategies are relatively
close to each other. The strategies recovery time and proximity and dynamic recovery perform slightly better
than the other three: proximity to centre, proximity and hierarchy and proximity and recovery time. What is
striking is that all strategies show a significant increase in the number of connected components only
quite late in the recovery process. This suggests that the network remains fragmented for a large part of
the recovery process before a sudden improvement occurs.

Table E.3 shows that proximity and hierarchy outperforms both proximity to centre (t = 2.92) and proximity
and recovery time (t = 2.83) in terms of connected components. This suggests that a hierarchical structure
contributes to a more robust network connection compared to strategies based on proximity alone.

In addition, both recovery time and proximity and dynamic recovery outperform proximity to centre, with
t-values of 8.25 and 8.26. This implies that recovery mechanisms have a positive impact on network
connectivity.

Furthermore, the results show that recovery time and proximity and dynamic recovery also outperform
proximity and hierarchy and proximity and recovery time. Specifically, recovery time and proximity outperforms
proximity and hierarchy (t = 5.53) and proximity and recovery time (t = 8.14).

In summary, recovery-oriented strategies such as recovery time and proximity and dynamic recovery appear
to be the most effective in improving network connectivity, while strategies that primarily rely on
proximity perform less well in terms of connected components.

Efficiency
Also, for efficiency, the strategies recovery time and proximity and dynamic recovery perform best. The
strategies proximity to centre and proximity and recovery time score significantly worse, while proximity and
hierarchy falls in between. This pattern is similar to what was observed for robustness and suggests that
the same strategies that make the network more robust also contribute to more efficient recovery.

Table E.3 shows that proximity to centre and proximity and recovery time perform significantly better than
proximity and hierarchy, with t-values of 5.47 and 5.46 respectively. This indicates that proximity and
recovery time allow for a more efficient allocation of resources than a hierarchical structure.

In addition, proximity to centre, proximity and hierarchy and proximity and recovery time all perform better
than recovery time and proximity and dynamic recovery. Specifically, proximity to centre is better than
recovery time and proximity (t = 16.17) and dynamic recovery (t = 16.17). Similarly, proximity and hierarchy
outperforms recovery time and proximity (t = 10.24) and dynamic recovery (t = 10.24). Finally, proximity and
recovery time outperforms recovery time and proximity (t = 16.16) and dynamic recovery (t = 16.16).

In summary, it is found that strategies focusing on proximity are the most efficient in allocating resources,
while recovery mechanisms are less efficient compared to approaches that place more emphasis on the
proximity of the components.

Betweenness
For betweenness, it can be seen that the strategies recovery time and proximity and dynamic recovery
increase strongly at the beginning of the recovery process. It is striking that these strategies even
temporarily exceed the final network situation, after which they decrease again in the later phases of the
recovery. This indicates that the network initially restructures quickly with these strategies, but that the
distribution of connections then stabilizes somewhat.

The strategy proximity and hierarchy shows a slightly different pattern: this strategy also increases rapidly
initially, experiences a temporary peak, followed by a slight decrease, and then recovers to the final
network situation. This indicates a less stable recovery process compared to the other strategies.
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The strategies proximity to centre and proximity and recovery time show a more gradual increase without
strong fluctuations. This indicates that these strategies make a more constant contribution to the
betweenness of the network during the recovery process.

Regarding betweenness, the results show that proximity and hierarchy significantly outperforms both
proximity to centre and proximity and recovery time, with a t-value of 14.16. This indicates that a hierarchical
structure allows for a more efficient distribution of network traffic than strategies that focus primarily
on proximity.

Furthermore, proximity and hierarchy also outperforms recovery time and proximity (t = 10.70) and dynamic
recovery (t = 10.69). These findings support the idea that adding a hierarchical structure improves
betweenness, which allows for more efficient route selection within the network.

There are no further significant differences between the other strategies, indicating that, outside of the
comparisons mentioned above, no other strategies are statistically distinguished in terms of betweenness.

Figure C.4: Impact of 75% edge removal on Munich network metrics
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Simulation results of 100% edge

removal

D.1. Sioux Falls 100% edges removed
Eliminating all edges entirely is distinct from other removal percentages, as it does not involve any
simulation. With the complete removal of edges, there are no alternative combinations of edges that can
be removed, leading to graphs that lack confidence intervals. The graphs depicting the complete removal
of edges in the Sioux Falls network are presented in Figure D.1, where it is evident that confidence
intervals are absent.

Robustness
Strategies based on recovery time and proximity and dynamic recovery exhibit the most rapid increase in
robustness, indicating that these strategies facilitate a network that becomes operational more quickly
following disruptions. However, it is observed that these strategies plateau midway through the
recovery process, suggesting that edges are added at that point which do not contribute to enhancing
resilience. In contrast, strategies based on proximity to centre, proximity and hierarchy, and proximity and
recovery time demonstrate a slower rate of growth. This implies that the strategies based on recovery
time and proximity and dynamic recovery are the most effective in restoring the network in a manner that
maximizes overall capacity and reliability.

When examining robustness, it is evident from Table E.4 that the removal of 100% of the edges in the
Sioux Falls network reveals no statistically significant differences. This indicates that the variations
observed among the strategies are insufficiently substantial to be deemed reliable or reproducible.
In essence, the discrepancies between the strategies may be merely coincidental or influenced by
other unconsidered factors, making it impossible to link them to the specific strategies employed.
Consequently, the absence of statistically significant differences prevents any definitive conclusions
regarding the superior performance of one strategy over another.

Resilience
Resilience grows slower in the 100% version than in the 75% version, which makes sense given the
severity of the disruption. However, strategies recovery time and proximity and dynamic recovery still
provide the fastest growth, meaning they better recover the network from structural disruptions. Strategy
proximity and recovery time performs reasonably well, while strategies proximity to centre and proximity
and hierarchy grow slower. This means that strategies recovery time and proximity and dynamic recovery are
the most effective in creating a resilient network after a major disruption.

The analysis of the resilience value, as shown in Table E.3, shows some significant differences between
the strategies. Strategies that integrate recovery mechanisms, such as proximity and hierarchy, perform
significantly better than strategies that focus solely on proximity, such as proximity to centre.

91
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For example, the comparison between proximity to centre and proximity and hierarchy shows a significant
negative effect (𝑡 = −2.01, 𝑝 = 0.046), implying that proximity to centre is inferior in terms of resilience.
This emphasizes that the addition of a hierarchical structure within the network is beneficial for the
resilience after a disturbance.

In addition, the comparison between proximity and hierarchy and proximity and recovery time shows that
proximity and hierarchy performs significantly better (𝑡 = 1.99), indicating the advantage of integrating a
hierarchical structure into the recovery strategy.

However, no significant effects were found between the other strategies, such as proximity to centre
versus recovery time and proximity (𝑡 = −0.65) and proximity to centre versus dynamic recovery (𝑡 = −0.68),
suggesting that these strategies do not show a significant difference in terms of resilience.

In summary, the analysis of the resilience results shows that strategies that include proximity and hierarchy
significantly outperform proximity to centre, highlighting the importance of hierarchical structures in the
recovery process. However, strategies that focus on recovery, such as proximity and recovery time and
dynamic recovery, did not show significant advantages over the other strategies in terms of resilience.

Accessibility
The first and third strategies exhibit the most rapid growth, with the second strategy following closely
behind. In contrast, the fourth and fifth strategies demonstrate a slower restoration of accessibility,
suggesting that they yield less efficient pathways during the initial phases of recovery. This observation
implies that strategies one and three enable a significant proportion of nodes to be accessed from the
central node, thereby ensuring a relatively high level of network connectivity. Conversely, strategies four
and five display a sudden and substantial increase in accessibility, indicating the addition of specific
edges that subsequently allow for a greater number of nodes to become reachable within the network.

