
Vision-Based UAV Fault
Detection and Diagnosis
From Data to Prediction
José Ignacio de Alvear Cárdenas

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

This page was intentionally left blank

Vision-Based
UAV Fault

Detection and
Diagnosis
From Data to Prediction

by

José Ignacio de Alvear Cárdenas

to obtain the degree of Master of Science
at the Delft University of Technology,

to be publicly defended on 22nd December 2022 at 9:30

Student number: 4463196
Date completed: 22nd December 2022
Thesis committee: Dr. ir. C. C. de Visser TU Delft, Control and Simulation

Dr. M. D. Pavel, TU Delft, Control and Simulation
Dr. ir. E. Mooij, TU Delft, Space Engineering

This thesis is confidential and cannot be made public until December 22, 2025.

An electronic version of this thesis will be available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

This page was intentionally left blank

Preface
This work marks the end of my long seven-year journey at Delft University of Technology, the faculty
of Aerospace Engineering and the small but ”gezellige” city of Delft. From my 25 years of existence,
this chapter of my life has left a huge footprint on the person I am today. I had the opportunity of work-
ing with smart and inspiring people from every corner of the world and enjoyed the unlimited number
of opportunities offered at TU Delft. From travelling around Europe with the IDEA League Challenge
Programme and carrying out my internship at the German Aerospace Centre in Munich, to being part
of a Dream Team and co-founding a consulting organisation; I came seeking personal growth and aca-
demic excellence, and I have not been disappointed.

Despite having enjoyed multiple individual research projects in the past as part of the Honours Pro-
gramme, this has been by far the greatest challenge of my studies. Pursuing an ambitious project
coupled with the worst pandemic the world has seen in decades has led to a turbulent journey. Back
in 2020, I returned from a visit to some friends in Silicon Valley with great plans for the following three
years. Little I knew that everything I had built was going to vanish within a month. Away from all the
hecticness of travelling, extracurriculars and side projects, the last two years have served as time for
reflection, introspection and goal-setting.

My master thesis has been a great learning experience which has enabled me for the first time to
develop an idea ”from data to prediction”: from developing a simulator for data collection to training
and testing an algorithm for fault detection and diagnosis. For this, I would like to thank my supervi-
sor Coen de Visser for his continuous guidance and support. Thank you for giving me the space and
resources to develop my ideas from the moment we met, encouraging me to think out-of-the-box, for
believing in those ideas and pushing me to keep the bigger picture in mind. Online and offline, it has
been a pleasure to work with you and hear your advice. I am also grateful to count on the expertise of
Sihao Sun and Rudi Schilder in the early stages of the thesis, whose previous work inspired this project.

Besides those who contributed to the present work, I would also like to thank Fabrizio Oliviero, Erik-
Jan van Kampen and Bo Sun, who supervised my Bachelor and Master Honours research projects.
They were the first ones to encourage me to develop an idea from concept to publication and they
are the reason behind my confidence for tackling such an ambitious master thesis. I am also grate-
ful to those lecturers and researchers whose personal advice and support (unknowingly) contributed
to important decisions I have taken throughout the last seven years, namely Jacco Hoekstra, Sergio
Turteltaub, Francesco Avallone and Gertjan Looye.

Thank you to all my friends with whom I have shared great memories and who supportedme through
thick and thin, especially in the past few years. Grazie mille Giulio for always been there; from the Eu-
ropean Space Agency to the Mare Tranquillitatis, this journey would definitely not have been the same
without you. Thank you Rafa for showing TU Delft to a kid with big dreams back in 2014, for your
continuous support and intense tennis matches. Thank you Johannes and Stijn, two of the most am-
bitious people I have met, for all the past and future laughs and experiences together around Europe
and beyond. Thank you Daniel for cheering me up during the thesis, being the best running mate
and sharing your invaluable insights about green aviation. Thank you Bart for the great collaboration
during the master, the discussions about future professional paths and always checking in despite the
distance. Thank you to Laura, Lorenzo, Nikita, Alejandro and Tiago for those amazing board game
nights, bouldering sessions and deep scientific discussions during the roughest parts of the pandemic.
Thank you Wesley and Pierre for joining me in the adventure of learning about artificial intelligence
and discussing future ambitions. Thank you to the running team of TU Delft, especially Akshit, Pablo,
Tjeerd, Aniket and Garazi. Thank you Jacopo, Julia, Jasper, Jonatthas, Rohan, Sandro, Rano, Andrea,
Lidia, Ramesh, Juan José, Carsten, Felix and many others. The list goes on and on, you know who

i

ii Preface

you are: thank you very much from the bottom of my heart!

A special thank you to my girlfriend Lara, who never stopped rooting for me. You have always lis-
tened for hours to my ideas and given me the space and time I needed to finish this work. In spite of
the distance, I always felt you were by my side believing in me.

My deepest gratitude goes to my fantastic family. To my parents and my little brother who supported
me unconditionally during this project and, in general, during my studies. Thanks for being a source
of inspiration everyday and for pushing me to achieve my dreams, regardless of how far they seem.
Without you, nothing of this would have been possible. I know I can always count on you.

I have lived this experience to the fullest, to the point that I could say that I have obtained the title
of ”Vive TU Delft”. This is the closure of a chapter in my life and the start of a new one. Beginning of
2023, I will start as a research scholar at NASA Ames Research Centre in California, definitely a dream
come true. I have never discarded to do a PhD so, who knows, I may be back in academia in the (near)
future; only time will tell!

José Ignacio de Alvear Cárdenas
Delft, December 2022

Contents

List of Figures vii

List of Tables xvii

I Thesis introduction 1

1 Introduction 3

II Literature study 5

2 Fault detection and diagnosis 7
2.1 Quantitative knowledge: supervised learning . 11

2.1.1 Artificial Neural Networks . 11
2.1.2 Bayesian classifier . 19
2.1.3 Fuzzy logic . 29
2.1.4 Support Vector Machines . 31

2.2 Quantitative knowledge: unsupervised learning . 33
2.2.1 Auto-Encoders . 33
2.2.2 Restricted Boltzmann Machines . 34
2.2.3 Principal Component Analysis . 35
2.2.4 Transformers . 37

2.3 Qualitative knowledge (symbolic AI). 40
2.3.1 Fault trees . 40
2.3.2 Signed digraph . 41
2.3.3 Expert systems . 42

3 Vision 43
3.1 Optic flow . 43
3.2 Visual Inertial Odometry . 44
3.3 Next frame prediction. 45

4 Photo-realistic simulator 49

5 Literature study conclusion 55

III Scientific papers 57

6 Scientific Paper 1: Blade Element Theory Model for UAV Blade Damage Simulation 59

7 Scientific Paper 2: Unreal Success: Vision-Based UAV Fault Detection and Diagnosis
Framework 95

IV Thesis report 125

8 UUFOSim: Unreal UAV Failure injectiOn Simulator 127
8.1 Environment and occupancy map .128
8.2 Path planning .132

8.2.1 Start and goal selection .132
8.2.2 Path planning algorithm selection .132
8.2.3 B-spline path point number reduction .141
8.2.4 Cubic spline path smoothing .142
8.2.5 Flight path transformation to AirSim drone inertial coordinate frame.143

iii

iv Contents

8.3 Data collection .144
8.3.1 Sensor initialisation and drone teleportation .144
8.3.2 Failure type & mode selection and initialisation .145
8.3.3 Drone flight: guidance, control and physics model146
8.3.4 Sensor data collection, failure injection and flight termination151
8.3.5 Flight & failure metadata logging and sensor data storage153

8.4 Clockspeed selection. .156
8.5 Debugging tool: signal scoping .156
8.6 Dataset .157

9 Propeller damage 159
9.1 Mass related force and moment changes .159
9.2 Aerodynamics related force and moment changes .162

9.2.1 Blade Element Theory .163
9.2.2 Airfoil lift and drag coefficients identification. .166
9.2.3 Bebop 2 airfoil lift and drag coefficients identification169
9.2.4 Aerodynamic forces and moments computation172

9.3 Results, assumptions and recommendations .173
9.3.1 Bebop 2 mass and aerodynamic forces and moments173
9.3.2 Importance of induced velocity. .177
9.3.3 Assumptions and recommendations. .179

9.4 Model validation .182
9.4.1 Experimental campaign rationale .182
9.4.2 Test set-up, data collection and challenges .182
9.4.3 Experimental data pre-processing .186
9.4.4 Experimental results .188
9.4.5 Validation conclusions .195

10 Fault detection and diagnosis 197
10.1 FDD model architecture .197

10.1.1 Camera data processing .198
10.1.2 IMU data processing .201
10.1.3 Sensor fusion and classification module .202

10.2 Results .202
10.3 Conclusions and recommendations .204

V Thesis conclusions and recommendations 207

11 Conclusions 209

12 Recommendations for future work 213

VI Appendices 215

A Induced velocity computation: gradient-descent approach 217

B Propeller damage flowcharts 223

C UAV linear velocity sampling strategy for simulation 227

D BET hyper-parameter selection 229

E BET model validation results 233
E.1 Thrust and torque validation results for 𝐵𝐷=0% and 𝑉∞=2 m/s233
E.2 Thrust and torque validation results for 𝐵𝐷=10% and 𝑉∞=2 m/s235
E.3 Thrust and torque validation results for 𝐵𝐷=25% and 𝑉∞=2 m/s236
E.4 Thrust and torque damage induced oscillation amplitude validation results for 𝐵𝐷=10%

and 𝑉∞=2 m/s .238
E.5 Thrust and torque damage induced oscillation amplitude validation results for 𝐵𝐷=25%

and 𝑉∞=2 m/s .239

Contents v

F Measurement noise impact on the Lomb-Scargle periodogram signal reconstruction 241

Bibliography 245

List of Figures

2.1 Graphical comparison between hardware and analytical redundancy [1]. 8
2.2 Fault detection and diagnosis classification based on [2]. 8
2.3 Data flow in the knowledge-based, signal-based and model-based fault detection and

diagnosis approaches [3]. 9
2.4 Knowledge-based fault detection and diagnosis approach classification [3]. 10
2.5 Fault detection and diagnosis method classification. 10
2.6 Knowledge-based approach classification. 11
2.7 Supervised learning knowledge-based fault detection and diagnosis methods. 11
2.8 Artificial Neuron computational diagram [4]. 12
2.9 FCC NN architecture [5]. 13
2.10 Block diagram of the NNAS fault detection implementation in a quadrotor [6]. 14
2.11 Robot manipulator FDI strategy [7]. 14
2.12 CNN general architecture [8]. 15
2.13 Hybrid feature model and deep learning pipeline for fault detection and classification [9]. 16
2.14 RNN representation in its folded (left) and time-unfolded (right) forms [10, 11]. 16
2.15 Unfolded LSTM cell architecture [11] (left) and how the LSTMs pass recurrent information

through time (right). 18
2.16 Confidence histograms (top) and reliability diagrams (bottom) for early (left) and modern

(right) neural networks [12]. 19
2.17 Visual comparison between a conventional ANN and a stochastic NN [13]: a) corre-

sponds to an ANN in which point estimates are computed instead of distributions, b)
corresponds to a Stochastic NN in which a probability distribution over the transfer func-
tions is learnt, and c) corresponds to a Stochastic NN in which a probability distribution
is learnt over the weights of the NN. 23

2.18 BNN workflow that includes the design, train and test stages [13]. 25
2.19 Bayesian fault detection compared to the general framework [14]. 26
2.20 Comparison between standard and variational dropout applied to RNN [14]. Both graphs

show the RNN unfolding in time with the inputs at the bottom, the state units in the
middle and the outputs at the top. The vertical lines are the input-output connections
while the horizontal lines are recurrent connections. The dotted lines represent those
connections without dropout being applied while each of the colours in the solid lines
represent connections with different dropout masks. 27

2.21 BRNN fault detection and identification process for the chemical process presented in
[14]. 29

2.22 Fuzzy inference according to the Mamdami inference method [15]. 30
2.23 Neuro-fuzzy network architecture with 2 inputs and 1 output [16]. 31
2.24 Visual representation of the action of the SVM in a linear-separable 2 class problem [17]. 32
2.25 Unsupervised learning knowledge-based fault detection and diagnosis methods 33
2.26 Convolutional Auto-Encoder representation [18]. 34
2.27 Forward and backward RBM pass. See footnote 4 for details. 35
2.28 Transformer model architecture [19]. 38
2.29 Multi-head attention [19] . 38
2.30 Scaled dot-product attention [19] . 38
2.31 Visual representation of the attention mechanism when provided the verb ”making” as

input. Each of the 8 heads is represented by a colour and the more transparent, the
lower the attention [19]. 40

2.32 Drone crash FTA [20]. 41

3.1 Optical flow visualisations: sparse optical flow (left) and dense optical flow (right) [21]. . 44

vii

viii List of Figures

3.2 Comparison between the loosely coupled (left) and tightly coupled (right) VIO approaches
[22]. 45

3.3 Convolutional LSTM encoder-decoder architecture for depth prediction [23]. 46
3.4 Next frame prediction proposed pipeline [23]. 46
3.5 Overview of depth and ego-motion estimation framework from monocular video [24]. . . 47

4.1 Rural 3D environment [25] . 50
4.2 AirSim architecture with main components and interactions [26]. 50
4.3 CityEngine to Unreal workflow 1. 51
4.4 UnrealCV server-client communication [27] . 52

8.1 Data gathering pipeline block diagram . 128
8.2 Occupancy map extraction block diagram. 128
8.3 Sphere mesh in Unreal Engine 4. 129
8.4 ”Blocks” environment limits for drone flight bounded by the 4 monoliths in the red rect-

angle corners. 129
8.5 2D projection of the Blocks environment object vertices located within 4 and 10 metres

altitude. 130
8.6 Zoom-in of the 2D projected points of the sphere . 130
8.7 2D points projected in empty occupancy grid. 131
8.8 Filled occupancy grid with 2D projected points . 131
8.9 Filled occupancy grid considering obstacle inner cells identified with Delaunay triangu-

lation. 131
8.10 Drone grid navigation block diagram. 132
8.11 Occupancy grid with start and goal locations. 133
8.12 Path planning algorithm classification . 133
8.13 Voronoi Road-Map Planning in Blocks environment. Computation time = 1.52 [s] 135
8.14 Wavefront Path Planner example: starting configuration 135
8.15 Wavefront Path Planner example: wave step first iteration 135
8.16 Wavefront Path Planner example: wave step final iteration 135
8.17 Wavefront Path Planner example: back propagation . 136
8.18 Wavefront Path Planner applied to the Blocks environment example. Computation time

= 3.51 [s] . 136
8.19 Rapidly-Exploring Random Trees* applied to the Blocks environment example. Compu-

tation time = 5.23 [s] . 137
8.20 Probabilistic road-map Planning applied to the Blocks environment. Computation time =

3.53 [s] . 137
8.21 A* Path Planner example: single cell . 138
8.22 A* Path Planner example: starting configuration . 138
8.23 A* Path Planner example: first iteration in search step 139
8.24 A* Path Planner example: second iteration in search step 139
8.25 A* Path Planner example: penultimate iteration in search step 139
8.26 A* Path Planner example: last iteration in search step 139
8.27 A* Path Planner example: back propagation step . 140
8.28 A* Path Planner applied to the Blocks environment example. Computation time = 0.3 [s] 140
8.29 Relative computation time for each path planning algorithm with respect to A* (m(x)) for

100 different scenarios. 141
8.30 B-spline reduced path obstacle detection. The blue and green cells are two path points,

and the red cells are occupied by environment obstacles. The black lines are the discre-
tised vectors for obstacle detection. 142

8.31 Zoom-in of Blocks occupancy map with A* flight path represented by small green arrows. 142
8.32 Zoom-in of Blocks occupancy map with B-spline reduced flight path represented by large

green arrows. 142
8.33 Zoom-in of Blocks occupancy map with cubic spline smoothed flight path represented

by small red arrows. 143

List of Figures ix

8.34 Visual confirmation of the final path not being constrained to the occupancy grid and it
passes through B-spline pivot points (yellow circles). 143

8.35 Inertial coordinate frame transformations: from ICFOG to ICFASD 144
8.36 Drone flight block diagram . 144
8.37 Drone teleported to start location . 145
8.38 Drone flight guidance, controller and physics model pipeline. 146
8.39 Guidance block pipeline. 147
8.40 Guidance block approach at time step n-1. 147
8.41 Guidance block approach at time step n: geometry before reference position definition. 147
8.42 Guidance block approach at time step n: reference position definition. 148
8.43 Guidance block approach at time step n: reference position correction. 148
8.44 INDI controller information flow schematic. 149
8.45 Bebop 2 drone gray-box aerodynamic physics model schematic. 150
8.46 Boxplot of the camera sampling rate for different clockspeeds with an image resolution

of 256×144 pixels (width×height). 156
8.47 Boxplot of the IMU sampling rate for different clockspeeds with an image resolution of

256×144 pixels (width×height). 156
8.48 Boxplot of the camera sampling rate for 5,000 flights with a clockspeed of 0.3 and an

image resolution of 256×144 pixels (width×height). 156
8.49 Boxplot of the IMU sampling rate for 5,000 flights with a clockspeed of 0.3 and an image

resolution of 256×144 pixels (width×height). 156
8.50 3D actual and reference trajectories for single sample flight. 157
8.51 Propeller rotational velocity of each actuator in rad/s for sample flight. 157
8.52 Camera captured frames during single flight read from top to bottom and from left to right

(only shown one every 35 frames). 157

9.1 Bebop 2 propeller top view and trapezoid simplification 160
9.2 Damaged Bebop 2 propeller top view and trapezoid simplification 160
9.3 Blade and trapezoid geometry and centroid . 161
9.4 Illustration of centrifugal force on a damaged propeller 162
9.5 Blade geometrical parameters . 163
9.6 Azimuth angle visualization . 163
9.7 Drone geometry [28] . 164
9.8 Blade coordinate frame. 164
9.9 Illustration of the wake skew angle [29] . 165
9.10 Linear inflow model [29] . 165
9.11 Blade sections’ chord and twist values from the root (left) to the tip (right). 170
9.12 Identified airfoil lift coefficient curve with respect to the angle of attack from the aerody-

namic gray-box model [28] data. Illustration of Eq. (9.54). 171
9.13 Identified airfoil drag coefficient curve with respect to the angle of attack from the aero-

dynamic gray-box model [28] data. Illustration of Eq. (9.55). 171
9.14 Identification data thrust error with a NRMSE𝜏 = 8.43 ⋅ 10−2 [-]. 171
9.15 Identification data torque error with a NRMSE𝜏 = 0.26 [-]. 171
9.16 Validation data thrust error with a NRMSE𝜏 = 8.30 ⋅ 10−2 [-]. 172
9.17 Validation data torque error with a NRMSE𝜏 = 0.25 [-]. 172
9.18 Identification thrust error normalised autocorrelation with 95% confidence bounds. . . . 172
9.19 Identification torque error normalised autocorrelation with 95% confidence bounds. . . . 172
9.20 Validation thrust error normalised autocorrelation with 95% confidence bounds. 172
9.21 Validation torque error normalised autocorrelation with 95% confidence bounds. 172
9.22 BET-simulated evolution of forces caused due to mass change upon 20% Bebop 2 blade

damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 174
9.23 BET-simulated evolution of moments caused due to mass change upon 20% Bebop 2

blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 174
9.24 BET-simulated evolution of aerodynamic forces generated by lost blade sections upon

20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 174

x List of Figures

9.25 BET-simulated evolution of aerodynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 174

9.26 BET-simulated evolution of aerodynamic force in the z-direction during hover upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 175

9.27 BET-simulated evolution of aerodynamic moment in the z-direction during hover upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 175

9.28 BET-simulated evolution of mass and aerodynamic forces generated by lost blade sec-
tions upon 20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 175

9.29 BET-simulated evolution of mass and aerodynamic moments generated by lost blade
sections upon 20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s. 175

9.30 BET-simulated evolution of forces upon 20% Bebop 2 blade damage for 0.25 s rotating
at 𝜔0 = 600 rad/s. 175

9.31 BET-simulated evolution of moments upon 20% Bebop 2 blade damage for 0.25 s rotat-
ing at 𝜔0 = 600 rad/s. 175

9.32 Upper and lower limits of the forces’ oscillations for different degrees of BET-simulated
blade damage. 176

9.33 Upper and lower limits of themoments’ oscillations for different degrees of BET-simulated
blade damage. 176

9.34 Gradient of the upper and lower limits of the Δ𝐹𝑃𝑥 oscillations with respect to different
degrees of BET-simulated blade damage. 176

9.35 Gradient of the upper and lower limits of the Δ𝑀𝑃
𝑥 oscillations with respect to different

degrees of BET-simulated blade damage. The non solid lines represent scenarios in
which the blade section area is constant and/or there is no induced velocity. 176

9.36 BET-simulated evolution of aerodynamic forces generated by lost blade sections upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s with and without linear
inflow model. 177

9.37 BET-simulated evolution of aerodynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s with and without
linear inflow model. 177

9.38 Box plot with the angles of attack seen by each BET-simulated blade section during
16,000 data point optimisation without induced velocity model. The inputs that shape
each data point are taken from uniform distributions with the following value ranges:
⃗⃗𝑉𝐵𝑥 =[-3,3] m/s, ⃗⃗𝑉𝐵𝑦 =0 m/s, ⃗⃗𝑉𝐵𝑧 =[-2.5,-0.5] m/s, ⃗⃗Ω⃗ = ⃗⃗0 rad/s, 𝜔 =[300,1256] rad/s. . . . 177

9.39 Box plot with the angles of attack seen by each BET-simulated blade section during
16,000 data point optimisation with linear inflow velocity model. The inputs that shape
each data point are taken from uniform distributions with the following value ranges:
⃗⃗𝑉𝐵𝑥 =[-3,3] m/s, ⃗⃗𝑉𝐵𝑦 =0 m/s, ⃗⃗𝑉𝐵𝑧 =[-2.5,-0.5] m/s, ⃗⃗Ω⃗ = ⃗⃗0 rad/s, 𝜔 =[300,1256] rad/s. . . . 177

9.40 Heat map of the linear induced model velocity for the BET-simulated front left Bebop 2
propeller rotating at 1256 rad/s, moving to the left with 3 m/s, out of the plane with 1 m/s
and it is rotating counter-clockwise. 178

9.41 Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating
at 1256 rad/s, including linear inflow model, moving to the left with 3 m/s, out of the plane
with 1 m/s and it is rotating counter-clockwise. 178

9.42 Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating
at 300 rad/s, including linear inflow model, moving to the left with 3 m/s, out of the plane
with 1 m/s and it is rotating counter-clockwise. 178

9.43 Heat map of the uniform induced model velocity for the BET-simulated front left Bebop
2 propeller rotating at 1256 rad/s, moving to the left with 3 m/s, out of the plane with 1
m/s and it is rotating counter-clockwise. 179

9.44 Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating
at 1256 rad/s, including uniform inflow model, moving to the left with 3 m/s, out of the
plane with 1 m/s and it is rotating counter-clockwise. 179

9.45 Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating
at 1256 rad/s, moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating
counter-clockwise. 179

9.46 Schematic of the Open Jet Facility [30] . 183

List of Figures xi

9.47 Tyto stand: side view with calibration hardware . 183
9.48 Tyto stand: top view . 183
9.49 Test set-up in the wind tunnel. 183
9.50 Tyto test stand in the wind tunnel. 183
9.51 Propeller incidence angle. 184
9.52 Damaged propeller with 𝐵𝐷=10%. 184
9.53 Damaged propeller with 𝐵𝐷=25%. 184
9.54 Test stand positions marked on the platform with tape using OptiTrack system. 185
9.55 Smooth electrical input signal to the ESC for rpm control with identified plateaus. 187
9.56 Motor electrical speed with respect to time with the identified commanded rpm values. . 187
9.57 Motor electrical speed with respect to time zoom-in at 1,100 rad/s. 187
9.58 Thrust data sample and its detrended counterpart with their fitted linear curves. 188
9.59 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2

m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in which the
model and experimental thrust would match. 189

9.60 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in
which the model and experimental torque would match. 189

9.61 BET and gray-box aerodynamic model thrust and torque absolute error for: 𝐵𝐷=0% and
𝑉∞=2 m/s. 189

9.62 BET and gray-box aerodynamic model thrust and torque relative error for: 𝐵𝐷=0% and
𝑉∞=2 m/s. 189

9.63 Gray-box aerodynamic model thrust and torque relative error for 𝐵𝐷=0%. 190
9.64 BET model thrust and torque relative error for 𝐵𝐷=0%. 190
9.65 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,

𝑉∞=2 m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in
which the model and experimental thrust would match. 191

9.66 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in which
the model and experimental torque would match. 191

9.67 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in
which the model and experimental thrust would match. 191

9.68 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=700 rad/s. The black dashed line represents the ideal scenario in which
the model and experimental torque would match. 191

9.69 BET model thrust and torque relative error for: 𝐵𝐷=10% and 𝑉∞=2 m/s. 192
9.70 BET model thrust and torque relative error for: 𝐵𝐷=25% and 𝑉∞=2 m/s. 192
9.71 BET model thrust and torque relative error for: 𝐵𝐷=[0, 10, 25]% and 𝑉∞=2 m/s. 192
9.72 BET model thrust and torque relative error for 𝐵𝐷=[10, 25]% and 𝑉∞=2 m/s, after sub-

tracting the relative error when 𝐵𝐷=0%. 193
9.73 BET model thrust and torque relative error for 𝐵𝐷=10%. 193
9.74 BET model thrust and torque relative error for 𝐵𝐷=25%. 193
9.75 BET model thrust and torque oscillation amplitude relative error for 𝐵𝐷=10% and 𝑉∞=2

m/s using the Particle Swarm Optimisation for experimental signal reconstruction. . . . 194
9.76 BET model thrust and torque oscillation amplitude relative error for 𝐵𝐷=10% and 𝑉∞=2

m/s using the Lomb-Scargle periodogram for experimental signal reconstruction. 195
9.77 BET model thrust and torque oscillation amplitude relative error for 𝐵𝐷=25% and 𝑉∞=2

m/s using the Lomb-Scargle periodogram for experimental signal reconstruction. 195
9.78 BET model thrust and torque oscillation amplitude relative error for 𝐵𝐷=10% using the

Lomb-Scargle periodogram for experimental signal reconstruction. 195
9.79 BET model thrust and torque oscillation amplitude relative error for 𝐵𝐷=25% using the

Lomb-Scargle periodogram for experimental signal reconstruction. 195

xii List of Figures

10.1 The FDD pipeline consists of (i) an IMU time-frequency feature extractor in the form of
a Short-Time Fourier Transform, (ii) the MobileNetV3-S as feature extractor from the
camera optical flow computed with RAFT-S and (iii) a Long Short-Term Memory network
followed by a single layer Neural Network as sensor fusion and classification module.
The FDD framework is run at 10 Hz and the sampling rate of the IMU and camera are
555 Hz and 30 Hz, respectively. 198

10.2 Dense optical flow visual quality comparison. 200
10.3 Drone acceleration along the x-axis and its spectrogram. The dashed vertical line de-

notes the time of failure. 201
10.4 Sample flight accelerometer signals and their spectrograms for a 0.1 s time interval start-

ing at 6.78 s. 202
10.5 Sample flight gyroscope signals and their spectrograms for a 0.1 s time interval starting

at 6.78 s. 202
10.6 IMU-only LSTM model confusion matrix of the failure modes. 203
10.7 Camera-only LSTM model confusion matrix of the failure modes. 203
10.8 IMU+CAMLSTMmodel confusionmatrix of the failuremodes with -1’s in themain diagonal.204
10.9 IMU+CAM Dense model confusion matrix of the failure modes. 204

11.1 Research project stages . 209

A.1 Angle of attack of the rotor relative to the oncoming flow. 217
A.2 Desired scenario: local minima takes place at lower induced velocity than global min-

ima, so gradient descend will reach global minima first. The dotted line corresponds to
𝑓(𝑣0), whereas the bold line to |𝑓(𝑣0)|. 219

A.3 Undesired scenario: local minima takes place at higher induced velocity than global
minima, so gradient descend will reach local minima first. The dotted line corresponds
to 𝑓(𝑣0), whereas the bold line to |𝑓(𝑣0)|. 219

A.4 V-T graph for 100,000 simulation scenarios of the Bebop 2 drone. The convex hull en-
capsulates all the pink points that meet (first) the condition in Equation A.5. The green
points under the dashed line meet the (second) condition outlined in Equation A.7. The
magenta points are those scenarios in which neither of the conditions are met. From the
figure, there is no overlap between both conditions sets. 220

B.1 Flowchart of the damaged propeller offline and online computations. The lift and drag
coefficient curves identification takes place offline, whereas the computation of forces
and moments due to propeller damage are performed online. The blocks with a solid
edge line are further expanded in the next figures. 223

B.2 Flowchart of the computation of the damaged propeller mass related forces and mo-
ments at one time step during simulation. 224

B.3 Flowchart of the offline lift and drag coefficient curves identification. 225
B.4 Flowchart of the computation of the damaged propeller aerodynamic related forces and

moments at one time step during simulation. 226

C.1 Zoom-in of scheme 1 normalised thrust autocorrelation with 95% confidence bounds. . 228
C.2 Zoom-in of scheme 1 normalised torque autocorrelation with 95% confidence bounds. . 228
C.3 Zoom-in of scheme 2 normalised thrust autocorrelation with 95% confidence bounds. . 228
C.4 Zoom-in of scheme 2 normalised torque autocorrelation with 95% confidence bounds. . 228
C.5 Zoom-in of scheme 3 normalised thrust autocorrelation with 95% confidence bounds.

Zoom-in of Figure 9.18. 228
C.6 Zoom-in of scheme 3 normalised torque autocorrelation with 95% confidence bounds.

Zoom-in of Figure 9.19. 228

D.1 Heat map with the value of the polynomial coefficients used for the lift coefficient identi-
fication (Equation 9.32). 229

D.2 Heat map with the value of the polynomial coefficients used for the drag coefficient iden-
tification (Equation 9.33). 229

List of Figures xiii

D.3 Heat map with the value of the change of the polynomial coefficients used for the lift
coefficient identification along the number of data points axis. 230

D.4 Heat map with the value of the change of the polynomial coefficients used for the drag
coefficient identification along the number of data points axis. 230

D.5 First lift polynomial coefficient change with respect to the number data points (𝐷𝑞𝑥0{𝑞𝑎;300}).230
D.6 Moving average (Equation D.2) applied along the 𝑞 axis of Figure D.3; the polynomial

coefficients of the lift coefficient identification. 231
D.7 Moving average (Equation D.2) applied along the 𝑞 axis of Figure D.4; the polynomial

coefficients of the drag coefficient identification. 231
D.8 Collapsed lift and drag polynomial coefficients’ heat maps according to Equation D.3 . . 232
D.9 Collapsed heat map along the 𝑛𝑏𝑠 axis according to Equation D.4. 232
D.10Collapsed heat map along the 𝑞 axis in a similar procedure as the outlined to generate

Figure D.9. 232

E.1 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2
m/s and 𝜔=300 rad/s. 233

E.2 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=300 rad/s. 233

E.3 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2
m/s and 𝜔=500 rad/s. 233

E.4 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=500 rad/s. 233

E.5 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2
m/s and 𝜔=700 rad/s. 234

E.6 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=700 rad/s. 234

E.7 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2
m/s and 𝜔=900 rad/s. 234

E.8 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=900 rad/s. 234

E.9 Experimental andmodel thrust measurements and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2
m/s and 𝜔=1100 rad/s. 234

E.10 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=0%,
𝑉∞=2 m/s and 𝜔=1100 rad/s. 234

E.11 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=300 rad/s. 235

E.12 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=300 rad/s. 235

E.13 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=500 rad/s. 235

E.14 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=500 rad/s. 235

E.15 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=700 rad/s. 235

E.16 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=700 rad/s. 235

E.17 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=900 rad/s. 236

E.18 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=900 rad/s. 236

E.19 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=1100 rad/s. 236

E.20 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=10%,
𝑉∞=2 m/s and 𝜔=1100 rad/s. 236

E.21 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=300 rad/s. 236

xiv List of Figures

E.22 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=300 rad/s. 236

E.23 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=500 rad/s. 237

E.24 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=500 rad/s. 237

E.25 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=700 rad/s. 237

E.26 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=700 rad/s. 237

E.27 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=900 rad/s. 237

E.28 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=900 rad/s. 237

E.29 Experimental and model thrust measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=1100 rad/s. 237

E.30 Experimental and model torque measurements and their absolute error for: 𝐵𝐷=25%,
𝑉∞=2 m/s and 𝜔=1100 rad/s. 237

E.31 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300 rad/s. 238

E.32 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300 rad/s. 238

E.33 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500 rad/s. 238

E.34 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500 rad/s. 238

E.35 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700 rad/s. 238

E.36 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700 rad/s. 238

E.37 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900 rad/s. 239

E.38 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900 rad/s. 239

E.39 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=1100 rad/s. 239

E.40 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=1100 rad/s. 239

E.41 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300 rad/s. 239

E.42 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300 rad/s. 239

E.43 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500 rad/s. 240

E.44 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500 rad/s. 240

E.45 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700 rad/s. 240

E.46 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700 rad/s. 240

E.47 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900 rad/s. 240

E.48 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900 rad/s. 240

E.49 Experimental and model damage induced thrust oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=1100 rad/s. 240

List of Figures xv

E.50 Experimental and model damage induced torque oscillations amplitude measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=1100 rad/s. 240

F.1 Clean signal of a sinusoid with frequency of 95.5 Hz and amplitude of 0.01 N to be
reconstructed with the samples taken from its noisy version. 242

F.2 Clean and reconstructed sinusoids with frequency of 95.5 Hz and amplitude of 0.01 N
with their mean values represented by the bold and dashed lines, respectively. 242

F.3 Reconstructed amplitude of a sinusoid with frequency of 95.5 Hz and amplitude of 0.01
N as a function of the measurement noise Gaussian standard deviation. 242

F.4 Reconstructed amplitude of a sinusoid with frequency of 47.75 Hz and amplitude of 10−3
N as a function of the measurement noise Gaussian standard deviation. 243

List of Tables

4.1 Simulators comparison . 53

8.1 Evolution of the number of points and coordinates upon the occupancy map generation. 130
8.2 Path planning algorithms trade-off table given single data point. 140
8.3 State hedging linear and angular velocities range limits 151
8.4 Zero-mean Gaussian noise state variances . 152
8.5 Flight and failure logged metadata . 154
8.6 IMU data storage headers and explanation . 155
8.7 Camera logged metadata . 155

9.1 Geometrical properties of the Bebop 2 drone and propeller. 170
9.2 Error metrics results for the thrust and torque identification and validation datasets. . . . 171
9.3 Experimental campaign testing parameters and values. 184
9.4 Δerror ranges for thrust and torque for 10% and 25% blade damage at 2 m/s wind speeds.192

10.1 Performance and inference time comparison of dense optical flow approaches. 199
10.2 Inference time comparison of dense optical flow approaches on the collected UE4 dataset

at different resolutions. 200
10.3 FDD accuracy and inference time results. With a total of 17 classes, four discrete and

abrupt failure modes were simulated for the Bebop 2 UAV per propeller, namely 20%,
40%, 60% and 80% single blade damage. 203

A.1 Performance results of Nelder-Mead and Gradient-Descent with learning rate values of
0.1 and 0.5. 220

C.1 Linear body velocity input generation schemes. FV refers to Fix Value, FR refers to
Fixed Range, VR refers to Variable Range and CV means Computed Value. In all table
entries, except those with CV, the corresponding value or range is included in the table.
The scheme in bold reflects the option chosen for the present research. 227

C.2 Number of lags that lay outside of the 95% confidence bounds for the thrust and torque
for the 3 linear body velocity input generation schemes. 228

D.1 Selected BET hyper-parameters (𝑞 − 𝑛𝑏𝑠). 232

xvii

I
Thesis introduction

1

1
Introduction

With the advent of Smart Cities, Unmanned Air Vehicles (UAVs) have seen a surge in their number of
applications, from package delivery [31, 32] to Urban Air Mobility (UAM) [33]. Most recently, as a re-
sponse to the COVID-19 pandemic [34, 35], the implementation of UAVs for medical purposes has been
accelerated. Zipline, a drone start-up in California (USA), has been granted permission for transporting
medical supplies in North Carolina [36] and AVY, a start-up based in Amsterdam (The Netherlands),
has received a grant from the European Commission for urgent medical transport between healthcare
facilities [37, 38]. With Air Traffic Control programs under development for the management of drones,
such as the U-Space in Europe [39], one of the main concerns of the future crowded urban airspace is
safety [40].

Most of the research in this field has been focused on fault tolerant control [41], with companies such
as Verity Studios, which successfully filed a patent in 2020 for a final product [42]. However, in order to
improve the resilience of multi-rotor and hybrid drones to potential failures, work is also carried out in
obstacle avoidance [43], upset recovery [44], system identification [28] or fault detection and diagnosis
[45]; the latter consisting of the fault classification, as well as its location and magnitude identification.
Fault detection and diagnosis (FDD) expands the envelope of the UAV’s self-awareness and allows
informed decisions when deploying emergency systems, such as a parachute, and switching between
controllers or internal physics models to counteract a failure. Literature in FDD is very extensive but, as
it will be shown later, it deals with a single failure type at a time and has been limited to the manipula-
tion of signals from the Inertial Measurement Unit (IMU), namely the accelerometers and gyroscopes,
or additional external sensors such as microphones, which add weight and complexity to the system.
Cameras are nowadays ubiquitous in commercial UAVs and they have been ignored for this task, even
though their information is already processed for navigation, such as Simultaneous Localisation and
Mapping (SLAM) [46], and state estimation in GPS denied urban regions, such as Visual Inertial Odom-
etry [22]. Visual information is very rich and it could potentially identify multiple failure types at once,
as well as increase the accuracy when fused with the IMU sensors. This research gap widens when
considering future advancements in UAV hardware and software, such as event-based cameras [47]
and spiking neural networks [48]. Therefore, the main research objective of this thesis is stated below.

The objective of this research is to improve the accuracy of UAV actuator fault detection and
diagnosis by developing a framework that fuses IMU and vision-based information.

For the development and performance assessment of vision-based FDD algorithms, it is required
to have a dataset which includes IMU and camera output in nominal flight and in failure scenarios.
Unfortunately, the current available datasets do not include IMU sensor information and do not have
any recorded scenarios with failures. Gathering large quantities of data for knowledge-based fault de-
tection models with a UAV is very time consuming, dangerous and expensive; data would have to be
annotated, multiple failure modes would have to be induced in the vehicle and the flight environment,
as well as the UAV, would have to be adapted to minimise the potential risk. Besides that, in an exper-
imental physical setting it is very difficult to collect data from various environments and conditions. A

3

4 1. Introduction

suitable alternative is the simulation of the vehicle in a realistic environment, the storage of the sensor
synthetic data for model training and the transfer learning to the real world UAV. It has been observed
that the addition of large quantities of synthetic data to a smaller real dataset would lead to a perfor-
mance increment when compared to the scenario in which only real data is collected [49].

Unfortunately, there does not exist an off-the-shelf simulator that enables the generation of synthetic
flight data with mid-flight injected failures. Additionally, previous literature in the field of fault diagnosis
has simplified the blade damage to a simple loss of control effectiveness or to the centrifugal forces
caused by the shift in the centre of gravity. Such approaches neglect the vibrations in the moment
signals, as well as the vibrations caused by the changed aerodynamics due to the centre of pressure
displacement.

Hence, in order to achieve the proposed research objective, three main research questions have
been identified; each tackling a different research project phase: blade damage modelling, data gath-
ering and FDD framework development. With their respective research subquestions, they have been
defined as follows:

1. How can high-fidelity blade damage be modelled?

2. How can data be gathered for the training and testing of the UAV fault detection and diagnosis
framework?

(a) What simulator can be used for the development of the data gathering pipeline?
(b) What actuator faults are considered for the development of the UAV fault detection and

diagnosis framework?
(c) What drone physics model and controller should be used for obtaining the data?

3. How can the camera sensor information be fused with IMU data within a UAV fault detection and
diagnosis framework?

(a) How can features be extracted from the camera and IMU sensor data?
(b) What method shall be used for UAV actuator fault detection?
(c) What method shall be used for UAV actuator fault diagnosis?
(d) How do the vision-based features contribute to the accuracy and computational load of the

UAV fault detection and diagnosis framework?

The first question aims at developing a model capable of simulating blade damage more accurately
than the alternatives available in literature. The second research question aims at understanding how
a rich dataset can be built. The third research question aims at filling the research gap by tackling the
FDD framework development and assessing its performance.

As far as the contents of the present report are concerned, an overview is provided hereby. First,
Part II contains a literature study on existing FDD approaches, applications of visual data on board of
autonomous vehicles and photo-realistic simulators; information leveraged throughout the rest of this
project. Then, Part III presents two scientific papers — the main contribution of the research and the
master thesis. Next, Part IV contains the thesis report, which explains in greater detail the methodology
and results, easing the reproducibility of this work. Part V recaps the main findings of this research
project and provides recommendations for further work in each of the project phases. Finally, Part VI
encloses additional supporting work.

II
Literature study

5

2
Fault detection and diagnosis

Fault is defined as ”an unpermitted deviation of at least one characteristic feature of the system from
the acceptable, usual, standard condition” [50], reducing the capability of performing a required task.
Failure and malfunctions are the result of the accumulation of one or more faults that lead to the perma-
nent interruption or intermittent irregularity in the performance of a system function under the specified
operating conditions.

Depending on their development through time, faults can be classified in 3 groups [50–52]: abrupt
faults, that take place in a step-wise form such as impact faults, bias faults, stuck faults and loss of signal
[53]; incipient faults, that show a drifting behaviour; and intermittent faults. Besides that, depending on
where in the system they take place, they can be classified at the same time as sensor faults, actuator
faults and plant faults [54], being the first two groups those that most literature aim at predicting. Sensor
faults result from incorrect readings from the system instruments and sensors and they include constant
bias faults (stuck sensor), drift fault (additive-type), constant gain faults (multiplicative-type) and outlier
faults [6, 55].

At the beginning, faults were only compensated with hardware redundancy techniques due to the
lack of effective algorithms for fault detection and the low computational power available. However,
they add weight and are not robust against sensor noise or potential cyber-attacks [6, 56]. In the
last 50 years, algorithms have been developed to detect these faults without the need of comparing
duplicated signals provided from multiple sensors (Figure 2.1 [1]). Instead, information redundancy
between the measured data and an explicit or implicit model is checked by a search engine. They are
called analytical redundancy and they have been implemented in numerous systems, from chemical
plants to aeronautics.

There exist numerous review documents in the subject of fault detection and diagnosis with analyt-
ical redundancy, being a field whose terminology has constantly evolved through time. Although fault
classification, fault identification, fault isolation and fault diagnosis have been used interchangeably
throughout literature, originally each term was tied to a different group of tasks [1, 51]:

1. Fault classification: fault type

2. Fault isolation: fault type and location

3. Fault identification: fault magnitude (size)

4. Fault diagnosis: fault type, size, location and time of detection

As can be observed, fault diagnosis encompasses all the other terms. Besides that, fault accom-
modation refers to the replacement or partial compensation of the faulty sensor measurement by a
computed estimation.

7

8 2. Fault detection and diagnosis

Figure 2.1: Graphical comparison between hardware and analytical redundancy [1].

In 1997, Isermann [51] provided an overview of model-based methods for fault detection that could
be classified in parameter estimation, state estimation and parity equations. The introduction of human
expert heuristic knowledge with approximate reasoning (e.g. fuzzy rules) in fault diagnosis was also
discussed. Later in 2006, the same author provided a broader selection of fault detection methods [50].
Apart from the conventional limit value checking (e.g trend checking, deviation from mean or variance),
the author extended the aforementioned model-based methods with non-linear process identification
methods (e.g. Artificial Neural Networks), fault-detection with signal models (their transformation to the
frequency domain and their analysis) and fault detection with Principal Component Analysis (PCA).

Two years later, Zhang [2] presented another classification of fault detection and diagnosis meth-
ods based on the a priori knowledge used by the algorithm, which can be observed in Figure 2.2 [2].
This lead to two large groups, namely: model-based methods and data-based methods. Model-based
methods, also referred to as deep or causal, understand the process using first principles knowledge;
the physics of the process. Their goal is to detect whether there is consistency between the behaviour
of the model and the actual system, even in the presence of system input deviations and disturbances
(robustness). For that purpose, the system input is fed to the generated model whose output is com-
pared to the system output data in order to generate residuals. Then, those residuals are passed to
a classifier that identifies whether there is a fault and its type. At the same time, this group can be
further divided as qualitative and quantitative. In quantitative approaches, mathematical functional re-
lationships are established between the input and the output of the system [57]. In contrast, qualitative
algorithms exploit qualitative functions which capture the causal structure present in the process less
rigidly than quantitative model-based approaches but in a more detailed manner than expert systems,
and they can be built as causal models or abstraction hierarchies [58]. Expert systems are if-then-else
based algorithms without physics understanding that mimic the human expert behaviour when solving
a domain-specific problem, unable to work in new unexpected conditions.

Figure 2.2: Fault detection and diagnosis classification based on [2].

9

On the other side of the spectrum are data-based approaches, originally called shallow, compiled,
evidential or process history-based models, which obtain their knowledge from past experience with
the process in the form of features extracted from large quantities of historical data. As can be seen,
they are again subdivided in qualitative and quantitative approaches and the latter can be further bro-
ken down into statistical and non-statistical (Neural Networks) feature extraction methods [59].

Additionally, an alternative classification was presented based on whether the method was mostly
exploited for the generation of residuals or for the fault decision making [1, 2]. The residuals are usu-
ally the difference between the system output and the developed model, and it should be zero under
no-fault conditions.

Then, in 2013, Dai [3] proposed a classification that combined the initial insights of [50], which con-
sidered fault detection with signal models, and the aforementioned division between model-based and
data-based approaches [2]. Based on how the data is processed, 3 groups are considered (Figure 2.3)
[3]: model-based, signal-based and knowledge-based. The first approach is the same as discussed
by [2], which compares the measured data with the predictions from an identified or derived from first
principles model. It is the method which requires the least amount of data and the information redun-
dancy is in the explicit model. It is also known as online data-driven.

In contrast, in the second approach the analytical redundancy is found in the fault-signal patterns
relation which are based on a priori human understanding. They do not require an input-output model
but more data (e.g. electronic signals and vibrations) is usually fed to these methods than to model-
based approaches. The author further breaks down the signal-based approaches in those executed in
the time domain, those in the frequency domain and those in the joint time frequency domain.

Finally, the last group is the equivalent to the data-based approach. The author considered the
”data-driven” nomenclature misleading since all the fault detection and diagnosis algorithms require
historical and/or measured data. The goal of this approach is the development of a knowledge-based
implicit representation of the system variables and it is mostly used when the process is too complex
for a model-based strategy and the signal analysis does not lead to accurate results. When compared
to the other two groups, knowledge-based methods require greater amounts of historic data in order to
create its implicit models that encapsulate the information redundancy.

Figure 2.3: Data flow in the knowledge-based, signal-based and model-based fault detection and diagnosis approaches [3].

Besides that, Dai [3] divides the knowledge-based approach in qualitative or symbolic AI and quanti-
tative or machine learning. Additionally, the author distinguishes 3 new groups within machine learning,
namely supervised learning, unsupervised learning and reinforcement learning, as can be observed in
Figure 2.4 [3].

10 2. Fault detection and diagnosis

Figure 2.4: Knowledge-based fault detection and diagnosis approach classification [3].

More recent literature either maintains the discussed 3 group classification based on how the data
is processed or forgets the signal-based approaches. In both cases, they enrich the classification by
including more recent methods, such as the model-based Signed Bond Graph or the unsupervised
knowledge-based Auto-Encoder [54, 60]. This shows that the terminology used in this field started
to consolidate and become widely accepted. Additionally, previous literature has defined desirable
characteristics for fault detection and diagnosis, such as detection speed or robustness, and employed
it for the evaluation and comparison of the different approaches [2, 54, 59].

The combination of previous literature would lead to the complete and common classification frame-
work presented in Figure 2.5. In UAV platforms, these algorithms are developed taking into consider-
ation the limited computational capacity of micro-controllers.

Model-based

(online data

driven)

Signal-based
methods (data-

driven)

Knowledge-
based (history
data-driven)

FDD methods

(analytical

redundancy)

Observer and
filter based

method (state
estimation)

Quantitative
knowledge

(machine
learning)

Qualitative
knowledge

(symbolic AI)

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Time domain Frequency
domain

Joint time
frequency domain

Semi-supervised
learning

QualitativeQuantitative

Causal models Abstraction
hierarchy

Parameter
estimation/system

identification

Dynamic
observerStatic observer

Simultaneous
state & parameter

estimation

Parity space
method

Figure 2.5: Fault detection and diagnosis method classification.

In the next sections only the knowledge-based approaches will be presented in detail, including
multiple examples and architectures from literature since they have historically shown to be the most
suitable for dealing with high-dimensional visual data. In contrast with model-based approaches, they
do not make use of the physical properties of the system and do not build a mathematical model
for detection. As can be observed in Figure 2.6, they can be divided in quantitative methods, more
commonly known as machine learning, and qualitative methods, so called symbolic AI. Quantitative
methods consider the detection as a classification problem, which can be supervised, unsupervised,
semi-supervised or reinforcement learning. These algorithms are exploited in modern fault detection
systems because they do not require a lot of computations, allowing their use online in real-time. Be-
fore applying these approaches, pre-processing of data is required.

2.1. Quantitative knowledge: supervised learning 11

Knowledge-based
(history data-

driven)

Quantitative
knowledge

(machine learning)

Qualitative
knowledge

(symbolic AI)

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Semi-supervised
learning

Figure 2.6: Knowledge-based approach classification.

This chapter is structured as follows. First, section 2.1 presents the supervised learning, build-
ing from the simple building blocks to the more complex strategies. Then, section 2.2 discusses the
unsupervised alternatives. Since semi-supervised learning approaches usually undergo an initial un-
supervised learning phase, some of its most important algorithms are included within this section. Fi-
nally, section 2.3 briefly discuses the most important qualitative knowledge approaches. Reinforcement
learning is not covered since it is a technique mostly exploited in the field of control and not fault de-
tection and diagnosis.

2.1. Quantitative knowledge: supervised learning
Supervised learning exploits large amounts of labelled historical data in order to train the algorithms.
For that purpose, the data points have already been classified according to the system conditions
at the time of measurement, namely healthy or faulty and the corresponding type of fault. The goal
of the algorithms is to find the data patterns that can be connected to the different types of labelled
faults. Figure 2.7 shows some of the most common methods within supervised learning used for fault
detection and diagnosis. In the coming sections, the highlighted methods will be described in detail
with examples from literature.

Supervised
learning

Artificial Neural
Networks

Fully Connected
Cascade

Radial Basis
Function Neural

Network

Convolutional
Neural Network

Recurrent Neural
Network

Long-Short Term
Memory

Gated Recurrent
Units

Bayesian Neural
Networks

Bayesian
classifier

Bayesian
Recurrent Neural

Networks

Support Vector
Machines Fuzzy Logic

Wavelet networks

Others:

Bayesian Convolutional Networks

Dynamic Bayesian Networks

Others:

Figure 2.7: Supervised learning knowledge-based fault detection and diagnosis methods.

2.1.1. Artificial Neural Networks
Artificial Neural Networks (ANNs), also known as deep networks, are an efficient knowledge-based tool
capable of representing an arbitrary function 𝑦 = ANN(𝑥), which is exploited in the modelling and iden-
tification of nonlinear systems thanks to its flexible structure and approximation capabilities [14, 61]. It
is inspired by how the brain works and each node in the network is aimed at mimicking the behaviour
of a neuron.

12 2. Fault detection and diagnosis

Although there has been a surge of many variations during the last 30 years, from Convolutional
Neural Networks (CNNs) in the 1990s [62] to the most recent advancements of Transformers [19], the
basic concept remains constant. An ANN is composed of a collection of weighted activation functions
(neurons) distributed among 3 types of computational layers: input layer, hidden layer and output layer.
Even though the terms ANN and deep network are used interchangeably, an ANN is considered to be
a deep network when the model contains multiple hidden layers.

Figure 2.8 [4] shows a clear representation of a neuron. Each neuron is a computational unit that
receives one or multiple inputs (𝑥𝑖) multiplied by their respective weights (𝑊𝑖), adds them up to an
external term known as the bias (𝑏) and passes them through a nonlinear function before providing the
result as output. There exist multiple types of nonlinear functions (e.g. ReLU, sigmoid, softmax) and
their use greatly depends on the problem at hand. From the simplicity in the structure of a neuron, it
can be deduced that modularity is at the core of ANNs since neuron can be connected to each other
shaping diverse architectures.

Figure 2.8: Artificial Neuron computational diagram [4].

In its simplest form (feedforward NN), each layer 𝑙𝑗 in the ANN applies a non linear operation to a
linear transformation (𝑓𝑖(⋅)) of the previous layer [4, 14]:

𝑙0 = 𝑥,
𝑙𝑗 = 𝑓𝑗(W𝑗𝑙𝑗−1 + 𝑏𝑗) ∀𝑗 ∈ [1, 𝑛],
𝑦 = 𝑙𝑛

(2.1)

Once the last layer is reached, the output is compared to the target output in a loss function. As with
the nonlinear functions, there are multiple types of loss functions (e.g. mean squared error, categorical
cross entropy) and their use greatly depends on the problem being solved. Finally, the parameters
of the network (the weights and the biases) are updated with the derivative of the loss function with
respect to the parameters in order to minimise the loss through a process which exploits the chain rule,
known as backpropagation [10, 63].

ANNs can be used in a supervised setting where the targets are provided next to the inputs during
the learning phase. For instance, Heo [64] considers two types of neural networks with labelled data
for the tasks of fault detection and classification of a benchmark chemical process. In the first option,
a neural network is trained for a binary classification task in which the data is labelled as normal or
with a specific type of fault (fault detection). In the second option, the classification is performed by a
neural network trained with normal operation data and data from various faulty operating conditions,
performing a multi-class classification task. In order to assess the performance of the neural networks,
3 indices where compared, namely the accuracy, the fault detection rate (FDR) and the false alarm rate
(FAR), which are defined as follows:

Accuracy = # of samples with correct label
of samples (2.2)

2.1. Quantitative knowledge: supervised learning 13

FDR = # of faulty samples with fault label
of faulty samples (2.3)

FAR = # of normal samples with fault label
of normal samples (2.4)

Iannace [65] used ANNs for the identification of a fault in the blades of a drone flown indoors ex-
ploiting the noise produced by the blade rotation as input. The author extracted the important features
from the noise through frequency analysis and the ANN had to distinguish between a balanced and 2
unbalanced blade scenarios.

Furthermore, Hussain [5] has developed a sensor failure detection, identification and accommoda-
tion (SFDIA) scheme for the aircraft roll, pitch and yaw sensors based on a fully connected cascade
(FCC) NN architecture trained using the neuron by neuron (NBN) learning algorithm. This NN differs
from the Multi-Layer Perceptron (MLP) in that it allows connections across layers, as can be observed
in Figure 2.9 [5]; an architecture that reduces the number of required neurons. NBN is an improved
method of the 2𝑛𝑑 order Levenberg-Marquadt algorithm [66, 67] and, in contrast with backpropagation,
it can train fewer neurons faster and more efficiently [68].

Figure 2.9: FCC NN architecture [5].

Aboutalebi [6] proposes a neural network adaptive structure (NNAS) to detect faults in the sensors
of a quadrotor, whose equations of motion can be found in [69]. NNAS consists of 2 components: a
nonlinear model-based observer and a NN whose weights are updated with an Extended Kalman Filter
(EKF). The nonlinear observer computes the expected output and the NN approximates the change in
behaviour due to the presence of a fault. As can be observed in Figure 2.10 [6], the NN is fed the error
between the expected value from the nonlinear observer and the sensor observation as input, as well
as previous outputs of the NN. The algorithm allows the user to tune two hyper-parameters that define
the number of past time-steps of the observation-expectation error and NN outputs that are given as
input to the NN. It was demonstrated that the proposed EKF technique for NN weight update helps to
improve its learning rate.

In contrast with other ANN implementations that simply discern whether there is or not a fault (classi-
fier), the NNAS exploits the ANN to approximate the deviation caused by a fault (function approximator).
Similar application was found in [70], which uses a NN to estimate the sensor faults of a nonlinear hy-
brid system subjected to unmodelled actuator and sensor dynamics, as well as plant uncertainties. In
the same manner, Talebi [71] uses a NN for fault detection and recovery of a reaction wheel actuator
exploited in satellite attitude control systems, being able to reconfigure the controller with a fault. In
both aforementioned works, the presence of a sensor fault can be detected when there is a spike in the
NN output, since it is expected to produce zero output in non-faulty conditions. Also, the output can be
used to classify the type of fault encountered.

Similarly, in [72] an ANN disturbance observer is developed for tackling the system uncertainty and
nonlinear actuator (gain) faults of a 3 degree-of-freedom (DOF) model helicopter; together with another
disturbance observer that estimates the external disturbance and the ANN approximation errors. A Ra-
dial Basis Function Neural Network (RBFNN) is implemented as observer, an ANN with radial basis
functions as activation functions. The information from both observers is used by a backstepping based
adaptive neural fault-tolerant controller in order to track the desired system output. Unfortunately, the
fault tolerant controller was not applied to a 6 DOF model and can not counteract sensor faults.

14 2. Fault detection and diagnosis

Figure 2.10: Block diagram of the NNAS fault detection implementation in a quadrotor [6].

In order to detect sensor faults in UAVs, Samy [73] proposes an extendedminimum resource allocat-
ing radial basis function NN (EMRAN-RBFNN) for sensor fault detection, isolation and accommodation.
It is an adaptive scheme because it adds hidden units only if they are necessary and removes those
that do not contribute significantly to the output (pruning). Before adding a hidden unit, it verifies 3 con-
ditions: the estimation error is below a pre-defined threshold, the RMS error of the previous estimations
within a predefined time horizon are below a set threshold and the distance between the input vector
and the centres of the hidden Gaussian RBF units is small enough. If any of the conditions is not met,
another hidden unit is added. Additionally, the input layer can also be filtered by deleting those inputs
that do not contribute to the error reduction. For that purpose, the error before and after the introduction
of a parameter is compared. As a result, the NN structure and the execution time are reduced, which
is beneficial due to the limited computational capability present in most UAVs.

In [7] an FDI strategy is proposed for cooperative robotic manipulators in which a NN is used to
model the velocities of the system. The NN estimated and the manipulator observed velocities are
subtracted to generate a residual which is fed to a RBFNN to classify the type of actuator fault given
pre-defined fault criteria, as can be observed in Figure 2.11 [7]. The FDI scheme was applied in the
presence of swinging joint faults and was able to detect and isolate them in trajectories that had not
been presented before. Similar work and results were observed in [74].

Figure 2.11: Robot manipulator FDI strategy [7].

2.1. Quantitative knowledge: supervised learning 15

2.1.1.1. Convolutional Neural Networks
Another well-known NN architecture which has shown great success in the analysis of images is the
Convolutional Neural Network (CNN). Its role is to reduce images large pixel space into a dimension
that is easier to process without losing information about important features. As can be observed in
Figure 2.12 [8], CNNs are composed of four main types of layers: convolutional layers, nonlinearity
layers, pooling layers (also known as sub-sampling layers [75]) and fully connected layers. The first
type contains a set of filters and its duty is to perform a convolution operation between the input images
and those filters in order to create feature maps. The nonlinearity layers usually follows or is considered
to be part of the convolutional layer and performs a nonlinear mapping to its output. The pooling layer
contributes to the reduction in the spatial representation and compresses the information. Finally, the
fully connected layers are positioned at the end and they behave in the same manner as the hidden
and output layers of a NN. The weights to be learnt by this algorithm are the filters of the convolutional
layers. The reader can find more detailed information about the components, structure and applica-
tions of this architecture in [8, 10].

Figure 2.12: CNN general architecture [8].

An example that exploits this architecture can be found in the work by Janssens [76], which uses
CNNs for fault detection in rotating machinery, more specifically in bearing fault detection. For that pur-
pose, it feeds images of the Discrete Fourier Transformed (DFT) vibration signals (frequency spectrum)
measured by the accelerometers to a shallow single convolutional layer CNN. At the end, the results
of this form of feature learning show a better classification accuracy than those obtained through engi-
neered features, which require expert knowledge.

Fault diagnosis in the aerospace sector has also seen the application of CNNs. Guo [9] proposes a
hybrid feature model and deep learning framework capable of detecting faults from different sensors.
As in the previous work, signals are first translated to the frequency domain, in this case short time
Fourier transform (STFT) is applied to the state residuals obtained from the difference between the
observations and the estimations from an EKF. Then, a CNN was used to extract the relevant features
for fault diagnosis. An interesting feature from this implementation is the training of 9 independent
CNNs, each corresponding to a different sensor signal, that are coupled at the end by a common fully
connected layer which identifies the normal condition or faulty sensor. The complete pipeline can be
observed in Figure 2.13 [9].

Instead of extracting features and then classifying the type of fault, there exist end-to-end learning
approaches that aim at avoiding suboptimal hand-crafted features that require an additional computa-
tion cost. Ince [75] proposes an adaptive real-time fault detection and classification system that applies
1-D CNNs [77] directly to the raw current signals of a motor. The convolutional, nonlinearity and pooling
layers are implicitly in charge of the feature extraction, whereas the full connected layers carry out the
fault classification. It is considered to have an adaptive CNN topology because the last pooling layer
reduces the information to one data point per neuron. As an example, if after the last convolution and
nonlinearity layers each neuron has 8 data points, the last pooling layer will have a window of size 8 in
order to downsize it to 1 data point per neuron before feeding it as input to the fully-connected layers.
As a result, the CNN architecture allows any input layer dimension and any number of CNN layers
before the fully-connected section.

16 2. Fault detection and diagnosis

Figure 2.13: Hybrid feature model and deep learning pipeline for fault detection and classification [9].

2.1.1.2. Recurrent Neural Networks
2D CNNs are used for image data, whereas 1D CNNs can be exploited for the analysis of 1D sig-
nals. Another architecture that excels at 1D temporal data and can handle any input/output lengths are
Recurrent Neural Networks (RNNs). In contrast with previous NNs architectures and instead of just
considering a small number of neighbours around the input, as it is done by 1D CNNs, RNNs take into
account the history of previous observations in order to exploit their sequential relationships when car-
rying out the computations with the current observation. Information about their dynamic correlations
is stored or ”remembered” in the form of ”memory cells” over a span of time, forcing the model to take
them into consideration in new computations [10, 11].

One of the key concepts of RNNs is the sharing of model parameters (weights) across a certain
time span, allowing the model to process sequences of different length than presented during training.
Besides that, it introduces the concept of cycles, which represent the influence of the present variable
value on itself in future time steps. As can be observed in Figure 2.14 [10, 11], the intermediate hidden
variable h at time t-i affects the corresponding h value at time t-i+1.

Figure 2.14: RNN representation in its folded (left) and time-unfolded (right) forms [10, 11].

The value of the hidden layer ℎ𝑡 is the result of a non-linear element-wise transformation 𝑓(⋅) of a
linear combination of the input at the current time step 𝑥𝑡, the value of the same hidden layer at the
previous time-step ℎ𝑡−1 and the bias 𝑏; whereas the output 𝑦̂𝑡 involves another non-linear element-wise
transformation 𝑔(⋅) of the linear combination of the value of the hidden layer at the current time step ℎ𝑡
and another bias 𝑐:

ℎ𝑡 = 𝑓 (𝑤in𝑥𝑡 +𝑤recℎ𝑡−1 + 𝑏) (2.5)

𝑦̂𝑡 = 𝑔 (𝑤outℎ𝑡 + 𝑐) (2.6)

2.1. Quantitative knowledge: supervised learning 17

There exist numerous variations in the RNN architecture depending on when an output is provided
by the network or where are the recurrent connections (cycles) located. More detailed information
about RNNs can be found in [10].

Two RNN architectures that have become very popular in recent years are Long Short-TermMemory
(LSTM) and Gated Recurrent Units (GRU). The LSTM is composed of the following 4 main parts [78]:

1. Input gate: determines what information provided in the current input and previous output should
be stored. It is described as follows:

Γ𝑢 = 𝜎 (𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢) , (2.7)

where 𝜎 is the sigmoidal activation function, 𝑊𝑢 and 𝑈𝑢 are the weights for the current input 𝑥𝑡
and previous LSTM cell output ℎ𝑡−1, and 𝑏𝑢 is the bias of the input gate.

2. Forget gate: identifies the stored information from historical data that should be preserved and
passed on in time. It is defined as follows:

Γ𝑓 = 𝜎 (𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) , (2.8)

where all the parameters have the same meaning and serve the same purpose as in the input
gate.

3. Output gate: its main task is to filter the memory to generate the output. It is defined as follows:

Γ𝑜 = 𝜎 (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) . (2.9)

4. Memory cell: in charge of ”memorising” the important long term dependencies. For that purpose,
it identifies the new information that should be stored, as well as the knowledge from the previous
memory state that should be preserved. It is composed of the input and forget gates:

𝑐̃𝑡 = tanh (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (2.10)

𝑐𝑡 = Γ𝑢⊙ 𝑐̃𝑡 + Γ𝑓⊙ 𝑐𝑡−1, (2.11)

where⊙ defines the element-wise multiplication.

Having computed the output gate and the memory at the current time step, it is possible to compute
the LSTM cell output as follows:

ℎ𝑡 = Γ𝑜⊙ tanh (𝑐𝑡) (2.12)

The aforementioned architecture of the LSTM can be observed in Figure 2.15 [11]. Their main
advantages when compared to the vanilla RNN are their capability of storing useful information for a
long time; they do not suffer from the long-term dependence problem [79].

When compared to the LSTM, the GRU is slightly simpler since it only contains two gates, namely
the update and reset gates, and it works directly with the hidden content without using a memory unit.
The update gate is in charge of determining what new data should be kept for the future and the reset
gate determines how much of the previous information should be forgotten. Its analytical and graphical
representation is very similar to the LSTM; therefore, the reader is encouraged to find more details
about GRUs in [10, 11].

RNNs and their variations have seen an ample implementation in literature due to their ability to
process sequential data. In the field of FDI, time series data from inputs, states or outputs are ex-
ploited. For instance, Talebi [80] uses RNNs as neural observers in order to detect and isolate actuator
and sensor faults in nonlinear systems without relying on the presence of full state measurements. It

18 2. Fault detection and diagnosis

Forget gate Output gateUpdate gate tanh

tanh

Forget gate Update gate

Forget gate Output gateUpdate gate tanh

tanh

Forget gate Update gate Forget gate Output gateUpdate gate tanh

tanh

Forget gate Update gate

Figure 2.15: Unfolded LSTM cell architecture [11] (left) and how the LSTMs pass recurrent information through time (right).

adopts two RNNs for estimating the actuator and sensor fault vectors, respectively. When their out-
puts are nonzero and above a certain predefined threshold, a fault is detected and they are used to
isolate the fault. The proposed implementation on a satellite attitude control subsystem (ACS) can not
detect faults in actuators and sensors simultaneously but is capable of identifying multiple actuator or
sensor faults at the same time. The stability of the complete FDI strategy is verified via the Lyapunov’s
direct method and the backpropagation algorithm is extended with a regularization term that adds extra
damping and stability margin to the weight update.

Chen [79] implements LSTMs for the prediction of compressor failure in heavy duty trucks and com-
pared the results to a Random Forest (RF) implementation, learning that LSTMs aremore stable, robust
and are able to capture temporal relationships better. Zhao [81] also takes advantage of LSTMs in or-
der to extract dynamic information from data for simultaneous FDI within chemical processes (TEP).
Here, batch normalization is used in order to reduce the internal covariate shift, situation where the
training and test input features of the network present very different distributions, and accelerate the
convergence of the algorithm. The results show superior performance when compared to other statis-
tical approaches, such as DPCA + SVM or deep neural networks.

Furthermore, the performance of LSTMs and GRUs is compared in the work by González [11],
who proposes a fault detection and classification algorithm for chemical processes in a large industrial
plant, using the TEP as testing benchmark. The goal of the author is to increase the dectectability by
introducing deep RNNs and the classification accuracy by developing a hierarchical structure and the
implementation of a pseudo-random signal (PRS). Moreover, batch normalization is included in order
to accelerate the training and avoid the covariate shift problem.

The introduction of a hierarchical structure aims at solving the problem of distinguishability, namely
the issue that different faults have a similar effect on the measured variables. For that purpose, it cre-
ates a second classification model that focuses on a smaller group of faults which are difficult to classify,
dedicating its whole learning power to find and augment their small differences. This is analogous to
assigning preferential weights to the difficult to classify fault types. Normalizing the difficult to classify
data separately increases its variance when compared to the normalization in which it is embedded
within the data of the rest of the faults, improving fault classification. Besides that, the addition of exter-
nal excitation through the introduction of PRS in the input data also improves the classification accuracy.

At the end, the proposed algorithm shows superior performance when compared to other statistical
schemes such as Dynamic PCA (DPCA). Additionally, it was shown that LSTM performs slightly better
than GRU in the TEP benchmark.

2.1. Quantitative knowledge: supervised learning 19

Finally, Rengasamy [82] provides an overview of deep learning approaches and architectures for
actuator fault detection in the field of aircraft operations, specifically in aircraft maintenance, repair and
overhaul (MRO). It concludes that the knowledge-based methods presented, such as CNNs or LSTMs,
outperform model-based alternatives and that there is a lack of literature in the application of Bayesian
Neural Networks and hybridisations of deep learning with fuzzy logic.

