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Abstract

Learning curve extrapolation helps practitioners
predict model performance at larger data scales, en-
abling better planning for data collection and com-
putational resource allocation. This paper investi-
gates when neural networks outperform parametric
models for this task. We conduct a comprehensive
comparison of LC-PFNs (Learning Curve Prior-
Fitted Networks) and three established parametric
models (POW4, MMF4, WBL4) using LCDB v1.1,
a large-scale dataset with learning curves gener-
ated across 265 classification tasks and 24 learn-
ers. Surprisingly, we find that parametric models
— especially POW4 and MMF4 — consistently
outperform LC-PFN across all generalization sce-
narios and most cutoff regions. However, LC-PFN
demonstrates competitive performance when ex-
trapolating from early-stage data, ranking second-
best at 10%, 30%, and 50% cutoffs. This suggests
LC-PFNs can be valuable when only a small frac-
tion of the learning curve is available. LC-PFN is
particularly challenged by smooth and flat curves,
but shows slightly improved performance on irreg-
ular patterns such as peaking and dipping curves,
though it remains outperformed by all parametric
models. These trends highlight a misalignment be-
tween LC-PFN’s training distribution and the real-
world diversity of learning curves. Our findings
emphasize the strength of parametric models un-
der realistic conditions and suggest avenues for im-
proving LC-PFNs through architectural flexibility
and curve length variability during training.

1 Introduction
Machine learning (ML) practitioners in both academic and in-
dustry mediums often face a critical question when designing
an ML application: ”How much data is enough?”. Learning
curves, which plot model performance as a function of train-
ing set size, are a fundamental tool for answering this ques-
tion by revealing how performance scales with available data.
However, these curves can exhibit unexpected behaviors - of-
ten referred to as ill-behaved curves, characterized by non-
monotonic patterns, plateaus, or sudden performance drops
[10, 6]. Thus, accurately modeling a relationship between
training set size and model performance can empower scien-
tists and engineers to make informed decisions on whether the
desired accuracy targets are achievable within practical con-
straints of budget, time, and environmental impact, in terms
of data collection and computational requirements. This effi-
ciency gain is particularly important in an era where environ-
mental concerns about ML’s footprint are growing [5].

Unlike the more widely studied epoch-based learn-
ing curves that track performance over training iterations,
sample-size learning curves enable practitioners to devise
data collection strategies before substantial investments are
made, even for models like K-Nearest-Neighbors that don’t
involve iterative training [10, 7].

Recent advancements in this area have explored both para-
metric and neural network approaches to learning curve ex-
trapolation. Parametric models, such as MMF4 and WBL4,
have demonstrated strong performance across a wide range of
learning scenarios [8], while neural network approaches such
as Learning Curve Prior-Fitted Networks (LC-PFNs) have
shown promise in epoch-based learning curve extrapolation
[1]. Viering et al. [11] observed that these approaches have
different strengths and weaknesses, particularly when gener-
alizing to unseen datasets and learners, yet the specific con-
ditions under which neural networks outperform parametric
models remain poorly understood. Moreover, the aforemen-
tioned comparative study has been conducted on LCDB 1.0
[8], while the more challenging and realistic LCDB 1.1 —
which reveals significantly higher rates of ill-behaved learn-
ing curves [12] — remains underexplored in comparative
analyses. This research aims to address this gap by investi-
gating the main research question:

When do neural networks outperform parametric
models in learning curve extrapolation?

To clarify the direction of the research, this paper will aim
to answer the following three sub-questions:

RQ1: How do parametric models and neural networks com-
pare in learning curve extrapolation when tested on
known datasets and known learners (KDKL), unseen
datasets (UD), unseen learners (UL), and simultaneously
unseen datasets and learners (UDUL)?

RQ2: How does the amount of the observed learning curve
(i.e., the region before the cutoff) affect the relative ex-
trapolation performance of parametric models and neu-
ral networks?

RQ3: How does the shape of the learning curve influence the
relative performance of parametric models and neural
networks in learning curve extrapolation?

These questions collectively address the core factors that
determine method selection in practice. The first question
evaluates how both approaches handle different types of gen-
eralization challenges, which is crucial since real-world ap-
plications typically involve extrapolating to new domains or
algorithms not seen during training. The second question
aims to explore how the amount of observed data before ex-
trapolation affects relative performance, offering a solid in-
tuition about the minimum observations required for reliable
predictions with each approach. The third and final question
investigates whether certain learning curve characteristics in-
herently favor one approach over another, as different curve
shapes may align better with the inductive biases of paramet-
ric versus neural methods.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the relevant literature concerning the Learning
Curve Database, parametric models, and neural network ap-
proaches to learning curve extrapolation. Section 3 describes
the experimental methodology, including model implemen-
tations, dataset splits, and evaluation protocols used to com-
pare LC-PFNs against parametric models. Section 4 outlines
the experimental setup for both studies, detailing the eval-
uation of models across generalization scenarios and cutoff
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percentages (Experiment 1) and the analysis of performance
across different learning curve shapes (Experiment 2). Sec-
tion 5 presents the results from both experiments, revealing
the comparative performance of neural networks versus para-
metric models under varying conditions. Section 6 discusses
the implications of our findings, potential explanations for ob-
served performance differences, and limitations of current ap-
proaches. Section 7 concludes with a summary of key contri-
butions and outlines promising directions for future research.
Finally, Section 8 addresses responsible research practices in-
cluding reproducibility measures and environmental impact
considerations.