The analysis of the accessibility value, as shown in Table E.3, shows significant differences between
the strategies, especially in terms of the effectiveness of recovery mechanisms. Strategies that include
recovery principles such as recovery time and proximity and dynamic recovery perform significantly better
than strategies that focus solely on proximity.

For example, the comparison between proximity to centre and recovery time and proximity shows that
proximity to centre performs significantly worse (𝑡 = −4.61), suggesting that the recovery mechanism
in recovery time and proximity significantly improves network accessibility after disruptions. Similarly,
proximity to centre performs significantly worse than dynamic recovery (𝑡 = −4.66), again demonstrating
the benefit of recovery-oriented strategies.

Furthermore, the comparison between proximity and hierarchy and recovery time and proximity shows that
proximity and hierarchy also performs significantly better (𝑡 = 4.34). This points to the added value of
integrating a hierarchical structure into the recovery mechanism for improving network accessibility.

The comparison between proximity and hierarchy and dynamic recovery also shows a significant difference
(𝑡 = 4.40), which emphasizes the effectiveness of recovery strategies that integrate dynamic recovery in
improving accessibility.

In summary, the analysis of the accessibility results shows that strategies that integrate recovery
mechanisms such as recovery time and proximity and dynamic recovery significantly outperform strategies
that focus on proximity alone. Furthermore, proximity and hierarchy plays an important role in improving
accessibility, especially when it comes to restoring network capacity after disruptions.

Connected Components
The graph depicting connected components indicates that the network begins in a state of significant
fragmentation. Strategies recovery time and proximity and dynamic recovery lead to a more rapid increase
in the number of connected components approaching unity, signifying their greater efficacy in re-
establishing network connectivity. In contrast, strategies proximity to centre, proximity and hierarchy,
and proximity and recovery time require a longer duration to achieve complete network recovery. This
observation implies that strategies recovery time and proximity and dynamic recovery facilitate the quicker
recovery of highly connected nodes, thereby enabling the network to operate cohesively at an earlier
phase.
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The analysis of the connected components shows that strategies with recovery mechanisms, such as
recovery time and proximity and dynamic recovery, perform significantly better in maintaining network
connectivity after disruptions. For example, proximity to centre performs significantly worse than
recovery time and proximity (𝑡 = −5.65) and dynamic recovery (𝑡 = −5.82), indicating that recovery-oriented
strategies are more effective in maintaining network structure.

In addition, the comparison between proximity and hierarchy and recovery time and proximity shows
that proximity and hierarchy performs worse in terms of connected components (𝑡 = −2.64). Similarly,
proximity and hierarchy also performs worse than dynamic recovery (𝑡 = −2.77).

In summary, the recovery strategies with recovery time and proximity and dynamic recovery are more
effective in maintaining network connectivity.

Efficiency
Efficiency demonstrates a consistent upward trend across all strategies, albeit with notable distinctions.
Strategiesrecovery time and proximity and dynamic recovery exhibit the most rapid improvement, indicating
their effectiveness in restoring shorter routes more swiftly. Strategies proximity to centre and proximity
and recovery time show a marginally delayed response, while strategy proximity and hierarchy remains the
least effective. This observation reinforces the earlier findings that strategies recovery time and proximity
and dynamic recovery focus on the most significant connections, thereby enhancing the overall efficiency
of network recovery.

Betweenness
Betweenness centrality exhibits a significant peak during the initial phase, particularly for strategies
recovery time and proximity and dynamic recovery. This observation indicates that certain nodes temporarily
assume a disproportionately influential position within the network traffic. Additionally, it is evident
that these strategies experience fluctuations in betweenness, suggesting that a limited number of nodes
are critical to network traffic dynamics. In contrast, strategies proximity to centre, proximity and hierarchy
and proximity and recovery time demonstrate a more gradual trajectory, devoid of such peaks and troughs,
which implies a more evenly distributed recovery approach.
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Figure D.1: Impact of 100% edge removal on Sioux Falls network metrics

D.2. Eastern Massachusetts 100% edges removed
The final scenario under analysis involves the complete removal of 100% of the edges within the
Eastern Massachusetts network. This action results in the total disintegration of the network, leaving no
connections intact initially. This can be interpreted as an extreme disruption, such as a very severe flood
that paralyses all transportation infrastructure. The results of this scenario are illustrated in Figure D.2.
Given that all edges are eliminated in each iteration, there is no variation across different runs, and
consequently, no confidence interval is presented.

Robustness
In terms of robustness, strategies recovery time and proximity and dynamic recovery once again outperform
the other strategies. Notably, strategy proximity and hierarchyachieves better results than strategies
proximity and proximity and recovery time, which perform the least effectively. This suggests that strategies
recovery time and proximity and dynamic recovery are more focused on reinforcing the most robust
connections, whereas strategy proximity and hierarchymay concentrate on enhancing specific nodes that
play a critical role in the network structure.

Looking at the statistical significance of the effects, as shown in Table E.4, it appears that strategy
proximity and hierarchy performs statistically significantly better than strategies proximity to centre and
proximity and recovery time, both with a t-value of 5.29. Furthermore, it appears that proximity and



D.2. Eastern Massachusetts 100% edges removed 95

hierarchy also performs better than recovery time and proximity and dynamic recovery, both with a t-value of
2.08. However, these two strategies do perform better than proximity to centre and proximity and recovery
time, each with a t-value of 3.31.

Based on this, it can be concluded that, under a scenario of 100% edge removal in the Eastern
Massachusetts network, strategy proximity and hierarchy performs statistically significantly better than
the other strategies.

Resilience
In terms of resilience, strategies recovery time and proximity and dynamic recovery achieve the highest
scores, indicating that these strategies are the most effective in restoring the original OD pairs. Strategies
proximity and proximity and recovery time perform better than strategy proximity and hierarchyduring the
initial phase of the recovery process; however, in the latter half, they lag behind the other strategies,
with strategy proximity and hierarchydemonstrating superior performance compared to all others. This
implies that while strategies proximity and proximity and recovery time provide rapid recovery in the early
stages, strategies recovery time and proximity and dynamic recovery ultimately facilitate a more sustainable
recovery.

Regarding resilience, in Table E.4, no statistically significant difference can be found between strategies
proximity to centre, proximity and hierarchy and proximity and recovery time. However, what may not have
been expected based on Figure D.2, can be seen that strategies proximity to centre, proximity and hierarchy
and proximity and recovery time with t values of 5.16, 6.14 and 5.08 respectively perform better than
strategies recovery time and proximity and dynamic recovery.

Thus, it can be said that when looking at the Eastern Massachusetts network, where 100% of the edges
are removed, then strategies proximity to centre, proximity and hierarchy or proximity and recovery time
perform the most favourably.

Accessibility
In terms of accessibility, strategies proximity to centre and proximity and recovery time perform the best,
with strategy proximity and recovery time slightly outperforming strategy proximity to centre. This indicates
that these strategies are more effective in re-establishing connectivity for a greater number of nodes
from the central node. Strategies recovery time and proximity and dynamic recovery closely follow, while
strategy proximity and hierarchylags behind. This suggests that strategies proximity and proximity and
recovery time are preferred when rapid network accessibility is of utmost importance.

The results for accessibility shown in Table E.4, show that proximity to centre performs significantly
better than proximity and hierarchy (t = 7.08), and also better than both recovery time and proximity
and dynamic recovery (both t = 9.96). This means that proximity to centre has the best performance in
terms of accessibility.

In contrast, proximity and hierarchy performs worse than proximity to centre (t = -7.09), but proximity
and hierarchy performs better than recovery time and proximity (t = 2.07) and dynamic recovery (t =
2.07). There is no significant difference between recovery time and proximity and dynamic recovery (t =
0.00), which means that these two strategies perform equally in terms of accessibility.

In summary, proximity to centre and proximity and recovery time are the best strategies for accessibility, out
of the examined strategies, followed by proximity and hierarchy, and then recovery time and proximity and
dynamic recovery, which perform equally.