2.1.2. Bayesian classifier
The presented ANN and RNN approaches receive information from a single or multiple sensors, are
able to detect whether a fault is present and, if that is the case, determine which type of fault within
a pre-established group of classes. The problem is that it can not detect other types of faults than
the ones inferred during training and there are no probability estimates provided of how uncertain is
the algorithm about its decision. Besides that, when multiple processes can cause the same fault, the
underlying origin can not be identified [11].

Even though some classifiers can provide a degree of confidence (e.g. those that include a soft-
max activation function in the final layer) and multiple regularisation techniques have been developed
[83] (e.g. weight decay, early stopping and dropout), the modern NNs tend to show overconfidence
or underconfidence (Figure 2.16 [12]). The degree to which the confidence matches the accuracy of
a prediction is called the calibration and there is a line of research that aims at studying recalibration
techniques and calibration measures in order to improve the confidence estimation of classifiers. Al-
though the Expected Calibration Error (ECE) and the Maximum Calibration Error (MCE) are the most
common calibration measures in which the confidence space is evenly divided in bins [12, 84], such as
the one shown in Figure 2.16 [12], alternatives have been proposed with adaptive binning schemes,
such as the Adaptive Calibration Error (ACE) [85]. Besides that, while ECE and MCE use only the
predicted class probability (the class with the highest probability), ACE aims at calibrating the error
across all the classes. Sources of poor calibration are the hyper-parameters used to build the learning
architecture, such as the number layers, the number of neurons, the regularisation technique or the
batch normalisation [12, 86].

Figure 2.16: Confidence histograms (top) and reliability diagrams (bottom) for early (left) and modern (right) neural networks
[12].

20 2. Fault detection and diagnosis

2.1.2.1. Bayesian inference framework
To tackle these problems in conventional ANNs and RNNs, the Bayesian inference framework could be
used for training these machine learning architectures. According to the Bayesian paradigm, ANNs and
RNNs can be treated as models with parameters (𝜃) which are considered random variables. These
parameters are assigned a probability distribution which describes how well do they fit the data and
characterises the uncertainty in our current knowledge of 𝜃. In contrast with the frequentist paradigm,
it is possible to include prior knowledge and incorporate new experiences/data when quantifying the
”belief” or probability of a parameter. In the Bayesian analysis there are three main components [87]:

1. Prior distribution: encode prior knowledge of the parameters before using the data. Usually
a flexible probability distribution which is easy to work with is chosen. In order to choose prior
beliefs, solid prior information from scientific knowledge, previous studies or pilot data is used.
Sensitivity analysis can be used as a tool for choosing a prior by analysing their impact on the
results and conclusions. In the case that no prior knowledge of the parameters is available, non-
informative priors can be used.

2. Likelihood: encodes the information found in the data about the parameters and measures how
well does the model fit the data.

3. Posterior distribution: the update of the beliefs regarding 𝜃 resulting from the combination of
the prior distribution and the likelihood; it is a compromise between both sources of information. It
updates the uncertainty quantification and it can be exploited for estimation and inference about
the parameters.

These concepts come together in Bayes’ theorem. If we consider two events (A and B) and we
assume that the independent probability of A and B is greater than 0, namely P(A)>0 and P(B)>0, then
their conditional probabilities can be expressed as follows:

𝑃(𝐵|𝐴) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐴) (2.13)

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) (2.14)

Combining both expressions, the simplest form of the Bayes’s theorem is obtained, providing the
formula for obtaining the posterior distribution:

𝑃(𝐵|𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵)
𝑃(𝐴) , (2.15)

where P(A) is the prior distribution, P(A|B) is the likelihood and P(B|A) is the posterior distribution.
If instead of the events A and B, the parameters of a model and the data are considered, the Bayes’
theorem can be translated to:

𝑃(𝜃|𝐷) = 𝑃(𝐷|𝜃)𝑃(𝜃)
𝑃(𝐷) = 𝑃(𝐷|𝜃)𝑃(𝜃)

∫𝜃 𝑃(𝐷|𝜃′)𝑃(𝜃′)𝑑𝜃′
∝ 𝑃(𝐷|𝜃)𝑃(𝜃) (2.16)

In contrast with the Maximum Likelihood Estimate (MLE) which assumes that the data is the only
source of uncertainty, Bayesian learning also considers the uncertainty in the parameters 𝜃 thanks to
the prior (P(𝜃)); encoder of subjective initial beliefs. As can be observed, the denominator is not a func-
tion of 𝜃, so it can be considered as a normalising constant which ensures that the integrated posterior
distribution equals 1. In the case the posterior (predictive) distribution is required for a complex model,
the marginalization over the parameters, the integral in the denominator in Equation 2.16, is computa-
tionally infeasible due to the high-dimensional parameter space. In scenarios where different models’
posterior distributions need to be compared, this information prevents the unnecessary calculation of
the integral in the denominator.

With the posterior distribution, it is possible to compute the posterior predictive distribution; the
prediction of a future observation. Given a dataset D, a model trained on it 𝜃 and a new data point x,
the corresponding y value can be computed as follows with the posterior probability:

2.1. Quantitative knowledge: supervised learning 21

𝑃(𝑦|𝑥, 𝐷) = ∫
𝜃
𝑃(𝑦|𝑥, 𝜃′)𝑃(𝜃′|𝐷)𝑑𝜃′ = 𝔼𝑃(𝜃|𝐷) [𝑃(𝑦|𝑥, 𝜃)] (2.17)

It can be considered as the average of the product between the probability of each model 𝜃 given
the data and the probability of each output given each model and the new data point. Unfortunately,
the computation of the posterior predictive distribution for a complex model is infeasible due to the
high-dimensional parameter space. In the case of a neural network, since the integral is taken about
the parameters, it would be equivalent to using an infinite number of neural networks with the same
architecture and different weight values, which is intractable for any NN of considerable size. Due to
this limitation, researchers have found alternatives in order to achieve an approximation to the inference
problem. There exist two groups of approximate algorithms:
1. Sampling methods: generate answers by repeatedly generating random numbers from a distri-

bution of interest. They can be used for performing marginal and maximum a posteriori (MAP)
probability inference queries, as well as computing other interesting characteristics of the distri-
bution. Most algorithms are based on Markov Chain Monte-Carlo (MCMC) [88], such as Gibbs
sampling [89], differential evolution (DE) [90] and Metropolis-Hastings [89]. Monte-Carlo (MC)
methods are algorithms capable of building solutions from many samples obtained from a certain
distribution. As an example, the expectation presented in Equation 2.18 would be computed as
follows:

𝔼𝑃(𝜃|𝐷) [𝑃(𝑦|𝑥, 𝜃)] ≈ 𝐼𝑇 =
1
𝑇

𝑇

∑
𝑡=1
𝑃(𝑦|𝑥, 𝜃𝑡), (2.18)

where 𝜃1, ..., 𝜃𝑡 are samples drawn fromP(𝜃|D) and 𝐼𝑇 is an unbiased estimator of𝔼𝑃(𝜃|𝐷) [𝑃(𝑦|𝑥, 𝜃)].

2. Variationalmethods: consider inference as an optimization problem. These alternatives emerged
due two main disadvantages in sampling methods. First, even though sampling methods are
guaranteed to find the global optimum when time tends to infinity, it is very difficult to see when a
”good-enough” solution has been achieved. Second, the speed of convergence highly depends
on the sampling technique choice, which in itself is an art.

Variational methods will try to find a tractable distribution depending on some hyper-parameters
𝜃, 𝑞(w|𝜃) ∈ 𝒬, that is as close as possible to the intractable probability distribution 𝑃(w|D) 1.
Then, all the required computations will be done with 𝑞(w|𝜃) in order to obtain an approximate
solution. For that purpose, a tractable distribution 𝑞(w|𝜃) needs to be chosen, which is usually
parametrised by a model (e.g. NN, Gaussian processes or latent variable models), as well as an
optimisation objective J(𝑞(w|𝜃)) which minimises the differences of 𝑞(w|𝜃) with 𝑃(w|D). A common
choice used in literature to compute the degree of similarity between 𝑞(w|𝜃) and 𝑃(w|D) is the
Kullback-Leibler (KL) divergence [91]:

𝐾𝐿(𝑞(w|𝜃)‖𝑃(w|𝐷)) = ∫
𝑥
𝑞(w|𝜃) log 𝑞(w|𝜃)𝑃(w|𝐷) (2.19)

The KL has a value higher or equal to zero for all 𝑃(w|D)-𝑞(w|𝜃) combinations and it is zero if
and only if 𝑃(w|D) and 𝑞(w|𝜃) are equal. Since it tends to infinity when 𝑃(w|D)=0 and 𝑞(w|𝜃)>0,
KL tends to force 𝑞(w|𝜃) to zero (zero-forcing). Given that the posterior distribution within the
denominator of the integral is proportional to the likelihood times the prior (Equation 2.16), it can
be simplified to the following expression:

𝐾𝐿(𝑞(w|𝜃)‖𝑃(w|𝐷)) = ∫
𝑥
𝑞(w|𝜃) log 𝑞(w|𝜃)

𝑃(𝐷|w)𝑃(w) = ∫𝑥
𝑞(w|𝜃) log 𝑞(w|𝜃)𝑃(w) − 𝔼𝑞(w) [log𝑃(𝐷|w)] =

𝐾𝐿(𝑞(w|𝜃)‖𝑃(w)) − 𝔼𝑞(w|𝜃) [log𝑃(𝐷|w)]
(2.20)

1Derivation to minimise the difference between 𝑞(w|𝜃) and 𝑃(w|D): https://youtu.be/uaaqyVS9-rM?t=19m42s

https://youtu.be/uaaqyVS9-rM?t=19m42s

22 2. Fault detection and diagnosis

The minimization of the KL divergence is achieved by maximizing the variational lower bound or
evidence lower bound (ELBO) ℒ(𝑞(w|𝜃)) of the marginal likelihood of the data [92]:

ℒ(𝐷, 𝜃) = −𝐾𝐿(𝑞(w|𝜃)‖𝑃(w)) + 𝐿𝐷(𝜃) = −𝐾𝐿(𝑞(w|𝜃)‖𝑃(w)) + ∑
(𝑥,𝑦)∈𝐷

𝔼𝑞(w|𝜃) [log𝑃(𝑦|𝑥,w)],

(2.21)
where 𝐿𝐷(𝜃) is the expected log-likelihood. The sum of ℒ(D, 𝜃) and 𝐾𝐿(𝑞(w|𝜃)‖𝑃(w|𝐷)) equals
the (conditional) marginal log-likelihood:

ℒ(𝐷, 𝜃) + 𝐾𝐿(𝑞(w|𝜃)‖𝑃(w|𝐷)) = ∑
(𝑥,𝑦)∈𝐷

log𝑃(𝑦|𝑥) (2.22)

Since the sum of both terms is constant with respect to changes of the tractable distribution q(w),
the maximization of the ELBO leads to the minimization of the Kullback-Leibler divergence.

In contrast with sampling methods, the probability variational methods of finding a global optimum
is very low, it is always possible to know when they have converged (sometimes with bound on
the accuracy), and they can easily be scaled.

Sampling methods are the group that has prominently been used in literature but variational meth-
ods have gained a lot of interest in the last 15 years, showing superior performance [87].

2.1.2.2. Bayesian Neural Networks
Neural Networks can be considered probabilistic models 𝑃(y|x, w) that are capable of predicting an
output given an input and the model weights. In the frequentist (conventional) approach, the goal is to
update the weights such that they are able to best explain the data by maximizing the likelihood P(D|w),
through the Maximum Likelihood Estimate (MLE):

wMLE = argmax
w
𝑃(𝐷|w) = argmax

w
∏
𝑖
𝑃(𝑦𝑖|𝑥𝑖 ,w) (2.23)

In contrast, the Bayesian approach aims at maximizing the posterior 𝑃(w|D) with Maximum a Pos-
teriori (MAP) learning, a method which views the weights as random variables and the data as being
fixed. The result is the same as MLE with the introduction of a regularization term in the form of the
weights prior distribution:

wMAP = argmax
w
𝑃(w|𝐷) = argmax

w
𝑃(𝐷|w)𝑃(w) = argmax

w
(log𝑃(𝐷|w) + log𝑃(w)) (2.24)

Bayesian Neural Networks (BNN) are the result of applying the Bayesian framework to Stochas-
tic Neural Networks. Stochastic Neural Networks are ANN with stochastic transfer functions and/or
weights where a distribution is learned instead of point estimates (Figure 2.17 [13]). They are defined
by the variables that behave stochastically in the NN and their a priori distributions. The randomness
introduced by this parameters brings exploration and help this NN architectures escape local minima
[13]. However, as training progresses, the uncertainty is decreased and the environment is better un-
derstood, leading to more deterministic NN decisions (exploitation). As a result, BNNs are considered
a great tool for knowledge representation and reasoning in the presence of uncertainties.

As can be seen in Equation 2.24, the Bayesian inference framework aims at calculating the posterior
distribution of the weights with the provided training data in order to make predictions (Equation 2.17).
In other words, with the observed data, it updates the initial beliefs of the parameters encapsulated in
the prior with an updated belief in the form of the posterior distribution. Besides that, the uncertainty
introduced in the model shows the regions with little or no data that require attention and further train-
ing, leading to an improvement in the predictive performance.

2.1. Quantitative knowledge: supervised learning 23

Figure 2.17: Visual comparison between a conventional ANN and a stochastic NN [13]: a) corresponds to an ANN in which point
estimates are computed instead of distributions, b) corresponds to a Stochastic NN in which a probability distribution over the
transfer functions is learnt, and c) corresponds to a Stochastic NN in which a probability distribution is learnt over the weights of
the NN.

In BNN, the possibility that with every run some parameters acquire a different value can be re-
garded as simulating multiple different models, each with a different probability of appearance depend-
ing on the probability distributions of the stochastic parameters. As a result, instead of having a single
model, it can be considered that multiple models are trained and their results are aggregated to solve a
particular problem. This phenomenon is called ensemble learning [93], which refers to the combination
of classifiers that correct each other errors and whose success relies on their diversity; if all classi-
fiers would always vote the same option, they would not be filling the gaps of each other weaknesses.
Traditionally, ensemble learning has been achieved using different classifiers, using different training
parameters for the model or different datasets with bootstrapping or bagging. In this case, the first two
options are achieved by BNNs thanks to the stochasticity of its weights and activation functions. The
result is an ANN with confidence estimation, a classifier that estimates how sure it is about its own out-
put, and learnt representations which are robust to perturbations in the weights and show the variability
present in the training data. In contrast with traditional ensemble learning methods, BNN only doubles
the number of parameters.

In most cases, the weights are represented by Gaussian distributions, whose mean and standard
deviation are the unknown parameters (𝜃 = (𝜇, 𝜎2)) that shall be obtained during training [92]. However,
in order to prevent obtaining a negative value for the standard deviation, it is parameterised as:

𝜎 = log (1 + 𝑒𝜌), (2.25)

leading to the new unknown parameters 𝜃 = (𝜇, 𝜌). A Gaussian distribution is chosen due to its simplic-
ity, flexibility and convenience. During the forward propagation in a BNN with Gaussian distributions, a
sample is taken from a standard Gaussian distribution (𝜖 = 𝒩(0,1)) for each weight i and their values
are computed as follows [92]:

𝑤𝑖 = 𝜇𝑖 + 𝜎𝑖 ⋅ 𝜖𝑖 (2.26)

Alternatively, a reparameterization trick [92] can be applied such that a sample from a standard
Gaussian distribution (𝜖) only has to be computed once per neuron and not per weight. The impact of
this trick can be easily observed with an example. In a NN with 1000 input neurons and 1000 hidden
neurons, the weight matrix that connects both layers has a size of 1000 × 1000. Instead of computing
𝜖 106 times, which is the number of weights, it is sampled only 103 times, which is equivalent to the
number of hidden neurons. Additionally, the local reparameterization trick leads to an estimator that
has a lower variance.

With the weights, the BNN behaves the same as an ANN during forward propagation. The next
component for the BNN to work is the loss function. Bayes by Backprop2 [94] provides a derivation
from Equation 2.20 for the objective function, which requires Monte Carlo sampling (N samples):

2BNN with Bayes by Backprop Python implementation applied to FMNIST dataset: https://www.nitarshan.com/
bayes-by-backprop/

https://www.nitarshan.com/bayes-by-backprop/
https://www.nitarshan.com/bayes-by-backprop/

24 2. Fault detection and diagnosis

𝐽(𝐷, 𝜃) =
𝑁

∑
𝑗=1

log 𝑞(w(𝑗)|𝜃) − log𝑃(w(𝑗)) − log𝑃(𝐷|w(𝑗)), (2.27)

wherew(𝑗) corresponds to the 𝑗th Monte Carlo sample obtained from the variational posterior q(w(𝑗)|𝜃).
The first two components within the sum correspond to the complexity cost whereas the last component
denotes the likelihood cost which is influenced by the data. In the case that minibatches are used
instead of fully batched gradient descent or fully stochastic gradient descent, Graves [95] proposes to
minimise the minibatch cost for minibatch 𝑘 = 1,2,...,M:

𝐽𝑘(𝐷𝑘 , 𝜃) =
1
𝑀𝐾𝐿 [𝑞(w|𝜃)‖𝑃(w)] − 𝔼𝑞(w|𝜃) [log𝑃(𝐷𝑘|w)] (2.28)

∑
𝑘
𝐽𝑘(𝐷𝑘 , 𝜃) = 𝐽(𝐷, 𝜃) (2.29)

Alternatively, the complexity cost can be weighted non-uniformly across the different minibatches:

𝐽𝑘(𝐷𝑘 , 𝜃) = 𝜋𝑘𝐾𝐿 [𝑞(w|𝜃)‖𝑃(w)] − 𝔼𝑞(w|𝜃) [log𝑃(𝐷𝑘|w)] , (2.30)

where 𝜋 ∈ [0,1]𝑀 and ∑𝑀𝑘=1 𝜋𝑘 = 1. Blundell [94] found 𝜋𝑘 =
2𝑀−𝑘
2𝑀−1 to work well: the cost is heavily

influenced at the beginning by the complexity cost while the data acquires higher importance with later
minibatches. This scheme can have great impact during training since at the beginning the impact of
the data is small whereas, with more experienced minibatches, the data becomes more influential than
the prior.

Furthermore, in order to compute the prior of the weights 𝑃(w), Blundell [94] proposes a scale
mixture prior which is a scaled mixture of two zero mean gaussians with different variances and is not
modified in training:

𝑃(w) =∏𝜋𝒩(w𝑗|0, 𝜎21) + (1 − 𝜋)𝒩(w𝑗|0, 𝜎22) (2.31)

log𝑃(w) =∑
𝑗
log (𝜋𝒩 (w𝑖|0, 𝜎21) + (1 − 𝜋)𝒩 (w𝑖|0, 𝜎22)), (2.32)

where w𝑖 is the 𝑖th weight of the network and 𝜎21 and 𝜎22 are the variances of the mixture components.
Usually, the first component is given a larger variance than the second (𝜎1 > 𝜎2) and the second com-
ponent has a small variance (𝜎2 ≪ 1). The result is a spike-and-slab prior with a heavy tail and most
of the weights concentrated a priori around 0. It is also possible to use a previously learnt posterior as
the prior when new data is acquired, making BNNs suitable for online learning [96].

Once the loss function has been computed, backpropagation is used in order to update the weights.
In contrast with the conventional ANN where the gradient of the loss function with respect to the weights
and biases was enough (𝛿𝐽(𝐷,𝜃)𝛿w), here an additional step needs to be taken for backward propagation:

Δ𝜇 = 𝛿𝐽(𝐷, 𝜃)
𝛿w

𝛿w
𝛿𝜇 +

𝛿𝐽(𝐷, 𝜃)
𝛿𝜇 = 𝛿𝐽(𝐷, 𝜃)

𝛿w + 𝛿𝐽(𝐷, 𝜃)𝛿𝜇 (2.33) 𝜇 ← 𝜇 − 𝛼Δ𝜇 (2.34)

Δ𝜌 = 𝛿𝐽(𝐷, 𝜃)
𝛿w

𝛿w
𝛿𝜌 +

𝛿𝐽(𝐷, 𝜃)
𝛿𝜌 = 𝛿𝐽(𝐷, 𝜃)

𝛿w
𝜖

1 + 𝑒−𝜌 +
𝛿𝐽(𝐷, 𝜃)
𝛿𝜌 (2.35) 𝜌 ← 𝜌 − 𝛼Δ𝜌 (2.36)

Once the BNN has been trained, in the testing phase it is possible to carry out a prediction, as well
as computing its uncertainty. In the case of a regression problem, the prediction is obtained from the
output average of different models obtained from sampling different weightsw𝑗 ∈W from the converged
hyper-parameters 𝜃 [97]:

2.1. Quantitative knowledge: supervised learning 25

𝑦̂ = 1
𝑁 ∑

w𝑗∈W
𝑁𝑁w𝑗(𝑥) (2.37)

This process is known as ensembling and the uncertainty can be quantified as follows:

Σ𝑦|𝑥,𝐷 =
1

𝑁 − 1 ∑
w𝑗∈W

(𝑁𝑁w𝑗(𝑥) − 𝑦̂) (𝑁𝑁w𝑗(𝑥) − 𝑦̂)
𝑇

(2.38)

In the case that classification is performed, the average model prediction of each class probability
can be considered as a measure of uncertainty and the prediction is computed as follows:

𝑝̂ = 1
𝑁 ∑

w𝑗∈W
𝑁𝑁w𝑗(𝑥) (2.39)

𝑦̂ = argmax
𝑙
𝑝𝑙 ∈ 𝑝̂ (2.40)

Figure 2.18 shows a summary of the BNN workflow with the design, training and testing stages [13].
In the training section, apart from classifying the algorithms in the sampling and variational methods,
it also distinguishing between those which are specialised in deep learning and those that are more
generic.

Figure 2.18: BNN workflow that includes the design, train and test stages [13].

Moreover, Figure 2.19 [14] shows the relation between the general framework for fault detection
and the Bayesian approach. Conventionally, a model is built to characterise the Normal Operating
Conditions (NOC) of the system such that its predictions are compared with the real observations, their
deviation is measured and a decision is made about the presence of a fault. In the Bayesian approach,
a Bayesian model of the system is developed and the deviation level from the NOC region is assessed
with the probability estimate of the observations with respect to the inferred posterior distribution. Fi-
nally, the fault is detected when the aforementioned probability exceeds a certain threshold which has
been designed such that the number of false alarms does not exceed a required limit.

When compared to the conventional point estimates ANNs, the BNN implementation allows the vi-
sualisation of uncertainty in the parameters and has shown better quantification of the uncertainty in
the classification task (calibration), meaning that the estimated confidence is more congruent with the
errors observed and there are less scenarios of over- or underconfidence [84, 98, 99]. For instance,
Kristiadi [99] demonstrates that the overconfidence problem in ReLU classification networks [100] with
data points far away from the training dataset, out-of-distribution (OOD) examples, can be solved by
having a network that is ”a bit Bayesian”, meaning that last-layer Bayesian approximation is sufficient
condition for achieving calibrated uncertainty. Additionally, it was shown that Bayesian Deep Neural
Networks show less sensitivity to out of sample instances caused by noise present in the data and/or
in the parameters (higher reliability) [84].

26 2. Fault detection and diagnosis

Model to characterize
NOC

Method to measure
deviation

Decision making

Bayesian model

Probability

Decision and
identification

General framework Bayesian approach

Figure 2.19: Bayesian fault detection compared to the general framework [14].

Furthermore, the use of Bayesian Neural Networks allows to establish a distinction between 2 types
of uncertainty: epistemic and aleatoric uncertainty. The first one refers to the uncertainty present due to
the lack of knowledge, whose effects can be dampened with the use of more data, whereas the second
is caused by the (partial) random nature of a phenomenon and can not be solved by the introduction of
more data [101, 102]. Understanding where in the high dimensional space of data there is epistemic
uncertainty enables the system to decide what new data points should be labelled in order to reduce it.
As a result, BNNs are a very data efficient active learning framework [103, 104] which can learn from
a small dataset preventing overfitting.

2.1.2.3. Bayesian Recurrent Neural Networks
An advanced approach is based on using Bayesian Recurrent Neural Networks (BRNN) [105] with
variational dropout, that was applied to the fault detection in chemical processes using the benchmark
Tennessee Eastman process (TEP) [14]. In order to understand how fault detection and classification
was performed, it is necessary to understand how the Bayesian framework is applied to RNNs, as well
as the implications of variational dropout.

BRNN, as with Bayesian Neural Networks, aim at providing probabilistic distributions over the out-
puts by combining statistical modelling (the Bayesian framework) and RNN. As previously explained,
the output of an RNN is a linear combination of the current state (s𝑡) and output bias (b𝑦), whereas the
current state is computed by applying a nonlinear function to a linear combination of the current input
(x𝑡), the previous state (s𝑡−1) and the state bias (b𝑠). In the case of a BRNN, the model parameters 𝜃
= (W𝑠, W𝑦, U𝑠, b𝑠 and b𝑦) are considered random variables from the prior distribution. Fortunato [105]
modifies Equation 2.21 in order to account for the change in architecture introduced by the RNN. Given
that the number of mini-batches is B and the number of truncated sequences in a mini-batch is C, then
the ELBO is computed as follows:

ℒ(𝐷, 𝜃) = −𝐾𝐿(𝑞(w|𝜃)‖𝑃(w)) + 𝔼𝑞(w|𝜃) [log
𝐵

∏
𝑏=1

𝐶

∏
𝑐=1

𝑝 (𝑦(𝑏,𝑐)|𝜃, 𝑥(𝑏,𝑐))] . (2.41)

Then, the ELBO of mini-batch b and truncated sequence c can be expressed as:

ℒ(𝑏,𝑐)(𝐷, 𝜃) = −𝑤(𝑏,𝑐)𝐾𝐿 𝐾𝐿(𝑞(w|𝜃)‖𝑃(w)) + 𝔼𝑞(w|𝜃) [log𝑝 (𝑦(𝑏,𝑐)|𝜃, 𝑥(𝑏,𝑐), 𝑠(𝑏,𝑐)prev)] , (2.42)

2.1. Quantitative knowledge: supervised learning 27

where 𝑤(𝑏,𝑐)𝐾𝐿 is the responsibility of the KL cost for each of the sequences of each minibatch and 𝑠(𝑏,𝑐)prev
refers to the initial state of minibatch x(𝑏,𝑐). In order to divide the penalty equally among all the b-c
combinations, then 𝑤(𝑏,𝑐)𝐾𝐿 = 1

𝐵𝐶 . In the case that subsequent minibatches follow the same order as the
time series data, then 𝑠(𝑏,𝑐)prev is set to the last state of the RNN for x(𝑏,𝑐−1) (the last state of the previous
sequence). Once the ELBO of a complete minibatch is computed, the weights’ parameters are updated
and new weights are sampled for the next minibatch.

Sun [14] proposes the use of a normal distribution for the likelihood distribution, zero-meanGaussian
priors and variational dropout for approximating the BRNN inference. Apart from variational dropout
[106] and Bayes by Backprop [94, 105, 107], alternative approximate inference methods for BRNNs
are multiplicative normalizing flows [108] and probabilistic backpropagation [109]; however, Sun [14]
chose for variational dropout due to is simplicity and generalization capability.

Unlike other approximation methods, variational dropout does not require modifications in the train-
ing method or in the BRNN architecture. As other variational methods, it starts by proposing a variation
parameterized distribution 𝑞(w|𝜃), which in this case it is made of two Gaussian distributions with small
variances:

𝑞(w|𝜃) = 𝑝𝒩 (w|0, 𝜎2I) + (1 − 𝑝)𝒩 (w|m, 𝜎2I) , (2.43)

where p is the dropout probability and the precision parameter (𝜎2) together with the variational param-
eter (m) shape 𝜃 = (𝜎2,m). Once the tractable function is defined, as with a BNN, the goal of the BRNN
training process is to minimise the KL divergence 𝐾𝐿 [𝑞(w|𝜃)‖𝑃(w|𝐷)]. Gal [106] demonstrates that
the loss function optimisation with dropout is equivalent to the KL divergence minimisation. However,
applying the conventional dropout to the unrolled BRNN, meaning that at every time step the probability
of dropping out a weight is assessed, would lead to model instabilities and the model incapability to
learn a sequence. To solve this issue, Gal [110] proposes to keep fixed the dropout mask between time
steps for a complete sequence; a difference with respect to the general dropout approach which can be
observed in Figure 2.20 [14]. It has been shown that this novel approach also serves as regularization
technique to prevent overfitting [106].

Figure 2.20: Comparison between standard and variational dropout applied to RNN [14]. Both graphs show the RNN unfolding
in time with the inputs at the bottom, the state units in the middle and the outputs at the top. The vertical lines are the input-output
connections while the horizontal lines are recurrent connections. The dotted lines represent those connections without dropout
being applied while each of the colours in the solid lines represent connections with different dropout masks.

28 2. Fault detection and diagnosis

In the case that variational dropout is used during the testing phase, multiple outputs can be ob-
tained with the same input by running forward the model multiple times. With the collected samples,
it is possible to define a probability distribution and obtain the posterior predictive statistics, such as
the mean, standard deviation and covariance. Additionally, since they are obtained from independent
forward model passes, multiple realizations can be executed concurrently and these statistics could be
computed online.

Having understood the BRNN with variational dropout, Sun [14] exploits the scheme presented in
Figure 2.19 for fault detection. First, it builds a model to reproduce the dynamics in time with histor-
ical NOC data. With the current observation (𝑥𝑡) and the past experienced context represented by
the current state (𝑠𝑡), the model is able to predict the observation at the next time step (𝑥̂𝑡+1). Since
variational dropout is being applied concurrently N times, the predicted samples ({𝑥̂𝑡+1(𝑖)}𝑖=1,...,𝑁) are
used to approximate the posterior predictive distribution of the next time step. Then, when the next
time step observation is received (𝑥𝑡+1), it is compared with the generated distribution and a fault is
detected when the observation is significantly deviated from the posterior predictive distribution.

In order to assess the deviation magnitude of the observation at the next time step and the posterior
predictive distribution, Sun [14] proposes twomethods: the squaredMahalanobis distance for Gaussian
predictive distributions and the local density ratio for non-Gaussian predictive distributions. The first
method is limited to the implementation of a Gaussian predictive posterior distribution and the deviation
of the observation from the NOC model is parameterized by the squared Mahalanobis distance:

𝑀2 = (𝑥𝑡 − 𝜇𝑡)
𝑇 𝜎−1𝑡 (𝑥𝑡 − 𝜇𝑡) , (2.44)

where 𝜇𝑡 and 𝜎𝑡 are the mean and the covariance of the predictive posterior distribution. The higher
the squared Mahalanobis distance, the higher the likelihood that the next observation corresponds to a
fault. The threshold (𝑀2

th) above which a data point is called as a fault (𝑀2 > 𝑀2
th) is the (1-𝛼) percentile

of the 𝑀2 computed with a validation dataset.

The second method uses the local density ratio (LDR) to detect whether an observation is con-
sidered an outlier. The LDR computes an estimate of the density around the observation using its
k-nearest-neighbors (k-NNs) set𝒩𝑘(𝑥) from the N variational dropout samples used to define the pre-
dictive posterior distribution. For that purpose, it computes the k-NN local density estimate ̂𝑓(𝑥) as
follows:

̂𝑓(𝑥) = 𝑘
∑𝑝∈𝒩𝑘(𝑥) 𝑑(𝑝, 𝑥)

, (2.45)

where 𝒩𝑘(𝑥) is the set of k-NNs of 𝑥 and 𝑑(𝑝, 𝑥) is the Euclidean distance between 𝑥 and a point
𝑝 ∈ 𝒩𝑘(𝑥). The higher the local density estimate, the closer is the observation to its k-NNs. Then, the
LDR can be computed as the ratio of the average local density estimates of the k-NNs and the local
density estimate of the observation 𝑥𝑡:

𝐿𝐷𝑅(𝑥𝑡) =
1
𝑘 ∑𝑝∈𝒩𝑘(𝑥𝑡)

̂𝑓(𝑝)
̂𝑓(𝑥𝑡)

(2.46)

The higher the LDR(x), the further away is the observation from the points of the prediction posterior
distribution, indicating a higher possibility of a fault.

In this second method, the choice of the number of k-NNs is crucial since a high number would
lead to detection insensitivity whereas a low number causes instability. Besides that, the tuning of the
threshold for the LDR fault detection is carried out in the same manner as the Mahalanobis distance.

Finally, fault identification consists of discovering the observation variables that have caused the
fault. The BRNN with variational dropout proposed in [14] applies the discussed fault detection scheme
to each variable. As a result, it is possible to immediately discern which variables are behaving abnor-
mally by highlighting those whose deviation criterion exceeds the pre-computed per variable threshold.
Additionally, fault identification plots can show the deviation of each variable throughout time for the

2.1. Quantitative knowledge: supervised learning 29

analysis of the fault propagation path throughout the system. The fault identification methodology is
very similar to the fault detection, so the reader can find the detailed description in [14]. A general
overview of the complete fault detection and identification process can be observed in Figure 2.21 [14].

Figure 2.21: BRNN fault detection and identification process for the chemical process presented in [14].

As mentioned at the start of the section, ANNs and RNNs are not able to detect other types of faults
than the ones provided during training, cannot discern between processes that cause the same fault
and they do not provide a degree of uncertainty in the prediction. BRNNs solves the first 2 problems by
providing a per-variable analysis without pre-defined classes, allowing to track the fault from its origin
throughout the system. The last problem is tackled by applying the Bayesian framework which com-
putes a probability distribution as predictive posterior. The distribution provides information about the
prediction uncertainty and about the observation deviation from the NOC.

2.1.3. Fuzzy logic
The term ”fuzzy logic” (FZ) was coined by Lotfi Zadeh in 1960’s [111, 112] and it is a form of logical
reasoning capable of describing vagueness or impreciseness through its linguistic representation of
human knowledge; it is able to include the uncertainties and possibilities that can be found in human
decision making and reason under uncertainty. In contrast, with classic or Boolean logic in which an
element is member or not of a set, meaning that the membership of that element to the set is either
0 or 1, fuzzy logic uses fuzzy sets that allows memberships in the closed interval [0,1]. As a result,
elements can be part of a fuzzy set to a certain degree, preserving information in those scenarios in
which membership is not certain [113].

Fuzzy logic consists of three main components: membership functions which define the degree of
membership to fuzzy sets, fuzzy set operations such as union or intersection for fuzzy sets, and fuzzy
rules which, as qualitative knowledge-based approaches such as expert systems and fault trees, ex-
ploits the if-then reasoning rule. The fuzzy rules are the intersection between the human reasoning
and the mathematical representation.

These 3 elements of fuzzy logic allow fuzzy inference in 3 steps, as can be observed in Figure 2.22
[15]. The first step is called fuzzification in which the historical data is used to build the membership
functions for healthy and faulty conditions, and the crisp input values are assigned to the fuzzy sets

30 2. Fault detection and diagnosis

with some degree of membership. The second step is to build the if-then fuzzy rules which establish
the relationships between the data and the faults. Finally, the last step is called defuzzification. Given
new data, the membership functions and the rules, the fuzzy information is used to infer a healthy or
faulty system and the corresponding fault type. The reader can find more information and examples of
all the theory of fuzzy logic, such as fuzzification and defuzzification techniques, in [114–119].

Figure 2.22: Fuzzy inference according to the Mamdami inference method [15].

For fault detection, Sauter [120] proposes an adaptive thresholding that is altered using fuzzy rela-
tions. Depending on operating conditions, such as the position or the velocity of the system under study,
the change in the threshold is different. Furthermore, Ribeiro [121] provided a detailed explanation and
architecture on Mamdami-type Fuzzy Inference Systems (FIS) [122] and assessed the suitability of
fuzzy logic for fault detection in space applications. For that purpose, it discussed its operation in 2
ESA related projects: fault detection of the ENVISAT satellite gyroscopes and the development of a fault
diagnosis tool for a drill and sampling system of a Mars rover (MODI project). The author concluded
that fuzzy logic is appropriate in scenarios with imprecise knowledge or when mathematical modelling
is not possible due to complex behaviour, enabling the possibility of leveraging expert knowledge. The
same author also compared the Mamdami-type FIS with the (Takagi, Sugeno, Kang)-type (TSK) [123]
for the ENVISAT gyroscopes fault detection problem and concluded that the TSK-type outperforms
the Mamdami system for MISO systems [124]. Given the TSK superior performance in literature, Li
[125] approximated nonlinear systems by a set of TSK fuzzy models for the design of a robust fuzzy
observer-based fault detection for general nonlinear systems.

Moreover, Lo [126] applied a fuzzy-genetic algorithm for fault detection and classification in aircraft
actuators, where the genetic algorithm is exploited as a human expert for the generation of the opti-
mal fuzzy rule set. The chromosomes in the genetic algorithm are evaluated in parallel by the fuzzy
evaluation system which checks whether the estimated and simulated faults are the same given the
genetically optimised fuzzy rule table.

For fault isolation, Chin [127] uses a hybrid Cause-Effect network (CE-net) and fuzzy logic for the
identification of fault sections within power systems. The CE-net is a graphic modelling tool that allows
the representation of faults and the corresponding chain of events. The proposed strategy is to use
fuzzy logic to describe the relations between the nodes in the network, as well as fuzzy reasoning and
operators instead of search tools. As a result, the fault section is the candidate CE-net path with the
maximum value in the inferred fuzzy set.

2.1. Quantitative knowledge: supervised learning 31

More recently, Ramos [128] applied fuzzy logic for multiple fault detection and isolation. For fault
detection, it compares the output of the system with the output of its model in normal operating con-
ditions in order to generate residuals. Then, for fault isolation, individual models of the system were
built for each of the faulty conditions and residuals for each type of fault were computed. The fuzzy
sets were defined asymmetrically, giving more weight to the set that represented the fault in order to
improve the certainty of fault occurrence. Given that the presence of each type of fault is assessed
individually, the defuzzification step is not required. Besides that, the algorithm is able to detect the
presence of unknown faults since fault detection is not constrained to the identified fault types. Finally,
in order to improve the robustness, the data was pre-processed with a wavelet transform that facilitated
the removal of noise.

Since the computations in a fuzzy model have a layered structure, a hybrid approach has emerged
that combines fuzzy logic and neural networks. This method aims at the optimisation of the antecedent
membership functions by gradient-descent learning algorithms common in neural networks, such as
back-propagation [117]. For instance, Ayoubi [16] considers a hybrid scheme with 3 layers, as can
be seen in Figure 2.23 [16]. The antecedent layer performs the fuzzification of the crisp inputs to the
network with radial neurons. Then, the relation layer represents the rule layer that applies the fuzzy
operations and sums the antecedent possibilities. The last layer is known as the conclusion layer and
performs the defuzzification.

Figure 2.23: Neuro-fuzzy network architecture with 2 inputs and 1 output [16].

Finally, Chen [129] built a fault monitoring and time-evolution tracking method that uses adaptive
neuro-fuzzy inference systems (ANFIS) with high-order particle filtering that updates the system states
online in order to take into account the changing system dynamics. The author also explained an adap-
tive recurrent neuro-fuzzy inference system (ARNFIS), applied both approaches to helicopter faults and
concluded that ANFIS with a high-order particle filter outperforms classical predictors.

2.1.4. Support Vector Machines
Developed in 1992 at AT&T Bell Laboratories [130, 131], Support Vector Machines 3 (SVM) is a learning
algorithm that aims at maximizing the margin between the decision boundary and the different classes
in which it is desired to split the training dataset. The main intuition is that the larger the margin, the
lower the generalization error of the classifier.

3Great online resources to understand the intuition behind SVM and its derivation are:
https://www.youtube.com/watch?v=_PwhiWxHK8o (MIT 6.034 AI, Fall 2010),
https://www.coursera.org/learn/machine-learning (Machine Learning Stanford Coursera course).

https://www.youtube.com/watch?v=_PwhiWxHK8o
https://www.coursera.org/learn/machine-learning

32 2. Fault detection and diagnosis

Additionally, the optimisation problem depends on a hyper-parameter that applies a trade-off be-
tween maximizing the margin and allowing samples to lie on the wrong side of the boundary. Being
lenient with misclassifications reduces its sensitivity to outliers (overfitting). In the case of a 2 class
classification problem, the goal is to find the hyperplane D(𝑥) such that one of the two classes is pre-
dicted (𝑦𝑘 = 1) when D(𝑥𝑘)>0 and the other class (𝑦𝑘 = -1) is predicted otherwise. This hyperplane or
decision function has to be linear in its parameters but does not have to be linear with respect to x,
meaning that cross-terms are allowed. Besides that, it can be expressed either in direct space or in
dual space where different kernel functions can be used, such as the Radial Basis Function.

Considering the simple scenario shown in Figure 2.24 [17] with a linearly-separable dataset, SVM
will find the optimal hyperplane such that its distance to the closest point of each class (margin) will be
equal and as large as possible. Those points are called support vectors and they represent each data
class in the decision boundary location process. In the case that the 2 categories can not be separated
by a linear classifier, the SVMwith kernel functions moves the data into a higher dimensional space that
allows the classification of the observations by a higher dimensional hyperplane; the dimensionality of
the problem can be increased until a solution can be found.

Figure 2.24: Visual representation of the action of the SVM in a linear-separable 2 class problem [17].

When compared to Neural Networks, SVM obtain a similar accuracy when trained with the same
dataset. However, when a lot of data and computational power is available NNs tend to outperform
SVMs. In terms of data required for training and its required time, SVMs are less data hungry and can
be trained faster. Finally, SVMs are less sensitive to the weight/parameter initialisation when compared
to NNs since it is a convex method that provides an optimal global solution (immune to local maxima)
[17, 60].

Previous work ([132]) has compared the performance of SVMs for classification against 16 other
methods with 21 datasets and for regression against 9 approaches with another 12 data sets. Results
show that it has good performance but it does not hold overall superiority. For instance, NN and ran-
dom forests tend to outperform SVM in regression tasks.

SVMs have been widely applied for fault detection and diagnosis in a wide range of fields. In [133],
SVMs were used for helicopter rotor blade damage detection using the vibrations in the hub as fea-
tures. The output specified the damage class with the required action from the operators. In order to
deal with more than 2 classes (k classes), the ”one to others” approach was used [134] that repeatedly
aims at separating the data from one class from the data of the k-1 classes. The process is repeated
with the data corresponding to the k-1 classes until 2 classes remain.

In contrast, Kurek [135] used a single-class SVM (it has 2 classes: healthy and faulty) for fault de-
tection and a ”one-against-one” SVM approach [136] for the fault diagnosis of the rotor bars within an
induction motor using the FFT of the phase current, voltage and shaft field in steady state as features.
The last approach aims at obtaining the fault type within M classes by training M(m-1)/2 SVM classi-
fiers that distinguish every 2 classes of data. The chosen class is the winner of the most 2-class SVM
classifications. Similarly, Santos [17] applied ”one-against-one” SVMs with different kernels (linear,
Gaussian, perceptron and stump kernels) for the fault detection in wind turbines using the vibration

2.2. Quantitative knowledge: unsupervised learning 33

and electrical signals from multiple sensors. In [137] a simple single-class SVM was implemented to
detect whether a small UAV suffered from actuator loss of effectiveness fault or it was operating in nom-
inal flight conditions. In the same line, Jeong [138] used SVMs to detect whether a fault was present
in vehicle suspensions.

Finally, another approach was followed by [139] that aims at the sensor fault detection, diagnosis
and signal reconstruction for small UAVs. The author proposes to use a least squares support vector
machines (LS-SVM) as predictive model that generates sensor estimates for fault detection. Then,
principal component analysis (unsupervised learning method analysed in section 2.2) is used for fault
isolation and the output signals of LS-SVM, in the case of sensor fault, are used instead of the real
observations. A modified version of LS-SVM, namely online sparse LS-SVM (OS-LSSVM), is explained
in detail in [140].

2.2. Quantitative knowledge: unsupervised learning
In contrast with supervised learning that enjoys the information found in large quantities of labelled
historical data, unsupervised learning searches for patterns within non-human labelled data. In most
cases, unsupervised learning methods are used for clustering or data-dimensionality reduction, the lat-
ter also known as feature extraction. This section also includes forms of semi-supervised learning, an
approach found between unsupervised and supervised training which mostly extracts latent features
from large corpus of unlabelled (unsupervised) data and is later fine-tuned with a small amount of la-
belled data (supervised) to perform a specific task.

In Figure 2.25, some of the most common methods of unsupervised learning within the field of
fault detection and diagnosis can be found. In the coming sections, the highlighted methods will be
described in detail with references to literature.

Unsupervised
learning

Auto-Encoder Restricted Boltzmann
machine

Principal Component
Analysis Transformer

Nearest neighbor

Self-organising map

K-means
C-means

Partial Least Squares

Others:

Figure 2.25: Unsupervised learning knowledge-based fault detection and diagnosis methods

2.2.1. Auto-Encoders
Auto-encoders (AE) are part of a subgroup within unsupervised learning known as self-supervised
learning (SSL). Methods within this category can automatically generate labels from data, its own su-
pervisory signal, and learn the corresponding mapping. AEs are a great example that exploit NNs
(Figure 2.26 [18]). It is a NN architecture that aims to copy its input to its output with two components:
an encoder that enforces a bottleneck in the network in order to create a compressed knowledge rep-
resentation of the original input, reducing the data in the observed space to the latent space, and a
decoder that aims at reconstructing the original input from the compressed information. In order to pre-
vent a linear mapping to the input, where x is mapped to x everywhere, AEs are constrained such that
they are forced to prioritise useful properties in the data [10]. Unfortunately, large initial weights cause
AE to find poor local minima and small initial weights cause that the gradients are so small that training
an AE with multiple layers is infeasible. As a result, Hinton [141] proposes a pre-training procedure
based on RBMs that finds initial weights close to the good solution.

34 2. Fault detection and diagnosis

Figure 2.26: Convolutional Auto-Encoder representation [18].

An example that exploits this compressed representation is the previously discussedwork byGonzález
[11], which uses hierarchical LSTMs with pseudo-random signals for FDI in the TEP benchmark. Here,
the training is carried in two different parts, namely a self-supervised stacked auto-encoder of LSTM
units stacked together and a softmax classifier later trained with supervised learning. Once the first
part of the training is achieved, the decoder is thrown away and the softmax classifier is added at the
end of the network before starting the second learning phase. The initial AE compresses the data and
provides weight values that serve as good initial guesses for the second training part.

An approach that also combines the joint effort of AE + LSTM for the TEP problem is [142]. How-
ever, in this case they are separate components. The AE is trained offline with normal data and is in
charge of fault detection. When data containing a fault is given to the AE, its reconstructed output will
not match the input. Then, the intermediate compressed representation is passed to the LSTM for fault
classification.

In [143], a unified training method is developed that can be applied to PCA and AE architectures
for the detection of faults. This method is called the robust self-supervised model and it is based on
the addition of Gaussian noise to the input before being fed to the self-supervised model, whose task
is to reconstruct the clean input. It demonstrates that this method is equivalent to the regularization
in supervised learning and that there is a higher fault sensitivity when compared to the vanilla self-
supervised algorithms. A fault is detected when the prediction error shows a deviation from the normal
data.

2.2.2. Restricted Boltzmann Machines
Another unsupervised strategy are Restricted Boltzmann Machines (RBM), which extract information
from the observation to the latent space, analogous to the AE. The main difference can be found in
the architecture, the training and the representation of the latent space. In contrast with AE that com-
presses the data into point estimates, RBM are trained to predict distributions.

A clear derivation of RBM, as well as their inner workings and hyper-parameter tuning is presented
in detail by Hinton [144]. Originally, RBMs are composed of two layers of neurons, namely the input or
visible layer and the hidden layer, which modify each other during the forward and backward passes
in the network. It is a symmetrical bipartite graph since the nodes of a layer are not connected to each
other and all the nodes of one layer are connected to all the nodes of the next. The goal is to mini-
mize the reconstruction error, which is defined as the difference between the initial values of the visible
layer (input data) and their modified values generated during the backward pass. For that purpose,
the weights of the network are updated with an algorithm called Contrastive Divergence (CD) [145],
which is defined as an approximate difference of two Kullback-Liebler divergences. From the definition
presented in subsubsection 2.1.2.1, it can be considered as the area difference between the probability
distributions of the input and its reconstruction. During the forward and backward Gibbs sampling, the
weights are the same. A graphical representation of an RBM can be observed in Figure 2.27 4.
4Source:https://wiki.pathmind.com/restricted-boltzmann-machine

Source: https://wiki.pathmind.com/restricted-boltzmann-machine

2.2. Quantitative knowledge: unsupervised learning 35

Figure 2.27: Forward and backward RBM pass. See footnote 4 for details.

The combination of multiple RBMs or AEs leads to a class of deep neural network known as deep
belief network (DBN) which is composed of a single input layer and multiple hidden layers of latent
variables. Each layer communicates with the previous and next layers. It can be studied as multiple
stacked RBMs where each hidden layer is considered as an input layer for the next and training is
carried out by applying CD to each input-hidden layer subnetwork, starting from the ”real” input layer.
First, it is trained without supervision in order to reconstruct the inputs probabilistically, as done in the
RBM, and then it is fine tuned with supervised classification training.

DBNs have been recently applied in the field of fault detection to multiple different systems. Huang
[146] combines DBNs and Global Back-Reconstruction (GBR) for determining the presence of early
cracks in turbine blades. GBR reduces the feature degradation by building layer skipping connections
that link the hidden layers with the visible layer, analogous to residual connections in Residual NNs. For
that purpose, the 3D position of a fixed point within the blade is fed to the algorithm since the presence of
fatigue cracks would deform the blade surface leading to a 3D displacement. Furthermore, Dash [147]
used DBNs for robotic manipulator execution failure and Xing [148] proposes a distribution-invariant
DBN (DIDBN) for carrying out fault diagnosis of machines (gearboxes) analysing vibration data. The
DIDBN consists of 3 layer types: locally connected RBM (LCRBM) layer that extracts features from lo-
cal segments of the vibration signals, fully connected RBM (FCRBM) and mean-discrepancy maximum
RBM (MDM-RBM). The latter is able to extract features with similar distributions under different con-
ditions. Finally, Chen [149] designed a DBN for early warning and fault detection (stuck and constant
deviation faults) for rotor UAV.

2.2.3. Principal Component Analysis
Principal Component Analysis (PCA) is a multivariate statistical analysis method that aims at the re-
duction of data dimensionality for essential information retention by orthogonal projection on a linear
subspace of lower or equal dimensionality. It can be assumed that the small changes in the data
are caused by noise and the reduced representation only keeps the big data variations (feature se-
lection). For that purpose, it constructs an optimal subspace where the variance of the orthogonally
projected data is maximised, which is equivalent to finding the subspace such that the mean-squared
distance of each data point to its projection is minimised (minimisation of the squared reconstruction
loss). Therefore, the new coordinate system is centred around the mean with the first axis aligned with
most variance in the data, the second axis orthogonal (uncorrelated) to the first and preserving most of
the remaining variance, and the rest of the axes orthogonal to the previous ones and preserving each
time most of the remaining variance [150]. When the data is projected to the Principal Components it
appears less noisy, enhancing the tasks of pattern recognition and clustering.

36 2. Fault detection and diagnosis

The algorithm consists of 3 main steps:

1. Computing a D-dimensional PCA subspace from an M-dimensional dataset 𝑿 = [𝒙1, … , 𝒙𝑁] with
N data points:

(a) Compute the mean 𝒎 and subtract it from data to obtain 𝑿 = [𝒙̄1, … , 𝒙̄𝑁]:

𝒎 = 1
𝑁

𝑁

∑
𝑗=1
𝒙𝒊 ∀𝑗 ∶ 𝒙̄𝒋 = 𝒙𝒋 −𝒎 (2.47)

(b) Compute the M×M covariance matrix 𝑪 on zero-mean data 𝑿̄:

𝑪 = 1
𝑁

𝑁

∑
𝑗=1
𝒙̄𝒋 ⋅ 𝒙̄𝒋 =

1
𝑁 (𝑿̄ ⋅ 𝑿̄

𝑇) (2.48)

(c) Compute the unit-length eigenvectors 𝒘𝒊 and scalar eigenvalues 𝜆𝑖 of 𝑪:

𝑪 ⋅ 𝒘𝒊 = 𝜆𝑖 ⋅ 𝒘𝒊 (2.49)

(d) Sort the eigenvalues and corresponding eigenvectors from the highest to the lowest eigen-
value. Since the amount of data variance maintained in the PCA dimension 𝑖 is proportional
to 𝜆𝑖, we will maintain those dimensions with the highest eigenvalue.

(e) The first D eigenvectors are the principal components of𝑿 and define the PCA transformation
𝑾 = [𝒘1, … ,𝒘𝑫]. The percentage of variance conserved is the ratio of the sum of kept D
eigenvalues with the sum of all the M eigenvalues.

2. Project the data 𝒙𝒋 ∈𝑅𝑀 onto the PCA constructed subspace 𝒙∗𝒋 ∈𝑅𝐷:

𝒙∗𝒋 = 𝑾𝑇 ⋅ (𝒙𝒋 −𝒎) (2.50)

3. Back-project from PCA subspace 𝒙∗𝒋 ∈𝑅𝐷 back to 𝒙′𝒋 ∈𝑅𝑀, being the reconstruction 𝒙′𝒋 an imper-
fect approximation of the original 𝒙𝒋:

𝒙′𝒋 = 𝑾 ⋅ (𝒙∗𝒋 +𝒎) (2.51)

Since the exact value of the eigenvalues is not important, but their relative value from one to another,
the scale in the computation of 𝑪 can be ignored:

𝑪 = (𝑿̄ ⋅ 𝑿̄𝑇) (2.52)

Over the last decades, different versions of the original PCA have been developed, such as the
kernel-PCA, the robust-PCA and the weighted adaptive recursive PCA (WARP). In order to circumvent
the constrain that the variables have to be linearly correlated, the kernel-PCA [151] maps the nonlinear
original data onto a higher-dimensional feature space to get linear mapped data using a kernel function.
Robust PCA (RPCA) consists of a series of approaches, such as Principal Component Pursuit [152],
that modify the original PCA to make it robust against multiple corrupted observations. Finally, WARP
[153] aims at reducing the increasing false alarm rates caused by the natural deterioration of processes
or systems. Other PCA variants include the moving window kernel PCA [154], the sparse PCA [155]
or the shrinking PCA [156].

In literature, PCA methods have been used as core components in fault diagnosis approaches, as
well as pre-processing components in which data’s dimensionality is reduced before being fed to a
classifier. Examples include [157] which uses the PCA reconstruction error as self-supervised method
of fault detection and [158] which measures the fit of a new sample to a PCA model.

2.2. Quantitative knowledge: unsupervised learning 37

2.2.4. Transformers
Back in 2017, Google DeepMind published the paper ”Attention is all you need” [19] with the goal of
bringing attention mechanisms, a concept that aims at building algorithms able to highlight the key infor-
mation from the input space while ignoring the rest in order to efficiently use computing power, to deep
learning; more specifically, to Natural Language Processing (NLP). It builds on the work of [159], one of
the main innovators in the field of Neural Machine Translation. Although Transformer models undergo
unsupervised pre-training, they are supervised fine-tuned with labelled data (semi-supervised training).

Conventionally, sequence to sequence translation was based on the encoding of the whole sen-
tence from which the translation is decoded, leading to problems when translating long sentences. In
2015, Bahdanau [159] proposed a soft-search approach in which the decoder could choose what part
of the input was useful in the translation by tapping into the hidden states of a bidirectional encoder, re-
current structure that allowed the observation of the following and preceding words. Until then, RNNs,
LSTMs and GRUs where the state-of-the-art recurrent approaches in sequence modelling; however,
they were not able to keep information and dependencies over long sequences, sequential processing
prohibits parallelisation and there is no hierarchy of importance of all the previous inputs when making
the next prediction. CNNs were also applied to NLP but convolutions can only exploit local dependen-
cies and, in order to relate features far from each other, many layers are required.

Google DeepMind’s model, the Transformer, aims at solving all these problems by introducing the
”first transduction model relying entirely on self-attention to compute representations of its input and
output without using sequence aligned RNNs or convolution” [19]. Apart from the original paper and its
open-source code 5, there are multiple sources that visually explain the Transformer 678.

The Transformer consists of two main parts, the encoder and the decoder, as can be observed in
Figure 2.28 [19]. The encoder is in charge of transforming the input to latent variables whereas the
decoder takes those latent variables and generates the output.

The encoder consists of two main sub-layers, namely the multi-head attention and a feed forward
(single hidden layer) neural network, as well as residual connections around these sub-layers followed
by layer normalization. As can be seen in Figure 2.28 and Figure 2.29 [19], 3 identical signals are fed
to the multi-head attention and they are multiplied in a linear stage by 3 different trainable matrices,
resulting in 3 different inputs to the scaled dot-product attention block: a value (V), a key (K) and a
query (Q).

These abstractions are used within the scaled dot-product attention block for the creation of a weight
matrix for each input. The weight matrix denotes the attention to be paid to other elements of the in-
put sentence (context) when encoding the current word. For that purpose, the similarity of its query
is compared to the key of each of the other inputs by means of the dot product. Before applying this
weight matrix to the value of the input, it is normalised by the dimension of the keys (gradient stability)
and it is passed through a softmax function such that the sum of all the weights adds up to 1; as can be
observed in Figure 2.30 [19] and whose matrix form is denoted as Equation 2.53. This weight matrix
embodies the attention mechanism by providing a higher value to those inputs that contain most of the
information for the current prediction (the inputs to be focused on) and eliminates the influence of irrel-
evant inputs. Although each input follows its own path through the encoder, there are dependencies
between the other input paths within the multi-head attention block due to the query-key dot product.
The reason why each input is mapped to a distinct query and key value is for allowing relations between
inputs that are not symmetrical. Word x may require information from word y but that relation might not
exist the other way around, leading to non-symmetric around the diagonal weight matrices.

5https://github.com/google/trax
6http://jalammar.github.io/illustrated-transformer/
7http://nlp.seas.harvard.edu/2018/04/03/attention.html
8https://www.youtube.com/watch?v=rBCqOTEfxvg

https://github.com/google/trax
http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://www.youtube.com/watch?v=rBCqOTEfxvg

38 2. Fault detection and diagnosis

Figure 2.28: Transformer model architecture [19].

Figure 2.29: Multi-head attention [19] Figure 2.30: Scaled dot-product attention [19]

Dot product attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾
𝑇

√𝑑𝑘
)𝑉 (2.53)

2.2. Quantitative knowledge: unsupervised learning 39

As can be observed in Figure 2.29 [19], h linear mappings and scaled dot-product attention blocks
are run in parallel. Different W𝑄, W𝐾 and W𝑉 matrices are learnt that allow the algorithm to pay atten-
tion to different input elements. This is called Multi-Head Attention. For instance, in NLP, there might
be a group of (W𝑄, W𝐾, W𝑉) matrices that attend to different syntactic and semantic structures, such
as identifying the subject or the direct object of the sentence. Then, the outputs are concatenated and
a linear mapping is applied in order to meet the next input’s dimension requirement.

Having analysed the encoder architecture, the decoder is very similar, since the the only difference
can be found in the attention blocks. The first decoder attention block is masked, meaning that each
input is only able to pay attention to the previous ones. In the case of NLP, a word can only see the
previous words and not all the words in the sample sentence. The rest of the decoder attention blocks
receive as input the output of the previous decoder block as queries and the encoder output as the
keys and values.

Both encoder and decoder have an embedding block and positional encoding. Since the Trans-
former was originally designed for NLP, the input text had to be encoded into numerical vectors. Be-
sides that, in order to encode information about the absolute and relative position of each word within
the sentence, sinusoidal signals of different frequencies were added to the embeddings; more details
about positional encoding can be found in the original paper [19].

Finally, N𝑥 encoders and decoders could be stack one after the other. After the last decoder, a linear
mapping and softmax function is applied to the output, yielding the probabilities of the next element in
the sequence; in NLP, the next word. Once the next element is chosen, it is fed as input to the decoder
for the prediction of the following element.

In contrast with recurrent layers that require 𝒪(n) sequential operations to connect all elements of
a sequence, the Transformer is capable of doing it in constant number of sequential operations. Be-
sides that, whereas the complexity per recurrent layer is 𝒪(n⋅d2), in the Transformer it is 𝒪(n2⋅d). As a
result, Transformer layers will be faster if the number of inputs (words in a sentence) is lower than the
number of dimensions (embedding vector dimensions). In the case of convolutions, they are more ex-
pensive to compute than recurrent layers and multiple layers are required to connect all input elements.

Apart from a benefit in lower required computation, the use of Transformers can lead to more inter-
pretable models as it is possible to observe the attention that each input pays to its neighbours. The
original paper provides Figure 2.31 [19] as an example in which it is possible to observe the attention
given by each of the heads to each of the words of the sentence when providing the word ”making” as
input.

During the last years the Transformer architecture has grown in popularity in the machine learning
community, it has shown better results than the state-of-the-art in NLP and they are the backbone of
the Generative Pre-trained Transformers GPT-2 and GPT-3, huge general-purpose learners that can
perform multiple NLP tasks, such as translation or text summarization, without having been trained to
perform any of them. Transformers have shown that the larger the model, the higher the accuracy
(they do not saturate) and the more interesting behaviour emerges. More recently, improvements to
the Transformer have been proposed with modified versions such as the Reformer [160] 9 and the
Linformer [161]. The former uses local sensitive hashing (LSH) to reduce the time complexity of the
attention layer and reversible residual layers [162] to reduce the memory required to store the acti-
vations for backpropagation. The latter is able to reduce to time complexity to 𝒪(n) by exploiting the
observation that the weight matrix is low-rank.

In the last 3 years, multiple papers have appeared exploiting Transformers for Computer Vision
tasks. In 2018, Parmar [163] translated self-attention to images obtaining state-of-the-art results for
image super-resolution and generative image modelling. Later, in 2019, Cordonnier [164] showed
that multi-head attention layers with relative positional (quadratic) encoding with sufficiently number
of heads can be as expressive as convolutional layers and Bello [165] proposed the augmentation of
9https://github.com/google/trax/tree/master/trax/models/reformer

https://github.com/google/trax/tree/master/trax/models/reformer

40 2. Fault detection and diagnosis

Figure 2.31: Visual representation of the attention mechanism when provided the verb ”making” as input. Each of the 8 heads
is represented by a colour and the more transparent, the lower the attention [19].

convolutional networks with attention mechanisms by concatenating CNN and self-attention features.
The experiments show that attention augmentation leads to better results in image classification and
object detection, even in computing power constrained models, while maintaining a similar number of
parameters. It also shows how to apply attention to images. Unfortunately, the proposed method in-
creases the inference and training time in 25% while improving the accuracy in 1.3% when compared to
the baseline. Carion [166] and Ramachandran [167] also noticed the higher training and inference time
due to the lack of optimised kernels for attention. The latter also performed a study of how and when is
beneficial the attention-convolutional combination. Finally, Khan [168] provides a survey of how trans-
formers have been applied to computer vision, highlighting that attention currently suffers from a few
challenges, such as the high computational cost, the high data cost because it does not encode prior
knowledge, and the lack of hardware efficient designs in comparison with GPUs that are ideal for CNNs.

Attention mechanisms have started to be applied to challenges involving video, such as video clas-
sification [169]. Transformers applied to the field of fault detection is a subject still in its infancy as [170]
is the only paper that approaches this field by detecting earthquakes with a deep neural architecture
that uses transformers and local attention mechanisms.

2.3. Qualitative knowledge (symbolic AI)
Symbolic AI, also known as Good Old Fashion AI (GOFAI), represents a series of methods popular in
the second half of the 20th century which are heavily based on logic, search and a symbolic represen-
tation of the problems.

Within this category we can distinguish 3 main groups, namely fault trees, signed diagraph and
expert systems [3]. The following sections will briefly discuss their main intuition together with examples
of their application in the fault detection and diagnosis literature.

2.3.1. Fault trees
Fault tree analysis (FTA) consists of the creation of a tree-like structured logic diagram that represents
the fault behaviour of a physical system. It provides a visual representation of the system elements
involved and their relationships by means of event and logic symbols. Through quantitative and quali-
tative analysis the root cause of the failure can be found. An FTA usually consists of 4 steps [171]:

2.3. Qualitative knowledge (symbolic AI) 41

1. System definition

2. Fault-tree construction

3. Qualitative evaluation

4. Quantitative evaluation

Lee [171] provides a detailed overview of FTA with the steps for system definition to different meth-
ods of fault-tree construction and evaluation. In most cases, each failure type requires a different fault
tree for which the failure causes are listed in order of occurrence with their respective probabilities based
on collected data. After constructing the fault tree, it is evaluated seeking any potential improvement.
Finally, based on the observations and the probabilities, hazards and their corresponding failures can
be identified.

From literature a few examples of FTA can be mentioned. Kladis [172] carries out a quantitative
and qualitative analysis of fault trees for the fault diagnosis of an electrically powered UAV. Shi [173]
presents an approach for the fault-tree construction applied to advanced process control systems.
Finally, Abdallah [20] exploits the power of FTA for the assessment of communication reliability within
a UAV fleet formation. To visualise the structure of a fault tree, an example of a drone crash can be
observed in Figure 2.32 [20].

Figure 2.32: Drone crash FTA [20].

2.3.2. Signed digraph
Signed digraphs or diagraphs (SDG) are a graphical representation of qualitative models or cause-
effect relationships. It is represented by nodes that contain the cause or effect state and edges or
directed arcs that define their causal relationship. There are 3 types of nodes: the inputs or those that
only have outgoing edges, the outputs that only have incoming edges and the process variables that
have both types of directed arcs. The edges also contain a sign (+/-) which represents whether the
cause and effect move in the same direction. If the sign is positive, when the cause increases its value,
so those the effect; and vice versa. Venkatasubramanian [58] provides the progress of literature in the
development of this graphical representation.

This qualitative knowledge method has been widely used for fault diagnosis in the chemical field.
Chang [174] proposes a hybrid approach that combines SDG and SVM for the fault diagnosis within
the chemical Tennessee Eastman Process model. SDG provides causal information about the different
variables and the SVM establishes the relation using the data available. Similarly, Lee [175] combines
SDG and Dynamic Partial Least Squares for the diagnosis of chemical processes. Finally, Xiaolei [176]
proposes an Improved SDG (ISDG) for the diagnosis of multiple faults in an aero-engine.

42 2. Fault detection and diagnosis

2.3.3. Expert systems
Expert systems (ES) are rule-based approaches that present expert human experience into a set of
rules that a computer can interpret. In contrast with quantitative knowledge-based system that require
a lot of data and training with trial and error, expert systems makes conclusions based on logic and
reason. Besides that, a human can interpret and explain the decisions of the system, as well as modify
its propositional logic. An overview of these type of approaches and their applications can be found in
[177].

Expert systems had a strong presence in the 20th century; however, their importance within the
research community has been decaying during the last two decades. In the aerospace field, Bo [178]
presents an expert system approach for the diagnosis of UAV control surface damage. In the chemical
field, Zhang [179] provides a method for the formulation of diagnostic rules for an expert system model
applied to a chemical tank stirring process. Finally, current research combines expert systems with
other approaches, such as fuzzy logic [180].

3
Vision

As mentioned in the introduction, the camera is ubiquitous among commercial drones and is not ex-
ploited for fault detection and diagnosis even though its information is being processed for navigation
or control purposes. The goal of this section is to explore some of the key applications of visual infor-
mation and how features are extracted from this high-dimensional input space.

This chapter discusses 3 main fields in which visual information is exploited, namely optic flow, vi-
sual inertial odometry and next frame prediction. Optical flow is presented in section 3.1 and, among
its numerous applications, it is used for estimating the motion between multiple frames. Then, in sec-
tion 3.2, VIO is explained; method which combines the information from the camera and the IMU for
navigation. Finally, section 3.3 summarises research in the field of next frame prediction, subject which
sparked the interest for this line of fault detection and diagnosis research.

3.1. Optic flow
Optic flow is defined as ”the pattern of motion induced on the retina of a moving observer” [181], re-
sulting in the apparent relative motion between the observer and the objects within the scene. The
goal of optical flow methods is to find the motion between two frames through the displacement of in-
tensity patterns by assuming that the intensity of moving pixels remains constant during displacement.
This information allows an agent or vehicle to understand the location of the Focus of Expansion or its
direction of motion for navigation, its relative velocity or its time-to-contact in landing scenarios. The
derivation of the optical flow using the pinhole camera model can be found in [182]. Whereas the afore-
mentioned derivation exploits 3D geometry, Horn [183] proposes an alternative method based on the
2D rate of change of image brightness.

There exist 2 types of optic flow visualisation, namely sparse and dense optic flow. Although the
sparse optical flow, represented by the left image in Figure 3.1 [21], provides only the flow vectors of
interesting features by means of arrows, it shows an intuitive perception of the physical motion. For
the computation of sparse optical flow, the Lucas-Kanade technique [184] is the most common im-
plementation, included in libraries such as OpenCV 1. It is a local differential method which assumes
that the optic flow vector of a pixel will be similar to those of its surroundings. In order to define the
points of interest, a corner detector can be used, such as Harris [185], FAST [186] or Shi-Tomasi [187].
On the other hand is the dense optic flow, represented by the right image in Figure 3.1 [21], which
provides the optic flow of the complete frame. The colour hue represents the direction whereas the
saturation speaks for the vector magnitude. In this case, it allows the visualisation of small differences
between pixels and smooth transitions. Software libraries such as OpenCV uses the polynomial ex-
pansion method [188] for its computation.

1https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html

43

https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html

44 3. Vision

Figure 3.1: Optical flow visualisations: sparse optical flow (left) and dense optical flow (right) [21].