2 Related Work
This section reviews the relevant literature and establishes
the theoretical foundation for our comparative study. We ex-
amine existing work on the Learning Curve Database, para-
metric modeling approaches for learning curve extrapolation,
neural network methods including LC-PFNs, and precursory
comparative studies in existing literature.

2.1 The Learning Curve Database
To investigate the conditions under which neural networks
outperform parametric models in learning curve extrapola-
tion, this study adopts a comprehensive experimental method-
ology using the Learning Curve Database (LCDB) version
1.1 [12]. This dataset provides a large-scale collection of
learning curves spanning 265 OpenML classification tasks
and 24 different machine learning algorithms, offering di-
verse scenarios for robust evaluation.

The LCDB 1.1 dataset represents a significant advance-
ment over its predecessor, LCDB 1.0 [8], particularly in
its recognition and systematic documentation of ill-behaved
learning curves. While previous work often assumed learning
curves to be well-behaved (monotonic and convex), LCDB
1.1 reveals that approximately 14% of learning curves exhibit
significant ill-behavior—nearly twice the rate previously esti-
mated [12]. This finding is crucial for our comparative analy-
sis, as it provides a more realistic and challenging benchmark
that better reflects the complexities encountered in practical
machine learning scenarios.

The LCDB 1.1 dataset contains learning curves across
137 anchor points, corresponding to training set sizes rang-
ing from 16 to 1,097,152 samples following the formula
⌈16×2i/8⌉ for i ∈ {0, 1, ..., 136}. Each learning curve repre-
sents the error rate performance trajectory of a specific algo-
rithm on a particular dataset as a function of training set size
(x-axis), where performance (y-axis) is measured on the val-
idation set. The inclusion of ill-behaved curves, which may
exhibit non-monotonic behavior, peaks, or other irregular pat-
terns, presents new, unique challenges for both parametric
and neural network approaches.

2.2 Parametric Models for Learning Curve
Extrapolation

To extrapolate learning curves from partial observations, we
employ established parametric models that reflect common
inductive biases in machine learning performance trends.

Based on empirical studies showing their superior perfor-
mance [8, 2, 3], we implement three nonlinear functional
forms: MMF4, WBL4, and POW4. Each of these models
captures distinct asymptotic behaviors found in typical learn-
ing curves, such as early rapid gains followed by saturation
or smooth power-law decay.

Given a learning curve y(n), where n denotes the anchor
corresponding to the training set size used, the extrapolation
procedure begins by selecting a cutoff point that defines the
amount of observed data. This cutoff can be chosen ran-
domly, explicitly specified by index, or determined as a per-
centage of the full curve (e.g., 70%). To ensure sufficient
information for reliable fitting, a minimum of ten points is
always required before model estimation is attempted.

The MMF4 model is defined as:

f(n) =
ab+ cnd

b+ nd

This function is known for its sigmoidal shape, which
captures fast initial improvement that asymptotically
plateaus—mirroring the typical saturation behavior of ML
models.

The WBL4 model, based on the Weibull family of func-
tions, is expressed as:

f(n) = c− b · exp(−a · nd)

This model is motivated by its exponential convergence to-
ward an asymptote, often suitable for curves that show dimin-
ishing returns quickly after a brief rise.

Lastly, the POW4 model reflects power-law decay and is
defined as:

f(n) = a− b · (d+ n)−c

This power-law formulation captures learning curves that
exhibit diminishing returns following an inverse power rela-
tionship with training set size. The model’s flexibility lies in
its ability to represent both steep initial improvements (when
c is large) and more gradual asymptotic approaches to peak
performance (when c is small).

2.3 LC-PFN for Learning Curve Extrapolation
The LC-PFN approach introduced by Adriaensen et al. [1]
employs Prior-Data Fitted Networks (PFNs)—Transformer-
based neural networks pre-trained on synthetic data generated
from a parametric prior over learning curves. Unlike para-
metric methods that provide point estimates, LC-PFN outputs
discretized probability distributions over 1,000 bins, enabling
full uncertainty quantification. The method demonstrated re-
markable computational efficiency with inference times un-
der 0.1 seconds compared to over 100 seconds for MCMC
methods—a speedup exceeding 10,000×.

Evaluation on 20,000 real learning curves revealed that
LC-PFN’s superiority is conditional rather than universal.
Adriaensen et al. [1] shows that while consistently out-
performing MCMC on PD1, NAS-Bench-201, and Taskset
benchmarks, performance on LCBench was only marginal.
Critically, the method failed on NAS-Bench-201 tasks con-
taining inflection points not represented in the training prior,
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demonstrating that neural approaches are heavily dependent
on how well their training distribution captures real learning
curve characteristics. This prior dependence contrasts with
parametric methods that can adapt their functional forms dur-
ing fitting.

