
Hybrid MPC based Motion Cueing
Algorithm for Driving Simulators

Akhil Chadha

Hybrid MPC based
Motion Cueing Algorithm
for Driving Simulators

by

Akhil Chadha
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering
at the Delft University of Technology

Student number: 5223121
Graduation committee: Dr. Barys Shyrokau, Chair and Supervisor, CoR-IV, TU Delft

Ir. Vishrut Jain, Supervisor, CoR-IV, TU Delft
Dr. Daan Pool, External Committee Member, AE, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Driving simulators have been used in the automotive industry for many years now. They have been
vastly employed for conducting tests in a safe, reproducible and controlled immersive virtual environ-
ment. The ability of the simulator to recreate the in-vehicle experience for the occupant is established
through motion cueing algorithms. Such algorithms have consistently been developed with model pre-
dictive control (MPC) acting as the main control technique. Currently available MPC based methods
either compute the optimal controller online or derive an explicit control law in an offline setting. These
approaches limit the applicability of MPC for real-time applications due to online computational expense
and offline memory storage issues.

This thesis report presents a solution to deal with issues of offline and online solving through a
combined/hybrid approach. For this, explicit MPC is used to provide an initial guess as warm start
for the implicit MPC based motion cueing algorithm. From the simulations, it was observed that the
presented hybrid approach was able to reduce online computational load by shifting it offline using
the explicit MPC. Further, braking constraints and adaptive washout weights were implemented in the
hybrid motion cueing algorithm, to improve the specific force tracking performance and reduce any false
cue occurrences. Finally, emulator studies were performed to realize driving simulator performance
with the hybrid MPC approach. The thesis concludes by showing the improvements made with the
developed algorithm and proposes recommendations for future work.

iii

Acknowledgement
The last two years of my masters program here at TU Delft have been full of challenges which have
definitely helped me in growing as a person. Now that this program is about to finish, I would like to
take the opportunity to thank the people who have helped me along the way.

Firstly, I would like to thank Dr. Barys Shyrokau for allowing me to do my thesis in his research group
and work on this exciting topic. Thank you for your knowledge, experience and advice throughout the
course of my thesis project. Also, I would like to thank my daily supervisor Vishrut Jain for his constant
support and guidance during the thesis.

Secondly, I would like to express my appreciation towards my family who helped me get to where
I am today. Thank you for always believing in me and pushing me to excel. It would not have been
possible without your support.

Lastly, I would like to thank my friends from TU Delft and from back home in India who I could always
count on for moral support and a helping hand throughout this journey.

Akhil Chadha
Delft, August 2022

v

Contents

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 Driving Simulators . 1
1.2 Problem Definition . 3
1.3 Research Objective . 3
1.4 Thesis Layout. 3

2 Background 5
2.1 Human Perception . 5
2.2 Conventional Motion Cueing Algorithms . 6

2.2.1 Classical Washout Filter Based Algorithm. 6
2.2.2 Optimal Washout Filter Based Algorithm . 8
2.2.3 Adaptive Washout Filter Based Algorithm. 9

2.3 Model Predictive Control . 9
2.3.1 What is model predictive control? . 9

2.4 Modeling an MPC Problem . 11
2.4.1 Types of MPC. 12
2.4.2 Past Literature Work . 13

2.5 Summary . 15

3 Main Controller Design 17
3.1 Types of Motion Cueing Models . 18
3.2 Summary . 18

4 Motion Cueing Algorithms 19
4.1 2 DOF Hybrid MPC based Motion Cueing Algorithm . 19

4.1.1 Explicit MPC based Motion Cueing Algorithm. 19
4.1.2 Implicit MPC based Motion Cueing Algorithm. 21

4.2 4 DOF Hybrid MPC based Motion Cueing Algorithm . 24
4.2.1 Explicit MPC based Motion Cueing Algorithm. 24
4.2.2 Implicit MPC based Motion Cueing Algorithm. 26

4.3 Summary . 26

5 Simplified Actuator Dynamics 27
5.1 Test Cases . 27
5.2 2 DOF Simulations . 29

5.2.1 Initial Explicit MPC Performance. 29
5.2.2 Effect of Move Blocking Constraint . 30
5.2.3 Effect of Braking Constraints. 31
5.2.4 Hybrid MPC Performance . 33

5.3 4 DOF Simulations . 37
5.3.1 Explicit MPC Performance . 37
5.3.2 Hybrid MPC Performance . 38

5.4 Summary . 43

vii

viii Contents

6 Advanced Simulator Dynamics 45
6.1 Simulation Setup . 46
6.2 Simulation Performance . 47
6.3 Virtual Track Simulations . 49
6.4 Summary . 52

7 Conclusion and Recommendations 53
7.1 Conclusion . 53
7.2 Recommendations . 54

A Scientific Paper 55

B Human Perception 63
B.1 Vestibular System Modeling . 63
B.2 Perception Threshold Analysis. 66

C Simulation Results 67
C.1 Selection of Braking Constraint Parameters . 67
C.2 Explicit MPC Benchmark . 69
C.3 Explicit MPC Parametric Studies . 70

C.3.1 Influence of Constraints . 70
C.3.2 Influence of Braking Constraints on RMSE . 71
C.3.3 Influence of Weights . 72

C.4 Hybrid MPC Performance . 72
C.4.1 2 DOF Motion Cueing Algorithm . 72
C.4.2 Emulator Simulations. 75

D Toolbox Information 79
D.1 ACADO Toolkit . 79
D.2 Multi-Parametric Toolbox . 80

References 83

List of Figures

1.1 Different kinds of driving simulators . 2
1.2 Geometrical model of the Gough-Stewart motion platform [5] 2

2.1 Vestibular system of the human body [12] . 5
2.2 Scheme of a classical washout filter based algorithm . 6
2.3 Scheme of a optimal washout filter based algorithm [20] 8
2.4 Scheme of an adaptive filter based algorithm . 9
2.5 Model predictive control scheme . 10
2.6 Model predictive control problem layout [23] . 10
2.7 An example of critical regions for a two state problem with a control input 13

3.1 Scheme of the hybrid MPC based motion cueing algorithm 17

4.1 Effect of move blocking constraint . 21
4.2 Adaptive weights for platform displacement 𝑠𝑝 . 23

5.1 Reference signals used for simulations . 28
5.2 Initial explicit MPC motion cueing performance for sine wave of amplitude 2 29
5.3 Explicit MPC motion cueing performance with move blocking constraint for sine wave of

amplitude 2 . 31
5.4 Explicit MPC motion cueing performance with braking constraint for sine wave of ampli-

tude 2 . 31
5.5 Braking constraint plot . 32
5.6 Explicit MPC motion cueing performance with braking constraint for sine of amplitude 0.5 32
5.7 Motion cueing performance with braking constraints and washout weights for sine wave

of amplitude 0.5 . 33
5.8 Motion cueing performance for multiple event signal with adaptive weights 35
5.9 Sine wave of amplitude 1 and frequency 0.1 . 38
5.10 Sine wave of amplitude 0.5 and frequency 0.1 . 38
5.11 Sine wave of amplitude 0.5 and frequency 0.1 . 39
5.12 Multiple event wave . 40

6.1 Commander graphical user interface . 46
6.2 Emulator performance comparison for combined sine wave 47
6.3 Hockenheim race track . 49
6.4 Longitudinal motion results for Hockenheim track simulation at 120km/h 50
6.5 Lateral motion results for Hockenheim track simulation at 120km/h 51

B.1 Step and frequency response for semicircular canals . 64
B.2 Step and frequency response for otolith organs . 65
B.3 Sensitivity analysis . 66

C.1 Braking control law evolution for different parameter setting T 68
C.2 Motion cueing performance with varying 𝑇𝑏𝑟𝑘,𝑝 parameter values 68
C.3 Motion cueing performance with varying 𝑇𝑏𝑟𝑘,𝑞 parameter values 69
C.4 Step signal tracking performance comparison between created motion cueing algorithm

and work done by [6], [43] . 70
C.5 Sine wave tracking performance comparison between created motion cueing algorithm

and work done by [6], [43] . 70
C.6 Motion cueing performance for step signal with adaptive weights 74

ix

x List of Figures

C.7 Motion cueing performance for sine wave with adaptive weights 74
C.8 Emulator performance comparison for step signal of amplitude 0.1 75
C.9 Emulator performance comparison for sine wave of amplitude 1 76
C.10 Longitudinal motion results for Hockenheim track simulation at 80km/h 77
C.11 Lateral motion results for Hockenheim track simulation at 80km/h 77
C.12 Longitudinal motion results for Hockenheim track simulation at 100km/h 78
C.13 Lateral motion results for Hockenheim track simulation at 100km/h 78

D.1 Hybrid motion cueing algorithm simulink model . 81
D.2 Simplified actuator dynamics for 2 DOF motion cueing algorithm 82

List of Tables

5.1 Reference signals used for simulations . 27
5.2 Influence of move blocking with different 𝑁𝑝 values . 30
5.3 Tuned washout weights for all test scenarios . 33
5.4 Comparison between constant and adaptive washout weights in terms of false cues gen-

erated . 34
5.5 Mean iteration values for all four motion cueing models with adaptive washout weights . 35
5.6 Absolute error values with iMPC for all hybrid models with adaptive washout weights . . 36
5.7 Specific force RMSE values for all four motion cueing models with adaptive washout

weights . 36
5.8 Computation time difference with changing prediction horizon and sampling time 37
5.9 Mean iteration values for all four motion cueing models with adaptive washout weights . 41
5.10 Absolute error values with iMPC for all hybrid models with adaptive washout weights . . 42
5.11 Specific force RMSE values (longitudinal motion) for all four motion cueing models with

adaptive washout weights . 42
5.12 Specific force RMSE values (lateral motion) for all four motion cueing models with adap-

tive washout weights . 43

6.1 System performance of the DAVSi . 45
6.2 Mean iteration values for all four motion cueing models with the emulator and offline

simulations . 48
6.3 Specific force RMSE values for all four motion cueing models with the emulator and

offline simulations . 49
6.4 Mean iteration values for all four motion cueing models with track simulations 51
6.5 Specific force RMSE values for all four motion cueing models with track simulations . . 52

B.1 Transfer function parameters for semicircular canals . 63
B.2 Step response characteristics for semicircular canals . 64
B.3 Transfer function parameters for otolith organs . 64
B.4 Step response characteristics for otolith organs . 65
B.5 Perception threshold values from literature . 66

C.1 Influence of constraints on computational load . 71
C.2 Influence of braking constraints on RMSE . 71
C.3 Influence of weights on computational load . 72
C.4 Mean iteration values for all four motion cueing models with best constant washout weights 72
C.5 Absolute error values with iMPC for all hybrid models with best constant washout weights 73
C.6 Specific force RMSE values for all four motion cueing with best constant washout weights 73
C.7 Vehicle parameters . 76

D.1 ACADO solver settings . 79

xi

Abbreviations

MPC Model predictive control
DOF Degree of freedom
PWA Piecewise affine
mpLP Multi-parametric linear programming
mpQP Multi-parametric quadratic programming
DIL Driver in loop
MCA Motion cueing algorithm
IP Interior point
SQP Sequential quadratic programming
RTI Real time iteration
OCP Optimal control problem
LNL Linear nonlinear
NLL Nonlinear linear
MPT Multi parametric toolbox
RMSE Root mean square error
eMPC Explicit model predictive control
iMPC Implicit model predictive control
DAVSi Delft Advanced Vehicle Simulator

xiii

1
Introduction

Before implementation of any new advancement in vehicular technology, it is usually tested upon using
driving simulators. These simulators are used to create the same experience that one would feel on
the road without any damages to the real vehicle. Thus, it is extremely important that the simulator
movements take place with the aim of recreating the in-vehicle experience. To achieve this, a motion
cueing algorithm is used, which acts as the control technique for the driving simulator’s movements.
It governs the process allowing the simulator to function properly so that a similar feeling of motion is
experienced by the user. It also maximizes workspace utilization during motion cueing [1]. In addition,
visual, audio, vestibular and haptic cues are used in the simulator set-up. These cues work together
to create a virtual environment mimicking on-road experience.

In motion cueing, a vehicle model is used which takes in the driver input and sends the output to
the created motion cueing algorithm. Then, the algorithm decides the desired motion which is per-
formed by the driving simulator. Sensed specific force values 𝑓𝑠𝑝𝑒𝑐,𝑠 are obtained from the simulator
which are calculated using simulator dynamics. These perceived accelerations comprise of two com-
ponents; platform translational acceleration 𝑎𝑡𝑟𝑎𝑛,𝑝 and the gravitational tilt 𝑔𝑡𝑖𝑙𝑡. This ensures that all
acceleration forces are considered, allowing us to study the human body’s movement in space during
the cueing process. Sensed values are then compared with the actual specific force 𝑓𝑠𝑝𝑒𝑐,𝑎 obtained
from the vehicle model. The computed error is then fed back into the motion cueing algorithm block as
feedback in order to improve results for the next time step. Some cueing algorithms however do not
employ an error calculation step.

1.1. Driving Simulators
As stated previously, a driving simulator is used to recreate the in-vehicle experience. For this reason,
the general layout of a driving simulator comprises of a visual projector, an audio system and the driving
platform. The visual projector shows the corresponding road environment, audio system simulates real
world on-road noises and the driving platform creates the desired motion according to the vehicle’s
position and orientation.

There are various types of driving simulators and the Gough-Stewart design is one of the most
famous driving simulators to be used over the years. It is a six-legged parallel manipulator which has
a high stiffness and load capacity, making it a favourable choice for a virtual environment to recreate
the in-vehicle experience. An example of what the simulator looks like can be seen in Figure 1.1a. The
platform as shown in the figure comprises of three main components; the fixed base attached to the
ground, the platform or moving frame on which the vehicle cockpit is situated and the actuator legs [2].
This simulator is able to provide motion in 6 degrees of freedom (DOF) ie. three translational motions
(surge 𝑥, sway 𝑦 and heave 𝑧) and three rotational motions (roll 𝜙, pitch 𝜃 and yaw 𝜓). Apart from the
6 DOF Gough-Stewart simulator, other simulators are also used, such as the 3 DOF motion platform
commonly used for racing games or a more advanced driving simulator comprising of 8 DOF motion
capabilities with a separate rail and tilting platform. Such a simulator has been developed at Renault
called the ULTIMATE driving simulator [3]. An example of what the simulator looks like can be seen in
Figure 1.1b. A 9 DOF simulator has also been developed comprising of a platform base moved by a

1

2 1. Introduction

tripod, upon which the hexapod is situated as studied and used in [4].

(a) 6 DOF Gough-Stewart motion platform [1] (b) 8 DOF Renault ULTIMATE motion platform [3]

Figure 1.1: Different kinds of driving simulators

The geometrical model of the Gough-Stewart platform can be seen in Figure 1.2. A crucial aspect
of this geometrical model are the reference frames of the driving simulator. As shown in Figure 1.2,
three separate frames can be defined as follows:

• Inertial frame of reference - This reference frame is fixed to the base of the driving simulator and
does not move. It is denoted by ”I.F”.

• Platform frame of reference - This reference frame is fixed at the moving platform of the simulator.
It moves with the platform and is denoted by ”P.F”.

• Driver frame of reference - This is the driver reference frame which acts at the driver eye point.
It is denoted by ”D.F”.

Figure 1.2: Geometrical model of the Gough-Stewart motion platform [5]

1.2. Problem Definition 3

1.2. Problem Definition
Motion cueing algorithms are used to replicate the in-vehicle motion inside the simulator while ensuring
that workspace boundaries are adhered to. To realize this, several motion cueing algorithms have been
developed and implemented in different driving simulators. This includes conventional filter based
algorithms, which use the property of high and low pass filters to feed input into the driving simulator.
Such algorithms have shown promise but suffer from issues such as minimum workspace utilization
and inability to take constraints into account. This leads to using advanced control techniques such
as Model Predictive Control (MPC). MPC allows incorporation of explicit constraints, as part of the
algorithm to ensure maximum workspace utilisation. By using this control technique, an improvement
in the capability of the motion cueing algorithm can be observed. It is mainly of two types; implicit
(online) or explicit (offline) with the former approach being most commonly used in this field.

It is important to understand that even though there have been advancements made in this domain,
by using MPC, there is still a prominent restraining factor present in the form of computational efficiency.
For the implicit controller, the online computation time tends to exceed the sampling rates needed to
run the algorithm and maintain realistic simulator motion. Using the explicit controller, as an alternative,
seems like a good solution as the control law is computed offline leading to a simple control input look-
up table selection in real-time. However, this approach suffers from memory storage issues and has
limitations in using large prediction horizons with fast sampling rates for high dimensional problems;
which is why it cannot be used on its own. As a consequence there is need to shift the bulk of the
online computational load offline to allow efficient online working of the MPC controller in real-time.

1.3. Research Objective
As mentioned earlier, advanced control techniques such as MPC have been extensively used for real-
time implementation of motion cueing algorithms. But, the main issue observed is that these algorithms
are computationally expensive. For this, a combined/hybrid approach will be developed which uses
the initial explicit MPC solution as a guess/warm start for the final implicit MPC based motion cueing
algorithm. This type of an algorithm has not yet been implemented in the domain of motion cueing
algorithms and thus would act as a novel approach for this field.

Thus, the main goal for the thesis can be outlined as to develop a hybrid MPC based motion
cueing algorithm to mitigate online computation costs for real-time implementation in driving
simulators, with the following research objectives:

• Develop a motion cueing algorithm which combines explicit and implicit MPC based approaches
to improve online computation time while maintaining performance for a simple cueing problem.

• Extend the developed motion cueing algorithm for higher degree of freedom problems to evaluate
the capabilities of the hybrid approach

• Perform emulator studies, taking 6 DOF hexapod dynamics into account, to analyse the algo-
rithm’s simulation results and performance.

The work done by [6] in developing the explicit MPC based cueing algorithm will act as a benchmark
for designing the explicit controller in this study. This algorithm will be altered according to our simulator
specifications and requirements and be used as the initial guess for the hybrid cueing algorithm.

1.4. Thesis Layout
This thesis report is divided into 7 chapters. Chapter 1 provides a brief introduction into motion cueing
algorithms for driving simulators and concludes with the thesis goal. Chapter 2 provides the necessary
theory required to understand the working of motion cueing algorithms in detail, with information about
conventional filter and MPC based algorithms. The main controller design used in this research is
presented in chapter 3. In chapter 4, the developed 2 DOF motion cueing algorithm is explained along
with extensions to take 4 DOF capabilities into account. Chapter 5 describes the test cases used in
performing simulations with the developed motion cueing algorithms. Simplified actuator dynamics
are used in these simulations and the results obtained are discussed. In chapter 6, emulator results
with the Delft Advanced Vehicle Simulator (DAVSi) are shown. Finally, in chapter 7, conclusion and
recommendations for future work are laid out.

4 1. Introduction

Additional information which would be too extensive for the main report is presented in the Appen-
dices as follows:

• Appendix A contains the scientific paper based on the work done in this research
• Appendix B has information about different human perception models used in literature along with
an extensive comparative study done using these models.

• Appendix C contains additional simulation results for the designed algorithms.
• Appendix D has information on the toolboxes used to design and develop the motion cueing
algorithms

2
Background

2.1. Human Perception
Perception deals with the human senses that generate signals from the environment through sight,
hearing, touch, smell, taste etc. [7]. For driving simulators, there are four main relevant perception
systems present in the human body. These can be categorised into audio, visual, somatosensory and
vestibular systems; which are explained in detail as follows:

• Audio System - The human body has an audio perception system which is able to take in infor-
mation with respect to audio signals in the nearby surrounding environment. It does this with the
help of the human ear and is extremely useful for not only recognising objects around the human
body but, to also get a sense of position in space [8].

• Visual System - The visual system is used to identify position and orientation in space. It does
this by using the human eye as its main component. Using this it is able to confirm information
that our audio system provides us by matching the signal with the particular object around us.
For example; when we hear a person speak from behind, our visual perception system is able to
identify the human speaking by looking at them [9].

• Somatosensory System - This system comprises of various sensory neurons that are responsive
to different kinds of motion but mostly focus on the physical part. The central nervous system
uses these neurons, such as peripheral receptors and neural pathways, to attain information
regarding touch, pain, temperature, position and movement of different parts of the body. When
dealing with driving simulators, this is also sometimes referred to as haptic feedback; vibrations
on the steering wheel [10], [11].

Figure 2.1: Vestibular system of the human body [12]

5

6 2. Background

• Vestibular System - The vestibular system relates to recognising and sensing the human body’s
movement in space. This characteristic is used in a vast variety of central nervous system fea-
tures such as body posture, spatial navigation and bodily self-consciousness. It is present inside
the human ear and its components can be seen in Figure 2.1 [12].
The peripheral vestibular organs in the inner ear consist of otoliths. These comprise of the utri-
cle and saccule which are used to sense linear accelerations. It also consists of the semicircular
canals which comprise of the anterior, posterior, and horizontal canal (for yawmovement whereas
the other two are together responsible for pitch and roll movements) used to sense rotational ve-
locities. The vestibular nerve projects signals from otoliths and semicircular canals to the central
nervous system [12]. The process of sensing the required acceleration and angular velocity oc-
curs when our head starts to move. Due to this movement, the semicircular canals which are
filled with a viscous fluid called the endolymph exerts pressure on the cupula which is present at
the end of each canal. This pressure stimuli is then converted into a nerve discharge sending
information to the central nervous system [13]. The same procedure takes place for the otolith
organs.

From the above listed perception systems, the vestibular system is of primary importance for motion
cueing algorithms as it deals with motion in space. For including the effect of the vestibular system in
the algorithm itself, two main components are taken into account. These are the semi-circular canals
and the otolith organs as they sense the rotational velocities and linear accelerations. Apart from this,
specific force formulation can also be used to represent the perceived accelerations. The different
kinds of vestibular models present along with an in-depth analysis is presented in Appendix B.

2.2. Conventional Motion Cueing Algorithms
A conventional filter based algorithm is a type of motion cueing algorithm that uses the properties of
high and low pass filters ie. to break down input frequencies into high and low frequency motions, to
create the same experience inside the simulator as that would be felt on a real road [14]. This takes
place using different kinds of filter based algorithms which are as follows:

• Classical Washout Filter Based Algorithm
• Optimal Washout Filter Based Algorithm
• Adaptive Washout Filter Based Algorithm

2.2.1. Classical Washout Filter Based Algorithm
A classical washout filter based algorithm was the first of its kind filter based motion cueing algorithm,
that was used to send motion commands to the driving simulator. A common scheme of this algorithm
can be seen in Figure 2.2.

Figure 2.2: Scheme of a classical washout filter based algorithm

The algorithm first starts with the reference generator which is used to send in the inputs, trans-

2.2. Conventional Motion Cueing Algorithms 7

lational acceleration and rotational velocities, to the motion cueing algorithm. Then, the algorithm is
divided into three separate channels as shown in the figure. Before the respective input signal is sent to
each of these channels, two actions take place. First, the frame of reference of the signal is changed to
the inertial reference frame with the help of Euler angles. Second, the transformed signals are scaled
appropriately. This scaling action takes place to ensure that the amplitude of the input signal is re-
duced, as humans are not able to distinguish between forces acting on them on the real road and the
specific forces that are experienced inside the simulator. Thus, allowing the execution of more realistic
motions with greater amplitudes without exceeding the physical limits of the simulator [15]. The scaling
action that takes place for translational acceleration can be seen in Equation 2.1.