Optical flow has been widely used for UAV landing purposes. Hamel [189] used the average optical
flow on a spherical camera for the vertical landing of a VTOL vehicle on a moving platform. In this sce-
nario, the IMU information was only exploited for the derotation of the flow, resulting in an visual-based
only control approach. This work highlights the difficulty of the proposed approach in the presence of
aggressive motion of the environment and that it could be improved by increasing the measurement
rate of the visual sensors. One year later, Croon [190] introduced an efficient optical flow based algo-
rithm for UAV landing with a downward pointing camera. Apart from the standard information extracted
from optic flow (ventral flow and time-to-contact), this approach provides an second-order approxima-
tion of the landing surface flatness and slope. The authors of this paper mention the potential benefit
of introducing a Bayesian perspective in order to cope with noise or inaccurate derotation. An alter-
native landing approach based on optical flow and inspired in nature, namely honeybees, is constant
divergence landing. The work in [191] and [192] corrects the landing instability found in previous liter-
ature which implemented this method by proposing an adaptive controller that exponentially modifies
its gains during landing. This can be done by understanding and following the self-induced oscillations
that the drone experiences in its approach to the ground. Before initialising the descent manoeuvre,
the UAV is induced an oscillatory motion that allows the computation of the optimum initial gain. Finally,
Hordijk [193] implemented the previous ideas using an event-based camera and showed that it enables
the UAV to perform very fast landing manoeuvres.

Apart from landing manoeuvres, optic flow can be used at different stages of the autonomous
pipeline of UAVs. Farid [194] applies it for scene mapping and autonomous localization in order to
achieve a vision-based autopilot in a GPS denied environment. Valenti [195] uses optical flow for alti-
tude estimation and the UAV movement in the scene. For UAV position estimation, Arreola [196] fuses
the dense optic flow information with GPS and commercial autopilot sensors, whereas More [197] fuses
optic flow with ultrasonic sensors in order to translate 2D motion to 3D and Rosser [198] exploits low-
resolution long-wave infrared sensor visual information in order to use optic flow in darkness. Optic
flow is also applied for obstacle avoidance [199] [200], velocity estimation [201], target tracking [202] or
object motion estimation [203]. Dedicated hardware has also been developed for efficient computation:
the optical flow sensor [204].

3.2. Visual Inertial Odometry
Visual Inertial Odometry or VIO is ”the process of estimating the state (pose and velocity) of an agent
by using only the input of one or more cameras plus one or more Inertial Measurement Units (IMUs)
attached to it” [22]. The goal is to combine the strengths of both sensors in order to accurately perform
state estimation of the 6-DoF vehicle pose, velocities and IMU biases. Even though the IMU has a high
refresh rate, it suffers from poor signal-to-noise ratio at low accelerations and rotations, as well as from
drift accumulation due to sensor biases. These disadvantages can be corrected by the camera visual
information which has 10x lower output rates and, in contrast with the IMU, has a higher accuracy the
lower the motion speed. In order to achieve good results, it is key to perform spatial and temporal
calibration of both sensors.

3.3. Next frame prediction 45

VIO can be performed in two ways depending on whether the features from the visual sensors are
pre-processed to obtain motion estimates: loosely and tightly coupled VIO approaches. The first one
aims at obtaining motion estimates of the IMU and the camera which are later fused. In contrast, the
latter approach exploits the IMU motion information to predict the 2D feature locations in the next frame
in order to improve the feature tracking of the vision information pipeline. This leads to better results
than the loosely coupled VIO. Both concepts can be easily understood thanks to the diagram illustrated
in Figure 3.2 [22].

Figure 3.2: Comparison between the loosely coupled (left) and tightly coupled (right) VIO approaches [22].

There are 3 types of state estimation techniques which vary on the number of previous states that
are recomputed at every point in time given the new sensor measurements. Filtering methods only
estimate the latest state, hence they forget all previous states, have a low computational demand and
are very efficient. As a result they suffer from linearisation errors and are strongly affected by outliers.
Sliding window estimators or fixed-lag smoothers update a window of previous states, being more ac-
curate but less efficient. They are robust to outliers since it is possible to incorporate outlier rejection
mechanisms; however, they still suffer from linearisation errors. Finally, full smoothers exploit the com-
plete pose history to provide a new update. It is the most accurate approach but is computationally
demanding. Different modifications have been proposed in order to improve the efficiency, such as key
frame storage selection [205, 206].

A summary and benchmark of different monocular VIO algorithms can be found in [207]. A great
tutorial about the motion estimation from the camera information has been made available by Davide
Scaramuzza 2 from the Robotics and Perception Group a the University of Zurich 3. This estimation
of motion from only visual information is known as Visual Odometry (VO) and there exists efficient
approaches that are based on image intensities which skip the feature extraction and matching, such
as semi-direct VO (SVO) [208]. Finally, although very similar to SLAM for navigation, VIO and VO do
not generate a map of the environment in order to reach loop closures or include the extracted visual
features in the state vector; the visual measurements are only used for creating motion constraints
[209].

3.3. Next frame prediction
The paper that motivated the proposed line of research for fault detection and diagnosis is ”Geometry-
based next frame prediction from monocular video” [23]. Most of the literature on fault detection and
diagnosis is based on the prediction of the next time step of one or multiple signals and compare it with
the actual next time step measurement in order to identify a potential failure based on the error. How-
ever, there is no available work that exploits information from the camera in order to identify a potential
failure. Therefore, upon encountering this paper, the author of this document started to question why
that was the case and whether the introduction of visual information in the fault detection and diagnosis
framework could lead to more accurate results without leading to a computational load not available in
most commercial UAVs. The wealth of information available from the camera could improve all aspects
of the fault detection and diagnosis pipeline at a minimum computational cost if the extracted features
are already been exploited for another purpose, such as navigation with VIO.

2http://rpg.ifi.uzh.ch/visual_odometry_tutorial.html
3https://www.ifi.uzh.ch/en/rpg/research/research_vo.html

http://rpg.ifi.uzh.ch/visual_odometry_tutorial.html
https://www.ifi.uzh.ch/en/rpg/research/research_vo.html

46 3. Vision

The authors of [23] implemented a convolutional recurrent neural network to obtain depth from
monocular video, leveraging the information within sequences of images. Figure 3.3 [23] presents the
depth prediction neural network based on convolutional LSTMs. Given the depth information, the cur-
rent frame and the displacement of the camera, it is possible to generate the next frame prediction,
including depth information, using generative computer graphics (Figure 3.4 [23]). As a result, it uses
a model-free method for depth estimation and a model-based approach for next frame computation.
This combination is not only able to predict the next frame but multiple frames in the future in exchange
of an increasing error by predicting the vehicle motion.

Figure 3.3: Convolutional LSTM encoder-decoder architecture for depth prediction [23].

Figure 3.4: Next frame prediction proposed pipeline [23].

The authors tested its superior performance on the KITTI dataset and observed that the accuracy
improved as the sequence of images used for depth prediction increased.

Further work has been carried out within the same research group. In 2018, they proposed an
unsupervised algorithm for depth and ego-motion estimation from monocular video [24]. Based on an
estimation of depth, they estimate a point cloud. Then, with an estimate of ego-motion (translation and
rotation) from the previous to the current time step they transform the point cloud one time step back
for comparison with the 3D point cloud created in the previous time step. With the transformed 3D
point cloud, the authors also generate the expected image that the vehicle should have observed in the
previous time step. Their main contribution was the novel loss function which does not only consider
the photometric losses (2D image errors) from the reconstructed image, but also the 3D point cloud
alignment loss based on the Iterative Closest Point (ICP) algorithm. Although it is not possible to take
the derivative of the loss function for backpropagation through the NN that generated the depth and
ego-motion estimates, the authors demonstrate that the ICP optimal transformation can be used as
negative gradient for the ego-motion estimator whereas the remaining 3D point cloud misalignment
after the ICP correction can be the negative gradient for the depth estimator. The authors show better
performance when compared to similar methods. The complete pipeline can be observed in Figure 3.5
[24]. The authors have made their code and datasets available online 4.
4https://sites.google.com/view/vid2depth

https://sites.google.com/view/vid2depth

3.3. Next frame prediction 47

Figure 3.5: Overview of depth and ego-motion estimation framework from monocular video [24].

Later, in [210] they developed a model which is robust to moving objects by modelling their 3D
motion and can be transferred to domains different than the trained environment. In 2019, they built
upon all previous work developing a pipeline that can be trained in an unsupervised manner from
arbitrary videos since the algorithm is able to estimate the camera intrinsic parameters [211]. The code
of both papers was also made available 5 6. Finally, Castell [212] carries out a comprehensive survey
of the field of future frame video prediction.

5https://sites.google.com/view/struct2depth
6https://github.com/google-research/google-research/tree/master/depth_from_video_in_the_wild

https://sites.google.com/view/struct2depth
https://github.com/google-research/google-research/tree/master/depth_from_video_in_the_wild

4
Photo-realistic simulator

As discussed in chapter 2, the different fault detection and diagnosis approaches require historic data
in order to build their models. Gathering large quantities of data for fault detection with a UAV is very
time consuming, dangerous and expensive; data would have to be annotated, multiple failure modes
would have to be induced in the vehicle and the flight environment, as well as the UAV, would have to
be adapted to minimise the potential risk. Besides that, in an experimental physical setting it is very
difficult to collect data from various environments and conditions. A suitable alternative is the simulation
of the vehicle in a realistic environment, the storage of the sensor synthetic data for model training and
the transfer learning to the real world UAV. Also, it has been observed that the combination of synthetic
and real information can reduce the required data when compared to the scenario in which only real
data is collected, and the performance would be increased [49].

The selection of the right simulation for the application is key in order to minimise the gap between
the simulation and the real world (Sim2Real gap), especially in computer vision applications. If the vi-
sual data in the simulator is very different when compared to the information registered by the camera
on board of the drone, the validation performance will be lower than the performance observed during
training with simulator data.

In this regard, there has been an effort in developing high-fidelity simulators for computer vision
tasks in the last 5 years. In 2016, Skinner [25] highlighted the importance of training the algorithms in
dynamic environments with time-varying lighting conditions. Therefore, they developed a reduced-size
rural and photo-realistic 3D environment in Unreal Engine 4 (UE4), as shown in Figure 4.1 [25], in
order to assess the performance of 3 computer vision tasks, namely robust place recognition, object
recognition and SLAM. It was concluded that the development of a high-fidelity environment is very
time-consuming and it is very difficult to maintain the scale of the different objects within the scene.
Besides that, the change in the lightning conditions could not be automated. However, given the built
environment and the path to follow by the camera, the generation of new scenarios given a change in
the camera location, orientation or sample rate could be done programmatically. It concluded that it
was necessary the development of tools that automated the generation of environments, considered
one of the main bottlenecks.

One year later, in 2017 Microsoft launched AirSim [26], an open-source simulator built on Unreal
Engine 4 for AI research, connected to autonomous drones and ground vehicles with realistic physics
and visual cues. AirSim allows software-in-the-loop simulations with Ardupilot and PX4, as well as
hardware-in-the-loop with Px4. It also includes C++, Python, Java and C# APIs that allow the inter-
action of the user programmatically with the vehicle for the extraction of state and sensor information,
for providing control inputs or changing the weather effects. Apart from the APIs, the user can interact
with the vehicle with external controllers, such as the keyboard, radio controller, steering wheel, pedals,
etc. In the case that only visual data has to be retrieved, there is a computer vision mode in which the
physics are disabled and the user is in control of a camera. It also provides true object segmentation
and depth maps. The architecture of the system can be observed in Figure 4.2 [26].

49

50 4. Photo-realistic simulator

Figure 4.1: Rural 3D environment [25]

Figure 4.2: AirSim architecture with main components and interactions [26].

AirSim already provides 11 ready-to-use environments 1 but the researcher can buy or freely obtain
any environment from the UE4 Marketplace and integrate AirSim. Unfortunately, the AirSim provided
environments already have pre-compiled binaries and they can not be modified; the user can only in-
teract with the vehicle through APIs. Regarding the vehicle’s modularity, its rigid body physics and
sensors as well as its appearance can be modified.

1https://github.com/Microsoft/AirSim/releases

https://github.com/Microsoft/AirSim/releases

51

A promising tool for the generation of real environments such as cities is CityEngine 2. It allows
the definition of a geographical area and its translation to UE4 format. Having created the environ-
ment, AirSim can be easily integrated and the drone can be trained with synthetic flight data around
a real geographical location. Besides that, although the original AirSim version offered sensor models
for gyroscopes, accelerometers, barometers, magnetometers, GPS and cameras, the developers and
community are working towards new sensors such as LIDAR or radar.

Figure 4.3: CityEngine to Unreal workflow 3.

Interesting extensions for this project include a wrapper for generating event-based camera infor-
mation 4 or a voxel grid construction of the UE4 environment 5. The latter would allow the definition
of environment obstacles and the automatic generation of feasible drone flight paths for training data
generation. Finally, AirSim has extensive documentation and tutorials 6.

In 2020, Microsoft, Stanford and ETH developed the AirSim Drone Racing Lab [213], a simulation
framework based on AirSim for drone racing which hosted the NeurIPS 2019 simulation based drone
racing competition. For that purpose, it extended the functionalities of the original AirSim with, for ex-
ample, new input modalities, such as optical flow or APIs that provide the environment ground truth.

From 2017, UnrealCV [27] is another extension of UE4 for computer vision research which consists
of a set of Python and Matlab plugins for interaction with the virtual world, allowing the generation of
new environments and the communication with machine learning programs such as or OpenAI Gym for
visual reinforcement learning applications. Apart from the camera image, UnrealCV provides the true
depth map, segmentation and surface normal direction, as well as stereoscopic vision. Unfortunately,
in contrast with the other robotic simulators, it does not include vehicles, such as UAVs. As a result,
vehicle physics, renders and interaction through APIs have not been developed.

The researcher can easily obtain information about the objects in the environment, such as their
location, by sending UnrealCV commands to the virtual world. It works thanks to a client-server com-
munication using TCP, in which the server uses the C++ UE4 API to obtain information from the en-
vironment and the client interacts with the server sending commands and receiving information. This
communication can be observed in Figure 4.4 [27].

2https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
3Source: https://www.youtube.com/watch?v=vMAVRnEWPEU
4https://github.com/microsoft/AirSim/pull/3202
5https://github.com/microsoft/AirSim/pull/3209
6https://microsoft.github.io/AirSim/

https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.youtube.com/watch?v=vMAVRnEWPEU
https://github.com/microsoft/AirSim/pull/3202
https://github.com/microsoft/AirSim/pull/3209
https://microsoft.github.io/AirSim/

52 4. Photo-realistic simulator

Figure 4.4: UnrealCV server-client communication [27]

As AirSim, UnrealCV releases six default virtual worlds in their pre-compiled binaries for data gen-
eration. If the researcher requires the modification of those environments, they would have to be pur-
chased in the UE4Marketplace. Besides that, UnrealCV has extensive documentation and encourages
its community to contribute to UnrealCV and share its virtual works through their ”model zoo” platform.
However, the latest release is from 2017.

In 2018, another simulator based on the Unreal Engine was released open-source, Sim4CV [214].
Its main added value is the creation of Python, C++ and Matlab Socket interfaces, multi-object logging,
replay system and a simple interface for the drag-drop outdoor world generation. Unfortunately, the
world generation tool only includes 2 default maps: 1 race drone track for deploying UAVs and 1 rural
neighbourhood environment for deploying ground vehicles. Besides that, the tool only accepts .trk map
files which differ from the .umap files generated by the UE4. Therefore, external software is required
to generate an initial template and objects, and it is not possible to exploit the maps available at the
UE4 Marketplace.

Finally, the Sim4CV team was planning to release open-source a developer version of their product
in 2018. However, by February 2021 that has not been the case and the user is limited to the default
environments, vehicles, physics and sensors. As a result, there is no ”live” version of the product or
community around it. The original developers of Sim4CV are not all part of KAUST anymore, which
could mean that the project development has stagnated.

In 2020, NVIDIA launched Isaac Software Development Kit (SDK) and Isaac Sim 7, a toolbox for
the development and deployment of artificial learning applied to robotics in the Omniverse simulator
environment of NVIDIA 8. Apart from providing high-fidelity photo-realistic environments, it allows on-
line collaboration, it can be connected to other software (e.g. Blender or UE4) through plugins and
it includes state-of-the-art navigation and perception algorithms. In contrast with the other simulators
based on EU4, Omniverse requires a minimum available storage of 500 GB and a RTX GPU; require-
ments beyond the specifications of most workstations. Besides that, Isaac and Omniverse are still an
early access product in the beta phase released in 2020.

At the end of 2020, the Robotics and Perception Group released Flightmare [215], a modular
quadrotor simulator that allows the user to perform a trade-off between accurate dynamics and photo-
realistic rendering using Unity by decoupling both components. This allowed to speed up the simulation
with parallel programming. Apart from RGB visual information from the camera, it provides depth, se-
mantic segmentation and 3D point-clouds of the environment. Besides that, reinforcement learning
tasks can be connected to the OpenAI Gym framework through a Python wrapper and the simulator
allows the interaction with the Oculus virtual-reality headset.

Flightmare is released open-source with 5 default environments, but the user can create or pur-
chase more in the Unity Asset Store, system analogous to the UE4 Marketplace. The simulator also
offers C# scripts that allow the interaction of the user with the environment, vehicle and simulation.
Regarding the modelling of the dynamics, Flightmare has a flexible framework that allows the user to
choose between 3 quadrotor dynamics for different fidelity, purpose and computation capability.

7https://developer.nvidia.com/isaac-sim
8https://www.nvidia.com/en-us/design-visualization/omniverse/

https://developer.nvidia.com/isaac-sim
https://www.nvidia.com/en-us/design-visualization/omniverse/

53

Being an open-source live project, the creators aim at building a community that contributes to its
future maintenance and development. Besides that, documentation is available but multiple sections
are still under construction.

Finally, Flightmare was inspired by FlightGoggles [216], another photo-realistic simulator developed
by MIT for high-speed drone races which decouples vision from physics. FlightGoggles also proposes
a different simulation paradigm known as virtual reality in which the simulated environment synthetic
visual information is fed to a vehicle flying in a real test environment within a motion capture system.
In this way, real drone dynamic information is obtained while flying in different environments.

Table 4.1 summarises the characteristics of the main photo-realistic simulators mentioned in this
document. As can be observed, from the functionality and support, AirSim seems to be the most suit-
able option for the development of a data collection pipeline. However, lessons can be learn from
Flightmare in terms of decoupling the dynamics and the vision in order to develop an accurate drone
simulator. Also, FlightGoggles virtual reality could be an alternative approach.

Table 4.1: Simulators comparison

AirSim [26] UnrealCV [27] Sim4CV [214] Flightmare [215]
Photo-realistic Yes Yes Yes Yes

Dynamics
PhysX
UE4

PhysX
UE4

PhysX
UE4

Flexible
Unity

Environments
Default maps

Unlimited market
Default maps

Unlimited market
Default maps
Limited creation

Default maps
Unlimited market

Vehicles Adaptable None Not adaptable Adaptable
Vehicle physics Yes None Yes (Poor) Yes

API/plugins
C++

Python
Matlab
Python

C++
Matlab
Python

C++
C#

Python
Documentation Extensive Extensive Poor Medium
Community Active Active None Medium

C&S
preliminary work

Yes No No No

Default
camera views

FPV
Depth

Segmentation

FPV
Depth

Segmentation
Surface normal
Stereoscopic

FPV

FPV
Depth

Segmentation
3D point cloud

Last version 2021 2017 2017 2020

Although Blender’s Game Engine was also used for the development of simulators, such asMORSE
[217] in 2011-2016, UE4 and Unity have become the new state-of-the-art. Besides the aforementioned
photo-realistic frameworks, the research community has been using other alternatives for quadrotor
simulation. Gazebo has been one of the main choices due to its high-fidelity physics engine, leading
to simulators such as RotorS [218] and Hector [219]. The faculty of Aerospace Engineering at TU
Delft has been using the Paparazzi autopilot within the Gazebo environment for its research. The
DroneSimLab [220] defines a different approach which aims at connecting multiple simulation engines
(including UE4) in order to exploit their individual benefits.

5
Literature study conclusion

In this document a literature study has been presented for the Master thesis called ”Vision-based UAV
Fault Detection and Diagnosis Framework”. First, the motivation for this line of research was introduced
with the research questions and timeline of the project. After that, a general outline of all fault detection
and diagnosis algorithms available in literature was discussed, followed by a detailed explanation of
the most important knowledge-based approaches, with especial focus on supervised and unsupervised
learning. Then, 3 key application of visual data in modern robotics were discussed, since they highlight
different methods of visual data processing. Finally, a summary of the most prominent photo-realistic
simulators was performed.

From literature it is clear that visual information from the camera sensor, ubiquitous in most robotic
systems, has not been exploited for fault detection and diagnosis. It has been constrained to the
anomaly detection of signals from accelerometers, gyroscopes or other sensors that add weight to the
vehicle. Although it could be argued that the processing of image data could be computationally ex-
pensive when compared to other FDD alternatives, this kind of information is already been processed
by vehicles for navigation or state estimation. As a result, there exists the potential of tapping into
the pipeline of these applications of visual information in order to improve the performance of fault de-
tection and diagnosis systems without increasing the computational load, heavily constrained in most
commercial UAVs.

Potential FDD frameworks could exploit end-to-end machine learning with combinations of convo-
lutional and recurrent neural networks. Additionally, Bayesian inference could be incorporated to the
framework in order to determine the uncertainty of the estimation, empowering better informed deci-
sions. An alternative and novel approach is the implementation of attention mechanisms instead of
the (convolutional and) recurrent neural networks, having the potential of being more accurate with a
lower computational load. Finally, instead of tapping directly to the pixels, lessons could be learnt from
previous applications of visual information and pre-process the images from the camera sensor before
being fed to the FDD algorithm.

In order to train any knowledge-based approach, large quantities of failure and healthy data are
required. Unfortunately, the collection of real drone data in which different failure modes are induced
is very expensive and infeasible for the desired quantities of data. Therefore, it will have to be gath-
ered from a simulation environment and, since the camera information is the centre of the researched
FDD framework, a photo-realistic simulator is the most-sensitive choice. From the presented options,
due to its documentation, support and flexibility, AirSim is the most suitable option at the moment of
writing. If in the future Flightmare receives a similar support and the authors develop a comprehen-
sive documentation, it could be a competitive alternative. Another approach to training from simulator
data would be a hybrid approach in which a small real dataset is shuffled with a large simulation dataset.

To conclude, FDD is a field which will become of paramount importance when autonomous vehicles
will conquer the skies in urban regions. The goal of this master thesis project will be to exploit the

55

56 5. Literature study conclusion

rich information provided by cameras, nowadays ubiquitous in modern UAVs, in order to improve the
performance of current FDD approaches maintaining a competitive computational load. Since this
work is the first of its kind, it will lay the groundwork for other researchers to design visual-based FDD
approaches and pave the path for event-based cameras.

III
Scientific papers

57

6
Scientific Paper 1: Blade Element

Theory Model for UAV Blade Damage
Simulation

59

Blade Element Theory Model for UAV Blade Damage Simulation

José Ignacio de Alvear Cárdenas∗ and Coen de Visser†

From fault-tolerant control to failure detection, blade damage simulation has been an
essential tool for the development and testing of failure resilient modern unmanned aerial
vehicles before their entry into service. Current approaches assume partial loss of rotor
effectiveness or reduce the problem to the centrifugal forces caused by the shift in the propeller
centre of gravity. This work proposes a white-box blade damage model based on Blade Element
Theory which combines the emerging mass and aerodynamic effects of blade damage. The model
serves as plug-in to the nominal system model, enables the simulation of any degree of blade
damage and does not require costly experimental data from failure cases. A complementary
methodology for the identification of the airfoil lift and drag coefficients is also presented. Both
contributions were demonstrated with the Bebop 2 drone platform and validated with static
test stand wrench measurements obtained at 3 levels of blade damage (0%, 10%, 25%) from
a dedicated wind tunnel experimental campaign with velocities up to 12 m/s. Results show
high accuracy when simulating a healthy propeller. In the presence of blade damage, at high
propeller rotational speeds the model shows a relative error between 5% and 24%. At low
propeller rotational speeds, the relative error oscillates between 15% and 75%.

I. Nomenclature

𝐵𝐷 = Blade damage, %
𝐵𝐿, 𝐵𝑆 = Blade and blade section
𝐶𝑑 , 𝐶𝑙 = Airfoil drag and lift coefficients
𝑐𝑐, 𝑐𝑟 , 𝑐𝑡 = Longest chord length, root chord and tip chord, m
𝐷 = Drag force, N
−→
𝑑 = Conversion matrix from rotational rates to linear velocities
𝑑𝑟 = Blade section length, m
𝐹 = Force, N
𝑔 = Gravitational acceleration, m/s2

ℎ = Trapezoid height, m
𝑖𝑝 = Propeller incidence angle, ◦
𝑘𝑥 , 𝑘𝑦 = Linear inflow weighting factors
𝐿 = Lift force, N
𝑙, 𝑏 = Distance from the propeller centre of rotation to the body coordinate frame x- and y-axes, m
𝑀 = Moment, Nm
𝑚 = Mass, kg
¤𝑚 = Mass flow, kg/s
N = Number of data samples
𝑛𝑏, 𝑛𝑏𝑠 = Number of blades and blade sections
𝑛𝑡 = Number of trapezoids in which a blade is divided
𝑃 = Propeller
𝑄 = Torque, Nm
𝑅 = Propeller radius, m
𝑟𝐶𝐺 = Distance between the propeller centre of rotation and centre of gravity, m
𝑇 = Thrust, N
𝑉 = Linear velocity, m/s
𝑉𝐴 = True airspeed, m/s

∗Graduate Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
†Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology

1

𝑉𝑅 = Airspeed at the rotor, m/s
𝑉𝑤 = Wind speed, m/s
𝑣0, 𝑣𝑖 = Uniform and linear induced velocities, m/s
𝑦̄𝑐 = Span-wise centroid location, m
𝛼 = Angle of attack, rad
𝛼𝑑 = Angle of attack of the rotor disk relative to the oncoming flow, rad
𝛾 = Gradient-descent optimisation learning rate
𝜖 = Model error
𝜁 = Rotation direction boolean
𝜃 = Pitch angle, rad
𝜃𝑡𝑤 = Blade twist rate per rotor radius, rad/mm
𝜆 𝑗 = Angle between the blade j with its propeller’s x-axis
𝜇𝑥 = Tip speed ratio or advanced ratio
𝜉 𝑗𝑘 = Damage indicator boolean
𝜌 = Air density, kg/m3

𝜎 = Standard deviation
𝜙 = Roll angle, rad
𝜒 = Wake skew angle, rad
𝜓 = Yaw angle, rad
𝜓𝑘 = Blade section azimuth angle, rad
𝜔 = Propeller rotational speed, rad/s
Ω = Vehicle angular velocity, rad/s

II. Introduction

Fault is defined as "an unpermitted deviation of at least one characteristic feature of the system from the acceptable,
usual, standard condition" [1], reducing its capability of performing a required task. Failure and malfunctions are

the result of the accumulation of one or more faults that lead to the permanent interruption or intermittent irregularity in
the performance of a system function under the specified operating conditions.

Depending on where in the UAV they take place, failures can be classified as sensor faults, actuator faults and
plant faults [2], being the first two groups those that most literature aim at predicting. On the one hand, sensor faults
result from incorrect readings from the system instruments and sensors, and they include constant bias faults (stuck
sensor), drift fault (additive-type), constant gain faults (multiplicative-type) and outlier faults [3, 4]. On the other
hand, actuator failures are caused by total loss or degradation of the propeller, motor or electronic speed controllers [5]
and they can be classified in four categories, namely actuator saturation, actuator lock, actuator fly-off and propeller
damage. Propeller damage is the most challenging actuator failure to simulate. Whereas other propeller failure modes
are symmetrical failures around the rotation axes in which the rotational velocity of the propeller is fixed at a certain
value or the complete propeller has flown off, propeller damage caused by the chipping or breaking of a blade leads to
asymmetrical forces and moments acting on the system that go beyond the change in thrust.

In order to improve the resilience of multi-rotor and hybrid unmanned aerial vehicles (UAVs) to potential failures,
work is carried out in multiple fronts, e.g. obstacle avoidance [6], upset recovery [7], fault-tolerant control [8–10] or
fault detection and diagnosis [11]; the latter consisting of the fault classification, as well as its location and magnitude
identification. For all these tasks, researchers use models to simulate their systems and failures for the training or testing
of their approaches before deployment. Due to the complexity of aerospace systems, gray- or black-box models are
usually obtained through system identification [12]. As a result, simulations are constrained to the failure cases within
the flight envelope of the collected data, which is usually obtained from costly wind tunnel experimental campaigns.
Additionally, acquiring enough data for system identification from highly damaged cases is challenging due to concerns
regarding the operator’s safety and system survivability upon a potential system’s loss of control. Hence, the range of
captured failures that later can be simulated is limited and it is based on the interpolation and extrapolation of the few
experimentally tested scenarios.

Previous literature in the field of fault diagnosis have exploited simplifications of the simulation of blade damage.
Avram et al. [13] consider quadrotor actuator faults, such as structural damage to the propellers or degradation of the
rotors, as partial loss of effectiveness — a partial loss of thrust generated by the damaged rotor. This is simulated
by multiplying the commanded rotor angular velocity by a factor lower than one in order to obtain the "true" rotor

2

angular velocity. The main drawback of this approach is that vibrations in the system due to the unbalance of forces and
moments are ignored.

Another approach is proposed by Ghalamchi et al. [14], which introduce sinusoids in the force signals to simulate
the vibrations caused by the propeller unbalance. The sinusoids only consist of the decomposition of the centrifugal
force in the x and y components caused by the displacement of the propeller centre of gravity due to blade damage.
Unfortunately, this approach does not consider the vibrations in the moment signals, as well as the vibrations caused by
the changed aerodynamics due to the displacement of the centre of pressure.

The development of more accurate blade damage models could contribute to the creation of more realistic simulations
that will foster the potential discovery of emerging subtle data features able to improve the current UAV on-board
failure detection and diagnosis capabilities. A technique that has been used for the modelling of forces and moments in
helicopters [15], UAVs [16–18] and wind turbines [19] is Blade Element Theory (BET). Here, the propeller is discretised
radially into a finite number of segments of length 𝛿𝑟, each producing a differential thrust and torque. BET is based
on the assumption that the wrenches generated by a (rotor) blade can be computed by the addition of the individual
contributions of each of its span-wise elements. For this purpose, 2D airfoil characteristics are exploited whereas 3D
effects are ignored. Previously, this approach has been used to model propeller thrust [20]. However, it has never been
explored for blade damage modelling.

In this paper, a white-box blade damage simulation model based on Blade Element Theory that complements the
identified healthy UAV model is proposed, implemented and validated. To this end, the developed approach provides
the difference in forces and moments with respect to the nominal system. In contrast with existing methods, the effects
from both shifts in the centres of gravity and pressure are considered. The approach allows the injection of any level of
failure without the need of added costly and dangerous system identification experiments. To the authors’ knowledge,
this is the first time BET is used for UAV blade damage simulation and the first time mass and aerodynamic effects are
modelled together in order to shift research towards more realistic white-box blade damage models. Furthermore, this
paper also presents a method for identifying the (mostly unknown) UAV blade lift and drag curves with respect to the
angle of attack using BET, an approach never tried before in literature.

The proposed model has been applied to the Parrot Bebop® 2 UAV and it has been validated by comparing its
predictions to the wrench signals of a damaged propeller at multiple degrees of failure. The validation data was gathered
during a dedicated wind tunnel experimental campaign at the Open Jet Facility at Delft University of Technology which
allowed the controlled variation of environmental variables such as the wind speed (between 0 and 12 m/s) and the
propeller incidence angle (between 0 and 𝜋/2 rad).

The paper is organised as follows. First section III, section IV and section V describe the methodology, where the
first two explain the mass and aerodynamic effects and the third the identification of the propeller lift and drag curves.
The flow of these computations and the complete approach is illustrated in advance for the reader in Fig. 1. Then, the
proposed approach is applied to the Bebop 2 UAV in section VI to show its potential in characterising blade damage on
a real platform. Next, section VII validates the results with static test stand wind tunnel experiments, highlighting some
limitations of the proposed model and test set-up. Finally, section VIII presents the conclusions of this research and
recommendations for future work.

Hyper-parameter
selection

Offline airfoil lift
and drag

coefficient curve
identification

Propeller
attitude

Propeller
geometry
definition

Mass related force
and moment

changes
computation

Aerodynamic
related force and
moment changes

computation

Environment
conditions

Damaged propellers'
forces and moments

computation

Eqs. (62) & (63)

Offline Online

,

,

, ,

,

,

Fig. 1 Flowchart of the damaged propeller offline and online computations. The lift and drag coefficient curves
identification takes place offline, whereas the computation of forces and moments due to propeller damage are
performed online. The blocks with a solid edge line are further expanded in the methodology sections.

3

III. Mass effects
This section discusses the moments and forces that emerge from the change in propeller mass and its corresponding

shift in its centre of gravity for a single propeller with blade damage. They are all measured in the propeller’s reference
frame, which is the equivalent to the body reference frame translated to the centre of the propeller’s hub.

The first forces to be obtained are those caused by the loss of mass. Since the goal is to compute the forces and
moments that have to be added to those resulting from the physics model when there is no failure, the force required to
be added is in the opposite direction of the gravity vector, as can be seen in Eq. (1). Here, 𝑚loss is the lost mass and

−→
𝑅 𝑃𝐼

is the transformation matrix from the inertial to the propeller coordinate frame, which can be seen in Eq. (2). Depending
on the drone attitude, the gravity vector can have a value in all three dimensional components of the propeller coordinate
frame.

−→
𝐹 𝑃

𝑚1 =
−→
𝑅 𝑃𝐼


0
0

−𝑔𝑚loss

 (1)

−→
𝑅 𝑃𝐼 =


cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃

sin 𝜙 sin 𝜃 cos𝜓 − cos 𝜙 sin𝜓 sin 𝜙 sin 𝜃 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜙 cos 𝜃
cos 𝜙 sin 𝜃 cos𝜓 + sin 𝜙 sin𝜓 cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓 cos 𝜙 cos 𝜃

 (2)

Second, the shift in the centre of gravity (CG) causes the appearance of moments around the centre of rotation of the
propeller. In order to compute these moments, the arm from the propeller central hub to the new CG location must be
computed. For that purpose, the blade has been modelled as a group of trapezoids. As can be observed in Fig. 2, in the
case of the Bebop 2 propeller, its blade can be split up in two trapezoids connected at their base which is situated at the
location of the largest blade chord. 𝑐𝑟 , 𝑐𝑡 and 𝑐𝑐 are the chords lengths at the root, tip and the location of longest chord,
respectively.

Fig. 2 Bebop 2 propeller top view and trapezoid
simplification.

Fig. 3 Damaged Bebop 2 propeller top view and
trapezoid simplification.

The CG of each blade is computed separately depending on whether it has damage or not. In the case that there is
damage, the tip chord will move along the span of the blade toward the central hub. In the case that damage causes
partial blade loss closer to the central hub than the location of 𝑐𝑐, then there would be only one trapezoid in the blade
planform and 𝑐𝑐 would disappear, as can be seen in Fig. 3.

For the computation of the centre of gravity, it is assumed that the density of the blades is constant, so that the CG
will coincide with the centroid of the blade. Hence, the centroid of each trapezoid is computed with Eq. (3) and they are
weighted together with their respective areas with Eq. (4). 𝑛𝑡 stands for the number of trapezoids within a blade and
Fig. 4 illustrates the trapezoid geometrical variables.

4

𝑦̄𝑐trapezoid𝑖
=

ℎ𝑖

3
2𝑐𝑖+1 + 𝑐𝑖

𝑐𝑖+1 + 𝑐𝑖
(3) 𝑦̄CG𝐵𝐿

= 𝑦̄𝑐𝐵𝐿
=

∑𝑛𝑡
𝑖
𝑦̄𝑐trapezoid𝑖

(𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2∑𝑛𝑡
𝑖
(𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2

(4)

Fig. 4 Blade and trapezoid geometry and centroid.

The centroids of each of the blades are weighted with their respective areas in order to find the centroid of the
complete propeller. With the location of the CG computed as in Eq. (5) and the gravitational force calculated in Eq. (1),
the moments caused by the gravity force are computed in Eq. (6).

−→𝑟 𝑃
𝐶𝐺 =


𝑥𝑃
𝐶𝐺

𝑦𝑃
𝐶𝐺

0

 (5) −→
𝑀𝑃

𝑚 =
−→𝑟 𝑃

𝐶𝐺 × −→
𝐹 𝑃

𝑚1 (6)

Third, thanks to the shift of the centre of gravity and the rotation of the propeller, a centrifugal force is created. The
magnitude of the centrifugal force is computed with Eq. (7), where 𝑚𝑃 is the propeller mass, 𝜔 is the rotational velocity
and 𝑟𝐶𝐺 is the distance between the centres of rotation and gravity, as computed in Eq. (8).

𝐹𝑚2 = 𝑚𝑃𝜔
2𝑟𝐶𝐺 (7) 𝑟𝐶𝐺 =

√︃
𝑥2
𝐶𝐺

+ 𝑦2
𝐶𝐺

(8)

The centrifugal force is later decomposed in the x and y components, leading to the vector shown in Eq. (9). 𝜃𝐶𝐺 is
the angle that −→𝑟 𝐶𝐺 creates with the propeller coordinate frame and is computed with Eq. (10). This centrifugal force is
illustrated in Fig. 5.

−→
𝐹 𝑃

𝑚2 =


𝐹𝑚2 cos 𝜃𝐶𝐺

𝐹𝑚2 sin 𝜃𝐶𝐺

0

 (9) 𝜃𝐶𝐺 = arctan
𝑦𝑃
𝐶𝐺

𝑥𝑃
𝐶𝐺

(10)

y

x
+

Fig. 5 Centrifugal force of a dam-
aged propeller.

Propeller attitude

Propeller
geometry
definition

Blade centre of
gravity

computation

Propeller centre
of gravity

computation

Eqs. (8) & (10)

Gravity force
reduction

computation

Eq. (1)

Centre of gravity
shift related

moments
computation

Eq. (6)

Centrifugal force
computation

Eq. (9)

Blade: j
j = 1, 2,

Propeller: i
i = 1, 2, 3, 4

Fig. 6 Flowchart of the computation of the damaged propeller mass
related forces and moments at a single time step during simulation.

The discussed computation of the damaged propeller mass related forces and moments is illustrated in Fig. 6 with a
flowchart.

5

IV. Aerodynamic effects
This section discusses the moments and forces that emerge from the change in aerodynamics for a single propeller

upon blade damage. For their computation, the Blade Element Theory mathematical process is exploited. This method
discretises the blade along its span in sections of equal length, determines their individual generated moments and
forces, and adds all of them in order to obtain those generated by the complete propeller. When a blade is damaged, the
forces and moments that would have been generated by the missing blade sections would be subtracted from those
computed by the physics model in the healthy state.

A. Blade Element Theory
The goal of the BET method is the computation of the thrust and torque generated by the complete blade through

the sum of the contributions of all its sections. For that purpose, the lift and drag equations, which can be seen in
Eq. (11) and Eq. (12), are applied to each of the blade sections 𝑘 of span length equal to 𝑑𝑟. For the rest of the paper,
the subscript 𝑖 stands for the propeller, 𝑗 for the blade and 𝑘 for the blade section.

Δ𝐿𝑘 (𝑟𝑘 , 𝜓𝑘) =
1
2
𝐶𝑙𝑘 (𝛼𝑘 (𝑟𝑘 , 𝜓𝑘))𝜌𝑉2

𝐴𝑘
(𝑟𝑘 , 𝜓𝑘)𝑐𝑘 (𝑟𝑘)𝑑𝑟 (11)

Δ𝐷𝑘 (𝑟𝑘 , 𝜓𝑘) =
1
2
𝐶𝑑𝑘

(𝛼𝑘 (𝑟𝑘 , 𝜓𝑘))𝜌𝑉2
𝐴𝑘

(𝑟𝑘 , 𝜓𝑘)𝑐𝑘 (𝑟𝑘)𝑑𝑟 (12)

𝜌 is the air density which depends on the altitude at which the drone flies with respect to the sea level. Furthermore,
𝑐𝑘 is the blade section average chord. 𝑉𝐴𝑘

is the airspeed seen by the blade section perpendicular to its span and 𝐶𝑙𝑘

and 𝐶𝑑𝑘
are the lift and drag coefficients of the 2D blade airfoil, respectively. As can be seen, these parameters are a

function of the angle of attack (𝛼𝑘), the distance from the blade section centroid to the centre of rotation (𝑟𝑘) and the
blade section azimuth angle (𝜓𝑘). The last one is an angle measured on the propeller plane and it is defined to have a
value of zero degrees (𝜓=0) in the direction of the drag, increasing its value in the direction of rotation. The 𝑟 and 𝜓

definitions can be visualised in Fig. 7 and Fig. 8. When a variable is a function of 𝑟 and 𝜓, it will be represented by (·)
for readability purposes.

Fig. 7 Blade geometrical parameters.

=

Fig. 8 Azimuth angle visualization.

The airspeed at each blade section (𝑉𝐴𝑘
) has to be computed taking into account three main components: the

combined linear and angular velocities, the propeller rotational velocity and the induced velocity. First, Eq. (13) is used
to compute the linear velocity of the propeller assembly (

−→
𝑉 𝑃) from the body linear (

−→
𝑉 𝐵) and angular velocities (

−→
Ω).

The
−→
𝑑 matrix presented in Eq. (14) is used to convert the rotational rates of the vehicle to linear velocities, exploiting the

known drone geometry shown in Fig. 9 [12]. Each row of the d matrix (
−→
𝑑 𝑖) corresponds to each of the drone propellers.

The first row corresponds to the front-left propeller and the following rows to the other propellers moving clockwise
from a top-down view of the drone.

−→
𝑉 𝑃

𝑖 =
−→
Ω × −→

𝑑 𝑇
𝑖 + −→

𝑉 𝐵 (13)
−→
𝑑 =


𝑙 −𝑏 0
𝑙 𝑏 0
−𝑙 𝑏 0
−𝑙 −𝑏 0


(14)

6

Fig. 9 Drone geometry [12]. Fig. 10 Blade coordinate frame.

Then, the propeller linear velocity is translated to the blade coordinate frame (𝐵𝐿), which rotates with the respective
blade, as can be seen in Fig. 10. The angle of the blade with the propeller x-axis is 𝜆 𝑗 and it is used in Eq. (15) for the
coordinate frame transformation. As can be observed, a minus sign precedes the transformation matrix because the
airspeed vector is opposite to the displacement direction. It is assumed that this value of airspeed, which is a function of
the vehicle linear and angular velocities, does not depend on the position along the blade.

−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗𝑘1
=
−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗
= −


sin𝜆 𝑗 − cos𝜆 𝑗 0
cos𝜆 𝑗 sin𝜆 𝑗 0

0 0 1


−→
𝑉 𝑃

𝑖 (15)

Second, the component of the velocity due to the rotation of the propeller is the product of the distance of the blade
section centroid to the centre of rotation (𝑟𝑖 𝑗𝑘) and the rotational velocity of the propeller (𝜔𝑖), as can be seen in Eq. (16).
The main benefit of the chosen blade coordinate frame is that this velocity component only exists along the x-axis. 𝜁𝑖 is
a variable which acquires a value of 1 if the 𝑖th propeller is rotating clockwise and -1 if it is rotating counter-clockwise.

−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗𝑘2
(𝑟𝑖 𝑗𝑘) =


𝜁𝑖𝜔𝑖𝑟𝑖 𝑗𝑘

0
0

 (16)

Third, there exist multiple approaches in literature for computing the induced velocity field across the rotor disk,
most of the them based on estimates and empirical tests. The work of Gill et al. [21] assumes ideal propeller geometry,
considering a constant uniform induced velocity along the propeller which is mostly not the case in forward flight. The
approach followed for the present research is the same one used by Niemiec et al. [22] and that is thoroughly explained
by Leishman et al. [23], which combines an initial uniform inflow estimation for the complete propeller with local
(blade section) linear inflow model corrections.

For the computation of the uniform induced velocity (𝑣0
∗), the Glauert formula presented in Eq. (19) is derived

from the combination of the mass flow and the propeller thrust equations, shown in Eq. (17) and Eq. (18), respectively.
According to the principles of momentum and energy conservation, the far wake velocity equals the airspeed before the
rotor plus two times the induced velocity [23], leading to a change in velocity across the rotor of Δ𝑉 = 2𝑣0.

¤𝑚 = 𝜌𝜋𝑅2𝑉𝑅 (17) 𝑇 = ¤𝑚Δ𝑉 = ¤𝑚(𝑉𝐴𝑖
+ 2𝑣0 −𝑉𝐴𝑖

) = 2 ¤𝑚𝑣0 (18)

𝑣0 =
𝑇

2𝜌𝜋𝑅2𝑉𝑅

(19)

∗Since it will be constantly referred to the same single propeller, the subscript 𝑖 to denote a specific propeller is dropped for the rest of the paper
for readability purposes.

7

Given that the airspeed at the rotor (𝑉𝑅) equals the propeller airspeed plus the induced velocity along the z-axis
direction, it can be expressed as shown in Eq. (20) using the translational velocity found in Eq. (13). The final Glauert
equation does not have a closed form, so the induced velocity can be computed using an iterative optimisation technique,
such as Nelder-Mead. Alternatively, since the induced velocity needs to be computed in simulation at every time step, a
tailored and efficient gradient-descent (1D first order derivative) algorithm is discussed in appendix A.

𝑉𝑅 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦 + (−𝑉𝑃

𝑧 + 𝑣0)2 (20)

Once the uniform inflow velocity is obtained, it can be used as the basis for the computation of the linear inflow
model. There are multiple estimation models for the computation of the linear inflow, such as those proposed by Howlett
[24], Pitt & Peters [25] and White & Blake [26]. However, for the present research, the model developed by Drees [27]
will be used since it is one of the best representations when compared to empirical data [23]. Equation (21) models the
induced velocity using the uniform inflow as basis and modifying it with the 𝑘𝑥 and 𝑘𝑦 weighting factors, which are
computed in Eq. (22) and Eq. (23), respectively.

𝑣𝑖 (·) = 𝑣0 (1 + 𝑘𝑥𝑟 cos𝜓 + 𝑘𝑦𝑟 sin𝜓) (21)

𝑘𝑥 =
4
3
(1 − cos 𝜒 − 1.8𝜇2

𝑥)
sin 𝜒

(22) 𝑘𝑦 = −2𝜇𝑥 (23)

𝜒 is the wake skew angle or the angle that the wake creates with respect to the z-axis of the propeller. It is illustrated
in Fig. 11 and it is computed using the propeller airspeed and the uniform induced velocity, as can be seen in Eq. (24).
Furthermore, 𝜇𝑥 is the tip speed ratio or advanced ratio and it is defined as the airspeed projected on the x-y plane in the
propeller coordinate frame normalised with the blade length and propeller rotational velocity (Eq. (25)). The resulting
inflow can be observed in Fig. 12, which shows how the induced velocity changes per blade section with respect to its
distance to the centre of rotation and the azimuth angle.

TPP

Wake

Fig. 11 Illustration of the wake skew angle [23].

TPP

Longitudinal inflow

Lateral inflow
TPP

Fig. 12 Linear inflow model [23].

tan 𝜒 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦

𝑣0 −𝑉𝑃
𝑧

(24) 𝜇𝑥 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦

𝜔𝑖𝑅
(25)

Having computed the three components of the blade section airspeed for the lift and drag equations, they are summed
in Eq. (26).

−→
𝑉 𝐵𝐿

𝐴 𝑗𝑘
(·) = −→

𝑉 𝐵𝐿
𝐴 𝑗𝑘1

+ −→
𝑉 𝐵𝐿

𝐴 𝑗𝑘2
(𝑟 𝑗𝑘) +

[
0 0 𝑣𝑖 𝑗𝑘 (·)

]𝑇
(26)

Given the airspeed, the angle of attack seen by the blade can be obtained from Eq. (27). Here, 𝜃 𝑗𝑘 is the average
twist of the blade section and it is a linear function of the distance from the centre of rotation (Eq. (28), where 𝜃𝑡𝑤 is the
blade twist rate per radius of the rotor and 𝜃0 is the blade twist at the blade root). The closer to the root, the higher the
twist in order to compensate for the lower tangential velocity from the propeller rotation. When the tangential velocity
decreases, the velocity along the propeller z-axis has a higher impact on the definition of the angle of attack. In the case
of forward flight, that causes a reduction of the angle of attack at the root.

8

𝛼 𝑗𝑘 (·) = 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) − arctan
𝑉𝐵𝐿
𝐴 𝑗𝑘𝑧

(·)

𝑉𝐵𝐿
𝐴 𝑗𝑘𝑥

(·)
(27) 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) = 𝜃0 − 𝑟 𝑗𝑘𝜃𝑡𝑤 (28)

Finally, from the blade section lift and drag contributions determined in Eq. (11) and Eq. (12), it is possible to
determine the generated thrust (Δ𝑇) and torque (Δ𝑄) by each blade section with Eq. (29) and Eq. (30), respectively†.
Here, 𝜙 𝑗𝑘 is the blade section flow angle and it is defined as the difference between the local twist angle 𝜃 𝑗𝑘 and the
local angle of attack 𝛼 𝑗𝑘 , as can be seen in Eq. (31).

Δ𝑇 = Δ𝐿 cos 𝜙 − Δ𝐷 sin 𝜙 (29) Δ𝑄 = 𝑟Δ𝐿 sin 𝜙 + 𝑟Δ𝐷 cos 𝜙 (30)

𝜙 𝑗𝑘 (·) = 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) − 𝛼 𝑗𝑘 (·) (31)

B. Aerodynamic forces and moments
Once the percentage of blade damage to be simulated is known, the corresponding "lost" blade sections are identified.

For instance, if a 30% blade damage is considered in a blade composed of 100 sections, the 30 sections closest to the
blade tip are the ones lost. Then, their forces and moments are added to later be subtracted from those of the nominal
operating conditions obtained from the healthy blade model output.

Equation (29) can be used for the computation of the thrust of a single blade section. The added thrust value of
all the lost blade sections leads to 𝐹𝑃

𝑎1𝑧 , as given by Eq. (32). 𝜉 𝑗𝑘 is a boolean which has a value of 1 when the blade
section is damaged and 0 when it is in its nominal state. The moments emerging about the propeller x- and y-axes from
the change in the centre of pressure location are computed by decomposing the moment generated by the blade section
thrust around the centre of rotation with Eq. (33) and Eq. (34).

𝐹𝑃
𝑎1𝑧 =

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑇𝑗𝑘 (32)

𝑀𝑃
𝑎2𝑥

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

−𝜉 𝑗𝑘Δ𝑇𝑗𝑘𝑟 𝑗𝑘 sin𝜆 𝑗 (33) 𝑀𝑃
𝑎2𝑦

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑇𝑗𝑘𝑟 𝑗𝑘 cos𝜆 𝑗 (34)

Furthermore, Eq. (30) can be used for the computation of the torque of each blade section. The integral torque of
the lost blade sections leads to the moment about the z-axis, as shown in Eq. (35). The blade section force in the rotor
plane can be obtained by dividing the torque by the magnitude of the moment arm. This force is then decomposed in the
x- and y-directions, as shown in Eq. (36) and Eq. (37), in order to obtain the last aerodynamic forces.

𝑀𝑃
𝑎1𝑧 =

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑄 𝑗𝑘 (35)

𝐹𝑃
𝑎2𝑥

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘
Δ𝑄 𝑗𝑘

𝑟 𝑗𝑘
cos

(
𝜆 𝑗 − 𝜁

𝜋

2

)
(36) 𝐹𝑃

𝑎2𝑦
=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘
Δ𝑄 𝑗𝑘

𝑟 𝑗𝑘
sin

(
𝜆 𝑗 − 𝜁

𝜋

2

)
(37)

The sum of the force and moment vectors corresponds to the aerodynamic effects that need to be subtracted from the
nominal physics model output. A flowchart visually illustrating the computation of these forces and moments can be
seen in Fig. 13.

V. Airfoil lift and drag coefficients identification
Unfortunately, for most commercial drones, an aerodynamic model of the propeller’s blade lift and drag does not

exist. Previous literature [20] has taken a Hybrid Blade Element Momentum Theory approach for the computation of
the induced velocity and aerodynamic coefficients. This approach is based on equating the thrust derived from BET
(blade geometry) and the thrust derived from Momentum Theory (interacting flow characteristics). A two step method is

†Since every term of these equations is meant for a particular blade section, the subscripts 𝑗𝑘 have been left out to enhance readability. For the
same reason, the variables each of the terms are a function of have also been removed, since they are all a function of (𝜓𝑗𝑘 , 𝑟 𝑗𝑘) .

9

Environment
conditions

Lost blade section
airspeed

computation

Eq. (26)

, , ,

Propeller: i
i = 1, 2, 3, 4

Blade: j
j = 1, 2,

Gray-box model
thrust and torque

computation

Uniform induced
inflow computation

Eq. (19)

Lost blade section
linear induced

inflow computation

Eq. (21)

Lost blade section
angle of attack
computation

Eqs. (27)

Lost blade section's
lift and drag
computation

Eqs. (11) & (12)

Lost blades' force
and moments
computation

Eqs. (32) - (37)

Lost blade section's
thrust and torque

computation

Eqs. (29) & (30)

Lost blade sections'
thrust and torque

computation

Propeller geometry
definition

Propeller attitude

Offline blade lift
and drag coefficient
curve identification

Blade section: k
k = 1, 2,

Fig. 13 Flowchart of the computation of the damaged propeller aerodynamic forces and moments at one time
step during simulation.

described in which first, the induced velocity is estimated and then, the aerodynamic coefficients. However, this method
has two main drawbacks. First, it does not explain how the induced velocity is computed without having previously
computed the aerodynamic parameters, since they are required for the computation of the lift and the drag of each blade
section in the computation of the thrust from BET. Second, the described optimisation method takes between 2 to 10
hours with only 20 data points. Such long computation times renders the simulation of blade damage scenarios, in
which the induced velocity must be computed for every time step, unfeasible. This section will thoroughly explain an
alternative optimisation approach for identifying the lift and drag coefficient curves with much shorter computation
times.

The proposed method is based on equating the thrust and torque obtained from the healthy UAV model (or
experimental data) to the sum of the blade sections’ moment and forces computed following BET. To that end, given a
drone geometry (R, and l and b from Eq. (14)), combinations of vehicle body linear (

−→
𝑉 𝐵) and angular velocities (

−→
Ω), as

well as propeller rotational velocities (𝜔), are fed as input to both models. Then, their outputs are combined in order to
solve a constrained minimisation problem that finds the lift and drag coefficient functions. 𝐶𝑙 and 𝐶𝑑 are modelled as
polynomials of m and n degree as a function of the angle of attack, as can be seen in Eq. (38) and Eq. (39), respectively.

𝐶𝑙 𝑗𝑘 = 𝑥0 + 𝑥1𝛼 𝑗𝑘 + 𝑥2𝛼
2
𝑗𝑘 + · · · + 𝑥𝑚𝛼

𝑚
𝑗𝑘 (38) 𝐶𝑑 𝑗𝑘

= 𝑦0 + 𝑦1𝛼 𝑗𝑘 + 𝑦2𝛼
2
𝑗𝑘 + · · · + 𝑦𝑛𝛼

𝑛
𝑗𝑘 (39)

Using these lift and drag coefficient polynomials, the BET thrust and torque can be computed with Eq. (40) and
Eq. (41) .

𝑇 =

(
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

1
2
𝜌𝐶𝑙 𝑗𝑘 𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘𝑑𝑟

)
−

(
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

1
2
𝜌𝐶𝑑 𝑗𝑘

𝑐 𝑗𝑘𝑉
2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘𝑑𝑟

)
=

1
2
𝜌𝑑𝑟

[(
𝑚∑︁
𝑜

𝑥𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘

)
−

(
𝑛∑︁
𝑜

𝑦𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘

)] (40)

𝑄 = −𝜁 1
2
𝜌𝑑𝑟

[(
𝑚∑︁
𝑜

𝑥𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘

)
+

(
𝑛∑︁
𝑜

𝑦𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘

)]
(41)

With the previous definitions of the thrust and the torque, it is possible to create a system of the
−→
𝐴−→𝑥 =

−→
𝑏 form.

Each pair of rows of the A matrix and the b vector corresponds to the thrust and torque of a data point from the BET and
healthy UAV models, respectively. A data point refers to a set of conditions (

−→
𝑉 𝐵,

−→
Ω, 𝜔) that are provided as input to

both models. Equations (42) to (48) show the different components of the system with 𝑞 data points.

𝑙𝑜1 =

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘 (42) 𝑙𝑜2 = −
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘 (43)

10

𝑙𝑜3 = −𝜁
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘 (44) 𝑙𝑜4 = −𝜁
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘 (45)

−→
𝐴 =

1
2
𝜌𝑑𝑟



(𝑙01)1 (𝑙11)1 · · · (𝑙𝑚1)1 (𝑙02)1 (𝑙12)1 · · · (𝑙𝑛2)1
(𝑙03)1 (𝑙13)1 · · · (𝑙𝑚3)1 (𝑙04)1 (𝑙14)1 · · · (𝑙𝑛4)1
(𝑙01)2 (𝑙11)2 · · · (𝑙𝑚1)2 (𝑙02)2 (𝑙12)2 · · · (𝑙𝑛2)2
(𝑙03)2 (𝑙13)2 · · · (𝑙𝑚3)2 (𝑙04)2 (𝑙14)2 · · · (𝑙𝑛4)2
...

... · · ·
...

...
... · · ·

...

(𝑙01)𝑞 (𝑙11)𝑞 · · · (𝑙𝑚1)𝑞 (𝑙02)𝑞 (𝑙12)𝑞 · · · (𝑙𝑛2)𝑞
(𝑙03)𝑞 (𝑙13)𝑞 · · · (𝑙𝑚3)𝑞 (𝑙04)𝑞 (𝑙14)𝑞 · · · (𝑙𝑛4)𝑞


(46)

−→𝑥 =

[
𝑥0 𝑥1 · · · 𝑥𝑚 𝑦0 𝑦1 · · · 𝑦𝑛

]𝑇
(47)

−→
𝑏 =

[
(𝑇)1 (𝑄)1 (𝑇)2 (𝑄)2 · · · (𝑇)𝑞 (𝑄)𝑞

]𝑇
(48)

The output of the BET model, namely the
−→
𝐴 matrix, has to be averaged over a rotation of the propeller, integrating

over the azimuth angle [20]. Equation (49) shows how this is done for 𝑙01; the same procedure can be applied to 𝑙02 , 𝑙03 and
𝑙04 . In practice, instead of integrating, a specific discrete number of rotation angles are chosen, and their contributions to
the

−→
𝐴 matrix are computed and averaged.

𝑙𝑜1 =
1

2𝜋

∫ 2𝜋

𝜓=0

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘 (·)𝑐 𝑗𝑘 (𝑟 𝑗𝑘)𝑉2

𝐴 𝑗𝑘
(·) cos 𝜙 𝑗𝑘 (·) 𝑑𝜓 (49)

In order to guarantee that the lift and drag curves with respect to the angle of attack have their characteristic
recognisable shape, a constrained optimisation problem is posed in order to include airfoil aerodynamic knowledge in
the solver. Given that there is a large difference in scale between the thrust and torque values, the Normalised Root
Mean Squared Error (NRMSE) is used as objective function (Eq. (50) and Eq. (51)); the standard deviation of the
aerodynamic gray-model output (𝜎𝑏; the standard deviation of the observations) is the normalisation factor. Instead of
computing the error for the thrust and torque equations together and computing the standard deviation of the complete
−→
𝑏 vector, their errors and their respective observations’ standard deviations were computed separately. The figure that
the optimisation function aims at minimising is the averaged thrust and torque NRMSE, as can be seen in Eq. (52).
Hence, the objective function for the computation of the aerodynamic parameters −→𝑥 ∗ is defined in Eq. (53).

−→𝜖 =
−→
𝑏 − −→

𝐴−→𝑥 (50) NRMSE =

√︂(−→𝜖 𝑇 · −→𝜖
)
/𝑁

𝜎𝑏

(51)

NRMSEtotal =
NRMSE𝑇 + NRMSE𝑄

2
(52)

−→𝑥 ∗ = arg min
−→𝑥

NRMSEtotal (53)

Furthermore, the following lenient constraints were used to achieve the recognisable shape of the lift and drag
coefficient curves:

1) The maximum lift coefficient can not be higher than 5 within the angle of attack range of -30 to 30 degrees:
𝐶𝑙 (𝛼) < 5, ∀𝛼 ∈ [−30◦, 30◦].

2) The lift coefficient curve should have a negative slope within the angle of attack range of 25 to 30 degrees:
𝑑𝐶𝑙 (𝛼)/𝑑𝛼 < 0, ∀𝛼 ∈ [25◦, 30◦].

3) The lift coefficient curve should have a positive slope within the angle of attack range of 0 to 7 degrees:
𝑑𝐶𝑙 (𝛼)/𝑑𝛼 > 0, ∀𝛼 ∈ [0◦, 7◦].

4) The lift coefficient curve should intersect the angle of attack axis within the angle of attack range of -10 to 10
degrees: min𝐶𝑙 (𝛼) < 0, ∀𝛼 ∈ [−10◦, 10◦].

5) The drag coefficient curve can not be negative within the angle of attack range of -30 to 30 degrees: 𝐶𝑑 (𝛼) >
0, ∀𝛼 ∈ [−30◦, 30◦].

11

For the declaration of these constraints, matrix
−→
𝐶 (−→𝛼) ∈ 𝑅𝑠×(𝑚𝑛) is created with the range of angles of attack

mentioned in each constraint definition. The matrix has the same number of rows as integer angles within the constraint
range, namely 𝑠 = 𝛼max − 𝛼min + 1 for 𝛼 ∈ [𝛼min, 𝛼max]; each row corresponds to an angle of attack. The number of
columns equals the length of the parameter vector −→𝑥 . Its input is an angle of attack vector which is a function of the
𝛼min and 𝛼max, as can be deduced from its definition in Eq. (54) and Eq. (55).

−→𝛼 (𝛼min, 𝛼max) =
[
𝛼0 𝛼1 · · · 𝛼𝜂

]𝑇
(54) 𝛼𝜂 = 𝛼min + 𝜂, 𝜂 = 0, . . . , 𝑠 − 1 (55)

Since a constraint regarding the lift coefficient curve does not require information about the drag coefficient
parameters, the last 𝑛 columns will be full of zeros (Eq. (56)) for constraints 1 and 4. In the case of the drag constraint
(constraint 5), it would be the first 𝑚 columns that would be full of zeros, as shown in Eq. (57). Constraints 2 and
3 impose a limit in the gradient of the curve, so the derivative of

−→
𝐶𝐶𝑙

with respect to the angle of attack is taken in
Eq. (58).

−→
𝐶𝐶𝑙

(−→𝛼) =


1 𝛼0 𝛼2

0 · · · 𝛼𝑛
0

1 𝛼1 𝛼2
1 · · · 𝛼𝑛

1
...

...
... · · ·

...

1 𝛼𝑠−1 𝛼2
𝑠−1 · · · 𝛼𝑛

𝑠−1

����������
−→
0 𝑠×𝑚


(56)

−→
𝐶𝐶𝑑

(−→𝛼) =


−→
0 𝑠×𝑛

����������
1 𝛼0 𝛼2

0 · · · 𝛼𝑛
0

1 𝛼1 𝛼2
1 · · · 𝛼𝑛

1
...

...
... · · ·

...

1 𝛼𝑠−1 𝛼2
𝑠−1 · · · 𝛼𝑛

𝑠−1


(57)

𝑑
−→
𝐶𝐶𝑙

(−→𝛼)
𝑑𝛼

=


0 1 2𝛼0 · · · 𝑚𝛼𝑚−1

0
0 1 2𝛼1 · · · 𝑚𝛼𝑚−1

1
...

...
... · · ·

...

0 1 2𝛼𝑠−1 · · · 𝑚𝛼𝑚−1
𝑠−1

����������
−→
0 𝑠×𝑚


(58)

The
−→
𝐶 matrix or its derivative is multiplied with the parameter vector −→𝑥 and the maximum or minimum value from

the output is taken for the definition of the inequality constraints. As a result, the following constrained optimisation
problem is posed:

min−→𝑥
NRMSEtotal

s.t. max
(−→
𝐶𝐶𝑙

(−→𝛼)−→𝑥
)
− 5 < 0, (𝛼min, 𝛼max) = (−30, 30)

max

(
𝑑
−→
𝐶𝐶𝑙

(−→𝛼)
𝑑𝛼

−→𝑥
)
< 0, (𝛼min, 𝛼max) = (25, 30)

min

(
𝑑
−→
𝐶𝐶𝑙

(−→𝛼)
𝑑𝛼

−→𝑥
)
> 0, (𝛼min, 𝛼max) = (0, 7)

min
(−→
𝐶𝐶𝑙

(−→𝛼)−→𝑥
)
< 0, (𝛼min, 𝛼max) = (−10, 10)

min
(−→
𝐶𝐶𝑑

(−→𝛼)−→𝑥
)
> 0, (𝛼min, 𝛼max) = (−30, 30)

(59)

Figure 14 visually illustrates the lift and drag coefficient identification with a flowchart.

VI. Results
The department of Control & Simulation at Delft University and Technology developed in 2019 a gray-box

aerodynamic model of the Bebop 2 drone based on wind tunnel experiments [28]. To demonstrate the presented
methodology, it will be used as the healthy UAV identified model, turning the Bebop 2 into the platform of choice.

12

Hyper-parameter
selection

Blade section
airspeed computation

Eq. (26)

Data point input
generation

Uniform induced
inflow computation

Eq. (19)

Blade section linear
induced inflow

computation

Eq. (21)

Blade section angle of
attack computation

Eq. (27)

Blade section
contribution to

regression matrix A
computation

Propeller contribution to
regression matrix A

computation

Eqs. (42)-(45)

Blade contribution to
regression matrix A

computation

Propeller geometry
definition

Gray-box model
thrust and torque

computation

Propeller contribution to A over
a complete propeller rotation

average computation

Eq. (2.49)

Regression matrix A
composition

Eq. (2.46)

Constrained problem
optimisation

Eq. (59)

Blade section: k
k = 1, 2,

Propeller clockwise
rotation

Propeller: i
i = 1

Measurement vector b
composition

Eq. (48)

Blade: j
j = 1, 2,

Repeat q times

Hyper-parameter
selection

Propeller geometry
definition

Fig. 14 Flowchart of the offline lift and drag coefficient curves identification.

A. Bebop 2 lift and drag coefficients identification
Table 1 summarises the geometry of the Bebop 2 drone and propeller. Besides that, in section V it was mentioned

that the aerodynamic gray-box and BET models require as input for each data point a set of conditions (
−→
𝑉 𝐵,

−→
Ω, 𝜔)

beyond the drone geometry. The range of those input conditions is also explained next:

Table 1 Geometrical properties of the Bebop 2 drone and propeller.

Drone geometry Propeller geometry
b l 𝑐𝑟 𝑐𝑐 𝑐𝑡 ℎ1 & ℎ2 R 𝑛𝑏 𝜃0 𝜃𝑡𝑤

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (-) (◦) (◦/mm)
115 87.5 13 20 8 32 75 3 27 0.29

1) The drone linear velocity is constrained in the x-z plane (𝑉𝐵
𝑦 =0). Its value in the z-direction (𝑉𝐵

𝑧) is sampled
from a uniform distribution over the closed interval [-2, -0.5] m/s, avoiding positive velocities in the z-axis that
could cause nonlinear behaviour, e.g. Vortex Ring State, that was not accounted for by the aerodynamic gray-box
model.
Furthermore, the value of the drone linear velocity in the x-direction (𝑉𝐵

𝑥) is also sampled from a uniform
distribution, in this case over the closed interval [-3, 3] m/s. As a result, for the identification of the lift and drag
curves only scenarios in which the drone is ascending, flying forward or backwards are considered.

2) The angular velocity of the drone is always zero (
−→
Ω =

−→
0).

3) The rotation velocity of the propeller (𝜔) is sampled from a uniform distribution over the closed interval [300,
1256] rad/s.

Furthermore, the drag and lift curves were approximated with second degree polynomials (𝑚 and 𝑛 equal 2) and
the integral with respect to the azimuth angle presented in Eq. (49) was approximated with 10 discrete equally spaced
azimuth angles starting at 0◦, namely [0◦, 36◦, 72◦, ..., 288◦, 324◦]. The constrained optimisation method is posed using
Python’s Scipy package with the trust-region interior point method ("trust-constr") [29] solver. Additionally, the number
of blade sections (𝑛𝑏𝑠) and the number of data points used for the identification (𝑞) were 100 and 16,000, respectively.

Using the aforementioned chosen hyper-parameters, the data gathering and optimisation took 10,707 seconds (2
hours and 58 minutes) in a consumer laptop with an Intel Core i7-9750H CPU running Python 3.7. Equations (60) and
(61) show the identified polynomials that define the airfoil lift and drag curves with respect to the angle of attack. Plots
of these polynomials in Fig. 15 and Fig. 16 show the characteristic shape expected from those aerodynamic curves.
Only the 5th constraint in section V is limiting in the solution, namely that the drag coefficient cannot be negative.

𝐶𝑙 = 0.24 + 5.15𝛼 − 12.25𝛼2 (60) 𝐶𝑑 = 0.0092 − 0.79𝛼 + 15.13𝛼2 (61)

The identified aerodynamic model is validated in appendix B by verifying that the model residuals approximate zero
mean white noise.

13

−10 −5 0 5 10 15 20 25 30
α [deg]

−1.0

−0.5

0.0

0.5

C l
 [-

]

Fig. 15 Identified airfoil lift coefficient curve with
respect to the angle of attack from the aerodynamic
gray-box model [12] data. Illustration of Eq. (60).

−10 −5 0 5 10 15 20 25 30
α [deg]

0

1

2

3

C d
 [-

]

Fig. 16 Identified airfoil drag coefficient curve with
respect to the angle of attack from the aerodynamic
gray-box model [12] data. Illustration of Eq. (61).