The LC-PFN study’s findings directly support the moti-
vation for systematic comparative analysis by showing that
neither approach universally dominates. The method’s prac-
tical advantages emerged most clearly in dynamic decision-
making contexts, achieving 2-6× speedups in early stopping
applications across 45 of 53 datasets. However, the substan-
tial upfront investment required (9 hours pre-training on the
Nvidia Tesla P100 on 10M synthetic curves) versus para-
metric methods’ zero pre-training cost highlights different
computational trade-offs that may favor different approaches
depending on the application context and available learning
curve diversity.

2.4 Prior Comparative Studies
The most directly relevant prior work is the study by Vier-
ing et al.[11], which conducted a comparative analysis of dif-
ferent LC-PFN approaches using LCDB 1.0. Their research
developed data-driven priors for LC-PFNs, comparing para-
metric prior-based LC-PFNs (using MMF4 and WBL4 curve
generators) against a ”Real Data LC-PFN” trained directly
on learning curve data with augmentation. The Real Data
LC-PFN approach outperformed the original epoch-trained
LC-PFN in 78-80% of cases when extrapolating sample-size
learning curves.

However, several important research gaps remain that our
study aims to address:

Database limitations: Viering et al.’s analysis was con-
ducted on LCDB 1.0, which underestimated the prevalence
of ill-behaved learning curves. By utilizing LCDB 1.1, the
current study aims to provide a more realistic evaluation en-
vironment that better reflects the challenges encountered in
practice, where approximately 14% of learning curves exhibit
significant non-monotonic behavior or other irregularities.

Incomplete generalization analysis: The prior study fo-
cused primarily on three generalization scenarios: UD, UL,
and UDUL. Notably absent was analysis of the Known
Learner, KDKL scenario, which represents an important
baseline for understanding method performance under opti-
mal conditions where both the algorithm and dataset charac-
teristics have been previously observed.

Limited parametric model coverage: While Viering et
al. evaluated MMF4 and WBL4 models within their LC-PFN
framework, they did not include POW4, despite evidence sug-
gesting that MMF4, WBL4, and POW4 collectively represent
the most effective parametric approaches for learning curve
modeling [8]. Additionally, their study did not directly com-
pare the LC-PFN against traditional parametric fitting meth-
ods.

Narrow evaluation scope: Beyond generalization sce-
narios, this paper examines how different learning curve
shapes and various extrapolation cutoff percentages influence
comparative performance between parametric and neural ap-

proaches, providing a more comprehensive understanding of
the conditions that favor each method.

3 Methodology
This section details the modeling and evaluation procedures
used for learning curve extrapolation. We first describe the
implementation of a neural network-based probabilistic fore-
casting model (LC-PFN), including its training objectives,
data augmentation strategy, and hyperparameter configura-
tion. We then outline the setup for fitting classical parametric
baselines, emphasizing consistent initialization and bounded
optimization to ensure comparability. Finally, we define the
evaluation protocol, specifying the extrapolation scenarios
and metrics used to assess performance across varying lev-
els of observed curve data.

3.1 Model Implementation
Neural Network Approach - LC-PFN
During training, the model was optimized using the bar distri-
bution loss, which enables the network to output full predic-
tive distributions over learning curve values rather than point
estimates. For evaluation purposes, the median of the pre-
dicted distribution is reported as the final extrapolated curve.

To increase generalization and robustness, a data augmen-
tation strategy [9] was adopted: each input learning curve
was synthetically varied through randomized scaling between
anchor points. Specifically, pairs of anchor indices were
selected uniformly at random, and the curve was stretched
or compressed accordingly to simulate plausible alternative
growth patterns. This approach, also adopted by Viering et
al. [11], preserves the essential shape characteristics of the
original curve while exposing the model to a wider variety
of trajectories, thus aiming to promote better extrapolation
across unseen datasets and learners.

The LC-PFN model was trained using the following hy-
perparameter configuration: a sequence length of 80 anchor
points (SEQ LEN = 80), embedding size of 128 (EMSIZE =
128), and a 3-layer architecture (NLAYERS = 3). The prob-
abilistic output distribution was discretized into 1000 bins
(NUM BORDERS = 1000) to support fine-grained uncertainty
modeling. Training was performed for 300 epochs (EPOCH
= 300) using a batch size of 50 (BATCH SIZE = 50) and a
learning rate of 1 × 10−4 (LR = 0.0001). These settings
were selected based on the recommendations in [1] and vali-
dated through empirical testing on held-out validation curves.

Parametric Models
The model is then fitted to the observed portion of the curve
via nonlinear least squares. To prevent data leakage, the ini-
tial parameter values and bounds are not adapted based on the
curve being fitted. Instead, they are fixed a priori, informed
by empirical stability.

For MMF4, the initial guess [a, b, c, d] =
[0.9, 1000.0, 0.1, 1.0] encodes a strong asymptotic
behavior with gradual curvature, while the bounds
[0.01, 1e-6, 0.0, 0.01], [1.0,∞, 1.0, 10.0] are selected to
reflect plausible limits for accuracy and to prevent numerical
instability during optimization.
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In the case of WBL4, the initial parameters are set to
[a, b, c, d] = [0.001, 0.8, 0.9, 1.0], reflecting slow exponen-
tial decay toward high performance. The fitting bounds en-
sure smooth convergence and prevent divergence, especially
in the presence of steep curves or small-scale datasets.