Connected components
At the beginning of the recovery process, all strategies show a similar development, with the network
completely fragmented. Subsequently, strategies proximity, proximity and recovery time, recovery time and
proximity, and dynamic recovery demonstrate a rapid increase in connectivity, effectively reassembling
the network at a comparable rate. In contrast, strategy proximity and hierarchy lag significantly behind,
indicating that it takes a longer duration for the network to operate as a cohesive entity under this
particular strategy.

Looking at the statistical significance of the connected components results as shown in the data, it is
found that strategy proximity to centre performs statistically significantly better than strategy proximity
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and hierarchy (t = 5.18) and strategy recovery time and proximity (t = 4.75), as well as strategy dynamic
recovery (t = 4.75).

However, there is no significant difference between strategy proximity to centre and strategy proximity
and recovery time (t = -0.11), which means that these two strategies perform equally in this respect. This
implies that both proximity to centre and proximity and recovery time have strong performances in
terms of connected components.

In addition, strategy proximity and hierarchy is found to perform significantly worse than strategy proximity
and recovery time (t = -5.28), while proximity and hierarchy also shows no significant difference compared
to recovery time and proximity and dynamic recovery (both t = -0.06).

In summary, proximity to centre and proximity and recovery time perform best for connected components,
while proximity and hierarchy, recovery time and proximity, and dynamic recovery are less effective, with
proximity and hierarchy performing the worst of the three.

Efficiency
In terms of efficiency, specifically the shortest travel time between nodes, strategies recovery time and
proximity and dynamic recovery demonstrate the highest performance. This indicates that these strategies
achieve the most significant improvements in network connections, resulting in reduced travel times.
During the first half of the recovery process, strategies proximity and proximity and recovery time follow,
while strategy proximity and hierarchyranks the lowest. However, in the second half, the recovery of
strategy proximity and hierarchyaligns more closely with that of strategies proximity and proximity and
recovery time. Consequently, strategies recovery time and proximity and dynamic recovery are the optimal
choices when a rapid increase in efficiency and enhanced accessibility are desired.

Looking at the statistical significance of the efficiency results as shown in the data, it appears that
strategy proximity to centre does not show significant differences compared to strategy proximity and
hierarchy (t = 0.40) and strategy proximity and recovery time (t = 0.03). This means that proximity to centre
does not perform significantly better or worse than these two strategies.

However, strategy proximity to centre does perform significantly better than strategy recovery time and
proximity (t = 2.84) and strategy dynamic recovery (t = 2.84), indicating that proximity to centre has a clear
advantage over these two strategies in terms of efficiency.

Furthermore, the comparison between strategy proximity and hierarchy and strategy proximity and recovery
time (t = -0.37) shows that there is no significant difference between these two strategies. However,
proximity and hierarchy performs significantly better than recovery time and proximity (t = 2.30) and
dynamic recovery (t = 2.30), suggesting that proximity and hierarchy is more efficient than these two
strategies.

It also shows that proximity and recovery time performs significantly better than recovery time and
proximity (t = 2.80) and dynamic recovery (t = 2.80), indicating the effectiveness of proximity and recovery
time in terms of efficiency.

In summary, proximity to centre, proximity and hierarchy and proximity and recovery time performs best in
terms of efficiency, while recovery time and proximity and dynamic recovery show the least effectiveness in
this regard.

Betweenness
In terms of betweenness, strategies proximity and proximity and recovery time exhibit a relatively linear
and stable recovery, indicating that the network is being restored gradually and consistently. In contrast,
strategies recovery time and proximity and dynamic recovery demonstrate a more pronounced increase
after approximately one-third of the recovery process, followed by fluctuations characterized by peaks
and troughs. This suggests that these strategies temporarily assign a significantly high centrality to
certain nodes within the shortest paths. Strategy proximity and hierarchyinitiates with a slower recovery
but later shows a substantial increase, stabilizing around a fixed value there after. This implies that
in a later phase, strategy proximity and hierarchyrestores nodes that are strategically important for the
shortest paths.



D.3. Anaheim 100% edges removed 97

Regarding betweenness, proximity to centre is found to perform worse than proximity and hierarchy
(t = -3.08), indicating that proximity and hierarchy is better at improving betweenness centrality.
Furthermore, proximity and hierarchy is found to perform significantly better than both recovery time
and proximity and dynamic recovery (both t = 2.23). This indicates that proximity and hierarchy
provides a better distribution of intermediate connections in the network.

However, there is no significant difference between proximity and recovery time and the other strategies
recovery time and proximity and dynamic recovery (t = -0.57 and t = 0.00), indicating that these two
strategies perform equally in terms of betweenness.

In summary, the betweenness analysis shows that proximity and hierarchy is the best strategy for
betweenness out of the incorporated strategies.

Figure D.2: Impact of 100% edge removal on Eastern Massachusetts network metrics

D.3. Anaheim 100% edges removed
An analysis can also be conducted for the Anaheim network under a scenario where 100% of the edges
are removed. This implies that all 914 connections within the network are eliminated, leading to a
complete disintegration of the network. The outcomes of this extreme disruption are illustrated in
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Figure D.3 and will be further examined below.

Robustness
Strategy proximity and hierarchy demonstrates a very rapid initial increase, followed closely by strategies
recovery time and proximity and dynamic recovery, with strategy dynamic recovery slightly outperforming
strategy recovery time and proximity. Strategies proximity to centre and proximity and recovery time exhibit the
slowest growth and lag behind the other strategies. This indicates that strategy proximity and hierarchy is
preferred for a swift increase in robustness, followed by strategy dynamic recovery, then strategy recovery
time and proximity, and finally strategies proximity to centre and proximity and recovery time.

When looking at Table E.4, in terms of robustness, proximity and hierarchy is significantly better than
the other strategies, with t-values of 14.17, 14.17, 20.50 and 20.38 for proximity to centre, proximity and
recovery time, recovery time and proximity and dynamic recovery respectively. This emphasizes that the
combination of proximity and hierarchy best protects the network against connection loss. Furthermore,
both proximity to centre and proximity and recovery time outperform recovery time and proximity and dynamic
recovery, with t-values of 5.64 for proximity to centre and 5.49 for proximity and recovery time compared to
recovery time and proximity and dynamic recovery, respectively. This indicates that strategies emphasizing
maintaining both proximity and recovery capabilities are more robust in terms of structural stability
after connection loss.

Resilience
In terms of resilience, all strategies show a comparable increase, with one strategy performing better at
certain times and another excelling at different intervals. Consequently, it is not possible to assign a
clear preference to any specific strategy based on this metric.

In terms of resilience, in Table E.4, it has been shown that proximity and hierarchy significantly outperforms
all other strategies, with t-values of 2.81, 2.81, 9.34, and 8.77 for proximity to centre, proximity and recovery
time, recovery time and proximity, and dynamic recovery, respectively. This suggests that the combination of
proximity and hierarchy increases the network strength against perturbations, making the network more
robust. Furthermore, proximity to centre outperforms recovery time and proximity and dynamic recovery,
with t-values of 6.96 and 6.39, respectively. Proximity and recovery time also outperforms the other two
strategies, with t-values of 6.97 for recovery time and proximity and 6.41 for dynamic recovery, indicating
higher resilience of the network structure in recovering from disturbances.

Accessibility
In terms of accessibility, strategies proximity to centre and proximity and recovery time exhibit a relatively
linear progression throughout the recovery process. Conversely, strategy proximity and hierarchy begins
with a notably low value but subsequently experiences a sudden increase, ultimately performing the
best regarding accessibility. Strategies recovery time and proximity and dynamic recovery demonstrate a
more gradual recovery, eventually reaching a level comparable to that of strategy proximity and hierarchy.
This indicates that Strategies proximity to centre and proximity and recovery time provide a stable and
predictable recovery, while strategies proximity and hierarchy, recovery time and proximity, and dynamic
recovery lead to a fully restored network more rapidly, although with a less gradual build-up.