B. Bebop 2 mass and aerodynamic forces and moments
To observe the magnitude of the forces and moments caused by the change in mass, the front left Bebop 2 propeller

is simulated as damaged with a loss of 20% of its length. It is rotating at 600 rad/s counterclockwise from a top-down
view (𝜁=-1) for 0.25 seconds. The attitude of the drone is such that the z-axis direction of the propeller and inertial

coordinate frame coincide. Additionally, the drone is moving with a body linear velocity
−→
𝑉 𝐵 =

[
3 0 −1

]𝑇
[m/s] and

body angular velocity
−→
Ω =

−→
0 rad/s. The Bebop 2 propeller has a total mass of 5.07 [g] and a mass per blade (without

the central hub) of 1.11 [g].
Figures 17 and 18 show the forces and moments caused by the change of mass for the aforementioned scenario,

respectively. As can be observed, the forces and moments in the x- and y- directions have a oscillatory behaviour due to
the propeller rotations. Additionally, since the drone’s propeller z-axis is aligned with its counterpart in the inertial
frame, the gravity force coincides with the z-axis in the propeller coordinate frame, leading to a constant force in the
z-direction and a zero moment about the z-axis.

−2.5
0.0
2.5

FP m
x [

N
]

−2.5
0.0
2.5

FP m
y [

N
]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−1.55
−1.50
−1.45

FP m
z [

N
]

1e−3

Fig. 17 BET-simulated evolution of forces caused
due to mass change upon 20% Bebop 2 blade damage
for 0.25 s rotating at 𝜔0 = 600 rad/s.

−1

0

1

M
P m

x [
N

m
] 1e−4

−1

0

1

M
P m

y [
N

m
] 1e−4

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5

0

5

M
P m

z [
N

m
] 1e−2

Fig. 18 BET-simulated evolution of moments caused
due to mass change upon 20% Bebop 2 blade damage
for 0.25 s rotating at 𝜔0 = 600 rad/s.

Next, the aerodynamic forces and moments are also analysed for the same 0.25 s Bebop 2 propeller scenario, leading
to the results illustrated in Fig. 19 and Fig. 20. As can be observed, the forces and moments around the y-axis are
centred around the 0 datum, whereas the wrenches in the x- and z-direction are biased. The wrench in the x-direction is
negatively biased because the lift and drag forces are the highest when the damaged blade is advancing and not retreating.
Since the propeller is rotating counterclockwise, the thrust produced when the blade is advancing creates a negative
moment around the x-axis and the force creating the torque points towards the negative x-direction. The oscillatory
motion in the z-direction is also due to the incoming air velocity from the vehicle linear and angular velocities, which
causes the damaged blade incoming flow to be different when it is advancing than when it is retreating. In the case
that the drone were hovering, then the aerodynamic wrench in this direction would be constant and will have a value
approximately equal to the observed bias.

14

−5
0
5

FP a x
 [N

]
1e−3

−5
0
5

FP a y
 [N

]

1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−6

−4

FP a z
 [N

]

1e−2

Fig. 19 BET-simulated evolution of aerodynamic
forces generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

−2.5
0.0
2.5

M
P a x

 [N
m

] 1e−3

−2.5
0.0
2.5

M
P a y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

3.5
4.0
4.5

M
P a z

 [N
m

] 1e−4

Fig. 20 BET-simulated evolution of aerodynamic
moments generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

Furthermore, Fig. 21 and Fig. 22 show the mass and aerodynamic caused forces and moments super-imposed. The
mass change effects are predominant in the x- and y-components of the force, whereas the aerodynamic effects are
predominant in the force z-direction and in all moment directions.

−2.5
0.0
2.5

FP . x
 [N

]

−2.5
0.0
2.5

FP . y
 [N

]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5

0

FP . z
 [N

]

1e−2
Mass effects
Aerodynamic effects

Fig. 21 BET-simulated evolution of mass and aero-
dynamic forces generated by lost blade sections upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s.

−2.5
0.0
2.5

M
P . x

 [N
m

] 1e−3

−2.5
0.0
2.5

M
P . y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.0

2.5

M
P . z

 [N
m

] 1e−4
Mass effects
Aerodynamic effects

Fig. 22 BET-simulated evolution of mass and aero-
dynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating
at 𝜔0 = 600 rad/s.

Finally, the mass and aerodynamic effects around the propeller’s centre of rotation are combined as shown by
Eq. (62) and Eq. (63); quantities that will be used in the validation phase. Combining both effects for the discussed 0.25
s simulation leads to Fig. 23 and Fig. 24. Previous literature is correct in focusing on the mass related centrifugal forces,
since they are one to three orders of magnitude greater than the rest. However, they ignore the effects outside the x-y
plane in the propeller coordinate frame, especially the force in the z-direction. Although subtle, the oscillations in the
moment signals could help in the identification of the blade damage.

Δ
−→
𝐹 𝑃 =

−→
𝐹 𝑃

𝑚1 +
−→
𝐹 𝑃

𝑚2 −
−→
𝐹 𝑃

𝑎1 −
−→
𝐹 𝑃

𝑎2 (62) Δ
−→
𝑀𝑃 =

−→
𝑀𝑃

𝑚 − −→
𝑀𝑃

𝑎1 −
−→
𝑀𝑃

𝑎2 (63)

Even though there is a different order of magnitude among the forces and the moments, all the signals are oscillatory.
Figures 25 and 26 show the upper and lower limit of these wrench oscillations for different degrees of blade damage,
namely from 0% (intact blade) to 100% (complete blade loss). All forces and moments have their upper and lower limits
symmetric with respect to the 0 datum, except the force and moment in the z-direction. Δ𝐹𝑃

𝑧 moves in the positive
direction with increasing blade damage — the higher the blade damage, the larger the thrust loss (positive thrust points
down in the propeller coordinate system). Δ𝑀𝑃

𝑧 moves in the negative direction with increasing blade damage because
the analysis is done on a counter-clockwise rotating propeller.

The higher the blade damage, the higher the oscillations. However, depending on whether the dominating effect is
mass or aerodynamic, the behaviour of those limits is different. The gradient of the upper and lower limits of Δ𝐹𝑃

𝑥 can
be observed in Fig. 27; the gradient first increases and around 50% starts decaying. This is caused by the modelled
double trapezoid Bebop 2 blade shape. As the blade is progressively damaged from the tip (0% damage) to the location

15

−2.5
0.0
2.5

ΔF
P x
 [N

]

−2.5
0.0
2.5

ΔF
P y
 [N

]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

4

6

ΔF
P z
 [N

] 1e−2

Fig. 23 BET-simulated evolution of forces upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

−2.5
0.0
2.5

ΔM
P x
 [N

m
] 1e−3

−2.5
0.0
2.5

ΔM
P y
 [N

m
] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−4.5
−4.0
−3.5

ΔM
P z
 [N

m
] 1e−4

Fig. 24 BET-simulated evolution of moments upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s.

−1
0
1

ΔF
P x
 [N

] 1e1

−1
0
1

ΔF
P y
 [N

] 1e1

0 20 40 60 80 100
BD [%]

0.0

2.5

ΔF
P z
 [N

] 1e−1
Upper limit
Lower limit

Fig. 25 Upper and lower limits of the forces’ oscil-
lations for different degrees of BET-simulated blade
damage.

0
1

ΔM
P x
 [N

m
] 1e−2

−1
0
1

ΔM
P y
 [N

m
] 1e−2

0 20 40 60 80 100
BD [%]

−2.5

0.0
ΔM

P z
 [N

m
] 1e−3

Upper limit
Lower limit

Fig. 26 Upper and lower limits of the moments’
oscillations for different degrees of BET-simulated
blade damage.

of the central chord (50% damage) the removed blade sections are progressively growing in size, causing constantly
greater shifts of the centre of gravity and, hence, greater increments in the centrifugal force. When the damage reaches
the maximum chord, the removed blade sections start to decrease in size, leading to smaller centre of gravity shifts and
more slowly growing centrifugal forces.

20 40 60 80 100
BD [%]

−2

−1

0

1

2

d
d
BD
ΔF

P x
 [N

/%
]

1e−1

Upper limit
Lower limit

Fig. 27 Gradient of the upper and lower limits of the
Δ𝐹𝑃

𝑥 oscillations with respect to different degrees of
BET-simulated blade damage.

20 40 60 80 100
BD [%]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

d
d
BD
ΔM

P x
 [N

m
/%

]

1e−3
Upper limit
Lower limit
S=const
vi=0
S=const & vi=0

Fig. 28 Gradient of the upper and lower limits of
the Δ𝑀𝑃

𝑥 oscillations with respect to different degrees
of BET-simulated blade damage. The non solid lines
represent scenarios in which the blade section area is
constant and/or there is no induced velocity.

Figure 28 shows the gradients of the upper and lower oscillation limits of Δ𝑀𝑃
𝑥 , an aerodynamic dominated wrench

component. As can be observed, the moment gradient increases in magnitude until approximately 30%. This initial
increment is caused by the combined effect of the increasing blade section area when traversing the blade from the tip

16

towards the central maximum chord and the induced velocity, which ultimately affects the angle of attack. This can be
observed when the blade section area is made constant and the induced velocity is removed, then the oscillations are
only decaying in amplitude. However, when at least one of these two factors is still active, there is an initial increment in
the gradient.

When the 30% blade damaged is reached, the reducing distance from the blade section to the centre of rotation (𝑟 𝑗𝑘)
becomes the most influential factor in the further decay of the gradient. Δ𝑀𝑃

𝑥 is proportional to 𝑟3
𝑗𝑘

when considering
that at high propeller rotational rates the airspeed is dominated by 𝑉𝐴 𝑗𝑘2

(Eq. (16)), which is a function of 𝑟𝑖 𝑗𝑘 , and the
airspeed is squared in the computation of Δ𝐿𝑘 and Δ𝐷𝑘 (Eq. (11) and Eq. (12)). The lift and drag components are then
used for the computation of the Δ𝑇𝑗𝑘 , which is multiplied again by 𝑟 𝑗𝑘 to obtain the moment.

C. Importance of induced velocity
The importance of including the induced velocity in the aerodynamic calculations outlined in subsection IV.A

becomes clear when comparing Fig. 29 and Fig. 30. When the linear induced velocity model is included, the amplitude
of the oscillations and the datum around which they oscillate are decreased in magnitude. This is attributed to the
reduction in the angle of attack created by the introduction of 𝑣𝑖 , a consequence which can be observed in Fig. 31 and
Fig. 32. These figures show box plots of the angles of attack seen by each of the 100 blade sections in the 16,000
scenarios used for identification of the lift and drag curves (subsection VI.A) with and without the linear induced
velocity model, respectively.

−1
0
1

FP a x
 [N

]

1e−2

−1
0
1

FP a y
 [N

]

1e−2

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−1.0

−0.5

FP a z
 [N

]

1e−1
Linear vi
vi=0

Fig. 29 BET-simulated evolution of aerodynamic
forces generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 [s] rotating at 𝜔0 =

600 [rad/s] with and without linear inflow model.

−5
0
5

M
P a x

 [N
m

] 1e−3

−5
0
5

M
P a y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.5

1.0

M
P a z

 [N
m

] 1e−3
Linear vi
vi=0

Fig. 30 BET-simulated evolution of aerodynamic
moments generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 [s] rotating at 𝜔0 =

600 [rad/s] with and without linear inflow model.

10 20 30 40 50 60 70 80 90 100
Blade section number [-]

0

5

10

15

20

25

α
[d

eg
]

Fig. 31 Box plot with the angles of attack seen by
each BET-simulated blade section during 16,000 data
point optimisation without induced velocity model.
The inputs that shape each data point are taken from
uniform distributions with the following value ranges:
−→
𝑉 𝐵

𝑥 =[-3, 3] m/s, −→𝑉 𝐵
𝑦 =0 m/s, −→𝑉 𝐵

𝑧 =[-2.5, -0.5] m/s,
−→
Ω =

−→
0 rad/s, 𝜔 =[300, 1256] rad/s.

10 20 30 40 50 60 70 80 90 100
Blade section number [-]

−15

−10

−5

0

5

10

α
[d

eg
]

Fig. 32 Box plot with the angles of attack seen by
each BET-simulated blade section during 16,000 data
point optimisation with linear inflow velocity model.
The inputs that shape each data point are taken from
uniform distributions with the following value ranges:
−→
𝑉 𝐵

𝑥 =[-3, 3] m/s, −→𝑉 𝐵
𝑦 =0 m/s, −→𝑉 𝐵

𝑧 =[-2.5, -0.5] m/s,
−→
Ω =

−→
0 rad/s, 𝜔 =[300, 1256] rad/s.

17

From the angle of attack box plots (Fig. 31 and Fig. 32), the following additional observations can be made:
1) Apart from the general reduction in the angle of attack, the line that could be drawn from the blade sections’

angle of attack medians only becomes linear at a higher angle of attack when the induced velocity model is
introduced. In contrast, when 𝑣𝑖 = 0 the median line is linear for the largest part of the plot. Even though the 𝑣𝑖
model is linear, it is important to remind the reader that this property applies in the x and y directions in the
propeller reference frame, as can be observed in Fig. 12, not along the blade radial direction.

2) Even though the twist of the blade goes from 25◦ to 5◦ from the root to the tip, the line of medians of Fig. 31 has
a lower value than the twist — especially close to the root — because the distribution of the linear body velocity
in the z-direction is biased towards negative values (the drone is flying upwards). In subsection VI.A it was
established that 𝑉𝐵

𝑧 has a value in the closed interval [-2,-0.5] m/s.
3) For both scenarios, the range of angles of attack is larger at the root due to the higher sensitivity to the vehicle’s

velocity; the blade section tangential velocity due to the propeller’s rotation is lower at the root than at the tip.
The value of the induced velocity and its effect on the angle of attack can also be visualised in the propeller plane, as

illustrated in Fig. 33a and Fig. 33b for the Bebop 2 propeller located on the front left of the vehicle. The propeller is
moving towards the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise. The empty internal
concentric circle represents the propeller hub, which is not an aerodynamic surface, resulting in an annulus heat map.
Figure 33b reflects the same behaviour as in Fig. 32 but in 2D, namely that the angle of attack rapidly increases close to
the root until about 35% of the blade before it starts decaying more slowly towards the tip. The low angle of attack
values close to the root in the direction of 𝜓 =270◦ correspond to the retreating blade sections whose airspeed caused by
the propeller rotation (

−→
𝑉 𝐵𝐿

𝐴 𝑗𝑘2
) acts in opposite direction to the airspeed caused by the linear and angular displacement of

the vehicle (
−→
𝑉 𝐵𝐿

𝐴 𝑗𝑘1
). When the rotational speed is lowered to 300 rad/s, the stalled retreating blade sections become

more apparent, as shown in Fig. 33c.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘
7.5

7.6

7.7

v i
, m

/s

(a) 𝜔 =1256 rad/s

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−1

0

1

α,
 ra

d
1e−1

(b) 𝜔 =1256 rad/s

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−1

0

1

α,
 ra

d

1e−1

(c) 𝜔 =300 rad/s

Fig. 33 Heat map of the linear induced model velocity and angle of attack for the BET-simulated front left
Bebop 2 propeller moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise.

Finally, Fig. 34a and Fig. 34b show the same induced velocity and angle of attack plots when a uniform induced
flow is considered. As can be observed, the variations in both variables brought by the linear model corrections are very
small, practically unnoticeable in the angle of attack when comparing the results with Fig. 33b. While the uniform
inflow model creates an induced velocity of 7.6 m/s across the complete blade, the linear inflow model creates an
induced velocity that varies from 7.48 to 7.72 m/s. Even though literature has proven empirically that the linear inflow
model is more accurate than the uniform counterpart [23], the difference can be considered negligible for propellers of
small radius, as it is the case for most commercial drones such as the Bebop 2; a dependency on the blade radius which
can be deduced from Eq. (21). The effect of the linear model can be observed in the main rotor system of helicopters
which have blades longer than 1.5 metres.

Hence, the additional computations required for the uniform model corrections could be ignored in simulation.
However, it is essential to include the uniform induced model, as it has been shown that it can modify the vertical
airspeed seen by the blade sections from 1 to 8.6 m/s at full propeller rotational speed (1256 rad/s) for the Bebop 2
example scenario (Fig. 34a). This effect can be visualised when comparing the angle of attack heat map when there is a
uniform induced velocity, as it is the case in Fig. 34b, to the scenario when 𝑣𝑖 = 0 shown in Fig. 34c. The latter figure is
a 2D representation of Fig. 31. The importance of the uniform inflow model is especially noticeable at the retreating
blade sections close to the root.

18

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘
7

8

v i
, m

/s

(a) Uniform induced model

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−1

0

1

α,
 ra

d

1e−1

(b) Uniform induced model

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘ −2.5

0.0

2.5

α,
 ra

d

1e−1

(c) No induced model

Fig. 34 Heat map of the induced model velocity and angle of attack for the BET-simulated front left Bebop 2
propeller rotating at 1256 rad/s and moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating
counter-clockwise.

D. Assumptions and recommendations
For the development of the blade damage forces and moments model, as well as the lift and drag coefficient curves

identification, the following assumptions were made:
1) The mass along the blade is homogeneous, meaning that the centroid equals the location of the centre of gravity.
2) The Bebop 2 blades are simplified as two trapezoids with parallel sides connected by the long parallel side.
3) The twist decreases linearly from the root to the tip.
4) The airfoil is constant throughout the blade.
5) The cross flow along the span of the blade is ignored.
6) Aeroelasticity effects are ignored.
7) The blade root and tip lift losses are ignored.
8) The induced velocity is computed with the simplified linear induced inflow. It is assumed to be a good

approximation of the real induced velocity as demonstrated empirically in previous literature.
9) The nonlinear aerodynamic effects between (damaged) blades are not considered.

10) The nonlinear aerodynamic effects between propellers are not considered.
11) The nonlinear aerodynamic effects between the propellers and the body frame are not considered.
12) The data used for the identification of the lift and drag coefficient curves is obtained from the aerodynamic

gray-box model [12] that provides the propeller thrust. Hence, the present work adopts the assumptions taken for
the development of this model.

13) The blade is cut parallel to the edge of the propeller, perpendicular to its span, such that the remaining polygon is
still a trapezoid. Hence, slanted or irregular cuts are not considered.

Further work in the simulation of propeller damage could be oriented towards the refinement of the model developed
in this chapter in order to remove one or multiple of the aforementioned assumptions; contributing to its generalisation
and application to different propeller types. For instance, the geometrical assumptions 1)-4) could be eliminated by
creating a 3D model (digital twin) of the propeller using scanning technologies that probe the propeller through physical
touch (with contact), such as Coordinate Measuring Machines [30], or scanning technologies that exploit acoustic,
optical or magnetic approaches (without contact), such as laser scanning, structured light or photogrammetry [31, 32]
(e.g. structure from motion). If translated to a CAD model, this would allow the computation of the twist, chord and
volume of each blade section, the latter being used for the computation of the centre of gravity when the density of the
material is known. Additionally, such model would contribute to the potential discovery of multiple airfoils present in
the blade. If that would be the case, the parameter vector of Eq. (47) would be expanded with the polynomial coefficients
used to identify the lift and drag coefficient curves of those additional airfoils.

Assumptions 5)-11) are related to the degree of aerodynamic complexity introduced in the model. In particular,
assumption 6) points out that aeroelastic effects have been ignored. Most literature in this regard is oriented towards the
modelling of helicopter aeroelastic and blade flapping behaviour [33]. Unfortunately, this knowledge is not directly
applicable to drones given that helicopters have a horizontal hinge, also known as flapping hinge, which allows the
blade to be displaced up and down to compensate for the rotor lift dissymmetry [23]. Instead, commercial drone rotors
lack an articulated head, causing their material to bend and the rotor to tilt with the possibility of flapping [34]. As an
alternative, the field of wind energy could be explored since Blade Element Momentum Theory approaches have been
used as the aerodynamic component of wind turbine aeroelastic models [35]. However, given the circular dependency
between the blade deformations (aeroelastic effects), the induced velocity, and the generated moments and forces, the
authors consider such implementation to be challenging for real-time simulations.

19

Assumption 7) mentions that the blade root and tip losses were ignored. At those blade locations, the circulation
must be equal to zero and at the tip there is an additional reduction of lift due to the appearance of tip vortices —
airflow around the tip due to the pressure difference between the pressure side (high pressure) and the suction side (low
pressure). In the field of wind energy [19], these effects are taken into account by multiplying the induced velocity with
a correction factor that is a function of the distance to the centre of rotation (r). This factor would acquire a value of 1 in
the centre of the blade and a value of 0 at the edges, allowing the induced velocity to fall to zero at the blade edges.
Alternatively, previous literature [19, 23, 36] has also proposed the Prandtl tip-loss factor approximation (B=0.95-0.98)
to compute the effective blade radius (R𝑒 = BR) and account for the loss of blade lift. As a result, the outer portion of
the blade (R-R𝑒) is considered to be incapable of carrying lift. Given that in helicopter aerodynamics the introduction
of the tip loss factor can cause rotor thrust reductions between 6-10% [23], the study of its implementation in drone
propellers is recommended for the further improvement of the BET thrust and torque predictions.

Regarding the induced velocity model used (assumption 8)), a comprehensive benchmark study of the different
induced inflow models applied to drone propellers is missing in the current literature and it could be considered a line of
further work. It is recommended that future studies investigate the suitability and accuracy of the inflow models of
Mangler and Squire [37, 38] and Ormiston [39, 40]. The former associates the pressure field across the rotor disk to
the inflow with the incompressible, linearised Euler equations. This method originally requires to solve for the rotor
loading (Δ𝑝) using BET, an approach which is computationally expensive when compared to the linear induced inflow
model that optimises the induced velocity before the first BET iteration. However, for the purpose of this research, the
thrust obtained from the gray-box aerodynamic model can be used for the computation of the required rotor loading
(𝑇 = 𝜋𝑅2Δ𝑝), allowing the 𝑣𝑖 identification before any BET computation.

Other interesting approaches to consider include linear inflow models, such as those from Payne [41] and Pitt &
Peters [25], as well as the Pitt-Peters [42] and the Peters-He [43, 44] dynamic inflow models. The last two approaches
have been consolidated and broadly used in the field of rotorcraft dynamics because they exploit unsteady actuator disc
theory for hover and forward flight. Instead of ignoring wind-speed fluctuations by averaging the wind field (frozen
wake model) or assuming that the instantaneous wind velocity corresponds to that of steady-flow conditions (equilibrium
wake model), these dynamic inflow models accurately describe the wake behaviour by assuming the existence of a
delay before the induced inflow reacts to modifications in the wind field (unsteady-flow) [19]. Additionally, they are
both represented in state-space form, which could be implemented and solved in real-time simulations, and there exist
augmentations to their original formulations which include wake distortion effects during manoeuvring flight [45].
Furthermore, even though vortex methods are much more accurate, their computational cost is too high for online blade
damage simulations [23, 46].

For the introduction of non-linear inter-propeller, inter-blade or body-blade interactions (assumptions 9)-11)), the
creation of a data-driven model that provides the highly nonlinear lift and drag contributions of each blade section,
that are not encapsulated in the BET model, is recommended. Similar work that could serve as inspiration is carried
out within the field of aerodynamics, discipline in which turbulence is modelled for Reynolds-Averaged Navier-Stokes
(RANS) computations using artificial intelligence [47, 48] (data assimilation for CFD closure). In this approach, physics
is exploited for simulating large scale flow behaviours, whereas machine learning, a mostly black-box approach, is used
for modelling the highly nonlinear lower scale turbulence using experimental data. Within aerodynamics, this method is
valued for its low computational cost when compared to higher fidelity but more expensive simulations, such as Direct
Numerical Simulations.

Finally, the gray-box aerodynamic model [28] is a data-driven identification approach with physical and semi-physical
parameters. Its parametric model structure, namely a piecewise polynomial, is variable since components have been
added and removed according to a stepwise selection scheme depending on their contribution to the model accuracy.
Beyond its structure, the main model assumption derives from the identification of its parameters with wind tunnel data
obtained in quasi-steady flow conditions; there is no rate of change of velocity with time at a single point in the test
section volume but the vehicle states, such as the angle of attack, constantly change due to its circular flight motion. It
does not enter the unsteady-aerodynamic flow regime because effects caused by the changing circulation and wake
on the aerodynamic surfaces are not considered. Future research that would aim to use the developed fault detection
and identification framework "in the wild" under the presence of wind field changes, drastic manoeuvres, gusts and
turbulences would require the revision of this assumption.

20

VII. Model validation
The model was validated by comparing the thrust and torque signals measured in an experimental set-up to those

predicted by the BET model given the same input conditions (
−→
𝑉 𝐵,

−→
Ω, 𝜔). For that purpose, an experimental campaign

was carried out in the Open Jet Facility wind tunnel at the Faculty of Aerospace Engineering at TU Delft.

A. Test set-up and data collection
The OJF is a wind tunnel with an octagonal open test section of 2.85 metres in width and height through which the

air flows into a room with a width of 13 metres and a height of 8 metres. The maximum wind speed that can be reached
is 35 m/s. For the measurement of thrust and torque, the Series 1580 test stand from Tyto robotics was used. This is a
dynamometer for drone propulsion systems capable of measuring up to 5 kg of thrust and 2 Nm of torque, as well as
voltage, current, power, motor rotational speed and vibration. Figure 35 and Fig. 36 show the test stand from the side
and top, highlighting its most important components.

Calibration
hardware

USB data acquisition
board

Motor
connection

ESC
Bebop 2

propeller and
motor

Thrust 5kg
load cell

Fig. 35 Tyto stand: side view with calibration hard-
ware.

Data acquisition
board RPM input

Torque 2 Nm
load cells

Data logging
USB cable

XT60 battery
connector

Data logging
USB cable

Data acquisition
board RPM input

Fig. 36 Tyto stand: top view.

The local influence of the test platform on the freestream flow was minimised by means of a beam assembly, as can
be seen in Fig. 37 and Fig. 38. This also enables the positioning of the test stand into the wind tunnel air flow, reducing
the wind tunnel wall effects on the flow field.

Fig. 37 Test set-up in the wind tunnel. Fig. 38 Tyto test stand in the wind tunnel.

21

Table 2 shows the parameters that were modified between measurements and their value ranges. For the current
experimental campaign, only a single blade was cut at a time with 𝐵𝐷 percentage of damage. Furthermore, as mentioned
in subsection VI.A, the inputs for the BET model in order to create a prediction of thrust and torque are the linear
velocity of the drone

−→
𝑉 𝐵, its angular velocity

−→
Ω and the propeller rotational speed 𝜔. In the wind tunnel,

−→
𝑉 𝐵 is

simulated as the negative wind speed vector and, since the test stand is not rotated during each measurement,
−→
Ω is

considered equal to zero. The wind speed vector is decomposed in the wind speed vector magnitude 𝑉∞ and the angle
of the normal of the propeller plane with respect to the airflow, also known as the propeller incidence angle 𝑖𝑝 (Fig. 39).

Table 2 Experimental campaign testing parameters and values.

Parameter Unit Values
𝐵𝐷 % 0, 10, 25
𝑖𝑝

◦ 0, 15, 30, 45, 60, 75, 90
𝑉∞ m/s 0, 2, 4, 6, 9, 12
𝜔 rad/s 300, 500, 700, 900, 1100

The maximum blade damage tested was 25% due to excessive vibration loading induced on the load cell. The blade
damage was created with a cut on the blade orthogonal to its span, as can be seen in Fig. 40 and Fig. 41 for 10% and
25%, respectively.

TPP
Fig. 39 Propeller incidence an-
gle.

Fig. 40 Damaged propeller with
𝐵𝐷=10%.

Fig. 41 Damaged propeller with
𝐵𝐷=25%.

Test section awareness was provided by the OptiTrack multi-camera three-dimensional optical tracking system,
which was also used to measure the incidence angle of the propeller.

Each combination in Table 2 is called an scenario and the order in which the parameters were modified was: 𝜔 →
𝑉∞ → 𝑖𝑝 → 𝐵𝐷. For every scenario, thrust and torque data was gathered at 7Hz for 20 seconds. Given that there are
630 scenarios, the data gathering component of the experimental campaign lasted 3.5 hours.

A few challenges were encountered which affect the results and conclusions derived from the data gathered:
1) Even though the test stands measures accelerometer and propeller rotation values at around 100Hz, it measures

the thrust and the torque at 6-7Hz. This is insufficient for signal reconstruction because, in the case of blade
damage, the sinusoids observed in section VI have a frequency of 50Hz-175Hz, depending on the propeller
rotational speed. The frequency of those oscillations have a much higher value than the Nyquist frequency of
3.5Hz derived from the test stand wrench sampling frequency of 7Hz.
There exist larger and more complex test stands for the measurement of wrenches for larger propellers. However,
their sensitivity or accuracy to small drone propellers might be insufficient, especially if small vibrations in the
order of 10−4 are expected to be observed.

2) During the execution of the experiments it was encountered that the test stand resonated with the vertical beam
and/or the platform at certain rotational frequencies. This resulted in the observation of peaks in the rpm and
wrench measurement signals.

22

3) The 5kg thrust load cell was not able to withstand prolonged vibrations at 25% blade damage or survive a higher
degree of blade damage for more than a few seconds.

B. Experimental data pre-processing
The data pre-processing phase of the model validation has 2 steps. First, the data is corrected by adding the effect

of the wind on the test stand. For that purpose, the thrust and torque were measured without a propeller installed at
different wind speeds and angles with respect to the incoming flow. The mean measured wrenches were then added to
each data point depending on their 𝑉∞ and 𝑖𝑝 values.

Second, in the case of blade damage it was observed that the forces and moments were increasing with time even
though the parameters in Table 2 were kept constant. This is considered an error of the sensor and the signals are
detrended.

C. Experimental results
The results from the data gathered during the experimental campaign will be discussed. First, subsubsection VII.C.1

will present the results without blade damage followed by subsubsection VII.C.2 which will examine those in the
presence of 10% and 25% blade damage.

1. Without blade damage
This section will delve into analysing the impact of the last three input parameters from Table 2 on the performance

of the BET model when there is no blade damage (𝐵𝐷=0%). In contrast when there is blade damage, it is possible to
compare BET’s performance to that of the gray-box aerodynamic model.

First, the effect of the incidence angle on the results can be observed by fixing the wind and the propeller rotational
speeds to constant values, whereas 𝑖𝑝 is increased from 0◦ to 90◦. This is done, for 𝑉∞=2 m/s and 𝜔=700 rad/s in Fig. 42
and Fig. 43, where the results are shown for thrust and torque, respectively.

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2

M
od

el
 th

ru
st

 [N
]

Gray-box model
BET model

−4 −2 0 2 4
Thrust model relative error [%] 1e1

Fig. 42 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=0%,𝑉∞=2 m/s
and𝜔=700 rad/s. The black dashed line represents the
ideal scenario in which the model and experimental
thrust would match.

−1.15 −1.10 −1.05 −1.00 −0.95 −0.90 −0.85
Experiments corrected torque [Nm] 1e−2

−1.5

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
Gray-box model
BET model

−6 −4 −2 0 2 4 6
Torque model relative error [%] 1e1

Fig. 43 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=0%,𝑉∞=2 m/s
and𝜔=700 rad/s. The black dashed line represents the
ideal scenario in which the model and experimental
torque would match.

The upper window of each plot presents the values obtained in the experimental campaign (x-axis) with respect to
the values obtained by each of the models (y-axis) given the same conditions in terms of

−→
𝑉 𝐵,

−→
Ω and 𝜔. In an ideal

scenario, both models’ data points would fall on the dashed black line, meaning that both experimental and simulated
results are equal. Unfortunately, that is mostly not the case and the solid red and blue lines represent the linear fit of each
model’s data. Besides that, the data points are plotted with different degrees of transparency. The degree of transparency
varies linearly from the brightest or most opaque markers representing those data points measured at 𝑖𝑝=0◦ to the
most transparent ones representing those data points measured at 𝑖𝑝=90◦. Finally, the whiskers represent the range of
values in which 95% of the experimental wrench data samples can be found (≈2𝜎). For the computation of these value
ranges, the standard deviation of the forces and moments exerted by the wind on the test stand (subsection VII.B) were
included. The lower window of each plot shows the wrench relative error of each model with respect to the experimental
measurements, as well as a fitted Gaussian curve to those error data points.

23

As expected, the measured thrust decreases with decreasing 𝑖𝑝 because the blade element angle of attack is decreased
due to a higher wind speed perpendicular to the plane of rotation. Furthermore, it can be observed that the thrust
is always positively biased and the torque is negatively biased for both models. This indicates that there exist some
unmodelled physical effects that have not been taken into consideration, among which might be those outlined in
subsection VI.D. Additionally, these plots show that the performance of the BET and gray-box models is very similar,
which supports the hypothesis that the BET model has been well identified and that the errors are due to those in the
gray-box model whose data was used for identification.

After having seen the effect of varying 𝑖𝑝, the next step would be the analysis of the influence of the propeller
rotational speed. All the results for different values of 𝜔 can be synthesised and compressed in Fig. 44 by plotting
the mean of the relative error for each propeller rotational speed with whiskers representing 1.96 times the standard
deviation. Both the mean and the standard deviation were obtained from the Gaussian curves in the lower window
of plots identical to Fig. 42 for different values of 𝜔. Two conclusions can be derived for the BET and gray-box
aerodynamic models comparison. First, the BET model is more accurate in torque but less in thrust. Second, the BET is
more (over) confident of its predictions because of its smaller confidence intervals. The latter observation is also visible
in Fig. 42 and Fig. 43 due to the taller and narrower Gaussian fitted curves for the BET model. Besides that, it is shown
that model accuracy increases with 𝜔 for both models.

−50

0

50

T
er

ro
r [

%
] Gray-box model

BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

−100

0

100

Q
 e

rro
r [

%
]

Fig. 44 BET and gray-box aerodynamic model thrust and torque relative error for: 𝐵𝐷=0% and 𝑉∞=2 m/s.

Finally, in order to observe the effect of the increasing wind speed, Fig. 44 is repeated for each wind speed listed in
Table 2 within the same plot. This is shown in Fig. 45 and Fig. 46 for the gray-box aerodynamic and BET models,
respectively. Note that the whiskers representing the confidence intervals have been removed for clarity. From these
plots, four observations can be made:

1) The performance of both thrust and torque degrades with increasing wind speed for both models.
2) The relative thrust error of the BET model has a sudden increase when the wind speed is 6 m/s or higher when

compared to the gray-box aerodynamic model.
3) The BET model performs better than the gray-box aerodynamic model in terms of torque except at 12 m/s.
4) The performance of the gray-box aerodynamic model at a wind speed of 12 m/s for thrust and higher than 4 m/s

for torque is very low (sometimes with relative error values above 1000% for torque).
The reason behind the first three differences in performance between models originates from a design choice in

subsection VI.A, namely that the BET model airfoil lift and drag coefficients were identified with wind speeds up to 3.6
m/s. Hence, the BET model has never seen data collected at wind speeds higher than 4 m/s. The last observation is
unexpected as the gray-box aerodynamic model was identified with data gathered at wind speeds up to 14 m/s.

One general conclusion that can be derived from these observations is that the BET model architecture has a stronger
physical foundation for torque than for thrust. Both were identified with data collected at wind speeds lower than 3.6
m/s and the torque is able to perform better at those speeds that the model had not seen before during identification,
namely 4, 6, 9 m/s, when compared to the thrust. In most cases, it even performs better than the gray-box aerodynamic
model that was used for the identification data generation. This highlights that the unmodelled aerodynamic effects have
a stronger impact on the thrust than on the torque.

24

0

250

500
T

er
ro

r [
%

] V∞=0
V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

2

Q
 e

rro
r [

%
]

1e3

Fig. 45 Gray-box aerodynamic model thrust and
torque relative error for 𝐵𝐷=0%.

0

1

T
er

ro
r [

%
]

1e3
V∞=0
V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

2

Q
 e

rro
r [

%
]

1e3

Fig. 46 BET model thrust and torque relative error
for 𝐵𝐷=0%.

2. With blade damage
In the presence of blade damage, two signal features need to be validated, namely the bias of the signal and the

amplitude of the damage induced oscillations. As in subsubsection VII.C.1, the same sensitivity analysis will be
performed in which the effect of the parameters in Table 2 will be analysed. In this case, the blade will have 10%
and 25% damage. Furthermore, the BET model with a healthy propeller was observed to have errors which could be
attributed to the gray-box aerodynamic model used for identification. Hence, the BET model’s performance with blade
damage will also be compared to that presented in subsubsection VII.C.1 without blade damage. The latter serves as
baseline since it can be considered to be the expected default error introduced by the identification dataset, and not from
the BET model’s architecture (the object of validation of the present section). Finally, as it is the purpose of this research
to fill a gap in the literature by developing a thrust and torque propeller model capable of producing reliable estimations
in the presence of blade damage, there is no signal from the gray-box aerodynamic model that can be used for control.

To observe the impact on the results when varying 𝑖𝑝 , Fig. 47 to 50 show the thrust and torque plots for both blade
damages when 𝑉∞=2 m/s and 𝜔=700 rad/s. In contrast to the scenarios without blade damage, when 𝐵𝐷=25% the
thrust and the torque are not always positively and negatively biased, respectively. This outlying behaviour can only be
observed in the thrust plots when 𝜔=500 and 700 rad/s, and it is attributed to the resonance of the test stand with the
vertical beam and the platform, as mentioned in subsection VII.A.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2

M
od

el
 th

ru
st

 [N
]

BET model

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
Thrust model relative error [%] 1e1

Fig. 47 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=10%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental thrust would match.

−1.1 −1.0 −0.9 −0.8 −0.7
Experiments corrected torque [Nm] 1e−2

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −2 0 2 4
Torque model relative error [%] 1e1

Fig. 48 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=10%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental torque would match.

For the evaluation of the impact of 𝜔 on the results, Fig. 51 and Fig. 52 show the relative error for each value of 𝜔
for both degrees of blade damage. As can be seen, with 𝐵𝐷=10%, the relative error behaves in a similar manner as
when there is no damage: its mean and standard deviation decrease with 𝜔. However, when 𝐵𝐷=25%, that pattern is
not observed and the mean even crosses the x-axis for the thrust between 500 and 700 rad/s. Again, this anomalous
behaviour is attributed to the strong vibrations observed during the experimental campaign at those rotational speeds
and blade damage values.

25

0.8 0.9 1.0 1.1 1.2 1.3
Experiments corrected thrust [N]

0.75

1.00

1.25

1.50
M

od
el

 th
ru

st
 [N

]
BET model

−3 −2 −1 0 1 2 3
Thrust model relative error [%] 1e1

Fig. 49 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=25%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental thrust would match.

−1.10 −1.05 −1.00 −0.95 −0.90 −0.85 −0.80
Experiments corrected torque [Nm] 1e−2

−1.2

−1.0

−0.8

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −2 0 2 4
Torque model relative error [%] 1e1

Fig. 50 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=25%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental torque would match.

−250

0

250

T
er

ro
r [

%
] BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

200

Q
 e

rro
r [

%
]

Fig. 51 BET model thrust and torque relative error
for: 𝐵𝐷=10% and 𝑉∞=2 m/s.

−50

0

T
er

ro
r [

%
] BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

100
Q

 e
rro

r [
%

]

Fig. 52 BET model thrust and torque relative error
for: 𝐵𝐷=25% and 𝑉∞=2 m/s.

In order to better assess the error originated from the BET model architecture in scenarios with blade damage,
Fig. 53 shows the same curves for 𝐵𝐷=10% and 25% after subtracting the error when 𝐵𝐷=0% — an error which could
be attributed to the identification data (Δerror). It shows worse performance for 𝐵𝐷=10% at low 𝜔 values up to 700
rad/s than 𝐵𝐷=25%. Additionally, two more observations can be made. First, the performance at 𝐵𝐷=10% improves
with 𝜔 whereas the performance at 𝐵𝐷=25% does not show a clear pattern (of improvement). Second, the model
architecture performance could have an error as high as 76.9% (thrust, 𝐵𝐷=10%) and as low as 4.9% (torque, 𝐵𝐷=25%)
for low and high 𝜔 values, respectively. Table 3 shows the Δerror range for both blade damages for thrust and torque.

Table 3 Δerror ranges for thrust and torque for 10% and 25% blade damage at 2 m/s wind speeds.

BD=10% BD=25%
T Δerror [%] [-76.9, -23.6] [-68.5, 15.8]
Q Δerror [%] [5.1, 39.8] [-4.9, 14.5]

After having varied 𝑖𝑝 and 𝜔, the final parameter to be modified is the 𝑉∞, as shown in Fig. 54 and Fig. 55 for 10%
and 25% blade damage, respectively. Again, a sudden decline in performance is observed in both scenarios for wind
speeds higher than 4 m/s, phenomenon attributed to the BET model identification data limited to 3.6 m/s.

Finally, the amplitude of the damage induced oscillations needs to be validated. Unfortunately, the sampling
frequency is very low for reliable signal reconstruction. In an attempt to reconstruct the signals, the authors tried two
approaches, namely an evolutionary algorithmic approach with Particle Swarm Optimisation and an statistical approach
with the Lomb-Scargle periodogram [49–51]. The goal is to fit a sinusoid with the same frequency as the 𝜔 at which the
propeller was oscillating to the experimental data. Both approaches were deemed unfit for the challenging task.

26

−50

0

T
Δe

rro
r [

%
]

BET model: 10%
BET model: 25%

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

20

40

Q
 Δ

er
ro

r [
%

]

Fig. 53 BET model thrust and torque relative error for 𝐵𝐷=[10, 25]% and 𝑉∞=2 m/s, after subtracting the
relative error when 𝐵𝐷=0%.

0

500

T
er

ro
r [

%
] V∞=0

V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0.0

0.5

1.0

Q
 e

rro
r [

%
]

1e3

Fig. 54 BET model thrust and torque relative error
for 𝐵𝐷=10%.

0

1

T
er

ro
r [

%
]

1e3
V∞=0
V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

Q
 e

rro
r [

%
]

1e3

Fig. 55 BET model thrust and torque relative error
for 𝐵𝐷=25%.

VIII. Conclusion
A white-box model for blade damage simulation, which combines the effects caused by the shift of the centres of

gravity and pressure, has been proposed. The mass effects were modelled by discretising the propeller in trapezoids
whereas the aerodynamic effects were derived from first principles exploiting Blade Element Theory (BET). Additionally,
a BET based methodology for the identification of the UAV propeller 2D aerodynamic properties, namely the airfoil lift
and drag curves as a function of the angle of attack, was presented. Such information is currently unknown for most
commercial off-the-shelf UAVs.

The presented model has three key advantages. First, it does not require additional costly experimental wind tunnel
campaigns for the blade damage modelling. Second, it enables the simulation of any degree of blade damage instead of
being limited to a discrete number of failure scenarios within a safe flight regime. Third, it is complementary to existing
healthy UAV models and can be used as a plug-in to extend its range of operations to damaged cases. By reducing the
component level at which the wrenches are computed, from the complete propeller to single blades and individual blade
sections, it will be possible to alternate between models depending on the required level of detail.

The methodology was applied to the Bebop 2 drone, leveraging on the available gray-box aerodynamic model of the
chosen platform [12] to build the BET model. From the results it was concluded that previous literature was correct in
claiming that the centrifugal forces due to the shift in the centre of gravity were dominant. However, they ignore the
loss of weight and the aerodynamic effects, which are not negligible especially at high degrees of blade damage and
propeller rotational speeds. The main concern are the neglected forces which, depending on the drone’s geometry, could
lead to large moments around the UAV’s CG. Those oscillations could help in the identification of blade damage and
ignoring them could render fault-tolerant control approaches unsuccessful when deployed in the real world.

Furthermore, the induced velocity was shown to be an essential parameter in the model. However, due to the small
propeller size of most UAVs, the corrections brought by the linear inflow model over the simpler uniform baseline are
negligible and can be ignored in simulation.

27

To validate the proposed approach, its predicted forces and moments were compared to those obtained from wind
tunnel experiments. They were conducted at the Open Jet Facility at Delft University of Technology with a Bebop 2
propeller mounted on a static test stand while four parameters were varied, namely the degree of blade damage (𝐵𝐷),
the propeller incidence angle (𝑖𝑝), the wind speed (𝑉∞) and the propeller rotational speed (𝜔).

In the scenarios without blade damage, it was possible to compare the BET model performance with that of the
gray-box aerodynamic model. The performance of both is very similar, indicating that the BET model has been well
identified and its validation errors are attributed to the identification data gathered from the gray-box aerodynamic
model, instead of the BET model architecture. Besides that, the thrust is positively biased and the torque is negatively
biased for both models. This remark points to the existence of unmodelled physical effects, among which might be
those outlined in subsection VI.D. Additionally, the performance of both models decreases with lower values of 𝜔 and
higher values of 𝑉∞. This shows that both approaches struggle to correctly model blade sections under a negative angle
of attack; phenomenon mostly emergent in those 𝜔-𝑉∞ conditions for blade sections close to the propeller hub.

Despite their similarities, four differences can be found between both models. First, the BET model is slightly more
accurate in torque but less in thrust. Second, it is more (over) confident of its predictions when compared to the gray-box
aerodynamic model. Third, the BET model experiences a faster decline in thrust performance for wind speeds higher
than 4 m/s. Fourth, the BET model performs better than the gray-box aerodynamic model in terms of torque, except at
12 m/s. The reason behind these divergences in performance originates from a design choice, namely that the BET
model was identified with wind speeds up to 3.6 m/s. Hence, the BET model has never seen data collected at wind
speeds higher than 4 m/s. Furthermore, an unexpected result is the low performance of the gray-box aerodynamic model
at high speeds, as it was identified with wind tunnel data gathered at wind speeds up to 14 m/s.

Moreover, the BET model architecture has a stronger physical foundation for torque than for thrust. Both were
identified with data collected at wind speeds lower than 3.6 m/s and the torque is able to perform better at those speeds
that the model had not seen before during identification, namely 4, 6, 9 m/s, when compared to the thrust. In most cases,
it even performs better than the gray-box aerodynamic model that was used for the identification data generation. This
highlights that the unmodelled aerodynamic effects have a stronger impact on the thrust than on the torque.

Regarding those scenarios with blade damage, the bias and the amplitude of the damage induced wrench oscillations
needs to be validated. When comparing the experimental and BET model signal bias, that of 𝐵𝐷=10% behaves similarly
to that of 𝐵𝐷=0%. In contrast, when 𝐵𝐷=25% the relative error does not decrease with 𝜔 as it would be expected. This
outlying behaviour, especially noticeable when 𝜔=500 and 700 rad/s, is attributed to the resonance of the test set-up.

For the validation of the oscillations’ amplitude, two approaches were implemented for signal reconstruction, namely
Particle Swarm Optimization (metaheuristic evolutionary optimization algorithm) and the Lomb-Scargle periodogram
(statistical algorithm). Unfortunately, it could not be reliably assessed due to the inaccuracies/noise of the load cell and
the difficulty in reconstruction attributed to the low sampling rate.

Besides the recommendations derived from the model assumptions and outlined in subsection VI.D, the authors can
only recommend the in-house design of a test stand for the measurement of wrenches of partially damaged propellers.
Such a stand would require a sampling frequency above 100 Hz for measurements carried out at the minimum rotational
speed of 300 rad/s (or 350 Hz for 𝜔 of 1100 rad/s) and a dampening system which prevents resonance with the rest of the
structure and the testing platform. Additionally, especially designed load cells have to be used capable of withstanding
at least 6g of sustained vibrations.

In addition, the characterization of the complete test set-up in order to identify its dynamics could contribute to the
removal of the resonance present in the measurements. Knowledge about the complete system behaviour would allow a
deeper understanding of the measured signals and the separation of the set-up dynamics from the "pure" thrust and
torque oscillations caused by the damaged propeller.

To conclude, the BET model has been well identified and it has a performance without blade damage similar to that
of the gray-box aerodynamic model used for identification. In the presence of blade damage, its performance at high
propeller rotational speeds is similar to that without blade damage, with differences in relative error oscillating between
5% and 24%. However, the errors at low propeller rotational speeds can be more than 3 times higher; oscillating
between 15% and 75%. Besides that, the validation of the damage induced oscillations amplitude is not possible due to
the challenges encountered in the experimental set-up. As a result, it is difficult to fully validate the BET model. The
authors hope that the outlined lessons will serve as basis in the design of a future experimental campaign with more
specialised hardware. The developed "plug-in" BET model with its future work aspires to become an indispensable
cost-effective tool for researchers when designing and testing their work to build more resilient UAVs against blade
damage in a wide range of fields, from fault detection and diagnosis to fault-tolerant control.

28

Appendix

A. Induced velocity computation: gradient-descent approach
As discussed in section IV, the computation of the uniform induced velocity can not be solved analytically and

requires a numerical approach. However, this computation needs to happen in every time step of a simulation after the
drone has suffered blade damage in one of its propellers; hence, the efficiency of this optimisation is of paramount
importance. To this end, the goal of this chapter is to check the possibility of using a computationally efficient
gradient-descent approach.

In order to define the optimisation problem objective function, the alternative definition of the airspeed at the
rotor (𝑉𝑅) of Eq. (64) will be used in conjunction with the Glauert formula presented in Eq. (19). In contrast with
Eq. (20), the new definition of 𝑉𝑅 translates the 3 components of the linear velocity of the propeller assembly (

−→
𝑉 𝑃) into

2 components, namely its magnitude (𝑉) and the angle of attack of the rotor disk relative to the oncoming flow (𝛼𝑑).
The latter is illustrated in Fig. 56.

𝑉𝑅 =
√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 (64)

Tip plane

Fig. 56 Angle of attack of the rotor relative to the oncoming flow.

The optimisation problem objective function can be defined as described in Eq. (65), which is the same as finding
the location where the function 𝑓 (𝑣0) intersects the x-axis.

min
𝑣0

| 𝑓 (𝑣0) | =
���𝑇 − 2𝜌𝜋𝑅2𝑣0

√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2

��� (65)

Gradient-descent methods are used in optimization for finding the local minimum of a differentiable function by
traversing the solution space in the opposite direction of the function gradient, also known as the direction of steepest
descend. In the case of the present objective function, local minima will be found where the derivative of 𝑓 (𝑣0) with
respect to 𝑣0 is zero and where 𝑓 (𝑣0) = 0. In the case that it can be proven that the function 𝑓 (𝑣0) is strictly monotonic,
meaning that it only increases or decreases, then 𝑓 (𝑣0) will not have local minima and it will be zero at a single value of
𝑣0. Then, there exists a single (global) minimum in the objective function and a gradient-descent approach could be
used to find it. Given the definition of the Glauert formula (Eq. (19)), the uniform induced velocity can only have a
positive value. Hence, it is only required to prove the strict monotonocity for 𝑣0 values in the half-open interval [0, ∞).

Equation (66) shows the derivative of 𝑓 (𝑣0) with respect to 𝑣0 and Eq. (67) shows the uniform induced velocity
values that make it zero. As can be seen, 𝑓 (𝑣0) has one or two optima when 9 sin2𝛼𝑑 − 8 ≥ 0. Since the uniform
induced velocity can only be positive, the only interesting solution comes from negative 𝛼𝑑 angles, ergo when the
condition in Eq. (68) is met. When the angle of attack of the rotating disk is higher than arcsin−2

√
2/3, the function is

strictly monotone and gradient-descent would be able to find the global minimum.

𝑑𝑓 (𝑣0)
𝑑𝑣0

= −2𝜌𝜋𝑅2

(√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 + 𝑣0

𝑉 sin𝛼𝑑 + 𝑣0√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2

)
(66)

29

𝑣0 =
𝑉

4

(
−3 sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

)
(67)

sin𝛼𝑑 ≤ −2
√

2
3

(68)

During nominal flight, the drone will experience a positive 𝛼𝑑 when in cruise. However, in the case of failure, when
the induced velocity has to be computed, the drone could pitch or roll excessively causing the air flow to impact the
propeller from below. Hence, it is important to consider the presence of the discovered local minima. Even though the
function can contain local minima, they could be avoided by a proper selection of hyper-parameters and initialisation of
the optimisation; tuning the gradient-descent to the particular (known) function.

Considering extreme values of 𝑣0, it can be observed in Eq. (65) that the second term of 𝑓 (𝑣0) is dominant. As a
result, 𝑓 (−∞) leads to a positive value and 𝑓 (∞) to a negative one, meaning that the function is decreasing in value
independently of the value of 𝛼𝑑 . In the case that there is a local minimum (Eq. (68) is fulfilled) and it takes place at a
lower uniform induced velocity than when 𝑓 (𝑣0) = 0, as illustrated in Fig. 57, the gradient-descent could be initialised
with a high value of 𝑣0 to guarantee that the optimisation will encounter the global optimum before the local minimum.
Since the function is decreasing, this approach would not work if 𝑓 (𝑣0) < 0 at 𝑑𝑓 (𝑣0)/𝑑𝑣0 = 0, as can be seen in
Fig. 58. In order to check whether this latter scenario exists, Eq. (67) is inserted in 𝑓 (𝑣0), leading to Eq. (69).

Fig. 57 Desired scenario: local minima takes place at
lower induced velocity than global minima, so gradient
descend will reach global minima first. The dotted
line corresponds to 𝑓 (𝑣0), whereas the bold line to
| 𝑓 (𝑣0) |.

Fig. 58 Undesired scenario: local minima takes place
at higher induced velocity than global minima, so
gradient descend will reach local minima first. The
dotted line corresponds to 𝑓 (𝑣0), whereas the bold
line to | 𝑓 (𝑣0) |.

𝑇 − 𝜌𝜋𝑅2𝑉2

2

(
−3 sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

) √︄
cos2𝛼𝑑 + 1

16

(
sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

)2
≤ 0 (69)

Since the local minimum can only be found when sin𝛼𝑑 ∈ [−1,−2
√

2/3] (Eq. (68) is met), the two limits of this
range are inserted in Eq. (69), resulting in the two conditions presented in Eq. (70) and Eq. (71). Observing both
conditions, the second one is automatically met when the first one is fulfilled. Hence only when Eq. (68) and Eq. (70)
are met, there is a local minimum which takes place with a higher uniform induced velocity than when 𝑓 (𝑣0) = 0. In
that case, initialising the optimisation with a high value of 𝑣0 would most likely not converge to the undesired local
minimum.

sin𝛼𝑑 = −2
√

2
3

, 𝑇 <

√
3

3
𝜌𝜋𝑅2𝑉2 (70)

sin𝛼𝑑 = −1, 𝑇 <
1
2
𝜌𝜋𝑅2𝑉2 (71)

30

To check whether the blade damage simulation with the Bebop 2 model would encounter scenarios in which both
conditions (Eq. (68) and Eq. (70)) are met, 100,000 scenarios are run with the following set of conditions:

−→
𝑉 𝐵

𝑥 ∈ [−3, 3],
−→
𝑉 𝐵

𝑦 = 0,
−→
𝑉 𝐵

𝑧 ∈ [−3, 3], −→Ω =
−→
0 and 𝜔 ∈ [300, 1256]. When compared to those nominal conditions presented in

subsection VI.A, here the body velocity in the z-direction can also acquire positive values and its absolute value is
higher in order to account for the failure cases. Figure 59 shows 100,000 points representing all the scenarios in a
plot of vehicle velocity over the thrust (V-T). As can be observed, there is not overlap between the set of points that
fulfil the first condition in Eq. (68) (the pink points within the convex hull) and those that meet the second condition
in Eq. (70) (the green points under the dashed line). As a result, for the simulations of the present research, only the
desired scenario illustrated in Fig. 57 will be observed. Hence, if the gradient-descent is initialised with a high positive
value of 𝑣0, it will always encounter the global minimum first.

Fig. 59 V-T graph for 100,000 simulation scenarios of the Bebop 2 drone. The convex hull encapsulates all the
pink points that meet (first) the condition in Eq. (68). The green points under the dashed line meet the (second)
condition outlined in Eq. (70). The magenta points are those scenarios in which neither of the conditions are met.
From the figure, there is no overlap between both conditions sets.

Now that it has been proven to be beneficial to initialise the gradient-descent with a high positive value of uniform
induced velocity, the question is what the exact initialisation value should be. Observing Fig. 57, it is enough to initialise
the gradient-descent with a uniform induced velocity value higher than the maximum 𝑣0 that the local minimum could
have. If initialised between the local and global minimum, the gradient-descent will move the solution towards the
global optimum to the right along the 𝑣0 axis. If initialised to the right of the global minimum, the gradient-descent will
move the solution towards the global optimum to the left along the 𝑣0 axis.

Given Eq. (67), the maximum 𝑣0 that the local minimum could have is found when the output of the square root is
positive and 𝛼𝑑 has a value of -90◦; then, the uniform induced flow equals the incoming flow velocity (𝑣0 = 𝑉). From the
100,000 scenarios presented in Fig. 59, the maximum velocity observed is 4.24 m/s. Therefore, if the gradient-descent
optimisation is initialised with 𝑣00 = 4.5 m/s, the initial function evaluation will always be carried out to the right of the
local optima.

Furthermore, the gradient-descent optimisation requires the selection of the learning rate (𝛾). This hyper-parameter
needs to be carefully chosen in order to avoid overshooting the global optimum and landing in the local minimum.
Given the update law of the gradient-descent provided by Eq. (72), the algorithm can overshoot the global optimum by a
value equal to 𝛾

𝑑 | 𝑓 (𝑣0) |
𝑑𝑣0

. Hence, the smaller this update step, the lower the probability that the optimisation overshoots
the global optimum and lands in the local minimum.

31

𝑣0𝑖+1 = 𝑣0𝑖 − 𝛾
𝑑 | 𝑓 (𝑣0𝑖) |

𝑑𝑣0
= 𝑣0𝑖 − 𝛾

𝑑𝑓 (𝑣0𝑖)
𝑑𝑣0

𝑓 (𝑣0𝑖)
| 𝑓 (𝑣0𝑖) |

(72)

For the current research, two values are considered for the learning rate, namely 0.5 and 0.1. Additionally, the
value of the learning rate is decreased by a factor of 0.5 every time 𝑑 | 𝑓 (𝑣0) |

𝑑𝑣0
changes sign. Using the same 100,000

simulation scenarios of the Bebop 2 drone presented in Fig. 59, the performance results are observed in Table 4. An
optimisation is defined as successful when its output is fed to 𝑓 (𝑣0) and the result is less than 10−5. As can be seen, the
gradient-descent approach has a 100% success rate for both learning rates, in contrast with the slight worse performance
of 98.56% for Nelder-Mead. Additionally, the gradient-descent optimisation shows an approximately 20% and 55%
computational time reduction with respect to the Nelder-Mead alternative for the 0.1 and 0.5 learning rates, respectively.
Hence, the chosen learning rate for the present research is 0.5.

Table 4 Performance results of Nelder-Mead and Gradient-Descent with learning rate values of 0.1 and 0.5.

m
m

Success rate
[%]

Time per scenario
[ms]

Nelder-Mead 98.56 5.51
Gradient-descent (𝛾=0.1) 100 4.39

Gradient-descent (𝛾𝛾𝛾=0.5) 100 2.45

Finally, the optimisation concludes when one of the following 3 conditions is met:
1) The maximum number of iterations is reached (𝑖𝑚𝑎𝑥=10,000).
2) The change in the solution is lower than a threshold (𝑚 < 0.01) for a certain number of iterations (𝑐𝑚𝑎𝑥 = 20).
3) The denominator of the gradient update (| 𝑓 (𝑣0) |) is less than a very small value (𝜖 = 10−10) because then the

solution has been found.

B. Airfoil lift and drag coefficient validation
To validate the identified aerodynamic model it is verified whether the model residuals approximate zero mean

white noise. This is done for the residuals from those data points used for the identification of the model, as well as for
an additional validation dataset made of (

−→
𝑉 𝐵,

−→
Ω, 𝜔) input combinations not seen yet by the model. This validation

dataset has 4,000 data points, which is 25% the size of the training dataset. Table 5 shows the mean of the residual
curves, as well as their percentage relative to the average value of the thrust or torque. As can be observed, their values
are low (below 1%), which indicates that the error of both, identification and validation datasets, could be considered to
be zero mean. Besides that, the thrust error is approximately three times lower than the torque error for the NRMSE
metrics, which means that the fitted 𝐶𝑙 and 𝐶𝑑 curves approximate the thrust data better than the torque.

Table 5 Error metrics results for the thrust and torque identification and validation datasets.

m
m

Identification
thrust

Identification
torque

Validation
thrust

Validation
torque

Mean value -2.89·10−3 [N] -1.40·10−4 [Nm] -1.56·10−3 [N] -1.22·10−4 [Nm]
Mean percentage -0.23 [%] -0.97 [%] -0.13 [%] -0.86 [%]

NRMSE 8.43·10−2 [-] 0.26 [-] 8.30·10−2 [-] 0.25 [-]

Next, it is assessed whether the residual is uncorrelated. For that purpose, Fig. 60 and Fig. 61, as well as Fig. 62
and Fig. 63, show the normalised autocorrelation curves for the residuals with their 95% confidence bounds for the
identification and the validation datasets, respectively. Almost all of the autocorrelations fall within the 95% confidence
limits and there is no apparent pattern. A few lags fall slightly outside the bounds, but it is not enough to indicate
non-randomness. Hence, the residuals can be considered to be white and uncorrelated.

32

Fig. 60 Identification thrust error normalised auto-
correlation with 95% confidence bounds.

Fig. 61 Identification torque error normalised auto-
correlation with 95% confidence bounds.

Fig. 62 Validation thrust error normalised autocor-
relation with 95% confidence bounds.

Fig. 63 Validation torque error normalised autocor-
relation with 95% confidence bounds.

Acknowledgments
The authors thank Charlie Bogaerts and Burhanuddin Saify for their insights and help in the execution of the

experimental wind tunnel campaign.

References
[1] Isermann, R., “Fault Diagnosis Systems An Introduction from Fault Detection to Fault Tolerance,” Fault-Diagnosis Systems,

2006. https://doi.org/10.1007/3-540-30368-5.

[2] Tidriri, K., Chatti, N., Verron, S., and Tiplica, T., “Bridging Data-Driven and Model-Based Approaches for Process Fault
Diagnosis and Health Monitoring: A Review of Researches and Future Challenges,” Annual Reviews in Control, Vol. 42, No. C,
2016, pp. 63–81. https://doi.org/10.1016/j.arcontrol.2016.09.008.

[3] Heredia, G., and Ollero, A., “Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification,”
Mathematical Problems in Engineering, Vol. 2011, 2011. https://doi.org/10.1155/2011/174618.

[4] Aboutalebi, P., Abbaspour, A., Forouzannezhad, P., and Sargolzaei, A., “A Novel Sensor Fault Detection in an Unmanned
Quadrotor Based on Adaptive Neural Observer,” Journal of Intelligent & Robotic Systems, 2017. https://doi.org/10.1007/s10846-
017-0690-7.

[5] Ducard, G., Actuator Fault Detection in UAVs, Springer Netherlands, Dordrecht, 2015, pp. 1071–1122. https://doi.org/10.1007/
978-90-481-9707-1_43.

[6] Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M., “Autonomous Obstacle Avoidance and Manoeuvring
on a Vision-Guided MAV using On-Board Processing,” 2011 IEEE International Conference on Robotics and Automation,
Shanghai, 2011, pp. 2472–2477. https://doi.org/10.1109/icra.2011.5980095.

[7] Sun, S., Baert, M., Schĳndel, B., and De Visser, C., “Upset Recovery Control for Quadrotors Subjected to a Complete Rotor
Failure from Large Initial Disturbances,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 4273–4279. https://doi.org/10.1109/icra40945.2020.9197239.

33

[8] Nguyen, D.-T., Saussié, D., and Saydy, L., “Fault-Tolerant Control of a Hexacopter UAV based on Self-Scheduled Control
Allocation,” 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 2018, pp. 385–393. https://doi.org/10.
1109/icuas.2018.8453440.

[9] Xue, Y., Zhen, Z., Yang, L., and Wen, L., “Adaptive Fault-Tolerant Control for Carrier-Based UAV with Actuator Failures,”
Aerospace Science and Technology, Vol. 107, 2020, p. 106227. https://doi.org/10.1016/j.ast.2020.106227.

[10] Wang, B., Shen, Y., and Zhang, Y., “Active Fault-Tolerant Control for a Quadrotor Helicopter Against Actuator Faults and
Model Uncertainties,” Aerospace Science and Technology, Vol. 99, 2020, p. 105745. https://doi.org/10.1016/j.ast.2020.105745.

[11] Jiang, Y., Zhiyao, Z., Haoxiang, L., and Quan, Q., “Fault Detection and Identification for Quadrotor Based on Airframe
Vibration Signals: A Data-Driven Method,” 2015 34th Chinese Control Conference (CCC), 2015, pp. 6356–6361.
https://doi.org/10.1109/chicc.2015.7260639.

[12] Sun, S., and de Visser, C., “Aerodynamic Model Identification of a Quadrotor Subjected to Rotor Failures in the High-Speed Flight
Regime,” IEEE Robotics and Automation Letters, Vol. 4, No. 4, 2019, pp. 3868–3875. https://doi.org/10.1109/lra.2019.2928758.

[13] Avram, R. C., Zhang, X., and Khalili, M., “Quadrotor Actuator Fault Diagnosis with Real-Time Experimental Results,” Annual
Conference of the PHM Society, Vol. 8, 2016. https://doi.org/10.36001/phmconf.2016.v8i1.2504.

[14] Ghalamchi, B., Jia, Z., and Mueller, M. W., “Real-Time Vibration-Based Propeller Fault Diagnosis for Multicopters,”
IEEE/ASME Transactions on Mechatronics, Vol. 25, No. 1, 2020, pp. 395–405. https://doi.org/10.1109/tmech.2019.2947250.

[15] Newman, S., “Principles of Helicopter Aerodynamics,” The Aeronautical Journal, Vol. 111, 2007, pp. 825–826. https:
//doi.org/10.1017/S0001924000087352.

[16] Selig, M., Modeling Full-Envelope Aerodynamics of Small UAVs in Realtime, Toronto, Ontario, Canada, 2010. https:
//doi.org/10.2514/6.2010-7635.

[17] Orsag, M., and Bogdan, S., Influence of Forward and Descent Flight on Quadrotor Dynamics, IntechOpen, London, United
Kingdom, 2012, Chap. 7, pp. 141–156. https://doi.org/10.5772/37438.

[18] Khan, W., and Nahon, M., “Toward an Accurate Physics-Based UAV Thruster Model,” IEEE/ASME Transactions on
Mechatronics, Vol. 18, No. 4, 2013, pp. 1269–1279. https://doi.org/10.1109/tmech.2013.2264105.

[19] Burton, T., Sharpe, D., Henkins, N., and Bossanyi, E., Wind Energy Handbook, 2nd ed., Wiley, Chichester, West Sussex, 2011.

[20] Gill, R., and D’Andrea, R., “Propeller Thrust and Drag in Forward Flight,” 2017 IEEE Conference on Control Technology and
Applications (CCTA), 2017, pp. 73–79. https://doi.org/10.1109/ccta.2017.8062443.

[21] Gill, R., and D’Andrea, R., “Computationally Efficient Force and Moment Models for Propellers in UAV Forward Flight
Applications,” Drones, Vol. 3, No. 4, 2019. https://doi.org/10.3390/drones3040077.

[22] Niemiec, R., and Gandhi, F., “Effects of Inflow Model on Simulated Aeromechanics of a Quadrotor Helicopter,” Proceedings of
the 2016 72nd American Helicopter Society (AHS) International Annual Forum, 2016.

[23] Leishman, J. G., Principles of Helicopter Aerodynamics, Cambridge University Press, Cambridge, 2006.

[24] Howlett, J. J., UH-60A Black Hawk Engineering Simulation Program, Vol. 1, NTIS, Springfield, Va., 1981.

[25] Pitt, D., and Peters, D., “Theoretical Prediction of Dynamic Inflow Derivatives,” Vertica, Vol. 5, 1981.

[26] White, F., and Blake, B. B., “Improved Method Of Predicting Helicopter Control Response And Gust Sensitivity,” Proceedings
of the 1979 35th Annual Forum of American Helicopter Society, 1979.

[27] Drees, J., “A Theory of Airflow Through Rotors and its Application to some Helicopter Problems,” Journal of the Helicopter
Association of Great Britain, 3, Vol. 2, 1949, pp. 79–104.

[28] Sun, S., de Visser, C. C., and Chu, Q., “Quadrotor Gray-Box Model Identification from High-Speed Flight Data,” Journal of
Aircraft, Vol. 56, No. 2, 2019, pp. 645–661. https://doi.org/10.2514/1.c035135.

[29] Byrd, R. H., Hribar, M. E., and Nocedal, J., “An Interior Point Algorithm for Large-Scale Nonlinear Programming,” SIAM
Journal on Optimization, Vol. 9, No. 4, 1999, pp. 877–900. https://doi.org/10.1137/s1052623497325107.

[30] Mostafa, A.-B., and Ebrahim, M., “3D Laser Scanners’ Techniques Overview,” International Journal of Science and Research
(ĲSR), Vol. 4, 2015, pp. 5–611. https://doi.org/10.1007/s41062-021-00550-9.

34

[31] Perez-Cortes, J.-C., Perez, A., Saez-Barona, S., Guardiola, J.-L., Salvador Igual, I., and Sáez-Barona, S., “A System for In-Line
3D Inspection without Hidden Surfaces,” Sensors, Vol. 18, 2018, p. 2993. https://doi.org/10.3390/s18092993.

[32] Bhatti, A. Q., Wahab, A., and Sindi, W., “An Overview of 3D Laser Scanning Techniques and Application on Digitization of
Historical Structures,” Innovative Infrastructure Solutions, Vol. 6, No. 4, 2021, p. 186. https://doi.org/10.1007/s41062-021-
00550-9.