POW4 is initialised with [a, b, c, d] = [0.9, 0.8, 1.0, 100.0],
with bounds [0.01, 0.01, 0.001, 1.0], [1.0, 2.0, 5.0, 10000.0]
to ensure the model remains flexible yet stable during fitting.

Fitting is performed using scipy.optimize.curve fit,
prioritizing bounded optimization. In cases where this fails
(e.g., due to local minima or ill-conditioning), an unbounded
optimization is attempted as a fallback. If both strategies fail,
the model reverts to using the initial guess to ensure the pro-
cedure remains complete for all curves.

To ensure that the predicted performance remains valid, ex-
trapolated values are clipped to the [0, 1] interval, which re-
flects the normalized accuracy range of the underlying tasks.

3.2 Dataset splits
For Experiment 1, to ensure rigorous evaluation of gener-
alization capabilities, a systematic data partitioning strategy
was implemented. Datasets were randomly split into training
(80%) and testing (20%) subsets, while the 24 machine learn-
ing algorithms were similarly partitioned into training (80%)
and testing (20%) subsets. This dual partitioning enables the
construction of four distinct evaluation scenarios that address
different aspects of generalization:

• Known Datasets, Known Learners (KDKL): Both
datasets and learners present during training. Thus, this
set contains curves already seen during training.

• Unseen Datasets (UD): New datasets with algorithms
seen during training. This set also encompasses never-
before-seen curves, but curves that originate from the
application of ML algorithms associated with the curves
seen in training.

• Unseen Learners (UL): New learners with datasets
seen during training. Similarly, curves originate from
datasets associated with curves from the training set.

• Unseen Datasets, Unseen Learners (UDUL): Both
datasets and algorithms absent from training.

To analyze the impact of curve shape on model perfor-
mance in Experiment 2, learning curves were categorized
based on their characteristic behaviors identified in prior liter-
ature. The 23 learning algorithms in LCDB 1.1 (N.B. learner
with index 23 - DummyClassifier, has been excluded from
this analysis) were grouped into four distinct categories based
on their typical learning curve patterns, according to the em-
pirical study by Yan et al.[12], reflected in Figure 1:

• Flat learners (indices: 1, 2, 3, 14): Algorithms that typi-
cally produce learning curves with minimal performance
improvement as training set size increases, often exhibit-
ing plateau behavior early in the learning process.

• Monotonic convex learners (indices: 0, 4, 5, 20, 21, 22,
6, 7, 8, 10, 18): Algorithms that demonstrate the clas-
sic learning curve behavior with consistent performance
improvements that gradually level off, following smooth
convex patterns toward asymptotic performance.

Figure 1: Shape statistics for each learner in LCDB 1.1. The green
borders represent the groups selected for each column (e.g. the green
bordered values on column ’Flat’ indicate the learners whose learn-
ing curves best exhibit this shape characteristic).

• Peaking learners (indices: 3, 9, 11, 12, 13, 17): Al-
gorithms whose learning curves exhibit maximum per-
formance at intermediate training set sizes, followed by
performance degradation.

• Dipping learners (indices: 3, 19, 13, 12, 17): Algo-
rithms that show temporary performance drops during
the learning process before potentially recovering, creat-
ing non-monotonic patterns that violate common learn-
ing curve assumptions.

A similar 80-20 train-test split is applied for each shape
category set.

3.3 Evaluation Protocol
Performance Metrics
Model performance was evaluated using four complementary
metrics, each addressing specific challenges inherent in learn-
ing curve extrapolation:

• Symmetric Mean Absolute Percentage Error
(SMAPE):

SMAPE =
100

n

n∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

SMAPE was chosen as the primary metric because
learning curve extrapolation involves comparing predic-
tion quality across algorithm-dataset combinations with
vastly different performance scales and saturation lev-
els. SMAPE’s scale-independence enables fair compar-
ison of extrapolation accuracy regardless of whether the
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Figure 2: Example of learning curve extrapolation. The vertical dot-
ted line represents the cutoff point. Data points on the left-hand side
the cutoff are observed by the model, and then used to extrapolate
the data points on the right-hand side.

curve operates in low-performance or high-performance
regimes, focusing on relative prediction errors rather
than absolute deviations. Kreinovich et al. [4] moves
SMAPE from being an empirically successful but theo-
retically unmotivated metric to having a solid mathemat-
ical foundation based on approximation theory.

• Mean Squared Error (MSE) and Mean Absolute Er-
ror (MAE) were included as widely used regression
metrics to facilitate comparison with other studies, with
MSE providing sensitivity to outliers and MAE offering
robust, easily interpretable average prediction errors.

Extrapolation Procedure
For each learning curve evaluation, a cutoff point was es-
tablished to simulate real-world scenarios where only partial
learning curves are available. The curve was divided into
observed (training) and unobserved (testing) portions, with
models fitted on the observed portion and evaluated on their
ability to extrapolate to the unobserved region. The cutoff
point is determined by finding the anchor size closest to the
target percentage of the range between minimum and maxi-
mum training sizes in each curve.