In terms of accessibility, the proximity and hierarchy strategy significantly outperforms the recovery
time and proximity and dynamic recovery strategies, with respective t-values of 15.87 and 15.94. This
suggests that the combination of proximity and hierarchy provides a more robust approach to improving
accessibility within the network, resulting in a more efficient network for reaching nodes after removing
edges. The proximity to centre and proximity and recovery time strategies also outperform recovery time and
proximity and dynamic recovery, with t-values of 17.81 and 17.84 for proximity to centre, and 17.82 and
17.85 for proximity and recovery time, respectively. This suggests that these strategies provide a more
effective approach than the other strategies in terms of accessibility, although they do not outperform
the proximity and hierarchy strategy.

Connected components
All strategies commence with a limited number of interconnected components and remain fragmented
for a significant portion of the recovery process. Subsequently, they exhibit a sharp increase, with
strategy dynamic recovery being the first to re-establish network connectivity, followed by strategy recovery
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time and proximity, then strategy proximity and hierarchy, and finally strategies proximity to centre and
proximity and recovery time. This indicates that strategy dynamic recovery is preferred when the objective
is to restore the network to a fully functioning state as quickly as possible.

Regarding connected components, Table E.4 shows that proximity and hierarchy significantly outperforms
both proximity to centre and proximity and recovery time, with t-values of 1.98 for both. This shows that
proximity and hierarchy contributes to a more connected network, with stronger internal connectivity.
The recovery time and proximity strategy outperforms proximity to centre by a t-value of 2.11 and proximity
and recovery time by a t-value of 2.24, suggesting that this strategy has a more beneficial impact on the
network topology, especially on preserving connected components after removing edges. Similarly,
dynamic recovery outperforms proximity to centre with a t-value of 2.19 and outperforms proximity and
recovery time with a t-value of 2.19, indicating that the dynamic recovery factors play an important role
in maintaining network integrity after disruptions.

Efficiency
Initially, all strategies demonstrate a similar increase in efficiency during the recovery process. Subse-
quently, strategies recovery time and proximity and dynamic recovery exhibit a more rapid improvement
compared to the other three, indicating that these strategies facilitate a more effective network recovery.
Strategies proximity to centre, proximity and hierarchy, and proximity and recovery time then increase at a
comparable rate, yet they lag behind strategies recovery time and proximity and dynamic recovery. This
implies that if a swift enhancement in travel times is desired, strategies recovery time and proximity and
dynamic recovery are the most advantageous options.

In terms of efficiency, proximity and hierarchy achieves superior results compared to the other strategies.
The differences with proximity to centre, proximity and recovery time, recovery time and proximity and dynamic
recovery are significant with respective t-values of 13.36 and 13.53, indicating a better utilization of
network resources when proximity and hierarchy are combined. Furthermore, both proximity to centre
and proximity and recovery time outperform recovery time and proximity and dynamic recovery, with t-values
of 14.01 for both strategies compared to recovery time and proximity and 14.19 for both compared to
dynamic recovery. This shows that strategies that combine both proximity and recovery generally lead to
a more efficient use of network resources after disruptions.

Betweenness
The betweenness metric reveals a complex pattern. Strategies proximity to centre and proximity and
recovery time show a slight exponential recovery, while strategy proximity and hierarchy experiences a
sharp increase, followed by a decline and a subsequent rise. By the end of the process, strategy proximity
and hierarchy exhibits another peak. Strategies recovery time and proximity and dynamic recovery initially
recover slowly, followed by a significant increase that remains just below the final level. Strategy dynamic
recovery displays a more stable trend than strategy recovery time and proximity, suggesting that it is the
most suitable for achieving a balanced distribution of network traffic.

For betweenness, Table E.4 shows that, proximity and hierarchy is significantly better than both proximity
to centre and proximity and recovery time, with t-values of 18.29. This strategy is found to provide
the most efficient distribution of intermediate connections within the network, meaning that the
strategy contributes to a better distribution of network nodes that are most crucial for intra-network
communication. Furthermore, proximity and hierarchy outperforms the strategies recovery time and
proximity and dynamic recovery, with respective t-values of 25.57 and 23.14, indicating the greater
effectiveness of this strategy in improving betweenness compared to the others. Interestingly, both
proximity to centre and proximity and recovery time in turn outperform recovery time and proximity and
dynamic recovery, with t-values of 8.17 for proximity to centre and 6.27 for proximity and recovery time,
respectively. This emphasizes that the combinations of proximity and recovery in the proximity to centre
and proximity and recovery time strategies are more robust in terms of betweenness compared to the other
strategies.
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Figure D.3: Impact of 100% edge removal on Anaheim network metrics

D.4. Munich 100% edges removed
When 100% of the connections in the Munich network are removed, different recovery strategies are
compared based on their impact on various network metrics. Below is an analysis by metric following
from figure D.4, discussing the performance of the strategies in relation to their impact on the network.

Robustness
When 100% of the edges in the Munich network are removed and the recovery process is analysed, it is
found that the strategies recovery time and proximity and dynamic recovery perform best. These strategies
ensure that the network recovers relatively quickly and efficiently.

In contrast, the strategies proximity to centre and proximity and recovery time perform the least well,
indicating that these methods are less effective in restoring the network structure. The strategy proximity
and hierarchy is in between the previously mentioned groups in terms of performance. This suggests
that although the network recovers partially under these strategies, the recovery process is less efficient
and less robust.

The results show that there are significant differences in robustness between the different strategies.
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Proximity to Center performs significantly worse than Proximity and hierarchy, as shown by the t-value of
-19.86, which means that the difference is large and statistically significant. This suggests that adding a
hierarchical structure to the strategy has a positive effect on robustness.

When comparing Proximity to Center to Proximity and Recovery Time, there is hardly any difference, as
the t-value is 0.01 and the effect is not statistically significant. This suggests that adding recovery time
does not have a noticeable effect on robustness in this case. In contrast, Proximity to Center performs
significantly worse than both Recovery Time and Proximity (t = -4.04) and Dynamic Recovery (t = -4.08),
suggesting that strategies that take into account recovery time or dynamic adjustments may be more
robust than an approach that only focuses on proximity to the center.

Furthermore, Proximity and hierarchy is the best performing strategy, as it significantly outperforms
all other strategies. The comparison with Proximity and Recovery Time yields a t-value of 19.87, while
the differences with Recovery Time and Proximity (t = 15.53) and Dynamic Recovery (t = 15.51) are also
significant. This confirms that the addition of a hierarchical component makes a crucial contribution to
robustness.

When comparing Proximity and Recovery Time with Recovery Time and Proximity, a significant difference
is again found, with a t-value of -4.05, as in the comparison with Dynamic Recovery (t = -4.09). This
indicates that although both strategies take recovery time into account, the way in which this factor is
integrated has a noticeable impact on performance. Finally, there is no significant difference between
Recovery Time and Proximity and Dynamic Recovery (t = -0.03), suggesting that both strategies contribute
equally to robustness.

In summary, the results show that strategies based solely on proximity to the centre are less robust than
strategies that also take other factors such as hierarchy or recovery time into account. In particular,
proximity and hierarchy proves to be clearly superior to the other strategies, while Recovery Time and
Proximity and Dynamic Recovery differ little in their robustness.

Resilience
When analysing the resilience after removing 100% of the edges, the recovery time and proximity and
dynamic recovery strategies again perform best. They are followed by the proximity to centre and proximity
and recovery time strategies, which perform slightly worse but are still relatively close to the former
strategies.

Interestingly, recovery time and proximity and dynamic recovery perform worse than the other strategies
in the early stages of the recovery process, but as the recovery progresses, they gain in effectiveness
and outperform the other methods. In contrast, the proximity and hierarchy strategy lags behind; it takes
longer for the resilience to increase, which means that this strategy is less suitable for fast network
recovery.