[33] Leza, D. V., “Development of a Blade Element Method for CFD Simulations of Helicopter Rotors using the Actuator Disk
Approach,” Master’s thesis, Delft University of Technology, 2018.

[34] Omari, S., Hua, M.-D., Ducard, G., and Hamel, T., “Nonlinear Control of VTOL UAVs Incorporating Flapping Dynamics,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 2419–2425. https://doi.org/10.1109/iros.
2013.6696696.

[35] Zhang, P., and Huang, S., “Review of Aeroelasticity for Wind Turbine: Current Status, Research Focus and Future Perspectives,”
Frontiers in Energy, Vol. 5, No. 4, 2011, p. 419–434. https://doi.org/10.1007/s11708-011-0166-6.

[36] Gessow, A., and Myers, G. C., Aerodynamics of the Helicopter, F. Ungar Pub. Co., New York, 1967.

[37] Mangler, K. W., and Squire, H. B., The Induced Velocity Field of a Rotor, Ministry of Supply, Aeronautical Research Council,
London, 1950.

[38] Stepniewski, W. Z., Rotary-Wing Aerodynamics, Dover Publications, New York, 1984.

[39] Ormiston, R. A., An Actuator Disk Theory for Rotor Wake Induced Velocities, Advisory Group for Aerospace Research and
Development (AGARD-CP-111), Aerodynamics of Rotary Wings, 1972. https://doi.org/10.1007/978-3-030-05455-7_2-2.

[40] Ormiston, R. A., “Induced Power of the Helicopter Rotor,” 60th Annual Forum of the American Helicopter Society International,
2004, pp. 33–53.

[41] Payne, P. R., “Helicopter Dynamics and Aerodynamics,” Vol. 63, No. 585, 1959. https://doi.org/10.1017/S0368393100071728.

[42] Peters, D. A., and Haquang, N., “Dynamic Inflow for Practical Applications,” Journal of the American Helicopter Society,
Vol. 33, No. 4, 1988, pp. 64–68. https://doi.org/10.4050/jahs.33.64.

[43] Peters, D. A., Boyd, D. D., and He, C., “Finite-State Induced-Flow Model for Rotors in Hover and Forward Flight,” Journal of
The American Helicopter Society, Vol. 34, 1989, pp. 5–17. https://doi.org/10.4050/jahn.34.5.

[44] Peters, D. A., and He, C., “Correlation of Measured Induced Velocities with a Finite-State Wake Model,” Journal of The
American Helicopter Society, Vol. 36, 1991, pp. 59–70. https://doi.org/10.4050/jahs.36.59.

[45] Zhao, J., Prasad, J., and Peters, D., “Rotor Dynamic Wake Distortion Model for Helicopter Maneuvering Flight,” Journal of
The American Helicopter Society, Vol. 49, 2004, pp. 414–424. https://doi.org/10.4050/jahs.49.414.

[46] Leishman, J. G., Bhagwat, M. J., and Bagai, A., “Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes,”
Journal of Aircraft, Vol. 39, No. 5, 2002, pp. 759–775. https://doi.org/10.2514/2.3022.

[47] Singh, A. P., Medida, S., and Duraisamy, K., “Machine-Learning-Augmented Predictive Modeling of Turbulent Separated
Flows over Airfoils,” AIAA Journal, Vol. 55, No. 7, 2017, pp. 2215–2227. https://doi.org/10.2514/1.j055595.

[48] Volpiani, P. S., Meyer, M., Franceschini, L., Dandois, J., Renac, F., Martin, E., Marquet, O., and Sipp, D., “Machine
Learning-Augmented Turbulence Modeling for RANS Simulations of Massively Separated Flows,” Physical Review Fluids,
Vol. 6, 2021, p. 064607. https://doi.org/10.1103/physrevfluids.6.064607.

[49] Lomb, N. R., “Least-Squares Frequency Analysis of Unequally Spaced Data,” Astrophysics and Space Science, Vol. 39, No. 2,
1976, pp. 447–462. https://doi.org/10.1007/bf00648343.

[50] Scargle, J. D., “Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced
Data,” Astrophysical Journal, Vol. 263, 1982, pp. 835–853. https://doi.org/10.1086/160554.

[51] Scargle, J. D., “Studies in Astronomical Time Series Analysis. III. Fourier Transforms, Autocorrelation Functions, and Cross-
Correlation Functions of Unevenly Spaced Data,” Astrophysical Journal, Vol. 343, 1989, p. 874. https://doi.org/10.1086/167757.

35

7
Scientific Paper 2: Unreal Success:

Vision-Based UAV Fault Detection and
Diagnosis Framework

95

Unreal Success: Vision-Based UAV Fault Detection and
Diagnosis Framework

José Ignacio de Alvear Cárdenas∗ and Coen de Visser†

Online fault detection and diagnosis (FDD) enables Unmanned Aerial Vehicles (UAVs) to
take informed decisions upon actuator failure during flight, adapting their control strategy
or deploying emergency systems. Despite the camera being a ubiquitous sensor on-board of
most commercial UAVs, it has not been used within FDD systems before, mainly due to the
nonexistence of UAV multi-sensor datasets that include actuator failure scenarios. This paper
presents a knowledge-based FDD framework based on a lightweight LSTM network and a
single layer neural network classifier that fuses camera and Inertial Measurement Unit (IMU)
information. Camera data is pre-processed by first computing its optical flow with RAFT-S,
a state-of-the-art deep learning model, and then extracting features with the backbone of
MobileNetv3-S. Short-Time Fourier Transform is applied on the IMU data for obtaining its
time-frequency information. For training and assessing the proposed framework, UUFOSim
was developed: an Unreal Engine-based simulator built on AirSim that allows the collection
of high-fidelity photo-realistic camera and sensor information with the possibility of injecting
actuator failures during flight. Data were collected in simulation for the Bebop 2 UAV with
16 failure cases. Results demonstrate the added value of the camera and the complementary
nature of both sensors with failure detection and diagnosis accuracies of 99.98% and 98.86%,
respectively.

I. Nomenclature

𝑏cam, 𝑏IMU = Camera and IMU buffers
𝐶𝑈𝐸4 = Occupancy grid cell size in ICFUE4 length units
𝑓cam, 𝑓IMU = Camera and IMU sampling frequency, HZ
𝑓FDD = FDD execution frequency, Hz
𝑓p = AirSim physics engine thread calling frequency
𝑓res, 𝑡res = STFT frequency and time resolutions
𝑘UE4 = Conversion factor between UE4 and AirSim coordinate frames
𝑛𝑥 , 𝑛𝑦 = Occupancy grid coordinates
𝑛win = STFT window size, samples
𝑜 = STFT window overlap size, samples
−→
𝑃 𝑖 = Waypoint coordinate vector
𝑝𝑖𝑥 , 𝑝𝑖𝑦 = Waypoint coordinates in the occupancy grid coordinate frame
𝑝𝑖𝑥 , 𝑝𝑖𝑦 , 𝑝𝑖𝑧 = Waypoint coordinates in the AirSim drone coordinate frame
−→
𝑋 = Vehicle state vector
𝑥, 𝑦, 𝑧 = Position coordinates, m
𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 = Reference position coordinates, m
𝑥𝐷0 , 𝑦𝐷0 = Drone initial spawn coordinates in ICFUE4
𝑥UE4, 𝑦UE4 = Position coordinates in ICFUE4
𝜈 = Measurement noise
𝜓𝑟 = Drone reference heading, rad
𝜔 = Propeller rotational speed, rad/s
Ω = Vehicle angular velocity, rad/s

∗Graduate Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
†Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology

1

II. Introduction

With the advent of Smart Cities, Unmanned Air Vehicles (UAVs) have seen a surge in their number of applications,
from package delivery [1, 2] to Urban Air Mobility (UAM) [3]. Most recently, as a response to the COVID-19

pandemic [4], the implementation of UAVs for medical purposes has been accelerated. Zipline, a drone start-up in
California (USA), has been granted permission for transporting medical supplies in North Carolina and AVY, a start-up
based in Amsterdam (The Netherlands), has received a grant from the European Commission for urgent medical
transport between healthcare facilities. With Air Traffic Control programs under development for the management of
drones, such as the U-Space in Europe [5], one of the main concerns of the future crowded urban airspace is safety [6].

Most of the research in this field has been focused on fault tolerant control [7], with companies such as Verity
Studios successfully filing a patent in 2020 for a final product [8]. However, in order to improve the resilience of
multi-rotor and hybrid drones to potential failures, work is also carried out in obstacle avoidance [9], upset recovery
[10], system identification [11] or fault detection and diagnosis [12]; the latter consisting of the fault classification, as
well as its location and magnitude identification. Literature in actuator fault detection and diagnosis (FDD) is very
extensive but it deals with a single failure type at a time and has been limited to the manipulation of signals from the
Inertial Measurement Unit (IMU), namely the accelerometers and gyroscopes, or additional external sensors such as
microphones or optical flow sensors [13, 14], which add weight and complexity to the system. Cameras are nowadays
ubiquitous in commercial UAVs and they have been ignored for this task, even though their information is already being
processed for navigation, such as Simultaneous Localisation and Mapping (SLAM) [15], and state estimation in GPS
denied urban regions, such as Visual Inertial Odometry [16]. Visual information is very rich and it could potentially
identify multiple failure types at once, as well as increase the accuracy when fused with the IMU sensor.

FDD expands the envelope of the UAV’s self-awareness and allows informed decisions when deploying emergency
systems, such as a parachute, and switching between controllers or internal physics models to counteract a failure.
Figure 1 shows a classification of FDD methods from literature which can be divided in 3 main groups: model-based,
signal-based and knowledge-based. Historically, knowledge-based approaches have shown to be the most suitable for
dealing with high-dimensional visual data, especially with the rise of deep learning model architectures. In contrast with
model-based approaches, they do not make use of the physical properties of the system and do not build a mathematical
model. However, they require greater amounts of historic data in order to create implicit models.

Model-based

Signal-based

Knowledge-based

FDD methods

Observer and filter
based method

Machine

Learning Symbolic AI

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Time domain Frequency domain Joint time
frequency domain

Semi-supervised
learning

QualitativeQuantitative

Causal models Abstraction
hierarchy

Parameter
estimation

Dynamic observerStatic observer

Simultaneous state
& parameter
estimation

Parity space
method

Fig. 1 Fault detection and diagnosis method taxonomy.

Machine learning methods are exploited in modern fault detection systems because they do not require a lot of
computations, allowing their use online in real-time. Among them, Long Short-Term Memory (LSTM) networks are
a supervised learning method that can be fed sequential data in order to extract temporal relationships to generate
an output [17]. It generates predictions based on the current input and an internal state that stores information from
an arbitrary number of previous inputs. It is usually combined with batch normalization (BN) to reduce the internal
covariate shift and accelerate the convergence of the algorithm. Zhao et al. [18] exploit this combination to extract

2

dynamic information from data for online FDD within chemical processes and they demonstrate its superiority over
alternative knowledge-based FDD approaches.

For the development and performance assessment of vision-based FDD algorithms, it is required to have a dataset
which includes IMU and camera output in nominal flight and in failure scenarios. Unfortunately, the current available
datasets do not include IMU sensor information, such as the VisDrone dataset [19] or the Indoor Navigation UAV
Dataset [20], and do not have any recorded scenarios with failures, such as the UZH-FPV Drone Racing Dataset [21] or
the Zurich Urban Micro Aerial Vehicle Dataset [22].

Gathering large quantities of data for knowledge-based fault detection models with an UAV is very time consuming,
dangerous and expensive; data would have to be annotated, multiple failure modes would have to be induced in the
vehicle and the flight environment, as well as the UAV, would have to be adapted to minimise the potential risk. Besides
that, in an experimental physical setting it is very difficult to collect data from various environments and conditions. A
suitable alternative is the simulation of the vehicle in a realistic environment, the storage of the sensor synthetic data for
model training and the transfer learning to the real world UAV. It has been observed that the addition of large quantities
of synthetic data to a smaller real dataset would lead to a performance increment when compared to the scenario in
which only real data is collected [23].

In previous literature, Gazebo has been the quadrotor simulation tool of choice by the research community leading
to simulators such as RotorS [24] and Hector [25]. Despite its high-fidelity physics engine, the output quality of its
visual cues is far from photo-realistic. In this regard, there has been an effort in developing high-fidelity simulators for
computer vision tasks in the last 10 years. Blender’s Game Engine was used for the development of simulators, such as
MORSE [26] from 2011 to 2016. However, Unity and Unreal Engine have become the new state-of-the-art (SOTA).
Besides their photo-realism, these engines have the benefit of providing an online asset marketplace for the generation
of an infinite number of simulation environments.

Examples of photo-realistic simulators are FlightGoggles [27] and Flightmare [28] developed in Unity, and UnrealCV
[29], Sim4CV [30] and AirSim [31] developed in Unreal Engine. AirSim was launched in 2017 by Microsoft as an
open-source simulator built on Unreal Engine 4 (UE4) for AI research. It is a modular framework that fosters the
simulation of autonomous drones and ground vehicles with realistic physics and visual cues. It also includes C++ and
Python APIs that allow the researcher to interact programmatically with the vehicle for the extraction of state and sensor
information, as well as for providing vehicle control inputs. In contrast with the other simulators, it has an adaptable
framework for the introduction of new vehicle models and it is well documented. Thanks to its modularity, later works
have been built on AirSim for specialised applications, such as the AirSim Drone Racing Lab [32]. Another promising
simulator is Isaac Sim∗ developed by NVIDIA for the development and deployment of artificial learning applied to
robotics in their Omniverse simulator environment. Unfortunately, its computational requirements are beyond the
specifications of most commercially available workstations.

The main contribution of this paper is an LSTM-based online FDD framework that fuses camera and IMU data.
To this end, the camera information is pre-processed by a SOTA optical flow model in order to extract the magnitude
and direction of the vehicle’s ego-motion. The IMU data is passed through a Short-Time Fourier Transform for
feature extraction. To the authors’ knowledge, it is the first time that both sensor sources are combined for UAV FDD.
Furthermore, this paper also presents UUFOSim (Unreal UAV Failure injectiOn Simulator), a data gathering pipeline
built on AirSim for the collection of synthetic flight data with actuator failures in a urban environment.

The potential of UUFOSim has been demonstrated for the Parrot Bebop® 2 UAV. Its aerodynamic model is available
from literature [11, 33] and it has been complemented with the blade damage model from [34]. The FDD framework
was run at 10 Hz and it had to distinguish between 17 states: 16 failure states, namely four levels of blade damage failure
for each of the four propellers, and a healthy state. The results show the added value of the camera-IMU combination
versus their isolated performances.

The remainder of this paper is organized as follows. Section III describes the data gathering pipeline within
UUFOSim. Section IV covers the FDD framework and provides the details of the camera and IMU data pre-processing.
Then, section V presents the results when both contributions are applied to the Bebop 2 platform. Finally, concluding
remarks and recommendations for further work are provided in section VI.

∗https://developer.nvidia.com/isaac-sim

3

III. UUFO Simulator
The simulator, that the authors have named Unreal UAV Failure injectiOn Simulator (UUFOSim), consists of flying

a simulated drone or Undiagnosed Failing Object (UFO) in a urban environment avoiding obstacles between two random
locations. UFOs fly at a uniformly sampled constant altitude and an actuator failure, within a set of modes, is injected at
a random point along the trajectory. During the whole flight, including the manoeuvres after the failure, the camera and
IMU data is stored to later shape the dataset for the training and testing of the FDD framework.

Figure 2 shows the three main blocks that shape the data gathering pipeline. Once the flight is concluded by
achieving one of the terminating conditions, the environment and drone are reset to their original state and the cycle is
repeated. The loop continues for as many flights as it is desired for building the dataset.

Occupancy map
extraction

Drone grid
navigation Drone flight

UUFOSim

Fig. 2 Data gathering pipeline block diagram

In order to discuss in detail each of the presented blocks, this section will first present how the information from the
environment is extracted offline and translated to an occupancy grid in subsection III.A. Once the environment state
is known, the path that the drone should follow is computed in subsection III.B using common robot path planning
algorithms. Finally, the drone flight including the sensor data collection and fault injection during flight are discussed in
subsection III.C.

A. Environment and occupancy map
The environment is discretised into a matrix of inter-independent fix size cells which store whether they are free or

occupied in the form of a boolean. This form of representation is called a grid occupancy map and has been exploited
in the autonomous driving industry [35, 36], and more recently in the (flying) robotics sector [37, 38], to reduce the
environment information to a tractable and efficient data structure.

Figure 3 describes all the steps taken to build a static 2D grid occupancy map in order to encapsulate all the
information about the static obstacles found by the drone at its flying altitude prior to executing its flight.

Select random
altitude

Extract UE4
obstacle vertices

Slice point cloud at
flight altitude and

project to 2D

Obtain environment
dimensions

Create and fill
occupancy grid with

obstacle points

Fill grid cells
enclosed by
obstacles

Plot occupancy map

Occupancy map
extraction

Fig. 3 Occupancy map extraction block diagram.

4

First, the flight altitude is randomly selected within a range of possible altitudes. The flight altitude changes between
iterations in order to prevent the overfitting of the FDD algorithm to object instances found at a certain height, like
bushes, trees or windows, as well as the location of the horizon line in the drone captured images.

For the extraction of obstacle information, AirSim provides an API that returns UE4 assets’ triangular static meshes
(as can be seen in Fig. 4 for a sphere) as a Face-Vertex Mesh. This results in a 3D point cloud in which each point has a
label for an object in the environment.

Fig. 4 Sphere mesh in Unreal Engine 4.

1

2 3

4

Fig. 5 Blocks environment limits for drone flight
bounded by the 4 monoliths in the red rectangle cor-
ners.

Figure 5 shows the Blocks environment that will be used to showcase the steps carried out on the grid occupancy
map. It consists of grey blocks, an orange sphere, a blue cone and multiple cylinders on the environment’s left centre
part. Since it is desired that the drone flies exclusively around the obstacles of the environment, its limits are defined by
the furthest points in the 2D point cloud x and y directions. For the Blocks environment, the drone flights are confined
to the red rectangle shaped by the four corner monoliths, resulting in a 3D point cloud of obstacles of 46,248 points.

Moreover, the drone maintains constant altitude during a flight. Thanks to this assumption, the point cloud can
be reduced by slicing it and storing only the points found within a range around that altitude. The 3D points are then
projected to the 2D x-y plane reducing them to a 2D point cloud.

Fig. 6 shows the 2D point cloud of the obstacles in the scene when the chosen drone flight altitude is seven metres
with an altitude range of three metres. The points that are close to each other with the same colour are part of the same
object. The current figure has 8,956 2D points because there are many overlapping projected vertices from multiple
altitudes. This abundance of points can be seen when zooming to the orange blob in Fig. 7. Despite having reduced
the number of obstacle points by a factor of five (and the information by almost a factor of eight, since the altitude
information has been discarded), there are many points that do not provide any information; only the outer edge of each
group of objects carry information that should be preserved for the representation of obstacles in the environment.

The solution to the problem of unnecessary points that should be discarded is the introduction of the occupancy
map. The environment is discretised in cells and those with points within its boundaries are considered as occupied
(black) whereas those with no points are empty (white). As a result, independently of how many points are within a cell,
they are translated to a single data point. For the Blocks example, the 2D point cloud is transformed from the world
coordinate frame to the grid coordinate frame, projecting all points into the 2D grid and filling all the cells occupied
by obstacle points. This process can be observed applied to the Blocks environment in Fig. 8 and Fig. 9. From this
point, only the grid information is passed along the FDD data gathering pipeline, decreasing the stored data and further
computational load. Instead of the initial 8,956 2D points considered before the occupancy grid implementation, now a
grid of 80 by 54 cells is used, resulting in a total of 4,320 cells. Given that now the data points (cells) are homogeneously
distributed, the information about their location does not have to be stored as long as the x and y dimensions of the
occupancy grid are known, meaning that the 2D information has been transformed to a 1D data stream. As a result, the
number of data points has been reduced by a factor of two, whereas the amount of information stored has been further
reduced by a factor of four. Table 1 summarises the evolution of the number of points and coordinates (information)
through the aforementioned projection and occupancy grid stages.

5

−1.0 −0.5 0.0 0.5 1.0
y-coordinate 1e4

−1.0

−0.5

0.0

0.5

x-
co
or
di
na
te

1e4

Fig. 6 2D projection of the Blocks environment ob-
ject vertices within 4 and 10 metres altitude.

2.8 3.0 3.2 3.4 3.6 3.8
y-coordinate 1e3

3.0

3.5

4.0

x-
co
or
di
na
te

1e3

Fig. 7 Zoom-in of the 2D projected points of the
sphere.

Fig. 8 2D points projected in empty occupancy grid. Fig. 9 Filled occupancy grid and 2D projected points.

Table 1 Evolution of the number of points and coordinates upon the occupancy map generation.

Original 2D projection Occupancy map
Points 46,248 (100%) 8,956 (19.36%) 4,320 (9.34%)
Coordinates 138,744 (100%) 17,912 (12.91%) 4,320 (3.11%)

As can be observed from Fig. 9, filling the grid cells occupied by obstacle vertices is not enough for creating a
reliable occupancy map. There are grid cells that lie within objects, that should not be accessible but that are not marked
as occupied since there is no vertex of the static mesh on that particular cell. This problem worsens the finer the mesh of
the occupancy map. To solve this, the following algorithm was developed that exploits the Delaunay triangulation:

1) First, each of the objects in the environment is assigned the coordinates of the grid cells occupied by their
remaining 2D points projected on the occupancy map. Those objects with less than three grid coordinates or
whose coordinates shape a line along the x or y axis are discarded from this process since they can not enclose
other cells.

2) For each of the remaining objects, the grid cells that define the outer edge of their described polygon are identified.
For that purpose, Delaunay triangulation is used, which creates a triangular mesh of the object grid cells. It is
looped over all the created triangles for each of the objects and, in the case that an edge is covered more than once,
then it is an internal edge shared by two triangles. Therefore, it is discarded as a potential polygon outer edge.

3) Once the outer edges of the obstacle polygon are identified, is it looped over all grid coordinates and assessed
whether they lie within the polygon boundaries. After going through all the empty grid coordinates for each of
the (obstacle) polygons, all the grid cells located within obstacles have been identified.

To conclude, all the grid cells found within the obstacles are marked as occupied within the occupancy map, leading
to Fig. 10 for the Blocks environment. This occupancy map is passed on to the path planning module.

6

Fig. 10 Filled occupancy grid considering obstacle
inner cells identified with Delaunay triangulation.

Fig. 11 Occupancy grid with start and goal locations.

B. Path planning
The steps to achieve a smooth drone flight path can be observed in Fig. 12.

Select random initial
and goal flight

coordinates

Check start and goal
coordinates

requirements

Plot start and goal
points in occupancy

map

Path planning with A*
Reduce the number of

path points with B-
spline

Check path obstacle
collision

Plot final path in
occupancy map

Drone grid navigation

Transform grid
coordinates to AirSim

drone inertial
coordinate frame

Smoothen path with
cubic spline

Check path obstacle
collision

Fig. 12 Drone grid navigation block diagram.

1. Start and goal selection
First, a random initial and goal flight coordinates are generated, and it is verified whether those grid locations fulfil

three design requirements:
1) The distance between the start and end location is greater than a minimum distance given as input by the user.

This prevents extremely short paths which do not allow the injection of failures.
2) The distance between the start and the end location is smaller than a maximum distance given as input by the

user. This prevents extremely long paths that would decrease the number of flights that would be executed in the
allocated time for data collection and do no add much value to the training of the FDD framework.

3) The start and goal locations have to be located beyond a minimum distance from all identified obstacles in the
occupancy map. This guarantees that there will not be any unexpected collision due to the drone dimensions.

7

The random selection and requirement check is repeated until the start and goal coordinates fulfil the established
requirements. Once that is the case, they are included within the occupancy map. For the Blocks example, the start and
goal location can be seen in Figure 11 as red dots.

2. Path planning algorithm selection
Only two types of classic robot path planning methods are considered, namely grid or discrete approaches and

road-map methods. A visual classification of the algorithms considered in the present research can be observed in
Fig. 13.

Path planning

Grid/discrete
approaches

Road-map
approaches

A* Wavefront
Path Planner

Geometric
approaches

Sampling

 approaches

Voronoi Road-
Map Planning PRM RRT*

Fig. 13 Path planning algorithm classification

Both methods within the first group consist of two steps, namely a propagation or search step and a back propagation
step. The main difference between both methods within the first group is that the Wavefront Path Planner applies its
initial search (wave propagation) throughout the complete grid whereas A∗ uses a function to decide which cells are
worth inspecting given the already discovered solution space. As a result, even though every iteration in the search step
of the A* algorithm is more computationally expensive, less iterations need to be considered since only a portion of the
grid is inspected.

The main difference between the sampling options is that in PRM the drone must pass through randomly sampled
points in the solution space whereas in RRT* it only has to move in their direction; it does not require point-to-point
convergence.

All the approaches when adapted can maintain a tunable safe distance from the obstacles in the environment, except
for the Voronoi Road-Map planning that tries to maximise this distance. When applied to the Blocks environment, A*
shows the lowest computation time when compared to the rest, followed by Voronoi Road-Map planning. Wavefront
Path Planner and PRM show similar computation time, whereas RRT* is the worst performing, requiring a time 17
times higher than A*. From this analysis, A* algorithm is the algorithm of choice. Figure 14 shows the A∗ path for the
Blocks example.

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Fig. 14 A* Path Planner applied to the Blocks environment example.

8

3. B-spline path point number reduction
There are many points that shape the final flight path that do not provide valuable information. All the points along

straight lines can be suppressed and reduced to two points before smoothing the trajectory. Additionally, some curves
could be avoided if straight lines were taken. Whereas A* provided a flight path from the start to the goal using points
separated by the size of an occupancy grid cell, the B-spline could be used to reduce the path to its most indispensable
points.

B-splines [39] of order k are piece-wise polynomials that serve as the basis of spline functions and are capable
of generating smooth trajectories connecting a provided set of data points. They are of degree k-1 and k-2 times
continuously differentiable. For the present research, B-splines of degree 2 are used, which means that they are of order
3 and are 1 time continuously differentiable. Since the goal is to create an alternative using only the most indispensable
points, the algorithm starts aiming at creating a path only with 5% of the points. If unsuccessful, this point reduction
strategy is repeated increasing the percentage of kept points by 5% every time. If the percentage of kept points reaches
100%, then reduction of points is deemed not possible and the A* generated path is passed on to the next step in the path
planning pipeline.

In the case that a reduced path is computed, it is checked for collisions with the obstacles in the environment. To that
end, the vectors connecting each pair of points along the new path are discretised and it is checked whether the grid cells
of which they are part of are occupied. Additionally, this process is repeated with two parallel vectors displaced one
cell to the right and to the left of the original vector in order to maintain at least one cell distance from all the present
obstacles. In the example presented in Fig. 15, even though the central vector connects the two path points through open
space, an obstacle is detected because one of the points of the right parallel vector can be found within an occupied grid
cell. The positive detection of collision with an obstacle has the same effect as an unsuccessful reduction of path points:
the percentage of kept points is increased by 5% and a new B-spline is generated whose reduced flight path would be
again checked for obstacles.

Fig. 15 B-spline reduced path obstacle detection. The blue and green cells are two path points, and the red cells
are occupied by environment obstacles. The black lines are the discretised vectors for obstacle detection.

The benefits of B-spline path point number reduction can be visually appreciated in the occupancy grid. Figure 16
and Fig. 17 show the flight path before and after the B-spline path point reduction was applied. As can be seen, Fig. 16
is the same path as presented in Fig. 14 and it consists of 61 points. In contrast, Fig. 17 only required 9 points to carry
out the same path.

4. Cubic spline path smoothing
Computation of the cubic spline with the A* flight path as input would have not led to any considerable smoothing

given the fine path discretisation to single occupancy grid cells. The B-spline allowed the discovery of the pivot points
on which the cubic smoothing spline can be built.

The smoothing is required in order to avoid sharp corners. The distance between each point in the final smooth
flight path is again 1 occupancy grid cell size but the points are not constrained to the corner of each cell anymore, as it
was the case for the A* and B-spline reduced flight paths. Finally, it is checked for collision with obstacles using the
same approach as with the B-spline.

The red arrows in Fig. 18 show the final flight path and Fig. 19 visually confirms that the cubic spline passes through
the pivot points (yellow circles) and the flight path points are not confined to the occupancy grid cells. Additionally,
the improvement thanks to the presented approach (small red arrows), which combines B-splines and cubic splines,
becomes evident when compared to the original A* flight path (small green arrows).

9

Fig. 16 Zoom-in of Blocks occupancy map with A*
flight path represented by small green arrows.

Fig. 17 Zoom-in of Blocks occupancy map with B-
spline reduced flight path represented by large green
arrows.

Fig. 18 Zoom-in of Blocks occupancy map with cubic
spline smoothed flight path represented by small red
arrows.

Fig. 19 Visual confirmation of the final path not
being constrained to the occupancy grid and it passes
through B-spline pivot points (yellow circles).

5. Flight path transformation to AirSim drone inertial coordinate frame
Finally, the grid coordinates of the smoothed spline flight path are transformed to the AirSim drone inertial coordinate

frame. For that purpose, first the 4 inertial coordinate frames used for the data gathering pipeline are defined next:
1) Unreal Engine 4 inertial coordinate frame (ICFUE4): it is the coordinate frame used to build the environment.

Therefore, the centre of coordinates and the direction of its axes vary from map to map. It is a drone independent
coordinate frame.

2) Occupancy grid inertial coordinate frame (ICFOG): it has its origin at the bottom left of the occupancy map
with the y-axis pointing to the right and the x-axis pointing to the top in the 2D grid. All the objects and points
in the occupancy map have positive coordinates. The environment has been discretised with cells of predefined
size, CUE4. As can be seen in Eq. (1) and Eq. (2), in order to define the number of cells in the grid (𝑛𝑥 and
𝑛𝑦), the minimum and maximum X- and Y-coordinates among all the obstacles in UE4 environment (𝑥UE4𝑚𝑖𝑛

,
𝑥UE4𝑚𝑎𝑥

, 𝑦UE4𝑚𝑖𝑛
, 𝑦UE4𝑚𝑎𝑥

) are required. It is a drone independent coordinate frame.

𝑛𝑥 = (𝑥UE4𝑚𝑎𝑥
− 𝑥UE4𝑚𝑖𝑛

)/𝐶UE4 (1)

𝑛𝑦 = (𝑦UE4𝑚𝑎𝑥
− 𝑦UE4𝑚𝑖𝑛

)/𝐶UE4 (2)

3) AirSim inertial coordinate frame (ICFAS): it has its origin at the same location as ICFUE4 with its axes pointing
in the same directions. The only difference is the scale of its units: 1 unit in ICFAS is equivalent to 100 units in
ICFUE4. This factor is defined as kUE4. It is a drone independent coordinate frame.

10

4) AirSim drone inertial coordinate frame (ICFASD): it is the same as ICFAS with the only difference that its
origin has been shifted to the location where the drone is spawned for the first time within the environment. The
location of the drone within the controller is expressed using this inertial coordinate frame. The drone spawn
coordinates in the ICFUE4 are given as x𝐷0 and y𝐷0 . It is a drone dependent coordinate frame.

In order to transform the flight path from the occupancy map to the AirSim drone inertial coordinate frame, the
transformations in Fig. 20 were used, using the shown parameters.

Fig. 20 Inertial coordinate frame transformations: from ICFOG to ICFASD

Given a trajectory T: [(𝑝1𝑥
, 𝑝1𝑦

), (𝑝2𝑥
, 𝑝2𝑦

), ..., (𝑝𝑛𝑥
, 𝑝𝑛𝑦

)] of n points in R2 in ICFOG, the points of the flight path
can be transformed to ICFASD (𝑝𝑖𝑥 and 𝑝𝑖𝑦) with Eq. (3) and Eq. (4).

𝑝𝑖𝑥 = (𝑝1𝑥
· 𝐶UE4 + 𝑥UE4𝑚𝑖𝑛

)/𝑘UE4 − 𝑥𝐷0 𝑖 = 1, 2, ..., 𝑛 (3)

𝑝𝑖𝑦 = (𝑝1𝑦
· 𝐶UE4 + 𝑦UE4𝑚𝑖𝑛

)/𝑘UE4 − 𝑦𝐷0 𝑖 = 1, 2, ..., 𝑛 (4)

C. Data collection
The next step is to fly the drone within the UE4 environment, potentially induce an actuator failure and gather all the

vision-based and signal data for the FDD training. Figure 21 summarises all the steps taken during the final block of the
data gathering pipeline. In the following sections, each of the blocks will be briefly discussed.

Initialise sensors
Teleport drone to

selected start
location and altitude

Select and initialise
failure type and

mode

Store flight and
failure info in log

file

Start flying
computed path

Start sensor data
collection

Check failure
injection distance

Drone flight

Check collision, fly
off and arrival to

destination

Store collected
sensor data

Compute distance to
goal

Reset client and
failure factory

Fig. 21 Drone flight block diagram

11

1. Sensor initialisation and drone teleportation
In the sensor initialisation stage, the data structures in charge of storing the IMU and camera data are created. A

single drone can carry multiple cameras, each generating different information such as depth, segmentation or RGB.
Once the sensors have been initialised, the drone is teleported to the start location with the heading already pointing

towards the first path point in the trajectory. The user can specify whether it is desired for the drone to take-off from
the ground or it should be initialised directly at the chosen altitude. For the purpose of the current research, in which
the desire is to analyse failures during the cruise phase, the drone is already teleported to the right altitude, as can be
observed in Fig. 22 for the Blocks environment.

Fig. 22 Drone teleported to start location

2. Failure type & mode selection and initialisation
Four actuator failure types are considered: actuator saturation, when the propeller is locked rotating at its maximum

rotational rate; actuator lock, when the actuator is locked as a percentage of its maximum rotational rate; propeller
fly-off, when the propeller is detached completely from the motor; and propeller damage, when one or more blades are
broken. The first three failures are simulated by ignoring the controller propeller rotational rate outputs in favour of
predefined locked values. As an example, the propellers of the Bebop 2 drone can attain a maximum rotational rate of
1256 rad/s. When the actuator of a propulsion unit suffers a saturation failure, its rotational rate fed to the physics model
is locked at 1256 rad/s. In the case of being a locked propeller at 50%, then the physics model is fed a locked value of
628 rad/s (1256/2). If the propeller has flown-off, then a locked value of 0 rad/s is used. In all these scenarios, the forces
and moments change but no oscillatory behaviour is observed.

To simulate the fourth actuator failure type, the Blade Element Theory (BET) model presented in [34] was
implemented as a plug-in to the nominal vehicle physics model. Blade damage requires a closer look at the propeller
aerodynamics and centre of gravity shift, which create a loss of thrust and vibrations along the three body axis. These
aerodynamic and mass effects can be observed in Fig. 23 and Fig. 24, which show the BET-simulated forces and
moments for the Bebop 2 drone front left propeller after suffering 20% damage while rotating at 600 rad/s. In terms of
model performance, in the presence of up to 25% blade damage and with the same UAV platform, de Alvear et al. [34]
report a relative model error between 5% and 24% when simulating high propeller rotational speeds. At low propeller
rotational speeds, the same relative error is reported to oscillate between 15% and 75%. Additionally, since the BET
model airfoil lift and drag coefficients were identified for this particular UAV platform at low vehicle velocities, it is the
most accurate when flying at speeds up to 3.6 m/s.

Each failure type has a different number of potential failure modes. For example, the propeller fly-off has one
failure mode for each propeller, therefore there are four failure modes for this failure type. Additionally, there exist
two hyper-parameters that can increase or limit the number of failure modes for each failure type, namely discrete vs
continuous and abrupt vs linear. In the continuous case, the degree of failure of the damaged propeller and locked
actuator failure types can be given any value in the open interval (0,1), whereas in the discrete case they can only obtain
a value of the list <0.2, 0.4, 0.6, 0.8>. In the abrupt case, the failure takes place in a single time step once it is induced,
whereas in the linear case it is linearly transitioned from the nominal to the desired fault state. As an example, if the
propeller is rotating at 600 rad/s, the desired locking coefficient is 0.2, the maximum rotational speed is 1256 rad/s and
the failure linear rate of change is -0.15, then the locking coefficient will linearly change from 0.478 (600/1256) to 0.2 in
1.85 seconds.

12

−2.5
0.0
2.5

FP . x
 [N

]

−2.5
0.0
2.5

FP . y
 [N

]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5

0

FP . z
 [N

]

1e−2
Mass effects
Aerodynamic effects

Fig. 23 BET-simulated evolution of mass and aero-
dynamic forces generated by lost blade sections upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s [34].

−2.5
0.0
2.5

M
P . x

 [N
m

] 1e−3

−2.5
0.0
2.5

M
P . y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.0

2.5

M
P . z

 [N
m

] 1e−4
Mass effects
Aerodynamic effects

Fig. 24 BET-simulated evolution of mass and aero-
dynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating
at 𝜔0 = 600 rad/s [34].

In order to acquire a balanced data set which could be used for the FDD algorithm training, the user chooses the
failure types and modes to include in the data set, and a pool of potential combinations is created from which it is
uniformly sampled before every flight. As an example, if the user chooses discrete and abrupt actuator saturation, as well
as discrete and abrupt actuator lock, then for each flight the algorithm will randomly sample with a uniform distribution
from a pool of 21 alternatives, namely four actuator saturation options (one per propeller), 16 actuator lock options (four
per propeller) and one healthy option (no damage).

Moreover, before each flight, a random distance along the planned trajectory is chosen for failure injection that
is at least five metres from the start and goal locations in order to avoid capturing the transients present at the flight
initialization and completion.

3. Drone flight: guidance, control and physics model
The drone is commanded to fly the computed path. For that purpose, the simulation loops over the three blocks

shown in Fig. 25. First, with the trajectory path points defined in the path planning phase, the guidance block creates the
reference position (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) and heading (𝜓𝑟) for the controller given the current vehicle states (

−→
𝑋) polluted with

measurement noise (𝜈). Second, the controller translates the desired position and heading into commanded actuator
rotation velocities (𝜔𝑖𝑐 | i=1,2,3,4) taking into account the current states of the vehicle. Finally, the physics model block
simulates the effect of those commands on the drone and provides the states at the next time step as measured by the
vehicle sensors.

Guidance:
Generation of

reference position
and heading

Controller Bebop 2 physics
model

Fig. 25 Drone flight guidance, controller and physics model pipeline.

Until know, the simulation pipeline is platform agnostic. However, a UAV has to be chosen for the introduction of
the controller and the physics model, as well as for the demonstration of the FDD framework. For this paper, the Bebop
2 drone is the UAV of choice. In order to simulate as close as possible to reality its behaviour, the authors implemented
within the C++ API of AirSim the Incremental Nonlinear Dynamic Inversion (INDI) controller [7] and the gray-box
physics model [11, 33] developed at Delft University of Technology.

The used numerical integration scheme is the Beeman and Schofield explicit method [40] outlined in Eq. (5) and
Eq. (6), where 𝑥 is the position or attitude, 𝑣 is the linear or angular velocity and 𝑎 is the linear or angular acceleration.
Additionally, Δ𝑡 is the time step duration and the subscripts n+1, n and n-1 refer to the next, current and previous time
steps. It is designed for second order ordinary differential equations, necessary to translate accelerations into positions.
This approach substitutes the modified velocity Verlet algorithm [41] for the integration of the linear and angular
acceleration, as well as the Euler method for the computation of position and orientation, used within AirSim by default.

13

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛Δ𝑡 +
1
6
(4𝑎𝑛 − 𝑎𝑛−1) Δ𝑡2 (5) 𝑣𝑛+1 = 𝑣𝑛 +

1
6
(2𝑎𝑛+1 + 5𝑎𝑛 − 𝑎𝑛−1) Δ𝑡 (6)

Contrary to the controller and physics model that originate from previous work at TU Delft, the authors exploited
the guidance approach already implemented within AirSim and applied some modifications. At its core, this method
provides at every time step an intermediate reference position on the line connecting the previous and next waypoints at
a user-predefined "Look Ahead" (𝐿𝐴) distance from the current location projected on that line. Figure 26 illustrates
an example scenario that will aid in the visual explanation of this reference position computation. Three trajectory
waypoints are shown as

−→
𝑃 1,

−→
𝑃 2 and

−→
𝑃 3. Furthermore, the drone is initially positioned at −→𝑥 (𝑛−1) , as represented by a

red diamond. When the vehicle is at a waypoint or along the line connecting two consecutive waypoints, as it is the case
here, the next reference position is at an 𝐿𝐴 distance from the current location along that line. The current reference
position −→𝑥 𝑟(𝑛−1) is marked as a green hexagon in the figure. The vector that connects the reference location with the
vehicle position projected along the waypoint connecting line is called the "Goal Vector" (

−−→
𝐺𝑉), and it is computed

by subtracting the reference and actual positions, as shown in Eq. (7). In this case, the projected position −→𝑥 (𝑛−1)𝑝

coincides with the actual drone location −→𝑥 (𝑛−1) and the departure waypoint
−→
𝑃 1, but that is not always the case.

= Look Ahead

= Goal Vector

Fig. 26 Guidance block approach at time step n-1.

= Look Ahead

= Goal Vector

= Actual Vector

= Goal Normalised

= Goal Distance

= Actual on Goal

= error

Fig. 27 Guidance block approach at time step n:
geometry before reference position definition.

−−→
𝐺𝑉 =

−→𝑥 𝑟(𝑛−1) −
−→𝑥 (𝑛−1)𝑝 (7)

Next, Fig. 27 shows the next time step as the drone has flown away from the line connecting the waypoints and
is now found at −→𝑥 (𝑛) . As it can be seen, the vehicle has travelled the "Actual Vector" (

−−→
𝐴𝑉) and has covered a "Goal

Distance" (𝐺𝐷) along the line connecting the previous and next waypoints. The former is the difference between the
current and previous coordinates, as shown in Eq. (8). The latter can be computed using the dot product between

−−→
𝐴𝑉

and the normalised
−−→
𝐺𝑉 vector (Eq. (9)), also known as "Goal Normalised" or

−−→
𝐺𝑁 , as shown in Eq. (10). The vector

connecting the progress along the waypoint line, namely the difference between −→𝑥 (𝑛)𝑝 and −→𝑥 (𝑛−1)𝑝 , is called "Actual
on Goal" (

−−−→
𝐴𝑜𝐺) and it is computed according to Eq. (11).

−−→
𝐴𝑉 =

−→𝑥 (𝑛) − −→𝑥 (𝑛−1) (8)
−−→
𝐺𝑁 =

−−→
𝐺𝑉

|−−→𝐺𝑉 |
(9)

𝐺𝐷 =
−−→
𝐴𝑉 · −−→𝐺𝑁 = |−−→𝐴𝑉 | cos 𝜃 (10)

−−−→
𝐴𝑜𝐺 = 𝐺𝐷 · −−→𝐺𝑁 (11)

14

These vectors allow the computation of the closest distance between the waypoint line and the current vehicle
position, also known as deviation error (𝜖), with Eq. (12). In contrast with the previous situation, now the new reference
point −→𝑥 𝑟(𝑛) is located at a distance 𝐿𝐴 + 𝜖 · 𝐴𝐿𝐴 from −→𝑥 (𝑛)𝑝 in order to accelerate the error correction. 𝐴𝐿𝐴 is a user
defined value called "Adaptive Look Ahead", which allows to tune the importance of the waypoint line vehicle deviation
in the definition of the next reference location. This is shown in Fig. 28.

𝜖 = |−−→𝐴𝑉 − −−−→
𝐴𝑜𝐺 | (12)

= Look Ahead

= error

= Adaptive Look Ahead

Fig. 28 Guidance block approach at time step n:
reference position definition.

= Look Ahead

= constant

Fig. 29 Guidance block approach at time step n:
reference position correction.

As can be observed when comparing Fig. 26 and Fig. 28, the introduction of the adaptive look ahead can increase
the error between the reference and actual position considerably. If the controller is not able to correct the deviation fast,
it will lead to loss of control. In order to reduce the probability of emergence of this event, the authors have introduced a
simple but effective modification in the AirSim guidance block. Once the reference position has been computed, it is
checked whether the distance between the reference and current vehicle positions is higher than a constant (𝜅) times
𝐿𝐴. If that is the case, then a new reference position is defined in the same direction as the old one but at a distance of
𝜅𝐿𝐴 from the current position. The effect of this modification can be observed in Fig. 29. For the current research, it
was found that a value of 1.5 for the constant was effective to reduce the emergence of the aforementioned undesired
behaviour.

The second part of the guidance block is the computation of the yaw reference. It is desired that the drone points in
the direction of the desired flight path, meaning that it should point towards the reference point found in the reference
position definition, as shown in Fig. 29. Hence, the reference yaw is found with Eq. (13).

𝜓𝑟(𝑛) = arctan
𝑦𝑟(𝑛) − 𝑦 (𝑛)

𝑥𝑟(𝑛) − 𝑥 (𝑛)
(13)

4. Sensor data collection, failure injection and flight termination
During the execution of the flight, sensor data is being collected. AirSim provides a Python API for obtaining

information from the different sensors and the camera with simple functions that return the value registered by the
sensor at the time of the function call. Unfortunately, the maximum frequency at which these functions can be called or
record data is 26 Hz within the simple Blocks environment for a single drone, value far from the desired 500-1000 Hz
for the IMU or 30-60 Hz frames per second for the camera. Additionally, this sampling rate changes during the flight,
depending on the workload experienced by the different threads within the simulator in UE4 and the other computations
carried out by the Python API. Within a single flight test, a difference of a factor of 2.3 has been recorded between the
fastest and slowest sample rates.

15

In order to increase the sample rate of the IMU, its data is collected and stored within C++ before being sent back to
the Python API. For that purpose, the IMU data collection has been coupled to the physics engine of the simulator; with
every time step in the physics engine it is verified whether IMU information should be stored and, if that is the case, it is
saved in a vector for later retrieval. Once the flight is concluded, the information regarding that flight is called from the
Python API for storage and the C++ vector is cleaned for the next flight. The same process has been implemented for
other signal-based sensors, namely the barometer, magnetometer and GPS. The user only has to choose the sensors to
activate and their sampling rate.

Another main benefit of coupling the IMU data retrieval to the physics engine is that it is immune to simulation
slow-downs due to time intervals with a high computational load (e.g. when rendering UE4 environment sections with a
higher count of assets). If the simulator slows down, then the sensor data collection does it by the same amount thanks
to its linkage to the physics engine. The main disadvantage of this approach is that the sample rate choices are limited to
factors of the physics engine thread calling rate. With the nominal physics engine thread calling period of 0.003 seconds
(𝑓p = 333.33 Hz), the sampling frequencies available for IMU data gathering are discrete and limited to values of 𝑓p
divided by integer values.

With respect to the video sampling rate, it is not possible to couple the image data storage to the physics engine
because the AirSim image retrieval functions are part of another simulator thread. Therefore, in order to increase the
number of frames stored per second (fps), the simulation clock is modified. When the clockspeed is modified, the
physics engine sampling rate changes by the same factor. As a result, slowing down the simulation allows higher IMU
sampling rates and a larger number of choices. For instance, using a clockspeed factor of 0.5 would allow an IMU
sampling rate of up to 666.66 Hz. Therefore, the clockspeed factor is a hyper-parameter that has to be tuned by carrying
a trade-off between the IMU and camera sampling rates.

At the same time as data is being gathered, the distance to the goal location is computed and it is assessed whether
the drone has reached the distance along the planned trajectory at which the failure should be injected. Once that point
is reached, the Python API calls the C++ method that introduces the chosen failure. In the case of actuator saturation,
actuator lock or propeller fly-off, the damage coefficient is changed to the desired value. In the case of blade damage,
the forces and moments that the lost blade sections would hypothetically generate are subtracted from those computed
by the Bebop 2 gray-box aerodynamic model. Depending on whether the failure is abrupt or continuous, the mentioned
parameters are changed at a single time step to the desired value or they are linearly changed.

Once the failure has been injected, the simulation pipeline starts to check whether any of following flight termination
conditions has been reached: collision with the ground, collision with an obstacle, drone flies above a predefined altitude
or timeout, meaning that a predefined number of seconds after the failure injection has been reached.

5. Flight & failure metadata logging and sensor data storage
Once the flight has been concluded, flight and failure metadata, such as the type, location and magnitude of the

failure, are stored for the posterior labeling of the gathered data for the training and testing of FDD algorithms. The data
recorded by the IMU at every time step of the flight are stored in a .csv file. All the camera frames are stored in the
same directory as the IMU, each image with the name of the timestamp at which it was taken in order to preserve the
temporal sequence information.

Finally, the client, sensors and failure factory are reset to their original values in order to repeat the complete data
gathering pipeline shown in Fig. 2 for the next flight.

D. Debugging tool: signal scoping
In a similar fashion as when IMU data are gathered, any signal within the guidance, control and physics model can

be stored in a vector within the C++ API during the flight in order to be plotted upon flight termination with a call
from the Python API. The goal is to achieve a similar functionality as the signal scoping tool within Matlab to ease the
debugging of these simulator components. The result of such implementation is a single user input in the Python API in
which it must specify the signals it would like to plot. Additionally, it has the option of choosing which signals to plot
together in a single figure for direct comparison.

The introduction of this tool accelerates the debugging process of the simulator and it will facilitate the smooth
development and implementation of alternative forms of guidance and control, as well as different drone physics models,
by future researchers. Figure 30 and Fig. 31 show two examples of scoped signals. The first shows the 3D trajectory that
the drone followed when commanded to fly in a straight line in the x-direction. The second shows the commanded
propeller rotation velocities for the same flight.

16

y-coordinate [m]

4.49
4.50

4.51
4.52

4.53
x-coordinate [m]−60 −40 −20 0

z-
co

or
di

na
te

 [m
]−7.00

−6.98
−6.96
−6.94
−6.92
−6.90

Actual flight
Reference flight

Fig. 30 3D actual and reference trajectories
for single sample flight.

0 2000 4000 6000 8000 10000 12000
Sample index [-]

700

750

800

850

900

ω
xc

 [r
ad

/s
]

Front left
Front right
Back right
Back left

Fig. 31 Propeller commanded rotational velocity of each
actuator in rad/s for single sample flight.

IV. Fault detection and diagnosis framework
The goal of this section is the development of an actuator FDD framework, which does not only alert the drone

computer about the presence of an actuator failure, but it is able to point to the failed actuator and quantify the damage.
For that purpose, the authors propose an architecture which fuses the information obtained from the Inertial Measurement
Unit (IMU) and the camera on-board of the drone. Thanks to the simulator developed in section III, it is possible to use
knowledge-based approaches previously impossible due to the lack of data.

The complete FDD architecture can be observed in Fig. 32. Early in the pipeline it consists of two separate paths for
independently processing the camera and IMU information for the extraction of features. Then, both paths’ features are
concatenated and fed to a Long Short-Term Memory (LSTM) for data fusion, architecture with feedback connections
which allows the ingestion of sequential data. Finally, the output is passed on to a dense Neural Network for classification
with a number of neurons equal to the number of distinct classes. For example, in the case of failure detection there are
only two classes, namely healthy or failure. Hence, the classifier would have only two neurons in the output layer.

IMU

buffer

Camera

buffer

Feature
extraction
(STFT)

Optical flow

(RAFT-S)

Feature extraction

(MobileNetv3-S)

Flattening

Concatenation

Resize

= 555 Hz
IMU

Accelerometer

Gyroscope

Time series model

3x

= 10 Hz

Classifier

x 17Camera

= 30 Hz
LSTM

30
cells

BN

Softmax
& argmax

Detection &

diagnosis

FR
BD50

Sensor fusion and classification module

Fig. 32 The FDD pipeline consists of (i) an IMU time-frequency feature extractor in the form of a Short-Time
Fourier Transform, (ii) the MobileNetV3-S as feature extractor from the camera optical flow computed with
RAFT-S and (iii) a Long Short-Term Memory network followed by a single layer Neural Network as sensor fusion
and classification module. The FDD framework is run at 10 Hz and the sampling rate of the IMU and camera
are 555 Hz and 30 Hz, respectively.

One of the main challenges for any FDD architecture that aims at fusing multiple data sources with different sampling
rates is the synchronisation of the information without discarding precious data. On-board of most drones, the IMU
is able to produce samples at rates multiple times higher than the camera. A naive approach would be running the
FDD at the same frequency as the camera and taking the last data point from the camera and the IMU at every time
step; discarding all the IMU samples collected between camera shots. The developed FDD architecture can run at a
commanded frequency different than both sensors on board, as long as it is equal or smaller than the slower sensor. This
highlights the flexibility of the architecture, being able to adapt to different computation constraints.

17

Next, each of the architecture components will be explained in detail. Even though the framework could be applied
to any aerial platform, the frequencies and tensor sizes flowing through the architecture correspond to the Bebop 2 drone
used in the present research. First, subsection IV.A will dive into the different components required for the image feature
extraction. Then, subsection IV.B will discuss how the IMU data is processed. Finally, subsection IV.C will show how
the sensor features are translated to a detection and diagnosis prediction by treating the tasks as a classification problem.

A. Camera data processing
The inspiration for the introduction of the camera into the FDD pipeline stems from the observation that human

beings are able to detect that they are falling thanks to their "natural time differentiated accelerometer" or vestibular
system, an apparatus within the inner ear that provides information about changes in acceleration, as well as from their
visual sensory system. When the vestibular system is saturated (e.g. rapidly rotating on an office chair) or the changes in
acceleration are imperceptible (e.g. accumulating slow changes in aircraft attitude), the visual sensory system is still
able to detect the subject’s ego motion thanks to the relative movement of elements of the environment in its visual field.
For instance, if a human subject sees a block moving to the right in a static environment, the subject understands that it
is moving then to the left.

The two main factors affecting judgement of self-motion are the gradients and the pattern of optical flow which
provide information about the relative velocity (amount) and direction of relative motion, respectively. Hence, the
authors believe that knowledge about the magnitude and direction of the optical flow could enhance the diagnosis
component of the FDD framework by implicitly quantifying the failure magnitude and identifying the failed actuator.
For instance, if the front right clockwise rotating (from top view) propeller is lost, then it is expected that the drone will
lose lift, tilt forward and rotate clockwise. In optical flow, this should translate to a vector field with an up-left direction.
The stronger the gradient, the greater the failure magnitude.

There are two ways in which optical flow can be represented, namely sparse and dense optical flow [42]. The main
difference is that the first computes the optical flow for a predetermined number of features of interest whereas the
second computes it for the complete frame. Even though the sparse optical flow is less computationally expensive, it has
two main problems. First, those features of interest may disappear or become hidden after a few frames, forcing the
optical flow approach to select new features. Second, the algorithm may choose different features between frames as
some become more salient than others throughout time. As a result, it is difficult to infer a potential actuator failure
from a specific optical flow change pattern as it could be attributed to the tracking of different features over consecutive
frames. Hence, dense optical flow was chosen.

In literature there are two main classes of dense optical flow approaches, namely traditional or classical energy-based
and deep-learning based. In recent years, deep learning based approaches have been able to surpass the traditional
counterparts in accuracy and lower inference times, allowing them to run in real time and becoming the de facto
choice for computationally constrained devices and platforms [43, 44]. In most cases, the performance of optical flow
approaches is compared using the Average End Point Error (AEPE) on the MPI-Sintel final dataset and the Fl-all in the
KITTI2015 dataset [45]. The AEPE is the average Euclidean distance between the estimated and ground truth optical
flow vectors, and the Fl-all is the percentage of flow outliers averaged over all pixels. The MPI-Sintel final dataset† [46]
is a 564 frame animated movie synthetic dataset with realistic illuminations, reflections and rendering effects; whereas
the KITTI2015 dataset‡ [47, 48] is a 200 frame real-world dataset collected from a moving car.

Within this deep-learning based approaches there are three architectures that, according to the authors, stand out
from the literature for their high accuracy and low inference time, while providing their code and trained model weights.
With their trade-off metrics shown in Table 2, they are:

• CNNs for Optical Flow using Pyramid, Warping, and Cost Volume (PWC-NET) [49]. It was published in June
2018, one of the fastest methods in literature and the fastest from the selection; it is considered a milestone
algorithm in the field [45].

• Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) [50]. It was published in November 2020 and
it shows the highest performance of the three considered approaches in the MPI-Sintel dataset with the highest
reported inference time [50].

• Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation (DICL-Flow) [51]. It was
published in December 2020 and it shows a reported runtime and performance between the PWC-NET and RAFT
approaches.

†http://sintel.is.tue.mpg.de/
‡https://www.cvlibs.net/datasets/kitti/

18

Table 2 Performance and inference time comparison of dense optical flow approaches.

Time K-15 train K-15 test S-train (EPE) S-test (EPE)
Method

(s) EPE Fl-all Fl-all Clean Final Clean Final
PWC-NET§ 0.03 10.35 33.67% - 2.55 3.93 - -
RAFT¶ 0.2 5.04 17.4% - 1.43 2.71 - -
DICL-Flow‖ 0.08 8.70 23.6% - 1.94 3.77 - -
RAFT-S - 7.51 26.9% - 2.21 3.35 - -
Farneback [52] 1 10.50 - 53.09% - 8.9 - -

All of these deep-learning based approaches were trained with data from the FlyingChairs [53] and FlyingThings3D
[54] datasets. Next to them, Table 2 contains two more entries: a classical approach for comparison, namely Gunnar
Farneback’s algorithm [55] developed in 2003, and a small pre-trained RAFT model (RAFT-S) implemented within the
Torchvision library. In contrast with the original RAFT model, it contains five times less parameters but it maintains
superior performance in the MPI-Sintel final train dataset when compared to the PWC-NET and DICL-Flow models.

Unfortunately, it is not clear whether the reported inference times in literature were obtained from systems with
similar compute specifications. To compare these approaches, they were executed on three datasets collected with
UUFOSim at different image resolutions, resulting in the inference times shown in Table 3. Each time value is the
average that each algorithm took to predict the optical flow for 250 frames on a laptop with a 6 core Intel Core i7-9750H
CPU, 16 GB of RAM DDR4 and an NVIDIA Quadro P2000 with 5 GB of GDDR5 memory. As can be seen, even
though DICL-Flow is the intermediate option from literature, it presents the worst inference time for all resolutions.

Table 3 Inference time of dense optical flow approaches on the collected UE4 dataset at different resolutions.

Methods
256×144 512×288 1024×576

(s) (s) (s)
PWC-NET 0.073 0.143 0.423
RAFT 0.17 0.17 0.36
DICL-Flow 0.274 0.296 0.617
RAFT-S 0.06 0.10 0.35
Farneback 0.008 0.042 0.177

Figure 33 allows for a visual comparison of the approaches’ optical flow quality with a frame from the 1024×576
dataset. As can be seen in Fig. 33b, even though PWC-NET has the lowest run time among the deep learning approaches,
its optical flow prediction is very noisy without any recognisable features, indicating a poor cross-dataset generalization.
Furthermore, from Fig. 33f it can be seen that Farneback does not perceive slight movements. Most of the pixels are
black, leading to the loss of potential features (pixels) that could serve as rich sources of information further down the
FDD pipeline. Besides that, a strong flickering behaviour has been observed in Farneback’s optical flow over multiple
frames, which hints to unreliable predictions.

(a) Original (b) PWC-NET (c) RAFT (d) DICL-Flow (e) RAFT-S (f) Farneback

Fig. 33 Dense optical flow visual quality comparison.
§https://github.com/philferriere/tfoptflow
¶https://github.com/princeton-vl/RAFT
‖https://github.com/jytime/DICL-Flow

19

Given the high inference time of DICL-Flow with the collected dataset and the low visual quality of PWC-NET and
Farneback, the two remaining options for optical flow computation are RAFT and RAFT-S. As both show similar visual
quality and RAFT-S has a run time three times lower than its larger version for the lowest resolution, RAFT-S is chosen
as the optical flow module of the FDD pipeline.

Returning the attention to Fig. 32, the bottom information path shows the camera data processing. In the case of
the Bebop 2 drone, the camera captures images at 1080p, meaning frames of 1080 pixels in height and 1920 in width
with three RGB channels [1080×1920×3], and they are resized to a tensor of dimensions [144×256×3] before being
stored in the camera buffer (𝑏cam). Then, at every time step at which the FDD framework is executed, the 𝑏cam contains
𝑓cam/ 𝑓FDD + 1 samples, and the first and last entry of the buffer are passed on to the optical flow model. Here, 𝑓cam
stands for the fps rate at which the drone collects image data and 𝑓FDD is the frequency at which the FDD pipeline is
executed on board of the drone. Next, the buffer is emptied except for the last stored image, which remains in memory
for the next FDD time step. This ensures the temporal coherence of the optical flow over multiple FDD calls.

Once RAFT-S computes the optical flow, the output tensor is fed to a feature extractor. For this part of the pipeline,
the authors opted for transfer learning instead of developing their own. The model of choice was the backbone of
MobileNetV3-Small [56] with frozen weights pre-trained on the ImageNet dataset [57] because it has the lowest
inference time among all keras pre-trained models∗∗ at the time of writing. A depth multiplier (alpha) of 0.75 was set in
order to proportionally decrease the number of filters in each layer, achieving a reduction in the number of parameters
from 2.9 to 2.4 million (3 ms of inference time). Finally, the last layer of MobileNetV3-Small is set to be a global
average pooling layer which collapses the width and height of the output tensor to a single feature, resulting in a 1D
tensor of 432 features.

B. IMU data processing
From the IMU, the FDD algorithm receives six 1D data streams, namely the linear acceleration and the angular

velocity in the x, y and z directions. Two key signal features that contribute to the detection and classification of these
failures are the evolution of their bias through time and the amplitude of their oscillations; the latter especially in the
case of blade damage, as highlighted in [34]. Information about both features can be encapsulated in their Short-Time
Fourier Transform (STFT), creating compact time-frequency maps or spectrograms and removing potential sensor noise.
To illustrate this, Fig. 34 shows the accelerometer signal in the x-direction and its spectogram for a random flight within
the dataset which experienced a blade damage failure of 0.8, 6.83 seconds after the start (as highlighted by the red
dashed vertical line). As can be seen, failure can easily be detected by the sudden appearance of signal content at high
frequencies, in this case between 173 and 186 Hz.

0.0 2.5 5.0 7.5
Time [s]

−1.0

−0.5

0.0

0.5

1.0

a x
 [m

/s
2]

1e2

0.0 2.5 5.0 7.5
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

f [
H

z]

1e2

Fig. 34 UAV x-axis acceleration and its spectrogram. The dashed vertical line denotes the time of failure.
∗∗https://keras.io/api/applications/

20

From the IMU information path shown in the upper half of Fig. 32, the incoming data from the accelerometer and
the gyroscope is stored in a buffer (𝑏IMU). Once the FDD module is called, the buffer is emptied and its data is used for
computing the STFT. This form of frequency analysis is a windowed approach which divides the time signal into small
equally sized segments and applies an independent Fourier transform to each one of them. Hence, there is a trade-off
between the time and frequency resolutions; the wider the window the higher the frequency resolution at the expense of
the time resolution. Since the STFT is applied to small sample sizes of 𝑛seg=⌊ 𝑓IMU/ 𝑓FDD⌋ at a time, a window size
of 𝑛win=⌊𝑛seg/4⌋ is chosen with 𝑜 = ⌊3/4𝑛win⌋ samples of overlap between windows, i.e. a stride of s=⌈1/4𝑛win⌉. The
sample vector is padded such that the time resolution or the number of steps in which the time axis of the spectrogram
is divided is 𝑡re=⌈𝑛s/(𝑛win-𝑜)⌉+1. As can be seen, as 𝑛win increases, 𝑡res decreases. The opposite is observed in the
frequency resolution 𝑓res=⌊𝑛win/2⌋ + 1.

For the present research, 𝑓IMU of the collected dataset and 𝑓FDD approximately equal 555 Hz and 10 Hz, respectively.
Hence, 55 samples are fed to the STFT at every FDD time step, which outputs a tensor of dimensions [7×15×6]. This
means a frequency resolution of seven and a temporal resolution of 15. Figure 35 and Fig. 36 show the IMU signals and
their STFTs for the same flight as in Fig. 34, using a time segment of 0.1 s (𝑓FDD=10 Hz) starting at 6.78 s in order to
include the transition from a healthy to a failure state. Again, it can still be clearly observed when the blade damage
has taken place for failure detection. Finally, the STFT output tensor is flattened to a single dimensional tensor of 630
features that will be fused with those coming from the camera data processing path of the pipeline.

−5
0
5

a x
 [m

/s
2]

1e1

0.0

2.5

f [
H

z]

1e2

−1

0

a y
 [m

/s
2]

1e2

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−1.00

−0.95

a z
 [m

/s
2]

1e1

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Fig. 35 Sample flight accelerometer signals and spec-
trograms for a 0.1 s time interval starting at 6.78 s.

−5

0

Ω x
 [r

ad
/s

] 1e−1

0.0

2.5

f [
H

z]

1e2

−5

0
Ω y

 [r
ad

/s
] 1e−1

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−2.5

0.0

Ω z
 [r

ad
/s

]

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Fig. 36 Sample flight gyroscope signals and spectro-
grams for a 0.1 s time interval starting at 6.78 s.

C. Sensor fusion and classification module
As can be seen in Fig. 32, the features from the camera and the IMU are concatenated into a single vector of 1062

features and fed to a sequence-to-sequence LSTM model, which allows the FDD framework to take decisions based on
current and previous data at every time step. LSTM cells have an internal state that stores information from an arbitrary
number of previous inputs which, in conjunction with the current input, is used to extract sequential relationships to
generate an output. For the present research, the time series model consists of a simple stack of three LSTM layers of
30 cells, each followed by a Batch Normalization (BN) layer; transformation that maintains the mean and standard
deviation of its input batch close to zero and one, respectively. At every FDD time step, an input vector of 1062 features
is fed into the network which outputs a tensor of 30 features.

The last stage of the FDD pipeline is the classifier that will simultaneously perform the tasks of failure detection,
failure magnitude quantification and failed propeller identification. The problem is simplified by considering each
potential drone state, namely each failure mode and the healthy state, as a class. As an example, if abrupt actuator
saturation and abrupt propeller fly-off are considered as the only modes of failure, then the classification layer would
have to discern among nine classes, namely two failure classes per propeller and one for the healthy state. To perform
this classification task, a single layer dense neural network layer (NN) is used with the number of neurons equal to
the number of classes, followed by the softmax activation function in order to generate a multinomial probability
distribution; the model outputs the probability it believes the input belongs to each class. The goal is that the highest
probability is attributed to the correct failure or healthy drone state at each time during the flight.

Both the LSTM model and the classifier are the only two trainable components of the FDD pipeline, as the RAFT-S
and MobileNetV3-S weights are frozen. For their training, the sparse categorical cross-entropy loss function and adam
optimizer are used, both extensively exploited in literature for multi-class classification.

21

V. Results

A. UUFOSim dataset
The right clockspeed is a function of the image resolution; the larger the image, the lower the camera sampling rate

at the same clockspeed. Therefore, a trade-off needs to be performed between sampling rate accuracy and simulation
speed for the chosen image resolution of 256×144 (width×height). Figures 37 and 38 show 20 simulations at different
clockspeeds and their camera and IMU sampling rates. It can be observed that a clockspeed of 0.6 has a large spread
of camera sampling rates between flights and the clockspeeds of 0.4 and 0.5 have IMU sampling rates far below the
desired 512 Hz. Since the remaining clockspeeds show similar performance, 0.3 was selected for being the fastest.

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

28

29

30

31

32

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Fig. 37 Boxplot of the camera sampling rate for
different clockspeeds with an image resolution of
256×144 pixels (width×height).

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

350

400

450

500

550

IM
U

 s
am

pl
in

g
ra

te
 [H

z]
Fig. 38 Boxplot of the IMU sampling rate for differ-
ent clockspeeds with an image resolution of 256×144
pixels (width×height).

The IMU sampling rate samples are almost constant at the same clockspeed because the data gathering of this
sensor has been coupled with the simulator’s physics model, as dicussed in subsection III.C. In contrast, the camera
sample rates are much more dispersed, especially the higher the clockspeed. For the same simulation time and slower
clockspeed, the simulation checks the thread that receives the calls from the Python API more frequently. Hence, the
frequency at which camera images can be called is higher, reducing the impact of simulation slow downs and, hence,
the camera sampling rate dispersion.

5,000 flights were flown with a clockspeed of 0.3 and image resolution of 256×144. To verify that the camera and
IMU sampling rate predictions estimated with 20 flights were accurate, the same box plot was created with the flown
5,000 flights. The results are shown in Fig. 39 and Fig. 40: the camera runs at 31.81 fps and the IMU has a sampling
rate of 555.59 Hz.

0.3
Clockspeed [-]

31.7

31.8

31.9

32.0

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Fig. 39 Boxplot of the camera sampling rate for
5,000 flights with a clockspeed of 0.3 and an image
resolution of 256×144 pixels (width×height).

0.3
Clockspeed [-]

555.55

555.60

555.65

IM
U

 s
am

pl
in

g
ra

te
 [H

z]

Fig. 40 Boxplot of the IMU sampling rate for 5,000
flights with a clockspeed of 0.3 and an image resolution
of 256×144 pixels (width×height).

The simulation pipeline discussed in section III was run in a Windows OS PC with a 20 core Intel Xeon W-2255
CPU, 32 GB of RAM DDR4 and an NVIDIA RTX A4000 GPU with 16 GB of GDDR6 memory. The 5,000-flight
dataset was collected in 61.67 hours and has a memory footprint of 239 GB. Only blade damage failures of 20%, 40%,
60% and 80% were simulated since those are the failure modes that will be used to train and test the FDD pipeline. A
sample of frames from a single flight separated by 35 frames from each other can be observed in Fig. 41.

22

Fig. 41 Camera captured frames during single flight read from top to bottom and from left to right (only shown
one every 35 frames).