Figure 2 shows a visual example where extrapolation is
performed by all four models.

4 Experimental Setup
This section describes the two complementary experiments
designed to evaluate model performance across different
generalization scenarios, extrapolation cutoffs, and learning
curve shape characteristics.

4.1 Experiment 1: Model Comparison Across
Domain Scenarios and Cutoffs

This experiment aims to simultaneously address the first two
research questions presented in Section 1. It investigates how
parametric models and neural networks compare across di-
verse generalization scenarios (RQ1), and further examines
how their relative extrapolation performance varies as the
proportion of observed data is increased (RQ2).

The first step involves training the LC-PFN on a com-
prehensive dataset of 1.5 million learning curves generated
through curve augmentation. The specific training configura-
tion and dataset details for the LC-PFN are provided in Sec-
tion 3.

Performance comparisons across the four generalization
scenarios (KDKL, UD, UL, and UDUL) and five cutoff per-
centages (10%, 30%, 50%, 70%, and 90%) were conducted
using 1000 randomly sampled learning curves for each per-
formance metric per scenario, to ensure computational feasi-
bility while maintaining statistical power.

Model performance was assessed using the three afore-
mentioned complementary metrics: SMAPE, MAE, and
MSE. These metrics provide different perspectives on predic-
tion accuracy, with SMAPE offering scale-invariant compar-
ison, MAE providing intuitive absolute error interpretation,
and MSE emphasizing larger prediction errors.

The primary analytical approach centers on ranking com-
parisons to provide a comprehensive view of relative model
performance across different experimental conditions. This
ranking-based evaluation enables direct comparison of mod-
els across the diverse scenarios and cutoff percentages,
through identifying consistent performance patterns and
trade-offs. Statistical significance testing was conducted to
quantify the reliability of observed performance differences
between models. Detailed performance distributions are cap-
tured through boxplot visualizations, which are provided in
the Appendix (Section A) to illustrate the full range of per-
formance variability and outliers across the sampled learning
curves.

4.2 Experiment 2: Model Comparison Across
Learning Curve Shapes and Cutoffs

This experiment directly addresses the third research question
by investigating how the shape of learning curves influences
the relative performance of parametric models and neural net-
works in learning curve extrapolation (RQ3). The analysis
aims to identify specific learning curve morphologies where
LC-PFN demonstrates superior performance over the three
parametric models (Power Law, Exponential, and Logarith-
mic), and conversely, where parametric approaches maintain
their advantage.

The experimental design leverages a similarly trained LC-
PFN model as the one in Experiment 1. Learning curves were
systematically categorized into distinct shape classes based
characteristics observed in prior studies [12] (see Figure 1).

Performance comparisons were conducted across five cut-
off percentages (10%, 30%, 50%, 70%, and 90%). While
cutoffs are not central to answering RQ3, sampling equally
across the same fixed cutoffs as Experiment 1 reduces vari-
ability in results, as cutoff percentage can significantly impact
model performance as demonstrated previously. For each
shape category and cutoff combination, 200 randomly sam-
pled learning curves were evaluated.

Model performance was assessed using the same three
complementary metrics: SMAPE, MAE, and MSE. The ana-
lytical framework centers on shape-specific ranking analysis
to identify performance patterns unique to different learning
curve morphologies. Detailed performance distributions are
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captured through boxplot visualizations provided in the Ap-
pendix (Section B ).

5 Results
This section presents the findings from two experiments ex-
amining model performance across the experimental condi-
tions discussed above.

5.1 Results of Experiment 1: Model Comparison
Across Domain Scenarios and Cutoffs

The comprehensive evaluation of the four models (LC-PFN,
MMF4, WBL4, and POW4) across different generalization
scenarios and cutoff percentages reveals several key findings
regarding their relative performance and extrapolation capa-
bilities.

Figure 3: Mean model rankings across three evaluation metrics
(SMAPE, MAE, MSE). Lower is better. All metrics yield consistent
rankings, with POW4 performing best overall, followed by MMF4,
LC-PFN, and WBL4.

Figure 3 shows that all three evaluation metrics produced
comparable rankings across the four models, strengthening
the reliability of the chosen metrics in the context of this ex-
perimental setup. The average ranking across all metrics indi-
cates that POW4 achieved the best overall performance, fol-
lowed by MMF4, LC-PFN, and WBL4, respectively. While
POW4 demonstrated superior performance, the margins be-
tween models were relatively modest.

Performance Across Transfer Scenarios
Analysis of model performance across transfer scenarios re-
veals distinct patterns for each model (see Figure 4). POW4
consistently demonstrated the strongest performance across
all four transfer scenarios (KDKL, UD, UDUL, and UL).
Contrary to expectations, LC-PFN ranked worst in both the
KDKL and UD scenarios, where it theoretically should have
performed better, given its exposure to similar curves and
learners during training. However, LC-PFN showed im-
proved performance in the UL and UDUL scenarios, exceed-
ing both MMF4 and WBL4, suggesting reasonable general-
ization capability to unseen curve data, though still trailing
behind POW4. The three parametric models (MMF4, POW4,

WBL4) exhibited some variability across transfer scenar-
ios, though statistical significance testing (Figure 6) confirms
these differences are not statistically meaningful.