𝑎𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐾𝑓𝑎𝑐𝑡𝑜𝑟 ⋅ 𝑎𝑖𝑛𝑝𝑢𝑡 (2.1)

Here, 𝑎𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled translational acceleration, 𝐾𝑓𝑎𝑐𝑡𝑜𝑟 is the scaling factor and 𝑎𝑖𝑛𝑝𝑢𝑡 is the input
translational acceleration. A similar action occurs for rotational velocity as well. Once the scaling action
is complete, the individual channels execute their functions which are described below:

• Translational Channel - This channel takes in the translational acceleration as the input in the
appropriate reference frame after scaling has been done. The signal is passed through the high
pass filter and consequently integrated twice to compute the translational displacement. There
are two reasons why a high pass filter is present which are as follows:

– The first reason is to allow the washout effect to take place. Washout here means that
the simulator returns to its neutral position when the motion has finished. This allows the
simulator to utilize the entire available workspace for its next desiredmovement. This is done
by using a third order high pass filter as convergence takes place for a 3𝑟𝑑 order filter ie.
displacement of the motion platform tends to zero for translational accelerations. The filter
is a combination of 2𝑛𝑑 and 1𝑠𝑡 order filters whose expression can be seen in the equation
below [16]:

𝐺(𝑠) = 𝜔2𝑛
𝑠2 + 2𝜁 ⋅ 𝜔𝑛 ⋅ 𝑠 + 𝜔2𝑛

⋅ 𝜔𝑤
𝑠 + 𝜔𝑤

(2.2)

Where 𝜁 is the damping factor, 𝜔𝑛 is the cut-off frequency and 𝜔𝑤 is the washout frequency
allowing the washout effect to take place.

– The second reason why the high pass filter is used is because the low translational accelera-
tions can drive the actuators for a prolonged period of time. This drives the driving simulator
to its physical limits, not allowing anymore acceleration components to be reproduced. Thus,
these low sustained accelerations are filtered out [5], [14], [17], [18].

• Tilt Channel - Although the low sustained accelerations drive the simulator to its physical limits,
these signals are still important to us. In order to realize the effect of these signals, we exploit a
key feature of the human body and especially the otolith organ (which act as a high pass filter) that
they are unable to distinguish between the gravito-inertial and translational acceleration forces
acting on the human body. So, a tilt channel is first used to extract the low sustained accelerations
using a low pass filter with the same cutoffs as the high pass filter. Then, an illusion or false sense
of motion is created by tilting the platform below the perception threshold using the rate limiter so
that the driver is unable to realize the tilting effect taking place. This tilt effect in the lateral and
longitudinal direction is used to reproduce the acceleration terms laterally and longitudinally with
the help of the gravitational force, while ensuring that the orientation of the gravito-inertial forces
align with the orientation of the real acceleration. The gravity vector can be seen in Equation 2.3
[19].

𝑔𝑡𝑖𝑙𝑡 = 𝑅𝑥(𝜃) ⋅ 𝑅𝑦(𝜙) ⋅ [
0
0
𝑔
] = [

−𝑔 sin𝜃
𝑔 cos𝜃 sin𝜙
𝑔 cos𝜃 cos𝜙

] (2.3)

• Rotational Channel - The rotational channel is similar to the translational channel but deals with
inputted rotational velocities. Here, a high pass filter is again used as the low rotational velocities
are not reproducible and irrelevant. Also, the low velocity component is taken care of by the tilt

8 2. Background

channel as explained before. The high pass filter in this case is a 2𝑛𝑑 order transfer function as
we are now dealing with velocities. The expression of the filter is as follows [16]:

𝐺(𝑠) = 𝜔2𝑛
𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛

(2.4)

Where, 𝜁 is the damping factor, 𝜔𝑛 is the cut-off frequency. Once the low rotational velocities are
filtered out, the resulting signal is added to the output received from the tilt channel. Finally, an
integrator is used to compute the rotational displacements.

The classical washout based algorithm is an easy to executemotion cueing approach. It is computation-
ally inexpensive as we are only dealing with simple filters. However, it does have some disadvantages
while executing the algorithm. The first issue is that it is tuned for the worst case maneuver. This means
that the algorithm does not utilize the maximum available workspace for simple or gentle maneuvers,
thus leading to poor workspace utilization. Another issue is that it is a feedforward technique as seen in
the scheme in Figure 2.2. This leads to suboptimal results as no feedback is provided to the algorithm
at any point of time [14], [15], [19]. In order to tackle these issues, two different kinds of filter based
algorithms have been developed which will now be explained.

2.2.2. Optimal Washout Filter Based Algorithm
This is a separate class of filter based algorithms whose scheme can be seen in Figure 2.3. In this,
the feedforward nature of the classical washout algorithm is dealt with by providing feedback. The
formulation also includes a vestibular system as seen in the scheme. In developing an optimal washout
filter, the problem is to determine a model or set of transfer functions 𝑊(𝑠), that relates the simulator
motion input 𝑢𝑠𝑖𝑚 to the driving motion 𝑢𝑣𝑒ℎ, so that a cost function constraining the sensation error
is minimized. Here, sensation error refers to the error between the sensed motion of the driver in the
vehicle and the driver in the simulator. A sample cost function used in the algorithm can be seen below:

𝐽 = 𝐸 {∫
𝑡

0
(𝑒𝑇𝑄𝑒 + 𝑥𝑇𝑑𝑅𝑑𝑥𝑑 + 𝑢𝑇𝑠 𝑅𝑢𝑠) 𝑑𝑡} (2.5)

Where 𝑒 is the sensation error. The sensed motion consists of the sensed rotational velocity and
sensed translational accelerations. 𝑥𝑑 are the system states that consist of the simulator’s displacement
as well as their rates. Sometimes, integrated states are also a part of the system states as it can result
in better washout motion. Finally, 𝑢𝑠 is the control action of the driving simulator [20]. The cost function
defined above is then minimized by solving the Algebraic Riccati Equation giving optimal results.

Figure 2.3: Scheme of a optimal washout filter based algorithm [20]

The optimal washout filter based algorithm is able to solve the feedforward issue of the classical
approach and improve performance. But, it is also tuned for the worst case maneuver and thus, is
not able to maximise workspace utilisation. Adaptive filters are used to tackle this problem which is
explained in the upcoming section.

2.3. Model Predictive Control 9

2.2.3. Adaptive Washout Filter Based Algorithm
An adaptive filter based approach tries to solve the issue faced by the classical and optimal techniques.
The adaptive filter based algorithm works with adaptive filters which aim at improving maneuvers for
gentle/simple cases and give more realistic cues. This is because, previously the filters were tuned for
the worst case maneuver which resulted in poor workspace management. Now, adaptive filters can be
incorporated into the system. An example of how this takes place can be seen in Figure 2.4.

Figure 2.4: Scheme of an adaptive filter based algorithm

Adaptive filters are introduced in the translational and rotational channels as seen in the figure
above. These filters are used to minimize a cost function which can be of the form as seen in Equation
2.6. The cost function in this case has terms which compute the difference between the sensed motion
of the real vehicle and the driving simulator along with terms comprising of the simulator velocity 𝑦̇𝑠
and displacement 𝑦𝑠. Individual weights are applied on each of the terms and a term for the adaptive
filter is also added, which is maneuvered according to Equation 2.7. In this, 𝐾 is the additional tuning
parameter. Further, additional terms can also be added on the rotational displacement and velocity in
the cost function as done in the reference derivation in [21]. In this implementation of the adaptive filter
based algorithm, the tilt low-pass filter gain remains fixed and the high-pass filter gains are adapted to
allow the cost function to be minimized.

𝐽𝑦 =
1
2 [𝑊1 (𝑎 − 𝑎𝑠)

2 +𝑊2 (𝜃̇ − 𝜃̇𝑠)
2 +𝑊3𝑦̇2𝑠 +𝑊4𝑦2𝑠 + ∑

2
𝑖=1𝑊𝑖+6Δ𝑃2𝑖] (2.6)

𝑃̇𝑖 = −𝐾𝑖
𝜕𝐽
𝜕𝑃𝑖

, 𝑖 = 1,… , 6 (2.7)

This concludes the conventional filter based algorithms. Although they have a simple approach and
are relatively easy to execute, all three types of filter based algorithms suffer from one glaring issue;
they are unable to include explicit constraints as part of their problem formulation. To solve this, an
alternate approach which is able to take these factors into account is needed. This is where model
predictive control is used as part of the problem formulation in the motion cueing algorithm.

2.3. Model Predictive Control
2.3.1. What is model predictive control?
Model predictive control or MPC is an optimal control problem that uses a dynamic model to forecast
system behavior and optimize the forecast to produce the best decision which is the control move at
the current time [22]. The overall structure of the MPC scheme is categorised as a feedback control
problem.

10 2. Background

MPC is a control strategy that as defined before, is extensively used for solving optimization prob-
lems. This is because, it gives an optimal solution while handling system constraints and can be de-
signed offline as well as in real-time. A drawback that MPC suffers from is having high computational
load and need of an accurate system model. A general MPC scheme can be seen in the figure below:

Figure 2.5: Model predictive control scheme

In this block diagram, it can be observed that the MPC block comprises of two main components;
the prediction model and the optimization algorithm. The prediction model is used to predict the evo-
lution of future states and the optimization algorithm uses this prediction to compute the best possible
control input to achieve the desired results. A reference signal 𝑟(𝑘) is provided to the MPC block which
performs the desired action according to the optimization algorithm and outputs the control input 𝑢(𝑘)
for the plant. The output is then received and system feedback is sent back to the MPC block for the
next iteration.

The MPC algorithm follows a receding horizon policy in which it first measures the current state 𝑥(𝑘)
at the current time 𝑘. Then, it sets 𝑥0 = 𝑥(𝑘) and performs the optimization problem. Upon solving the
optimization problem, a sequence of control inputs is found from which the first control input is applied
to the model to update the states. Once this is complete, the entire frame is shifted by one timestep
and the procedure is repeated once again. This occurs until convergence is reached. The window for
which the control input is calculated is known as the prediction horizon 𝑁𝑝. It means that we do not
consider events in the future after the prediction horizon nor do we consider events that took place in
the past. A layout of the MPC procedure taking place can be observed in Figure 2.6.

Figure 2.6: Model predictive control problem layout [23]

2.4. Modeling an MPC Problem 11

Based on the general scheme of the MPC algorithm, a sample MPC problem is now formulated to
better understand the concept.

2.4. Modeling an MPC Problem
While creating an MPC controller, the first step is to have a model of the system for which the controller
is being formulated. An example of what this looks like can be seen below:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) (2.8)

Here, 𝑥(𝑘) contains the states of the model, 𝑢(𝑘) is the control input and 𝑦(𝑘) is the output. This
state space model can also be represented as 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)). Once the model has been
formulated, constraints are applied to the system. This is done in the form of lower and upper bounds
and can be of the following types:

• State constraints - Constraints applied on individual states used in the model. For e.g. −1 ≤ 𝑥1 ≤
1. Here 𝑥1 refers to the first state of the states 𝑥(𝑘).

• Input constraints - Constraints applied on the control input. For e.g. 𝑢(𝑘) ≤ 5
• State-input constraints - Constraints applied on some states and control inputs at the same time
in relation to one another

• Output constraints - Constraints applied on the output of the system

After the state-space model and constraints associated with it have been formulated, the cost function
of the optimization problem can be created. The cost function used in the MPC problem comprises of
two main parts:

• Stage cost - Applies penalties on the state and the control
• Terminal cost - Applies penalties on the last step of the problem (at𝑁𝑝) to allow asymptotic stability
to be achieved.

Using the above defined MPC cost function components, the mathematical representation of a sample
cost function set can be seen as follows:

𝑙(𝑥(𝑘), 𝑢(𝑘)) = 𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘)
𝑉𝑓(𝑥(𝑁𝑝)) = 𝑥(𝑁𝑝)𝑇𝑃𝑥(𝑁𝑝)

𝐽 (𝑥0, 𝑢𝑁𝑝) =
𝑁𝑝−1

∑
𝑘=0

𝑙(𝑥(𝑘), 𝑢(𝑘)) + 𝑉𝑓(𝑥(𝑁𝑝))

s.t. 𝑢 ∈ 𝕌, 𝑥 ∈ 𝕏

(2.9)

Where, 𝑄, 𝑅, 𝑃 are positive definite weighting matrices, 𝑙(𝑥(𝑘), 𝑢(𝑘)) is the stage cost, 𝑉𝑓(𝑥(𝑁𝑝)) is the
terminal cost and 𝐽(𝑥0, 𝑢𝑁𝑝) is the cost function.

Finally, the horizon for which the control inputs would be computed is defined. This involves defining
the following two components:

• Prediction horizon - It is the number of future control intervals that the designed controller must
evaluate. Thus, it is equal to the length of the optimization window and the control input vector
can be represented as follows:

𝑢(𝑘) = 0, 1, 2, ..., 𝑁𝑝 − 1,𝑁𝑝 (2.10)

Further, it is used in defining the look ahead time which is the product of sampling time 𝑇𝑠 and 𝑁𝑝.

• Control horizon - The control horizon 𝑁𝑐 is chosen to be less than or equal to the prediction
horizon and determines the number of parameters used in capturing the future control trajectory.
By keeping 𝑁𝑐 ≤ 𝑁𝑝, the computational effort needed to compute the control trajectory prediction
reduces. However, using an extremely small control horizon with respect to the prediction horizon

12 2. Background

can lead to sub-optimal results. Thus, there is a trade-off in computation time and performance
based on which the 𝑁𝑐 is selected. Its control vector representation is as follows:

𝑢(𝑘) = 0, 1, 2, ..., 𝑁𝑐 − 1,𝑁𝑐 (2.11)

where, 𝑢(𝑘) for 𝑁𝑐 + 1, ..., 𝑁𝑝 are assumed to be constant.

The final MPC problem comprising of the cost function, state space model and the system constraints
can be summarised as follows:

min
𝑢𝑁𝑝

𝐽 (𝑥0, 𝑢)

s.t., 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))
𝑥𝑙𝑜𝑤 ≤ 𝑥(𝑘) ≤ 𝑥𝑢𝑝𝑝𝑒𝑟
𝑢𝑙𝑜𝑤 ≤ 𝑢(𝑘) ≤ 𝑢𝑢𝑝𝑝𝑒𝑟
𝑥(𝑁) ∈ 𝕏𝑓

(2.12)

The concept of model predictive control and its formulation shown above has been referred from [22],
[24].

2.4.1. Types of MPC
The MPC problem can be formulated in the following three ways:

• Implicit MPC - This is a type of MPC in which the optimal control sequence 𝑈∗𝑁𝑝 is obtained by
solving the optimization problem online at each time step. The main aspect to be considered
while using implicit MPC algorithms is to look at computational complexity of the problem which
depends on the prediction model and the choice of the cost function as well [25].

• Explicit MPC - An explicit approach on the other hand uses parametric programming to reduce
the given optimization problem to a series of piecewise affine (PWA) functions offline. This is
done by first restating the initial optimization problem in the form of a multi-parametric linear or
quadratic programming problem (mpLP or mpQP) [25]–[27]. An example can be seen below:

𝑉∗(𝑥) =min
𝑢𝑁𝑝

𝐽 (𝑥0, 𝑢)

s.t. the constraints
(2.13)

A value function is created as seen above. Here, 𝐽(𝑥0, 𝑢) is the original cost function which can
be of the type as seen in Equation 2.9. The final transformed mpQP/mpLP can be written as
follows:

𝑉∗(𝑥) =min
𝑈

1
2𝑈

𝑇𝐻𝑈 + 𝑥𝑇𝐹𝑈

s.t. 𝐿𝑈 ≤ 𝑏 + 𝐸𝑥
(2.14)

Where 𝐿, 𝑏 and 𝐸 are suitable constant matrices created after conversion from the initial opti-
mization problem to mpLP/mpQP. This is used to create a look-up table containing all the feasible
parameters partitioned in the form of critical control regions. Then, while running the algorithm,
the look up table can be used to compute the control action based on the position in the corre-
sponding critical region. An example of what the control action looks like can be seen below [26],
[28]:

𝑈(𝑥) = 𝐹𝑖𝑥 + 𝐺𝑖 if 𝑥 ∈ 𝒞ℛ𝑖 . (2.15)

Where, 𝒞ℛ𝑖 are the control regions as visualized in Figure 2.7 for an example problem comprising
of two states and a control input.

2.4. Modeling an MPC Problem 13

Figure 2.7: An example of critical regions for a two state problem with a control input

Explicit MPC is used to deal with the issue of computational load present in the implicit approach,
but, this also results in memory storage issues when dealing with problems having huge compu-
tational complexity.

• Combined/Hybrid MPC - Apart from the implicit and explicit approaches present, a combination
technique has also been developed and used in literature. It uses the functionalities of both
implicit and explicit MPC approaches, with the explicit MPC algorithm acting as the initial/warm
start for the online MPC block (by means of a look up table). This is effectively done to advance
the starting point of the online optimization problem, which reduces online computation time and
load. Such algorithms have been developed and used in the past starting from Zeilinger et al.
[29], who specified the advantages of using a warm start technique (reduced number of iterations
to solve the problem online) in a combined approach. The same technique was also used by Jost
et al. [30] with modifications in the explicit initialisation. Since then it has been further used in
other applications such as curve tilting [31] and lateral motion stabilisation [32].

2.4.2. Past Literature Work
Motion cueing algorithms have developed extensively over the past decade with MPC acting as the
main control technique. Initially, this implementation was done for linear models only, using an implicit
based MPC algorithm. Beghi et al.[19] described a linear MPC based approach which had the human
perception model from Telban [33] in its formulation. The MPC problem was created by applying con-
straints on the driver eye point position and velocity with its implementation done in real-time. This
work extended previous research done by the authors which focused on providing drivers with com-
plete information about future values, thus making it an offline simulation based problem using a virtual
driver.

Garrett et al. [34] also developed a linear implicit MPC based algorithm but used the perception
model from Nahon and Reid [35] instead. In order to reduce the computational burden, the MPC
problem was divided into four sub-problems; longitudinal/pitch, lateral/roll, vertical and yaw. Further,
the QP solver wasmodified in order to reduce computation time as well. This was done by implementing
the warm start capabilities of the active set strategy into the interior point method. This modification
showed a slight advantage when compared with the classical quadprog solver as observed from the
simulation studies present in the paper. For future work, the authors recommended to combine all DOFs
as they have an effect on each other and can lead to better results. Also, Degdelen et al. [36] worked
on the ULTIMATE driving simulator which is an 8 DOF model. They took the human perception model
from Young [37] into account and also applied perception thresholds as part of its constraints. The
actuator controller was used to deal with the non-linearities of the motion system and to formulate the
problem as a linear optimization problem. This approach also did not account for all the DOFs during

14 2. Background

the experimentation; something which leads to sub-optimal results and was observed in previous work
as well while dealing with linear models.

The MPC based approach using linear system models gives better results when compared with
conventional filter based algorithms but suffers from problems as well. As these algorithms employ
constraints in the driver reference frame, to keep the problem linear, sub-optimal results are obtained.
This is because working in this reference frame creates difficulties in realizing the available workspace
and thus an approximation is taken. Further, in some works as mentioned before, all DOFs are not
taken into account which can also lead to poor results.

After seeing the issues that linear models deal with, nonlinear MPC based algorithms started being
used which were able to take the nonlinear system dynamics into account. Bruschetta et al. [4] worked
with a 9 DOF driving simulator. For this, the nonlinear MPC algorithm employed the vestibular model
by Telban. Constraints were applied on the actuator lengths and the model was then compared with a
linear MPC based approach. A set of constraints were also applied on making sure that no interference
takes place between the actuator actions. For this, measurements were collected and then mapped
to fit a nonlinear function imitating the closed surface. The results showed improvements from the
linear model as it was now able to take non-linearities of the system into account. The entire study
was performed using ACADO and the SQP-RTI algorithm [38]. A thesis by Katliar [39] analysed two
different approaches; an offline approach in which all desired motion trajectories are pre-calculated
and then fed in, and a real-time DIL implementation. Mohammadi et al. [40] aimed at reducing the
computational burden of selecting the correct prediction and control horizons respectively. Thus, an
optimization problem was formulated using genetic algorithm. For this, a profiling table was first created
using the original MPC problem. This table stored the simulation time, control and prediction horizon
values which satisfied the constraints. Also, while creating the profiling table, values which led to
timeouts were rejected. Then, surface fitting was done to compute the weights of the horizon terms.
Once this was complete and the function was fitted, optimal horizon values were found using the main
optimization problem which were minimum in total cost. These were then sent to the online MPC
problem for performing the desired simulator motion.

Khusro et al.[5] developed an approach in which the driver gives an input to the vehicle model (throt-
tle/brake/gear) to receive the initial velocity and acceleration values. These were then transformed to
the driver reference frame and sent to the vestibular system (by Telban [33]) to compute the actual
perceived values. This along with the inverse kinematics result was used by the reference generator
which assigned all other states in the model except the velocity and acceleration terms (as these val-
ues were taken from the vestibular system output) to zero to allow the washout effect to occur. Then,
the MPC applied constraints on the tilt rate and the actuator positions and solved the motion cueing
problem using ACADO with the SQP-RTI technique. The algorithm was compared with the linear MPC
and washout filter algorithms and showed better results across all test cases. Lamprecht et al. [41] im-
plemented a cueing algorithm which is slightly different from the algorithm developed by Khusro. Here,
a separate OCP is solved by using a reference trajectory. The solution of this problem is then passed
through the human perception model which gives the desired angular velocity and acceleration values
to be used by the MPC block. Tilt rate constraints are applied by taking the difference between the
desired values and the ones received from the human perception model. Finally, weights are adapted
and an Inverse Optimal Control (IOC) technique is applied with the real time driver prediction block
by comparing the predicted and sample experiment values, and subsequently solving the optimization
problem. Subjective analysis was done using experiments on a simulator to compare the developed
algorithm with the classical washout filter based algorithm. Results showed that 70% of the participants
preferred the MPC based algorithm over the classical washout filter based algorithm.

Some nonlinear based work has also been done using the ULTIMATE driving simulator. Soyer et al.
[42] used two different methods to allow the tracking action to take place in the motion cueing algorithm.
This was done by splitting up the linear rail and the nonlinear actuator (hexapod) dynamics respectively;
as the simulator used was 8 DOF. Then, one of these dynamics was given priority while the other
compensated for the remaining action to occur. Consequently, this required two MPC blocks as well.
The first approach was the linear-nonlinear (LNL) scheme in which the hexapod rotation compensated
for rail displacement while in the nonlinear-linear (NLL) approach the opposite happened. In both
cases, the algorithms performed better with lower computation time when the prediction horizon of the
compensating controller was smaller than the other (this works as now the initial MPC block gets a
larger room to work with, giving a very close approximation to be compensated by the second MPC

2.5. Summary 15

block). Before doing this, when the prediction horizons were the same, it was observed that the NLL
algorithm had a higher computation time than the LNL approach and thus, was not preferred amongst
the two.

Apart from cueing algorithms based on implicit MPCs, work has also been done using the offline
model of the controller. Fang et al. [6] implemented an explicit MPC based motion cueing algorithm
which included braking constraints to reduce the platform velocity and tilt rate near the displacement
limits of the simulator. This helped in improving stability of the algorithm and give better reference
tracking. Using this algorithm, tests were performed in the ULTIMATE driving simulator, with percep-
tion threshold to limit the platform’s rate of motion. Munir et al. [43] extended the work done by Fang
by looking at the issue of complexity of the created explicit MPC problem. This refers to the number
of control regions of the created explicit solution. The study also used the human vestibular model as
part of the algorithm. Thus, the state space model comprised of two parts; the first was the system
model which was the same as that of the previous paper. It included the linear position, linear velocity,
tilt angle, tilt velocity and the perceived acceleration as the states. The second is the human vestibular
model based on Telban’s work. To deal with the issue of reaching real-time computational limits due to
increasing number of states, a contractive set approach has been made in this paper. Contractive sets
allow the problem domain to reduce over-time while ensuring that all the given constraints are satisfied.
This allows the problem to deal with only the relevant workspace as time goes on, while starting with the
maximum available workspace; thus reducing computational load. The results showed similar perfor-
mance with reduced number of control regions. But, there is a limitation present on the control horizon
when dealing with the full model. A value of 2 cannot be computed and is impractical. The prediction
horizon chosen in the simulations was 1. Further, information on the effect on computation time and
whether this approach can be applied to larger problems such as 4 or 6 DOF was not mentioned in the
study.

To conclude, there has been work done using MPC algorithms in this domain ranging from linear to
nonlinear models and from implicit to explicit MPC based algorithms across different kinds of simulators.
As seen from literature, no particular method is perfect; implicit based approaches deal with compu-
tational time problems and explicit ones deal with memory storage issues. By taking the nonlinearity
of the model into account, the performance does improve but the complexity also increases. Thus, a
solution is needed which is able to take these issues into account and run the algorithm successfully
in real-time.