In terms of resilience, proximity to centre and proximity and recovery time also outperforms the other
strategies. The positive t-values in the comparisons with proximity and hierarchy (t = 18.78 and t = 18.77),
recovery time and proximity (t = 23.57 and t = 23.56), and dynamic recovery (t = 23.58 and t = 23.57) indicate
that these strategies are significantly more resilient than the alternatives. This suggests that a strategy
based purely on proximity can maintain a high degree of resilience without the need for recovery
mechanisms. Furthermore, proximity and hierarchy outperforms both recovery time and proximity and
dynamic recovery (t = 5.28 in both cases). Finally, there is no significant difference between recovery time
and proximity and dynamic recovery (t = 0.00), indicating that both strategies have a similar impact on
resilience.

Accessibility
For the accessibility metric, it is noticeable that the proximity to centre and proximity and recovery time
strategies perform better in the early stages of the recovery process. This indicates that these strategies
quickly achieve an initial improvement in accessibility.

However, over time, these strategies are overtaken by recovery time and proximity and dynamic recovery,
which ultimately achieve better accessibility for the network. This suggests that these strategies are
more effective in restoring access to network connections in the long run.
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The proximity and hierarchy strategy initially remains low and only shows an increase halfway through
the recovery process. Eventually, this strategy reaches a similar level as proximity to centre and proximity
and recovery time, but the slower recovery rate indicates that this method is less suitable for quickly
restoring accessibility.

The results in Table E.4 show that proximity to centre generally outperforms most other strategies in
terms of accessibility. The t-value of 12.65 in the comparison with proximity and hierarchy indicates that
proximity without hierarchy has a significant positive effect on network accessibility. This effect becomes
even more evident in the comparisons with recovery time and proximity (t = 28.27) and dynamic recovery (t
= 28.30), which show that recovery mechanisms reduce accessibility.

In addition, proximity and hierarchy performs significantly worse than proximity and recovery time (t =
-12.65), but better than both recovery time and proximity (t = 11.60) and dynamic recovery (t = 11.61). This
suggests that hierarchy does provide some improvement over strategies that rely heavily on recovery
processes, but not enough to match the superior accessibility of a pure proximity strategy.

Interestingly, there is no significant difference between recovery time and proximity and dynamic recovery (t
= 0.01, not significant), suggesting that both strategies have a similar impact on accessibility.

Connected components
In the analysis of the connected components, the strategies recovery time and proximity and dynamic
recovery again perform best. They are followed by the strategies proximity to centre, proximity and hierarchy
and proximity and recovery time, which lag slightly behind.

An important point of attention is that all strategies show a significant increase in the number of
connected components only late in the recovery process. This implies that the network remains
fragmented for a large part of the recovery process, which hinders its functional functioning. Only
in a later phase of the recovery process are the components recombined, which indicates a gradual
improvement of the network structure.

The results in Table E.4 show that there are significant differences between the strategies in terms of
connected components. Proximity to centre performs significantly worse than both recovery time and
proximity (t = -5.88) and dynamic recovery (t = -5.88), indicating that strategies that integrate recovery
mechanisms are better able to keep the network connected. Furthermore, proximity and hierarchy does not
significantly differ from proximity and recovery time (t = 1.40, not significant), but performs significantly
worse than recovery time and proximity and dynamic recovery (both with t = -4.47). This suggests that
hierarchy alone is not sufficient to maintain network connectivity and that dynamic recovery strategies
play a crucial role in this. In addition, there appears to be no significant difference between recovery time
and proximity and dynamic recovery (t = 0.00), indicating that both strategies have a similar impact on
network connectivity.

Efficiency
Also in efficiency, the strategies recovery time and proximity and dynamic recovery show the best performance.
This means that the network recovers faster and more efficiently after complete edge removal under
these strategies.

On the other hand, the strategies proximity to centre and proximity and recovery time perform the least well.
This suggests that although these methods can provide some improvement in the short term, they are
less efficient in recovering the network in the long term. The strategy proximity and hierarchy is again in
between these two groups, indicating moderate efficiency in the recovery process.

In terms of efficiency, it turns out that strategies proximity to centre and proximity and recovery time are
the most effective strategies. The t-values of 8.24 and 8.23 compared to proximity and hierarchy indicate
that adding hierarchy leads to a significant decrease in efficiency. Furthermore, the differences between
proximity to centre and both recovery time and proximity (t = 23.26) and dynamic recovery (t = 23.27) are
highly significant, indicating that strategies that include recovery processes are much less able to ensure
efficiency. Interestingly, proximity and hierarchy significantly outperforms recovery time and proximity and
dynamic recovery both with a t-value of 4.27. This suggests that while hierarchy has a positive effect, the
addition of recovery mechanisms is even more important. Finally, the comparison between recovery
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time and proximity and dynamic recovery shows no significant difference (t = 0.00), indicating that these
strategies are equally effective in optimising efficiency.

Betweenness
When analysing the betweenness, it turns out that the strategies recovery time and proximity and dynamic
recovery are distinguished by a rapid increase in the initial phase of the recovery process. It is striking
that these strategies even outperform the final network situation, meaning that an excessive number of
connections are initially restored, followed by a slight decrease as the network stabilizes.

The strategy proximity and hierarchy also shows a rapid increase in betweenness, but with a less stable
course. After an initial peak, a decrease follows, after which the betweenness stabilizes at a final value.
This indicates that this strategy has a less consistent recovery process compared to the other methods.

For the strategies proximity to centre and proximity and recovery time there is a gradually increasing
betweenness, without strong fluctuations. This means that these strategies show a more even recovery,
without excessive peaks or valleys.

For betweenness, proximity and hierarchy actually outperforms proximity to centre. This is evident from
the negative t-value of -12.80 in the comparison between these two strategies, suggesting that hierarchy
leads to a network in which crucial nodes carry less load.

Despite this finding, proximity to centre still significantly outperforms recovery time and proximity (t = 6.07)
and dynamic recovery (t = 6.09), implying that strategies that employ recovery mechanisms create a larger
spread of betweenness, possibly due to an increased reliance on specific recovery pathways.

In addition, proximity and hierarchy significantly outperforms proximity and recovery time (t = 12.80) and
even better than recovery time and proximity (t = 16.88) and dynamic recovery (t = 16.90). This confirms
that a hierarchical structure can improve the efficiency of the network by distributing the load across
multiple nodes.

Finally, there is no significant difference between recovery time and proximity and dynamic recovery (t =
0.02), indicating that both strategies have similar effects on the distribution of betweenness within the
network.
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Figure D.4: Impact of 100% edge removal on Munich network metrics



E
Results statistical tests

This appendix presents the results of the statistical t-tests performed to analyse the significant differences
between strategies per metric and per network. The analyses were performed for four different scenarios
of network disruption: 25%, 50%, 75%, and 100% edge removal.

For each pair of strategies, the following statistical values were calculated:

• t-statistic: The t-value of the test, which indicates how large the difference is relative to the spread
of the data.

• Sig.?: An indication of whether the difference is statistically significant based on a significance
level of 0.05.

To facilitate the interpretation of the results, colour coding has been applied:

• Red ( × ): Not statistically significant (𝑝 > 0.05).

• Green ( ✓ ): Statistically significant (𝑝 ≤ 0.05).

The tables show how the different strategies compare within the Sioux Falls, EMA, Anaheim, and
Munich networks. This comparison allows for the identification of patterns and differences between
strategies, contributing to a better understanding of the impact of disruptions and strategy choices on
network performance.
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Table E.1: Comparison of strategies by metric with a 25% removal across four networks.

Sioux Falls EMA Anaheim Munich
Comparison Metric t-stat Sig.? t-stat Sig.? t-stat Sig.? t-stat Sig.?