Figure 4: Average model rankings across the four transfer scenar-
ios. Lower is better. POW4 consistently outperforms other models
across all scenarios, while LC-PFN shows unexpected weakness in
familiar scenarios (KDKL, UD) but slighly stronger generalization
to completely unseen data (UL, UDUL).

Performance Across Cutoff Percentages
The analysis of performance across different cutoff percent-
ages (Figure 5) reveals that POW4 maintained the best perfor-
mance across all cutoff points except at 90%, where MMF4
slightly exceeded it. POW4 demonstrated remarkable sta-
bility across all cutoff percentages, while both MMF4 and
WBL4 showed improved performance as more of the learn-
ing curve became available for fitting. Most notably, LC-
PFN exhibited a distinctive pattern: it ranked second-best at
the 10%, 30%, and 50% cutoffs but showed degraded perfor-
mance as the cutoff percentage increased. This finding sug-
gests that LC-PFN demonstrates particular strength in extrap-
olating from limited early-stage learning curve data.

Figure 5: Model ranking across different learning curve cutoff per-
centages. LC-PFN demonstrates competitive performance at early
cutoffs (10-50%) but degrades as more data becomes available,
while POW4 maintains consistently strong performance across all
cutoffs.
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Statistical Significance Analysis
The statistical significance analysis (Figure 6) reveals that
LC-PFN differs significantly from all parametric models,
with very low p-values (ranging from 2.8e− 8 to 5.6e− 10).
These unusually low p-values can also be attributed to the
large sample size (n = 1000) used in the analysis. In con-
trast, comparisons between the parametric models (MMF4,
POW4, WBL4) yielded higher p-values (ranging from 0.27
to 0.87), indicating that the performance differences between
these models are not statistically significant.

Figure 6: Statistical significance heatmap showing p-values for pair-
wise model comparisons using MAE. LC-PFN shows statistically
significant differences from all parametric models, while compar-
isons between parametric models show higher p-values indicating
non-significant differences.

5.2 Results of Experiment 2: Model Comparison
Across Learning Curve Shapes and Cutoffs

This shape-specific evaluation of model performance pro-
vides some insights into the specialized strengths and weak-
nesses of both parametric and neural network approaches.

Figure 7 shows the average ranking performance of each
model across the four learning curve shapes. POW4 and
MMF4 emerge as the two strongest competitors, with their
relative performance varying depending on learning curve
shape. For Flat and MonoConv shapes, POW4 demonstrates
a slight advantage over MMF4, while for Peaking and Dip-
ping curves, MMF4 outperforms POW4. WBL4 consistently
ranks third across all shape categories, while LC-PFN shows
the weakest performance, particularly struggling with Dip-
ping curves where it ranks substantially behind all parametric
models.

The radar chart analysis (Figure 8) provides an alternative
visualization of these performance patterns, displaying each
model’s relative strength profile across the four learning curve
shapes. The plotted values represent normalized performance
scores, calculated by transforming average ranks into ”good-
ness” scores where higher values indicate better performance:
score = (max rank −model rank + 1)/max rank. This
transformation allows direct comparison of model strengths,
with values near 1.0 indicating excellent performance and
values near 0.0 indicating poor performance for that partic-
ular shape.

Figure 7: Average model rankings across four learning curve shape
categories. POW4 and MMF4 compete closely, with POW4 show-
ing advantages for Flat and MonoConv shapes while MMF4 excels
at Peaking and Dipping curves. LC-PFN ranks worst.

Figure 8: Radar chart showing normalized performance scores (0-1
scale) for each model across learning curve shapes. POW4 demon-
strates balanced performance, MMF4 shows particular strength on
complex curve morphologies.

Figure 9 synthesizes these findings into practical model se-
lection guidance based on learning curve shape and cutoff
percentage. The recommendations are determined by identi-
fying the model with the lowest average rank for each shape-
cutoff combination, while the color intensity represents rec-
ommendation confidence calculated from the performance
gap between the best and second-best models. A rank differ-
ence of 0.5 or greater between the top two models results in
maximum confidence (darkest color), indicating a clear per-
formance advantage.

The matrix reveals that POW4 dominates recommenda-
tions for early-stage extrapolation (10-30% cutoffs) across
all curve shapes, while MMF4 increasingly becomes the pre-
ferred choice at higher cutoff percentages (50-90%), partic-
ularly for Peaking and Dipping curves. This pattern sug-
gests that MMF4’s additional mathematical complexity pro-
vides advantages when sufficient data is available to prop-
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erly estimate its parameters, especially for curves with more
complex morphological characteristics. The confidence lev-
els indicate that model selection becomes particularly critical
for certain shape-cutoff combinations, with the highest con-
fidence recommendations occurring where clear performance
differences exist between competing models.

Figure 9: Model recommendation matrix based on lowest average
rank performance, with color intensity indicating recommendation
confidence. POW4 dominates early cutoffs while MMF4 becomes
preferred at higher cutoffs for complex, non-traditional shapes (i.e.
Peaking and Dipping).