2.5. Summary
In this chapter, different kinds of human perception systems present in the human body were first
elucidated. Then, an overview on conventional filter based motion cueing algorithms was given. This
included information on all three kinds of conventional algorithms starting from the classical approach
to the adaptive washout filter based algorithm. Such algorithms are simple and easy to implement but
suffer from issues related to sub-optimal workspace utilisation; due to the inability to include constraints
as part of the problem formulation. In order to improve cueing performance, an advanced control
technique called MPC is used. The basics of MPC and its variations were explained along with work
done using this control technique. Finally, the major advantages and drawbacks of using MPC were
listed. In the next chapter, the main controller design used in the proposed motion cueing algorithm will
be explained in detail.

3
Main Controller Design

In this chapter, the main controller design used for the developed motion cueing algorithm will be pre-
sented. As mentioned in the previous sections, implicit and explicit MPC based approaches suffer from
their respective individual issues related to computation time. Thus, a better alternative is needed for
improving real-time performance. For this, a combined/hybrid MPC is used which was alluded to earlier
in subsection 2.4.1. Such a controller advances the starting point of the online optimization problem by
using the offline guess, which in-turn reduces online computation time. This type of a MPC has not yet
been implemented in the domain of motion cueing algorithms and will be used to mitigate the issues
that the implicit and explicit MPC based motion cueing algorithms face.

The scheme of the designed controller can be seen in Figure 3.1. First, initial state and reference
values are sent to the explicit MPC block. Here, the reference values are the specific forces. Such
forces are used to represent the perceived accelerations which are a sum of translational acceleration
and gravitational tilt components, thus, taking all acceleration forces into account allowing us to study
the human body’s movement in space during motion cueing. These forces can be manually generated
signals such as sine waves or be obtained from track simulations. The explicit MPC block, which is a
pre-generated look-up table, performs a search to find the corresponding control region related to the
state and reference values sent as input. Once the control region is selected, the associated control
inputs which are the translational and rotational accelerations are taken (depending on the DOFs in the
problem) and sent as an initial guess to the online MPC.

Figure 3.1: Scheme of the hybrid MPC based motion cueing algorithm

The implicit MPC block takes this guess as the initial starting point of the algorithm, along with the
generated reference signal and state values to compute an optimized control input. This control input
acts as the control command, sent to the driving simulator to perform the desired motion. The simulator
dynamics used while applying the control inputs can be simplified actuator dynamics or advanced
dynamics based on the driving simulator being used. Once the motion is complete, the states are
updated and used as feedback for the next time step. This entire process is repeated until the simulation
finishes.

17

18 3. Main Controller Design

For performing the simulation, the explicit control law is generated and stored using the open source
Multi Parametric Toolbox (MPT) [44]. This is then used in the Simulink model of the hybrid MPC scheme
as the initial guess. The model also contains the implicit controller which is generated using ACADO,
along with the reference generator and other functionalities used for weight tuning and hybrid model
selection. These are explained in detail in the subsequent sections. The Simulink model containing
the entire hybrid scheme can be seen in Appendix D.

3.1. Types of Motion Cueing Models
The hybrid motion cueing algorithm can be used in different ways, depending on the initial control input
guess and how it is applied. This application takes place inside the shift reference block, where the
appropriate control input guesses are sent in to be used by the implicit controller. The guesses that are
sent in are usually from the explicit MPC; which is used to compute and store the explicit control law.
Apart from the control input guesses, reference state values are also sent in as part of the reference
trajectory array. A general form of this array, used with explicit MPC control inputs 𝑢𝑒𝑀𝑃𝐶, can be seen
in Equation 3.1. This block generates the reference prediction for the entire prediction horizon of the
implicit MPC controller which is updated at each time-step.

𝑦𝑖𝑛 = [𝑟𝑒𝑝𝑚𝑎𝑡([𝑦𝑁, 𝑢𝑒𝑀𝑃𝐶], 𝑁𝑝, 1)′, 𝑦𝑁′] (3.1)

This shift reference equation which is sent in as input changes as per the model being used. As
this research focuses on analysing differences in online computation time, the following four types of
cueing models were used and studied:

• iMPC without any initial control input guess

• iMPC with control trajectory prediction - In this version, the control trajectory prediction received
from the ACADO s-function is used as the initial guess for the next time step. The first control input
from the trajectory prediction is selected and applied for the entire horizon in the shift reference
block and Equation 3.1 is updated accordingly.

• Hybrid algorithm with first explicit MPC control input - In this model, the first control input from the
explicit MPC look-up table is used and applied for the entire prediction horizon.

• Hybrid algorithm with all explicit MPC control inputs - The final hybrid model utilises all control
inputs obtained from the explicit MPC controller and applies them for the entire horizon. As the
sampling times vary between both controllers, explicit MPC inputs are applied in equal sections
throughout the larger prediction horizon of the implicit MPC. For e.g. with a 𝑁𝑝,𝑒𝑀𝑃𝐶 of 5, the five
control inputs are applied ten times each (1𝑠𝑡 from 1-10, 2𝑛𝑑 from 11-20 and so on) for a 𝑁𝑝,𝑖𝑀𝑃𝐶
of 50.

The explicit controller was not considered separately while studying different kinds of cueing models.
This is due to limitations in model complexity and using large𝑁𝑝 values with fast sampling rates; leading
to poor performance. Thus, it is used in the hybrid scheme only as an initial guess, to kick-start the
algorithm.

3.2. Summary
In this chapter, an overview of the hybrid controller used in developing the motion cueing algorithm
has been explained. Further, information on different types of motion cueing models developed and
analysed in this study was given. In the next chapter, the detailed description of the hybrid MPC
algorithm containing both types of MPCs is elucidated. First, the 2 DOF algorithm is presented followed
by the extended 4 DOF motion cueing algorithm.

4
Motion Cueing Algorithms

In this study, two kinds of motion cueing algorithms have been developed, for specific force tracking,
which differ based on the number of DOFs taken into account. The first is a pitch-surge motion cueing
algorithm followed by an extended version including sway-roll DOFs. The controller design explained in
the previous chapter has been used for both algorithms and in this chapter, the individual components
of each is explained in detail.

4.1. 2 DOF Hybrid MPC based Motion Cueing Algorithm
In this section, the explicit and implicit controllers used in the developed 2 DOFmotion cueing algorithm
are described. First, the design and features of the explicit controller are presented followed by the
implicit MPC based algorithm.

4.1.1. Explicit MPC based Motion Cueing Algorithm
Explicit MPC involves computation of control regions offline to reduce the online simulation load by
using a simple look-up table to select the appropriate control input.

The explicit MPC based motion cueing algorithm comprises of four states related to the simulator
platform 𝑝, namely; platform displacement 𝑠𝑝, platform velocity 𝑣𝑝, tilt angle 𝜃𝑝 and tilt rate 𝜔𝑝. These
states allow the displacement and velocity effects in both translational and rotational motions to be
taken into account for the 2 DOF problem. The state space equations used to formulate the model can
be seen below:

𝑥̇(𝑘) =
⎧⎪
⎨⎪⎩

𝜔̇𝑝 = 𝑎𝑝,𝑟𝑜𝑡
̇𝜃𝑝 = 𝜔𝑝
𝑣̇𝑝 = 𝑎𝑝,𝑡𝑟𝑎𝑛
̇𝑠𝑝 = 𝑣𝑝

(4.1)

This results in a surge-pitch problem with translational and rotational accelerations (𝑎𝑝,𝑡𝑟𝑎𝑛 , 𝑎𝑝,𝑟𝑜𝑡)
acting as the control inputs 𝑢(𝑘). The combined system can be represented in the following manner:

𝑥̇(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (4.2)

While designing this motion cueing algorithm, it is of major importance that the rotational motion is
limited below the perception thresholds as explained before in subsection 2.2.1. Thus, constraints are
applied on the tilt rate to ensure that the tilt coordination effects are not perceived by the driver in the
simulator. From [45], it is known that most individuals have a comparatively high perception threshold
with some outliers showing higher sensitivity towards the tilt rate; resulting in a lower threshold. Hence,
to ensure that all individuals are not able to realize the tilting effect taking place, a lower value in the
range of 2-4 deg/s is generally used [5], [33], [35], [41], [46], [47]. A summary of these perception
threshold values can be seen in Appendix B. Based on this analysis, a value of 3 deg/s was chosen
for the pitch tilt rate in the proposed motion cueing algorithm.

Further, a constraint is applied on the platform displacement so that the physical limits of the sim-
ulator are not exceeded. Along with this, constraints are also applied on the platform’s velocity and

19

20 4. Motion Cueing Algorithms

translational control input to ensure that the speed of the platform can be controlled. The limit values
for these constraints were chosen based on the DAVSi’s capabilities and are listed in Equation 4.3.

Χ =

⎧
⎪

⎨
⎪
⎩

−3𝑑𝑒𝑔/𝑠 ≤ 𝜔𝑝 ≤ 3𝑑𝑒𝑔/𝑠
−30𝑑𝑒𝑔 ≤ 𝜃𝑝 ≤ 30𝑑𝑒𝑔
−7.2𝑚/𝑠 ≤ 𝑣𝑝 ≤ 7.2𝑚/𝑠
−0.5𝑚 ≤ 𝑠𝑝 ≤ 0.5𝑚

−9.81𝑚/𝑠2 ≤ 𝑎𝑝,𝑡𝑟𝑎𝑛 ≤ 9.81𝑚/𝑠2

(4.3)

The goal of this formulated motion cueing algorithm is to track a reference specific force which is
the output of the model. The formulation used to compute the specific force comprises of two com-
ponents; translational acceleration and gravitational tilt. The gravitational tilt component takes the tilt
angle multiplied by the gravity into account whereas the translational acceleration is the translational
control input. This results in the following specific force formulation:

𝑦(𝑘) = 𝑓𝑠𝑝𝑒𝑐 = 𝑎𝑝,𝑡𝑟𝑎𝑛 + 𝑔 sin𝜃𝑝 (4.4)

Furthermore, the cost/objective function consists of weighted states, outputs and control inputs.
The corresponding weights chosen for our simulations are presented below:

𝑊𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑑𝑖𝑎𝑔([0, 0, 0, 0])
𝑊𝑜𝑢𝑡𝑝𝑢𝑡 = 1
𝑊𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑛𝑝𝑢𝑡 = 𝑑𝑖𝑎𝑔([1𝑒 − 3, 1𝑒 − 3])

(4.5)

A value of 1 is assigned to the output as that is main goal of the algorithm. As the states are already
constrained within the workspace limits, free movement is desired which is obtained by applying an
extremely small/zero weight value. The control inputs are given same weights to ensure that the MPC
performs motion, both translationally and rotationally, in equal quantities without giving one priority over
the other. Their value is selected after performing simulations and looking at the overall contribution
and effect on tracking performance. The current values of 1𝑒 − 3 allow smooth reference tracking
(without chattering) to take place with equal contribution from both DOFs. Such weights ensure that
the objective of the cost function is not conflicting during the simulation and they are applied using the
QuadFunction in MPT. Also, these weights can be manipulated in the MPC formulation but give the
same results as long as the ratio of weights remain the same.

Selection of sampling time is important for the motion cueing algorithm. If it is too small, it can
limit the use of larger prediction horizons 𝑁𝑝 due to high computation load. Using a small 𝑁𝑝 in these
situations can lead to poor performance due to limited future information. Also, applying a higher
sampling time value can result in loss of information for applications requiring fast reaction/response.
Thus, sampling time also depends on the frequency of control actions that the plant (simulator in this
case) can work on. For the proposedmotion cueing algorithm, a sampling time of 0.1s and a𝑁𝑝 of 5 was
selected. This combination ensures that a look ahead time of 0.5s is maintained which allows sufficient
future information to be considered for the cueing problem. Faster sampling rates with larger 𝑁𝑝 cannot
be taken due to the limitations of the explicit controller. More information about these limitations is
presented and discussed in subsection 5.2.2.

Thus, the structure of the motion cueing algorithm is as follows:

min
𝑢𝑁𝑝

𝐽 (𝑥0, 𝑢)

s.t., 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))
𝑥 ∈ Χ
𝑥(𝑁) ∈ 𝕏𝑓

(4.6)

Move Blocking Constraint
A major drawback of using explicit MPC is the computation time needed in generating the control laws.
As the problem complexity increases through additional states/inputs/constraints, the computation time

4.1. 2 DOF Hybrid MPC based Motion Cueing Algorithm 21

rises exponentially. Due to such limitations, the complexity of the problem is often reduced by a large
degree to allow controller execution to take place at the desired sampling rate and horizon values.

Instead of limiting the complexity of the problem, there is an alternate approach that can be taken to
ensure that the desired problem works at reasonable sampling rates. This takes place by applying the
move blocking functionality of MPT. Move blocking helps in constraining the predicted control moves
over the horizon and acts as the control horizon for the MPC problem. A schematic view of how the
control inputs can look like is shown in Figure 4.1.

1 2 3 4 5
0.35

0.4

0.45

0.5

C
o

n
tr

o
l
In

p
u

t

 No move blocking

1 2 3 4 5

Prediction Steps

0.496

0.497

0.498

0.499

0.5

C
o

n
tr

o
l
In

p
u

t

 Move blocking from second prediction

Figure 4.1: Effect of move blocking constraint

A reduction in computation time is observed when this constraint is applied while maintaining rea-
sonable complexity and sampling rate for the problem at hand. The effect of using this constraint for
the explicit MPC based motion cueing algorithm can be seen in subsection 5.2.2. For the proposed
motion cueing algorithm, it was applied from the second prediction step.

Braking Constraints
Apart from the set of constraints taken into account for the explicit MPC based algorithm, additional
braking constraints were also considered. These were first introduced in [6], which are used to slow
down the platform velocity and tilt rate of the cueing algorithm when the platform displacement and tilt
angles are about to reach their respective limits. Thus, a deceleration effect takes places without any
washout taking place.

To implement this, two sets of constraints are used; one for platform velocity and the other for the
tilt rate as follows:

𝑠𝑝,𝑚𝑖𝑛 ≤ 𝑐𝑣𝑣𝑝𝑇𝑏𝑟𝑘,𝑝 + 0.5𝑐𝑢𝑎𝑝,𝑡𝑟𝑎𝑛𝑇2𝑏𝑟𝑘,𝑝 ≤ 𝑠𝑝,𝑚𝑎𝑥 (4.7)

𝜃𝑝,𝑚𝑖𝑛 ≤ 𝑐𝑤𝜔𝑝𝑇𝑏𝑟𝑘,𝜃 + 0.5𝑐𝑢𝑎𝑝,𝑟𝑜𝑡𝑇2𝑏𝑟𝑘,𝜃 ≤ 𝜃𝑝,𝑚𝑎𝑥 (4.8)

where, 𝑐𝑣 = 1, 𝑐𝑤 = 1, 𝑐𝑢 = 0.45, 𝑇𝑏𝑟𝑘,𝜃 = 0.5, 𝑇𝑏𝑟𝑘,𝑝 = 2.5 and 𝑠𝑝, 𝜃𝑝 thresholds are 0.5m and 30 deg
(according to the DAVSi) respectively. The selection of these parameters is explained in section C.1
and the effect of using braking constraints is analysed in subsection 5.2.3. These constraints have not
been used in the explicit algorithm, but have been studied for implementation in the online counterpart
of the hybrid approach. Moreover, to validate the working of the explicit algorithm based on the model
in [6], [43], a benchmark study was done as seen in section C.2.

4.1.2. Implicit MPC based Motion Cueing Algorithm
The implicit MPC based algorithm is designed to be slightly more complex compared to the explicit
MPC based approach, through additional functionalities working at faster sampling rates and higher
prediction horizon values. This is possible as at each time-step, the online solver only takes the current
state and reference values into account, to compute the optimum control input. On the other hand, the

22 4. Motion Cueing Algorithms

offline version considers all feasible scenarios and computes the control input for each, after partitioning
them in the form of control regions. Thus, using larger 𝑁𝑝 and sampling time values, leads to increased
computation time for the offline algorithm and in some situations an uncomputable solution. As the
online computation load per time step is reduced, additional states, control inputs and constraints can
be taken into account.

The states 𝑥̇(𝑘) are updated by including platform accelerations (translational and rotational), which
were previously acting as the control inputs. These are replaced by commanded accelerations, (𝑎𝑐𝑚𝑑,𝑡𝑟𝑎𝑛
and 𝑎𝑐𝑚𝑑,𝑟𝑜𝑡), which are modelled incorporating a time delay in the system. This ensures that the ac-
celeration (𝑎𝑝,𝑡𝑟𝑎𝑛 and 𝑎𝑝,𝑟𝑜𝑡) values are achieved. The updated state space model is as follows:

𝑥̇(𝑘) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜔̇𝑝 = 𝑎𝑝,𝑟𝑜𝑡
̇𝜃𝑝 = 𝜔𝑝
𝑣̇𝑝 = 𝑎𝑝,𝑡𝑟𝑎𝑛
̇𝑠𝑝 = 𝑣𝑝

̇𝑎𝑝,𝑡𝑟𝑎𝑛 =
𝑎𝑐𝑚𝑑,𝑡𝑟𝑎𝑛 − 𝑎𝑝,𝑡𝑟𝑎𝑛

𝑇𝑠
̇𝑎𝑝,𝑟𝑜𝑡 =

𝑎𝑐𝑚𝑑,𝑟𝑜𝑡 − 𝑎𝑝,𝑟𝑜𝑡
𝑇𝑠

(4.9)

As far as the constraints are considered, braking constraints are added into the system which have
already been alluded to before. These are used to improve performance by slowing down the system
as it reaches its physical limits. The updated set of constraints acting on the system are as follows:

Χ𝑖𝑀𝑃𝐶 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

− 3𝑑𝑒𝑔/𝑠 ≤ 𝜔𝑝 ≤ 3𝑑𝑒𝑔/𝑠
− 30𝑑𝑒𝑔 ≤ 𝜃𝑝 ≤ 30𝑑𝑒𝑔
− 7.2𝑚/𝑠 ≤ 𝑣𝑝 ≤ 7.2𝑚/𝑠
− 0.5𝑚 ≤ 𝑠𝑝 ≤ 0.5𝑚
− 9.81𝑚/𝑠2 ≤ 𝑎𝑝,𝑡𝑟𝑎𝑛 ≤ 9.81𝑚/𝑠2
− 0.5𝑚 ≤ 𝑐𝑣𝑣𝑝𝑇𝑏𝑟𝑘,𝑝 + 0.5𝑐𝑢𝑎𝑝,𝑡𝑟𝑎𝑛𝑇2𝑏𝑟𝑘,𝑝 ≤ 0.5𝑚
− 30𝑑𝑒𝑔 ≤ 𝑐𝑤𝜔𝑝𝑇𝑏𝑟𝑘,𝜃 + 0.5𝑐𝑢𝑎𝑝,𝑟𝑜𝑡𝑇2𝑏𝑟𝑘,𝜃 ≤ 30𝑑𝑒𝑔
− 5𝑚/𝑠2 ≤ 𝑎𝑐𝑚𝑑,𝑡𝑟𝑎𝑛 ≤ 5𝑚/𝑠2

(4.10)

Cost function weights remain the same as mentioned in Equation 4.5. This is because the goal
is still to track the output specific force. The formulation of 𝑦(𝑘) also remains the same as seen in
Equation 4.4.

As mentioned before, the implicit controller is able to work at a faster rate as compared to its explicit
counterpart. Thus, a prediction horizon 𝑁𝑝 of 50 was used with a sampling time 𝑇𝑠 of 0.01𝑠 for the
controller. These values were selected to maintain the same look ahead time of 0.5𝑠 as done for
the explicit controller while working at a faster rate with more information and higher accuracy (due
to increased horizon steps and faster reaction rate). The same look ahead time is desired for both
controllers to allow 1:1 matching to take place, thus utilising all the available information from the explicit
controller working on the same problem; but with a difference in the sampling rate and 𝑁𝑝. Also, a faster
sampling rate of 0.001𝑠 was selected for the plant, to match the frequency of the DAVSi at 1𝑘𝐻𝑧.

The structure of the implicit motion cueing algorithm is as follows:

min
𝑢𝑁𝑝

𝐽 (𝑥0, 𝑢)

s.t., 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))
𝑥 ∈ Χ𝑖𝑀𝑃𝐶
𝑥(𝑁) ∈ 𝕏𝑓

(4.11)

4.1. 2 DOF Hybrid MPC based Motion Cueing Algorithm 23

Washout
The last part of the implicit MPC based motion cueing algorithm involves adding washout weights into
the model, which is another extension from the initial explicit MPC based algorithm. This is not included
in the offline algorithm due to limitations of MPT.

Washout is added in the online algorithm to bring the platform back to its neutral position. This
ensures that maximum workspace utilization takes place for the next simulation. To realize this, penal-
isation is provided on the states of the system, namely, the tilt rate 𝜔𝑝 and platform displacement 𝑠𝑝.
The reason why these two states are selected is because the movement of the platform is restricted
by limits on these states; due to limited workspace of the driving simulator. This limitation in transla-
tion/rotational movement leads to tracking error and false cues. False cues are undesirable as they
reduce the overall feel of the cueing process taking place and can even lead to motion sickness. Thus,
by applying weights on these two states, we can ensure that their respective limits are never met and
that false cues are removed from the system. Implementation of these weights can take place in the
following two ways:

• Constant Washout - Constant washout weights are used for the entire simulation. These weights
need to be tuned for the specific signal being analysed. Thus, if the amplitude or frequency of
the signal is altered, the ideal weights change and need to be tuned again. This makes using
this approach a very time consuming task, requiring a better alternative in the form of adaptive
weights.

• Adaptive Washout - Adaptive weights fix the above mentioned problem where tuning was needed
every time a new signal was analysed. Here, an adaptive function, which is a 4𝑡ℎ order polyno-
mial, is used to alter the weight values based on the thresholds and current values of the respec-
tive states; 𝜔𝑝, 𝑠𝑝. This polynomial allows manual tuning of the shape of the adaptive function and
the formulation for each of these two states can be seen in Equation 4.12. Figure 4.2 shows how
the weight adapts itself based on the position of the platform. This nonlinear shape was chosen
as it rapidly penalises the platform position when it is going towards its respective limit. From
0/neutral position to 0.25m, the rate of increase is low allowing free movement of the simulator to
perform the desired motion. On the other hand, from 0.25m to the limit of 0.5m, a rapid increase
is observed. This ensures that the priority of the objective function shifts towards bringing the
platform back to its original position, while tracking the reference specific force. Thus, the chosen
nonlinear function helps maintain freedom of movement for the simulator and changes priority to
allow washout to occur when close to the limit.

-0.5 -0.25 0 0.25 0.5

Platform Displacement [m]

0

10

20

30

40

50

60

70

T
u
n
in

g
 W

e
ig

h
t

Figure 4.2: Adaptive weights for platform displacement 𝑠𝑝

24 4. Motion Cueing Algorithms

𝑊𝑠𝑝 = 𝑤𝑠,1 +𝑤𝑠,2 (
𝑎𝑏𝑠(𝑠𝑝,𝑖)
𝑤𝑠,5

) + 𝑤𝑠,3 (
𝑎𝑏𝑠(𝑠𝑝,𝑖)
𝑤𝑠,5

)
2
+𝑤𝑠,4 (

𝑎𝑏𝑠(𝑠𝑝,𝑖)
𝑤𝑠,5

)
4

𝑊𝜔𝑝 = 𝑤𝜔,1 +𝑤𝜔,2 (
𝑎𝑏𝑠(𝜔𝑝,𝑖)
𝑤𝜔,5

) + 𝑤𝜔,3 (
𝑎𝑏𝑠(𝜔𝑝,𝑖)
𝑤𝜔,5

)
2
+𝑤𝜔,4 (

𝑎𝑏𝑠(𝜔𝑝,𝑖)
𝑤𝜔,5

)
4 (4.12)

where, 𝑤𝑠,1 = 0.01, 𝑤𝑠,2 = 20,𝑤𝑠,3 = 20,𝑤𝑠,4 = 20,𝑤𝑠,5 = 0.5, 𝑤𝜔,1 = 0.0001,𝑤𝜔,2 = 0.7, 𝑤𝜔,3 =
0.7, 𝑤𝜔,4 = 0.7 and 𝑤𝜔,5 = 3.
The updated weight vector used by the implicit controller can be seen in Equation 4.13, with
other weights remaining the same as before. The same formulation is used for both constant and
adaptive weights, with𝑊𝜔𝑝 and𝑊𝑠𝑝 acting as the washout weights.