B. Fault detection and diagnosis framework
To demonstrate the potential of the proposed FDD framework, only four modes of discrete failure were considered

per propeller, namely 20%, 40%, 60% and 80% single abrupt blade damage. As a result, there are 17 classes among
which the FDD pipeline should discern. For this purpose, the dataset was split into 70% training, 20% validation and
10% testing. Each flight of this dataset has a variable duration between 6 and 16.9 seconds with an average length of
11.6 seconds. The first second of every flight is ignored in order to avoid the acceleration transient after the flight has
started. From the remaining flight time, single 5.5-second data snippets are used per flight in order to batch train and
evaluate the pipeline with equal length data sequences without padding. Flights of length shorter than 6.5 seconds only
constitute 0.72% of the total dataset and were eliminated. Besides that, flights that were not properly recorded in UE4 —
the drone does not take off or the sensor data is not recorded at the correct rate — were also removed. At the end, the
training dataset consisted of 3,468 5.5-second flights.

Table 4 shows the results for the pipeline presented in section IV in terms of inference time and test accuracy. The
runtime was obtained from the same compute setup that was used to generate Table 3. Furthermore, three different types
of test accuracy are considered, namely general, detection and diagnosis. The first refers to the accuracy outputted by
the model. The second is obtained by lumping the failure classes 2 to 17 into a single class and computing the resulting
accuracy. This means that a prediction of a data point whose ground truth is a failure class is deemed correct as long
as any class from 2 to 17 is chosen, independently of whether the right class is predicted. The third is estimated by
ignoring the data points whose ground truth is class 1 (the healthy state) and recomputing the accuracy of correctly
classifying the failure among the remaining classes.

Table 4 FDD accuracy and inference time results. With a total of 17 classes, four discrete and abrupt failure
modes were simulated for the Bebop 2 UAV per propeller, namely 20%, 40%, 60% and 80% single blade damage.

Data
processing

Data fusion model
Inference

time
General
accuracy

Detection
accuracy

Diagnosis
accuracy

(ms) (%) (%) (%)
IMU LSTM (l3-c30)+BN 88.20 80.70 99.98 50.52
CAM LSTM (l3-c30)+BN 240.01 95.93 98.53 89.94

CAM+IMU
LSTM (l3-c30)+BN 250.47 99.55 99.98 98.86
Dense (l3-c128)+BN 241.77 93.56 99.98 83.49

Additionally, the same metrics of modified versions of the pipeline are also presented in order to demonstrate the
added value of each of its components. The "Data processing" column stands for the active branches of the network,
where CAM and IMU are networks with only the camera or the IMU paths active. LSTM (l3-c30)+BN is the data
fusion architecture explained in subsection IV.C, whereas Dense(l3-c128)+BN is an alternative approach where the
temporal relationships of the data are ignored by substituting the LSTM network with a three-layer dense NN with 128
neurons per layer.

23

Even though the IMU-only network feeds the sequential model with 46% more features than the camera-only
network, as can be seen in Fig. 32, the latter shows an overwhelming superiority in the diagnosis of the failures with a
39.42% difference in accuracy. The reason behind that difference can be observed in Fig. 42; its confusion matrix of the
predicted and true failure modes. The IMU-only network systematically confuses the front right (FR) and front left
propellers (FL), as well as the back right (BR) and back left (BL). However, despite being unable to identify the failed
propeller, it is able to infer the correct degree of damage. This is shown by the parallel diagonals three cells apart.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

298 0 0 0 374 0 0 0 0 0 0 0 1 0 0 0

0 131 0 0 0 570 0 0 0 0 0 0 1 0 0 0

0 0 825 0 0 0 34 0 0 0 0 0 0 1 0 0

0 0 0 419 0 0 0 232 0 0 1 2 0 0 0 0

153 0 0 0 485 0 0 0 0 0 0 0 1 0 0 0

0 102 0 0 0 527 0 0 0 0 0 0 0 0 0 0

0 0 699 0 0 0 58 0 0 0 1 0 0 2 4 0

0 0 2 376 0 0 0 227 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 35 0 0 0 762 0 0 0

0 0 0 0 1 1 0 0 0 3 0 0 1 496 0 0

0 0 0 0 0 0 0 0 0 0 231 1 0 0 43 0

0 0 1 0 0 0 0 0 0 0 0 625 0 0 1 18

0 0 0 0 1 0 0 0 20 0 0 0 801 0 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 630 0 0

0 0 0 0 0 0 0 0 0 0 583 2 0 0 72 0

0 1 2 1 0 0 0 0 0 0 0 772 0 0 2 18
0

100

200

300

400

500

600

700

800

Fig. 42 IMU-only LSTM model confusion matrix of
the failure modes.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

568 7 0 0 0 0 0 0 10 0 0 0 0 0 0 0

17 642 8 7 0 0 0 0 0 0 0 0 12 0 0 0

1 9 660 172 0 0 0 0 0 0 0 0 0 1 1 0

0 4 21 615 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 619 2 0 0 4 0 0 0 0 0 0 0

0 0 0 0 3 617 2 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 654 88 0 1 0 0 0 0 0 0

0 0 0 0 1 0 20 571 0 0 2 0 0 0 0 1

0 0 0 0 2 0 0 0 718 4 0 0 0 0 0 0

0 0 0 0 0 1 0 0 3 488 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 227 39 0 0 0 0

0 0 0 0 0 0 0 0 0 0 30 601 0 0 0 4

41 15 0 0 10 0 0 0 1 0 0 0 714 1 0 0

0 0 0 0 0 0 0 0 0 2 0 0 2 614 1 0

0 0 0 0 1 0 0 0 2 0 0 0 0 4 517 124

1 0 0 1 0 0 0 0 0 0 0 0 0 1 18 763
0

100

200

300

400

500

600

700

Fig. 43 Camera-only LSTM model confusion matrix
of the failure modes.

In contrast, Fig. 43 shows that the camera-only network is able to correctly identify the failed actuator but fails to
always accurately quantify the damage. Most of the incorrectly labelled predictions are one degree of damage higher or
lower than the true label, but within the same actuator.

Both observations demonstrate the complementary nature of the camera and IMU sensors, which combined lead to
the highest measured diagnosis accuracy of 98.86%. Figure 44 shows the IMU+CAM network confusion matrix with
the main diagonal filled with -1’s in order to visually highlight error patterns. From the multiple coloured parallel lines
to the main diagonal, it can be inferred that the largest source of error originates from failing to correctly identify the
damaged actuator. However, it is not constrained to the front and back propeller combinations, as it was the case for the
IMU-only model.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

-1 0 0 0 3 0 0 0 1 0 0 0 2 0 0 0

1 -1 0 0 0 5 0 0 0 0 0 0 1 6 0 0

0 0 -1 0 0 0 4 0 0 1 0 0 0 0 6 0

0 0 0 -1 0 0 1 2 0 0 0 4 0 0 0 2

5 1 0 0 -1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 -1 0 0 0 1 0 0 0 2 0 0

0 0 4 0 0 0 -1 0 0 2 0 0 0 2 1 0

0 0 2 4 0 0 2 -1 0 0 0 0 0 1 1 1

2 0 0 0 1 0 0 0 -1 0 0 0 6 0 0 0

1 0 0 0 0 1 0 0 0 -1 0 0 0 2 0 0

0 0 1 0 0 0 0 0 0 0 -1 0 0 0 2 0

0 0 0 0 0 0 1 1 0 0 0 -1 0 0 2 1

0 0 0 0 2 0 0 0 4 0 0 0 -1 0 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 -1 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 -1 0

1 0 1 1 0 0 0 0 0 0 1 6 0 0 2 -1
1

0

1

2

3

4

5

6

Fig. 44 IMU+CAM LSTM model confusion matrix
of the failure modes with -1’s in main diagonal.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

376 0 0 0 292 0 0 0 4 0 0 0 1 0 0 0

0 538 0 0 0 162 0 0 0 1 0 0 0 1 0 0

0 0 633 0 0 2 223 0 0 1 0 0 0 0 1 0

0 0 0 539 0 0 0 112 0 0 0 2 0 0 1 0

177 0 0 0 458 0 0 0 3 0 0 0 0 1 0 0

0 115 0 0 0 512 0 0 0 1 0 0 0 1 0 0

0 0 15 0 0 0 745 0 0 3 1 0 0 0 0 0

0 0 1 25 0 0 3 576 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 625 0 0 0 170 0 0 0

0 0 0 0 0 2 0 0 0 469 0 0 0 31 0 0

0 0 0 0 0 0 1 0 0 0 262 0 0 0 12 0

0 0 0 0 0 0 0 1 0 0 1 623 0 0 0 20

5 0 0 0 3 0 0 0 161 0 0 0 653 0 0 0

0 0 0 0 0 1 0 0 0 45 0 0 0 587 0 0

0 0 0 0 0 0 0 0 0 0 47 0 0 0 610 0

0 0 0 1 0 0 0 0 0 0 2 99 0 0 0 694
0

100

200

300

400

500

600

700

Fig. 45 IMU+CAM Dense model confusion matrix
of the failure modes.

24

Furthermore, the difference in diagnosis accuracy between the CAM+IMU LSTM and Dense models highlights the
importance of including the data temporal relationships in the FDD framework. However, it can also be seen that this
information does not play a role when detecting the presence of a failure.

From the confusion matrix of the CAM+IMU Dense model shown in Fig. 45, the misinterpretation among the
failures in the front and back propeller groups can again be seen. From this, it can be deduced that it is not the optical
flow but its change that allows their decoupling. If the optical flow and the LSTM can each be considered a first
derivative in time, then it is the second derivative of the camera’s visual information that carries the differentiation
factor between left and right actuators.

Finally, despite the success of the combined sensor approach, it has an inference time 2.84 times higher than the
IMU-only approach: 8.03 ms (3.20%) for STFT, 72.30 ms (28.77%) for RAFT-S, 90.53 ms (36.03%) for MobileNetV3-S,
and 80.41 ms (32.00%) for the LSTM+BN and classifier model. Further work has to be done in reducing the compute
required by the camera path of the model by, for instance, developing tailored optical flow and feature extraction models.
Additionally, an ablation study has to be performed on the hyper-parameters of the LSTM network.

VI. Conclusion
This paper proposes a novel UAV actuator FDD framework that fuses for the first time camera and IMU data online

with an LSTM network. The framework pre-processes the camera information by first computing its optical flow with
the RAFT-S model and then extracting features with the backbone of the MobileNetV3-S model. Both are off the shelf
pre-trained efficient SOTA deep neural networks. STFT is applied on the IMU signals in order to obtain time-frequency
features in the form of flattened spectrograms.

Additionally, a high-fidelity photo-realistic UAV simulator built in Unreal Engine 4 on AirSim, called UUFOSim,
was presented. It is the first simulator that allows the collection of multi-sensor UAV flight data with mid-flight actuator
failures injected programmatically. To the authors knowledge, UUFOSim generated the first synthetic dataset in literature
for the training and testing of UAV actuator FDD approaches. Such data is of superior quality when compared to
alternative simulation environments, e.g. Gazebo, allowing the development of applications with a reduced reality gap.

To demonstrate the potential of the FDD framework, UUFOSim was used to generate a dataset of 5,000 flights flown
in a urban environment by a Bebop 2 platform with four options of blade damage per propeller injected during flight.
The drone platform was simulated using a gray-box aerodynamic model [11] complemented with a Blade Element
Theory blade damage model [34]; both obtained from literature.

The IMU-only model has shown to fail to perform damage actuator identification by systematically confusing the left
and right propellers, whereas the camera-only model errors are from failure magnitude quantification. When combined,
they fill the gap left by each other’s weaknesses. Results show the complementary nature of the IMU and camera for
FDD, achieving an accuracy of 99.98% for detection and 98.86% for diagnosis on the test dataset.

The need for a model which considers the temporal relationships in sequential data was demonstrated by substituting
the LSTM layers with dense NN that do not share information about previous inputs. This modified FDD model led to a
decrease in diagnosis accuracy by 15.37 percentage points without any gain in inference time.

Despite the high accuracy of the proposed vision-based FDD framework, it has an inference time of 250 ms, 2.84
times higher than the IMU-only alternative model. This observation calls for further work on the reduction of the
computations required to process the camera data by developing tailored optical flow and feature extraction models
for the task; these components currently account for more than 64% of the inference time. Optical flow ground truth
images can be retrieved from UUFOSim for the training and testing of an in-house optical flow model. MobileNetV3-S
could be further reduced in size by progressively removing the last layers and unfreezing its weights for fine-tuning.
Alternatively, it should be investigated whether the current camera pipeline could be substituted by a sparse optical flow
approach (e.g. Lucas-Kanade [58]) followed by two histograms, one for the magnitude and another for the direction of
the sparse optical flow vectors. The number of the bucket with the highest count for each histogram would be fed to the
sensor fusion. Since this work has shown that the main contribution of the camera is the identification of the failed
actuator, it may be the case that only the vector direction histogram would be necessary. Moreover, an ablation study
should be performed on the hyper-parameters of the LSTM network, which could lead to a reduction in layers and/or
cells. The authors also expect the rise of compute power available by the time UAVs and UAM concepts are introduced
in urban environments.

Future work includes the study of a probabilistic classifier, such as a Bayesian NN, in order to provide a degree of
confidence besides a prediction, as well as improving the explainability of the black-box model. The potential of other
architectures that ingest sequential (image) data, such as Convolutional LSTMs and lightweight attention-based machine

25

learning approaches, should also be considered. Another alley of investigation is the substitution of MobileNetV3-S by
an image Fourier Transform as a more efficient feature extractor. Furthermore, atmospheric turbulence models should
be implemented within the simulator in order to assess the robustness of the FDD approach to external disturbances;
they could induce a similar initial UAV motion as an actuator failure. Additionally, a hybrid dataset could be built which
combines large quantities of synthetic UUFOSim data with a smaller real world dataset in order to reduce the reality
gap. Data from multiple drones could be collected in order to make the FDD framework platform agnostic. Finally, the
proposed framework should be implemented on a real Bebop 2 platform to validate the results.

To conclude, the proposed framework demonstrates the potential of including the UAV on-board camera for online
failure detection and diagnosis. The authors hope that UUFOSim will help the research community to build benchmarks
that will assist in the tracking of the future progress of UAV FDD, as well as other tasks that aim at making future drones
more resilient to failures.

References
[1] Aurambout, J.-P., Gkoumas, K., and Ciuffo, B., “Last Mile Delivery by Drones: An Estimation of Viable Market Potential and

Access to Citizens Across European Cities,” European Transport Research Review, Vol. 11, 2019. https://doi.org/10.1186/s12544-
019-0368-2.

[2] Choudhury, S., Solovey, K., Kochenderfer, M. J., and Pavone, M., “Efficient Large-Scale Multi-Drone Delivery using
Transit Networks,” 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 4543–4550.
https://doi.org/10.1613/jair.1.12450.

[3] Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J.,
Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., and Verma,
S. A., “Urban Air Mobility Airspace Integration Concepts and Considerations,” 2018 Aviation Technology, Integration, and
Operations Conference, Atlanta, GA, 2018. https://doi.org/10.2514/6.2018-3676.

[4] Khan, H., Kushwah, K. K., Singh, S., Urkude, H., Maurya, M. R., and Sadasivuni, K. K., “Smart Technologies Driven Approaches
to Tackle COVID-19 Pandemic: A Review,” 3 Biotech, Vol. 11, No. 2, 2021. https://doi.org/10.1007/s13205-020-02581-y.

[5] Lappas, V., Zoumponos, G., Kostopoulos, V., Shin, H., Tsourdos, A., Tantarini, M., Shmoko, D., Munoz, J., Amoratis, N.,
Maragkakis, A., Machairas, T., and Trifas, A., “EuroDRONE, a European UTM Testbed for U-Space,” 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1766–1774. https://doi.org/10.1109/icuas48674.2020.9214020.

[6] Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., and Jawhar, I., “UAVs for Smart Cities: Opportunities and Challenges,”
2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 267–273. https://doi.org/10.1109/icuas.2014.
6842265.

[7] Sun, S., Wang, X., Chu, Q., and De Visser, C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss
of Two Opposing Rotors,” IEEE Transactions on Robotics, Vol. PP, 2020, pp. 1–15. https://doi.org/10.1109/tro.2020.3010626.

[8] Mueller, M. W., Lupashin, S., D’andrea, R., and Waibel, M., “Controlled Flight of a Multicopter Experiencing a Failure
Affecting an Effector,” , 08 2020. URL https://patents.google.com/patent/EP3007973A1.

[9] Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M., “Autonomous Obstacle Avoidance and Manoeuvring
on a Vision-Guided MAV Using On-Board Processing,” 2011 IEEE International Conference on Robotics and Automation,
Shanghai, 2011, pp. 2472–2477. https://doi.org/10.1109/icra.2011.5980095.

[10] Sun, S., Baert, M., Schĳndel, B., and De Visser, C., “Upset Recovery Control for Quadrotors Subjected to a Complete Rotor
Failure from Large Initial Disturbances,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 4273–4279. https://doi.org/10.1109/icra40945.2020.9197239.

[11] Sun, S., and de Visser, C., “Aerodynamic Model Identification of a Quadrotor Subjected to Rotor Failures in the High-Speed Flight
Regime,” IEEE Robotics and Automation Letters, Vol. 4, No. 4, 2019, pp. 3868–3875. https://doi.org/10.1109/lra.2019.2928758.

[12] Jiang, Y., Zhiyao, Z., Haoxiang, L., and Quan, Q., “Fault Detection and Identification for Quadrotor Based on Airframe
Vibration Signals: A Data-Driven Method,” 2015 34th Chinese Control Conference (CCC), 2015, pp. 6356–6361.
https://doi.org/10.1109/chicc.2015.7260639.

[13] Chen, Z., Chen, W., Liu, X., and Song, C., “Fault-Tolerant Optical Flow Sensor/SINS Integrated Navigation Scheme for MAV
in a GPS-Denied Environment,” J. Sensors, Vol. 2018, 2018, pp. 1–17. https://doi.org/10.1155/2018/9678505.

26

[14] Iannace, G., Ciaburro, G., and Trematerra, A., “Fault Diagnosis for UAV Blades Using Artificial Neural Network,” Robotics,
Vol. 8, 2019, p. 59. https://doi.org/10.3390/robotics8030059.

[15] García, S., López, M. E., Barea, R., Bergasa, L. M., Gómez, A., and Molinos, E. J., “Indoor SLAM for Micro Aerial Vehicles
Control Using Monocular Camera and Sensor Fusion,” 2016 International Conference on Autonomous Robot Systems and
Competitions (ICARSC), 2016, pp. 205–210. https://doi.org/10.1109/icarsc.2016.46.

[16] Scaramuzza, D., and Zhang, Z., “Visual-Inertial Odometry of Aerial Robots,” Encyclopedia of Robotics, 2020.

[17] Chen, K., “Recurrent Neural Networks for Fault Detection : An Exploratory Study on a Dataset about Air Compressor Failures
of Heavy Duty Trucks,” Master’s thesis, Halmstad University, School of Information Technology, 2018.

[18] Zhao, H., Sun, S., and Jin, B., “Sequential Fault Diagnosis Based on LSTM Neural Network,” IEEE Access, Vol. 6, 2018, pp.
12929–12939. https://doi.org/10.1109/access.2018.2794765.

[19] Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., and Ling, H., “Detection and Tracking Meet Drones Challenge,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021, pp. 1–1. https://doi.org/10.1109/tpami.2021.3119563.

[20] Kouris, A., and Bouganis, C., “Learning to Fly by MySelf: A Self-Supervised CNN-based Approach for Autonomous
Navigation,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 5216–5223.
https://doi.org/10.1109/iros.2018.8594204.

[21] Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., and Scaramuzza, D., “Are We Ready for Autonomous Drone
Racing? The UZH-FPV Drone Racing Dataset,” IEEE Int. Conf. Robot. Autom. (ICRA), 2019, pp. 6713–6719. https:
//doi.org/10.1109/icra.2019.8793887.

[22] Majdik, A., Till, C., and Scaramuzza, D., “The Zurich Urban Micro Aerial Vehicle Dataset,” The International Journal of
Robotics Research, Vol. 36, 2017, p. 027836491770223. https://doi.org/10.1177/0278364917702237.

[23] Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige,
K., Levine, S., and Vanhoucke, V., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic
Grasping,” 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, 2018, pp. 4243–4250.
https://doi.org/10.1109/icra.2018.8460875.

[24] Furrer, F., Burri, M., Achtelik, M., and Siegwart, R., RotorS – A Modular Gazebo MAV Simulator Framework, Springer
International Publishing, 2016, Chap. 7, pp. 595–625. https://doi.org/10.1007/978-3-319-26054-9_23.

[25] Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., and von Stryk, O., “Hector Open Source Modules for
Autonomous Mapping and Navigation with Rescue Robots,” RoboCup 2013: Robot World Cup XVII, edited by S. Behnke,
M. Veloso, A. Visser, and R. Xiong, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 624–631. https://doi.org/10.
1007/978-3-662-44468-9_58.

[26] Echeverria, G., Lassabe, N., Degroote, A., and Lemaignan, S., “Modular Open Robots Simulation Engine: MORSE,” 2011 IEEE
International Conference on Robotics and Automation, Shanghai, 2011, pp. 46 – 51. https://doi.org/10.1109/icra.2011.5980252.

[27] Guerra, W., Tal, E., Murali, V., Ryou, G., and Karaman, S., “FlightGoggles: Photorealistic Sensor Simulation for Perception-
Driven Robotics Using Photogrammetry and Virtual Reality,” 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 6941–6948. https://doi.org/10.1109/iros40897.2019.8968116.

[28] Song, Y., Naji, S., Kaufmann, E., Loquercio, A., and Scaramuzza, D., “Flightmare: A Flexible Quadrotor Simulator,” Conference
on Robot Learning, PMLR, 2020, pp. 1147–1157. https://doi.org/10.5167/uzh-193792.

[29] Qiu, W., Zhong, F., Zhang, Y., Qiao, S., Xiao, Z., Soo Kim, T., Wang, Y., and Yuille, A., “UnrealCV: Virtual Worlds for Computer
Vision,” ACM Multimedia Open Source Software Competition, 2017, p. 1221–1224. https://doi.org/10.1145/3123266.3129396.

[30] Müller, M., Casser, V., Lahoud, J., Smith, N., and Ghanem, B., “Sim4CV: A Photo-Realistic Simulator for Computer Vision
Applications,” International Journal of Computer Vision, Vol. 126, No. 9, 2018, p. 902–919. https://doi.org/10.1007/s11263-
018-1073-7.

[31] Shah, S., Dey, D., Lovett, C., and Kapoor, A., “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles,” Field and Service Robotics, Springer International Publishing, Zürich, Switzerland, 2018, pp. 621–635.
https://doi.org/10.1007/978-3-319-67361-5_40.

27

[32] Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., and
Kapoor, A., “AirSim Drone Racing Lab,” Proceedings of the NeurIPS 2019 Competition and Demonstration Track, Proceedings
of Machine Learning Research, Vol. 123, PMLR, Vancouver, Canada, 2020, pp. 177–191.

[33] Sun, S., de Visser, C. C., and Chu, Q., “Quadrotor Gray-Box Model Identification from High-Speed Flight Data,” Journal of
Aircraft, Vol. 56, No. 2, 2019, pp. 645–661. https://doi.org/10.2514/1.c035135.

[34] de Alvear Cárdenas, J. I., and de Visser, C., “Blade Element Theory Model for UAV Blade Damage Simulation,” , 12 2022.
Unpublished.

[35] Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T. M.,
Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., and De Souza, A. F., “Self-driving cars: A survey,” Expert Systems with
Applications, Vol. 165, 2021, p. 113816. https://doi.org/10.1016/j.eswa.2020.113816.

[36] Godoy, J., Jiménez, V., Artuñedo, A., and Villagra, J., “A Grid-Based Framework for Collective Perception in Autonomous
Vehicles,” Sensors (Basel, Switzerland), Vol. 21, No. 3, 2021. https://doi.org/10.3390/s21030744.

[37] Carloni, R., Lippiello, V., D’Auria, M., Fumagalli, M., Mersha, A., Stramigioli, S., and Siciliano, B., “Robot Vision: Obstacle-
Avoidance Techniques for Unmanned Aerial Vehicles,” Robotics & Automation Magazine, IEEE, Vol. 20, 2013, pp. 22–31.
https://doi.org/10.1109/mra.2013.2283632.

[38] Krämer, M. S., and Kuhnert, K.-D., “Multi-Sensor Fusion for UAV Collision Avoidance,” Proceedings of the 2018 2nd
International Conference on Mechatronics Systems and Control Engineering, Association for Computing Machinery, New
York, NY, USA, 2018, p. 5–12. https://doi.org/10.1145/3185066.3185081.

[39] Wang, K., “B-Splines Joint Trajectory Planning,” Computers in Industry, Vol. 10, No. 2, 1988, pp. 113–122. https://doi.org/https:
//doi.org/10.1016/0166-3615(88)90016-4.

[40] Schofield, P., “Computer Simulation Studies of the Liquid State,” Computer Physics Communications, Vol. 5, No. 1, 1973, pp.
17–23. https://doi.org/10.1016/0010-4655(73)90004-0.

[41] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R., “A Computer Simulation Method for the Calculation of
Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters,” The Journal
of Chemical Physics, Vol. 76, No. 1, 1982, pp. 637–649. https://doi.org/10.1063/1.442716.

[42] Fortun, D., Bouthemy, P., and Kervrann, C., “Optical Flow Modeling and Computation: A Survey,” Computer Vision and
Image Understanding, Vol. 134, 2015, pp. 1–21. https://doi.org/10.1016/j.cviu.2015.02.008.

[43] Hur, J., and Roth, S., “Optical Flow Estimation in the Deep Learning Age,” Modelling Human Motion: From Human Perception
to Robot Design, Springer International Publishing, Cham, 2020, pp. 119–140. https://doi.org/10.1007/978-3-030-46732-6_7.

[44] Shah, S. T. H., and Xuezhi, X., “Traditional and Modern Strategies for Optical Flow: An Investigation,” SN Applied Sciences,
Vol. 3, No. 3, 2021, p. 289. https://doi.org/10.1007/s42452-021-04227-x.

[45] Zhai, M., Xiang, X., Lv, N., and Kong, X., “Optical Flow and Scene Flow Estimation: A Survey,” Pattern Recognition, Vol.
114, 2021, p. 107861. https://doi.org/10.1016/j.patcog.2021.107861.

[46] Butler, D., Wulff, J., Stanley, G., and Black, M. J., “A Naturalistic Open Source Movie for Optical Flow Evaluation,” ECCV,
2012, p. 611–625. https://doi.org/10.1007/978-3-642-33783-3_44.

[47] Menze, M., Heipke, C., and Geiger, A., “Joint 3D Estimation of Vehicles and Scene Flow,” Proc. of the ISPRS Workshop on
Image Sequence Analysis (ISA), 2015, pp. 427–434. https://doi.org/10.5194/isprsannals-ii-3-w5-427-2015.

[48] Menze, M., Heipke, C., and Geiger, A., “Object Scene Flow,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 140,
2018, pp. 60–76. https://doi.org/10.1016/j.isprsjprs.2017.09.013.

[49] Sun, D., Yang, X., Liu, M.-Y., and Kautz, J., “PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume,”
CVPR, 2018, pp. 8934–8943. https://doi.org/10.1109/CVPR.2018.00931.

[50] Teed, Z., and Deng, J., “RAFT: Recurrent All-Pairs Field Transforms for Optical Flow,” Computer Vision – ECCV 2020,
edited by A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Springer International Publishing, Cham, 2020, pp. 402–419.
https://doi.org/10.1007/978-3-030-58536-5_24.

28

[51] Wang, J., Zhong, Y., Dai, Y., Zhang, K., Ji, P., and Li, H., “Displacement-Invariant Matching Cost Learning for Accurate
Optical Flow Estimation,” Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran
Associates Inc., Red Hook, NY, USA, 2020, p. 15220–15231. https://doi.org/10.5555/3495724.3497000.

[52] Kroeger, T., Timofte, R., Dai, D., and Van Gool, L., “Fast Optical Flow Using Dense Inverse Search,” Computer Vision – ECCV
2016, edited by B. Leibe, J. Matas, N. Sebe, and M. Welling, Springer International Publishing, Cham, 2016, pp. 471–488.
https://doi.org/10.1007/978-3-319-46493-0_29.

[53] Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., v.d. Smagt, P., Cremers, D., and Brox, T., “FlowNet:
Learning Optical Flow with Convolutional Networks,” IEEE International Conference on Computer Vision (ICCV), 2015, pp.
2758–2766. https://doi.org/10.1109/iccv.2015.316.

[54] Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T., “A Large Dataset to Train Convolutional
Networks for Disparity, Optical Flow, and Scene Flow Estimation,” IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 4040–4048. https://doi.org/10.1109/cvpr.2016.438.

[55] Farnebäck, G., “Two-Frame Motion Estimation Based on Polynomial Expansion,” Image Analysis, edited by J. Bigun and
T. Gustavsson, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 363–370. https://doi.org/10.1007/3-540-45103-x_50.

[56] Howard, A., Pang, R., Adam, H., Le, Q., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan, M., Chu, G., Vasudevan, V.,
and Zhu, Y., “Searching for MobileNetV3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp.
1314–1324. https://doi.org/10.1109/iccv.2019.00140.

[57] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., “ImageNet: A Large-Scale Hierarchical Image Database,” 2009
IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. https://doi.org/10.1109/cvpr.2009.5206848.

[58] Lucas, B. D., and Kanade, T., “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proceedings of
the 7th International Joint Conference on Artificial Intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1981, p. 674–679. https://doi.org/10.5555/1623264.1623280.

29

IV
Thesis report

125

8
UUFOSim: Unreal UAV Failure injectiOn

Simulator
For the development and performance assessment of the fault detection and diagnosis algorithm, it
is required to have a dataset which includes IMU and camera output in nominal flight and in failure
scenarios. Unfortunately, the current available datasets do not include IMU sensor information, such
as the VisDrone dataset [221, 222] or the Indoor Navigation UAV Dataset [223], and do not have any
recorded scenarios with failures, such as the UZH-FPV Drone Racing Dataset [224] or the Zurich Ur-
ban Micro Aerial Vehicle Dataset [225].

As a result, the first milestone of this master research project is the development of a dataset which
fills the gaps left by literature. However, collecting a dataset from real drone flights is immediately faced
by three main challenges. First, recording data from failed drones during flight is very time consuming
when considering the preparation, safety and failure injection setup, circumstances that would lead to a
reduced size dataset. Second, it would be very expensive since the failures would lead to the partial or
complete drone maintenance with every flight. Third, the flight arena available at most research labs,
such as the CyberZoo at Delft University of Technology, has a limited availability and environment fea-
ture richness, with constant factors such as illumination. This last challenge could limit the learning and
generalisation capability of any vision and knowledge-based fault detection and diagnosis approach.
Therefore, a more efficient, cheaper and safer alternative that would lead to a larger and richer dataset
would be the collection of data within a simulated environment. As discussed in the literature, AirSim
has been selected to be the simulator of choice for this project mainly due to its adaptability, available
Python and C++ APIs, as well as its extensive documentation and support.

The simulator, that the author has named Unreal UAV Failure injectiOn Simulator (UUFOSim), con-
sists of flying a simulated drone or Undiagnosed Failing Object (UFO) in a urban environment avoiding
obstacles between two random locations. UFOs fly at a uniformly sampled constant altitude and an
actuator failure, within a set of modes, is injected at a random point along the trajectory. During the
whole flight, including the manoeuvres after the failure, the camera and IMU data is stored to later
shape the dataset for the training and testing of the FDD framework.

Figure 8.1 shows the three main blocks that shape the data gathering pipeline, namely the occu-
pancy map extraction, the drone grid navigation and the drone flight. Once the flight is concluded,
including the data storage, the environment and drone are reset to their original state and the cycle is
repeated. The loop continues for as many flights as it is desired for building the dataset.

Section 8.1, section 8.2 and section 8.3 discuss each of the presented blocks, from the offline
extraction of environment information in the form of an occupancy grid, to the fault injection during
flight and data storage. Next, section 8.4 performs a trade-off between data sampling rate and data
collection speed as a function of the simulator clockspeed. This is followed by a brief description of a

127

128 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Occupancy map
extraction Drone grid navigation Drone flight

UUFOSim

Figure 8.1: Data gathering pipeline block diagram

signal scoping tool developed for the debugging of the simulator in section 8.5. Finally, section 8.6 will
present the collected dataset for assessing the FDD framework.

8.1. Environment and occupancy map
As mentioned before, the environment is simulated and can be modified at will but,

• how can the information of the environment be translated to a data structure that can be easily
manipulated within C++ or Python?

Additionally, most of the environments found in Unreal Engine 4 are quite large with a lot of objects
and details. If all that information would be loaded every time that the path planning module has to be
executed, every flight or iteration would be computationally expensive and inefficient. Therefore,

• what is the most adequate data structure in order to compress the environment information such
that the time to collect data, equivalent to an iteration, is minimised?

The answer to both questions can be found in the autonomous driving industry [226, 227], and more
recently in the (flying) robotics sector [228, 229], in which the environment around the vehicle or agent
is discretised and represented by a grid occupancy map. Under this representation, the environment
is discretised into a matrix of inter-independent fix size cells (voxels) which store information about
whether they are free or occupied with a 0 and a 1, respectively.

For the purpose of this project, a static 2D grid occupancy map is built in order to encapsulate all
the information about the static obstacles found by the drone at its flying altitude prior to executing its
flight. Figure 8.2 describes all the steps taken in order to build this environment representation that will
ease the computation of the flight path that the flying vehicle should follow.

Select random
altitude

Extract UE4
obstacle vertices

Slice point cloud at
flight altitude and

project to 2D

Obtain environment
dimensions

Create and fill
occupancy grid with

obstacle points

Fill grid cells
enclosed by
obstacles

Plot occupancy map

Occupancy map
extraction

Figure 8.2: Occupancy map extraction block diagram.

8.1. Environment and occupancy map 129

First, the altitude at which the drone of the current iteration will fly is randomly selected within a
range of possible altitudes for the chosen environment. The flying altitude changes from iteration to it-
eration in order to prevent the overfitting or overreliance of the FDD algorithm to object instances found
at a certain height, like bushes, trees or windows, as well as the presence and location of the horizon
line in the images taken by the drone.

For the extraction of obstacle information, we exploit the fact that Unreal Engine 4 uses static
meshes; geometries shaped by polygons that can be rendered efficiently by the graphics card and
that are used to create world geometry, as can be seen from the creation environment of this game
engine in Figure 8.3. AirSim provides an API for the extraction of all the (triangular) meshes present
in the environment as a Face-Vertex Mesh. As a result, the position of all the vertices, as well as the
triplets of vertex indices that shape each of the triangular faces, are given as output within a single data
structure for each object present in the scene. At this point in the occupancy map extraction, we have
a 3D point cloud in which each point has a label for an object in the environment. Since the extraction
of the vertices that shape all the objects of the environment is an expensive operation, once executed
for the first time with an environment, the points are stored in a ”.p” file such that they can be easily
extracted in future drone flights.

Figure 8.3: Sphere mesh in Unreal Engine 4.

1

2 3

4

Figure 8.4: ”Blocks” environment limits for drone flight
bounded by the 4 monoliths in the red rectangle corners.

For the purpose of gathering data for the development and validation of a FDD framework, it has
been chosen to fly the drones at a constant altitude during an iteration. Thanks to this assumption, the
point cloud can be reduced by slicing it and storing only the points found within a height range around
the drone flight altitude [𝑧 − Δ𝑧, 𝑧 + Δ𝑧], being z the chosen altitude and Δ𝑧 the user chosen altitude
range for object vertex filtering. To conclude this step, the z-coordinate of all the points is made zero,
projecting all the 3D points to the 2D x-y plane. The output is a reduced 2D point cloud.

In Figure 8.4 the reader can observe the ”Blocks” environment, the default AirSim environment for
testing, adopted due to its simplicity. As can be seen, it consists of grey blocks, an orange sphere (the
same one as Figure 8.3), a blue cone and multiple cylinders on the centre left part of the environment.
Even though the environments within Unreal Engine 4 are located within a 3D space (canvas) that could
extend for kilometres in every direction, it is desired that the drones fly exclusively around the obstacles
or assets of the environment and do not venture to fly in empty space. Therefore, the dimensions of
the environment and the occupancy map are defined by the furthest points in the 2D point cloud in the
x and y direction. In the case of the default ”Blocks” AirSim environment, the drone flights are confined
to the red rectangle defined by the four monoliths located at the corners, resulting in a 3D point cloud
of obstacles of 46,248 points..

As explained, once the 3D point cloud of obstacles is retrieved, it is sliced and projected to the 2D
plane. Figure 8.5 shows the 2D point cloud of the obstacles in the scene when the drone flight altitude
chosen is seven metres with an altitude range (Δ𝑧) of three metres. The points that are close to each

130 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

other with the same colour are part of the same object. Even though there seems to be about 100 left
to the naked eye and a large orange blob, the current figure has 8,956 2D points because there are
many overlapping projected vertices from multiple altitudes. This abundance of points can be seen
when zooming to the orange blob in Figure 8.6, which happens to be the sphere of the Blocks environ-
ment deformed due to the difference in axes scales. As a result, despite having reduced the number
of obstacle points by a factor of five (and the information by a factor of almost eight, since the altitude
information has been discarded), there are many points that do not provide any information when a
clear flight path has to be computed for the drone; only the outer edge of each object or groups of
objects carry information that should be preserved for the representation of obstacles in the environ-
ment. As an example, all the inner circles of points shown in the sphere could be discarded in further
computations.

−1.0 −0.5 0.0 0.5 1.0
y-coordinate 1e4

−1.0

−0.5

0.0

0.5

x-
co
or
di
na
te

1e4

Figure 8.5: 2D projection of the Blocks environment object
vertices located within 4 and 10 metres altitude.

2.8 3.0 3.2 3.4 3.6 3.8
y-coordinate 1e3

3.0

3.5

4.0

x-
co
or
di
na
te

1e3

Figure 8.6: Zoom-in of the 2D projected points of the sphere

A solution to the problem of unnecessary points that should be discarded is the introduction of the
aforementioned occupancy map. The environment is discretised in cells and those with points within
its boundaries are considered as occupied (black) whereas those with no points are empty (white). As
a result, independently of how many points are within a cell, they are translated to a single data point.

With the environment dimensions and the cell size provided by the user, it is possible to define the
grid that shapes the occupancy map. Next, the 2D point cloud is transformed from the world coordinate
frame to the grid coordinate frame, projecting all points into the 2D grid and filling all the cells occu-
pied by obstacle points. This process can be observed in Figure 8.7 and Figure 8.8, where the blue
points defining the extracted obstacle vertices of the AirSim ”Blocks” environment are first projected
to the 2D grid and then the occupied cells are turned black. From this point onwards, the blue points
are discarded and only the grid information is passed along the FDD data gathering pipeline, decreas-
ing the stored data and further computational load. Instead of the initial 8,956 2D points considered
before the occupancy grid implementation, now a grid of 80 by 54 cells is used, resulting in a total
of 4,320 cells. Given that now the data points (cells) are homogeneously distributed, the information
about their location does not have to be stored as long as the x and y dimensions of the occupancy
grid are known, meaning that the 2D information has been transformed to a 1D data stream. As a
result, the number of data points has been reduced by a factor of two, whereas the amount of informa-
tion stored has been reduced by a factor of four. Table 8.1 summarises the evolution of the number of
points and coordinates (information) through the aforementioned projection and occupancy grid stages.

Table 8.1: Evolution of the number of points and coordinates upon the occupancy map generation.

Original 2D projection Occupancy map
Points 46,248 (100%) 8,956 (19.36%) 4,320 (9.34%)
Coordinates 138,744 (100%) 17,912 (12.91%) 4,320 (3.11%)

8.1. Environment and occupancy map 131

Figure 8.7: 2D points projected in empty occupancy grid. Figure 8.8: Filled occupancy grid with 2D projected points

As can be observed from Figure 8.8, filling the grid cells occupied by obstacle vertices is not enough
for creating a reliable occupancy map. There are grid cells that lie within objects, that should not be
accessible but that are not marked as occupied since there is no vertex of the static mesh on that
particular cell. This problem worsens the finer the mesh of the occupancy map. To solve this, an
algorithm is developed that exploits the Delaunay triangulation.

1. First, each of the objects in the environment is assigned the coordinates of the grid cells occupied
by their remaining 2D points projected on the occupancy map. Those objects with less than three
grid coordinates or whose coordinates shape a line along the x or y axis are discarded from this
process since they can not enclose other cells.

2. For each of the remaining objects, the grid cells that define the outer edge of their described
polygon (concave hull of a set of points) are identified. For that purpose, Delaunay triangulation
is used, which creates a triangular mesh of the object grid cells. It is looped over all the created
triangles for each of the obstacles and, in the case that an edge is covered more than once, then
it is an internal edge shared by two triangles; it must lie within the polygon whose outer edge is
tried to be discovered. Therefore, it is discarded as a potential polygon outer edge.

3. Once the outer edges of the obstacle polygon are identified, is it looped over all grid coordinates
and assessed whether they lie within the polygon boundaries. This is done thanks to the Python
”matplotlib.path” module that allows the creation of a polygon based on the counter-clockwise
ordered points that shape its outer edge and a method that checks whether given grid coordinates
can be found inside the defined polygon. After going through all the empty grid coordinates for
each of the (obstacle) polygons, all the grid cells located within obstacles have been identified.

To conclude, all the grid cells found within the environment obstacles are marked as occupied in
the occupancy map, leading to Figure 8.9 for the ”Blocks” AirSim environment.

Figure 8.9: Filled occupancy grid considering obstacle inner cells identified with Delaunay triangulation.

132 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

8.2. Path planning
As can be observed in Figure 8.1, once the occupancy map has been extracted, it is fed to the drone
navigation module which should be able to determine the path that the drone should follow within
the Unreal Engine 4 simulated environment. The steps to achieve a smooth drone flight path can be
observed in Figure 8.10.

Select random initial
and goal flight
coordinates

Check start and
goal coordinates

requirements

Plot start and goal
points in occupancy

map

Path planning with
A*

Reduce the number
of path points with

B-spline

Check path obstacle
collision

Plot final path in
occupancy map

Drone grid navigation

Transform grid
coordinates to

AirSim drone inertial
coordinate frame

Smoothen path with
cubic spline

Check path obstacle
collision

Figure 8.10: Drone grid navigation block diagram.

8.2.1. Start and goal selection
First, a random initial and goal flight coordinates are generated using as upper limits the environment
dimensions discovered in the occupancy map extraction. Additionally, it is verified whether those grid
locations fulfil three design requirements:

1. The distance between the start and end location is greater than a minimum distance given as
input by the user. This prevents extremely short paths which do not allow the injection of failures.

2. The distance between the start and the end location is smaller than a maximum distance given as
input by the user. This prevents extremely long paths that would decrease the number of flights
that would be executed in the allocated time for data collection and do no add much value to the
training of the FDD framework.

3. The start and goal locations have to be located beyond a minimum distance from all identified
obstacles in the occupancy map. This guarantees that there will not be any unexpected collision
due to the drone dimensions.

As can be seen in Figure 8.10, the random selection and requirement check is repeated until the
start and goal coordinates fulfil the established requirements. Once that is the case, they are included
within the occupancy map. The occupancy grid coordinate system starts at the bottom left; therefore,
the start and goal locations in Figure 8.11 are given as (25, 37) and (50, 50), respectively.

8.2.2. Path planning algorithm selection
Now that the environment is understood and the start and goal locations have been identified, it is nec-
essary to plan the path that the drone should follow. For that purpose, only two types of classic robot
path planning methods are considered, namely grid or discrete approaches and road-map methods. A
visual classification of the algorithms considered in the present research can be observed in Figure 8.12.

8.2. Path planning 133

Figure 8.11: Occupancy grid with start and goal locations.

Path planning

Grid/discrete
approaches

Road-map
approaches

A* Wavefront
Path Planner

Geometric
approaches

Sampling

 approaches

Voronoi Road-
Map Planning PRM RRT*

Figure 8.12: Path planning algorithm classification

Within the first group, the Wavefront Path Planner and the A* algorithms are considered. Both
methods consist of two steps: a propagation or search step and a back propagation step. Their main
difference is that the former applies its initial search (wave propagation) throughout the complete grid
whereas the latter uses a function to decide which cells are worth inspecting given the already discov-
ered solution space. As a result, even though every iteration in the search step of the A* algorithm is
more computationally expensive, less iterations need to be considered since only a portion of the grid
is inspected.

Within the road-map approaches, two other groups can be distinguished, namely geometric and
sampling approaches. Voronoi Road-Map Planning would be part of the first class whereas Rapidly-
Exploring Random Trees* (RRT*) and Probabilistic road-map Planning (PRM) would be part of the
second. The main difference between the sampling options, as it will become clear in their detailed
explanation, is that in PRM the drone must pass through randomly sampled points in the solution space
whereas in RRT* it only has to move in the direction of those points; it does not require point-to-point
convergence.

Literature was consulted for the selection of the aforementioned 5 candidates. First, the authors in
[230] show in their benchmark the superior time performance of the A* and Wavefront path planners
when compared to RRT* and sPRM, a variant of PRM. However, the authors in [231] argue that the su-
periority of A* over RRT is connected to the complexity of the environment. While the time performance
of A* deteriorates with increasing complexity, the same metric remains stable for RRT. Hence, the au-
thor of this research wants to compare the implementations of these four approaches when applied to
the developed occupancy grids. Additionally, since it is desired to maintain a safe distance from obsta-
cles in order to minimise the chances of collision and observe the undisturbed failed behaviour of the
drone, Voronoi Road-Map planning [232] was also taken into consideration since it aims at maximising
the distance from the environment obstacles.

134 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Despite the existence of a richer and more extensive literature around path planning algorithms
[233–236], with classical alternatives such as the Potential Field algorithm [237] or modern evolutionary
or heuristic-based approaches such as Particle Swarm Optimisation [238], only the mentioned strate-
gies are considered due to their simplicity, efficiency and perfect fit for an occupancy map environment.
Heuristic approaches [239] are more efficient than classical approaches in complex dynamic environ-
ments with multiple obstacles, properties that can not be attributed to the environments considered in
the present research. Additionally, their implementation is more difficult, they require ample tuning and
long computation times. In contrast with classical methods, nature-inspired approaches can achieve
optimal solutions. However, the goal is not to compute the shortest or fastest path between two points,
but to compute as fast as possible any path connecting two provided points, since the algorithm will be
part of a data gathering pipeline.

The main metric considered for the selection of the most suitable algorithm for data gathering is
the computation time. Also considered but to a lesser extent is the possibility of maintaining a safe
distance from all obstacles. Unfortunately, there does not exist a comprehensive benchmark that eval-
uates the computation time required by the most common methods. Besides that, the results vary
greatly between application, testing experiments [240] and actual implementation. Therefore, each of
the considered algorithms will be explained and their output when applied to the Blocks environment
will be shown. At the end, a short trade-off will be carried out in order to choose the most suitable path
planning algorithm.

Voronoi Road-Map Planning
The Voronoi Road-Map Planning is a graph search geometric method, meaning that the solution space
is first discretised in the form of a graph using geometrical (instead of sampling) approaches before
performing a global search for a minimum cost path. This approach counts with two main steps. First,
a road-map is built in the open space of the environment. A road-map is a union of curves such that
any start and end point in the occupancy map which is not covered by an obstacle can be connected
by a path. The Voronoi Planning algorithm has the property that those curves shaping the road-map
are equidistant from the obstacles present in the solution space, maximizing the safe flight distance
to any obstacle. Second, the start and goal locations, as well as the points composing the computed
road-map, are fed to the Dijkstra search algorithm in order to find the shortest path. The shortest paths
from the start and goal coordinates to the road-map lead to the access point to the road-map q’, from
the start to the road, and the departure point q”, from the road to the goal, respectively.

In its essence, this 2D planning approach consists of filtering the available cells of the occupancy
grid such that only those that are the furthest from the obstacles (including the start and goal locations)
are considered as nodes part of a graph. Then the shortest path between 2 nodes in this graph is
computed. Figure 8.13 show the Voronoi Road-Map in action, taking 1.52 seconds in computation
time. The blue round points reflect a discretised version of the road-map, the green crosses on top of
some blue points reflect the paths that the Dijkstra algorithm studied as potential parts of the solution,
the red line is the final flight path and the yellow points reflect the entry (q’) and exit points (q”) of the
drone to the Voronoi road-map. As can be seen, there is a shorter path to the goal if the drone would
have taken a shortcut using the road-map routes around the orange ball. As an extension to the vanilla
Voronoi Road-Map planning algorithm, the sections of the road-map closer than a minimum distance
to the obstacles in the environment are ignored. In the shown example, an obstacle distance of 3 grid
cells is used, reason behind the rejection of the alternative narrow alleys.

Wavefront Path Planner
The Wavefront Path Planner can be considered as a breadth-first search of a graph consisting of all
the cells in the occupancy grid. Again, this method consists of two main steps. First, a ”wave” is propa-
gated from the goal to all the cells in the occupancy grid, which are also considered as nodes that store
the minimum distance to the goal cell. The nodes located at the wavefront are the source nodes, which
is the case of the goal in the first iteration. As can be seen in Figure 8.14, the goal node (blue cell)

8.2. Path planning 135

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

q'

q''

Figure 8.13: Voronoi Road-Map Planning in Blocks environment. Computation time = 1.52 [s]

starts with an initial value of 2, whereas the rest start with a value of zero and the obstacles start with an
infinite value. Each of the cells in contact with the source node (the goal) is visited and it acquires the
value stored by the source node plus its distance to the source node, as can be seen in Figure 8.15. In
the current example, the distance from a cell to all its surrounding ones is 1. With every iteration, the
”wavefront” is in contact with new non-visited cells and this process of distance computation to the goal
is repeated. However, instead of the goal cell, now those located at the wavefront are used as source
nodes. In the case that the algorithm visits a node adjacent to a source node which already stores a
distance value, the visited node will store the minimum value between its stored and the newly com-
puted distance. The wavefront propagation step concludes once all the nodes have become source at
least once, as can be seen in Figure 8.16.

2 0 0 0 0

0 0 0 0 0

0 inf inf 0 0

0 0 inf 0 0

0 0 0 0 0

S

Figure 8.14: Wavefront Path Planner
example: starting configuration

2 3 0 0 0

3 3 0 0 0

0 inf inf 0 0

0 0 inf 0 0

0 0 0 0 0

S

SS

+1

+1 +1

Figure 8.15: Wavefront Path Planner
example: wave step first iteration

2 3 4 5 6

3 3 4 5 6

4 inf inf 5 6

5 5 inf 6 6

6 6 6 7 7

Figure 8.16: Wavefront Path Planner
example: wave step final iteration

With an occupancy grid with all the cells aware of their distance to the goal, the second step consists
of finding the shortest path. For that purpose, commencing from the start, an iterative back propagating
process is followed in which the node with the lowest stored distance from the adjacent nodes is chosen.
As can be seen in Figure 8.17, first the cell with a value of 6 is chosen, since it is the adjacent cell to
the start with the lowest distance value. Then, the cell with 5 is chosen, after that the cell with 4,
and so on till the goal is reached. Applying this path planning algorithm to the Blocks example, leads
to the result shown in Figure 8.18, where the gradient map reflects the distance to the source; cyan
means a low distance whereas pink means far a away from the goal. In this case, instead of a distance
of one between all the adjacent cells, an euclidean template was used in which a step in the diagonal
direction would be a distance of √2. Besides that, the cells within a certain predefined distance from the
obstacles stored an infinite (”inf”) value to the goal. In this way, they are not considered during the back
propagation and guarantee a safe flight distance. It has the same visual effect as inflating the identified
environment obstacles in all directions, in this case, by 3 cells, as can be seen from Figure 8.18. It took
3.51 seconds of computation time to generate the proposed path.

136 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

2 3 4 5 6

3 3 4 5 6

4 inf inf 5 6

5 5 inf 6 6

6 6 6 7 7

Figure 8.17: Wavefront Path Planner ex-
ample: back propagation

0 20 40 60
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Figure 8.18: Wavefront Path Planner applied to the Blocks environment exam-
ple. Computation time = 3.51 [s]

Rapidly-Exploring Random Trees
Rapidly-Exploring RandomTrees (RRT) is an efficient algorithm for searching non-convex high-dimensional
spaces based on building a tree like structure from random samples in the search space. In the case
of path planning, 3 main steps can be distinguished. First, a random cell in the occupancy grid is pro-
posed as the new direction in which the tree should be grown 𝑞𝑟𝑎𝑛𝑑. Second, the closest point in the
current tree to 𝑞𝑟𝑎𝑛𝑑 is identified as 𝑞𝑛𝑒𝑎𝑟. Third, the tree is grown from 𝑞𝑛𝑒𝑎𝑟 in the direction of 𝑞𝑟𝑎𝑛𝑑
by a predefined incremental distance or growth factor Δ𝑞. In the case that an obstacle is found in the
new location, the tree is not grown and the process is repeated. The iterative process is concluded
once the tree contains a node in the goal region. By its nature, RRT tends to expand quickly towards
unsearched regions.

RRT* is an optimized version of RRT [241] in which each vertex stores the relative distance (cost) it
has travelled relative to its parent vertex. In contrast with RRT that accepts the new created vertex from
𝑞𝑛𝑒𝑎𝑟 in the direction of 𝑞𝑟𝑎𝑛𝑑 as long as it does not land on an obstacle, RRT* first checks whether
there are vertices in the vicinity of 𝑞𝑛𝑒𝑎𝑟, within a predefined radius, that have a lower cost. If that is
the case, 𝑞𝑛𝑒𝑎𝑟 is replaced by this lower cost alternative. Additionally, once a new node is added to
the tree, it is checked for its neighbouring tree vertices whether a connection to this new node would
lead to a lower cost. If that is the case, the tree is rewired, resulting in smoother and shorter paths than
RRT. Even though the output of this optimal RRT option is better, the required computation is higher, in
particular due to the tree rewiring and the obstacle avoidance. RRT* is stopped if the maximum number
of iterations is reached or once the edge of one of the tree branches is within a predefined distance to
the goal and the final branch does not collide with an obstacle.

The result of this planning algorithm in the Blocks example can be observed in Figure 8.19, consum-
ing 5.23 seconds of computation time. In order to guarantee a minimum distance from the obstacles,
every new branch and node candidate must maintain a minimum predefined distance from the obsta-
cles in order to be accepted into the tree. In the Blocks example, that is a distance of 3 grid cells. The
green lines reflect the tree branches and the red lines are the final flight path. As can be seen, RRT*
tends to expand quickly towards the open space regions (exploration) instead of exploiting the already
discovered areas. Its main disadvantage are the additional number of hyper-parameters that must be
tuned for each specific environment; in particular, the maximum number of iterations expanding the
tree and the growth factor.

Probabilistic road-map Planning
The Probabilistic road-map Planning (PRM) [242] is very similar to the Voronoi counterpart in that a
road-map is built and the Dijkstra algorithm is used for building the shortest path between a start and
goal point. The main difference is that it uses a sampling instead of a geometrical approach when
exploring the solution space; the road-map is not equidistant from the obstacles in the environment.
As the previous methods, it consists of 2 steps: a construction and a query phase. In the construction

8.2. Path planning 137

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Figure 8.19: Rapidly-Exploring Random Trees* applied to the Blocks environment example. Computation time = 5.23 [s]

space, the unoccupied solution space is randomly sampled and a graph or road-map is built by con-
necting each node with its k-nearest neighbours. For each connection it is checked that no obstacle
is collided. Then, in the query phase, the generated graph is fed to the Dijkstra search algorithm for
constructing the final shortest path.

Figure 8.20 shows the result when applied to the Blocks environment, a solution that took 3.53 sec-
onds to be computed. As with the Voronoi method, the blue circles represent the randomly sampled
nodes during the construction phase, the green crosses are the points considered by the Dijkstra al-
gorithm for the shortest path during the query phase and the red line describes the final chosen flight
path. As can be seen, due to the stochastic nature of the sample points, the final path is not smooth
nor the shortest possible. In order to maintain a safe distance from the obstacles in the environment,
no points are sampled within a predefined distance to the black points. In the current example that is
a distance of 3 grid cells.

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Figure 8.20: Probabilistic road-map Planning applied to the Blocks environment. Computation time = 3.53 [s]

A* algorithm
Finally, the A* algorithm for path planning is an informed approach in which the known location of the
start and goal locations is exploited within a evaluation function in order to efficiently find the shortest
path. The occupancy grid is considered as a graph in which each cell is a node. The evaluation function
(𝑓(𝑛)) is the result of the sum of two other functions, namely the operating cost function (𝑘(𝑛)) and the
heuristic function (ℎ(𝑛)), as can be seen in Equation 8.1. When the former is evaluated for a node, it
provides information about the distance that it has been covered from the start to reach it. When the
latter is evaluated for a node, it provides an estimation of the distance that will have to be traversed
to go from that node to the goal. For the present research, the heuristic function used is the straight
distance from the node to the goal. This can be seen in Equation 8.2, where [𝑛𝑥, 𝑛𝑦] are any nodes
coordinates and [𝑔𝑥, 𝑔𝑦] are the coordinates of the goal.

138 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

𝑓(𝑛) = 𝑘(𝑛) + ℎ(𝑛) (8.1)

ℎ(𝑛) = √(𝑔𝑥 − 𝑛𝑥)2 + (𝑔𝑦 − 𝑛𝑦)2 (8.2)

The nodes store their distance to the start and their parent node, meaning the node closer to the
start to which they are connected. Nodes can be classified in 3 groups. First, the visited nodes are
those that have been inspected, store their distance to the start cell, store which is their parent node
and whose adjacent nodes are known. Second, the explored nodes are those adjacent to visited
nodes, whose distance to the start node have been computed and store which is their parent node but
whose adjacent nodes are not known. Third, the unexplored nodes are those that are not adjacent to
visited nodes and, therefore, their distance to the start, parent node and adjacent nodes are not known.

Figure 8.21 shows how information will be presented in the next example, which is the same as the
one discussed with the Wavefront Path Planner. Each node in the occupancy grid contains its value
of the evaluation function in the centre, the node id in the top left and a letter in the top right indicat-
ing whether it is a visited (v), explored (e) or unexplored node (u). Additionally, under the evaluation
function, the value of the operating cost function, the heuristic function and the parent node are stored.
As can be seen in Figure 8.22, when the algorithm is initialised, only the start node contains all the
information. The rest are unexplored nodes which only contain their id number and their distance to
the goal or 𝑘(𝑛).

f(n)

k(n)

V

h(n) parent

id

Figure 8.21: A* Path Planner example:
single cell

5.65

0

V

5.65 -1

0 U

5

5 U

4.47

10 U

4.12

15 U

4

20

U

5

1 U

4.24

6 U

3.61

11 U

3.16

16 U

3

21

U

4.47

2 U

2.24

17 U

2

22

U

4.12

3 U

3.16

8 U

1.41

18 U

1

23

U

4

4 U

3

9 U

2

14 U

1

19 U

0

24

Figure 8.22: A* Path Planner example: starting configuration

As in most previous methods, two main steps can be considered: the search and the back propaga-
tion phases. During the search phase, two lists are used to store information about the nodes, namely
the open (O) and closed lists (C). The open list stores the explored nodes and the closed list stores the
visited nodes. Commencing from the start cell as the first visited node, the evaluation function of its
adjacent nodes that are not in the closed list is computed, these nodes become explored nodes and
they are added to the open list, as can be seen in Figure 8.23. Then, the node in the open list with the
lowest evaluation function value is chosen as the next visited node. This process is repeated until the
next visited node is the goal, as can be seen in Figure 8.24, Figure 8.25 and Figure 8.26.

8.2. Path planning 139

5.65

0

V

5.65 -1

0

6

1

E

5 0

5 U

4.47

10 U

4.12

15 U

4

20

6

1

E

5 0

1

5.65

1.41

E

4.24 0

6 U

3.61

11 U

3.16

16 U

3

21

U

4.47

2 U

2.24

17 U

2

22

U

4.12

3 U

3.16

8 U

1.41

18 U

1

23

U

4

4 U

3

9 U

2

14 U

1

19 U

0

24

O

C 0

6 1 5

Figure 8.23: A* Path Planner example: first iteration in search
step

5.65

0

V

5.65 -1

0

6

1

E

5 0

5

7.29

2.83

E

4.47 6

10 U

4.12

15 U

4

20

6

1

E

5 0

1

5.65

1.41

V

4.24 0

6

6.02

2.41

E

3.61 6

11 U

3.16

16 U

3

21

U

4.47

2 U

2.24

17 U

2

22

U

4.12

3 U

3.16

8 U

1.41

18 U

1

23

U

4

4 U

3

9 U

2

14 U

1

19 U

0

24

O

C 0 6

1 5 11 10

Figure 8.24: A* Path Planner example: second iteration in
search step

5.65

0

V

5.65 -1

0

6

1

V

5 0

5

6.47

2

E

4.47 5

10

7.95

3.83

E

4.12 11

15 U

4

20

6

1

V

5 0

1

5.65

1.41

V

4.24 0

6

6.02

2.41

V

3.61 6

11

6.57

3.41

E

3.16 11

16

8.24

5.24

E

3 17

21

6.47

2

E

4.47 1

2

6.07

3.83

V

2.24 11

17

6.83

4.83

E

2 17

22

U

4.12

3 U

3.16

8

6.24

4.83

E

1.41 17

18

6.24

5.24

E

1 17

23

U

4

4 U

3

9 U

2

14 U

1

19 U

0

24

O

C 0 16 5 11 17

23 18 2 10 16 22 15 21

Figure 8.25: A* Path Planner example: penultimate iteration
in search step

5.65

0

V

5.65 -1

0

6

1

V

5 0

5

6.47

2

E

4.47 5

10

7.95

3.83

E

4.12 11

15 U

4

20

6

1

V

5 0

1

5.65

1.41

V

4.24 0

6

6.02

2.41

V

3.61 6

11

6.57

3.41

E

3.16 11

16

8.24

5.24

E

3 17

21

6.47

2

E

4.47 1

2

6.07

3.83

V

2.24 11

17

6.83

4.83

E

2 17

22

U

4.12

3 U

3.16

8

6.24

4.83

E

1.41 17

18

6.24

5.24

V

1 17

23

U

4

4 U

3

9 U

2

14

7.66

6.66

E

1 23

19

6.24

6.24

E

0 23

24

O

C 0 16 5 11 17 23

24 18 2 10 16 22 19 15 21

Figure 8.26: A* Path Planner example: last iteration in search
step

Finally, back propagation is carried out from the goal following the parent nodes stored by the cells.
The goal node points to cell 23, which points to cell 17, and this one to 1, and so on till the start
cell is reached, as shown in Figure 8.27. Figure 8.28 shows the A* algorithm applied to the Blocks
environment, which required 0.3 seconds of computation. The green dot is the start cell, the blue cross
is the goal cell, the cyan crosses are the visited and explored nodes during the search step and the red
line is the final back propagated flight path. As can be seen, the cells within 3 units from the obstacles
were not considered during the search step in order to guarantee a safe flight.

140 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

5.65

0

V

5.65 -1

0

6

1

V

5 0

5

6.47

2

E

4.47 5

10

7.95

3.83

E

4.12 11

15 U

4

20

6

1

V

5 0

1

5.65

1.41

V

4.24 0

6

6.02

2.41

V

3.61 6

11

6.57

3.41

E

3.16 11

16

8.24

5.24

E

3 17

21

6.47

2

E

4.47 1

2

6.07

3.83

V

2.24 11

17

6.83

4.83

E

2 17

22

U

4.12

3 U

3.16

8

6.24

4.83

E

1.41 17

18

6.24

5.24

V

1 17

23

U

4

4 U

3

9 U

2

14

7.66

6.66

E

1 23

19

6.24

6.24

E

0 23

24

O

C 0 16 5 11 17 23

24 18 2 10 16 22 19 15 21

Figure 8.27: A* Path Planner example: back propagation
step

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Figure 8.28: A* Path Planner applied to the Blocks environ-
ment example. Computation time = 0.3 [s]

Path planning algorithm trade-off
Table 8.2 shows a summary of the two criteria used to judge the path planning algorithms when applied
to the Blocks environment and the same start and goal locations as shown in Figure 8.11. As can be
seen, all the approaches when adapted can maintain a safe distance from the obstacles in the environ-
ment and this safe distance can be tuned for all methods, except for the Voronoi Road-Map planning
that tries to maximise it. Regarding the computation time, A* shows superior performance when com-
pared to the rest, followed by Voronoi Road-Map planning. Wavefront Path Planner and PRM show
similar computation time, whereas RRT* is the worst performing requiring a time 17 times higher than
A*.

Algorithms Voronoi Wavefront RRT* PRM A*
Computation

time [s] 3.51 1.52 5.23 3.53 0.3

Safe distance 3 3 3 3 4

Table 8.2: Path planning algorithms trade-off table given single data point.

However, it must be noted that the afore-mentioned results reflect the computation time for the par-
ticular scenario presented in Figure 8.11, a single data point. In order to establish a fair comparison, 100
scenarios were created by randomly sampling start and goal locations within the Blocks environment,
as well as the flight altitude used to slice the 3D point cloud obtained from AirSim. Since A* showed
superior performance for the tested data point, the results will be presented relative to this algorithm.
For that purpose, the metric m(x) in Equation 8.3 is computed for each algorithm for each of the 100
iterations. Here, 𝑡𝑥 is referred to the computation time that the ’x’ algorithm has taken for that scenario,
being ’x’ the wavefront, Voronoi, PRM or RRT* path planners; whereas 𝑡𝐴∗ is the time that it has taken
for the A* algorithm. A positive value means that the algorithm in question has taken longer to compute
its path than A*.

𝑚(𝑥) = (𝑡𝑥 − 𝑡𝐴∗)/𝑡𝐴∗ (8.3)

8.2. Path planning 141

Figure 8.29 shows the metric value for each of the algorithms for the 100 iterations in the form of
a histogram, including their mean and standard deviations. As forecasted by Table 8.2, all of them
perform worse than A* in terms of computation time. The same behaviour is observed: the Voronoi
path planner is the next best alternative, PRM and the Wavefront path planner are very similar, and
RRT* is the worst performing. Additionally, RRT* got the largest standard deviation, which shows that
its performance varies a lot from scenario to scenario. There are even data points with a value larger
than 200, which means that RRT* required more than 200 times the time that it took A* to compute its
path given the same environment, start and goal locations. Given the presented results, A* has been
chosen as the algorithm for path planning in the data gathering pipeline.

0 10 20 30
m(Wavefront)

0

10

20

30

Fr
eq

ue
nc

y

 = 14.69
 = 9.74

0 10 20 30
m(Voronoi)

0

10

20

30

Fr
eq

ue
nc

y

 = 12.58
 = 9.4

0 50 100 150 200
m(RRT*)

0

20

40

Fr
eq

ue
nc

y

 = 26.03
 = 36.94

0 10 20 30
m(PRM)

0

10

20

30

Fr
eq

ue
nc

y
 = 13.59
 = 9.03

Figure 8.29: Relative computation time for each path planning algorithm with respect to A* (m(x)) for 100 different scenarios.

8.2.3. B-spline path point number reduction
As can be seen in Figure 8.28, there are many points that shape the final flight path that do not provide
valuable information. All the points along straight lines can be suppressed and reduced to two points
before being fed to the controller. Additionally, some curves could be avoided if straight lines would be
taken. An example of this preventable behaviour can be observed in the top right corner of the flight
path created with A* in Figure 8.28: the drone would fly next to the block and ball obstacles boundaries
till the goal is reached instead of flying in a straight line from the moment it takes the corner around the
block to the goal. Whereas A* provided a flight path from the start to the goal using points separated
by occupancy grid cell size, B-spline could be used to reduce the path to its most indispensable points.

B-splines [243] of order k are piece-wise polynomials that serve as the basis of spline functions and
are capable of generating smooth trajectories connecting a provided set of data points, also known
as knots. They are of degree k-1 and k-2 times continuously differentiable. For the present research,
B-splines of degree 2 are used, which means that they are of order 3 and are 1 time continuously
differentiable. It has been made possible to define the desired number of points present in the filtered
path as a percentage of the number of points of the A* path. Since the goal is to create an alternative
using only the most indispensable points, the algorithm starts aiming at creating a path only with 5%
of the points. If unsuccessful, this point reduction strategy is repeated increasing the percentage of
kept points by 5% every time. If the percentage of kept points reaches 100%, then reduction of points
is deemed not possible and the A* generated path is passed on to the next step in the path planning
pipeline.

In the case that a reduced path was computed, it is checked for collisions with the obstacles in
the environment. For that purpose, the vectors connecting each pair of points along the new path are
discretised and it is verified whether the grid cells of which they are part of are occupied. Addition-
ally, this process is repeated with two parallel vectors displaced one cell to the right and to the left
of the original vector in order to maintain at least one cell distance from all the present obstacles. In
the example presented in Figure 8.30, even though the central vector connects the two path points
through open space, an obstacle is detected because one of the points of the right parallel vector

142 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

can be found within an occupied grid cell. The positive detection of collision with an obstacle has the
same effect as an unsuccessful reduction of path points: the percentage of kept points is increased
by 5% and a new B-spline is generated whose reduced flight path would be later checked for obstacles.

Figure 8.30: B-spline reduced path obstacle detection. The blue and green cells are two path points, and the red cells are
occupied by environment obstacles. The black lines are the discretised vectors for obstacle detection.

The benefits of B-spline path point number reduction can be visually appreciated in the occupancy
grid. Figure 8.31 and Figure 8.32 show the flight path before and after the B-spline path point reduction
was applied. As can be seen, Figure 8.31 is the same path as presented in Figure 8.28 and it consists
of 61 points. In contrast, Figure 8.32 only required 9 points to carry out the same path.