6 Discussion
Our comprehensive evaluation across LCDB 1.1 reveals
counterintuitive findings that challenge expectations about
neural network superiority in learning curve extrapolation.
Parametric models, particularly POW4 and MMF4, consis-
tently outperformed LC-PFN across most scenarios, contra-
dicting the assumption that neural networks should excel at
capturing complex patterns in learning curve data.

However, a crucial finding emerges from the cutoff analy-
sis, offering insight into RQ2: LC-PFN ranked second-best
at 10%, 30%, and 50% cutoffs but showed degraded perfor-
mance as cutoff percentages increased. This pattern reveals
that LC-PFN demonstrates particular strength in extrapolat-
ing from limited early-stage learning curve data, suggesting
real potential for neural approaches when practitioners have
access to only small portions of learning curves.

Beyond this, a nuanced trend emerges when investigat-
ing RQ3 considering the shape of the learning curve. LC-
PFN consistently lagged behind all parametric models, but
its relative performance varied depending on the curve’s mor-
phology. It showed slightly improved rankings on more ir-
regular curves—particularly those with peaking or dipping
behaviors—suggesting some adaptability to non-monotonic
patterns, even though it still trailed behind parametric base-
lines like MMF4 and POW4. On smoother or flatter curves,
where more predictable shape patterns dominate, LC-PFN
performed comparatively worse. This indicates that while
the neural model struggles broadly, it may be somewhat
more sensitive to complex curve dynamics, albeit not robust
enough to consistently compete with the more tailored induc-
tive structures of parametric approaches.

Important Disclaimer: The LC-PFN architecture used in
this study was trained exclusively on curves of fixed length
(SEQ LEN = 80), which limits interpretation of these results.
This constraint means the model never encountered curves of
varying lengths during training, fundamentally undermining
its ability to generalize across the diverse curve lengths in
LCDB 1.1. As a result, the KDKL set, having fewer fixed-
length curves, is disproportionately reduced when applying
this length filter, potentially misrepresenting LC-PFN’s per-
formance in this scenario. This limitation particularly im-
pacts transfer scenario analysis when addressing RQ1 and
may help explain why LC-PFN underperforms even in set-
tings where strong generalization should not be necessary.

Several other factors may contribute to LC-PFN’s subopti-
mal performance beyond early cutoffs. The model could be
overfitting to its synthetic training distribution, which may in-
adequately capture the 14% prevalence of ill-behaved curves
in LCDB 1.1. Additionally, the modest training configura-
tion, imposed by the computational and time constraints of
this study, may lack sufficient representational capacity for
the diverse patterns across learning curves.

Conversely, parametric models’ consistent superiority
stems from their mathematical inductive biases that align well
with common learning curve behaviors. Unlike neural net-
works, parametric models require no training—only fitting
to each individual curve—making them computationally effi-
cient and robust to distribution shifts. These built-in advan-
tages give them an edge in extrapolation, particularly when
computational budgets are limited or when curve-by-curve
adaptability is prioritized.

Practitioners should consider not only predictive perfor-
mance but also computational commitments and flexibility
when choosing between LC-PFNs and parametric models.

7 Conclusions and Future Work
This research demonstrates that parametric models, particu-
larly POW4 and MMF4, consistently outperform LC-PFNs
for learning curve extrapolation across most scenarios in
LCDB 1.1. However, the critical finding that LC-PFN per-
forms second-best at early cutoff percentages (10-50%) re-
veals significant potential for neural approaches when extrap-
olating from limited data, precisely the scenario most valu-
able to practitioners seeking early performance predictions.

The identified architectural limitation requiring fixed-
length sequences severely constrains current LC-PFN appli-
cability and likely explains much of its underperformance.
Future work should prioritize developing LC-PFN architec-
tures that train on curves of varying lengths rather than fixed
sequences, which we expect to considerably improve neural
network performance. Additionally, exploring larger, more
expressive architectures and ensemble strategies combining
parametric and neural approaches could leverage the comple-
mentary strengths revealed by this analysis.

These findings suggest that while parametric models re-
main the more reliable general choice, neural networks show
particular promise for early-stage extrapolation scenarios,
warranting continued development of improved architectures
that address current limitations.
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8 Responsible Research
To ensure full transparency and reproducibility, all code
used in this study is publicly available on GitHub, includ-
ing data processing methods, model training, and evalua-
tion notebooks. The repository includes detailed documen-
tation with setup instructions, and dependency specifications
(requirements.txt). Random seeds were fixed across all
experiments (seed=42) to guarantee consistent results across
runs. Additionally, the pre-trained weights of the LC-PFN
model is contained within the same codebase, allowing oth-
ers to replicate the findings without retraining from scratch.

All experimental configurations, hyperparameters, and
model architectures are documented in the codebase. This en-
ables future researchers to verify results, build upon the work,
or benchmark against the same experimental conditions with
minimal setup overhead.