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑑𝑖𝑎𝑔([1𝑒−16𝑊𝜔𝑝1𝑒−16𝑊𝑠𝑝1𝑒−161𝑒−161𝑒−01𝑒−31𝑒−3]), 1, 92) (4.13)

4.2. 4 DOF Hybrid MPC based Motion Cueing Algorithm
The structure of the hybrid MPC based motion cueing algorithm remains the same as before; where
control inputs from the explicit MPC are taken as an initial guess to compute the optimized control
inputs online. In this section, the explicit MPC based motion cueing algorithm is first explained including
additions made to consider lateral DOFs as part of the algorithm. Then, the online part of the hybrid
scheme is elucidated concluding the design of the motion cueing algorithm.

4.2.1. Explicit MPC based Motion Cueing Algorithm
The motion cueing algorithm developed for 2 DOF problems is now extended to take sway-roll DOFs
into account. By adding these additional DOFs into the motion cueing algorithm, some changes are
made in the formulation of the MPC controller.

First, the state space model is updated to take the additional lateral DOFs into account. As done
before, displacement and velocity states are used to represent the motion platform in both translational
and rotational directions. Four additional states are added and the entire model can be seen below:

𝑥̇(𝑘) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜔̇𝑝,𝑙𝑜𝑛𝑔 = 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡
̇𝜃𝑝,𝑙𝑜𝑛𝑔 = 𝜔𝑝,𝑙𝑜𝑛𝑔

𝑣̇𝑝,𝑙𝑜𝑛𝑔 = 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛
̇𝑠𝑝,𝑙𝑜𝑛𝑔 = 𝑣𝑝,𝑙𝑜𝑛𝑔

𝜔̇𝑝,𝑙𝑎𝑡 = 𝑎𝑝,𝑙𝑎𝑡,𝑟𝑜𝑡
̇𝜃𝑝,𝑙𝑎𝑡 = 𝜔𝑝

𝑣̇𝑝,𝑙𝑎𝑡 = 𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛
̇𝑠𝑝,𝑙𝑎𝑡 = 𝑣𝑝,𝑙𝑎𝑡

(4.14)

Longitudinal and lateral subscripts refer to the pitch-surge and sway-roll DOFs respectively. This 4 DOF
problem comprises of four control inputs including translational and rotational accelerations acting in
both longitudinal and lateral directions:

𝑢(𝑘) =
⎧⎪
⎨⎪⎩

𝑎𝑝,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡
𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛
𝑎𝑝,𝑙𝑎𝑡,𝑟𝑜𝑡
𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛

(4.15)

Thus, the combined system can be represented as follows:

𝑥̇(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (4.16)

Apart from the state-space model, additional constraints are applied to take the lateral dynamics
into consideration. For this, perception thresholds are applied on both pitch and roll movements. For
the proposed motion cueing algorithm, a value of 3 and 2.6 deg/s was chosen for pitch and roll tilt rates

4.2. 4 DOF Hybrid MPC based Motion Cueing Algorithm 25

respectively. The selection of these values was done based on the same reasoning as mentioned
before for the 2 DOF algorithm; by using the perception threshold analysis in Appendix B.

The remaining constraints use the same limits except for the platform displacement. As we are
now dealing with additional degrees of freedom, the movement of the platform is limited by the limit

circle, represented by √𝑠2𝑝,𝑙𝑜𝑛𝑔 + 𝑠2𝑝,𝑙𝑎𝑡 ≤ 0.52. However, the MPT toolbox does not support inclusion
of nonlinear constraints, thus, the platform displacement limits are applied separately for the explicit
controller with a value of 0.35𝑚; to ensure that the movement of the simulator takes place inside the
limit circle. The control input received from the explicit MPC controller acts as an initial guess which is
why a lower constrained value can be taken into account; with the implicit controller refining the final
solution. The updated constraints used in the problem are as follows:

Χ =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−3𝑑𝑒𝑔/𝑠 ≤ 𝜔𝑝,𝑙𝑜𝑛𝑔 ≤ 3𝑑𝑒𝑔/𝑠
−2.6𝑑𝑒𝑔/𝑠 ≤ 𝜔𝑝,𝑙𝑎𝑡 ≤ 2.6𝑑𝑒𝑔/𝑠
−30𝑑𝑒𝑔 ≤ 𝜃𝑝,𝑙𝑜𝑛𝑔,𝑙𝑎𝑡 ≤ 30𝑑𝑒𝑔
−7.2𝑚/𝑠 ≤ 𝑣𝑝,𝑙𝑜𝑛𝑔,𝑙𝑎𝑡 ≤ 7.2𝑚/𝑠
−0.35𝑚 ≤ 𝑠𝑝,𝑙𝑜𝑛𝑔,𝑙𝑎𝑡 ≤ 0.35𝑚

−9.81𝑚/𝑠2 ≤ 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛 ≤ 9.81𝑚/𝑠2

(4.17)

The goal of this motion cueing algorithm is still to track the output specific force. Rotations with re-
spect to the 𝑥 and 𝑦 axis are used in deriving the gravitational tilt components as seen in Equation 4.18.

𝑔𝑡𝑖𝑙𝑡 = {
𝑔𝑙𝑜𝑛𝑔 = 𝑔 sin𝜃𝑝,𝑙𝑜𝑛𝑔
𝑔𝑙𝑎𝑡 = −𝑔 cos𝜃𝑝,𝑙𝑜𝑛𝑔 sin𝜃𝑝,𝑙𝑎𝑡

(4.18)

Taking the translational accelerations into account, the final output specific force can be written as
follows:

𝑦(𝑘) = {
𝑓𝑠𝑝𝑒𝑐,𝑙𝑜𝑛𝑔 = 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛 + 𝑔 sin𝜃𝑝,𝑙𝑜𝑛𝑔
𝑓𝑠𝑝𝑒𝑐,𝑙𝑎𝑡 = 𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛 − 𝑔 cos𝜃𝑝,𝑙𝑜𝑛𝑔 sin𝜃𝑝,𝑙𝑎𝑡

(4.19)

The cost/objective function used in the motion cueing algorithm consisted of weighted states, output
and control inputs. Weights were selected in a similar manner as done for the 2 DOF algorithm and
can be seen below:

𝑊𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑑𝑖𝑎𝑔([0, 0, 0, 0, 0, 0, 0, 0])
𝑊𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑑𝑖𝑎𝑔([1, 1])
𝑊𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑛𝑝𝑢𝑡 = 𝑑𝑖𝑎𝑔([1𝑒 − 3, 1𝑒 − 3, 1𝑒 − 3, 1𝑒 − 3])

(4.20)

As the problem complexity has increased by adding 2 additional DOFs, a 𝑁𝑝 of 2 is taken with a
sampling time of 0.25𝑠. These values are selected to ensure that the same look ahead time of 0.5𝑠
is taken into account for the motion cueing problem. More information regarding the selection of this
particular combination is presented in subsection 5.3.1.

26 4. Motion Cueing Algorithms

4.2.2. Implicit MPC based Motion Cueing Algorithm
Due to additional DOFs, the implicit MPC algorithm is altered accordingly. For this, the state space
model has additional states added in as done for the explicit MPC controller as follows:

𝑥̇(𝑘) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜔̇𝑝,𝑙𝑜𝑛𝑔 = 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡
̇𝜃𝑝,𝑙𝑜𝑛𝑔 = 𝜔𝑝,𝑙𝑜𝑛𝑔

𝑣̇𝑝,𝑙𝑜𝑛𝑔 = 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛
̇𝑠𝑝,𝑙𝑜𝑛𝑔 = 𝑣𝑝,𝑙𝑜𝑛𝑔

𝜔̇𝑝,𝑙𝑎𝑡 = 𝑎𝑝,𝑙𝑎𝑡,𝑟𝑜𝑡
̇𝜃𝑝,𝑙𝑎𝑡 = 𝜔𝑝

𝑣̇𝑝,𝑙𝑎𝑡 = 𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛
̇𝑠𝑝,𝑙𝑎𝑡 = 𝑣𝑝,𝑙𝑎𝑡

̇𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛 =
𝑎𝑐𝑚𝑑,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛 − 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑡𝑟𝑎𝑛

𝑇𝑠
̇𝑎𝑝,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡 =

𝑎𝑐𝑚𝑑,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡 − 𝑎𝑝,𝑙𝑜𝑛𝑔,𝑟𝑜𝑡
𝑇𝑠

̇𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛 =
𝑎𝑐𝑚𝑑,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛 − 𝑎𝑝,𝑙𝑎𝑡,𝑡𝑟𝑎𝑛

𝑇𝑠
̇𝑎𝑝,𝑙𝑎𝑡,𝑟𝑜𝑡 =

𝑎𝑐𝑚𝑑,𝑙𝑎𝑡,𝑟𝑜𝑡 − 𝑎𝑝,𝑙𝑎𝑡,𝑟𝑜𝑡
𝑇𝑠

(4.21)

As we can now take nonlinear constraints into account, the platform displacement is constrained
by ensuring that the overall movement in longitudinal and lateral directions takes place inside the limit
circle. Also, braking constraints are again applied to allow the platform velocity and tilt rate to be
decreased as the simulator approaches the platform displacement and tilt angle limits. Further, to
ensure that the tilt coordination effects are not perceived by the driver, tilt rate constraints are applied
along with the other constraints, as done for the explicit algorithm.

Adaptive washout weights are also implemented to introduce washout effect using Equation 4.1.2.
A prediction horizon 𝑁𝑝 of 50 was selected with a sampling time 𝑇𝑠 of 0.01𝑠 for the controller as done
before for the 2 DOF algorithm. The entire formulation was again implemented using ACADO and the
cueing algorithm was simulated in Simulink.

The structure of the 4 DOF implicit motion cueing algorithm can be seen below:

min
𝑢𝑁𝑝

𝐽 (𝑥0, 𝑢)

s.t., 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))
𝑥 ∈ Χ𝑖𝑀𝑃𝐶,4𝐷𝑂𝐹
𝑥(𝑁) ∈ 𝕏𝑓

(4.22)

4.3. Summary
In this chapter, the design of the explicit and implicit controllers used in the hybrid scheme was pre-
sented. The 2 DOF motion cueing algorithm was first elucidated which took the surge-pitch DOFs as
part of the problem formulation. Washout weights and platform constraints used in the algorithm were
explained. Then, the algorithm was extended for sway-roll DOFs, making it a 4 DOF cueing problem.
Additional functionalities to take lateral dynamics into account, were presented for the design of the 4
DOF algorithm. In Chapter 5, the performance of the developed hybrid MPC based motion cueing algo-
rithms is studied. The set of test cases and key performance indicators considered are listed, followed
by results related to the 2 DOF and 4 DOF cueing algorithms. Further, the same set of four cueing
models are used in evaluating the performance of the designed hybrid MPC controller as explained in
Chapter 3.

5
Simplified Actuator Dynamics

To see the performance of the designed motion cueing algorithms, simulations were performed using
two kinds of simulator dynamics. In this chapter the simplified version is presented which is imple-
mented in Simulink. This dynamics block is a representation of the state space model defined in the
implicit MPC based motion cueing algorithm and can be seen in Figure D.2, for the 2 DOF motion
cueing scenario.

5.1. Test Cases
A set of reference signals were considered for evaluating the developed motion cueing algorithm.
These signals allow a wide range of different scenarios to be taken into account that cover a reasonable
range of operating conditions that the simulator might experience. Some of these signals have a high
amplitude which are used to observe the performance of the simulator close to or over its potential.
Further, frequencies are considered within the normal head movement range of 0.01 to 1 Hz [37], [48].
They are summarised in Table 5.1 and can be visualized in Figure 5.1.

Table 5.1: Reference signals used for simulations

27

28 5. Simplified Actuator Dynamics

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(a) Sine wave of amplitude 0.5

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(b) Sine wave of amplitude 1

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(c) Sine wave of amplitude 2

0 2 4 6 8 10

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(d) Combined sine wave

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(e) Step signal of amplitude 1

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

3

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(f) Step signal of amplitude 2

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(g) Multiple event wave of amplitude 0.5

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

(h) Multiple event wave of amplitude 1

Figure 5.1: Reference signals used for simulations

5.2. 2 DOF Simulations 29

The combined signal shown in Figure 5.1d is a combination of four sine waves as seen below:

𝑠𝑖𝑛𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑘𝑠𝑐𝑎𝑙𝑒(𝑤𝑎𝑣𝑒1 + 𝑤𝑎𝑣𝑒2 + 𝑤𝑎𝑣𝑒3 + 𝑤𝑎𝑣𝑒4) (5.1)

A scaling factor 𝑘𝑠𝑐𝑎𝑙𝑒 was chosen for this wave as the simulator is incapable of recreating the mag-
nitudes of the original signal. By using a factor of 0.3, the overall amplitude and rate of change of the
specific force is reduced. This results in a signal that can be tracked by the cueing algorithm throughout
the simulation, while keeping the structure of the large amplitude wave. Also, for all these signals, the
1𝑠𝑡 second was considered as the rest period to allow smooth transitions to occur from neutral position.

To perform a comprehensive comparison for each reference signal with different MPC based con-
trollers, three performance indicators were used to compare the reference tracking and computation
time performance as follows:

• Mean Iterations are used to check the number of iterations the ACADO solver takes to compute
the control input throughout the simulation. This gives a good idea on how different MPC based
controllers vary with each other. Lower number of mean iterations are preferred as they lead to
reduced overall online computation time with lower load on the system.

• Absolute Percentage Error is used to see the percentage difference in mean iterations amongst
the developed hybrid models when compared with the implicit MPC based cueing algorithm with-
out any initial guess. It helps in recognising which models are performing best and whether a
significant improvement is present on average.

• Root Mean Square Error (RMSE) was used to compute the differences between the values ob-
served from the motion cueing algorithm and the reference signal being tracking. If this indicator
is close to zero then the performance of the algorithm is very good. It is computed as follows:

𝑅𝑀𝑆𝐸 = √
∑𝑁𝑖=1 (𝑥𝑟𝑒𝑓,𝑖 − 𝑥𝑖)

2

𝑁 (5.2)

5.2. 2 DOF Simulations
5.2.1. Initial Explicit MPC Performance
Using the modelled controller in subsection 4.1.1, the explicit control law was generated and used
to simulate different test scenarios as mentioned in the previous section. The results obtained for a
simple sine wave of amplitude 2 can be seen in Figure 5.2. In this and the subsequent figures present
in this report, three subplots are used to depict the performance of the motion cueing algorithm. The
first subplot showcases the reference and actual specific forces along with its two components. The
second plot shows the tilt angle and tilt rate during the cueing process. Lastly, the translational platform
displacement and velocity is observed in the third subplot.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

10

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5

10

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-1

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

Figure 5.2: Initial explicit MPC motion cueing performance for sine wave of amplitude 2

30 5. Simplified Actuator Dynamics

From the results it can be seen that the algorithm is able to start tracking the reference sine wave
relatively well before failing shortly afterwards at 2𝑠. This failure occurs at two regions where a peak
and drop is observed respectively. It takes place when the algorithm reaches its tilt rate threshold or
platform displacement limit. At this moment, the controller tries to continue tracking the signal but fails
due to limited available workspace. Such a behaviour is expected as the amplitude is relatively high and
the driving simulator cannot recreate those high magnitudes. Thus, at those points the algorithm fails,
after which it eventually recovers and starts tracking again. This behaviour is seen for other signals
with low amplitude as well. At these values, the width of the peak and drop is reduced but the same
phenomenon is observed.

5.2.2. Effect of Move Blocking Constraint
Move blocking is a functionality of the MPT toolbox that constrains the predicted control moves over
the horizon to reduce the number of decision variables in the optimization problem. Thus, it acts as a
control horizon and is particularly useful for explicit MPC problems. This is because, with an increase in
complexity of the problem, the computation time needed to compute the control laws increases expo-
nentially. By reducing the number of decision variables, a significant decrease in overall computation
time is observed.

The difference in computation time and RMSE tracking performance for the developed 2 DOF al-
gorithm can be seen in Table 5.2. It can be observed that when move blocking is not applied, the
computation time increases exponentially with a small increase in 𝑁𝑝. Even though the tracking per-
formance improves due to an increase in look ahead time, the computation expense limits the use of
high 𝑁𝑝 values with the same sampling rate of 0.1𝑠. A value of 10 is not computable as the number
of control regions to be computed continue to increase even after 2 days of computation time. On
the other hand, by using the move blocking functionality (from the second prediction step), faster so-
lutions are generated with a small compromise in RMSE performance. Further, the number of control
regions also reduce drastically; requiring less memory space to store the control law. Larger 𝑁𝑝 can
also be considered for the 2 DOF scenario using this functionality (at this sampling rate), but to main-
tain the same look ahead time in both explicit and implicit MPCs, a 𝑁𝑝 of 5 was used. Moreover, using
faster sampling rates with larger 𝑁𝑝 (while maintaining the same look ahead time) was not possible
even with this functionality. This was due to the exponential increase in computation time resulting in
uncomputable solutions.

Table 5.2: Influence of move blocking with different 𝑁𝑝 values

Finally, using this constraint, the explicit MPC controller was updated and the performance can be
seen in Figure 5.3. Here, the move blocking effect takes place from the second prediction step, as

5.2. 2 DOF Simulations 31

mentioned before, which has a positive effect on the computation time with a small compromise in the
RMSE values. The motion cueing algorithm performs with similar characteristics as seen in Figure 5.2.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

4
S

p
e

c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

10

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5

10

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-1

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

Figure 5.3: Explicit MPC motion cueing performance with move blocking constraint for sine wave of amplitude 2

5.2.3. Effect of Braking Constraints
As mentioned before in subsection 4.1.1, braking constraints are used to reduce the platform velocity
and tilt rate as the simulator approaches its physical limits which has a positive effect on the perfor-
mance of the motion cueing algorithm. This is because the driving simulator now has greater available
workspace to perform the desired simulation with more maneuverability. Figure 5.4 shows the effect
on the same simulation involving a sine wave of amplitude 2. It can now be observed that the algorithm
is able to smoothen out the peaks and drops that were observed before. The effect of using these con-
straints on the platform state values can be seen in Figure 5.5. As the platform displacement reaches
its limits, the velocity starts to reduce and approach zero allowing braking action to take place. Due to
this, the limits are never reached resulting in improved motion capabilities to track the reference signal.
On the other hand, when a similar action took place before applying these constraints, the platform dis-
placement continued to stay at its limit even with a reduction in velocity. This was because the states
were not constrained being dependent on each other which resulted in those peaks and drops as seen
in Figure 5.2.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

10

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5

10

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.4

-0.2

0

0.2

V
e

lo
c
ity

 [m
/s

]

dis

vel

Figure 5.4: Explicit MPC motion cueing performance with braking constraint for sine wave of amplitude 2

32 5. Simplified Actuator Dynamics

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

B
ra

k
in

g
 c

o
n

s
tr

a
in

t
v
a

lu
e

 [
m

]

Platform displacement constraint

Breaking constraint

Velocity

Displacement

U
acceleration

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-10

-5

0

5

10

B
ra

k
in

g
 c

o
n

s
tr

a
in

t
v
a

lu
e

 [
d

e
g

]

Tilt angle constraint

Breaking constraint

Tilt rate

Tilt angle

U
tilt

Figure 5.5: Braking constraint plot

Such a performance, with false cues is expected for a signal with a high rate of change in a short time
span, having an amplitude of 2. On the other hand, at a lower amplitude of 0.5, improved tracking can
be observed as seen in Figure 5.6. At this amplitude, the cueing algorithm is able to track the reference
sine wave for the entire duration except at one position where a false cue occurs (at 5.5𝑠). This false cue
makes the current performance of the algorithm undesirable which is why some additional weighting
is needed. These adaptive parameters cannot be added in the explicit controller due to limitations of
MPT. Further, the 𝑇𝑠 and 𝑁𝑝 cannot be increased to improve tracking, due to the exponential increase
in control law computation time. Thus, the explicit solution is only used as an initial guess in this study.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5 R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.4

-0.2

0

0.2

V
e

lo
c
ity

 [m
/s

]

dis

vel

Figure 5.6: Explicit MPC motion cueing performance with braking constraint for sine of amplitude 0.5

Additional parametric studies with the explicit MPC are present in Appendix C.

5.2. 2 DOF Simulations 33

5.2.4. Hybrid MPC Performance
The defined hybrid model in section 4.1 is tested across different conditions to see if there is any
improvement in overall online computation time while maintaining similar performance. This involves
tests with constant and adaptive weight functionalities as defined before for all the test cases present.

Constant Washout Weights
Constant washout weights are added on the tilt rate and platform displacement. The effect of using
washout in the proposed model can be seen in Figure 5.7. It can be observed that any false cues
which were present before have now gone away with very good tracking throughout the signal. This is
because, using these weights, the algorithm is able to maneuver the simulator states to track the signal
while keeping them within the desired limits and close to neutral position.

Figure 5.7: Motion cueing performance with braking constraints and washout weights for sine wave of amplitude 0.5

The washout weights used for this sine wave of amplitude 0.5 were 0.001 for tilt rate and 0.9 for
the platform displacement respectively. In a similar manner, weights can be tuned for all the test cases
taken into account separately. These are summarised in Table 5.3.

Table 5.3: Tuned washout weights for all test scenarios

From the table, it can be inferred that at a low amplitude of 0.5, the cueing algorithm is able to
perform good tracking as seen from the specific force and platform displacement RMSE values. As the

34 5. Simplified Actuator Dynamics

amplitude increases to 1, specific force tracking slightly worsens but the RMSE still remains less than
0.05 for the sine wave and less than 0.3 for the step signal. This increase in value for the step signal
is expected due to the sharp rise of the signal to be tracked; resulting in small false cues at the start
and exit of the step signal. At even higher amplitudes of 2, the tracking starts to worsen resulting in
false cues of greater magnitude. This behaviour, at such large values, is due to the limitations in the
available workspace for the cueing algorithm. Further, when multiple event scenarios are simulated,
constant weights work well for some parts of the simulation as it can only be tuned for a particular
type of signal. Hence, a compromise is made in tracking performance resulting in more false cues as
compared to the signals acting on their own.

Adaptive Washout Weights
Although constant washout weights work well and give good results, they suffer from issues when the
signal type or amplitude is changed. This is because the performance of a constant washout weight is
highly sensitive to the signal being used. The effect of using adaptive weights defined in Equation 4.1.2,
can be seen in Table 5.4. It is observed that adaptive weights can improve performance by reducing
the number of false cues generated across different scenarios, compared to using the same constant
washout weight for all the test cases. In this table, 0.001 and 0.9 were the chosen constant weights for
the tilt rate𝜔𝑝 and platform displacement 𝑠𝑝 respectively. Moreover, the number of false cues generated
while using the adaptive weights show a similar to trend to the performance observed in Table 5.3. From
this comparison it is evident, that the adaptive weights prove to be superior as compared to using the
same washout weight for all the scenarios while saving tuning time and reducing false cues.

Table 5.4: Comparison between constant and adaptive washout weights in terms of false cues generated

An example simulation in Figure 5.8 shows multiple events taking place in the same simulation (step
signal and a sine wave). It can be seen that the algorithm is able to track the reference signal while
maintaining washout effect. It is able to adapt to the signal requirements without any compromise in
specific force tracking. Similar performance can be observed when these signals act separately, whose
results are present in Appendix C.

5.2. 2 DOF Simulations 35

Figure 5.8: Motion cueing performance for multiple event signal with adaptive weights

Finally, using these adaptive weights, the model is updated and the same set of simulations are
run for all the defined motion cueing models. The results in Table 5.5 show that the hybrid model
with all explicit MPC control inputs, performs fastest with reduced mean iterations across all test cases
analysed. The hybrid model with the first control input sent in gives second lowest mean iteration
values with the implicit controller (without trajectory prediction) giving worst performance. The amount
of mean iterations vary from one signal to another and there is no general trend that can be stated for
the signals analysed.