Proximity vs
Proximity

and
hierarchy

Accessibility -1.07 × 0.67 × -7.86 ✓ -14.34 ✓
Betweenness -0.16 × -8.87 ✓ -18.21 ✓ -35.28 ✓

Connected components -3.22 ✓ 1.01 × -12.21 ✓ -11.18 ✓
Efficiency -0.75 × 1.26 × -2.95 ✓ -5.77 ✓
Resilience -2.13 × 0.43 × -5.99 ✓ -5.53 ✓

Robustness 0.02 × -2.59 × -7.09 ✓ -9.79 ✓

Proximity vs
Proximity

and recovery
time

Accessibility 0.04 × -0.02 × 0.00 × 0.00 ×
Betweenness 0.02 × -0.12 × 0.00 × -0.01 ×

Connected components 0.18 × -0.07 × 0.01 × -0.01 ×
Efficiency 0.00 × 0.02 × 0.00 × 0.01 ×
Resilience 0.01 × 0.04 × 0.00 × 0.00 ×

Robustness 0.00 × -0.01 × 0.00 × 0.01 ×

Proximity vs
Recovery
time and
proximity

Accessibility -0.02 × 1.63 × -0.77 × -5.91 ✓
Betweenness -0.82 × -12.78 ✓ -6.88 ✓ -20.09 ✓

Connected components -4.91 ✓ 0.30 × -1.43 × -16.14 ✓
Efficiency -0.57 × -1.69 × 0.77 × -0.08 ×
Resilience -2.58 ✓ 1.89 × -0.25 × -5.54 ✓

Robustness 0.39 × -1.61 × 2.83 ✓ -1.96 ✓

Proximity vs
Dynamic
recovery

Accessibility -0.08 × 1.63 × -0.84 × -5.90 ✓
Betweenness -0.88 × -12.78 ✓ -7.59 ✓ -20.08 ✓

Connected components -5.43 ✓ 0.30 × -1.76 × -16.14 ✓
Efficiency -0.57 × 1.69 × 0.83 × -0.08 ×
Resilience -2.72 × 1.89 × -0.41 × -5.53 ✓

Robustness -0.41 × -1.61 × 2.78 ✓ -1.99 ✓
Proximity

and
hierarchy vs
Proximity

and recovery
time

Accessibility 1.12 × -0.69 × 7.86 ✓ 14.34 ✓
Betweenness 0.17 ✓ 8.76 ✓ 18.21 ✓ 35.29 ✓

Connected components 3.57 ✓ -1.09 × 12.22 ✓ 11.17 ✓
Efficiency 0.75 × -1.23 × 2.95 ✓ 5.77 ✓
Resilience 2.15 ✓ -0.39 × 5.99 ✓ 5.53 ✓

Robustness -0.02 × 2.58 ✓ 7.09 ✓ 9.79 ✓
Proximity

and
hierarchy vs

Recovery
time and
proximity

Accessibility 1.18 × 1.15 × 7.79 ✓ 6.89 ✓
Betweenness -0.67 × -3.41 ✓ 15.02 ✓ 8.57 ✓

Connected components -1.93 × -0.66 × 11.58 ✓ -6.89 ✓
Efficiency 0.20 × 0.52 × 3.97 ✓ 5.53 ✓
Resilience -0.09 × 1.57 × 6.13 ✓ -0.67 ×

Robustness 0.37 × 1.03 × 10.25 ✓ 7.67 ✓

Proximity
and

hierarchy vs
Dynamic
recovery

Accessibility 1.13 × 1.15 × 7.75 ✓ 6.90 ✓
Betweenness -0.73 × -3.41 ✓ 14.70 ✓ 8.57 ✓

Connected components -2.37 ✓ -0.66 × 11.18 ✓ -6.90 ✓
Efficiency 0.19 × 0.51 × 4.03 ✓ 5.53 ✓
Resilience -0.19 × 1.57 × 6.02 ✓ -0.67 ×

Robustness 0.38 × 1.03 × 10.21 ✓ 7.67 ✓
Proximity

and recovery
time vs

Recovery
time and
proximity

Accessibility -0.07 × 1.65 × -0.77 × -5.91 ✓
Betweenness -0.84 × -12.66 ✓ -6.88 ✓ -20.09 ✓

Connected components -5.35 ✓ 0.37 × -1.44 × -16.12 ✓
Efficiency -0.56 × 1.67 × 0.77 × -0.08 ×
Resilience -2.61 × 1.84 × -0.26 × -5.54 ✓

Robustness 0.38 × -1.60 × 2.83 ✓ -1.97 ✓

Proximity
and recovery

time vs
Dynamic
recovery

Accessibility -0.13 × 1.65 × -0.84 × -5.89 ✓
Betweenness -0.90 × -12.66 ✓ -7.59 ✓ -20.08 ✓

Connected components -5.94 ✓ 0.37 × -1.77 × -16.13 ✓
Efficiency -0.57 × 1.67 × 0.83 × -0.08 ×
Resilience -2.75 ✓ 1.84 × -0.41 × -5.53 ✓

Robustness 0.40 × -1.60 × 2.78 ✓ -1.99 ✓

Recovery
time and

proximity vs
Dynamic
recovery

Accessibility -0.07 × 0.00 × -0.07 × 0.01 ×
Betweenness -0.07 × 0.00 × -0.79 × 0.00 ×

Connected components -0.27 × 0.00 × -0.38 × 0.00 ×
Efficiency -0.01 × 0.00 × 0.06 × 0.00 ×
Resilience -0.11 × 0.00 × -0.16 × 0.01 ×

Robustness 0.02 × 0.00 × -0.06 × -0.02 ×
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Table E.2: Comparison of strategies by metric with a 50% removal across four networks.

Sioux Falls EMA Anaheim Munich
Comparison Metric t-stat Sig.? t-stat Sig.? t-stat Sig.? t-stat Sig.?

Proximity vs
Proximity

and
hierarchy

Accessibility -0.58 × 1.60 × -5.80 ✓ 2.85 ✓
Betweenness -3.94 ✓ -7.89 ✓ -19.66 ✓ -16.81 ✓

Connected components -2.02 ✓ 2.36 ✓ -8.34 ✓ -5.51 ✓
Efficiency -1.11 × 0.87 × -2.74 ✓ 1.15 ×
Resilience -1.88 × -0.80 × -7.05 ✓ 6.05 ✓

Robustness 0.01 × -3.75 ✓ -10.02 ✓ -13.97 ✓

Proximity vs
Proximity

and recovery
time

Accessibility 0.00 × 0.08 × 0.00 × 0.00 ×
Betweenness -0.07 × 0.06 × 0.00 × 0.00 ×

Connected components 0.02 × -0.02 × 0.01 × 0.00 ×
Efficiency -0.01 × 0.03 × 0.00 × 0.01 ×
Resilience -0.03 × 0.07 × 0.01 × 0.00 ×

Robustness 0.00 × 0.00 × 0.00 × 0.01 ×

Proximity vs
Recovery
time and
proximity

Accessibility -0.99 × 3.98 ✓ 3.07 ✓ 7.80 ✓
Betweenness -5.64 ✓ -6.72 ✓ -5.82 ✓ -7.17 ✓

Connected components -4.84 ✓ 1.34 × -2.14 ✓ -11.66 ✓
Efficiency -0.68 × 2.06 ✓ 3.32 ✓ 8.59 ✓
Resilience -1.73 × 2.50 ✓ 0.80 × 6.80 ✓

Robustness 0.60 × -2.37 ✓ 3.96 ✓ -2.77 ✓

Proximity vs
Dynamic
recovery

Accessibility 1.15 × 3.98 ✓ 3.63 ✓ 7.81 ✓
Betweenness -5.59 ✓ -6.73 ✓ -5.72 ✓ -7.17 ✓

Connected components -5.21 ✓ 1.34 × -2.52 ✓ -11.66 ✓
Efficiency -0.66 × 2.06 ✓ 3.51 ✓ 8.59 ✓
Resilience -1.71 × 2.50 ✓ 0.70 × 6.80 ✓

Robustness 0.63 × -2.37 ✓ 3.89 ✓ -2.80 ✓
Proximity

and
hierarchy vs
Proximity

and recovery
time

Accessibility 0.58 × -1.50 × 5.81 ✓ -2.85 ✓
Betweenness 3.91 ✓ 7.90 ✓ 19.66 ✓ 16.81 ✓