Figure 8.31: Zoom-in of Blocks occupancy map with A* flight
path represented by small green arrows.

Figure 8.32: Zoom-in of Blocks occupancy map with B-spline
reduced flight path represented by large green arrows.

8.2.4. Cubic spline path smoothing
Once a path connecting the start and goal locations has been found with A* and it has been pruned with
the B-spline, leading to the essential key points along the path, a smooth trajectory can be computed
with a cubic spline that passes through those remaining flight path points. Computation of the cubic
spline with the A* flight path as input would have not led to any considerable smoothing given the fine
path discretisation to single occupancy grid cells, as can be seen in Figure 8.31. The B-spline allowed
the discovery of the pivot points on which the cubic spline can be built.

The smoothing is required in order to avoid sharp corners and ease the workload of the controller
later in the pipeline. The distance between each point in the final smooth flight path is again 1 occu-
pancy grid cell size but the points are not constrained to the corner of each cell anymore, as it was the
case for the A* and B-spline reduced flight paths. Finally, before accepting the flight path generated by
the cubic spline, it is checked for collision with obstacles using the same approach as with the B-spline.
In the case of collision, a new B-spline reduced flight path is computed, increasing the kept points by
5%, before estimating a new cubic spline.

8.2. Path planning 143

The red arrows in Figure 8.33 show the final flight path and Figure 8.34 visually confirms that the
cubic spline passes through the pivot points (yellow circles) and the flight path points are not confined
to the occupancy grid cells. Additionally, the improvement thanks to the presented approach (small red
arrows), which combines B-splines and cubic splines, becomes evident when compared to the original
A* flight path (small green arrows).

Figure 8.33: Zoom-in of Blocks occupancy map with cubic
spline smoothed flight path represented by small red arrows.

Figure 8.34: Visual confirmation of the final path not being
constrained to the occupancy grid and it passes through B-
spline pivot points (yellow circles).

8.2.5. Flight path transformation to AirSim drone inertial coordinate frame
Finally, the grid coordinates of the smoothed spline flight path are transformed to the AirSim drone
inertial coordinate frame. For that purpose, first the 4 inertial coordinate frames used for the data
gathering pipeline are defined next:

1. Unreal Engine 4 inertial coordinate frame (ICFUE4): it is the coordinate frame used to build the
environment. Therefore, the centre of coordinates and the direction of its axes vary from map to
map. It is a drone independent coordinate frame.

2. Occupancy grid inertial coordinate frame (ICFOG): it has its origin at the bottom left of the
occupancy map with the y-axis pointing along the columns (to the right) and the x-axis pointing
along the rows (to the top) in the 2D grid; the same directions as those of the ICFUE4. Therefore,
all the objects and points in the occupancy map have positive coordinates. The environment
has been discretised with cells of predefined size, CUE4. As can be seen in Equation 8.4 and
Equation 8.5, in order to define the number of cells in the grid (𝑛𝑥 and 𝑛𝑦), the minimum and
maximum X- and Y-coordinates among all the obstacles in UE4 environment (𝑥UE4𝑚𝑖𝑛 , 𝑥UE4𝑚𝑎𝑥 ,
𝑦UE4𝑚𝑖𝑛 , 𝑦UE4𝑚𝑎𝑥) are required. It is a drone independent coordinate frame.

𝑛𝑥 = (𝑥UE4𝑚𝑎𝑥 − 𝑥UE4𝑚𝑖𝑛)/𝐶UE4 (8.4)

𝑛𝑦 = (𝑦UE4𝑚𝑎𝑥 − 𝑦UE4𝑚𝑖𝑛)/𝐶UE4 (8.5)

3. AirSim inertial coordinate frame (ICFAS): it has its origin at the same location as ICFUE4 with its
axes pointing in the same directions. The only difference is the scale of its units: 1 unit in ICFAS
is equivalent to 100 units in ICFUE4. This factor is defined as kUE4. It is a drone independent
coordinate frame.

4. AirSimdrone inertial coordinate frame (ICFASD): it is the same as ICFAS with the only difference
that its origin has been shifted to the location where the drone is spawned for the first time within
the environment. The location of the drone within the controller is expressed using this inertial
coordinate frame. The drone spawn coordinates in the ICFUE4 are given as x𝐷0 and y𝐷0 . It is a
drone dependent coordinate frame.

144 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

In order to transform the flight path from the occupancy map to the AirSim drone inertial coordinate
frame, the transformations in Figure 8.35 were used, using the shown parameters.

Figure 8.35: Inertial coordinate frame transformations: from ICFOG to ICFASD

Given a trajectory t:[(𝑝1𝑥 , 𝑝1𝑦), (𝑝2𝑥 , 𝑝2𝑦), ..., (𝑝𝑛𝑥 , 𝑝𝑛𝑦)] of n points inℝ2 in the occupancy grid inertial
coordinate frame, the points of the flight path can be transformed to the AirSim drone coordinate frame
(𝑝̄𝑖𝑥 and 𝑝̄𝑖𝑦) with Equation 8.6 and Equation 8.7.

𝑝̄𝑖𝑥 = (𝑝1𝑥 ⋅ 𝐶UE4 + 𝑥UE4𝑚𝑖𝑛)/𝑘UE4 − 𝑥𝐷0 𝑖 = 1, 2, ..., 𝑛 (8.6)

𝑝̄𝑖𝑦 = (𝑝1𝑦 ⋅ 𝐶UE4 + 𝑦UE4𝑚𝑖𝑛)/𝑘UE4 − 𝑦𝐷0 𝑖 = 1, 2, ..., 𝑛 (8.7)

8.3. Data collection
Once the final flight path has been computed, the next step is to fly the drone within the Unreal Engine
4 environment, as can be observed in Figure 8.1, potentially inducing an actuator or sensor failure and
gathering all the vision-based and signal data for the FDD training. Figure 8.36 summarises all the
steps taken during the final block of the data gathering pipeline. In the following sections, each of the
blocks will be briefly discussed.

Initialise sensors
Teleport drone to

selected start
location and altitude

Select and initialise
failure type and

mode

Store collected
sensor data

Start flying
computed path

Start sensor data
collection

Check failure
injection distance

Drone flight

Check collision, fly
off and arrival to

destination

Store flight and
failure info in log file

Compute distance
to goal

Reset client,
sensors and failure

factory

Figure 8.36: Drone flight block diagram

8.3.1. Sensor initialisation and drone teleportation
During the sensor initialisation stage, the data structures in charge of storing the IMU and camera data
are created. A single drone can carry multiple cameras, each generating different information such as
depth, segmentation or RGB. Besides that, it can be specified whether a float or integer encoding of
the pixel is desired, as well as whether the images should or not be compressed.

8.3. Data collection 145

Once the sensors have been initialised, the drone is teleported to the start location with the heading
already pointing towards the first path point in the trajectory. The user can specify whether it is de-
sired for the drone to take-off from the ground or it should be initialised directly at the chosen altitude.
This could be deemed useful when analysing failures during the take-off manoeuvre. However, for the
purpose of the current research in which the desire is to analyse failures during the cruise phase, the
drone is already teleported to the right altitude, as can be observed in Figure 8.37 for the presented
Blocks example. The next step is the selection and initialisation of the failure type and mode, as well
as the flight and failure info logging, before flying the computed path and collecting all the sensor data.

Figure 8.37: Drone teleported to start location

8.3.2. Failure type & mode selection and initialisation
For the present research, there are four actuator failure types considered with their respective failure
modes. The first three failures are simulated by locking the propeller rotational rates to fix values. The
fourth type requires a closer look at the propeller aerodynamics and centre of gravity shift, which is
explained in detail in chapter 9. The different failures are explained next:

1. Actuator saturation: the actuator is saturated and the propeller is locked rotating at its maxi-
mum rotational rate. For the Bebop 2 drone, the propellers can attain a maximum rotational rate
(𝜔𝑚𝑎𝑥) of 1256 rad/s. As a result, when the actuator of a propulsion unit suffers a saturation
failure, it is meant that its controller desired rotational rate fed to the physics model is fixed at its
maximum value, namely 1256 rad/s for the Bebop 2. The controller output is ignored in favour of
the saturated value.

2. Actuator lock: the actuator is locked rotating at a percentage of its maximum rotational rate
(locking coefficient, 𝑘𝑙𝑜𝑐𝑘). As a result, when the actuator of a propulsion unit suffers a locking
failure, it is meant that its controller desired rotational rate is fixed at a percentage of its maximum
value. For example, if the front right propeller is locked at 50% of 𝜔𝑚𝑎𝑥, then the physics model is
fed a value of 0.5 ⋅ 𝜔𝑚𝑎𝑥 for that propulsion unit, namely 628 rad/s for the Bebop 2. The controller
output is ignored in favour of the locked value.

3. Propeller fly-off: the propeller flies off and, as a result, complete thrust is lost from this propulsion
unit. The damage coefficient of the affected propulsion unit has a value of 0.

4. Propeller damage: the propeller has been damaged and, as a result, only a percentage of the
desired thrust is attained. Additionally, forces and moments are introduced in the propeller due
a shift in the centre of pressure and the centre of gravity from the centre of rotation. These new
dynamics cause vibrations along the three axis, phenomenon which is explained and shown in
detail in section 9.3.

Each failure type has a different number of potential failure modes. For instance, the propeller fly-
off has one failure mode for each propeller, therefore there are four failure modes for this failure type.
Additionally, there exist two hyper-parameters that can increase or limit the number of failure modes
for each failure type, namely:

146 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

1. Discrete or continuous: n the continuous case, the degree of failure of the damaged propeller
and locked actuator failure types can be given any value in the open interval (0,1), whereas in
the discrete case they can only obtain a value of the list <0.2, 0.4, 0.6, 0.8>.

2. Abrupt or linear: when abrupt is chosen, the failure takes place in a single time step once it is
induced. For instance, if the 50% abrupt damage propeller failure is chosen to take place after 3
seconds in flight, the damage coefficient has a value of 1.0 until the moment when the simulation
time is 3.003 (3 seconds plus the nominal physics engine sample time of 0.003), when it acquires
a value of 0.5.

If the linear option is chosen, then a coefficient rate of change with respect to time (𝑘̇𝑓𝑎𝑖𝑙) is
randomly selected. It is used to transition from the nominal to the desired coefficient. In the case
of the propeller fly-off, it is used to linearly transition from the nominal damage coefficient of 1.0
to 0.0. In the case of the saturated and the locked actuators, it is used to linearly transition from
the current percentage of rpms with respect to 𝜔𝑚𝑎𝑥 to the desired locking coefficient. As an
example, if the propeller is rotating at 600 rad/s, the desired locking coefficient is 0.2 and 𝑘̇𝑓𝑎𝑖𝑙=-
0.15 s−1, then the locking coefficient will linearly change from the moment of failure from 0.478
(600/1256) to 0.2 by -0.15 per second.

In order to acquire a balanced data set which could be used for the FDD algorithm training, the user
chooses the failure types and modes to include in the data set, and a pool of potential combinations
is created from which it is uniformly sampled before every flight. As an example, if the user chooses
discrete and abrupt actuator saturation, as well as discrete and abrupt actuator lock, then for each flight
the algorithm will randomly sample with a uniform distribution from a pool of 21 alternatives, namely
four actuator saturation options (one per propeller), 16 actuator lock options (four per propeller) and
one healthy option (no damage).

The aforementioned failure type and mode selection is done by the user prior to the data gathering
in order to create a pool of failures from which to choose at run time. Additionally, before each flight,
the distance at which the failure is injected is chosen. This is done by randomly selecting a distance
along the planned trajectory that is at least five metres from the start and goal locations in order to avoid
capturing the transients present at the flight initialization and completion.

8.3.3. Drone flight: guidance, control and physics model
Now that the failure has been selected, the drone is commanded to fly the computed path. For that pur-
pose, the simulation loops over the three blocks shown in Figure 8.38. First, the guidance block creates
the reference position (𝑥𝑟, 𝑦𝑟, 𝑧𝑟) and heading (𝜓𝑟) for the controller given the current vehicle states (⃗⃗𝑋)
polluted with measurement noise (𝜈) and the trajectory path points defined in the path planning phase
(section 8.2). Second, the controller translates the desired position and heading into commanded ac-
tuator rotation velocities (𝜔𝑖𝑐| i=1,2,3,4) taking into account the current states of the vehicle. Finally,
the physics model block simulates the effect of those commands on the drone and provides the states
at the next time step as measured by the vehicle sensors. In order to simulate as close as possible to
reality the behaviour of the Bebop 2 drone, the author implemented within the C++ API of AirSim the
Incremental Nonlinear Dynamic Inversion (INDI) controller [41] and the gray-box physics model [244]
developed at Delft University of Technology. Each of the three blocks will be further discussed in the
current section.

Guidance:
Generation of

reference position
and heading

Controller Bebop 2 physics
model

Figure 8.38: Drone flight guidance, controller and physics model pipeline.

8.3. Data collection 147

The drone flight simulation starts with the guidance block which translates the path points that de-
fine the trajectory into intermediate reference locations and headings (reference signals), as shown in
Figure 8.39. At every time step, in contrast with feeding directly the next trajectory path point to the
controller, the guidance block takes into consideration the current vehicle states in order to avoid pass-
ing reference signals very distant from the current ones. The latter could create a large signal error
that could drive the controller unstable through time.

Obtain reference
position

Obtain reference
yaw

Waypoints

Bebop 2 physics
model

Controller

Figure 8.39: Guidance block pipeline.

Contrary to the controller and physics model that originate from previous work at TU Delft, the
author exploited the guidance approach already implemented within AirSim and applied some modi-
fications. At its core, this method provides at every time step an intermediate reference position on
the line connecting the previous and next waypoints at a user-predefined ”Look Ahead” (𝐿𝐴) distance
from the current location projected on that line. Figure 8.40 illustrates an example scenario that will aid
in the visual explanation of this reference position computation. Three trajectory waypoints computed
in section 8.2 are shown as ⃗⃗𝑃1, ⃗⃗𝑃2 and ⃗⃗𝑃3. Furthermore, the drone is initially positioned at ⃗⃗𝑥(𝑛−1), as
represented by a red diamond. When the vehicle is at a waypoint or along the line connecting two
consecutive waypoints, as it is the case here, the next reference position is at an 𝐿𝐴 distance from the
current location along that line. The vector that connects the reference location with the vehicle position
projected along the waypoint connecting line is called the ”Goal Vector” (⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉), and it is computed by
subtracting the reference and actual positions, as shown in Equation 8.8. In this case, the projected
position ⃗⃗𝑥(𝑛−1)𝑝 coincides with the actual drone location ⃗⃗𝑥(𝑛−1) and the departure waypoint ⃗⃗𝑃1, but that
is not always the case. The current reference position ⃗⃗𝑥𝑟(𝑛−1) is marked as a green hexagon in the figure.

= Look Ahead

= Goal Vector

Figure 8.40: Guidance block approach at time step n-1.

= Look Ahead

= Goal Vector

= Actual Vector

= Goal Normalised

= Goal Distance

= Actual on Goal

= error

Figure 8.41: Guidance block approach at time step n: geom-
etry before reference position definition.

⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉 = ⃗⃗𝑥𝑟(𝑛−1) − ⃗⃗𝑥(𝑛−1)𝑝 (8.8)

148 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Next, Figure 8.41 shows the next time step as the drone has flown away from the line connect-
ing the waypoints and is now found at ⃗⃗𝑥(𝑛). As it can be seen, the vehicle has travelled the ”Actual
Vector” (⃗⃗ ⃗⃗ ⃗⃗𝐴𝑉) and has covered a ”Goal Distance” (𝐺𝐷) along the line connecting the previous and next
waypoints. The former is the difference between the current and previous coordinates, as shown in
Equation 8.9. The latter can be computed using the dot product between ⃗⃗ ⃗⃗ ⃗⃗𝐴𝑉 and the normalised ⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉
vector (Equation 8.10), also known as ”Goal Normalised” or ⃗⃗ ⃗⃗ ⃗⃗⃗𝐺𝑁, as shown in Equation 8.11. The vector
connecting the progress along the waypoint line, namely the difference between ⃗⃗𝑥(𝑛)𝑝 and ⃗⃗𝑥(𝑛−1)𝑝 , is
called ”Actual on Goal” (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝑜𝐺) and it is computed according to Equation 8.12.

⃗⃗ ⃗⃗ ⃗⃗𝐴𝑉 = ⃗⃗𝑥(𝑛) − ⃗⃗𝑥(𝑛−1) (8.9) ⃗⃗ ⃗⃗ ⃗⃗⃗𝐺𝑁 = ̂⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉 =
⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉
|⃗⃗ ⃗⃗ ⃗⃗𝐺𝑉|

(8.10)

𝐺𝐷 = ⃗⃗⃗⃗ ⃗⃗𝐴𝑉 ⋅ ⃗⃗⃗⃗ ⃗⃗⃗𝐺𝑁 = |⃗⃗ ⃗⃗ ⃗⃗𝐴𝑉| cos𝜃 (8.11) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝑜𝐺 = 𝐺𝐷 ⋅ ⃗⃗⃗⃗ ⃗⃗⃗𝐺𝑁 (8.12)

These vectors allow the computation of the closest distance between the waypoint line and the
current vehicle position, also known as deviation error (𝜖), with Equation 8.13. In contrast with the
previous situation, now the new reference point ⃗⃗𝑥𝑟(𝑛) is located at a distance 𝐿𝐴 + 𝜖 ⋅ 𝐴𝐿𝐴 from ⃗⃗𝑥(𝑛)𝑝
in order to accelerate the error correction. 𝐴𝐿𝐴 is a user defined value called ”Adaptive Look Ahead”,
which allows to tune the importance of the waypoint line vehicle deviation in the definition of the next
reference location. This is shown in Figure 8.42.

𝜖 = |⃗⃗ ⃗⃗ ⃗⃗𝐴𝑉 − ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝑜𝐺| (8.13)

= Look Ahead

= error

= Adaptive Look Ahead

Figure 8.42: Guidance block approach at time step n: refer-
ence position definition.

= Look Ahead

= constant

Figure 8.43: Guidance block approach at time step n: refer-
ence position correction.

As can be observed when comparing Figure 8.40 and Figure 8.42, the introduction of the adap-
tive look ahead can increase the error between the reference and actual position considerably. If the
controller is not able to correct the deviation fast, it will lead to loss of control. In order to reduce
the probability of emergence of this event in simulation, the author has introduced a simple but effec-
tive modification in the AirSim guidance block. Once the reference position has been computed, it is
checked whether the distance between the reference and current vehicle positions is higher than a
constant (𝜅) times 𝐿𝐴. If that is the case, then a new reference position is defined in the same direction
as the old one but at a distance of 𝜅𝐿𝐴 from the current position. The effect of this modification can be
observed in Figure 8.43. For the current research, it was found that a value of 1.5 for the constant was
effective to reduce the emergence of the aforementioned undesired behaviour.

8.3. Data collection 149

The second part of the guidance block is the computation of the yaw reference. It is desired that
the drone points in the direction of the desired flight path, meaning that it should point towards the ref-
erence point found in the reference position definition, as shown in Figure 8.43. Hence, the reference
yaw is found with Equation 8.14.

𝜓𝑟(𝑛) = arctan
𝑦𝑟(𝑛) − 𝑦(𝑛)
𝑥𝑟(𝑛) − 𝑥(𝑛)

(8.14)

Regarding the INDI controller, Figure 8.44 shows a schematic of the information flow. The compu-
tation of the infinite yaw angle refers to a function that converts it from the closed interval [-𝜋, 𝜋] rad to
the open interval (-∞,∞) rad. This is necessary for the INDI controller to track the yaw reference signal
without discontinuities. For instance, if the current and reference yaw angles are -178∘ and 176∘, re-
spectively, this function allows the drone to rotate 6∘ in the negative yaw direction instead of 354∘ in the
positive direction, avoiding a potential loss of control. For the derivation and equations corresponding
to the rest of the blocks the reader is referred to [245] and [41].

Obtain reference
acceleration value

Define unit vector
reference for body
unit vector along

the z-axis

Define sum of
propellers' rotation
velocity reference

Define angular
acceleration

reference (z-axis)

Define angular
acceleration

reference (x- and
y-axes)

Compute the INDI
control

Compute infinite
yaw angle

Obtain reference
thrust value

Guidance:
Generation of

reference position
and heading

Bebop 2 physics
model

Bebop 2 physics
model

Figure 8.44: INDI controller information flow schematic.

Finally, the last block in Figure 8.38 is the gray-box aerodynamic model developed at TU Delft,
whose schematic is shown in Figure 8.45. It is a piece-wise polynomial whose parameters have been
identified with wind tunnel data obtained in quasi-steady flow conditions. As can be observed, it re-
ceives as input the commanded actuator rotation velocities from the controller and computes the forces
and moments experienced by the vehicle. The integration of those forces and moments leads to the
angular and linear accelerations and velocities, as well as the attitude and position of the vehicle; states
which are fed again to the controller after measurement noise has been added. The numerical integra-
tion scheme followed is the Beeman and Schofield explicit method [246] outlined in Equation 8.15 and
Equation 8.16, where 𝑥 is the position or attitude, 𝑣 is the linear or angular velocity and 𝑎 is the linear
or angular acceleration. Additionally, Δ𝑡 is the time step duration and the subscripts n+1, n and n-1
refer to the next, current and previous time steps. It is designed for second order ordinary differential
equations, necessary to translate accelerations into positions. This approach substitutes the modified
velocity Verlet algorithm [247] for the integration of the linear and angular acceleration, as well as a
simple Euler method for the computation of position and orientation, used within AirSim by default.

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛Δ𝑡 +
1
6 (4𝑎𝑛 − 𝑎𝑛−1) Δ𝑡

2 (8.15) 𝑣𝑛+1 = 𝑣𝑛 +
1
6 (2𝑎𝑛+1 + 5𝑎𝑛 − 𝑎𝑛−1) Δ𝑡 (8.16)

The explanation of most blocks can be retrieved from [245] and [244]. The actuators are assumed
to be all the same, to have first order dynamics, namely a low pass filter with a time constant of 𝜏=1/30,
and available actuator feedback. The filter dynamics are shown in Equation 8.17. For the computation
of the low pass filter internal state integral, the 2-step Adams-Bashfort explicit integration scheme was
used. This method uses the filter internal state derivative from the current and previous time step in
order to compute the filter’s output, as can be seen in Equation 8.18.

150 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Controller

Compute the
sideslip angle

Compute the
normalized linear

and angular
velocities

State hedging Induced velocity
computation

Compute
normalized

differential thrust

Scale propeller
rotations

Compute
geometric average

of rotor speeds

Compute force and
moment

coefficients

Compute forces
and moments

Compute blade
damaged sections

forces and
moments

Compute linear
and angular

accelerations

Integrate linear
and angular

accelerations

Integrate linear
and angular

velocities

Apply
measurement
noise to
 states

Apply actuator
dynamics

Guidance:
Generation of

reference position
and heading

Figure 8.45: Bebop 2 drone gray-box aerodynamic physics model schematic.

𝑥̇𝑛 =
1
𝜏 (𝑢𝑛 − 𝑥𝑛)

𝑦𝑛 = 𝑥𝑛
(8.17) 𝑥𝑛+1 = 𝑥𝑛 +

3
2𝑥̇𝑛Δ𝑡 −

1
2𝑥̇𝑛−1Δ𝑡 (8.18)

Furthermore, the computation of the geometric average of the rotor speeds can be done with Equa-
tion 8.19. The linear and angular velocities are normalised by the factors shown in Equation 8.20 and
Equation 8.21, respectively. 𝑅 is the radius described by the propeller and 𝑏 is the distance of the
propeller to the body x-axis. Additionally, the propeller rotations are scaled by multiplying them by 1/𝜔̄
and the normalised differential thrusts for each moment axis are computed with Equation 8.22, Equa-
tion 8.23 and Equation 8.24.

𝜔̄ = √
∑4𝑖 𝜔2𝑖
4 (8.19)

𝐾𝑝𝑞𝑟 =
𝑏

𝜔̄ ⋅ 𝑅 (8.20) 𝐾𝑢𝑣𝑤 =
1

𝜔̄ ⋅ 𝑅 (8.21)

𝑢𝑝 = (𝜔2𝑠1 + 𝜔2𝑠4) − (𝜔2𝑠2 + 𝜔2𝑠3) (8.22) 𝑢𝑞 = (𝜔2𝑠1 + 𝜔2𝑠2) − (𝜔2𝑠3 + 𝜔2𝑠4) (8.23)

𝑢𝑟 = (𝜔2𝑠1 + 𝜔2𝑠3) − (𝜔2𝑠2 + 𝜔2𝑠4) (8.24)

State hedging is a technique which scales the states in order to avoid reaching unachievable val-
ues beyond those presented in Table 8.3 for the Bebop 2 drone. In the case of the linear and angular
velocities in the z-direction, their values are saturated such that they remain within their ranges. As an
example, if the velocity in the z-direction (𝑤) has a value of 0.1, then its value after state hedging would
be 0.05. Due to the coupling in the x- and y-directions, Equation 8.25 to Equation 8.28 show the hedged
(scaled) value for the linear and angular velocities in those directions. sgn() stands for the sign function.

𝑉𝑢𝑣 = 𝑢2 + 𝑣2 − 𝑢2𝑚𝑎𝑥 𝑉𝑝𝑞 = −|𝑝| ⋅
𝑞𝑚𝑎𝑥
𝑝𝑚𝑎𝑥

+ 𝑞𝑚𝑎𝑥 − |𝑞|

̂𝑢̄ =
⎧

⎨
⎩

sgn(𝑢) ⋅ √ 𝑢2𝑚𝑎𝑥
𝑣2/𝑢2 + 1, if 𝑉𝑢𝑣 > 0 & |𝑢| > 0.001

0, if 𝑉𝑢𝑣 > 0
(8.25)

̂𝑣̄ = {
𝑣 ⋅ ̂𝑢̄
𝑢 , if 𝑉𝑢𝑣 > 0 & |𝑢| > 0.001

𝑢𝑚𝑎𝑥 , if 𝑉𝑢𝑣 > 0
(8.26)

8.3. Data collection 151

Table 8.3: State hedging linear and angular velocities range limits

Parameter min max
𝑢 -0.5 0.5
𝑣 -0.5 0.5
𝑤 -0.2 0.05
𝑝 -0.008 0.008
𝑞 -0.02 0.02
𝑟 -0.015 0.015

̂𝑝̄ = {
sgn(𝑞) ⋅ 𝑞𝑚𝑎𝑥

sgn(𝑞 ⋅ 𝑝)𝑞𝑚𝑎𝑥𝑝𝑚𝑎𝑥
+ 𝑞
𝑝
, if 𝑉𝑝𝑞 < 0 & |𝑝| > 0.001

0, if 𝑉𝑝𝑞 < 0
(8.27)

̂𝑞̄ = {
𝑞 ⋅ ̂𝑝̄
𝑝 , if 𝑉𝑝𝑞 < 0 & |𝑝| > 0.001

𝑞𝑚𝑎𝑥 , if 𝑉𝑝𝑞 < 0
(8.28)

Moreover, the sideslip angle is computed with Equation 8.29 and the induced velocity, as well as the
force and moment coefficients, are computed with the polynomials whose coefficients were identified
in the wind tunnel experiments of [244].

𝛽 = arctan
𝑣
𝑢 (8.29)

The forces and moments are computed with their coefficients using the templates in Equation 8.30
and Equation 8.31. Besides that, the computation of their corrections due to the potential presence of
blade damage will be discussed later in chapter 9 (Equation 9.62 and Equation 9.63). Moving on to
the last stages of the physics model, the computation of the linear and angular accelerations is given
by Equation 8.32 and Equation 8.33. ⃗⃗𝑅𝐵𝐼 stands for the rotational matrix from the inertial to the body
coordinate frames, ⃗⃗𝑔 stands for the gravity vector, m is the mass of the vehicle, ⃗⃗𝐼𝑣 corresponds to the
vehicle inertia matrix and ⃗⃗⃗⃗𝑀𝐼𝑝 represents the moments due to the gyroscopic effects and rotor spin-up
torque (Equation 8.34). Finally, after the integration steps, before returning the states to the controller
and guidance blocks, measurement (zero-mean Gaussian) noise ⃗⃗𝜈 is added. The variance values that
define the noise probability density function of each state can be seen in Table 8.4.

𝐹⋅ = 4𝜋𝜌𝐶⋅𝜔̄2𝑅4 + Δ𝐹⋅ (8.30) 𝑀⋅ = 4𝜋𝜌𝐶⋅𝜔̄2𝑅4𝑏 + Δ𝑀⋅ (8.31)

̇⃗⃗𝑉 = ⃗⃗𝐹/𝑚 + ⃗⃗𝑅𝐵𝐼 ⃗⃗𝑔 − ⃗⃗Ω⃗ × ⃗⃗𝑉 (8.32) ̇⃗⃗Ω⃗ = (⃗⃗⃗⃗𝑀 + ⃗⃗⃗⃗𝑀𝐼𝑝 − ⃗⃗Ω⃗ × ⃗⃗𝐼𝑣 ⃗⃗Ω⃗) /⃗⃗𝐼𝑣 (8.33)

𝑀𝐼𝑝 = [
𝑞𝐼𝑝 (−𝜔1 + 𝜔2 − 𝜔3 + 𝜔4)
𝑝𝐼𝑝 (𝜔1 − 𝜔2 + 𝜔3 − 𝜔4)
𝐼𝑝 (−𝜔̇1 + 𝜔̇2 − 𝜔̇3 + 𝜔̇4)

] (8.34)

8.3.4. Sensor data collection, failure injection and flight termination
During the execution of the flight, data is being collected. AirSim provides a Python API for obtaining in-
formation from the different sensors and the camera, with simple functions of the style ”getSensorData()”
that return the value registered by the sensor (single data point) at the time of the function call, ”simGe-
tImages()” that returns multiple images at the time of the function call and ”startRecording()” which
stores all the camera data according to user predefined settings until ”stopRecording()” is called. Un-
fortunately, the maximum frequency at which these functions can be called or record data is 26 Hz
within the Blocks environment for a single drone, value far from the desired 500-1000 Hz for the IMU or
30-60 Hz frames per second for the camera. As an example, the Bebop 2 drone has a video sampling

152 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Table 8.4: Zero-mean Gaussian noise state variances

State 𝜎2 State 𝜎2
𝑥 7⋅10−6 𝜙 7⋅10−5
𝑦 7⋅10−6 𝜃 7⋅10−5
𝑧 7⋅10−6 𝜓 7⋅10−5
𝑢 1.4⋅10−4 𝑝 6.019⋅10−1
𝑣 1.4⋅10−4 𝑞 1.75⋅10−2
𝑤 7⋅10−4 𝑟 6.027⋅10−2

rate of 30 Hz1 and it uses the MPU 6050 IMU [248] which has a maximum gyro and accelerometer
sampling rates of 10 kHz and 1 kHz2, respectively. Additionally, this sampling rate changes during the
flight, depending on the workload experienced by the different threads within the simulator in Unreal
Engine 4 and the other computations carried out by the Python API. For example, within a single flight
test, a difference of a factor of 2.3 has been recorded between the fastest and slowest sample rates.

In order to increase the sample rate of the IMU, its data will be collected and stored within C++
before being sent back to the Python API. For that purpose, the IMU data collection has been coupled
to the physics engine of the simulator; with every time step in the physics engine it is verified whether
IMU information should be stored and, if that is the case, it is saved in a vector for later retrieval. This is
done by verifying that the desired time between samples has passed from the last time a sample was
saved. As an example, if the desired IMU sample rate is 𝑓𝑠𝐼𝑀𝑈=100 Hz and the last sample was saved
at simulation time of 1 second, then no sample will be saved until the simulation time reaches for the
first time a value higher than 1.01 seconds. If that moment is at simulation time 1.013, then the next
sample will be saved at a time later than 1.023. Once the flight is concluded, the information regarding
that flight is called from the Python API for storage and the vector is cleaned for the next flight. The
same process has already been implemented for other signal-based sensors, namely the barometer,
magnetometer and GPS. The user only has to choose the sensors to activate and their sampling rate.

Another main benefit of coupling the IMU data retrieval to the physics engine is that it is immune
to simulation slow-downs due to time intervals with a high computational load (e.g. when rendering
Unreal Engine environment sections with a higher count of assets). If the simulator slows down, then
the sensor data collection does it by the same amount thanks to its linkage to the physics engine. The
main disadvantage of this approach is that the sample rate choices are limited to factors of the physics
engine thread calling rate. With the nominal physics engine thread calling period of 0.003 seconds (𝑓p
= 333.33 Hz), the sampling frequencies available for IMU data gathering are discrete and limited to
values of 𝑓p divided by integer values, such as 333.3, 166.7, 111.1, 83.3, 66.7, etc.

With respect to the video sampling rate, it is not possible to couple the image data storage to the
physics engine because the AirSim image retrieval functions are part of another simulator thread. When
the physics engine is run, the simulator mutex is locked and can not be accessed by the image record-
ing thread. Therefore, if the user would like to retrieve an image within the physics engine iteration, a
deadlock is reached: the image thread is waiting for the lock to be released by the physics engine while
the latter waits for the image retrieval function to finish in order to release the lock. Therefore, in order
to increase the number of frames stored per second (fps), the simulation clock is modified. Instead of
running a real-time simulation, in which a second in simulation corresponds to a physical second, the
simulation can be slowed down by a factor. For instance, if the clockspeed is set to 0.2, meaning 1
second in simulation corresponds to 5 physical seconds, the camera sampling rate equals 60 Hz.

When the clockspeed is modified, the physics engine sampling rate is modified by the same fac-
tor. As a result, slowing down the simulation allows higher IMU sampling rates and higher number
1https://www.drones.nl/drones/parrot-bebop-2-drone/specs
2https://eggelectricunicycle.bitbucket.io/MicroWorks_30B4_board--Datasheets_30B4--MPU6050_
freq.html

https://www.drones.nl/drones/parrot-bebop-2-drone/specs
https://eggelectricunicycle.bitbucket.io/MicroWorks_30B4_board--Datasheets_30B4--MPU6050_freq.html
https://eggelectricunicycle.bitbucket.io/MicroWorks_30B4_board--Datasheets_30B4--MPU6050_freq.html

8.3. Data collection 153

of choices. For instance, using a clockspeed factor of 0.5 would allow an IMU sampling rate of up to
666.66 Hz, with the possibility of choosing 666.7, 333.3, 222.2, 166.7, 133.3, etc. Therefore, the clock-
speed factor is a hyper-parameter that has to be tuned by carrying a trade-off between the IMU and
camera sampling rates. Such trade-off will be discussed later in this document, namely in section 8.4.

At the same time as data is being gathered, the distance to the goal location is computed and it is
assessed whether the drone has reached the distance along the planned trajectory at which the failure
should be injected. Once that point is reached, the Python API calls the C++ function that introduces
the chosen failure. In the case of actuator saturation or saturation lock, the locking coefficient 𝑘𝑙𝑜𝑐𝑘 is
changed to the desired value. In the case of the propeller fly-off, the commanded rotational velocity
of the lost propeller is overwritten with a value of zero (𝜔𝑥 = 0). In the case of blade damage, as it
will be explained in chapter 9, the forces and moments that the lost blade sections would hypotheti-
cally generate are subtracted from those computed by the Bebop 2 gray-box aerodynamic model in
subsection 8.3.3. Depending on whether the failure is abrupt or continuous, the mentioned parame-
ters are changed at a single time step to the desired value or they are changed progressively with 𝑘̇𝑓𝑎𝑖𝑙.

Once the failure has been injected, the simulation pipeline starts to check whether any of following
flight termination conditions has been reached:
1. Collision with the ground

2. Collision with an obstacle

3. Drone flies above a predefined altitude

4. Timeout, meaning a predefined number of seconds after the failure injection has been reached
The first two flight termination conditions can be discovered thanks to the ”simGetCollisionInfo()”

function available within the Python API. It detects whether the vehicle has collided against any asset
and, if that is the case, it provides its name. If the name of a ground asset is returned, then the first
termination condition is activated; otherwise, the second. Also, when the drone descends below an al-
titude of 0.75 meters, then the first termination condition has been reached. For the present work, the
third and fourth activation conditions are activated when the drone flies beyond two times the desired
cruise altitude and when 2 seconds have passed since the failure injection, respectively.

8.3.5. Flight & failure metadata logging and sensor data storage
Once the flight has been concluded, some flight and failure metadata are stored for debugging pur-
poses, as well as for the classification of the gathered data for the training of FDD algorithms. The data
that are collected for each flight are summarised and briefly explained in Table 8.5. The only param-
eters that could lead to confusion are Failure_mode and Failure_mode_local. When the user selects
failure types and modes, the pool of options is created. In the previous example in which the user
chose discrete and abrupt actuator saturation, as well as discrete and abrupt actuator lock, the number
of potential options was 21. In this particular scenario, Failure_mode is a number between 1 and 21
that reflects the chosen mode among all the options. If the chosen option is e.g. 10, then Failure_type
is ”actuator_locked”, Failure_mode is 10 and Failure_mode_local is 5 since the first five refer to the
actuator saturation and healthy actuator options.

After logging the flight and failure information, all the sensor data is stored in Sensor_folder. The
data recorded by the IMU at every time step of the flight are stored in a .csv file organised according
to the headers shown in Table 8.6. All the camera frames are stored in the same directory as the IMU,
each image with the name of the timestamp at which it was taken in order to preserve the temporal
sequence information. Furthermore, some additional metadata involving the camera, containing the
information shown in Table 8.7, is stored in the same directory as the collected frames.

Finally, after logging valuable metadata from the flight and storing the sensor information, the client,
sensors and failure factory are reset to their original values in order to repeat the complete data gath-
ering pipeline shown in Figure 8.1 for the next flight.

154 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

Table 8.5: Flight and failure logged metadata

Parameter Explanation
Iteration Flight number or flight iteration

Sensor_folder Name of the folder where the sensor data for that flight has been stored
Start_timestamp Simulator timestamp at which the flight and sensor data gathering started
End_timestamp Simulator timestamp at which the flight and sensor data gathering ended
ClockSpeed Clockspeed at which the simulator runs

Failure Boolean for the presence of a failure: 1 means that a failure was injected
Failure_type Failure type that was injected from the user selected failure types

Failure_mode
Failure mode chosen from all those available within the user selected
failures types

Failure_mode_local Failure mode chosen from those available within the chosen Failure_type

Time_modality
Boolean for the activation of abrupt/linear failure mode:
1 means discrete failure mode

Continuity
Boolean for the activation of the discrete/continuous failure mode:
TRUE means continuous failure mode

Time_linear_slope 𝑘̇𝑓𝑎𝑖𝑙 in the case of linear failure type, otherwise a value of -1

Magnitude_start
Propeller rotational speed percentage with respect to 𝜔𝑚𝑎𝑥
at failure injection

Failure_magnitude Magnitude of the chosen failure (e.g. 0.25 locking coefficient)

Start_propeller_angle
Propeller rotation angle at which the failure was injected
(propeller damage failure type parameter)

Blade Blade index that was damaged (propeller damage failure type parameter)
Failure_timestamp Timestamp at which the failure was injected

Distance Distance from the goal location at which the failure was injected

Percent_trip
Percentage of the planned flight that was completed before the
failure injection

Collision_type

Type of collision after failure: no collision and reached goal location (0),
collision with obstacle (1), collision with ground (2), flown away
exceeding predefined altitude limit (3), 2 seconds have passed since
failure (4) and 40/clockspeed seconds have passed since flight
initialisation (5)

Camera_fps Frames per second at which camera data was gathered
IMU_frequency Inertial measurement unit sampling frequency

8.3. Data collection 155

Table 8.6: IMU data storage headers and explanation

Parameter Explanation
timestamp Timestamp at which the IMU measurement was taken

orientations_w Drone orientation in quaternions: rotation value
orientation_x
orientation_y
orientation_z

Drone orientation in quaternions: x, y and z coordinates

angular_velocity_x
angular_velocity_y
angular_velocity_z

Drone angular velocity around its x-, y- and z-axes

linear_acceleration_x
linear_acceleration_y
linear_acceleration_z

Drone linear acceleration along the x-, y- and z-axes

Table 8.7: Camera logged metadata

Parameter Explanation
camera_name Number of the camera

camera_position.x_val
camera_position.y_val
camera_position.z_val

Initial camera x, y and z coordinates

camera_orientation.w_val Initial camera orientation rotation value
camera_orientation.x_val
camera_orientation.y_val
camera_orientation.z_val

Initial camera orientation x, y and z coordinates

pixels_as_float
Boolean for saving the pixel information: 1 means that it will be saved
in float format

compress
Boolean for saving a png compressed image: 1 means that it will be
compressed

width Width of the captured frame
height Height of the captured frame

image_type
Type of image captured: Scene (0), DepthPlanar (1),
DepthPerspective(2), etc.

156 8. UUFOSim: Unreal UAV Failure injectiOn Simulator

8.4. Clockspeed selection
The right clockspeed is a function of the image resolution; the larger the image, the lower the camera
sampling rate at the same clockspeed. Therefore, a trade-off needs to be performed between sam-
pling rate accuracy and simulation speed for the chosen image resolution of 256×144 (width×height).
Figure 8.46 and Figure 8.47 show 20 simulations at different clockspeeds and their camera and IMU
sampling rates. It can be observed that a clockspeed of 0.6 has a large spread of camera sampling
rates between flights and the clockspeeds of 0.4 and 0.5 have IMU sampling rates far below the desired
512 Hz. Since the remaining clockspeeds show similar performance, 0.3 was selected for being the
fastest.

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

28

29

30

31

32

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Figure 8.46: Boxplot of the camera sampling rate for differ-
ent clockspeeds with an image resolution of 256×144 pixels
(width×height).

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

350

400

450

500

550

IM
U

 s
am

pl
in

g
ra

te
 [H

z]

Figure 8.47: Boxplot of the IMU sampling rate for differ-
ent clockspeeds with an image resolution of 256×144 pixels
(width×height).

The IMU sampling rate samples are almost constant at the same clockspeed because the data
gathering of this sensor has been coupledwith the simulator’s physicsmodel, as dicussed in section 8.3.
In contrast, the camera sample rates are much more dispersed, especially the higher the clockspeed.
For the same simulation time and slower clockspeed, the simulation checks the thread that receives
the calls from the Python API more frequently. Hence, the frequency at which camera images can be
called is higher, reducing the impact of simulation slow downs and, hence, the camera sampling rate
dispersion.

5,000 flights were flown with a clockspeed of 0.3 and image resolution of 256×144. To verify that
the camera and IMU sampling rate predictions estimated with 20 flights were accurate, the same box
plot was created with the flown 5,000 flights. The results are shown in Figure 8.48 and Figure 8.49:
the camera runs at 31.81 fps and the IMU has a sampling rate of 555.59 Hz.

0.3
Clockspeed [-]

31.7

31.8

31.9

32.0

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Figure 8.48: Boxplot of the camera sampling rate for 5,000
flights with a clockspeed of 0.3 and an image resolution of
256×144 pixels (width×height).

0.3
Clockspeed [-]

555.55

555.60

555.65

IM
U

 s
am

pl
in

g
ra

te
 [H

z]

Figure 8.49: Boxplot of the IMU sampling rate for 5,000 flights
with a clockspeed of 0.3 and an image resolution of 256×144
pixels (width×height).

8.5. Debugging tool: signal scoping
In a similar fashion as when IMU data are gathered (subsection 8.3.4), any signal within the guidance,
control and physics model can be stored in a vector within the C++ API during the flight in order to be
plotted upon flight termination with a call from the Python API. The goal is to achieve a similar func-
tionality as the signal scoping tool within Matlab to ease the debugging of these simulator components.
The result of such implementation is a single user input in the Python API in which it must specify the

8.6. Dataset 157

signals it would like to plot. Additionally, it has the option of choosing which signals to plot together in
a single figure for direct comparison. Once the flight is concluded, they are plotted to the screen for
analysis and saved in the computer for later inspection.

The introduction of this tool has accelerated the debugging process of the simulator and it will facil-
itate the smooth development and implementation of alternative forms of guidance and control, as well
as different drone physics models, by future users. Finally, Figure 8.50 and Figure 8.51 show two ex-
amples of scoped signals. The first shows the 3D trajectory that the drone followed when commanded
to fly in a straight line in the x-direction. The second shows the commanded propeller rotation velocities
for the same flight.

y-coordinate [m]

4.49
4.50

4.51
4.52

4.53
x-coordinate [m]−60 −40 −20 0

z-
co

or
di

na
te

 [m
]−7.00

−6.98
−6.96
−6.94
−6.92
−6.90

Actual flight
Reference flight

Figure 8.50: 3D actual and reference trajectories
for single sample flight.

0 2000 4000 6000 8000 10000 12000
Sample index [-]

700

750

800

850

900

ω
xc

 [r
ad

/s
]

Front left
Front right
Back right
Back left

Figure 8.51: Propeller rotational velocity of each actuator in rad/s for
sample flight.

8.6. Dataset
The simulation pipeline discussed in Figure 8.1 was run in a Windows OS PC with a 20 core Intel Xeon
W-2255 CPU, 32 GB of RAM DDR4 and an NVIDIA RTX A4000 GPU with 16 GB of GDDR6 memory.
The 5,000-flight dataset was collected in 61.67 hours and has a memory footprint of 239 GB. Only
blade damage failures of 20%, 40%, 60% and 80% were simulated since those are the failure modes
that will be used to train and test the FDD pipeline. A sample of frames from a single flight separated
by 35 frames from each other can be observed in Figure 8.52.

Figure 8.52: Camera captured frames during single flight read from top to bottom and from left to right (only shown one every
35 frames).

9
Propeller damage

In contrast with the other actuator failure modes outlined in subsection 8.3.2, the propeller damage is
more difficult to simulate. Whereas the alternative actuator failure modes are symmetrical failures in
which the rotational velocity of the propeller is fixed at a certain value or the complete propeller has
flown off, propeller damage caused by the chipping or breaking of a blade leads to asymmetrical forces
and moments acting on the system that go beyond the change in thrust.

Previous literature in the field of fault diagnosis have exploited simplifications of the simulation of
blade damage. The authors in [249] consider actuator faults, such as structural damage to the pro-
pellers or degradation of the rotors, as partial loss of effectiveness, which causes a partial loss of thrust
generated by the damaged rotor. This is simulated by multiplying the commanded rotor angular veloc-
ity by a factor lower than 1 in order to obtain the ”true” rotor angular velocity. The main drawback of
this approach is that all the vibrations in the system due to the unbalance of forces and moments are
ignored.

Another approach is proposed by the authors in [250], which introduce sinusoids in the force sig-
nals to simulate the vibrations caused by the propeller unbalance. The sinusoids only consist of the
decomposition of the centrifugal force in the x and y components caused by the displacement of the
propeller centre of gravity due to blade damage. Unfortunately, this approach does not consider the
vibrations in the moment signals, as well as the vibrations caused by the changed aerodynamics.

This section aims at carrying out amore in depth analysis in the problem of blade damage simulation,
such that its effects can be included in the Unreal Engine 4 simulation upon drone failure. The goal of the
present chapter is to obtain the forces and moments that have to be added to the healthy counterparts
computed by the original physics model in order to account for the damaged propeller. The flow of these
computations is visually illustrated in Figure B.1. For that purpose, section 9.1 will present the created
forces andmoments due to the change of the propeller mass and its centre of gravity shift. Furthermore,
section 9.2 will show how the change in forces and moments is computed due to the partial loss of blade
aerodynamic surface. This section exploits the mathematical process of Blade Element Theory and it
constitutes the main contribution of this research to propeller damage simulation. Then, section 9.3 will
present the final force and moment signals when the afore-mentioned effects are combined, as well as
the assumptions taken in the presented approach and some recommendations for future work. Finally,
the results will be followed by an experimental campaign in section 9.4 that aimed at the validation of
the BET model.

9.1. Mass related force and moment changes
Due to the change in propeller mass and its corresponding shift in its centre of gravity, the following
moments and forces have to be taken into consideration for a single propeller:

1. The gravity force of the propeller is decreased due to a decrease in its mass. The gravitational

159

160 9. Propeller damage

force in the inertial z-direction has to be decomposed in the 3 components of the propeller frame.

Output: ⃗⃗𝐹𝑃𝑚1 = [𝐹𝑃𝑚1𝑥 𝐹𝑃𝑚1𝑦 𝐹𝑃𝑚1𝑧]
𝑇
.

2. Due to the shift in the centre of gravity, there is a moment created with the gravity force vector
and the arm from the centre of the propeller to the new centre of gravity location. This moment
is changing direction with the propeller rotation and it is decomposed in the x,y and z directions.
Output: ⃗⃗⃗⃗𝑀𝑃

𝑚 = [𝑀𝑃
𝑚𝑥 𝑀𝑃

𝑚𝑦 𝑀𝑃
𝑚𝑧]

𝑇
.

3. A centrifugal force appears due to the shift of the centre of gravity out of the centre of rotation
of the propeller. This centrifugal force is changing direction with the propeller rotation and it is

decomposed in the x and y directions. Output: ⃗⃗𝐹𝑃𝑚2 = [𝐹𝑃𝑚2𝑥 𝐹𝑃𝑚2𝑦 0]
𝑇
.

They are all of measured in the propeller’s reference frame, which is the equivalent to the body
reference frame translated to the centre of the propeller hub. As can be observed, the change in mass
causes a change in the 3 components of the force and moments signals. Next, each of the aforemen-
tioned contributions will be analysed.

The first forces to be obtained are those caused by the loss of mass. Since the goal is to compute
the forces and moments that have to be added to those resulting from the physics model when there
is no failure, the force required to be added is in the opposite direction of the gravity vector, as can be
seen in Equation 9.1. Here, 𝑚loss is the lost mass and ⃗⃗𝑅𝑃𝐼 is the transformation matrix from the inertial
to the propeller coordinate frame, which can be seen in Equation 9.2. Depending on the drone attitude,
the gravity vector can have a value in its 3 dimensional components in the propeller coordinate frame.

⃗⃗𝐹𝑃𝑚1 = ⃗⃗𝑅𝑃𝐼 [
0
0

−𝑔𝑚loss

] (9.1)

⃗⃗𝑅𝑃𝐼 = [
cos𝜃 cos𝜓 cos𝜃 sin𝜓 − sin𝜃

sin𝜙 sin𝜃 cos𝜓 − cos𝜙 sin𝜓 sin𝜙 sin𝜃 sin𝜓 + cos𝜙 cos𝜓 sin𝜙 cos𝜃
cos𝜙 sin𝜃 cos𝜓 + sin𝜙 sin𝜓 cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓 cos𝜙 cos𝜃

] (9.2)

Second, the shift in the centre of gravity (CG) causes the appearance of moments around the centre
of rotation of the propeller. In order to compute these moments, the arm from the propeller central hub
to the new CG location must be computed. For that purpose, the blade has been modelled as a group
of trapezoids. As can be observed in Figure 9.1, in the case of the Bebop 2 propeller, its blade can be
split up in two trapezoids connected at their base which is situated at the location of the largest blade
chord. 𝑐𝑟, 𝑐𝑡 and 𝑐𝑐 are the chords lengths at the root, tip and the location of longest chord, respectively.

Figure 9.1: Bebop 2 propeller top view and trapezoid simpli-
fication

Figure 9.2: Damaged Bebop 2 propeller top view and trape-
zoid simplification

9.1. Mass related force and moment changes 161

The CG of each blade is computed separately depending on whether it has damage or not. In the
case that there is a damage, the tip chord will move along the span of the blade toward the central hub.
In the case that damage causes partial blade loss closer to the central hub than the location of 𝑐𝑐, then
there would be only one trapezoid in the blade planform and 𝑐𝑐 would disappear, as can be seen in
Figure 9.2.

For the computation of the centre of gravity, it is assumed that the density of the blades is constant,
so that the CG will coincide with the centroid of the blade. Hence, the centroid of each trapezoid is
computed with Equation 9.3 and they are weighted together with their respective areas (which should
be proportional to the mass given our assumption) with Equation 9.4. 𝑛𝑡 stands for the number of
trapezoids within a blade and Figure 9.3 illustrates the trapezoid geometrical variables.

𝑦̄𝑐trapezoid𝑖 =
ℎ𝑖
3
2𝑐𝑖+1 + 𝑐𝑖
𝑐𝑖+1 + 𝑐𝑖

(9.3)

𝑦̄CG𝐵𝐿 = 𝑦̄𝑐𝐵𝐿 =
∑𝑛𝑡𝑖 𝑦̄𝑐trapezoid𝑖 (𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2

∑𝑛𝑡𝑖 (𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2
(9.4)

Figure 9.3: Blade and trapezoid geometry and centroid

Once the centroid of each of the blades are found, they are weighted again with their respective
areas in order to find the centroid of the complete propeller. With the location of the CG computed as in
Equation 9.5 and the gravitational force calculated in Equation 9.1, the moments caused by the gravity
force are computed in Equation 9.6.

⃗⃗𝑟𝑃𝐶𝐺 = [
𝑥𝑃𝐶𝐺
𝑦𝑃𝐶𝐺
0
] (9.5) ⃗⃗⃗⃗𝑀𝑃

𝑚 = ⃗⃗𝑟𝑃𝐶𝐺 × ⃗⃗𝐹𝑃𝑚1 (9.6)

Third, the shift of the centre of gravity causes the appearance of a centrifugal force due to the rota-
tion of the propeller. This force does not exist in a healthy propeller because the arm between the CG
and the centre of rotation is zero. The magnitude of the centrifugal force is computed with Equation 9.7,
where𝑚𝑃 is the propeller mass, 𝜔 is the rotational velocity and 𝑟𝐶𝐺 is the distance between the centres
of rotation and gravity, as computed in Equation 9.8.

𝐹𝑚2 = 𝑚𝑃𝜔2𝑟𝐶𝐺 (9.7) 𝑟𝐶𝐺 = √𝑥2𝐶𝐺 + 𝑦2𝐶𝐺 (9.8)

The centrifugal force is later decomposed in the x and y components, leading to the vector shown
in Equation 9.9. 𝜃𝐶𝐺 is the angle that ⃗⃗𝑟𝐶𝐺 creates with the propeller coordinate frame and is computed
with Equation 9.10. This centrifugal force is illustrated in Figure 9.4.

⃗⃗𝐹𝑃𝑚2 = [
𝐹𝑚2 cos𝜃𝐶𝐺
𝐹𝑚2 sin𝜃𝐶𝐺

0
] (9.9) 𝜃𝐶𝐺 = arctan

𝑦𝑃𝐶𝐺
𝑥𝑃𝐶𝐺

(9.10)

Figure B.2 visually illustrates the discussed computation of the damaged propeller mass related
forces and moments with a flowchart. The next step is the computation of those corresponding to the
change in aerodynamics.

162 9. Propeller damage

y

x
+

Figure 9.4: Illustration of centrifugal force on a damaged propeller

9.2. Aerodynamics related force and moment changes
After the analysis of the disturbance in forces and moments due to the change in the propeller mass,
the next point of analysis is the change due to the modified aerodynamics. Compared to the healthy
state, the following forces and moments can be found for a single propeller:

1. Loss of thrust due to the loss of blade sections. Since the forces are measured in the propeller
reference frame, a loss of thrust causes only a change in the force vector z-direction. Output:
⃗⃗𝐹𝑃𝑎1 = [0 0 𝐹𝑃𝑎1𝑧]

𝑇
.

2. Loss of the torque moment and change of forces in the x-y rotor plane due to a reduction in the
blade drag and lift. The force that generates the torque from the missing blade sections can be
decomposed in the x-y direction; force components that oscillate due to the propeller rotation.

Output: ⃗⃗𝐹𝑃𝑎2 = [𝐹𝑃𝑎2𝑥 𝐹𝑃𝑎2𝑦 0]
𝑇
and ⃗⃗⃗⃗𝑀𝑃

𝑎1 = [0 0 𝑀𝑃
𝑎1𝑧]

𝑇
.

3. Change in moment due to the change in the location of the centre of pressure of the propeller.
Since the force of this moment is parallel to the z-axis, the moment will be decomposed the x-
y plane. This moment vector constantly changes direction due to the rotation of the propeller.

Output: ⃗⃗⃗⃗𝑀𝑃
𝑎2 = [𝑀𝑃

𝑎2𝑥 𝑀𝑃
𝑎2𝑦 0]

𝑇
.

Again, it can be seen that the aerodynamic changes of the blade create forces and moments along
the 3 propeller axes. For their computation, the Blade Element Theory mathematical process is ex-
ploited. This method discretises the blade along its span in sections of equal length, determines their
individual generated moments and forces, and adds all of them in order to obtain those generated by
the complete propeller. When a blade is damaged, the forces and moments that would had been gen-
erated by the missing blade sections would be subtracted from those computed by the physics model
in the healthy state.

For the present research, the Blade Element Theory (BET) will be first explained in subsection 9.2.1.
From the explanation it will become evident the need to obtain the 𝐶𝑙 and 𝐶𝑑 curves with respect to the
angle of attack of the Bebop 2 blades. Hence, subsection 9.2.2 will present the identification of this
curves. This process is carried out using as data the thrust and torque obtained from a gray-box model
developed in previous research at Delft University of Technology with wind tunnel experiments [244].
Finally, subsection 9.2.4 will show how each of the forces and moments listed at the start of the present
section (section 9.2) are computed given the model developed using BET.

9.2. Aerodynamics related force and moment changes 163

9.2.1. Blade Element Theory
The goal of the BET method is the computation of the thrust and torque generated by the complete
blade through the sum of the contributions of all its sections. For that purpose, the lift and drag equa-
tions, which can be seen in Equation 9.11 and Equation 9.12, are applied to each of the blade sections
𝑘 of span length equal to 𝑑𝑟. For the rest of the paper, the subscript 𝑖 stands for the propeller, 𝑗 for the
blade and 𝑘 for the blade section.

Δ𝐿𝑘(𝑟𝑘 , 𝜓𝑘) =
1
2𝐶𝑙𝑘(𝛼𝑘(𝑟𝑘 , 𝜓𝑘))𝜌𝑉

2
𝐴𝑘(𝑟𝑘 , 𝜓𝑘)𝑐𝑘(𝑟𝑘)𝑑𝑟 (9.11)

Δ𝐷𝑘(𝑟𝑘 , 𝜓𝑘) =
1
2𝐶𝑑𝑘(𝛼𝑘(𝑟𝑘 , 𝜓𝑘))𝜌𝑉

2
𝐴𝑘(𝑟𝑘 , 𝜓𝑘)𝑐𝑘(𝑟𝑘)𝑑𝑟 (9.12)

𝜌 is the air density which depends on the altitude at which the drone flies with respect to the sea
level. For the present research, it is always assumed that it is flown at sea level conditions, meaning that
𝜌 equals 1.225. Furthermore, 𝑐𝑘 is the blade section average chord. Because the blade is abstracted
as two trapezoids, 𝑐𝑘 is equal to the average of the chords at the start and end of the blade section.
𝑉𝐴𝑘 is the airspeed seen by the blade section perpendicular to its span and 𝐶𝑙𝑘 and 𝐶𝑑𝑘 are the lift and
drag coefficients of the 2D blade airfoil, respectively. As can be seen, these parameters are a function
of the angle of attack (𝛼𝑘), the distance from the blade section centroid to the centre of rotation (𝑟𝑘) and
the blade section azimuth angle (𝜓𝑘). The last one is an angle measured on the propeller plane and it
is defined to have a value of zero degrees (𝜓=0) in the direction of the drag and it increases its value in
the direction of rotation. The 𝑟 and 𝜓 definitions can be visualised in Figure 9.5 and Figure 9.6. When
a variable is a function of 𝑟 and 𝜓, it will be represented by (⋅) for readability purposes.

Figure 9.5: Blade geometrical parameters

=

Figure 9.6: Azimuth angle visualization

The airspeed at each blade section (𝑉𝐴𝑘), which, as it will be shown later, is essential for the com-
putation of the angle of attack, has to be computed taking into account three main components:

1. The combined linear and angular velocities of the drone.

2. The rotational velocity of the propeller, taking into account the distance of the blade section to the
centre of rotation.

3. The induced velocity, which is the additional velocity in the propeller z-axis direction through the
rotor disk caused by the propeller’s air suction for the generation of lift. This movement of air with
the induced velocity is called induced flow or downwash.

First, Equation 9.13 is used to compute the linear velocity of the propeller assembly (⃗⃗𝑉𝑃) from the
body linear (⃗⃗𝑉𝐵) and angular velocities (⃗⃗Ω⃗). The ⃗⃗⃗𝑑 matrix (Equation 9.14) is used to convert the rota-
tional rates of the vehicle to linear velocities, exploiting the known drone geometry shown in Figure 9.7
[28]. Each row of the d matrix (⃗⃗⃗𝑑𝑖) corresponds to each of the drone propellers. The first row corre-
sponds to the left-front propeller and the following rows to the other propellers moving clockwise from
a top-down view of the drone.

164 9. Propeller damage

⃗⃗𝑉𝑃𝑖 = ⃗⃗Ω⃗ × ⃗⃗⃗𝑑𝑇𝑖 + ⃗⃗𝑉𝐵 (9.13) ⃗⃗⃗𝑑 =
⎡
⎢
⎢
⎣

𝑙 −𝑏 0
𝑙 𝑏 0
−𝑙 𝑏 0
−𝑙 −𝑏 0

⎤
⎥
⎥
⎦

(9.14)

Figure 9.7: Drone geometry [28] Figure 9.8: Blade coordinate frame.

Then, the propeller linear velocity is translated to the blade coordinate frame (𝐵𝐿), which rotates with
the respective blade, as can be seen in Figure 9.8. The angle of the blade with the propeller x-axis is 𝜆𝑗
and it is used in Equation 9.15 for the coordinate frame transformation. As can be observed, a minus
sign precedes the transformation matrix because the airspeed vector is opposite to the displacement
direction. It is assumed that this value of airspeed, which depends on the vehicle linear and angular
velocities, does not depend on the position along the blade.

⃗⃗𝑉𝐵𝐿𝐴𝑖𝑗𝑘1 = ⃗⃗𝑉
𝐵𝐿
𝐴𝑖𝑗 = −[

sin 𝜆𝑗 − cos 𝜆𝑗 0
cos 𝜆𝑗 sin 𝜆𝑗 0
0 0 1

] ⃗⃗𝑉𝑃𝑖 (9.15)

Second, the component of the velocity due to the rotation of the propeller is the product of the
distance of the blade section centroid to the centre of rotation (𝑟𝑖𝑗𝑘) and the rotational velocity of the
propeller (𝜔𝑖), as can be seen in Equation 9.16. The main benefit of the chosen blade coordinate frame
is that the component of the velocity due to the propeller rotation only exists along the x-axis. Finally,
𝜁𝑖 is a variable which acquires a value of 1 if the 𝑖th propeller is rotating clockwise and -1 if it is rotating
counter-clockwise.

⃗⃗𝑉𝐵𝐿𝐴𝑖𝑗𝑘2 (𝑟𝑖𝑗𝑘) = [
𝜁𝑖𝜔𝑖𝑟𝑖𝑗𝑘
0
0

] (9.16)

Third, the computation of the induced velocity. There exist multiple approaches in literature for com-
puting this velocity field across the rotor disk, most of the them based on estimates and empirical tests.
Some previous research [251] assumes ideal propeller geometry and they consider a constant uniform
induced velocity along the propeller, which is mostly not the case in forward flight. The approach fol-
lowed for the present research is the same one used in [252] and that is thoroughly explained in [29],
which combines an initial uniform inflow estimation for the complete propeller with local (blade section)
linear inflow model corrections.

For the computation of the uniform induced velocity (𝑣01), the Glauert formula presented in Equa-
tion 9.19 is derived from the combination of the mass flow and the propeller thrust equations, shown in
Equation 9.17 and Equation 9.18, respectively. According to the principles of momentum and energy
conservation, the far wake velocity equals the airspeed before the rotor plus two times the induced
velocity [29], leading to a change in velocity across the rotor of Δ𝑉 = 2𝑣0.

1Since it will be constantly referred to the same single propeller, the subscript 𝑖 to denote a specific propeller is dropped for the
rest of this work for readability purposes.

9.2. Aerodynamics related force and moment changes 165

𝑚̇ = 𝜌𝜋𝑅2𝑉𝑅 (9.17) 𝑇 = 𝑚̇Δ𝑉 = 𝑚̇(𝑉𝐴𝑖 + 2𝑣0 − 𝑉𝐴𝑖) = 2𝑚̇𝑣0 (9.18)

𝑣0 =
𝑇

2𝜌𝜋𝑅2𝑉𝑅
(9.19)

Given that the airspeed at the rotor (𝑉𝑅) equals the propeller airspeed plus the induced velocity along
the z-axis direction, it can be expressed as shown in Equation 9.20 using the translational velocity found
in Equation 9.13. Again, there is a minus before the velocity component in the z-direction because the
airspeed of the propeller is a vector in the opposite direction to its translational velocity. The final
Glauert equation does not have a closed form, so the induced velocity can be computed using an
iterative optimisation technique, such as Nelder-Mead. For the UE4 simulation, since the induced
velocity needs to be computed in every time step after the blade damage, a tailored gradient-descent
(1D first order derivative) algorithm was implemented, an approach discussed in Appendix A.

𝑉𝑅 = √𝑉𝑃𝑥 𝑉𝑃𝑥 + 𝑉𝑃𝑦 𝑉𝑃𝑦 + (−𝑉𝑃𝑧 + 𝑣0)2 (9.20)

Once the uniform inflow velocity is computed, it can be used as the basis for local corrections for
the computation of the linear inflow model. There are multiple estimation models for the computation of
the linear inflow, such as those proposed by Howlett [253], Pitt & Peters [254] and White & Blake [255].
However, for the present research, the model developed by Drees [256] will be used since it is one
of the best representations when compared to empirical data [29]. Equation 9.21 models the induced
velocity using the uniform inflow as basis and modifying it with the 𝑘𝑥 and 𝑘𝑦 weighting factors, which
are computed in Equation 9.22 and Equation 9.23, respectively.

𝑣𝑖(⋅) = 𝑣0(1 + 𝑘𝑥𝑟 cos𝜓 + 𝑘𝑦𝑟 sin𝜓) (9.21)

𝑘𝑥 =
4
3
(1 − cosΧ − 1.8𝜇2𝑥)

sinΧ (9.22) 𝑘𝑦 = −2𝜇𝑥 (9.23)

Χ is the wake skew angle or the angle that the wake creates with respect to the z-axis of the propeller.
It is illustrated in Figure 9.9 and it is computed using the propeller airspeed and the uniform induced
velocity, as can be seen in Equation 9.24. Furthermore, 𝜇𝑥 is the tip speed ratio or advanced ratio and
it is defined as the airspeed projected on the x-y plane in the propeller coordinate frame (the velocity
parallel to the plane of the rotor) normalised with the blade length and propeller rotational velocity
(Equation 9.25). The resulting inflow can be observed in Figure 9.10, which shows how the induced
velocity changes per blade section with respect to its distance to the centre of rotation and the azimuth
angle.

TPP

Wake

Figure 9.9: Illustration of the wake skew angle [29]

TPP

Longitudinal inflow

Lateral inflow
TPP

Figure 9.10: Linear inflow model [29]

tanΧ =
√𝑉𝑃𝑥 𝑉𝑃𝑥 + 𝑉𝑃𝑦 𝑉𝑃𝑦

𝑣0 − 𝑉𝑃𝑧
(9.24) 𝜇𝑥 =

√𝑉𝑃𝑥 𝑉𝑃𝑥 + 𝑉𝑃𝑦 𝑉𝑃𝑦
𝜔𝑖𝑅

(9.25)

Having computed the 3 components of the blade section airspeed for the lift and drag equations,
they are summed in Equation 9.26.

166 9. Propeller damage

⃗⃗𝑉𝐵𝐿𝐴𝑗𝑘(⋅) = ⃗⃗𝑉𝐵𝐿𝐴𝑗𝑘1 + ⃗⃗𝑉
𝐵𝐿
𝐴𝑗𝑘2 (𝑟𝑗𝑘) + [0 0 𝑣𝑖𝑗𝑘(⋅)]

𝑇
(9.26)

Given the airspeed, the angle of attack seen by the blade can be obtained from Equation 9.27.
Here, 𝜃𝑗𝑘 is the average twist of the blade section and it is a linear function of the distance from the
centre of rotation (Equation 9.28, where 𝜃𝑡𝑤 is the blade twist rate per radius of the rotor and 𝜃0 is the
blade twist at the blade root). The closer to the root, the higher the twist in order to compensate for
the lower tangential velocity from the propeller rotation. When the tangential velocity decreases, the
velocity along the propeller z-axis has a higher impact on the definition of the angle of attack. In the
case of forward flight, that causes a reduction of the angle of attack at the root.

𝛼𝑗𝑘(⋅) = 𝜃𝑗𝑘(𝑟𝑗𝑘) − arctan
𝑉𝐵𝐿𝐴𝑗𝑘𝑧 (⋅)
𝑉𝐵𝐿𝐴𝑗𝑘𝑥 (⋅)

(9.27) 𝜃𝑗𝑘(𝑟𝑗𝑘) = 𝜃0 − 𝑟𝑗𝑘𝜃𝑡𝑤 (9.28)

Finally, from the blade section lift and drag contributions determined in Equation 9.11 and Equa-
tion 9.12, it is possible to determine the generated thrust (Δ𝑇) and torque (Δ𝑄) by each blade section
with Equation 9.29 and Equation 9.30, respectively2. Here, 𝜙𝑗𝑘 is the blade section flow angle and it is
defined as the difference between the local twist angle 𝜃𝑗𝑘 and the local angle of attack 𝛼𝑗𝑘, as can be
seen in Equation 9.31.