From Table 5.6, it can be inferred that the average percentage improvement in computation time
is around 35% and 20% for the hybrid controllers (with all and with first control inputs). On the other
hand, the implicit controller (with control trajectory prediction) shows 15% improvement when compared
with the implicit controller. Upon looking at this table in more detail, it can be seen that the amount of
improvement in mean iterations goes down as the amplitude of the signal starts to increase. This can be
due to the fact that at lower amplitude, the explicit guess is closer to the optimal control input whereas
at larger amplitudes it is farther away. Also, the rate of drop for the hybrid controller with all inputs is
less than the other two controllers because it is able utilise more information from the explicit MPC.

Table 5.5: Mean iteration values for all four motion cueing models with adaptive washout weights

36 5. Simplified Actuator Dynamics

Table 5.6: Absolute error values with iMPC for all hybrid models with adaptive washout weights

Table 5.7 shows that the tracking performance is consistent across all motion cueing models in the
respective test scenarios, with no model outperforming the other. A similar trend is observed with near
perfect tracking at low amplitudes and worst performance at large values due to simulator workspace
limitations. This means that the explicit MPC helps in reducing online computation load while maintain-
ing tracking performance across all test cases. A similar study for the best constant washout weights
is presented in Appendix C.

Table 5.7: Specific force RMSE values for all four motion cueing models with adaptive washout weights

5.3. 4 DOF Simulations 37

5.3. 4 DOF Simulations
Simulation studies were carried out to test the performance of the created 4 DOF motion cueing algo-
rithm. The same set of test cases were taken into account as described before. First, the explicit MPC
which acts as the initial guess was tested followed by the hybrid algorithm.

5.3.1. Explicit MPC Performance
The created explicit controller was tested by looking at the general tracking performance of the algo-
rithm. Due to computation time limitations, a lower prediction horizon of 2 was chosen compared to the
higher value of 5 taken for the 2 DOF case. This is because, with an increase in problem complexity,
the computation time needed to generate the control laws increases exponentially which is the main
drawback of using an explicit controller. A summary of difference in computation time is seen in Ta-
ble 5.8. Here, it can be observed that with a 𝑁𝑝 of 5 and 𝑁𝑐 of 2, a solution was not computable as the
number of computed control regions continued to increase at a fast rate even after 2 days of simulation
time, with no scope of slowing down. Hence, such a prediction value is impractical and cannot be
implemented for such a large scale cueing problem. To ensure that the look ahead time remains the
same as the implicit controller, the sampling time was modified to 0.25 seconds with a 𝑁𝑝 of 2. As done
for the previous algorithm, the same look ahead time is preferred for both controllers, as it allows the
initial guess to be provided for the same duration that the implicit controller is considering for computing
the optimized control input.

Table 5.8: Computation time difference with changing prediction horizon and sampling time

Simulations were run using the explicit controller and the tracking performance for a sine wave in
both longitudinal and lateral direction can be seen in Figure 5.9. It can be observed that the controller is
able to track the reference signal in a similar manner as expected when no washout weights or braking
constraints are acting on the model. The same peaks and drops are observed when simulator states
reach their saturation points. Apart from the tracking, the simulator is able to stay within its operating
range while ensuring that the individual pitch and roll perception thresholds are not violated. But, due
to limitations in improving overall performance as observed for the 2 DOF scenario, the explicit solution
is only used as the initial guess for the 4 DOF study.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

0

1

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

(a) Longitudinal motion

38 5. Simplified Actuator Dynamics

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

0

1

2

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

0

5

R
o

ta
ti
o

n
 [

d
e

g
]

-5

0

5

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

(b) Lateral motion

Figure 5.9: Sine wave of amplitude 1 and frequency 0.1

5.3.2. Hybrid MPC Performance
Once the explicit solution has been formulated and stored in the form of a look-up table, it is used
as the initial guess for the implicit MPC. The algorithm derived and explained in subsection 4.2.2 is
used to perform the online simulations. All three cueing models with an initial guess are analysed and
compared with the implicit MPC based motion cueing algorithm using the same performance indicators.

The first set of simulations were performed without any adaptive washout weights acting to see how
the general version of the algorithm behaves. This was done by analysing the tracking performance of
a sine wave of amplitude 0.5; acting in both longitudinal and lateral directions. The algorithm is able to
track the reference signal quite well due to the addition of braking constraints in the model, but suffers
from a false cue starting at 5.5𝑠 as observed in Figure 5.10. This false cue can be attributed to the
tilt rate limit being reached as seen in the subplots; resulting in a drop of tracking performance due
to insufficient workspace available to perform the desired motion. Further, such an action takes place
because there are no washout weights acting in the algorithm which help in bringing the simulator back
to its neutral position.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

0.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2

4

R
o

ta
ti
o

n
 [

d
e

g
]

-4

-2

0

2

4 R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

(a) Longitudinal motion

Figure 5.10: Sine wave of amplitude 0.5 and frequency 0.1

5.3. 4 DOF Simulations 39

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

0.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2

4

R
o

ta
ti
o

n
 [

d
e

g
]

-4

-2

0

2

4
R

o
ta

tio
n

 [d
e

g
/s

]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

D
is

p
a

c
e

m
e

n
t

[m
]

-0.5

0

0.5 V
e

lo
c
ity

 [m
/s

]

dis

vel

(b) Lateral motion

Figure 5.10: Sine wave of amplitude 0.5 and frequency 0.1 (contd.)

Adaptive Washout Weights

To improve tracking performance, adaptive washout weights are included in the algorithm. The formu-
lation of these weights takes place in the samemanner as explained in Equation 4.1.2. From the results
in Figure 5.11 and Figure 5.12, showing the performance of a sine wave and a multiple event signal, it
can be seen that using these weights as part of the motion cueing algorithm has a positive influence
on the overall tracking performance. Even though in some parts of the simulation, the tilt rate reaches
its saturation point, the adaptive weights allow it to go back to its neutral position while maintaining the
simulator platform close to its neutral position as well. Thus, false cues which were observed before
in those scenarios, where tilt rate limits were reached, are no longer present. Further, the algorithm is
also able to adapt to varying signals within the same simulation as seen with the 2 DOF algorithm.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

4

R
o

ta
ti
o

n
 [

d
e

g
]

-2

0

2

4 R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.05

0.1

D
is

p
a

c
e

m
e

n
t

[m
]

0

0.05

0.1 V
e

lo
c
ity

 [m
/s

]

dis

vel

(a) Longitudinal motion

Figure 5.11: Sine wave of amplitude 0.5 and frequency 0.1

40 5. Simplified Actuator Dynamics

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

S
p

e
c
 f

o
rc

e
 [

m
/s

2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2
R

o
ta

ti
o

n
 [

d
e

g
]

-4

-2

0

2

R
o

ta
tio

n
 [d

e
g

/s
]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.05

0.1

D
is

p
a

c
e

m
e

n
t

[m
]

0

0.05

0.1

V
e

lo
c
ity

 [m
/s

]

dis

vel

(b) Lateral motion

Figure 5.11: Sine wave of amplitude 0.5 and frequency 0.1 (contd.)

(a) Longitudinal motion

Figure 5.12: Multiple event wave

5.3. 4 DOF Simulations 41

(b) Lateral motion

Figure 5.12: Multiple event wave (contd.)

As the updated algorithm gave good tracking performance, the online computation performance was
also investigated, as done before for the 2 DOF simulations. Mean iterations observed in Table 5.9, for
all models analysed, show that the hybrid model with all control inputs taken from the explicit controller
gives fastest solutions. This controller reduces the online solving load by 30%, which is observed from
the absolute error values shown in Table 5.10. The hybrid controller with first control input gives similar
computation performance to the implicit controller with control trajectory prediction, with an improve-
ment of around 10%. This could be because of only using the first control input resulting in limited
information. This can also be caused due to a larger sampling rate difference amongst the explicit
and implicit controllers in the 4 DOF hybrid algorithm due to explicit MPC limitations. Further, both of
these cueing models show significant improvement at low amplitudes as seen for the sine wave and
multiple event scenario. As the amplitude increases, the percentage improvement starts to drop. On
the other hand, the hybrid controller with all control inputs shows improvement in all scenarios with a
minor drop at high amplitude when compared to the other models. This can again be attributed to the
quality and quantity of the control inputs utilised by the implicit controller. With more information, the
implicit controller is able to provide the optimized control input at a faster and more uniform rate.

Table 5.9: Mean iteration values for all four motion cueing models with adaptive washout weights

42 5. Simplified Actuator Dynamics

Table 5.10: Absolute error values with iMPC for all hybrid models with adaptive washout weights

Lastly, the computational load decreases while making sure that the performance of the algorithm
does not hinder, as seen in the RMSE values for all the models in Table 5.11 and Table 5.12. Similar
trend is observed with very good tracking at low amplitude followed by a rise in RMSE as the amplitude
of the signal increases. No particular cueing model outperforms the rest across all scenarios in both
longitudinal and lateral directions. Further, the performance is similar in both directions. This is because
the cost function allows equal contribution from both kinds of motions resulting in similar results.

Table 5.11: Specific force RMSE values (longitudinal motion) for all four motion cueing models with adaptive washout weights

5.4. Summary 43

Table 5.12: Specific force RMSE values (lateral motion) for all four motion cueing models with adaptive washout weights

5.4. Summary
In this chapter simulations were performed using simplified actuator dynamics for the 2 DOF and 4 DOF
motion cueing algorithms respectively. A set of test scenarios were defined along with key performance
indicators to analyse the results in detail. Simulations were first done with the explicit controller to anal-
yse the simplified version of the implicit algorithm. Peaks and drops were observed in the simulations
due to limitations in the available workspace. As additional functionalities, such as adaptive weights,
used to improve the cueing performance cannot be included in the explicit algorithm, it was only used as
an initial guess in this study. Apart from this, effect of move blocking was also analysed which helps in
reducing control law computation time with a compromise in specific force tracking. From this analysis,
the final 𝑁𝑝 and sampling time values were selected for both 2 DOF and 4 DOF explicit controllers.

Next, the implicit controller used in the hybrid scheme was studied. To reduce peaks and drops
obtained with the explicit controller, braking constraints were applied which helped in improving tracking
performance for most of the simulation. Minor false cues were still obtained due to simulator limits of
the tilt rate and platform displacement being reached. For this, washout weights were used in the
algorithm to reduce false cues throughout the simulation. Here, constant washout weights were first
studied followed by a comparison with adaptive weights. It was observed that by using the adaptive
function, tuning time is saved with good tracking performance for the simulations performed; when
compared with constant weights.

Once the individual controllers were analysed, the computation performance of the hybrid scheme
was examined. This was done by using the four defined motion cueing models simulated for the same
set of test scenarios. For both 2 DOF and 4 DOF cueing algorithms, the hybrid controller with all control
inputs sent in as input gave best results with least mean iteration values when compared with the other
three cueing models. The implicit controller gave highest mean iteration values across all test cases.
Further, specific force tracking performance was also investigated for all models to check whether
tracking is maintained while using the initial guess. The results showed that similar performance is
obtained from the hybrid models for both 2 DOF and 4 DOF algorithms.

To conclude, it was observed that the developed hybrid scheme is able to reduce online computation
costs while ensuring similar specific force tracking performance for both algorithms. Next, simulations
using the emulator interface of the DAVSi will be shown along with virtual race track simulations with
the 4 DOF motion cueing algorithm.

6
Advanced Simulator Dynamics

For the purpose of this study, an emulator environment was used to imitate the performance of the
DAVSi, with the created motion cueing algorithm. The DAVSi is a 6 DOF driving simulator whose
geometrical model has been explained in section 1.1. The system performance capabilities of the
DAVSi are presented in the table below.

Table 6.1: System performance of the DAVSi

The emulator allows us to perform motion cueing tests without having to actually run the entire sim-
ulator hardware set-up. These offline simulations are run using the emulator’s graphical user interface
called Commander. The Commander allows the test scenarios to be built and run through the created
Simulink file which contains the hexapod dynamics and the developed motion cueing algorithm. Using
the GUI, analysis can be done on the platforms motion capabilities with respect to the reference signal
being followed in the cueing algorithm. This includes monitoring signal and states, modifying parame-
ters, viewing the status of the simulator and even generating plots of the signal responses. A general
layout of the GUI can be seen in Figure 6.1. Therefore, the emulator setup helps in recognising how
the DAVSi would actually perform in real life, if real-time hardware implementation of the algorithm took
place. On the other hand, while performing simulations in real-time, the eMoveRT controller is used
to control the actuation hardware and a connected host computer is used to operate the simulations
taking place.

45

46 6. Advanced Simulator Dynamics

Figure 6.1: Commander graphical user interface

6.1. Simulation Setup
To analyze the performance of the DAVSi, a set of test scenarios were taken into account as done for
offline simulations. The same simulations were run offline as well to allow proper comparison to take
place and to see the tracking performance capabilities of the DAVSi. The test scenarios considered
ranged from low to high amplitude signals, running for short to long duration. This gave a comprehen-
sive outlook on the cueing algorithm’s performance and can be seen as follows:

• Sine wave of amplitude 0.5𝑚/𝑠2 and frequency 0.1 Hz. with 10 seconds simulation time

• Step signal (from 1 to 4 seconds) of amplitude of amplitude 0.1𝑚/𝑠2 with 10 seconds simulation
time

• Sine wave of amplitude 1𝑚/𝑠2 and frequency 0.01 Hz. with 60 seconds simulation time

• Combined sine wave comprising of 4 different signals as follows:

– Wave 1: amplitude 0.5𝑚/𝑠2 and frequency 1 Hz.
– Wave 2: amplitude 0.6𝑚/𝑠2 and frequency 0.1 Hz.
– Wave 3: amplitude 0.1𝑚/𝑠2 and frequency 0.2 Hz.
– Wave 4: amplitude 0.8𝑚/𝑠2 and frequency 0.15 Hz.

The simulation was run for 20 seconds and a scaling factor of 0.3 was used to reduce the
amplitude range and rate of change of the signal, resulting in the final reference signal as
seen below:

𝑠𝑖𝑛𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑘𝑠𝑐𝑎𝑙𝑒(𝑤𝑎𝑣𝑒1 + 𝑤𝑎𝑣𝑒2 + 𝑤𝑎𝑣𝑒3 + 𝑤𝑎𝑣𝑒4) (6.1)

Simulations were performed using the 2 DOF motion cueing algorithm with hexapod dynamics.
Additional slack variables were used for these simulations to improve robustness of the algorithm.
These were applied to soften the tilt rate constraints which upon violation resulted in chattering and
subsequent simulation failure in some test scenarios. Using these variables as part of the optimization
problem, helps in avoiding such situations by allowing the constraint value to be slightly violated, while
ensuring that the simulation does not fail. This implementation is done through additional constraints
as seen in Equation 6.2. The remaining formulation and parameters used in the cueing algorithm were
the same. All four developed models were studied under the same simulation setup, to see the effect
on computation time through obtained mean iteration values.

𝜔𝑝,𝑚𝑖𝑛 ≤ 𝜔𝑝 + 𝑠
𝜔𝑝 − 𝑠 ≤ 𝜔𝑝,𝑚𝑎𝑥

0 ≤ 𝑠
(6.2)

where, 𝑠 is the slack variable

6.2. Simulation Performance 47

6.2. Simulation Performance
As mentioned in the previous section, four types of scenarios were considered. The first set of simula-
tions were performed on signals with low amplitude, followed by multi-frequency and larger amplitude
sine waves. In this section the combined sine wave is analysed with additional simulations presented
in Appendix C.

(a) Emulator

(b) Offline simulation

Figure 6.2: Emulator performance comparison for combined sine wave

It can be inferred from Figure 6.2 that the emulator is able to track the desired reference signal with
similar characteristics and performance when compared with offline simulation results. This occurs
with sufficient contribution from both components of the specific force; linear platform acceleration and
gravitational tilt. Neither of these components are erratic or extremely large in value, ensuring safe
movement of the simulator with smooth tracking performance. No false cues are present in the simu-
lation and washout effect takes place in a similar manner for both the emulator and offline simulations.
Also, a larger rest period was used in this scenario to ensure that the emulator is in a stable condition
before the desired motion begins. Thus, the emulator is able to work well with the designed motion

48 6. Advanced Simulator Dynamics

cueing algorithm to track robust signals (with varying amplitude and frequency) and can be further used
for extensive studies related to computation time.

While looking at the computation load required for different cueing models in Table 6.2, it can be
seen that the mean iterations show a similar trend for both emulator and offline simulations; with the
hybrid model with all control inputs giving lowest values. The other hybrid model with first explicit MPC
control input also shows good improvement in mean iterations, whereas the implicit controller gives
worst computation performance. For the step signal simulation, the mean iterations for both the hybrid
controllers is close to or equal to 0 as at this low amplitude value, the initial guess is already very close
to the optimized value; resulting in low online computation time.

The tracking for all the models is also analysed through RMSE values presented in Table 6.3. Of-
fline simulations show superior RMSE tracking values for all the simulations when compared with the
emulator results. This discrepancy is due to the difference in the simulator dynamics being used for
both sets of simulations. However, looking at both sets of simulations independently, it can be seen
that similar performance is obtained for all four cueing models across all test cases. Thus, the emu-
lator which represents the movement and motion of the DAVSi shows similar trend in behaviour using
this hybrid algorithm (in terms of reduced computation time while maintaining tracking performance) as
observed in offline simulations.

Table 6.2: Mean iteration values for all four motion cueing models with the emulator and offline simulations

6.3. Virtual Track Simulations 49

Table 6.3: Specific force RMSE values for all four motion cueing models with the emulator and offline simulations

6.3. Virtual Track Simulations
The last study was done to see the performance of the developed motion cueing algorithm with a track
simulation. This took place by feeding in track data as input to the cueing scheme. Data was obtained
by simulating a scenario using the commercially available multibody software called IPG CarMaker. To
analyse the effect in both longitudinal and lateral directions, the 4 DOF motion cueing algorithm was
used in this study.

The Hockenheim race track was selected to perform these simulations in IPGCarMaker, as amongst
the race tracks available it has the least elevation change of only 4.3𝑚. The race track can be visualized
in Figure 6.3 which shows the plot of the center line of the track. Further, a high fidelity vehicle model
of the Tesla Model S was used to perform the track simulation. The vehicle parameters of the model
are present in Appendix C.

-100 0 100 200 300 400 500 600

Global x-coordinates [m]

-400

-300

-200

-100

0

100

200

300

400

500

G
lo

b
a

l
y
-c

o
o

rd
in

a
te

s
 [

m
]

Figure 6.3: Hockenheim race track

The simulation was first run for the vehicle travelling at 120𝑘𝑚/ℎ for a single lap around the Hock-
enheim racetrack. User parameterized driver settings were used to perform the simulation with the

50 6. Advanced Simulator Dynamics

following acceleration thresholds selected to imitate naturalistic driving style [49]:

𝑎𝑥,𝑚𝑎𝑥 = 3𝑚/𝑠2
𝑎𝑥,𝑚𝑖𝑛 = −4𝑚/𝑠2
𝑎𝑦,𝑚𝑎𝑥 = 4𝑚/𝑠2

(6.3)

Once the simulation was complete in IPG CarMaker, longitudinal and lateral acceleration values
were extracted. Before the extracted values could be used, they were passed through the vestibular
system model by Telban [33]. This was done to ensure that only the perceived acceleration values
are sent in; to be tracked by the motion cueing algorithm in the emulator interface of the DAVSi. The
structure of this perception model can be seen below:

𝑎̂(𝑠)
𝑎(𝑠) =

𝑘oto (𝑇a𝑠 + 1)
(𝑇L𝑠 + 1) (𝑇S𝑠 + 1)

(6.4)

Where, 𝑘oto = 0.4, 𝑇a = 10, 𝑇L = 5 and 𝑇S = 0.016. The selection of this model is based on an
in-depth analysis which is presented in Appendix B.

Using these track reference values, 4 DOF simulations were run and the results obtained for longi-
tudinal and lateral motion for a vehicle driving at 120km/h around the Hockenheim race track can be
seen in Figure 6.4 and Figure 6.5.

0 20 40 60 80 100 120

Time [s]

-4

-2

0

2

S
p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-5

0

5 R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure 6.4: Longitudinal motion results for Hockenheim track simulation at 120km/h

6.3. Virtual Track Simulations 51

0 20 40 60 80 100 120

Time [s]

-5

0

5

S
p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-20

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-2

0

2

R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure 6.5: Lateral motion results for Hockenheim track simulation at 120km/h

From the figures, it can be inferred that the developed motion cueing algorithm gives good tracking
performance throughout the simulation. This is seen in both longitudinal and lateral directions, with an
RMSE value of 0.42, 0.21 respectively, for complete simulations around the Hockenheim race track.
However, in some parts of the simulation, the cueing algorithm is unable to track the reference data
perfectly. This occurs when the vehicle is travelling at a high speed and suddenly applies its brakes. An
example can be seen at around 80𝑠 in Figure 6.4. At this time, the vehicle is driving through the third last
corner before the main straight (which can be seen in Figure 6.3), requiring it to change direction and
apply brakes at a fast rate; resulting in this immediate drop in longitudinal acceleration. In an attempt
to achieve this motion inside the simulator, the tilt rate reaches its limit (and goes slightly out of bounds)
while the platform displacement is also extended to its respective threshold, while staying inside the
limit circle. Due to workspace limitations, the platform cannot be maneuvered anymore resulting in
false cues.

Lastly, these results were quantified and a comparative study was done by simulating the same
vehicle around the Hockenheim race track at slower speeds. This also included the mean iteration
study with the four developed cueing models as done in the previous section. Table 6.4 shows the
mean iterations observed for all four models. It can again be seen that the hybrid controllers reduce
online computation time at all speed values when compared with the implicit controller. An improvement
of 9% is seen with the hybrid controller using all explicit control inputs. The other hybrid controller shows
an improvement of 5.9%, which is quite comparable to the implicit controller (with trajectory prediction)
having a 5.1% difference in mean iterations. This behaviour is a replication of the trend observed with
offline simulations presented in the previous chapter.

Table 6.4: Mean iteration values for all four motion cueing models with track simulations

52 6. Advanced Simulator Dynamics

A summary of the obtained RMSE values for all simulations performed is shown in Table 6.5. Here,
it is confirmed that the RMSE tracking performance is maintained in both directions for all four cueing
models. Also, a minor difference is observed in longitudinal and lateral directions at the same speed.
This is due to the difference in signal values being tracked by the controller in both directions. As
the speed starts to increase, the RMSE values worsen due to driving maneuvers being performed at a
faster rate; resulting in larger false cues. The figures of the additional simulations done at lower speeds
showing better performance is presented in Appendix C.

Table 6.5: Specific force RMSE values for all four motion cueing models with track simulations

6.4. Summary
This concludes the simulation studies performed with the developed motion cueing algorithms. It can
be seen that with the emulator interface of the DAVSi, the cueing algorithm is able to give a similar
trend in tracking and online computation time performance compared with the offline simulations. The
emulator proves to be robust to different kinds of signals with varying amplitude and frequency. Also,
track simulations using the extended 4 DOF cueing algorithm show that the cueing scheme works well
with simulated track data of the Hockenheim race track at varying speeds. Here, the same trend of
reduced mean iterations is observed with the designed hybrid controller. Also, tracking performance is
maintained throughout the track simulation at all speeds analysed.

7
Conclusion and Recommendations

7.1. Conclusion
In the domain of motion cueing algorithms, several control techniques have been used ranging from
conventional filter based algorithms to more advanced techniques using MPC. MPC based algorithms
either compute an optimal controller online or derive an explicit control law in an offline setting. These
approaches have limited applicability for real-time applications due to online computational expense
and offline memory storage issues; leading to poor performance. Thus, the goal of this research was
to implement a strategy to reduce the online computation load by shifting it offline using a hybrid MPC
based algorithm.