Connected components 2.04 ✓ -2.39 ✓ 8.35 ✓ 5.51 ✓
Efficiency 1.09 × -0.84 × 2.74 ✓ -1.15 ×
Resilience 1.87 × 0.86 × 7.06 ✓ -6.05 ✓

Robustness -0.01 × 3.75 ✓ 10.02 ✓ 13.98 ✓
Proximity

and
hierarchy vs

Recovery
time and
proximity

Accessibility 1.48 × 2.56 ✓ 8.32 ✓ 4.25 ✓
Betweenness -1.09 × 0.58 × 15.15 ✓ 7.25 ✓

Connected components -1.94 × -0.87 × 6.15 ✓ -6.69 ✓
Efficiency 0.42 × 1.22 × 6.07 ✓ 7.19 ✓
Resilience 0.22 × 3.27 ✓ 7.81 ✓ 1.18 ×

Robustness 0.58 × 1.46 × 14.45 ✓ 11.00 ✓

Proximity
and

hierarchy vs
Dynamic
recovery

Accessibility 1.62 × 2.56 ✓ 8.77 ✓ 4.27 ✓
Betweenness -1.15 × 0.58 × 15.06 ✓ 7.24 ✓

Connected components -2.17 ✓ -0.87 × 5.63 ✓ -6.70 ✓
Efficiency 0.43 × 1.22 × 6.24 ✓ 7.19 ✓
Resilience 0.23 × 3.27 ✓ 7.68 ✓ 1.18 ×

Robustness 0.61 × 1.46 × 14.39 ✓ 10.98 ✓
Proximity

and recovery
time vs

Recovery
time and
proximity

Accessibility 1.00 × 3.88 ✓ 3.07 ✓ 7.80 ✓
Betweenness -5.62 ✓ -6.73 ✓ -7.17 ✓ -19.54 ✓

Connected components -4.85 ✓ 1.36 × -2.15 ✓ -11.66 ✓
Efficiency -0.67 × 2.03 ✓ 3.32 ✓ 8.58 ✓
Resilience -1.71 × 2.42 ✓ 0.79 × 6.80 ✓

Robustness 0.60 × -2.37 ✓ 3.95 ✓ -2.78 ✓

Proximity
and recovery

time vs
Dynamic
recovery

Accessibility 1.15 × 3.88 ✓ 3.62 ✓ 7.81 ✓
Betweenness -5.57 ✓ -6.74 ✓ -5.72 ✓ -7.17 ✓

Connected components -5.22 ✓ 1.36 × -2.53 ✓ -11.66 ✓
Efficiency -0.65 × 2.03 ✓ 3.51 ✓ 8.58 ✓
Resilience -1.69 × 2.42 ✓ 0.70 × 6.80 ✓

Robustness 0.63 × -2.37 ✓ 3.88 ✓ -2.81 ✓

Recovery
time and

proximity vs
Dynamic
recovery

Accessibility 0.17 × 0.00 × 0.56 × 0.01 ×
Betweenness -0.08 × 0.00 × 0.03 × 0.00 ×

Connected components -0.25 × 0.00 × -0.42 × 0.00 ×
Efficiency 0.02 × 0.00 × 0.21 × 0.00 ×
Resilience 0.01 × 0.00 × -0.09 × 0.00 ×

Robustness 0.03 × 0.00 × -0.08 × -0.02 ×
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Table E.3: Comparison of strategies by metric with a 75% removal across four networks.

Sioux Falls EMA Anaheim Munich
Comparison Metric t-stat Sig.? t-stat Sig.? t-stat Sig.? t-stat Sig.?

Proximity vs
Proximity

and
hierarchy

Accessibility -0.28 × 4.75 ✓ -1.36 × 9.93 ✓
Betweenness -3.82 ✓ -2.89 ✓ -18.33 ✓ -14.16 ✓

Connected components 2.34 ✓ 4.25 ✓ -3.99 ✓ -2.92 ✓
Efficiency -1.31 × 0.80 × -0.75 × 5.47 ✓
Resilience -2.81 ✓ -0.81 × -3.53 ✓ 13.64 ✓

Robustness -0.02 × -4.58 ✓ -12.25 ✓ -17.19 ✓

Proximity vs
Proximity

and recovery
time

Accessibility 0.03 × 0.01 × 0.00 × 0.00 ×
Betweenness -0.01 × 0.01 × 0.00 × 0.00 ×

Connected components 0.01 × -0.03 × 0.00 × -0.07 ×
Efficiency -0.01 × 0.02 × 0.00 × 0.00 ×
Resilience -0.01 × 0.05 × 0.00 × 0.00 ×

Robustness -0.01 × 0.00 × 0.01 × 0.01 ×

Proximity vs
Recovery
time and
proximity

Accessibility 2.52 ✓ 6.76 ✓ 10.85 ✓ 17.42 ✓
Betweenness -3.03 ✓ -2.07 ✓ 1.42 × -1.20 ×

Connected components -5.03 ✓ 2.24 ✓ -2.23 ✓ -8.25 ✓
Efficiency -0.50 × 2.39 ✓ 8.82 ✓ 16.17 ✓
Resilience -1.28 × 3.52 ✓ 4.69 ✓ 15.19 ✓

Robustness 0.70 × -2.82 ✓ 4.81 ✓ -3.47 ✓

Proximity vs
Dynamic
recovery

Accessibility 2.60 ✓ 6.76 ✓ 11.61 ✓ 17.44 ✓
Betweenness -3.05 ✓ -2.07 ✓ 1.19 × -1.20 ×

Connected components -5.24 ✓ 2.24 ✓ -2.53 ✓ -8.26 ✓
Efficiency -0.49 × 2.39 ✓ 8.99 ✓ 16.17 ✓
Resilience -1.28 × 3.52 ✓ 4.43 ✓ 15.19 ✓

Robustness 0.73 × -2.82 ✓ 4.72 ✓ -3.51 ✓
Proximity

and
hierarchy vs
Proximity

and recovery
time

Accessibility 0.31 × -4.72 ✓ 1.37 × -9.93 ✓
Betweenness 3.80 ✓ 2.90 ✓ 18.33 ✓ 14.16 ✓

Connected components 2.35 ✓ -4.28 ✓ 3.99 ✓ 2.83 ✓
Efficiency 1.30 × -0.78 × 0.75 × -5.46 ✓
Resilience -2.18 ✓ 0.85 × 3.53 ✓ -13.64 ✓

Robustness 0.01 × 4.58 ✓ 12.26 ✓ 17.20 ✓
Proximity

and
hierarchy vs

Recovery
time and
proximity

Accessibility 2.64 ✓ 1.94 × 10.63 ✓ 5.47 ✓
Betweenness 0.69 × 0.67 × 19.15 ✓ 10.24 ✓

Connected components -2.14 × -1.88 × 1.50 × -5.53 ✓
Efficiency 0.77 × 1.53 × 9.24 ✓ 10.24 ✓
Resilience -0.84 × 4.08 ✓ 7.92 ✓ 2.28 ✓

Robustness 0.72 × 1.83 × 17.64 ✓ 13.47 ✓

Proximity
and

hierarchy vs
Dynamic
recovery

Accessibility 2.72 ✓ 1.94 × 11.30 ✓ 5.49 ✓
Betweenness 0.64 × 0.67 × 18.71 ✓ 10.69 ✓

Connected components -2.31 × -1.88 × 1.19 × -5.54 ✓
Efficiency 0.78 × 1.53 × 9.40 ✓ 10.24 ✓
Resilience 0.83 × 4.08 ✓ 7.64 ✓ 2.28 ✓