This research uses the publicly available Learning Curve
Database (LCDB) v1.1 and OpenML datasets - all freely ac-
cessible for research purposes. No personally identifiable or
sensitive information was involved in this study, as all learn-
ing curves represent aggregated performance metrics from
ML algorithms. We acknowledge the original contributors
to LCDB and OpenML, and encourage users of our code to
maintain proper attribution to these foundational resources.

In the interest of transparency, we acknowledge the use of
large language models (LLMs) to assist with specific aspects
of this research. Artificial Intelligence (AI) tools were em-
ployed solely for language refinement—polishing sentence
structure and improving text flow while preserving all orig-
inal research content, ideas, and findings as our own intellec-
tual contribution. Additionally, LLMs were used to generate
initial code templates and structural frameworks for data visu-
alization, serving as starting points that were then extensively
modified and refined. All final visualizations, analyses, inter-
pretations, and scientific conclusions represent our indepen-
dent work, with AI assistance limited to enhancing presenta-
tion quality and maintaining aesthetic consistency across fig-
ures. For a more detailed breakdown of AI usage, consult
Section C from the Appendix.

Given the growing concern about the environmental impact
of ML research, we report the computational resources used
in this study. The LC-PFN training required approximately
1 GPU-hour on NVIDIA Tesla P100, consuming 0.25kWh
of electricity. The estimated carbon footprint is 0.125kgCO2

equivalent, calculated using the methodology from Strubell et
al. [5] with global average electricity carbon intensity factors.

This research contributes to the fundamental understanding
of when different approaches are most effective for learning
curve extrapolation. Positive practical implications include:

• Helping practitioners make more informed decisions
about data collection strategies

• Reducing computational waste through better model se-
lection guidance

• Contributing to more efficient ML workflows
We encourage readers to view these results as contribut-

ing to an ongoing scientific dialogue rather than definitive an-
swers, and to conduct domain-specific validation before mak-
ing significant methodological commitments.
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A Experiment 1: Additional Resulting Plots

Figure 10: Model performance across different cutoff percentages (10%–90%) for SMAPE, MAE, and MSE. Lower is better.

Figure 11: Model performance across four transfer scenarios: Known Dataset Known Learner (KDKL), Unseen Dataset (UD), Unseen
Learner (UL), and Unseen Dataset Unseen Learner (UDUL). Lower is better.
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Figure 12: Performance indicated by SMAPE across all transfer scenarios and cutoffs. 4 transfer scenarios x 5 cutoff points = 20 experimental
conditions. Lower is better.

Figure 13: Performance indicated by MAE across all transfer scenarios and cutoffs. 4 transfer scenarios x 5 cutoff points = 20 experimental
conditions. Lower is better.

Figure 14: Performance indicated by MSE across all transfer scenarios and cutoffs. 4 transfer scenarios x 5 cutoff points = 20 experimental
conditions. Lower is better.
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Figure 15: Statistical significance heatmap showing p-values for pairwise model comparisons using SMAPE.

B Experiment 2: Additional Resulting Plots

Figure 16: Model performance across All Metrics (SMAPE, MAE, MSE) and Shapes (Flat, Monotone & Convex, Peaking, Dipping). Lower
is better.
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Figure 17: Performance indicated by SMAPE across all shapes and cutoffs. 4 shapes x 5 cutoff points = 20 experimental conditions. Lower
is better.

Figure 18: Performance indicated by MAE across all shapes and cutoffs. 4 shapes x 5 cutoff points = 20 experimental conditions. Lower is
better.

Figure 19: Performance indicated by MSE across all shapes and cutoffs. 4 shapes x 5 cutoff points = 20 experimental conditions. Lower is
better.
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Figure 20: Binary Shape Comparisons across All Metrics. Eg. ’Dipping’ is the set of samples with curves displaying this shape, ’Non-
Dipping’ is the set of samples containing curves with less dipping characteristics. Lower is better.

C Artificial Intelligence (AI) Usage Disclosure

AI Assistance Category Used Not Used
Language refinement and syntax improvement ✓

Initial code structure for visualization/plot templates ✓

Aesthetic consistency across figures and plots ✓

Research conceptualization and hypothesis formulation ✓

Data collection and experimental design ✓

Statistical analysis and result interpretation ✓

Scientific conclusions and discussion of findings ✓

Literature review and citation selection ✓

Table 1: Scope of AI tool utilization in research workflow.

AI assistance was applied selectively after independent development of all core research content. Language enhancement
tools were used to improve paragraph clarity while preserving technical accuracy, and initial visualization frameworks were
generated and subsequently customized to meet specific analytical requirements. All AI-assisted outputs underwent careful
review to maintain consistency with research objectives.
To illustrate the scope of AI assistance, some typical requests for language enhancement were structured as:

“Improve the readability of this technical paragraph while maintaining all specific terminology and quantitative
details. Focus on sentence structure and transitions without altering the scientific content or conclusions.”

“Create a function that takes data X and processes it by [detailed description of processing method], then displays
the results as a [detailed description of the type of plot/visualisation].”

D Supporting Code
The supporting code can be found at the following GitHub address: https://github.com/adelinacazacu/Extrapolating-Learning-
Curves-When-Do-Neural-Networks-Outperform-Parametric-Models-.
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