First, a 2 DOF motion cueing algorithm was developed using the hybrid MPC based approach.
For this, an explicit MPC based controller was created which comprised of displacement and velocity
states in both surge-pitch DOFs, along with the acceleration components acting as the control inputs.
The explicit controller was used to provide an initial guess acting as warm start for the implicit MPC
based algorithm.The implicit controller was similar in its formulation but comprised of additional braking
constraints and adaptive washout weights to improve specific force tracking. Based on this general
hybrid formulation, four different kinds of cueing models were analysed by looking at performance
indicators such as tracking performance and mean iterations. The explicit controller was not analysed
separately due to limitations in model complexity and using large prediction horizon values with fast
sampling rates; leading to poor performance. Thus, it was only used as an initial guess in this study.
Out of all the hybrid controllers, the initial guess from the explicit MPC (with all control inputs) showed
best results, with lowest mean iterations, when compared with the implicit controller.

Furthermore, this research was extended to 4 DOF motion cueing problems by adding in sway-roll
DOFs. This increased the problem complexity for both explicit and implicit MPCs. The same set of
test cases were analysed with the goal to track the reference specific force. From the results, it was
observed that the hybrid controller with explicit MPC acting as the initial guess gave best results, by
reducing the online computation load, as compared to just using the implicit controller on its own.

Also, emulator studies were performed to observe the performance of the DAVSi with the created
motion cueing algorithm. For this, all the developed cueing models were studied with the emulator and
tests were performed using different reference signals. The performance of the emulator (in terms of
reference tracking and mean iterations) was compared with offline simulations, which showed uniform
trend in results. Hybrid models again lowered the online computation load when compared to the
implicit controller acting by itself. Lastly, virtual track simulations were performed by obtaining data
from IPG CarMaker. The 4 DOF algorithm with a perception model was used in this study, which gave
good tracking performance; for a virtual simulation of a car driving around the Hockenheim racetrack.

To conclude, an hybrid MPC based motion cueing algorithm has been developed which utilises
explicit and implicit MPCs together. The explicit guess kick-starts the algorithm resulting in reduced
number of iterations and computation time; to compute the optimized control input online. Tracking per-
formance is maintained for a wide range of signals while working at a high sampling rate and prediction
horizon. Moreover, emulator results with the DAVSi confirm the ability of the developed algorithm to
reduce online computation time while maintaining tracking performance on a real-time system.

53

54 7. Conclusion and Recommendations

7.2. Recommendations
The developed hybrid MPC based motion cueing algorithm is able to work well for the designed sce-
narios and helps in reducing online computational expenses. The following recommendations can be
made for future work:

First, additional testing should be done for the current 4 DOF motion cueing algorithm. Currently,
virtual track simulations were performed using IPGCarMaker for the developed hybrid algorithm. These
simulations were done using a vehicle simulated around a racetrack which showed good capabilities
of the approach. In the future, this can be extended to take real road data representing natural driving
conditions into account; with the emulator setup. These simulations can help in understanding the
performance of the algorithm to a greater extent as seen with the race track simulations.

Second, real-time simulations should be performed, with human in loop, to see the actual working
of the simulator with the developed motion cueing algorithm in real life. Even though the emulator is
a direct representation of the DAVSi, performing a subjective analysis can prove to be beneficial to
validate the findings of this study.

Third, investigation should be done in including a perception model as part of the motion cueing
algorithm. By using an accurate mathematical model, such as the one developed by Telban, can lead
to better approximation of the human vestibular model in the motion cueing algorithm. This can improve
cueing performance due to generation of more realistic motion cues.

Lastly, this hybrid scheme can be extended by including yaw-heave DOFs, thus making it a 6 DOF
motion cueing algorithm. In this version, additional actuator based constraints can be considered which
improve overall functioning through efficient workspace management. Further, the test performance of
the virtual simulator environment would be closer to real life simulations as all DOFs are taken in the
cueing scheme. This will allow virtual simulations to be performed on tracks which have a higher rate
of change of elevation than simulating the algorithm for flat road surfaces.

A
Scientific Paper

This chapter contains the scientific paper that will be submitted to IEEE International Conference on
Mechatronics 2023.

55

Hybrid MPC based Motion Cueing Algorithm for
Driving Simulators

Abstract—Driving simulators have been used in the industry
for many years because of their ability to perform tests in a safe,
reproducible and controlled immersive virtual environment. The
improved performance of the simulator and its ability to recreate
the same experience for the user is established through motion
cueing algorithms (MCA). Such algorithms have constantly been
developed with model predictive control (MPC) acting as the
main control technique. Currently available MPC based methods
either compute the optimal controller online or derive an explicit
control law in an offline setting. These approaches limit the
applicability of the MCA for real-time applications due to online
computational expense and offline memory storage issues. This
research presents a solution to deal with issues of offline and
online solving through a hybrid approach. For this, explicit MPC
is used to generate a look-up table to provide an initial guess
as warm start for the implicit MPC based MCA. From the
simulations, it is observed that the presented hybrid approach is
able to reduce online computation load by shifting it offline using
the explicit controller. Further, the algorithm is also tested with
track simulation data in an emulator environment of a driving
simulator, which gives good performance.

Index Terms—motion cueing algorithm, driving simulator,
model predictive control

I. INTRODUCTION

Driving simulators are used to perform tests on new ad-
vancements in vehicular technology. The virtual environment
of the simulator is used to recreate the in-vehicle experience
without any damages to the real vehicle. To do this, an
MCA is used, which acts as the control tecnique for the
driving simulator’s movements. It governs the process allowing
the simulator to function properly so that the same feeling
of motion is experienced by the user and that maximum
workspace utilization takes place [1].

In motion cueing, driver input is sent to the vehicle model
which generates the reference signal to be tracked by the
developed MCA. The MCA computes the desired motion to
follow this reference signal, which is then performed by the
simulator. The sensed specific force fspec,s (computed using
simulator dynamics) comprises of two components, platform
translational acceleration, atran,p and the gravitational accel-
eration, which allows us to study the human body’s movement
in space during the cueing process. This is compared with the
actual specific force value fspec,a obtained from the vehicle
model. The computed error is then fed back into the MCA as
feedback; to improve results for the next time step. Based on
this, several kinds of MCAs have been implemented, which
differ in terms of control techniques used.

Conventional filter based algorithms use the concept of high
and low pass filters to reproduce the on-road experience inside

the virtual environment [2]. They operate using three main
channels. The first is the translational channel which takes
in translational accelerations as input. It uses a high pass
filter to filter out sustained low-frequency accelerations which
can drive the simulator to its physical limits [2]–[5]. These
filtered low-frequency accelerations are then recreated using
tilt-coordination in the tilt channel [6]. Lastly, a rotational
channel is present, which is similar to the translational channel
but deals with inputted rotational velocities.

Different kinds of conventional algorithms have been de-
veloped such as the classical, optimal and adaptive washout
based algorithms. The main issue such algorithms suffer from
is that they are unable to take explicit constraints into account,
leading to poor workspace utilization. Furthermore, some of
these approaches like the classical washout based algorithm is
a feedforward technique which results in poor performance. To
overcome these problems, MPC based MCAs are commonly
used. MPC is a control strategy that uses a dynamic model to
forecast system behavior and optimize the future predictions
to produce the best decision; control move at the current time
[7]. This control strategy has been used in MCAs for over a
decade with work done using two different types of controllers.

The first is the implicit/online controller which solves the
optimization problem online at each time-step. Initially, linear
MPC based MCAs were developed as seen in Beghi et al.
[6] and Garrett et al. [8]. These improved performance when
compared with the conventional algorithms, but gave sub-
optimal results as the full capabilities (nonlinear dynamics)
were not taken into account. Further, they employed con-
straints in the driver reference frame, to keep the prob-
lem linear, resulting in difficulties in realizing the available
workspace. Thus, nonlinear based algorithms were developed
as seen in Bruschetta et al. [9], who worked on a 9 DOF
driving simulator. In this study, constraints were applied on the
actuator lengths which showed improvements in performance
when compared with the linear MPC based MCA. Khusro
et al. [5] also developed a nonlinear MPC based MCA with
actuator constraints. Perception thresholds were applied in this
work to reduce false cues, along with adaptive weights which
improved tracking performance. Lamprecht et al. [10] worked
on a similar algorithm involving perception thresholds, but
used a separate optimal control problem to predict future
driver behaviour. Such MPC based MCAs give better and
more accurate cueing performance compared to conventional
and linear MPC based algorithms, but, they suffer from high
online computation costs resulting in limitations for real-time
implementation.

For this, other kinds of MPC based algorithms have been
implemented. These use an explicit MPC, which pre-computes
the solution and then uses it in the form of a look-up table
online. This method reduces online computation time as seen
in Fang et al [11]. In this study, a 2 DOF MCA was developed
which was later extended by incorporating a vestibular model
in [12]. Although this technique reduces online computation
time, it suffers from memory storage issues along with restric-
tions in using large prediction horizons Np with fast sampling
rates. This is due to the exponential increase in control region
computation time with an increase in complexity and scope of
the problem, thus requiring a better alternative.

To overcome issues faced by implicit and explicit MPCs,
a hybrid approach has been developed by Zeilinger [13].
An explicit controller was used to give an initial guess for
the online optimization problem. The guess acts as a warm-
start resulting in faster computation of the optimal control
input. Since its inception, this technique has been used in
applications such as curve tilting [14] and lateral motion
stabilisation [15]. Jost et al. [16] also used this approach with
modifications in the explicit initialisation.

In this work, a 4DOF hybrid MPC based MCA is de-
signed to improve the computational speed of the algorithm
while maintaining tracking performance. Hybrid MPC based
approaches are yet to be implemented in the domain of cueing
algorithms. This paper aims at establishing a hybrid approach
for motion cueing, in doing so the computational performance
of the proposed method is compared with the implicit MPC
based MCA. The paper is structured as follows. In Section II,
the controller design is explained which includes information
about both MPCs present in the hybrid scheme. The test
setup and simulations performed are presented in Section III.
Conclusion and recommendations are listed in Section IV.

II. METHODOLOGY

A. Hybrid Scheme

Design of the hybrid MPC based MCA comprises of two
main components, initialisation using explicit MPC and online
computation using the implicit counterpart. A general scheme
of the MCA can be seen in Fig. 1. The first step of this hybrid
algorithm involves sending the initial state and reference
values to the explicit MPC block. This block searches for the
corresponding control region related to the state and reference
values sent in. Once the control region is selected, the asso-
ciated control inputs are sent to the online nonlinear solver,
as initial guess. The reference values here refer to the specific
force to be tracked by the MCA. With the information of the
initial guess along with the current states and the reference
signal, the MPC block computes the optimised control input.
These are then sent to the simulator/plant dynamics block to
apply the control input and update the states for the next time
step. Once the state update is complete, the entire process is
repeated until the simulation finishes.

Fig. 1. Hybrid MPC scheme for the proposed motion cueing algorithm

B. Explicit MPC

As previously discussed, explicit MPC is used to compute
a look-up table which is later used to provide an initial guess
to the online solver. This comprises of state and reference
values stored in the form of control regions. Each control
region corresponds to a particular control input value, which
is generated as follows: [17], [18].

U(x) = Fix+Gi if x ∈ CRi. (1)

Where, CRi are the control regions.
To generate the look-up table, an MCA is designed which

takes the 4 DOF capabilities of the driving simulator into
account, using the Multi Parametric Toolbox (MPT). This
algorithm is a simplified version of the online counterpart
as its goal is to provide an educated guess for warm start.
Eight states are used in the model which take the platform
displacement sp, platform velocity vp, tilt angle θp and tilt
rate ωp for pitch-surge and sway-roll DOFs into account. The
state space equations are shown in (2).

ẋ(k) =



ω̇p,long = ap,long,rot
˙θp,long = ωp,long

v̇p,long = ap,long,tran

˙sp,long = vp,long

ω̇p,lat = ap,lat,rot
˙θp,lat = ωp

v̇p,lat = ap,lat,tran

˙sp,lat = vp,lat

(2)

Here, longitudinal and lateral subscripts refer to the pitch-
surge and sway-roll DOFs respectively. Also, this problem
contains four control inputs u(k), comprising of translational
and rotational accelerations acting in both longitudinal and
lateral directions:

u(k) =


ap,long,rot

ap,long,tran

ap,lat,rot

ap,lat,tran

(3)

Thus, the combined system can be represented as follows:

ẋ(k) = f(x(k), u(k)) (4)

Constraints are applied in the MCA to limit the motion capa-
bilities of the driving simulator. Firstly, perception thresholds
are applied on both pitch and roll movements to ensure that
the driver does not realize the tilting action. Generally, a lower
value in the range of 2-4 deg/s is used [5], [10], [19]–[22] and
for the proposed MCA, 3 and 2.6 deg/s was chosen for pitch
and roll tilt rates respectively.

Secondly, constraints are applied on the platform displace-
ment to limit the translational displacement of the platform.
As we are dealing with 4 DOFs, the movement of the
platform is limited by the limit circle which is represented
by

√
s2p,long + s2p,lat ≤ 0.52. However, as the explicit MPC is

formulated using MPT, nonlinear constraints cannot be taken
into account which is why the platform displacement limits
are applied separately for the explicit controller with a value
of 0.35m. This ensures that the simulator movements are
restricted within the limit circle. The control input obtained
from the explicit MPC controller acts as an initial guess
which is why a lower constrained value can be taken into
account; with the implicit controller refining the solution. The
constraints used in the problem are given below:

χe =



−3deg/s ≤ ωp,long ≤ 3deg/s

−2.6deg/s ≤ ωp,lat ≤ 2.6deg/s

−30deg ≤ θp,long,lat ≤ 30deg

−7.2m/s ≤ vp,long,lat ≤ 7.2m/s

−0.35m ≤ sp,long,lat ≤ 0.35m

−9.81m/s2 ≤ ap,long,lat,tran ≤ 9.81m/s2

(5)

The goal of this MCA is to track the output specific force.
This specific force is defined by the two vector components,
translational and gravitational tilt accelerations. Rotations with
respect to the x and y axis are used in deriving the gravitational
tilt components which are as follows:

gtilt =

{
glong = g sin θp,long

glat = −g cos θp,long sin θp,lat
(6)

Taking the translational accelerations into account, the final
output specific force is given by:

y(k) =

{
fspec,long = ap,long,tran + g sin θp,long

fspec,lat = ap,lat,tran − g cos θp,long sin θp,lat
(7)

Furthermore, the cost/objective function consisted of
weighted states, outputs and control inputs. The corresponding
weights chosen for our simulations are presented in Table I.
As the states are already constrained, a value of 0 is assigned
to allow freedom of movement in the available workspace.
Further, the output is given the highest weight as the goal of
the algorithm is to track the specific force. Equal control input
weights are used to ensure sufficient contribution from both
translational and rotational motions.

TABLE I
MPC CONTROLLER WEIGHTS

Weight States Outputs Control input
Value 0 1 1e-3

C. Implicit MPC

The second part of the hybrid approach is the online MPC
based algorithm. This algorithm is able to take nonlinear
constraints into account and is modelled using ACADO in
MATLAB. The states ẋ(k) of the cueing approach are also
updated by adding the platform accelerations, previously used
as the control inputs. These control inputs are replaced by
commanded acceleration values, which are modelled incorpo-
rating a time delay in the system. The updated model is shown
below:

ẋ(k) =



ω̇p,long = ap,long,rot
˙θp,long = ωp,long

v̇p,long = ap,long,tran

˙sp,long = vp,long

ω̇p,lat = ap,lat,rot
˙θp,lat = ωp

v̇p,lat = ap,lat,tran

˙sp,lat = vp,lat

˙ap,long,tran =
acmd,long,tran − ap,long,tran

Ts

˙ap,long,rot =
acmd,long,rot − ap,long,rot

Ts

˙ap,lat,tran =
acmd,lat,tran − ap,lat,tran

Ts

˙ap,lat,rot =
acmd,lat,rot − ap,lat,rot

Ts
(8)

The implicit controller allows us to take nonlinear con-
straints into account which is why the limit circle displacement
constraint can be used directly. Apart from this, additional
braking constraints are incorporated in the algorithm [11].
These constraints help in slowing down the platform velocity
and tilt rate as the platform displacement and tilt angle reach
their respective limits. Two sets of constraints are used for
these; one for platform velocity and the other for the tilt rate
as follows:

sp,min ≤ cvvpTbrk,p + 0.5cuap,tranT
2
brk,p ≤ sp,max (9)

θp,min ≤ cwωpTbrk,θ + 0.5cuap,rotT
2
brk,θ ≤ θp,max (10)

where, cv = 1, cw = 1, cu = 0.45, Tbrk,θ = 0.5, Tbrk,p = 2.5
and sp, θp thresholds are 0.5m and 30 deg respectively.

The constraints used in the model are as follows:

χi =



−3deg/s ≤ ωp,long ≤ 3deg/s

−2.6deg/s ≤ ωp,lat ≤ 2.6deg/s

−30deg ≤ θp,long,lat ≤ 30deg

−7.2m/s ≤ vp,long,lat ≤ 7.2m/s

−0.5m ≤ sp,long,lat ≤ 0.5m

−9.81m/s2 ≤ ap,long,lat,tran ≤ 9.81m/s2

−0.5m ≤ cvvp,longTbrk,p

+ 0.5cuap,long,tranT
2
brk,p ≤ 0.5m

−30deg ≤ cwωp,longTbrk,θ

+ 0.5cuap,long,rotT
2
brk,θp,long

≤ 30deg

−0.5m ≤ cvvp,latTbrk,p

+ 0.5cuap,lat,tranT
2
brk,p ≤ 0.5m

−30deg ≤ cwωp,latTbrk,θ

+ 0.5cuap,lat,rotT
2
brk,θp,lat

≤ 30deg

−5m/s2 ≤ acmd,long,lat,tran ≤ 5m/s2√
s2p,long + s2p,lat ≤ 0.52

(11)
Finally, adaptive washout weights are added into the model

to allow the driving simulator to reach its neutral position.
Using adaptive weights allows different signals to be analysed
without having to tune the weights for each signal being
studied. This is done by applying weights on the platform
displacement and tilt rate as they tend to reach their limits in
every simulation. The formulation of the adaptive weight for
these two states can be seen in (12) and (13). Fig. 2 shows how
the weight adapts itself based on the position of the platform.
A high weight is applied when the platform is close to its
limit and a low weight when it is near the neutral position,
thus allowing a washout effect to take place.

Wsp =ws,1 + ws,2

(
abs(sp,i)

ws,5

)
+ ws,3

(
abs(sp,i)

ws,5

)2

+ ws,4

(
abs(sp,i)

ws,5

)4
(12)

Wωp
=wω,1 + wω,2

(
abs(ωp,i)

wω,5

)
+ wω,3

(
abs(ωp,i)

wω,5

)2

+ wω,4

(
abs(ωp,i)

wω,5

)4

(13)
where, ws,1 = 0.01, ws,2 = 20, ws,3 = 20, ws,4 =

20, ws,5 = 0.5, wω,1 = 0.0001, wω,2 = 0.7, wω,3 =
0.7, wω,4 = 0.7, and wω,5 = 3.

The structure of the implicit MCA is as follows:

min
uNp

J (x0, u)

s.t., x(k + 1) = f(x(k), u(k))

x ∈ χi

x(N) ∈ Xf

(14)

-0.5 -0.25 0 0.25 0.5

Platform Displacement [m]

0

10

20

30

40

50

60

70

T
u
n
in

g
 W

e
ig

h
t

Fig. 2. Adaptive weights for platform displacement rp

III. SIMULATION RESULTS

A. Simulation Setup

A general set of test conditions are taken into account for
simulating and observing the performance of the developed
MCA. This includes specific force signals to be tracked by
the cueing algorithm, which are in the form of sine waves
and step signals along with multiple event waves (step signal
+ sine wave), for a range of amplitude (0.5 − 2 m/s2) and
frequency (0.1− 0.8 Hz.) values.

While computing the explicit solution, a Np of 2 is taken
with a sampling time of 0.25 seconds. These values are
selected to ensure that the look ahead time of 0.5s is used in
the MCA. A higher Np with faster sampling rates cannot be
taken into account due to the exponentially high computation
time from the explicit controller. The online version of the
MCA however, is able to work at faster sampling rates and
Np values. Thus, Np of 50 with a Ts of 0.01s is used to
maintain the same look ahead time as the explicit controller.

Different MCA models are also considered to see which
kind of approach performs best online. These are laid out as
follows:

• Implicit MPC without any initial guess
• Implicit MPC with control trajectory prediction - In this

model, the control trajectory prediction received from the
ACADO s-function is used as the initial guess for the
next time step. The first control input from the trajectory
prediction is selected and applied for the entire horizon.

• Hybrid MCA with first explicit MPC control input - In
this model, the first control input from the explicit MPC
look-up table is used and applied for the entire prediction
horizon.

• Hybrid MCA with all explicit MPC control inputs - This
model utilises all control inputs obtained from the explicit
MPC controller and applies them for the entire horizon.
As the sampling times vary between both controllers,
the explicit MPC inputs are applied in equal sections
throughout the larger prediction horizon of the implicit
MPC. For e.g. with a Np,eMPC of 5, the five control
inputs are applied ten times each (1st from 1-10, 2nd

from 11-20 and so on) for a Np,iMPC of 50.

Simplified actuator dynamics are used for offline simulations,
whose results are showcased in the next section.

B. Motion Cueing Performance

Using the defined reference signals, simulations were run
while looking at two main characteristics; specific force track-
ing and online computation time. In Fig. 3 and Fig. 4 the
specific force tracking performance for a multiple event wave
is present. This comprises of an initial step signal followed
by a sine wave, both of amplitude 0.5 m/s2. From the results,
it can be seen that the cueing algorithm is able to track the
reference signal while making sure that washout effect takes
place in both longitudinal and lateral directions.

Fig. 3. Longitudinal motion for multiple event wave

Fig. 4. Lateral motion for multiple event wave

Furthermore, the cueing algorithm is tested for their re-
spective computational expense across different reference sig-
nal scenarios mentioned earlier. All the hybrid models are
compared with the implicit MPC based cueing algorithm and
the obtained results are presented in Fig. 5. The figure also
shows the average tracking performance in both longitudinal
and lateral directions for all scenarios. It can be seen that
the developed hybrid models take less time to compute the
optimized control input. The hybrid model with all explicit
MPC control inputs performs best amongst all the models
analysed by showing highest improvement in mean iterations
from the implicit algorithm by 30%. This is done while
keeping similar tracking performance in both longitudinal and
lateral directions. Also, while performing the simulations the
maximum iterations are set to 200.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

M
e

a
n

 i
te

ra
ti
o

n
s

Longitudinal motion Lateral motion
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
E

iMPC

iMPC with control trajectory prediction

Hybrid with first eMPC control input

Hybrid with all eMPC control inputs

Fig. 5. Mean iterations and tracking performance for all scenarios

C. Emulator Track Performance

Simulations were also done with the emulator environment
imitating the Delft Advanced Vehicle Simulator (DAVSi).
The DAVSi is a 6 DOF driving simulator and using its
emulator interface, tests can be performed without any damage
limitations to the real system.

Full-track simulation tests were performed using this virtual
environment. First, IPG CarMaker was used to simulate a
vehicle driving at 120 km/h around the Hockenheim race track.
Then, acceleration values were extracted, which were passed
through the perception model by Telban [22] before using
them as reference in the MCA. This was done to ensure that
only the perceived acceleration values are sent to the MCA for
performing the simulations with the emulator interface. From
Fig. 6 and Fig. 7 it can be observed that the MCA is able
to perform good reference signal tracking in both longitudinal
and lateral directions throughout the simulation. An RMSE of
0.42, 0.21 is observed in both directions respectively. Further,
similar trend in mean iterations is observed with the hybrid
MCA improving online computation time performance. An
improvement of 9% is seen with the hybrid model using all
control inputs, whereas the other hybrid and implicit model
shows an improvement of 5.9% and 5.1% respectively. Thus,
the developed algorithm can be implemented and used with
real track data in motion systems such as the DAVSi.