Robustness 0.74 × 1.83 × 17.56 ✓ 13.45 ✓
Proximity

and recovery
time vs

Recovery
time and
proximity

Accessibility 2.49 ✓ 6.73 ✓ 10.85 ✓ 17.42 ✓
Betweenness -3.02 ✓ -2.08 ✓ -1.20 × 1.29 ×

Connected components -5.04 ✓ 2.27 ✓ -2.24 ✓ -8.14 ✓
Efficiency -0.50 × 2.37 ✓ 8.82 ✓ 16.16 ✓
Resilience -1.27 × 3.46 ✓ 4.68 × 15.19 ✓

Robustness 0.71 × -2.82 ✓ 4.80 ✓ -3.48 ✓

Proximity
and recovery

time vs
Dynamic
recovery

Accessibility 2.57 × 6.73 ✓ 11.61 ✓ 17.44 ✓
Betweenness -3.04 ✓ -2.08 ✓ 1.19 × -1.20 ×

Connected components -5.26 ✓ 2.37 ✓ -2.53 ✓ -8.14 ✓
Efficiency -0.49 × 2.37 ✓ 8.99 ✓ 16.16 ✓
Resilience -1.27 × 3.46 ✓ 4.43 ✓ 15.19 ✓

Robustness 0.74 × -2.82 ✓ 4.71 ✓ -3.52 ✓

Recovery
time and

proximity vs
Dynamic
recovery

Accessibility 0.14 × 0.00 × 0.81 × 0.01 ×
Betweenness 0-.04 × 0.00 × -0.19 × 0.00 ×

Connected components -0.17 × 0.00 × -0.29 × 0.00 ×
Efficiency 0.01 × 0.00 × 0.19 × 0.00 ×
Resilience 0.00 × 0.00 × -0.20 × 0.00 ×

Robustness 0.03 × 0.00 × -0.10 × -0.03 ×
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Table E.4: Comparison of strategies by metric with a 100% removal across four networks.

Sioux Falls EMA Anaheim Munich
Comparison Metric t-stat Sig.? t-stat Sig.? t-stat Sig.? t-stat Sig.?

Proximity vs
Proximity

and
hierarchy

Accessibility -0.10 × 7.08 ✓ -0.54 × 12.65 ✓
Betweenness -3.83 ✓ -3.08 ✓ -18.29 ✓ -12.80 ✓

Connected components -2.87 ✓ 5.18 ✓ -1.98 ✓ -1.43 ×
Efficiency -1.14 × 0.40 × 0.13 × 8.24 ✓
Resilience -2.01 ✓ -1.50 × -2.81 ✓ 18.78 ✓

Robustness -0.08 × -5.29 ✓ -14.17 ✓ -19.86 ✓

Proximity vs
Proximity

and recovery
time

Accessibility 0.04 × -0.02 × 0.00 × -0.01 ×
Betweenness -0.02 × 0.03 × 0.01 × 0.00 ×

Connected components 0.01 × -0.11 × 0.00 × -0.02 ×
Efficiency -0.02 × 0.03 × 0.00 × 0.00 ×
Resilience -0.02 × 0.08 × -0.01 × 0.01 ×

Robustness -0.03 × 0.00 × 0.00 × 0.01 ×

Proximity vs
Recovery
time and
proximity

Accessibility 4.61 ✓ 9.96 ✓ 17.81 ✓ 28.27 ✓
Betweenness -1.97 × -0.55 × 8.17 ✓ 6.07 ✓

Connected components -5.65 ✓ 4.75 ✓ -2.11 ✓ -5.88 ✓
Efficiency -0.06 × 2.84 ✓ 14.01 ✓ 23.26 ✓
Resilience -0.65 × 5.16 ✓ 6.96 ✓ 23.57 ✓

Robustness 0.77 × -3.31 ✓ 5.64 ✓ -4.04 ✓

Proximity vs
Dynamic
recovery

Accessibility 4.66 ✓ 9.96 ✓ 17.84 ✓ 28.30 ✓
Betweenness -2.07 ✓ -0.55 × 6.27 ✓ 6.09 ✓

Connected components -5.82 ✓ 4.75 ✓ -2.19 ✓ -5.88 ✓
Efficiency -0.07 ✓ 2.84 ✓ 14.19 ✓ 23.27 ✓
Resilience -0.68 × 5.16 ✓ 6.39 ✓ 23.58 ✓

Robustness 0.80 × -3.31 ✓ 5.49 ✓ -4.08 ✓
Proximity

and
hierarchy vs
Proximity

and recovery
time

Accessibility 0.13 × -7.09 ✓ 0.54 × -12.56 ✓
Betweenness 3.80 ✓ 3.10 ✓ 18.29 ✓ 12.80 ✓

Connected components 2.87 ✓ -5.28 ✓ 1.98 ✓ 1.40 ×
Efficiency 1.13 × -0.37 × -0.13 × -8.23 ✓
Resilience 1.99 ✓ 1.57 × 2.80 ✓ -18.77 ✓

Robustness 0.05 × 5.29 ✓ 14.17 ✓ 19.87 ✓
Proximity

and
hierarchy vs

Recovery
time and
proximity

Accessibility 4.34 ✓ 2.07 ✓ 41.17 ✓ 11.60 ✓
Betweenness 1.59 × 2.23 ✓ 25.57 ✓ 16.88 ✓

Connected components -2.64 ✓ -0.06 × -0.31 × -4.49 ✓
Efficiency 1.04 × 2.30 ✓ 13.36 ✓ 14.27 ✓
Resilience 1.26 × 6.14 ✓ 9.34 ✓ 5.28 ✓

Robustness 0.84 × 2.08 ✓ 20.50 ✓ 15.53 ✓

Proximity
and

hierarchy vs
Dynamic
recovery

Accessibility 4.40 ✓ 2.07 ✓ 15.94 ✓ 11.61 ✓
Betweenness 1.46 ✓ 2.23 ✓ 23.14 ✓ 16.90 ✓

Connected components -2.77 ✓ -0.06 × -0.35 × -4.47 ✓
Efficiency 1.03 × 2.30 ✓ 13.53 ✓ 14.27 ✓
Resilience 1.21 × 6.14 ✓ 8.77 ✓ 5.28 ✓

Robustness 0.88 × 2.08 ✓ 20.38 ✓ 15.51 ✓
Proximity

and recovery
time vs

Recovery
time and
proximity

Accessibility 4.56 ✓ 9.96 ✓ 17.82 ✓ 28.28 ✓
Betweenness -1.95 × -0.57 × 8.17 ✓ 6.07 ✓

Connected components -5.66 ✓ 4.84 ✓ -2.11 ✓ -5.85 ✓
Efficiency -0.05 ✓ 2.80 ✓ 14.01 ✓ 23.26 ✓
Resilience -0.63 × 5.08 ✓ 6.97 ✓ 23.56 ✓

Robustness 0.80 × -3.31 ✓ 5.64 ✓ -4.05 ✓

Proximity
and recovery

time vs
Dynamic
recovery

Accessibility 4.62 ✓ 9.96 ✓ 17.85 ✓ 28.31 ✓
Betweenness -2.05 ✓ -0.57 × 6.27 ✓ 6.09 ✓

Connected components -5.83 ✓ 4.84 ✓ -2.19 ✓ 6.09 ✓
Efficiency -0.05 × 2.80 ✓ 14.19 ✓ 23.26 ✓
Resilience -0.67 × 5.08 ✓ 6.41 ✓ 23.57 ✓

Robustness 0.84 × -3.31 ✓ 5.49 ✓ -4.09 ✓

Recovery
time and

proximity vs
Dynamic
recovery

Accessibility 0.16 × 0.00 × 0.22 × 0.01 ×
Betweenness -0.11 × 0.00 × -1.42 × 0.02 ×

Connected components -0.10 × 0.00 × -0.04 × 0.00 ×
Efficiency -0.01 × 0.00 × 0.19 × 0.00 ×
Resilience -0.04 × 0.00 × -0.40 × 0.00 ×

Robustness 0.04 × 0.00 × -0.17 × -0.03 ×
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