IV. CONCLUSION

In this study, a hybrid MPC based MCA has been developed
which uses explicit and implicit MPCs together. The explicit
MPC gives an initial guess which is used by the implicit
MPC to kick-start the algorithm and compute the optimized
control input at a faster rate. Amongst the developed cueing
models, best computation time performance is observed from
the model taking all explicit MPC control inputs as the
initial guess. Moreover, to improve motion cueing, braking

0 20 40 60 80 100 120

Time [s]

-4

-2

0

2

S
p
e
c
 f
o
rc

e

[m
/s

2
]

ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-10

0

10

R
o
ta

ti
o
n

[d
e
g
]

-5

0

5 R
o
ta

tio
n

[d
e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t

[m
]

-0.1

0

0.1 V
e
lo

c
ity

[m
/s

]

dis vel

Fig. 6. Longitudinal motion results for Hockenheim track simulation

0 20 40 60 80 100 120

Time [s]

-5

0

5

S
p
e
c
 f
o
rc

e

[m
/s

2
]

ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-20

-10

0

10

R
o
ta

ti
o
n

[d
e
g
]

-2

0

2

R
o
ta

tio
n

[d
e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t

[m
]

-0.1

0

0.1 V
e
lo

c
ity

[m
/s

]
dis vel

Fig. 7. Lateral motion results for Hockenheim track simulation

constraints are used to slow down the simulator when it
is about to reach its physical displacement limits. Adaptive
washout weights are also implemented which help in reducing
any false cues that might occur; by bringing the simulator to
its neutral position. Overall, the algorithm maintains tracking
performance across all hybrid models while reducing online
computation time. This is also seen in the track simulation
done using the DAVSi which shows similar performance. In
the future, human in loop experiments will be performed
using the DAVSi to validate the findings of the paper. Also,
extensions will be made to take 6 DOF motion capabilities
into account as part of the cueing algorithm.

REFERENCES

[1] S. Casas, R. Olanda, and N. Dey, “Motion cueing algorithms: A review,”
International Journal of Virtual and Augmented Reality, vol. 1, 2016.

[2] A. Stratulat, V. Roussarie, J. L. Vercher, and C. Bourdin, “Improving the
realism in motion-based driving simulators by adapting tilt-translation
technique to human perception,” 2011.

[3] C. Seehof, U. Durak, and H. Duda, “Objective motion cueing test -
experiences of a new user,” 2014.

[4] M. A. Nahon and L. D. Reid, “Simulator motion-drive algorithms - a
designer’s perspective,” Journal of Guidance, Control, and Dynamics,
vol. 13, 1990.

[5] Y. R. Khusro, Y. Zheng, M. Grottoli, and B. Shyrokau, “Mpc-based
motion-cueing algorithm for a 6-dof driving simulator with actuator
constraints,” Vehicles, vol. 2, 2020.

[6] A. Beghi, M. Bruschetta, and F. Maran, “A real time implementation of
mpc based motion cueing strategy for driving simulators,” 2012.

[7] B. J. Rawlings, Q. D. Mayne, and M. M. Diehl, Model predictive control:
Theory, Computation, and Design, 2018, vol. 1.

[8] N. J. Garrett and M. C. Best, “Model predictive driving simulator mo-
tion cueing algorithm with actuator-based constraints,” Vehicle System
Dynamics, vol. 51, 2013.

[9] M. Bruschetta, F. Maran, and A. Beghi, “A nonlinear, mpc-based motion
cueing algorithm for a high-performance, nine-dof dynamic simulator
platform,” IEEE Transactions on Control Systems Technology, vol. 25,
2017.

[10] A. Lamprecht, D. Steffen, K. Nagel, J. Haecker, and K. Graichen, “On-
line model predictive motion cueing with real-time driver prediction,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

[11] Z. Fang and A. Kemeny, “Explicit mpc motion cueing algorithm for
real-time driving simulator,” vol. 2, 2012.

[12] S. Munir, M. Hovd, Z. Fang, S. Olaru, and A. Kemeny, “Complexity
reduction in motion cueing algorithm for the ultimate driving simulator,”
vol. 50, 2017.

[13] M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-time suboptimal
model predictive control using a combination of explicit mpc and online
optimization,” IEEE Transactions on Automatic Control, vol. 56, 2011.

[14] Y. Zheng, B. Shyrokau, T. Keviczky, M. A. Sakka, and M. Dhaens,
“Curve tilting with nonlinear model predictive control for enhancing
motion comfort,” IEEE Transactions on Control Systems Technology,
2021.

[15] Y. Zheng and B. Shyrokau, “A real-time nonlinear mpc for extreme
lateral stabilization of passenger vehicles,” 2019.

[16] M. Jost and M. Mönnigmann, “Accelerating online mpc with partial
explicit information and linear storage complexity in the number of
constraints,” 2013.

[17] I. Maurović, M. Baotić, and I. Petrović, “Explicit model predictive
control for trajectory tracking with mobile robots,” 2011.

[18] P. Bemporad, Explicit Model Predictive Control. London: Springer
London, 2013, pp. 1–9. [Online]. Available: https://doi.org/10.1007/978-
1-4471-5102-9 10-1

[19] J. Gutridge, “Three degree-of-freedom simulator motion cueing using
classical washout filters and acceleration feedback,” Virginia Polytechnic
Institute and State University, 2004.

[20] L. D. Reid and M. A. Nahon, “Flight simulation motion-base drive
algorithms: part 1. developing and testing equations,” UTIAS Report,
No. 296, 1985.

[21] A. B. Koyuncu, E. Ercelik, E. Comulada-Simpson, J. Venrooij,
M. Kaboli, and A. Knoll, “A novel approach to neural network-based
motion cueing algorithm for a driving simulator,” 2020.

[22] R. J. Telban and F. Cardullo, “Motion cueing algorithm development:
Human-centered linear and nonlinear approaches,” NASA TechReport,
2005.

B
Human Perception

B.1. Vestibular System Modeling
There are various kinds of vestibular system models implemented in literature. In this section, models
which have been extensively used in past studies for motion cueing algorithms (as part of the problem
formulation) are compared and deliberated upon. Further, a sensitivity analysis is also carried out to
see how the model behaves to variations in parameter values.

As mentioned before, semicircular canals and otolith organs are the 2 main components used for
taking vestibular system effects into account. For semicircular canals, work done by Telban [33], Reid
[35], Young and Ormsby [37] is frequently used in the work related to motion cueing algorithms. These
models use a general structure for the semicircular canals which can be seen in Equation B.1 (this
model is a linear approximation to ensure that the computational time remains low and that the real-
time performance is not affected due to nonlinearities).

𝜔̂(𝑠)
𝜔(𝑠) =

𝑇L𝑇𝑎𝑠2
(𝑇L𝑠 + 1) (𝑇S𝑠 + 1) (𝑇a𝑠 + 1)

(B.1)

where, 𝑇𝑎 , 𝑇L, 𝑇S are the relevant gain parameters which vary from one transfer model to another. A
summary of the values taken for different transfer functions analysed can be seen in the table below:

Table B.1: Transfer function parameters for semicircular canals

Parameter Telban Reid Young Ormsby
𝑇𝑎(s) 80 30 30 30
𝑇L(s) 5.73 5.3 16 18
𝑇S(s) 0 0 0 0

Using these values, the corresponding step and frequency response plots can be generated to see
the performance of the different transfer functions with varying parameter values. The step response
plot shows how the transfer functions respond to a unit step input signal from 2 seconds to 15 seconds.
The results can be seen in Figures B.1a and B.1b. Table B.2 shows the step response characteristics
such as rise and settling time for all the transfer functions. Settling minimum and maximum values
are also present in the table which specify the minimum and maximum value of the model once the
response has risen.

63

64 Human Perception

(a) Step response (b) Frequency response

Figure B.1: Step and frequency response for semicircular canals

Table B.2: Step response characteristics for semicircular canals

Parameter Unit Telban Reid Young Ormsby
Rise Time s 0.0022 0.0192 0.0393 0.0399
Settling Time s 35.7432 32.7884 42.3197 42.2508
Settling Min. amplitude -0.9551 -1.0354 -0.7601 -0.7771
Settling Max. amplitude 1 1 1 0.9781

From the results it can be observed that in the step response plot, the transfer functions fromOrmsby
and Young take a large time to converge to zero. Also, these two models do not exhibit a very large
high pass behaviour as compared to the other two by Telban and Reid. In the frequency plots, it can be
seen that, for the normal head movement range of 0.1 to 1 Hz., all the models show good behaviour as
their magnitudes are constant and phase angle is close to zero. The model by Young is an exception as
it suffers from a slight drop in phase angle in this range. This means that except this model, the others
are able to act as a suitable angular velocity sensor for the normal head movement range and give a
good approximation in predicting human perception using semicircular canals. Thus, upon looking at
both the step and frequency responses, the models by Telban and Reid are preferred.

As done for the semicircular canals, a similar study is carried out for the otolith organs as well. For
this, the work done by Telban [33], Ormsby and Young [48] is taken into account. The structure of the
transfer function used by all these models can be seen below:

𝑎̂(𝑠)
𝑎(𝑠) =

𝑘oto (𝑇a𝑠 + 1)
(𝑇L𝑠 + 1) (𝑇S𝑠 + 1)

(B.2)

The values for parameters mentioned in the equation above can be seen in Table B.3 (for the chosen
transfer function models):

Table B.3: Transfer function parameters for otolith organs

Parameter Telban Young Ormsby
𝐾𝑜𝑡𝑜 0.4 0.4 0.4
𝑇𝑎(s) 10 13.2 10.1
𝑇L(s) 5 5.3 7.51
𝑇S(s) 0.016 0.66 0.51

Using these transfer functions, the step and frequency responses are again plotted as done for the

B.1. Vestibular System Modeling 65

semicircular canals. The results can be seen in Figures B.2a and B.2b with Table B.4 showing the step
response characteristics.

(a) Step response (b) Frequency response

Figure B.2: Step and frequency response for otolith organs

Table B.4: Step response characteristics for otolith organs

Parameter Unit Telban Young Ormsby
Rise Time s 9.7673e-04 0.0466 0.1821
Settling Time s 30.5390 33.6788 32.2377
Settling Min. amplitude -0.3629 -0.3749 -0.0838
Settling Max. amplitude 0.7918 0.8151 0.5031

From the results it can be seen that the amongst the three models evaluated, the Ormsby model is
unable to reach the high bandwidth that the other two models are able to. Further, between the Telban
and Young models, Telban’s model is able to give lower delay and has a higher bandwidth with an
extremely small rise time. In the frequency response plot, the advantage of using the Telban model is
more apparent as it is the only model which shows constant magnitude and zero phase angle value
for normal head movement frequencies (0.1 to 1 Hz.). This means that the otolith model by Telban
acts as a specific force transducer and a suitable sensor in the frequency range for predicting human
perception. It can be used to recognize tilt orientation with respect to the local vertical better than other
models analyzed. Hence, the Telban model is preferred amongst the investigated models.

The last type of analysis done is the sensitivity analysis. This test is performed on the Telban model
(as it gives best performance amongst the models analysed) to see how the model reacts to variations
in parameter values. For this, the sensitivity function is first computed using the expression below:

Sensitivity Function = 1
1 + 𝑇(𝑠) (B.3)

𝑆𝑇𝐾 =
1

1 + 𝑇 =
0.08𝑠2 + 5.016𝑠 + 1
0.08𝑠2 + 9.016𝑠 + 1.4 (B.4)

Here, 𝑇 is the transfer function. Bode plots are then created for the sensitivity function and themaximum
sensitivity value is computed using the expression shown below. The result obtained corresponds to
the correct point which can be seen in Figure B.3.

𝑑
𝑑𝑤 |𝑆

𝑇
𝑘 (𝑗𝑤)| = 0 (B.5)

Finally, the gain value parameter is varied to see what effect it has on the overall results. First,
the gain is reduced by a factor of 0.5 as seen in Figure B.3a. It can be observed that although the

66 Human Perception

sensitivity has indeed improved, reduction of the gain parameter results in low magnitude across the
entire frequency range in the original transfer function. This effect of lowmagnitude in the low frequency
range results in lower rise time and value in the step response as seen in the third subplot in Figure
B.3a. This means that the transfer function is unable to follow slow moving step signals anymore.
Thus, reducing the gain parameter is not advised. Upon increasing this parameter by the same factor
as seen in Figure B.3b, the sensitivity increases which spoils the original transfer function’s frequency
and step responses. Hence, the sensitivity analysis shows that the system is sensitive to change in
parameters and that the parameter values which have been taken for the Telban model show optimum
results for this particular use case.

(a) Decreasing gain factor (b) Increasing gain factor

Figure B.3: Sensitivity analysis

B.2. Perception Threshold Analysis
In order to set the perception threshold limits for both pitch and roll tilt motions, past literature was
analysed to see the range of values taken into account while implementing such constraints. These are
summarised in Table B.5. Based on the range of values mentioned along with the extensive study done
in [45], threshold values in the range of 2-4 are generally considered. This ensures that all individuals
are unable to perceive tilt below the threshold and that limited number of outliers are present. Based
on this, values of 3, 2.6 deg/s were taken for pitch and roll perception thresholds respectively.

Table B.5: Perception threshold values from literature

Paper Pitch threshold value Roll threshold value
[deg/s] [deg/s]

Gutridge et al. [46] 3.00 3.00
Reid et al. [35] 3.00 2.30
Khusro et al. [5] 3.60 3.00
Lamprecht et al. [41] 3.00 4.00
Telban et al. [33] 2.00 2.00
Koyuncu et al. [47] 2.04 2.04
Munir et al. [43] 6.00 -
Soyer et al. [42] 6.00 -
Nesti et al. [45] - 6.30

C
Simulation Results

This appendix showcases additional simulation studies performed related to the explicit MPC controller
and its functionalities. Selection of braking constraint parameters and the effect of changing these
values on the cueing algorithm is elucidated. Further, influence of changing constraints and weights is
shown along with an explicit MPC benchmark comparison. Lastly, additional hybrid MPC results are
presented including a computation time study, emulator comparisons and virtual track simulations at
varying speeds.

C.1. Selection of Braking Constraint Parameters
The selection of the braking constraint parameters takes place in the following manner:

To avoid the overshoot phenomenon when the platform is close to its limits the following condition
is considered while tuning the weights:

𝑐2𝑣
𝑐𝑢
> 1 (C.1)

On the other hand, for selecting the 𝑇𝑏𝑟𝑘,𝜃 and 𝑇𝑏𝑟𝑘,𝑝 parameter values, an ideal simulator scenario
was considered:

𝑝(𝑡) + 𝑐𝑣𝑣(𝑡)𝑇 +
𝑐𝑢𝑢(𝑡)𝑇2

2 = 𝑥𝑚𝑎𝑥 (C.2)

In state space form, this can be represented as a double integrator as follows:

[
𝑝̇
𝑝̈
𝑢̇
] = [

0 1 0
0 0 1
0 −2

𝑐𝑢𝑇2
−2𝑐𝑣
𝑐𝑢𝑇

] ⋅ [
𝑝
𝑝̇
𝑢
] (C.3)

Using this representation, simulations were run for four sets of possible parameter values for both 𝑇𝑏𝑟𝑘,𝜃
and 𝑇𝑏𝑟𝑘,𝑝, the results of which can be seen in Figure C.1. It can be seen from the figures that different
parameter values effect how the ideal simulator performs. Based on these simulation, 0.5 and 2.5 were
the chosen parameter values for 𝑇𝑏𝑟𝑘,𝜃 and 𝑇𝑏𝑟𝑘,𝑝 respectively.

67

68 Simulation Results

(a) Variation in parameter 𝑇𝑏𝑟𝑘,𝑝 (b) Variation in parameter 𝑇𝑏𝑟𝑘,𝜃

Figure C.1: Braking control law evolution for different parameter setting T

To further analyse the importance of these parameters and how their selection can vary the perfor-
mance of the motion cueing algorithm, simulations were run with the developed algorithm; taking these
four possible parameter values into account.

Figure C.2: Motion cueing performance with varying 𝑇𝑏𝑟𝑘,𝑝 parameter values

First, 𝑇𝑏𝑟𝑘,𝑝 was studied which consisted of using 1.5, 2, 2.5 and 3 as the parameter values respec-
tively. The results obtained with using values in the motion cueing algorithm can be in Figure C.2. It can
be seen that the high parameter value of 3 is unstable from the braking constraint subplot. Along with
this, the value of 2 fails to stay within the desired limits of the platform. Amongst 1.5 and 2.5, the param-
eter value of 2.5 provides better braking stability with lower platform velocity while allowing maximum
workspace utilization to occur. Thus, the chosen value of 2.5 is correct. Second, 𝑇𝑏𝑟𝑘,𝑞 was studied
which consisted of using 0.3, 0.5, 0.7 and 1 as the parameter values respectively. The results obtained

C.2. Explicit MPC Benchmark 69

can be seen in Figure C.3. Using a high value of 1 or a low value of 0.3 gives unstable braking values
and hence they are not recommended. Amongst 0.5 and 0.7, 0.5 is able to provide better stability and
braking performance throughout the simulation. It stays within the limits and performs braking action
when the tilt angle reaches/is about to reach its limits. Hence, the chosen value of 0.5 is best amongst
the parameter values analysed.

Figure C.3: Motion cueing performance with varying 𝑇𝑏𝑟𝑘,𝑞 parameter values

C.2. Explicit MPC Benchmark
To ensure that the developed explicit MPC controller was correct in its formulation, a benchmark study
was performed. This study used the same model formulation as explained in subsection 4.1.1 and is
based on the work done by [6], [43]. The only difference from the developed explicit algorithm was in
the constraint values used for the motion cueing states along with braking constraints added in. The
parameter values chosen for the braking constraints were the same as described in Figure 4.1.1. Also,
smaller control input weights of 1𝑒 − 1 were used. These changes are summarised below:

Χ =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−6𝑑𝑒𝑔/𝑠𝑒𝑐 ≤ 𝜔𝑝 ≤ 6𝑑𝑒𝑔/𝑠𝑒𝑐
−10𝑑𝑒𝑔 ≤ 𝜃𝑝 ≤ 10𝑑𝑒𝑔
−3𝑚/𝑠𝑒𝑐 ≤ 𝑣𝑝 ≤ 3𝑚/𝑠𝑒𝑐
−2.6𝑚 ≤ 𝑟𝑝 ≤ 2.6𝑚

−5𝑚/𝑠𝑒𝑐2 ≤ 𝑎𝑝,𝑡𝑟𝑎𝑛 ≤ 5𝑚/𝑠𝑒𝑐2
−15𝑑𝑒𝑔/𝑠𝑒𝑐2 ≤ 𝑎𝑝,𝑟𝑜𝑡 ≤ 15𝑑𝑒𝑔/𝑠𝑒𝑐2

−2.6𝑚 ≤ 𝑐𝑣𝑣𝑝𝑇𝑏𝑟𝑘,𝑝 + 0.5𝑐𝑢𝑎𝑝,𝑡𝑟𝑎𝑛𝑇2𝑏𝑟𝑘,𝑝 ≤ 2.6𝑚
−10𝑑𝑒𝑔 ≤ 𝑐𝑤𝜔𝑝𝑇𝑏𝑟𝑘,𝜃 + 0.5𝑐𝑢𝑎𝑝,𝑟𝑜𝑡𝑇2𝑏𝑟𝑘,𝜃 ≤ 10𝑑𝑒𝑔

(C.4)

This model uses more relaxed constraint values for platform displacement and tilt rate respectively.
Apart from this, the remaining formulation was the same with the goal to track the output specific force.
The same reference signals were analysed and compared with the actual results from the work done
by the authors as seen in Figure C.4 and Figure C.5.

70 Simulation Results

(a) Developed motion cueing algorithm
(b) Munir et al.[43]

Figure C.4: Step signal tracking performance comparison between created motion cueing algorithm and work done by [6], [43]

(a) Developed motion cueing algorithm (b) Munir et al.[43]

Figure C.5: Sine wave tracking performance comparison between created motion cueing algorithm and work done by [6], [43]

The results show that the created motion cueing algorithm performs in the same manner as seen in
[6], [43]. Thus, the developed motion cueing algorithm is created correctly for these set of constraints
and can be further worked on for the purpose of this thesis with modifications.

C.3. Explicit MPC Parametric Studies
To analyse the created explicit controller in more detail, some parametric studies were performed to
see the influence of certain parameters.

C.3.1. Influence of Constraints
This study was done to see the effect of adding/removing constraints from the system andwhat changes
are observed in computation time for the explicit MPC. Constraints were also made more stringent to
account for changes based on limits of the individual states. From the results obtained in Table C.1,
it can be observed that with an increase in the number of constraints, the computation time increases
rapidly with an exponential increase in the number of control regions. On the other hand, when the
constraints are removed, it goes down. Upon making the limits more strict, computational load again
increases.

C.3. Explicit MPC Parametric Studies 71

Table C.1: Influence of constraints on computational load

C.3.2. Influence of Braking Constraints on RMSE
Braking constraints not only decrease the platform velocity and tilt rate as the simulator approaches
its physical displacement limits, but, in doing so it also reduces peaks and drops that might occur due
to workspace limitations. This has a positive effect on the overall tracking performance which can be
seen in the table below:

Table C.2: Influence of braking constraints on RMSE

72 Simulation Results

C.3.3. Influence of Weights
This study was performed to see the effect of adding additional weights on the computation time of the
explicit controller. Small weights of 1𝑒 − 1 were added on the states which were previously set to 0.
From the results obtained in Table C.3, it can be see that with each additional weight added on the
states, the overall computation time goes down with a decrease in the number of control regions.

Table C.3: Influence of weights on computational load

C.4. Hybrid MPC Performance
C.4.1. 2 DOF Motion Cueing Algorithm
Constant Washout Weights
Using the best washout weights defined in Table 5.3 in Chapter 5, the three hybrid models can be
evaluated and compared against the original implicit MPC model. To check if there is any improvement
in overall computation time, mean iterations over the entire simulation duration are computed and
compared. For the simulations, 𝑁𝑝,𝑒𝑀𝑃𝐶 = 5, 𝑇𝑠,𝑒𝑀𝑃𝐶 = 0.1𝑠 and 𝑁𝑝,𝑖𝑀𝑃𝐶 = 50, and 𝑇𝑠,𝑖𝑀𝑃𝐶 = 0.01𝑠
is used. The results obtained for the defined signals and hybrid models can be seen in the table below:

Table C.4: Mean iteration values for all four motion cueing models with best constant washout weights

It can be observed that the hybrid model with first explicit MPC control input gives least mean

C.4. Hybrid MPC Performance 73

iteration values compared to the other three models evaluated. However, from the error values, the
hybrid model with all explicit MPC control inputs provides higher average percentage difference from the
implicit algorithm. This is due to larger improvements in particular test scenarios rather than showing
improvements at a uniform rate across all scenarios. Further, the RMSE values present in Table C.6
show that the tracking remains consistent throughout with no particular model showing much better
performance in the test cases analysed.

Table C.5: Absolute error values with iMPC for all hybrid models with best constant washout weights

Table C.6: Specific force RMSE values for all four motion cueing with best constant washout weights

74 Simulation Results

Adaptive Weights
Additional simulations with adaptive weights for the 2 DOF motion cueing algorithm can be seen in
Figure C.6 and Figure C.7. In these simulations, sine and step waves are simulated seperately and it
can be observed that good tracking performance is maintained throughout the simulation.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

1

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2

4

R
o
ta

ti
o
n
 [
d
e
g
]

-4

-2

0

2

4

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.2

0

0.2 V
e
lo

c
ity

 [m
/s

]

dis

vel

Figure C.6: Motion cueing performance for step signal with adaptive weights

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.5

0

0.5

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-4

-2

0

2

4

R
o
ta

ti
o
n
 [
d
e
g
]

-4

-2

0

2

4

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.05

0

0.05

0.1

D
is

p
a
c
e
m

e
n
t
[m

]

-0.05

0

0.05

0.1 V
e
lo

c
ity

 [m
/s

]

dis

vel

Figure C.7: Motion cueing performance for sine wave with adaptive weights

C.4. Hybrid MPC Performance 75

C.4.2. Emulator Simulations
In this section, step signal and sine wave comparisons are shown between the emulator and offline
simulations.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.2

0

0.2

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

R
o
ta

ti
o
n
 [
d
e
g
]

-2

0

2

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.02

0

0.02

0.04

0.06

D
is

p
a
c
e
m

e
n
t
[m

]

-0.02

0

0.02

0.04

0.06 V
e
lo

c
ity

 [m
/s

]

dis

vel

(a) Emulator

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.2

0

0.2

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

0

2

R
o
ta

ti
o
n
 [
d
e
g
]

-2

0

2

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.05

0

0.05

D
is

p
a
c
e
m

e
n
t
[m

]

-0.05

0

0.05

V
e
lo

c
ity

 [m
/s

]

dis

vel

(b) Offline simulation

Figure C.8: Emulator performance comparison for step signal of amplitude 0.1

76 Simulation Results

0 10 20 30 40 50 60

Time [s]

0

0.5

1

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 10 20 30 40 50 60

Time [s]

-5

0

5

R
o
ta

ti
o
n
 [
d
e
g
]

-5

0

5

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 10 20 30 40 50 60

Time [s]

-0.1

0

0.1

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis

vel

(a) Emulator

0 10 20 30 40 50 60

Time [s]

0

0.5

1

S
p
e
c
 f
o
rc

e
 [
m

/s
2
]

ref

act

ahex

tilt comp

0 10 20 30 40 50 60

Time [s]

-5

0

5

R
o
ta

ti
o
n
 [
d
e
g
]

-5

0

5

R
o
ta

tio
n
 [d

e
g
/s

]

theta

omega

0 10 20 30 40 50 60

Time [s]

-0.1

0

0.1

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis

vel

(b) Offline simulation

Figure C.9: Emulator performance comparison for sine wave of amplitude 1

Vehicle parameters of the Tesla Model S used in IPG CarMaker

Table C.7: Vehicle parameters

Parameter Value
Mass of the vehicle (𝑚) 2108 Kg
Distance of CoG from the rear axle (𝑙𝑟) 1.500 m
Distance of CoG from the front axle (𝑙𝑓) 1.470 m
Vehicle moment of inertia about z-axis (𝐼𝑧𝑧) 1585.3 kg𝑚2
Height of CoG 0.545 m
Coefficient of friction 1
Track Width (𝐵) 1.70m

C.4. Hybrid MPC Performance 77

Virtual track simulation at 80 km/h

0 20 40 60 80 100 120

Time [s]

-4

-2

0

2
S

p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-4

-2

0

2

4 R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure C.10: Longitudinal motion results for Hockenheim track simulation at 80km/h

0 20 40 60 80 100 120

Time [s]

-5

0

5

S
p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-20

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-2

0

2

R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure C.11: Lateral motion results for Hockenheim track simulation at 80km/h

78 Simulation Results

Virtual track simulation at 100 km/h

0 20 40 60 80 100 120

Time [s]

-4

-2

0

2

S
p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-4

-2

0

2

4 R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure C.12: Longitudinal motion results for Hockenheim track simulation at 100km/h

0 20 40 60 80 100 120

Time [s]

-5

0

5

S
p
e
c
 f
o
rc

e
 [
m

/s
2
] ref act ahex tilt comp

0 20 40 60 80 100 120

Time [s]

-20

-10

0

10

R
o
ta

ti
o
n
 [
d
e
g
]

-2

0

2

R
o
ta

tio
n
 [d

e
g
/s

]

theta omega

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

D
is

p
a
c
e
m

e
n
t
[m

]

-0.1

0

0.1 V
e
lo

c
ity

 [m
/s

]

dis vel

Figure C.13: Lateral motion results for Hockenheim track simulation at 100km/h

D
Toolbox Information

D.1. ACADO Toolkit
The ACADO toolkit was used to solve the nonlinear MPC problem. The toolkit allows easy formulation
of the required MPC problem with different constraints and bounds. It has a user friendly MATLAB
interface which is used to develop, generate and export a highly efficient self-contained C-code for the
respective MPC problem. The toolkit also comes with various solvers which provide solutions with low
computational expense and high accuracy [50].

For the developed implicit MPC motion cueing algorithm, the toolkit was used to generate the s-
function which was later used in simulating the desired test cases. While formulating the problem,
there were certain parameters that could be manipulated within the ACADO toolkit which can help in
improving computation time and performance of the MPC controller. These settings are summarised
in the table below:

Table D.1: ACADO solver settings

The toolkit uses the Real-Time Iteration (RTI) technique to solve the nonlinear MPC problem. This
approach uses the Sequential Quadratic Programming (SQP) scheme to compute the solution of the
optimization problem at each iteration. The reader is directed to [51] to know more about the basics of
RTI and SQP.

Selection of the discretization method took place by comparing single and multiple shooting meth-
ods. Single shooting is a relatively simple approach for transcribing the optimal control problem. It
works well for simple problems but fails when additional complexity is introduced into the system which
can be in the form of nonlinearities. On the the hand, multiple shooting works by breaking up the tra-

79

80 Toolbox Information

jectory into segments and solves each of them separately [52]. It is able to deal with nonlinearities and
complicated problems which is why it is the chosen discretization method in this study.

Apart from this, the Gauss Newton method was chosen to approximate the Hessian as it only re-
quires calculation of the 1𝑠𝑡 order derivatives of the nonlinear output function. This helps in reducing
the overall calculations needed in comparison with the complete Hessian. Also, the approximation from
this method always gives a positive-semidefinite Hessian matrix which can be made positive-definite
by adding a small Levenberg-Marquardt regularization term [39].

The QP solver was chosen based on the preferred implementation method from two types of al-
gorithms, namely; interior point method and active set method. The interior point method generally
converges in small number of iterations by using a weighted barrier function to replace the inequality
constraints. On the other hand, the active set approach uses the warm start capabilities and current ac-
tive set constraints to provide a solution to the QP. This solution can sometimes require more iterations
but the overall computation time is usually less. Based on this functionality of the active set approach,
a QP solver using this was selected in the ACADO toolkit. This solver is known as the qpOASES QP
solver which assumes the Hessian matrix to be dense and performs a parametric active set method.
Further, comparison with other commercial QP solvers has shown that it can outperform them in terms
of reliability and computation time [39], [53].

Selection of parameters such as number of iterations, integration steps and hotstart was done by
looking at the computation time and solver accuracy results. With high number of iterations, better
accuracy can be obtained but it leads to high computation load as well. Thus, based on the require-
ments of the developed motion cueing algorithm, maximum iterations were limited to 200 with hotstart
and 3N integration steps (3 integration steps per iteration for the entire horizon). The integration type
was chosen as implicit Rung-Kutta integrator of order 2 due to its ability to provide better stability and
numerical accuracy for a given computational effort [51].

The simulink model used to run the motion cueing algorithm can be seen in Figure D.1.

D.2. Multi-Parametric Toolbox
The Multi-Parametric Toolbox was used in computing the explicit control law for the motion cueing
algorithm. The toolbox is open source and has a user friendly MATLAB interface [44].

The toolbox allowed easy formulation of the desired motion cueing problem. This was done by
first defining the states followed by the constraints and weights. Lastly, MPC settings such as predic-
tion horizon and move blocking was defined after which an MPC controller was generated using the
following command:

ctrl = MPCController(model, N_prediction) (D.1)

Here, model refers to the LTI system containing the state space equations and their corresponding
constraints and weights.

Now that the explicit controller was defined with all the required parameters, the controller was
converted into an explicit controller and used to generate the explicit control laws by the following
command:

expctrl = ctrl.toExplicit() (D.2)

These control regions containing the control laws were stored in the form of a mex file using the
export functionality of the Multi-Parametric Toolbox. This mex file was then used in the hybrid MPC
motion cueing algorithm to provide the initial guess.

D.2. Multi-Parametric Toolbox 81

Figure D.1: Hybrid motion cueing algorithm simulink model

82 Toolbox Information

Figure D.2: Simplified actuator dynamics for 2 DOF motion cueing algorithm

References
[1] S. Casas, R. Olanda, and N. Dey, “Motion cueing algorithms: A review,” International Journal

of Virtual and Augmented Reality, vol. 1, 1 2016, ISSN: 2473-537X. DOI: 10.4018/ijvar.
2017010107.

[2] M. Furqan, M. Suhaib, and N. Ahmad, “Studies on stewart platform manipulator: A review,” Jour-
nal of Mechanical Science and Technology, vol. 31, 9 2017, ISSN: 1738494X. DOI: 10.1007/
s12206-017-0846-1.

[3] G. Reymond and A. Kemeny, “Motion cueing in the renault driving simulator,” Vehicle System
Dynamics, vol. 34, 4 2000, ISSN: 00423114. DOI: 10.1076/vesd.34.4.249.2059.

[4] M. Bruschetta, F. Maran, and A. Beghi, “A nonlinear, mpc-based motion cueing algorithm for a
high-performance, nine-dof dynamic simulator platform,” IEEE Transactions on Control Systems
Technology, vol. 25, 2 2017, ISSN: 10636536. DOI: 10.1109/TCST.2016.2560120.

[5] Y. R. Khusro, Y. Zheng, M. Grottoli, and B. Shyrokau, “Mpc-based motion-cueing algorithm for
a 6-dof driving simulator with actuator constraints,” Vehicles, vol. 2, 4 2020. DOI: 10.3390/
vehicles2040036.

[6] Z. Fang and A. Kemeny, “Explicit mpc motion cueing algorithm for real-time driving simulator,”
vol. 2, 2012. DOI: 10.1109/IPEMC.2012.6258965.

[7] M. O. Ward, G. Grinstein, and D. Keim, - Human Perception and Information Processing. 2020.
DOI: 10.1201/b18379-7.

[8] N. Schmitz, C. Spranger, and K. Berns, “3d audio perception system for humanoid robots,” 2009.
DOI: 10.1109/ACHI.2009.24.

[9] M. L. Wolbarsht, “Visual perception. tom n. cornsweet,” The Quarterly Review of Biology, vol. 46,
1 1971, ISSN: 0033-5770. DOI: 10.1086/406812.

[10] M. Bruschetta, K. N. de Winkel, E. Mion, P. Pretto, A. Beghi, and H. H. Bülthoff, “Assessing
the contribution of active somatosensory stimulation to self-acceleration perception in dynamic
driving simulators,” PLoS ONE, vol. 16, 11 November 2021, ISSN: 19326203. DOI: 10.1371/
journal.pone.0259015.

[11] G. Robles-De-La-Torre, “The importance of the sense of touch in virtual and real environments,”
IEEE Multimedia, vol. 13, 3 2006, ISSN: 1070986X. DOI: 10.1109/MMUL.2006.69.

[12] C. Pfeiffer, A. Serino, and O. Blanke, “The vestibular system: A spatial reference for bodily self-
consciousness,” Frontiers in Integrative Neuroscience, vol. 8, APR 2014, ISSN: 16625145. DOI:
10.3389/fnint.2014.00031.

[13] A. Kemeny and F. Panerai, “Evaluating perception in driving simulation experiments,” Trends in
Cognitive Sciences, vol. 7, 1 2003, ISSN: 13646613. DOI: 10.1016/S1364-6613(02)00011-
6.

[14] A. Stratulat, V. Roussarie, J. L. Vercher, and C. Bourdin, “Improving the realism in motion-based
driving simulators by adapting tilt-translation technique to human perception,” 2011. DOI: 10.
1109/VR.2011.5759435.

[15] C. Weiss, “Control of a dynamic driving simulator: Time-variant motion cueing algorithms and
prepositioning,” Institut für Verkehrsführung und Fahrzeugsteuerung, 2006.

[16] N. Nise, M. Perez, A. Perez, et al., Control Systems Engineering 7th Edition. 2014, vol. 7th.
[17] C. Seehof, U. Durak, and H. Duda, “Objective motion cueing test - experiences of a new user,”

2014. DOI: 10.2514/6.2014-2205.
[18] M. A. Nahon and L. D. Reid, “Simulator motion-drive algorithms - a designer’s perspective,” Jour-

nal of Guidance, Control, and Dynamics, vol. 13, 2 1990, ISSN: 07315090. DOI: 10.2514/3.
20557.

83

https://doi.org/10.4018/ijvar.2017010107
https://doi.org/10.4018/ijvar.2017010107
https://doi.org/10.1007/s12206-017-0846-1
https://doi.org/10.1007/s12206-017-0846-1
https://doi.org/10.1076/vesd.34.4.249.2059
https://doi.org/10.1109/TCST.2016.2560120
https://doi.org/10.3390/vehicles2040036
https://doi.org/10.3390/vehicles2040036
https://doi.org/10.1109/IPEMC.2012.6258965
https://doi.org/10.1201/b18379-7
https://doi.org/10.1109/ACHI.2009.24
https://doi.org/10.1086/406812
https://doi.org/10.1371/journal.pone.0259015
https://doi.org/10.1371/journal.pone.0259015
https://doi.org/10.1109/MMUL.2006.69
https://doi.org/10.3389/fnint.2014.00031
https://doi.org/10.1016/S1364-6613(02)00011-6
https://doi.org/10.1016/S1364-6613(02)00011-6
https://doi.org/10.1109/VR.2011.5759435
https://doi.org/10.1109/VR.2011.5759435
https://doi.org/10.2514/6.2014-2205
https://doi.org/10.2514/3.20557
https://doi.org/10.2514/3.20557

84 References

[19] A. Beghi, M. Bruschetta, and F. Maran, “A real time implementation of mpc based motion cueing
strategy for driving simulators,” 2012. DOI: 10.1109/CDC.2012.6426119.

[20] M. Aminzadeh, A. Mahmoodi, and M. Sabzehparvar, “Optimal motion-cueing algorithm using
motion system kinematics,” European Journal of Control, vol. 18, 4 2012, ISSN: 09473580. DOI:
10.3166/EJC.18.363-375.

[21] N. J. I. Garrett andM. C. Best, “Driving simulator motion cueing algorithms–a survey of the state of
the art,” Proceedings of the 10th International Symposium on Advanced Vehicle Control (AVEC),
2010.

[22] B. J. Rawlings, Q. D. Mayne, and M. M. Diehl, Model predictive control: Theory, Computation,
and Design. 2018, vol. 1.

[23] M. Derbeli, A. Charaabi, O. Barambones, and C. Napole, “High-performance tracking for proton
exchange membrane fuel cell system pemfc using model predictive control,”Mathematics, vol. 9,
11 2021, ISSN: 22277390. DOI: 10.3390/math9111158.

[24] L. Wang, “Model predictive control: Design and implementation using matlab (t-3),” 2009. DOI:
10.1109/acc.2009.5159781.

[25] J. Drgona and L. Helsen, “Different problem classes and solution techniques for model predictive
building control,” 2018.

[26] I. Maurović, M. Baotić, and I. Petrović, “Explicit model predictive control for trajectory tracking
with mobile robots,” 2011. DOI: 10.1109/AIM.2011.6027140.

[27] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” vol. 384, 2009. DOI:
10.1007/978-3-642-01094-1_29.

[28] P. Bemporad, “Explicit model predictive control,” in Encyclopedia of Systems and Control, J.
Baillieul and T. Samad, Eds. London: Springer London, 2013, pp. 1–9, ISBN: 978-1-4471-5102-
9. DOI: 10.1007/978-1-4471-5102-9_10-1. [Online]. Available: https://doi.org/10.
1007/978-1-4471-5102-9_10-1.

[29] M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-time suboptimal model predictive control using
a combination of explicit mpc and online optimization,” IEEE Transactions on Automatic Control,
vol. 56, 7 2011, ISSN: 00189286. DOI: 10.1109/TAC.2011.2108450.

[30] M. Jost and M. Mönnigmann, “Accelerating online mpc with partial explicit information and linear
storage complexity in the number of constraints,” 2013. DOI: 10.23919/ecc.2013.6669259.

[31] Y. Zheng, B. Shyrokau, T. Keviczky, M. A. Sakka, and M. Dhaens, “Curve tilting with nonlinear
model predictive control for enhancing motion comfort,” IEEE Transactions on Control Systems
Technology, 2021, ISSN: 15580865. DOI: 10.1109/TCST.2021.3113037.

[32] Y. Zheng and B. Shyrokau, “A real-time nonlinear mpc for extreme lateral stabilization of passen-
ger vehicles,” 2019. DOI: 10.1109/ICMECH.2019.8722930.

[33] R. J. Telban and F. Cardullo, “Motion cueing algorithm development: Human-centered linear and
nonlinear approaches,” NASA TechReport, May 2005.

[34] N. J. Garrett and M. C. Best, “Model predictive driving simulator motion cueing algorithm with
actuator-based constraints,” Vehicle System Dynamics, vol. 51, 8 2013, ISSN: 00423114. DOI:
10.1080/00423114.2013.783219.

[35] L. D. Reid and M. A. Nahon, “Flight simulation motion-base drive algorithms: Part 1. developing
and testing equations,” UTIAS Report, No. 296, 1985.

[36] M. Dagdelen, G. Reymond, A. Kemeny, M. Bordier, and N. Maïzi, “Model-based predictive motion
cueing strategy for vehicle driving simulators,” Control Engineering Practice, vol. 17, 9 2009,
ISSN: 09670661. DOI: 10.1016/j.conengprac.2009.03.002.

[37] H. Asadi, S. Mohamed, C. P. Lim, S. Nahavandi, and E. Nalivaiko, “Semicircular canal modeling
in human perception,” Reviews in the Neurosciences, vol. 28, 5 2017, ISSN: 03341763. DOI:
10.1515/revneuro-2016-0058.

[38] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl, “Auto-generated algorithms for
nonlinear model predictive control on long and on short horizons,” 2013. DOI: 10.1109/CDC.
2013.6760692.

https://doi.org/10.1109/CDC.2012.6426119
https://doi.org/10.3166/EJC.18.363-375
https://doi.org/10.3390/math9111158
https://doi.org/10.1109/acc.2009.5159781
https://doi.org/10.1109/AIM.2011.6027140
https://doi.org/10.1007/978-3-642-01094-1_29
https://doi.org/10.1007/978-1-4471-5102-9_10-1
https://doi.org/10.1007/978-1-4471-5102-9_10-1
https://doi.org/10.1007/978-1-4471-5102-9_10-1
https://doi.org/10.1109/TAC.2011.2108450
https://doi.org/10.23919/ecc.2013.6669259
https://doi.org/10.1109/TCST.2021.3113037
https://doi.org/10.1109/ICMECH.2019.8722930
https://doi.org/10.1080/00423114.2013.783219
https://doi.org/10.1016/j.conengprac.2009.03.002
https://doi.org/10.1515/revneuro-2016-0058
https://doi.org/10.1109/CDC.2013.6760692
https://doi.org/10.1109/CDC.2013.6760692

References 85

[39] M. Katliar, “Optimal control of motion simulators,” University of Freiburg - Faculty of Engineering,
2020.

[40] A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi, “Optimizing model predic-
tive control horizons using genetic algorithm for motion cueing algorithm,” Expert Systems with
Applications, vol. 92, 2018, ISSN: 09574174. DOI: 10.1016/j.eswa.2017.09.004.

[41] A. Lamprecht, D. Steffen, K. Nagel, J. Haecker, and K. Graichen, “Online model predictive motion
cueing with real-time driver prediction,” IEEE Transactions on Intelligent Transportation Systems,
2021, ISSN: 1524-9050. DOI: 10.1109/tits.2021.3114003.

[42] M. Soyer, S. Olaru, and Z. Fang, “Motion cueing control design based on a nonlinear mpc al-
gorithm,” IFAC-PapersOnLine, vol. 54, 6 2021, ISSN: 24058963. DOI: 10.1016/j.ifacol.
2021.08.567.

[43] S. Munir, M. Hovd, Z. Fang, S. Olaru, and A. Kemeny, “Complexity reduction in motion cueing
algorithm for the ultimate driving simulator,” vol. 50, 2017. DOI: 10.1016/j.ifacol.2017.
08.2256.

[44] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in Proc. of the
European Control Conference, http://control.ee.ethz.ch/~mpt, Zürich, Switzerland,
Jul. 2013, pp. 502–510.

[45] A. Nesti, C. Masone, M. Barnett-Cowan, P. R. Giordano, H. H. Bülthoff, and P. Pretto, “Roll rate
thresholds and perceived realism in driving simulation,” 2012.

[46] J. Gutridge, “Three degree-of-freedom simulator motion cueing using classical washout filters
and acceleration feedback,” Virginia Polytechnic Institute and State University, 2004.

[47] A. B. Koyuncu, E. Ercelik, E. Comulada-Simpson, J. Venrooij, M. Kaboli, and A. Knoll, “A novel
approach to neural network-based motion cueing algorithm for a driving simulator,” 2020. DOI:
10.1109/IV47402.2020.9304825.

[48] H. Asadi, S. Mohamed, C. P. Lim, and S. Nahavandi, “A review on otolith models in human
perception,” Behavioural Brain Research, vol. 309, 2016, ISSN: 18727549. DOI: 10.1016/j.
bbr.2016.03.043.

[49] P. Bosetti, M. D. Lio, and A. Saroldi, “On the human control of vehicles: An experimental study
of acceleration,” European Transport Research Review, vol. 6, 2 2014, ISSN: 18668887. DOI:
10.1007/s12544-013-0120-2.

[50] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source Framework for Auto-
matic Control and Dynamic Optimization,” Optimal Control Applications and Methods, vol. 32,
no. 3, pp. 298–312, 2011.

[51] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear mpc:
Bridging the gap via the real-time iteration,” International Journal of Control, vol. 93, 1 2020,
ISSN: 13665820. DOI: 10.1080/00207179.2016.1222553.

[52] M. Kelly, “Transcription methods for trajectory optimization: A beginners tutorial,” Jul. 2017.
[53] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “Qpoases: A parametric active-

set algorithm for quadratic programming,” Mathematical Programming Computation, vol. 6, 4
2014, ISSN: 18672957. DOI: 10.1007/s12532-014-0071-1.

https://doi.org/10.1016/j.eswa.2017.09.004
https://doi.org/10.1109/tits.2021.3114003
https://doi.org/10.1016/j.ifacol.2021.08.567
https://doi.org/10.1016/j.ifacol.2021.08.567
https://doi.org/10.1016/j.ifacol.2017.08.2256
https://doi.org/10.1016/j.ifacol.2017.08.2256
http://control.ee.ethz.ch/~mpt
https://doi.org/10.1109/IV47402.2020.9304825
https://doi.org/10.1016/j.bbr.2016.03.043
https://doi.org/10.1016/j.bbr.2016.03.043
https://doi.org/10.1007/s12544-013-0120-2
https://doi.org/10.1080/00207179.2016.1222553
https://doi.org/10.1007/s12532-014-0071-1

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Driving Simulators
	Problem Definition
	Research Objective
	Thesis Layout

	Background
	Human Perception
	Conventional Motion Cueing Algorithms
	Classical Washout Filter Based Algorithm
	Optimal Washout Filter Based Algorithm
	Adaptive Washout Filter Based Algorithm

	Model Predictive Control
	What is model predictive control?

	Modeling an MPC Problem
	Types of MPC
	Past Literature Work

	Summary

	Main Controller Design
	Types of Motion Cueing Models
	Summary

	Motion Cueing Algorithms
	2 DOF Hybrid MPC based Motion Cueing Algorithm
	Explicit MPC based Motion Cueing Algorithm
	Implicit MPC based Motion Cueing Algorithm

	4 DOF Hybrid MPC based Motion Cueing Algorithm
	Explicit MPC based Motion Cueing Algorithm
	Implicit MPC based Motion Cueing Algorithm

	Summary

	Simplified Actuator Dynamics
	Test Cases
	2 DOF Simulations
	Initial Explicit MPC Performance
	Effect of Move Blocking Constraint
	Effect of Braking Constraints
	Hybrid MPC Performance

	4 DOF Simulations
	Explicit MPC Performance
	Hybrid MPC Performance

	Summary

	Advanced Simulator Dynamics
	Simulation Setup
	Simulation Performance
	Virtual Track Simulations
	Summary

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Scientific Paper
	Human Perception
	Vestibular System Modeling
	Perception Threshold Analysis

	Simulation Results
	Selection of Braking Constraint Parameters
	Explicit MPC Benchmark
	Explicit MPC Parametric Studies
	Influence of Constraints
	Influence of Braking Constraints on RMSE
	Influence of Weights

	Hybrid MPC Performance
	2 DOF Motion Cueing Algorithm
	Emulator Simulations

	Toolbox Information
	ACADO Toolkit
	Multi-Parametric Toolbox

	References