Δ𝑇 = Δ𝐿 cos𝜙 − Δ𝐷 sin𝜙 (9.29) Δ𝑄 = 𝑟Δ𝐿 sin𝜙 + 𝑟Δ𝐷 cos𝜙 (9.30)

𝜙𝑗𝑘(⋅) = 𝜃𝑗𝑘(𝑟𝑗𝑘) − 𝛼𝑗𝑘(⋅) (9.31)

For the present research, Blade Element Theory can be used to compute the forces and moments
of the missing blade sections upon blade damage. Unfortunately, the lift and drag coefficients required
for the computation of the lift (Equation 9.11) and drag (Equation 9.12) forces are unknown for the
Bebop 2 propellers. Section 9.2.2 will show how these coefficients are identified.

9.2.2. Airfoil lift and drag coefficients identification
Unfortunately, for most commercial drones, an aerodynamic model of the propeller’s blade lift and drag
does not exist. Previous literature [257] has taken a Hybrid Blade Element Momentum Theory (BEMT)
approach for the computation of the induced velocity and aerodynamic coefficients. This approach
is based on equating the thrust derived from BET (blade geometry) and the thrust derived from Mo-
mentum Theory (interacting flow characteristics). A two step method is described in which first, the
induced velocity is estimated and then, the aerodynamic coefficients. However, this method has two
main drawbacks. First, it does not explain how the induced velocity is computed without having previ-
ously computed the aerodynamic parameters, since they are required for the computation of the lift and
the drag of each blade section in the computation of the thrust from BET. Second, the described opti-
misation method takes between 2 to 10 hours with only 20 data points. Such long computation times
renders the simulation of blade damage scenarios in which the induced velocity must be computed for
every time step, unfeasible. This section will thoroughly explain an alternative optimisation approach
for identifying the lift and drag coefficient curves with much shorter computation times.

The department of Control & Simulation at Delft University and Technology developed in 2019 a
gray-box aerodynamic model of the Bebop 2 drone through wind tunnel experiments [244]. With this
model it is possible to retrieve the thrust and torque of each propeller giving as input the vehicle body
linear and angular velocities, as well as the propeller rotational velocity and information about the drone
geometry (R, and l and b from Equation 9.14).

Given the same input values, the thrust and torque computed with this gray-box model should be
the same as those obtained from the sum of the blade sections’ moment and forces contributions fol-
lowing Blade Element Theory (BET). Hence, the gray-box model and BET outputs are combined in
2Since every term of these equations is meant for a particular blade section, the subscripts 𝑗𝑘 have been left out here to enhance
readability. For the same reason, the variables each of the terms are a function of have also been removed, since they are all
a function of (𝜓𝑗𝑘 , 𝑟𝑗𝑘).

9.2. Aerodynamics related force and moment changes 167

order to solve a constrained minimisation problem that finds the lift and drag coefficient functions. For
that purpose, the 𝐶𝑙 and 𝐶𝑑 coefficients are modelled as polynomials of m and n degree as a function
of the angle of attack, as can be seen in Equation 9.32 and Equation 9.33, respectively.

𝐶𝑙𝑗𝑘 = 𝑥0 + 𝑥1𝛼𝑗𝑘 + 𝑥2𝛼2𝑗𝑘 +⋯+ 𝑥𝑚𝛼𝑚𝑗𝑘 (9.32) 𝐶𝑑𝑗𝑘 = 𝑦0 + 𝑦1𝛼𝑗𝑘 + 𝑦2𝛼2𝑗𝑘 +⋯+ 𝑦𝑛𝛼𝑛𝑗𝑘 (9.33)

In the case of the BET thrust and torque, they can be computed with Equation 9.34 and Equa-
tion 9.35 using these lift and drag coefficient polynomials. Again, the 𝜁 parameter represents the di-
rection of rotation. If from a top-down view the propeller is rotating clockwise, then 𝜁 will be positive,
otherwise it will be negative.

𝑇 = (
𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘

1
2𝜌𝐶𝑙𝑗𝑘𝑐𝑗𝑘𝑉

2
𝐴𝑗𝑘 cos𝜙𝑗𝑘𝑑𝑟) − (

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘

1
2𝜌𝐶𝑑𝑗𝑘𝑐𝑗𝑘𝑉

2
𝐴𝑗𝑘 sin𝜙𝑗𝑘𝑑𝑟)

= 1
2𝜌𝑑𝑟 [(

𝑚

∑
𝑜
𝑥𝑜

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 cos𝜙𝑗𝑘) − (

𝑛

∑
𝑜
𝑦𝑜

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 sin𝜙𝑗𝑘)]

(9.34)

𝑄 = −𝜁12𝜌𝑑𝑟 [(
𝑚

∑
𝑜
𝑥𝑜

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑟𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 sin𝜙𝑗𝑘) + (

𝑛

∑
𝑜
𝑦𝑜

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑟𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 cos𝜙𝑗𝑘)] (9.35)

With the previous definitions of the thrust and the torque, it is possible to create a system of the
⃗⃗𝐴⃗⃗𝑥 = ⃗⃗𝑏 form. Each pair of rows of the A matrix and the b vector corresponds to the thrust and torque
of a data point from the BET and gray-box aerodynamic models, respectively. A data point refers to a
set of conditions (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔) that are provided as input to both models. Equation 9.36 to Equation 9.42
show the different components of the system with 𝑞 data points. The underscore form (.)𝑥 is referring
to the (.) information of data point 𝑥.

𝑙𝑜1 =
𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 cos𝜙𝑗𝑘 (9.36) 𝑙𝑜2 = −

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 sin𝜙𝑗𝑘 (9.37)

𝑙𝑜3 = −𝜁
𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑟𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 sin𝜙𝑗𝑘 (9.38) 𝑙𝑜4 = −𝜁

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘𝑟𝑗𝑘𝑐𝑗𝑘𝑉2𝐴𝑗𝑘 cos𝜙𝑗𝑘 (9.39)

⃗⃗𝐴 = 1
2𝜌𝑑𝑟

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(𝑙01)1 (𝑙11)1 ⋯ (𝑙𝑚1)1 (𝑙02)1 (𝑙12)1 ⋯ (𝑙𝑛2)1
(𝑙03)1 (𝑙13)1 ⋯ (𝑙𝑚3)1 (𝑙04)1 (𝑙14)1 ⋯ (𝑙𝑛4)1
(𝑙01)2 (𝑙11)2 ⋯ (𝑙𝑚1)2 (𝑙02)2 (𝑙12)2 ⋯ (𝑙𝑛2)2
(𝑙03)2 (𝑙13)2 ⋯ (𝑙𝑚3)2 (𝑙04)2 (𝑙14)2 ⋯ (𝑙𝑛4)2
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

(𝑙01)𝑞 (𝑙11)𝑞 ⋯ (𝑙𝑚1)𝑞 (𝑙02)𝑞 (𝑙12)𝑞 ⋯ (𝑙𝑛2)𝑞
(𝑙03)𝑞 (𝑙13)𝑞 ⋯ (𝑙𝑚3)𝑞 (𝑙04)𝑞 (𝑙14)𝑞 ⋯ (𝑙𝑛4)𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(9.40)

⃗⃗𝑥 = [𝑥0 𝑥1 ⋯ 𝑥𝑚 𝑦0 𝑦1 ⋯ 𝑦𝑛]
𝑇

(9.41)

⃗⃗𝑏 = [(𝑇)1 (𝑄)1 (𝑇)2 (𝑄)2 ⋯ (𝑇)𝑞 (𝑄)𝑞]
𝑇

(9.42)

The gray-box aerodynamic model does not make a distinction between different propeller azimuth
angles. Therefore, the output of the BET model, namely the ⃗⃗𝐴 matrix, has to be averaged over a ro-
tation of the propeller, integrating over the azimuth angle [257]. Equation 9.43 shows how this is done
for 𝑙01 ; the same procedure can be applied to 𝑙02, 𝑙03 and 𝑙04. In practice, instead of integrating, a specific

168 9. Propeller damage

discrete number of rotation angles are chosen, and their contributions to the ⃗⃗𝐴 matrix are computed
and averaged.

𝑙𝑜1 =
1
2𝜋 ∫

2𝜋

𝜓=0

𝑛𝑏
∑
𝑗

𝑛𝑏𝑠
∑
𝑘
𝛼𝑜𝑗𝑘(⋅)𝑐𝑗𝑘(𝑟𝑗𝑘)𝑉2𝐴𝑗𝑘(⋅) cos𝜙𝑗𝑘(⋅) 𝑑𝜓 (9.43)

The shown system of equations could be solved with simple Least Squares methods, such as
Ordinary Least Squares, Weighted Least Squares or Generalized Least Squares. However, the imple-
mentation of these methods does not guarantee that the lift and drag curves with respect to the angle of
attack have their characteristic recognisable shape, namely that the lift curve increases until the critical
angle of attack when it starts stalling and that the drag curve has a parabolic shape with increasing
drag as the angle of attack increases. These methods will try to fit the data points in order to minimize
the error between the gray-box aerodynamic and BET models, even though the generated curves have
no physical sense. For instance, in the present research it has not been considered the aerodynamic
interference between blades, between propellers, and between propellers and the vehicle body. These
assumptions are expected to create some errors. The aforementioned approximation methods will aim
at reducing those nonlinear errors by fitting complex curves which are very different than the lift and
drag coefficient curves that the identification aims to find.

Hence, a constrained optimisation problem is posed in order to include airfoil aerodynamic knowl-
edge in the solver. Given that there is a large difference in scale between the thrust and torque values,
in the order of 102, the Normalised Root Mean Squared Error (NRMSE) is used as objective function
(Equation 9.44 and Equation 9.45), where the standard deviation of the aerodynamic gray-model output
(𝜎𝑏; the standard deviation of the observations) is used as normalisation factor. Instead of computing
the error for the thrust and torque equations together and computing the standard deviation of the
complete ⃗⃗𝑏 vector, their errors and their respective observations’ standard deviations were computed
separately. The figure that the optimisation function aims at minimising is the averaged thrust and
torque NRMSE, as can be seen in Equation 9.46. Hence, the objective function for the computation of
the aerodynamic parameters ⃗⃗𝑥∗ is defined in Equation 9.47.

⃗⃗𝜖 = ⃗⃗𝑏 − ⃗⃗𝐴⃗⃗𝑥 (9.44) NRMSE =
√ ⃗⃗𝜖𝑇⋅⃗⃗𝜖

𝑁
𝜎𝑏

(9.45)

NRMSEtotal =
NRMSE𝑇 + NRMSE𝑄

2 (9.46)
⃗⃗𝑥∗ = argmin

⃗⃗𝑥
NRMSEtotal (9.47)

Furthermore, the following lenient constraints were used to achieve the recognisable shape of the
lift and drag coefficient curves:

1. The maximum lift coefficient can not be higher than 5 within the angle of attack range of -30 to
30 degrees: 𝐶𝑙(𝛼) < 5, ∀𝛼 ∈ [−30∘, 30∘].

2. The lift coefficient curve should have a negative slope within the angle of attack range of 25 to 30
degrees: 𝑑𝐶𝑙(𝛼)/𝑑𝛼 < 0, ∀𝛼 ∈ [25∘, 30∘].

3. The lift coefficient curve should have a positive slope within the angle of attack range of 0 to 7
degrees: 𝑑𝐶𝑙(𝛼)/𝑑𝛼 > 0, ∀𝛼 ∈ [0∘, 7∘].

4. The lift coefficient curve should intersect the angle of attack axis within the angle of attack range
of -10 to 10 degrees: min𝐶𝑙(𝛼) < 0, ∀𝛼 ∈ [−10∘, 10∘].

5. The drag coefficient curve can not be negative within the angle of attack range of -30 to 30
degrees: 𝐶𝑑(𝛼) > 0, ∀𝛼 ∈ [−30∘, 30∘].

For the declaration of these constraints, matrix ⃗⃗𝐶(⃗⃗𝛼) ∈𝑅𝑠×(𝑚𝑛) is created with the range of angles
of attack mentioned in each constraint definition. The matrix has the same number of rows as integer

9.2. Aerodynamics related force and moment changes 169

angles within the constraint range, namely 𝑠 = 𝛼max−𝛼min+1 for 𝛼 ∈ [𝛼min, 𝛼max]; each row corresponds
to an angle of attack. The number of columns equals the length of the parameter vector ⃗⃗𝑥. Its input is
an angle of attack vector which is a function of the 𝛼min and 𝛼max, as can be deduced from its definition
in Equation 9.48 and Equation 9.49.

⃗⃗𝛼(𝛼min, 𝛼max) = [𝛼0 𝛼1 ⋯ 𝛼𝜂]
𝑇

(9.48) 𝛼𝜂 = 𝛼min + 𝜂, 𝜂 = 0,… , 𝑠 − 1 (9.49)

Since a constraint regarding the lift coefficient curve does not require information about the drag
coefficient parameters, the last 𝑛 columns will be full of zeros, as can be seen in Equation 9.50 for
constraints 1 and 4. In the case of the drag constraint (constraint 5), it would be the first 𝑚 columns
that would be full of zeros, as shown in Equation 9.51. Constraints 2 and 3 impose a limit in the gradient
of the curve, so the derivative of ⃗⃗𝐶𝐶𝑙 with respect to the angle of attack is taken in Equation 9.52.

⃗⃗𝐶𝐶𝑙(⃗⃗𝛼) =
⎡
⎢
⎢
⎣

1 𝛼0 𝛼20 ⋯ 𝛼𝑛0
1 𝛼1 𝛼21 ⋯ 𝛼𝑛1
⋮ ⋮ ⋮ ⋯ ⋮
1 𝛼𝑠−1 𝛼2𝑠−1 ⋯ 𝛼𝑛𝑠−1

|| ⃗⃗0𝑠×𝑚
⎤
⎥
⎥
⎦

(9.50)

⃗⃗𝐶𝐶𝑑(⃗⃗𝛼) =
⎡
⎢
⎢
⎣

⃗⃗0𝑠×𝑛 ||
1 𝛼0 𝛼20 ⋯ 𝛼𝑛0
1 𝛼1 𝛼21 ⋯ 𝛼𝑛1
⋮ ⋮ ⋮ ⋯ ⋮
1 𝛼𝑠−1 𝛼2𝑠−1 ⋯ 𝛼𝑛𝑠−1

⎤
⎥
⎥
⎦
(9.51)

𝑑 ⃗⃗𝐶𝐶𝑙(⃗⃗𝛼)
𝑑𝛼 =

⎡
⎢
⎢
⎣

0 1 2𝛼0 ⋯ 𝑚𝛼𝑚−10
0 1 2𝛼1 ⋯ 𝑚𝛼𝑚−11
⋮ ⋮ ⋮ ⋯ ⋮
0 1 2𝛼𝑠−1 ⋯ 𝑚𝛼𝑚−1𝑠−1

|| ⃗⃗0𝑠×𝑚
⎤
⎥
⎥
⎦

(9.52)

The ⃗⃗𝐶 matrix or its derivative is multiplied with the parameter vector ⃗⃗𝑥 and the maximum or minimum
value from the output is taken for the definition of the inequality constraints. As a result, the following
constrained optimisation problem is posed:

min
⃗⃗𝑥

NRMSEtotal

s.t. max (⃗⃗𝐶𝐶𝑙(⃗⃗𝛼)⃗⃗𝑥) − 5 < 0, (𝛼min, 𝛼max) = (−30, 30)

max(
𝑑 ⃗⃗𝐶𝐶𝑙(⃗⃗𝛼)
𝑑𝛼 ⃗⃗𝑥) < 0, (𝛼min, 𝛼max) = (25, 30)

min(
𝑑 ⃗⃗𝐶𝐶𝑙(⃗⃗𝛼)
𝑑𝛼 ⃗⃗𝑥) > 0, (𝛼min, 𝛼max) = (0, 7)

min (⃗⃗𝐶𝐶𝑙(⃗⃗𝛼)⃗⃗𝑥) < 0, (𝛼min, 𝛼max) = (−10, 10)

min (⃗⃗𝐶𝐶𝑑(⃗⃗𝛼)⃗⃗𝑥) > 0, (𝛼min, 𝛼max) = (−30, 30)

(9.53)

Figure B.3 visually illustrates the lift and drag coefficient identification with a flowchart. Now that
the BET model and lift and drag coefficients identification method have been discussed, the next step
will be the identification of the 𝐶𝑙/𝛼 and 𝐶𝑑/𝛼 curves for the Bebop 2 drone in subsection 9.2.3. This
will allow the computation of the changed aerodynamic moments and forces caused by blade damage
using the developed BET model in subsection 9.2.4.

9.2.3. Bebop 2 airfoil lift and drag coefficients identification
The identification method for the lift and drag coefficients presented in subsection 9.2.2 was imple-
mented for the Bebop 2 drone, whose vehicle and propeller geometry is summarised in Table 9.1.
Here, 𝑛𝑏 stands for the number of blades per propeller. Besides that, the geometrical parameters of
the propeller can be visualised in Figure 9.11.

In subsection 9.2.2 it was mentioned that the aerodynamic gray-box and BET models require as
input for each data point a set of conditions (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔) beyond the drone geometry. The range of those
input conditions is explained next:

170 9. Propeller damage

Table 9.1: Geometrical properties of the Bebop 2 drone and propeller.

Drone geometry Propeller geometry
b l 𝑐𝑟 𝑐𝑐 𝑐𝑡 ℎ1 & ℎ2 R 𝑛𝑏 𝜃0 𝜃𝑡𝑤

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (-) (∘) (∘/mm)
115 87.5 13 20 8 32 75 3 27 0.29

0 20 40 60 80 100
Blade section number [-]

0

4

8

12

16

20

24

c
[m

m
]

0

5

10

15

20

25

30

θ
[d

eg
]

Chord
Twist
cr
ct

Figure 9.11: Blade sections’ chord and twist values from the root (left) to the tip (right).

1. Appendix C discusses different drone linear velocity (⃗⃗𝑉𝐵) input generation schemes and argu-
ments the choice outlined next. The drone linear velocity is constrained in the x-z plane (𝑉𝐵𝑦 =0).
Its value in the z-direction (𝑉𝐵𝑧) is sampled from a uniform distribution over the closed interval [-2,
-0.5] m/s for every data point, avoiding positive velocities in the z-axis that could cause nonlinear
behaviour that was not accounted for by the aerodynamic gray-box model. An example would
be Vortex Ring State (VRS), which is the aerodynamic condition that causes a severe loss of lift
when the vehicle descends vertically over its own wake.

Furthermore, the value of the drone linear velocity in the x-direction (𝑉𝐵𝑥) is also sampled from a
uniform distribution, in this case over the closed interval [-3, 3] m/s for every data point. As a result,
for the identification of the lift and drag curves only scenarios in which the drone is ascending,
flying forward or backwards are considered.

2. The angular velocity of the drone is always zero (⃗⃗Ω⃗ = ⃗⃗0).
3. The rotation velocity of the propeller (𝜔) is sampled from a uniform distribution over the closed

interval [300, 1256] rad/s for every data point.

Furthermore, the drag and lift curves were approximated with second degree polynomials (𝑚 and
𝑛) and the integral with respect to the azimuth angle presented in Equation 9.43 was approximated
with 10 discrete equally spaced azimuth angles starting at 0∘, namely [0∘, 36∘, 72∘, ..., 288∘, 324∘].
The constrained optimisation method is posed using Python’s Scipy package with the trust-region in-
terior point method (”trust-constr”) [258] solver. Additionally, the number of blade sections (𝑛𝑏𝑠) and
the number of data points used for the identification (𝑞) were determined from the hyper-parameter (𝑞-
𝑛𝑏𝑠) selection presented in Appendix D, study which lead to 100 blade sections and 16,000 data points.

Using the aforementioned chosen hyper-parameters, the data gathering and optimisation took 10,707
seconds (2 hours and 58 minutes) in a consumer laptop with an Intel Core i7-9750H CPU running
Python 3.7, including 41 solver iterations. It was possible to identify the coefficients of the polynomials
that define the lift and drag curves with respect to the angle of attack, which are shown in Equation 9.54
and Equation 9.55. Figure 9.12 and Figure 9.13 show the value of the lift and drag coefficients as a
function of the angle of attack.

𝐶𝑙 = 0.24 + 5.15𝛼 − 12.25𝛼2 (9.54) 𝐶𝑑 = 0.0092 − 0.79𝛼 + 15.13𝛼2 (9.55)

As can be observed from the lift and drag coefficient plots, only 1 of the constraints of the minimi-
sation problem outlined at the end of subsection 9.2.2 is limiting in the solution, namely that the drag

9.2. Aerodynamics related force and moment changes 171

−10 −5 0 5 10 15 20 25 30
α [deg]

−1.0

−0.5

0.0

0.5

C l
 [-

]

Figure 9.12: Identified airfoil lift coefficient curve with respect
to the angle of attack from the aerodynamic gray-box model
[28] data. Illustration of Eq. (9.54).

−10 −5 0 5 10 15 20 25 30
α [deg]

0

1

2

3

C d
 [-

]

Figure 9.13: Identified airfoil drag coefficient curve with re-
spect to the angle of attack from the aerodynamic gray-box
model [28] data. Illustration of Eq. (9.55).

coefficient cannot be negative (the 5th constraint). The first constraint limited the lift coefficient to a
value lower than 5 [-], which in this case is not larger than 0.8 [-]. The second and third constraints
required the lift coefficient slope to be positive between 0∘ and 7∘, whereas it should be negative when
higher than 25∘. It can be seen that the lift coefficient curve attains its maximum at around 13∘, away
from the aforementioned angle of attack ranges. The fourth constraint required the lift coefficient curve
to cross the x-axis between -10∘ and 10∘, and it crossed it at around -3∘.

To validate the identified aerodynamic model it is verified whether the model residuals approximate
zero mean white noise. This is done for the residuals from those data points used for the identification
of the model, as well as for an additional validation dataset made of (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔) input combinations not
seen yet by the model. This validation dataset has 4,000 data points, which is 25% the size of the
training dataset. Figure 9.14 and Figure 9.15 show the residuals of the identification dataset, whereas
Figure 9.16 and Figure 9.17 of the validation dataset for the thrust and torque, respectively. Table 9.2
shows the mean of the curves, as well as their percentage relative to the average value of the thrust
or torque. As can be observed, their values are low (below 1%), which indicates that the error of both,
identification and validation datasets could be considered to be zero mean. Besides that, the thrust
error is approximately three times lower than the torque error for the NRMSE metrics, which means
that the fitted 𝐶𝑙 and 𝐶𝑑 curves approximate the thrust data better than the torque.

0 2000 4000 6000 8000 10000 12000 14000 16000
Data point [-]

−0.2

−0.1

0.0

0.1

0.2

ε τ
 [N

]

Mean = -2.89⋅10−3 [N]

Figure 9.14: Identification data thrust error with a NRMSE𝜏 =
8.43 ⋅ 10−2 [-].

0 2000 4000 6000 8000 10000 12000 14000 16000
Data point [-]

−0.010

−0.005

0.000

0.005

ε Q
 [N

m
]

Mean = -1.40⋅10−4 [Nm]

Figure 9.15: Identification data torque error with a NRMSE𝜏 =
0.26 [-].

Table 9.2: Error metrics results for the thrust and torque identification and validation datasets.

m
m

Identification
thrust

Identification
torque

Validation
thrust

Validation
torque

Mean value -2.89⋅10−3 [N] -1.40⋅10−4 [Nm] -1.56⋅10−3 [N] -1.22⋅10−4 [Nm]
Mean percentage -0.23 [%] -0.97 [%] -0.13 [%] -0.86 [%]

NRMSE 8.43⋅10−2 [-] 0.26 [-] 8.30⋅10−2 [-] 0.25 [-]

172 9. Propeller damage

0 500 1000 1500 2000 2500 3000 3500 4000
Data point [-]

−0.2

−0.1

0.0

0.1

0.2

ε τ
 [N

]

Mean = -1.56⋅10−3 [N]

Figure 9.16: Validation data thrust error with a NRMSE𝜏 =
8.30 ⋅ 10−2 [-].

0 500 1000 1500 2000 2500 3000 3500 4000
Data point [-]

−0.010

−0.005

0.000

0.005

ε Q
 [N

m
]

Mean = -1.22⋅10−4 [Nm]

Figure 9.17: Validation data torque error with a NRMSE𝜏 =
0.25 [-].

Next, it is assessed whether the residual is uncorrelated. For that purpose, Figure 9.18 and Fig-
ure 9.19, as well as Figure 9.20 and Figure 9.21, show the normalised autocorrelation curves for the
residuals with their 95% confidence bounds for the identification and the validation datasets, respec-
tively. Almost all of the autocorrelations fall within the 95% confidence limits and there is no apparent
pattern. A few lags fall slightly outside the bounds, but it is not enough to indicate non-randomness.
Hence, the residuals can be considered to be white and uncorrelated.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

 ε
τ

au
to

co
rre

la
tio

n
[-]

95% confidence bounds

Figure 9.18: Identification thrust error normalised autocorre-
lation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
is

ed
 ε
Q

 a
ut

oc
or

re
la

tio
n

[-]
95% confidence bounds

Figure 9.19: Identification torque error normalised autocorre-
lation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

 ε
τ

au
to

co
rre

la
tio

n
[-]

95% confidence bounds

Figure 9.20: Validation thrust error normalised autocorrela-
tion with 95% confidence bounds.

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
Number of lags [-]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

 ε
Q

 a
ut

oc
or

re
la

tio
n

[-]

95% confidence bounds

Figure 9.21: Validation torque error normalised autocorrela-
tion with 95% confidence bounds.

With the identified lift and drag coefficient curves, the next step is the computation of the forces and
moments caused due to the aerodynamic effects upon blade damage, which will be carried out in the
next section.

9.2.4. Aerodynamic forces and moments computation
Once the percentage of blade damage to be simulated is known, the corresponding ”lost” blade sec-
tions are identified. For instance, if a 30% blade damage is considered in a blade composed of 100
sections, the 30 sections closest to the blade tip are the ones lost. Then, their forces and moments are
added to later be subtracted from those of the nominal operating conditions obtained from the healthy
blade model output. With the detailed BET explanation from subsection 9.2.1, the discussion of the

9.3. Results, assumptions and recommendations 173

computation of the aerodynamic forces and moments boils down to referencing to the right equations
within the aforementioned section.

Equation 9.29 can be used for the computation of the thrust of a single blade section. The added
thrust value of all the lost blade sections leads to 𝐹𝑃𝑎1𝑧 , as given by Equation 9.56. 𝜉𝑗𝑘 is a boolean
which has a value of 1 when the blade section is damaged and 0 when it is in its nominal state. Then,
the moments about the propeller x- and y-axes are computed by decomposing the moment generated
by the blade section thrust around the centre of rotation with Equation 9.57 and Equation 9.58.

𝐹𝑃𝑎1𝑧 =
𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

𝜉𝑗𝑘Δ𝑇𝑗𝑘 (9.56)

𝑀𝑃
𝑎2𝑥 =

𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

−𝜉𝑗𝑘Δ𝑇𝑗𝑘𝑟𝑗𝑘 sin 𝜆𝑗 (9.57) 𝑀𝑃
𝑎2𝑦 =

𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

𝜉𝑗𝑘Δ𝑇𝑗𝑘𝑟𝑗𝑘 cos 𝜆𝑗 (9.58)

Furthermore, Equation 9.30 can be used for the computation of the torque of each blade section and
their integral leads to the moment about the z-axis, as shown in Equation 9.59. The blade section force
in the rotor plane can be obtained by dividing the torque by the magnitude of the moment arm. Then,
this force is decomposed in the x- and y-directions, as shown in Equation 9.60 and Equation 9.61, in
order to obtain the last aerodynamic forces.

𝑀𝑃
𝑎1𝑧 =

𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

𝜉𝑗𝑘Δ𝑄𝑗𝑘 (9.59)

𝐹𝑃𝑎2𝑥 =
𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

𝜉𝑗𝑘
Δ𝑄𝑗𝑘
𝑟𝑗𝑘

cos (𝜆𝑗 − 𝜁
𝜋
2) (9.60) 𝐹𝑃𝑎2𝑦 =

𝑛𝑏
∑
𝑗=1

𝑛𝑏𝑠
∑
𝑘=1

𝜉𝑗𝑘
Δ𝑄𝑗𝑘
𝑟𝑗𝑘

sin (𝜆𝑗 − 𝜁
𝜋
2) (9.61)

A flowchart visually illustrating the computation of these forces and moments can be seen in Fig-
ure B.4. Their effects in a simulated 0.25 [s] failure scenario, as well as when combined with the mass
change effects, will be shown in the next section.

9.3. Results, assumptions and recommendations
With the outlined methodology in section 9.1 and section 9.2 now it is possible to combine the mass and
aerodynamic related effects in order to compute the forces and moments that need to be added to the
nominal physics model in order to account for the blade damage. Hence, subsection 9.3.1 discusses
how the theory presented is translated to a damaged propeller simulation. Additionally, subsection 9.3.2
demonstrates the importance of including the linear induced velocity in the computations given the
drastic modifications it brings to the angle of attack and the wrench results. Finally, subsection 9.3.3
discusses some assumptions that were taken in this chapter, as well as some recommendations for
further work in the simulation of blade damage.

9.3.1. Bebop 2 mass and aerodynamic forces and moments
To observe the magnitude of the forces and moments caused by the change in mass, the front left
Bebop 2 propeller is simulated as damaged with a loss of 20% of its length. It is rotating at 600 rad/s
counterclockwise from a top-down view (𝜁=-1) for 0.25 seconds. The attitude of the drone is such
that the z-axis of the propeller and inertial coordinate frame coincide. Additionally, the drone is mov-
ing with a body linear velocity ⃗⃗𝑉𝐵 = [3 0 −1]𝑇 [m/s] and body angular velocity ⃗⃗Ω⃗ = ⃗⃗0 rad/s. The
Bebop 2 propeller has a total mass of 5.07 [g] and a mass per blade (without the central hub) of 1.11 [g].

174 9. Propeller damage

Figure 9.22 and Figure 9.23 show the forces and moments caused by the change of mass for the
aforementioned scenario, respectively. As can be observed, the forces and moments in the x- and y-
directions have a oscillatory behaviour due to the propeller rotations. Additionally, since the drone pro-
peller´s z-axis direction is aligned with its counterpart in the inertial frame, the gravity force coincides
with the z-axis in the propeller coordinate frame, leading to a constant force in the z-direction and a
zero moment about the z-axis.

−2.5
0.0
2.5

FP m
x [

N
]

−2.5
0.0
2.5

FP m
y [

N
]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−1.55
−1.50
−1.45

FP m
z [

N
]

1e−3

Figure 9.22: BET-simulated evolution of forces caused due
to mass change upon 20% Bebop 2 blade damage for 0.25 s
rotating at 𝜔0 = 600 rad/s.

−1

0

1

M
P m

x [
N

m
] 1e−4

−1

0

1

M
P m

y [
N

m
] 1e−4

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5

0

5

M
P m

z [
N

m
] 1e−2

Figure 9.23: BET-simulated evolution of moments caused
due to mass change upon 20% Bebop 2 blade damage for
0.25 s rotating at 𝜔0 = 600 rad/s.

Next, the aerodynamic forces and moments are also analysed for the same 0.25 s Bebop 2 pro-
peller scenario, leading to the results illustrated in Figure 9.24 and Figure 9.25. As can be observed,
the forces and moments around the y-axis are centred around the 0 datum, whereas the wrenches
in the x- and z-direction are biased. The wrench in the x-direction is negatively biased because the
lift and drag forces are the highest when the damaged blade is advancing and not retreating. Since
the propeller is rotating counterclockwise, the thrust produced when the blade is advancing creates
a negative moment around the x-axis and the force creating the torque points towards the negative
x-direction. The oscillatory motion in the z-direction is is also due to the incoming air velocity from the
vehicle linear and angular velocities, which causes the damaged blade incoming flow to be different
when it is advancing than when it is retreating. In the case that the drone would be hovering, then the
aerodynamic wrench in this direction would be constant and will have a value approximately equal to
the observed bias, as can be seen in Figure 9.26 and Figure 9.27.

−5
0
5

FP a x
 [N

]

1e−3

−5
0
5

FP a y
 [N

]

1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−6

−4

FP a z
 [N

]

1e−2

Figure 9.24: BET-simulated evolution of aerodynamic forces
generated by lost blade sections upon 20% Bebop 2 blade
damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

−2.5
0.0
2.5

M
P a x

 [N
m

] 1e−3

−2.5
0.0
2.5

M
P a y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

3.5
4.0
4.5

M
P a z

 [N
m

] 1e−4

Figure 9.25: BET-simulated evolution of aerodynamic mo-
ments generated by lost blade sections upon 20% Bebop 2
blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

Furthermore, Figure 9.28 and Figure 9.29 show the mass and aerodynamic caused forces and mo-
ments super-imposed. The mass change effects are predominant in the x- and y-components of the
force, whereas the aerodynamic effects are predominant in the force z-direction and in all moment di-
rections.

Finally, the mass and aerodynamic effects around the propeller’s centre of rotation are combined as
shown by Equation 9.62 and Equation 9.63; quantities that will be used in the validation phase in the
wind tunnel, as presented in section 9.4. Combining both effects for the discussed 0.25 s simulation

9.3. Results, assumptions and recommendations 175

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5.4

−5.2

−5.0
FP a z

 [N
]

1e−2

Figure 9.26: BET-simulated evolution of aerodynamic force in
the z-direction during hover upon 20% Bebop 2 blade dam-
age for 0.25 s rotating at 𝜔0 = 600 rad/s.

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

3.6

3.8

M
P a z

 [N
m

]

1e−4

Figure 9.27: BET-simulated evolution of aerodynamic mo-
ment in the z-direction during hover upon 20% Bebop 2 blade
damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

−2.5
0.0
2.5

FP . x
 [N

]

−2.5
0.0
2.5

FP . y
 [N

]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−5

0

FP . z
 [N

]

1e−2
Mass effects
Aerodynamic effects

Figure 9.28: BET-simulated evolution of mass and aerody-
namic forces generated by lost blade sections upon 20% Be-
bop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

−2.5
0.0
2.5

M
P . x

 [N
m

] 1e−3

−2.5
0.0
2.5

M
P . y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.0

2.5

M
P . z

 [N
m

] 1e−4
Mass effects
Aerodynamic effects

Figure 9.29: BET-simulated evolution of mass and aerody-
namic moments generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

leads to Figure 9.30 and Figure 9.31. Previous literature is correct in focusing on the mass related
centrifugal forces, since they are one to three order of magnitude greater than the rest. However, they
ignore the effects outside the x-y plane in the propeller coordinate frame, especially the force in the
z-direction which would create additional moments around the drone’s CG. Although subtle, the oscil-
lations in the moment signals could help in the identification of the blade damage, namely the detection
of the affected propeller and the failure magnitude.

Δ⃗⃗𝐹𝑃 = ⃗⃗𝐹𝑃𝑚1 + ⃗⃗𝐹𝑃𝑚2 − ⃗⃗𝐹𝑃𝑎1 − ⃗⃗𝐹𝑃𝑎2 (9.62) Δ⃗⃗⃗⃗𝑀𝑃 = ⃗⃗⃗⃗𝑀𝑃
𝑚 − ⃗⃗⃗⃗𝑀𝑃

𝑎1 − ⃗⃗⃗⃗𝑀𝑃
𝑎2 (9.63)

−2.5
0.0
2.5

ΔF
P x
 [N

]

−2.5
0.0
2.5

ΔF
P y
 [N

]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

4

6

ΔF
P z
 [N

] 1e−2

Figure 9.30: BET-simulated evolution of forces upon 20%Be-
bop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

−2.5
0.0
2.5

ΔM
P x
 [N

m
] 1e−3

−2.5
0.0
2.5

ΔM
P y
 [N

m
] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−4.5
−4.0
−3.5

ΔM
P z
 [N

m
] 1e−4

Figure 9.31: BET-simulated evolution of moments upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s.

Even though there is a different order of magnitude among the forces and the moments, all the
signals are oscillatory. Figure 9.32 and Figure 9.33 show the upper and lower limit of these wrench
oscillations for different degrees of blade damage, namely from 0% (intact blade) to 100% (complete
blade loss). All forces and moments have their upper and lower limits symmetric with respect to the
0 datum, except the force and moment in the z-direction. Δ𝐹𝑃𝑧 moves in the positive direction with
increasing blade damage — the higher the blade damage, the larger the thrust loss (positive thrust
points down in the propeller coordinate system). Δ𝑀𝑃

𝑧 moves in the negative direction with increasing
blade damage — with a negative rotating propeller, the aerodynamic moments are positive before be-
ing subtracted for obtaining the total value.

176 9. Propeller damage

−1
0
1

ΔF
P x
 [N

] 1e1

−1
0
1

ΔF
P y
 [N

] 1e1

0 20 40 60 80 100
BD [%]

0.0

2.5

ΔF
P z
 [N

] 1e−1
Upper limit
Lower limit

Figure 9.32: Upper and lower limits of the forces’ oscillations
for different degrees of BET-simulated blade damage.

0
1

ΔM
P x
 [N

m
] 1e−2

−1
0
1

ΔM
P y
 [N

m
] 1e−2

0 20 40 60 80 100
BD [%]

−2.5

0.0

ΔM
P z
 [N

m
] 1e−3

Upper limit
Lower limit

Figure 9.33: Upper and lower limits of the moments’ oscilla-
tions for different degrees of BET-simulated blade damage.

The higher the blade damage, the higher the oscillations. However, depending on whether the
dominating effect is mass or aerodynamic, the behaviour of those limits is different. The gradient of the
upper and lower limits of Δ𝐹𝑃𝑥 can be observed in Figure 9.34; the gradient first increases and around
50% starts decaying. This is caused by the modelled double trapezoid Bebop 2 blade shape which can
be observed in Figure 9.1 and whose geometrical parameters have been listed in Table 9.1. As the
blade is progressively damaged from the tip (0% damage) to the location of the central chord (50% dam-
age) the removed blade sections are progressively growing in size, causing constantly greater shifts of
the centre of gravity and, hence, greater increments in the centrifugal force. When the damage reaches
the maximum chord, the removed blade sections start to decrease in size, leading to smaller centre of
gravity shifts and more slowly growing centrifugal forces.

20 40 60 80 100
BD [%]

−2

−1

0

1

2

d
d
BD
ΔF

P x
 [N

/%
]

1e−1

Upper limit
Lower limit

Figure 9.34: Gradient of the upper and lower limits of the
Δ𝐹𝑃𝑥 oscillations with respect to different degrees of BET-
simulated blade damage.

20 40 60 80 100
BD [%]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

d
d
BD
ΔM

P x
 [N

m
/%

]

1e−3
Upper limit
Lower limit
S=const
vi=0
S=const & vi=0

Figure 9.35: Gradient of the upper and lower limits of the
Δ𝑀𝑃𝑥 oscillations with respect to different degrees of BET-
simulated blade damage. The non solid lines represent sce-
narios in which the blade section area is constant and/or there
is no induced velocity.

Figure 9.35 shows the gradients of the upper and lower oscillation limits of Δ𝑀𝑃
𝑥 , an aerodynamic

dominated wrench component. With a blade divided in 100 blade sections, these gradients approxi-
mately correspond to the contribution of each blade section to the moment. For example, the gradient
at 20% blade damage corresponds to the contribution by the 19th blade section. As can be observed,
the moment gradient increases in magnitude until approximately 30%. This initial increment is caused
by the combined effect of the increasing blade section area when traversing the blade from the tip
towards the central maximum chord and the induced velocity, which ultimately affects the angle of at-
tack. When the blade section area is constant and the induced velocity is removed, the oscillations are
only decaying in amplitude. However, when at least one of these two factors is still active, there is an
increment in the gradient, as it can be seen in Figure 9.35.

When the 30% blade damaged is reached, the reducing distance from the blade section to the
centre of rotation (𝑟𝑗𝑘) becomes the most influential factor in the further decay of the gradient. Δ𝑀𝑃

𝑥 is
proportional to 𝑟3𝑗𝑘 when considering that at high propeller rotational rates the airspeed is dominated
by 𝑉𝐴𝑗𝑘2 (Equation 9.16), which is a function of 𝑟𝑗𝑘, and the airspeed is squared in the computation of

9.3. Results, assumptions and recommendations 177

Δ𝐿𝑘 and Δ𝐷𝑘 (Equation 9.11 and Equation 9.12). The lift and drag components are then used for the
computation of the Δ𝑇𝑗𝑘, which is multiplied by the 𝑟𝑗𝑘 again to obtain the moment.

9.3.2. Importance of induced velocity
The importance of including the induced velocity in the aerodynamic calculations outlined in subsec-
tion 9.2.1 becomes clear when comparing Figure 9.24 and Figure 9.25 with Figure 9.36 and Figure 9.37.
When the linear induced velocity model is included, the amplitude of the oscillations and the datum
around which they oscillate are decreased in magnitude. This is attributed to the reduction in the angle
of attack created by the introduction of 𝑣𝑖, a consequence which can be observed in Figure 9.38 and
Figure 9.39. These figures show box plots of the angles of attack seen by each of the blade section
from the blade root to the tip in the optimisation with 16,000 data points discussed in subsection 9.2.3
with and without the linear induced velocity model, respectively.

−1
0
1

FP a x
 [N

]

1e−2

−1
0
1

FP a y
 [N

]

1e−2

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

−1.0

−0.5

FP a z
 [N

]

1e−1
Linear vi
vi=0

Figure 9.36: BET-simulated evolution of aerodynamic forces
generated by lost blade sections upon 20% Bebop 2 blade
damage for 0.25 s rotating at𝜔0 = 600 rad/s with and without
linear inflow model.

−5
0
5

M
P a x

 [N
m

] 1e−3

−5
0
5

M
P a y

 [N
m

] 1e−3

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.5

1.0

M
P a z

 [N
m

] 1e−3
Linear vi
vi=0

Figure 9.37: BET-simulated evolution of aerodynamic mo-
ments generated by lost blade sections upon 20% Bebop 2
blade damage for 0.25 s rotating at 𝜔0 = 600 rad/s with and
without linear inflow model.

10 20 30 40 50 60 70 80 90 100
Blade section number [-]

0

5

10

15

20

25

α
[d

eg
]

Figure 9.38: Box plot with the angles of attack seen by each
BET-simulated blade section during 16,000 data point optimi-
sation without induced velocity model. The inputs that shape
each data point are taken from uniform distributions with the
following value ranges: ⃗⃗𝑉𝐵𝑥 =[-3,3] m/s, ⃗⃗𝑉𝐵𝑦 =0 m/s, ⃗⃗𝑉𝐵𝑧 =[-
2.5,-0.5] m/s, ⃗⃗Ω⃗ = ⃗⃗⃗0 rad/s, 𝜔 =[300,1256] rad/s.

10 20 30 40 50 60 70 80 90 100
Blade section number [-]

−15

−10

−5

0

5

10

α
[d

eg
]

Figure 9.39: Box plot with the angles of attack seen by each
BET-simulated blade section during 16,000 data point optimi-
sation with linear inflow velocity model. The inputs that shape
each data point are taken from uniform distributions with the
following value ranges: ⃗⃗𝑉𝐵𝑥 =[-3,3] m/s, ⃗⃗𝑉𝐵𝑦 =0 m/s, ⃗⃗𝑉𝐵𝑧 =[-
2.5,-0.5] m/s, ⃗⃗Ω⃗ = ⃗⃗⃗0 rad/s, 𝜔 =[300,1256] rad/s.

From the angle of attack box plots (Figure 9.38 and Figure 9.39), the following additional observa-
tions can be made:

1. Apart from the general reduction in the angle of attack, the line that could be drawn from the blade
sections’ angle of attack medians becomes linear at a higher angle of attack when the induced
velocity model is introduced. In contrast, when 𝑣𝑖 = 0 the median line is linear for the largest
part of the plot. Even though the 𝑣𝑖 model is linear, it is important to remind the reader that this
property applies in the x and y directions in the propeller reference frame, as can be observed in
Figure 9.10, not along the blade radial direction.

2. Even though the twist of the blade goes from 25∘ to 5∘ from the root to the tip, the line of medians
of Figure 9.38 has a lower value than the twist — especially close to the root — because the

178 9. Propeller damage

distribution of the linear body velocity in the z-direction is biased towards negative values (the
drone is flying upwards). In subsection 9.2.3 it was established that 𝑉𝐵𝑧 has a value in the closed
interval [-2,-0.5] m/s.

3. For both scenarios, the range of angles of attack is larger at the root due to the higher sensitivity to
the vehicle’s velocity; the blade section tangential velocity due to the propeller’s rotation is lower
at the root than at the tip.

The value of the induced velocity and its effect on the angle of attack can also be visualised in the
propeller plane, as illustrated in Figure 9.40 and Figure 9.41 for the Bebop 2 propeller located on the
front left of the vehicle. The propeller is moving towards the left with 3 m/s, out of the plane with 1 m/s
and it is rotating counter-clockwise. The empty internal concentric circle represents the propeller hub,
which is not an aerodynamic surface, resulting in an annulus heat map. Figure 9.41 reflects the same
behaviour as in Figure 9.39 but in 2D, namely that the angle of attack rapidly increases close to the
root until about 35% of the blade before it starts decaying more slowly towards the tip. The low angle
of attack values close to the root in the direction of 𝜓 =270∘ correspond to the retreating blade sec-
tions whose airspeed caused by the propeller rotation (⃗⃗𝑉𝐵𝐿𝐴𝑗𝑘2) acts in opposite direction to the airspeed
caused by the linear and angular displacement of the vehicle (⃗⃗𝑉𝐵𝐿𝐴𝑗𝑘1). When the rotational speed is low-
ered to 300 rad/s, the stalled retreating blade sections becomemore apparent, as shown in Figure 9.42.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

7.50

7.55

7.60

7.65

7.70

v i
 [m

/s
]

Figure 9.40: Heat map of the linear induced model velocity
for the BET-simulated front left Bebop 2 propeller rotating at
1256 rad/s, moving to the left with 3 m/s, out of the plane with
1 m/s and it is rotating counter-clockwise.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−0.1

0.0

0.1

α
[ra

d]

Figure 9.41: Heat map of the angle of attack for the BET-
simulated front left Bebop 2 propeller rotating at 1256 rad/s,
including linear inflowmodel, moving to the left with 3 m/s, out
of the plane with 1 m/s and it is rotating counter-clockwise.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−0.1

0.0

0.1

α
[ra

d]

Figure 9.42: Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating at 300 rad/s, including
linear inflow model, moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise.

Finally, Figure 9.43 and Figure 9.44 show the same induced velocity and angle of attack plots when
a uniform induced flow is considered. As can be observed, the variations in both variables brought
by the uniform model corrections are very small, practically unnoticeable in the angle of attack when
comparing the results with Figure 9.41. While the uniform inflow model creates an induced velocity of
7.6 m/s across the complete blade, the linear inflow model creates an induced velocity that varies from
7.48 to 7.72 m/s. Even though literature has proven empirically that the linear inflow model is more
accurate than the uniform counterpart [29], the difference can be considered negligible for propellers of

9.3. Results, assumptions and recommendations 179

small radius, as it is the case for most commercial drones such as the Bebop 2; a dependency on the
blade radius which can be deduced from Equation 9.21. The effect of the linear model can be observed
in the main rotor system of helicopters which have blade lengths higher than 1.5 metres.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

7.0

7.5

8.0

v i
 [m

/s
]

Figure 9.43: Heat map of the uniform induced model velocity
for the BET-simulated front left Bebop 2 propeller rotating at
1256 rad/s, moving to the left with 3 m/s, out of the plane with
1 m/s and it is rotating counter-clockwise.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘

−0.1

0.0

0.1

α
[ra

d]

Figure 9.44: Heat map of the angle of attack for the BET-
simulated front left Bebop 2 propeller rotating at 1256 rad/s,
including uniform inflow model, moving to the left with 3 m/s,
out of the plane with 1m/s and it is rotating counter-clockwise.

Hence, the additional computations required for the uniform model corrections could be ignored in
the Unreal Engine 4 data collection simulation. However, it is essential to include the uniform induced
model, as it has been shown that it can modify the vertical airspeed seen by the blade sections from 1
to 8.6 m/s at full propeller rotational speed (1256 rad/s) for the Bebop 2 example scenario (Figure 9.43).
This effect can be visualised when comparing the angle of attack heat map when there is a uniform
induced velocity, as it is the case in Figure 9.44, to the scenario when 𝑣𝑖=0 shown in Figure 9.45. The
latter figure is a 2D representation of Figure 9.38. The importance of the uniform inflow model is espe-
cially noticeable at the retreating blade sections close to the root.

→
VP
xy ψ=180 ∘ 0 ∘

90 ∘

270 ∘
−0.2

0.0

0.2

0.4

α
[ra

d]

Figure 9.45: Heat map of the angle of attack for the BET-simulated front left Bebop 2 propeller rotating at 1256 rad/s, moving to
the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise.

9.3.3. Assumptions and recommendations
For the development of the blade damage forces and moments model, as well as the lift and drag
coefficient curves identification, the following assumptions were made:

1. The mass along the blade is homogeneous, meaning that the centre of gravity is at the centroid.

2. The Bebop 2 blades are simplified as two trapezoids connected by the long parallel side.

3. The twist decreases linearly from the root to the tip.

4. The airfoil is constant throughout the blade.

5. The cross flow along the span of the blade is ignored.

6. Aeroelasticity effects are ignored.

180 9. Propeller damage

7. The blade root and tip lift losses are ignored.

8. The induced velocity is computed with the simplified linear induced inflow. It is assumed to be a
good approximation of the real induced velocity as demonstrated empirically in previous literature.

9. The nonlinear aerodynamic effects between (damaged) blades are not considered.

10. The nonlinear aerodynamic effects between propellers are not considered.

11. The nonlinear aerodynamic effects between the propellers and the body frame are not considered.

12. The data used for the identification of the lift and drag coefficient curves is obtained from the
aerodynamic gray-box model that provides the propeller thrust. Hence, the present work adopts
the assumptions taken for the development of this model.

13. The blade is cut parallel to the edge of the propeller, perpendicular to its span, such that the
remaining polygon is still a trapezoid. Hence, slanted or irregular cuts are not considered.

Further work in the simulation of propeller damage could be oriented towards the refinement of the
model developed in this chapter in order to remove one or multiple of the aforementioned assump-
tions; contributing to its generalisation and application to different propeller types. For instance, the
geometrical assumptions 1-4 could be eliminated by creating a 3D model (digital twin) of the propeller
using scanning technologies that probe the propeller through physical touch (with contact), such as
Coordinate Measuring Machines (CMM) [259], or scanning technologies that exploit acoustic, optical
or magnetic approaches (without contact), such as laser scanning, structured light or photogrammetry
[260, 261] (e.g. structure from motion). If translated to a CAD model, this would allow the computation
of the twist, chord and volume of each blade section, the latter being used for the computation of the
centre of gravity when the density of the material is known. Additionally, such model would contribute to
the potential discovery of multiple airfoils present in the blade. If that would be the case, the parameter
vector of Equation 9.41 would be expanded with the polynomial coefficients used to identify the lift and
drag coefficient curves of those additional airfoils.

Assumptions 5-11 are related to the degree of aerodynamic complexity introduced in the model.
In particular, assumption 6 points out that aeroelastic effects have been ignored. Most literature in
this regard is oriented towards the modelling of helicopter aeroelastic and blade flapping behaviour
[262]. Unfortunately, this knowledge is not directly applicable to drones given that helicopters have a
flapping hinge, which allows the blade to be displaced up and down to compensate for the rotor lift
dissymmetry [29]. Instead, commercial drone rotors lack an articulated head, causing their material to
bend and the rotor to tilt with the possibility of flapping [263]. As an alternative, the field of wind energy
could be explored since Blade Element Momentum Theory approaches have been used as the aero-
dynamic component of wind turbine aeroelastic models [264]. However, given the circular dependency
between the blade deformations (aeroelastic effects), the induced velocity, and the generated moments
and forces, the authors consider such implementation to be challenging for real-time simulations.

Assumption 7 mentions that the blade root and tip losses were ignored. At those blade locations,
the circulation must be equal to zero and at the tip there is an additional reduction of lift due to the ap-
pearance of tip vortices — airflow around the tip due to the pressure difference between the pressure
side (high pressure) and the suction side (low pressure). In the field of wind energy [265], these effects
are taken into account by multiplying the induced velocity with a correction factor that is a function of
the distance to the centre of rotation (r). This factor would acquire a value of 1 in the centre of the blade
and a value of 0 at the edges, allowing the induced velocity to fall to zero at the blade edges. Alter-
natively, previous literature [29, 265, 266] has also proposed the Prandtl tip-loss factor approximation
(B=0.95-0.98) to compute the effective blade radius (R𝑒 = BR) and account for the loss of blade lift.
As a result, the outer portion of the blade (R-R𝑒) is considered to be incapable of carrying lift. Given
that in helicopter aerodynamics the introduction of the tip loss factor can cause rotor thrust reductions
between 6-10% [29], the study of its implementation in drone propellers is recommended for the further
improvement of the BET thrust and torque predictions.

9.3. Results, assumptions and recommendations 181

Regarding the induced velocity model used (assumption 8), a comprehensive benchmark study of
the different induced inflow models applied to drone propellers is missing in the current literature and
it could be considered a line of further work. It is recommended that future studies investigate the suit-
ability and accuracy of the inflow models of Mangler and Squire [267, 268] and Ormiston [269, 270].
The former associates the pressure field across the rotor disk to the inflow with the incompressible, lin-
earised Euler equations. This method originally requires to solve for the rotor loading (Δ𝑝) using BET,
an approach which is computationally expensive when compared to the linear induced inflow model
that optimises the induced velocity before the first BET iteration. However, for the purpose of this re-
search, the thrust obtained from the gray-box aerodynamic model can be used for the computation of
the required rotor loading (𝑇 = 𝜋𝑅2Δ𝑝), allowing the 𝑣𝑖 identification before any BET computation.

Other interesting approaches to consider include linear inflow models, such as those from Payne
[271] and Pitt & Peters [254], as well as the Pitt-Peters [272] and the Peters-He [273, 274] dynamic in-
flowmodels. The last two approaches have been consolidated and broadly used in the field of rotorcraft
dynamics because they exploit unsteady actuator disc theory for hover and forward flight. Instead of
ignoring wind-speed fluctuations by averaging the wind field (frozen wake model) or assuming that the
instantaneous wind velocity corresponds to that of steady-flow conditions (equilibrium wake model),
these dynamic inflow models accurately describe the wake behaviour by assuming the existence of
a delay before the induced inflow reacts to modifications in the wind field (unsteady-flow) [265]. Ad-
ditionally, they are both represented in state-space form, which could be implemented and solved in
real-time simulations, and there exist augmentations to their original formulations which include wake
distortion effects during manoeuvring flight [275]. Furthermore, even though vortex methods are much
more accurate, their computational cost is too high for online blade damage simulations [29, 276].

For the introduction of non-linear inter-propeller, inter-blade or body-blade interactions (assumptions
9-11), the creation of a data-driven model that provides the highly nonlinear lift and drag contributions
of each blade section, that are not encapsulated in the BET model, is recommended. Similar work that
could serve as inspiration is carried out within the field of aerodynamics, discipline in which turbulence
is modelled for Reynolds-Averaged Navier-Stokes (RANS) computations using artificial intelligence
[277, 278] (data assimilation for CFD closure). In this approach, physics is exploited for simulating
large scale flow behaviours, whereas machine learning, a mostly black-box approach, is used for mod-
elling the highly nonlinear lower scale turbulence using experimental data. Within aerodynamics, this
method is valued for its low computational cost when compared to higher fidelity but more expensive
simulations, such as Direct Numerical Simulations.

The gray-box aerodynamic model [244] is a data-driven identification approach with physical and
semi-physical parameters. Its parametric model structure, namely a piecewise polynomial, is variable
since components have been added and removed according to a stepwise selection scheme depend-
ing on their contribution to the model accuracy. Beyond its structure, the main model assumption
derives from the identification of its parameters with wind tunnel data obtained in quasi-steady flow
conditions; there is no rate of change of velocity with time at a single point in the test section volume
but the vehicle states, such as the angle of attack, constantly change due to its circular flight motion. It
does not enter the unsteady-aerodynamic flow regime because effects caused by the changing circu-
lation and wake on the aerodynamic surfaces are not considered. Future research that would aim to
use the developed fault detection and identification framework ”in the wild” under the presence of wind
field changes, drastic manoeuvres, gusts and turbulences would require the revision of this assumption.

Finally, the author of this research would not only like to acknowledge the potential of the work
discussed in this chapter for the computation of the emerging wrenches upon propeller damage, but
also for the identification of the blade aerodynamic properties— featuresmostly unknown in commercial
drones. The present research and mentioned further work reduce the component level at which the
wrenches are computed, from the complete propeller, to single blades and individual blade sections.
Such reduction in scale will allow simulations capable of alternating between multiple physics models
depending on the level of detail required. For example, simulation with the gray-box aerodynamic
model could be considered the standard, only complemented by the BET modelled Δ⃗⃗𝐹𝑃 and Δ⃗⃗⃗⃗𝑀𝑃 upon
blade damage. More accurate physics models contribute to the creation of more realistic simulations

182 9. Propeller damage

that will foster the potential discovery of emerging subtle data features capable of improving the current
UAV on-board failure detection and diagnosis effectiveness.

9.4. Model validation
An experimental campaign was carried out in the Open Jet Facility (OJF) wind tunnel at the Faculty of
Aerospace Engineering at TU Delft. The reasoning behind the test, as well as its setup and encoun-
tered challenges are explained in subsection 9.4.1 and subsection 9.4.2. Then, subsection 9.4.3 and
subsection 9.4.4 discuss the data pre-processing steps and the results, respectively. Finally, subsec-
tion 9.4.5 presents the conclusions from the test campaign related to the validation of the BET model.

9.4.1. Experimental campaign rationale
Two experimental approaches could have been followed for the validation of the BET developed model:

1. Validation of the identified airfoil lift and drag curves. For that purpose, the thrust and torque of a
propeller, whose aerodynamic curves are known, are measured at different (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔) conditions.
Those conditions, as well as the measured wrenches, are fed to the BET model and the identified
aerodynamic curves are compared to the theoretical ones for validation.

2. Validation of the measured thrust and torque. For that purpose, the thrust and torque of a Bebop 2
propeller are measured at different (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔) conditions. The measured wrenches are compared
to those obtained by the BET model, which has been fit the gray-box aerodynamic model, under
the same conditions.

The second approach was selected for the identification of the BET model for two reasons. Firstly,
the validation of the identified airfoil lift and drag curves requires having a drone propeller whose aerody-
namic curves are known. Unfortunately, those aerodynamic curves are mostly unknown for commercial
drones. A potential solution would be a 3D scan of a propeller, the isolation of its airfoil and the iden-
tification of its lift and drag curves. These are steps which add additional work that is not required for
the second validation approach.

Secondly, once the propeller is available, a lot of data points would be required in order to identify
the BET model to fit the data of this new propeller. In Appendix D it is shown that approximately 16,000
data points would be required for a good fit. If every data point would mean 20 seconds of test time in
order to eliminate the transients, that translates to approximately 89 hours of required data gathering.
This is equivalent to more than a full week (7 days) full time of testing at the wind tunnel, which would be
unfeasible. The wind tunnel is required in order to create different wind speed conditions. In contrast,
the second validation approach uses the gray-box aerodynamic model for data gathering in simulation,
which is orders of magnitude faster and does not require the use of expensive testing facilities.

To sum up, both approaches exploit a similar set-up with a test stand measuring the thrust and
torque of a propeller in the wind tunnel at different conditions. However, the second approach is faster
andmore economic since it does not require a 3D scan of the propeller or long experimental campaigns.

9.4.2. Test set-up, data collection and challenges
The experimental campaign was carried out from the 1st till 7th August 2022 at the OJF at Delft Univer-
sity of Technology. It is a wind tunnel with an octagonal open test section of 2.85 metres in width and
height through which the air flows into a room with a width of 13 metres and a height of 8 metres, as
can be observed in Figure 9.46. The maximum wind speed that can be reached is 35 m/s.

For the measurement of thrust and torque, the Series 1580 test stand from Tyto robotics was used.
This is a dynamometer for drone propulsion systems capable of measuring up to 5 kg of thrust and 2
Nm of torque, as well as voltage, current, power, motor rotational speed and vibration. Figure 9.47 and
Figure 9.48 show the test stand from the side and top highlighting its most important components.

9.4. Model validation 183

Figure 9.46: Schematic of the Open Jet Facility [30]

Calibration
hardware

USB data acquisition
board

Motor
connection

ESC
Bebop 2

propeller and
motor

Thrust 5kg
load cell

Figure 9.47: Tyto stand: side view with calibration hardware

Data acquisition
board RPM input

Torque 2 Nm
load cells

Data logging
USB cable

XT60 battery
connector

Data logging
USB cable

Data acquisition
board RPM input

Figure 9.48: Tyto stand: top view

The local influence of the test platform on the freestream flow was minimised by means of a beam
assembly, as can be seen in Figure 9.49 and Figure 9.50. This also enables the positioning of the test
stand into the wind tunnel air flow, reducing the wind tunnel wall effects on the flow field.

Figure 9.49: Test set-up in the wind tunnel. Figure 9.50: Tyto test stand in the wind tunnel.

Table 9.3 shows the parameters that were modified between measurements and their value ranges.
For the current experimental campaign, only a single blade was cut at a time with 𝐵𝐷 percentage of
damage. Furthermore, as mentioned in subsection 9.2.3, the inputs for the BET model in order to cre-

184 9. Propeller damage

ate a prediction of thrust and torque are the linear velocity of the drone ⃗⃗𝑉𝐵, its angular velocity ⃗⃗Ω⃗ and
the propeller rotational speed 𝜔. In the wind tunnel, ⃗⃗𝑉𝐵 is simulated as the negative wind speed vector
(⃗⃗𝑉𝐵𝑤) and, since the test stand is not rotated during each measurement, ⃗⃗Ω⃗ is considered equal to zero.
⃗⃗𝑉𝐵𝑤 is decomposed in the wind speed vector magnitude 𝑉∞ and the angle of the normal of the propeller
plane with respect to the airflow, also known as the propeller incidence angle 𝑖𝑝 (Fig. 9.51).

Table 9.3: Experimental campaign testing parameters and values.

Parameter Unit Values
𝐵𝐷 % 0, 10, 25
𝑖𝑝 ∘ 0, 15, 30, 45, 60, 75, 90
𝑉∞ m/s 0, 2, 4, 6, 9, 12
𝜔 rad/s 300, 500, 700, 900, 1100

The maximum blade damage tested was 25% due to excessive vibration loading induced on the
load cell. The blade damage was created with a cut on the blade orthogonal to its span, as can be
seen in Figure 9.52 and Figure 9.53 for 10% and 25%, respectively.

TPP
Figure 9.51: Propeller incidence an-
gle.

Figure 9.52: Damaged propeller with
𝐵𝐷=10%.

Figure 9.53: Damaged propeller with
𝐵𝐷=25%.

The propeller rotational speed was controlled from the laptop to which the data logging cable of the
test stand was connected. The test stand has an UI with which it is possible to control the propeller
rotational speed and read rpm measurements in real time. The wind speed was controlled and moni-
tored from the OJF control room. Test section awareness was provided by the OptiTrack multi-camera
three-dimensional optical tracking system, which was also used to measure the incidence angle of the
propeller. The resulting test stand positions were marked on the platform as can be seen in Figure 9.54.

Each combination in Table 9.3 is called an scenario and the order in which the parameters were
modified was: 𝜔 → 𝑉∞ → 𝑖𝑝 → 𝐵𝐷. This means that, first, the data was gathered maintaining the blade
damage, propeller incidence angle and wind speed constant whereas the propeller rotational speed
was increased from 300 rad/s to 1100 rad/s during a single measurement. As a result, every mea-
surement contained 5 scenarios, one for each rotational speed. Once the time for an scenario was
concluded, the rotational speed of the propeller was increased to the next value of the discrete list
provided in Table 9.3. Once the maximum 𝜔 value is reached, then 𝑉∞ is increased by one step and
the process is repeated.

For every scenario, thrust and torque data was gathered at 7Hz for 20 seconds. Given that there
are 630 scenarios, the data gathering component of the experimental campaign lasted 3.5 hours; much
shorter than the full week required for the first validation approach discussed in subsection 9.4.1.

9.4. Model validation 185

Figure 9.54: Test stand positions marked on the platform with tape using OptiTrack system.

Despite a well-prepared experimental campaign and test set-up design, a few challenges were
encountered which may affect the results and conclusions derived from the data gathered:

1. Even though the test stands measures accelerometer and propeller rotation values at around
100Hz, it measures the thrust and the torque at 6-7Hz. This is insufficient for signal reconstruc-
tion because, in the case of blade damage, the sinusoids observed in section 9.3 have a frequency
of 50Hz-175Hz, depending on the propeller rotational speed. The frequency of those oscillations
have a much higher value than the Nyquist frequency of 3.5Hz derived from the test stand wrench
sampling frequency of 7Hz.

Unfortunately, this was the only drone propeller test stand available within the department of
Control & Simulation and MAVLab at the faculty of Aerospace Engineering at TU Delft known by
the author. There exist larger and more complex test stands for the measurement of wrenches for
larger propellers within other departments. However, since they need to be able to measure larger
thrust values, their sensitivity or accuracy to those of small drone propellers, such as the Bebop
2 drone, might be insufficient, especially if small vibrations in the order of 10−4 are expected to
be observed.

2. During the execution of the experiments it was encountered that the test stand resonated with
the vertical beam and/or the platform at certain rotational frequencies. This resulted in the obser-
vation of peaks in the rpm and wrenchmeasurement signals, as it will be later shown in the results.

As recommendation for future work, a potential method for removing or minimising the impact of
the resonance present in the measurements requires the characterization of the complete set-up,
meaning the Tyto test stand on the vertical beam on top of the platform, in order to identify its
dynamics. For that purpose, the accelerometer within the Tyto stand could record the data at
100 Hz. Then, this information would be used for simulating the set-up dynamics given a forcing
function, namely the oscillating thrust force, as well as the interactions between the set-up and the

186 9. Propeller damage

damaged propeller induced vibrations. Knowledge about the complete system behaviour would
allow a deeper understanding of the measured signals (explainability) and the separation of the
set-up dynamics from the ”pure” thrust and torque oscillations caused by the damaged propeller.

3. The 5kg thrust load cell was not able to withstand prolonged vibrations at 25% blade damage
or survive a higher degree of blade damage for more than a few seconds. During the testing of
𝐵𝐷=25% the original test stand thrust load cell was damaged and a new one was bought with
urgency from another seller. As a result, metal adaptors were designed and manufactured in
order to integrate the new load cell for the remaining measurements at 25% 𝐵𝐷.

The author considered using 10kg load cells for thrust in order to withstand higher vibrations.
However, such a load cell would have a higher noise which would make the identification of the
blade damage oscillations more difficult. Hence, the 5kg load cell was used and 25% blade dam-
age was considered to be the limit for the available test stand.

Unfortunately, after the experimental campaign, the author was informed that the newly bought
5kg load cell had a rated output accuracy (R.O.) of 0.03%. This means that it has an accuracy of
±0.0015kg or ±0.0147 N, an error larger than the amplitude of the damaged induced oscillations.
As an example, Figure 9.30 shows an amplitude of 0.01 N when the propeller is oscillating at
600 rad/s with 25% damage. Much smaller oscillations are found with smaller degrees of blade
damage and propeller rotation velocities.

An improved version of the current test stand would be the Series 1585 from Tyto Robotics which
has a sampling rate of 80Hz. However, to solve the aforementioned challenges the author can only
recommend the in-house design of a test stand for the measurement of wrenches of partially damaged
propellers. Such a stand would require a sampling frequency above 100Hz for measurements carried
out at the minimum rotational speed of 300 rad/s (or 350 Hz for 𝜔 of 1100 rad/s) and a dampening
system which prevents resonance with the rest of the structure and the testing platform. Additionally,
especially designed load cells have to be used capable of withstanding at least 6g of sustained vibra-
tions.

9.4.3. Experimental data pre-processing
The data pre-processing phase of the model validation has 5 steps:

1. Experiment logbook comments implementation

2. Filename modification

3. RPM isolation

4. Effect of wind on stand correction

5. Signal detrending

During the execution of the experiments, a logbook is maintained with information about all the
abnormal events and mistakes that took place. As an example, the thrust load cell started to behave
anomalously till failure during the 25% blade damage testing. As a result, multiple scenarios had to be
repeated and the old files had to be removed. Such file removal did not take place during the time at
the wind tunnel and had to be carried out as the initial step of the data pre-processing step.

Once the logbook comments were implemented, the next step was the modification of all the file-
names. Originally, the files have the name of the date and time when they were created, such as
”Log_2022-08-07_124724.csv”. However, such name does not provide information about the recorded
scenario. As a result, they were modified to the following format: bX_aY_wZ.csv, where X is the blade
damage percentage, Y is the angle of the propeller plane with respect to the flow and Z is the wind
speed. The X, Y and Z values were retrieved from the comments in the header of the original .csv files.

9.4. Model validation 187

The next pre-processing step is the RPM isolation. As mentioned in subsection 9.4.2, each mea-
surement contained 5 scenarios, those corresponding to the different propeller rotational speeds while
the rest of the parameters were maintained constant. However, it is desired to have each scenario in
a different .csv file for later data analysis instead of the exported .csv file per measurement.

To decide which time steps to use in order to split the measurement file for the different 𝜔, the
information about the electrical signal input sent to the ESC for rpm control can be used. Similarly to
servo motors, the ESC is controlled by Pulse Width Modulation (PWM), namely a discrete signal that
is either 0 or 1. The longer the signal has a value of 1 compared to a value of 0, the faster the motor
spins. If the signal has a value of 0 and a value of 1 for the same time duration, the motor does not
spin. Fortunately, next to the wrench and propeller rotation data stored at each time step, the test
stand stores the time it spends in microseconds with a value of 1 per oscillation, also known as ESC
value. An example plot of that ESC value can be seen in Figure 9.55. It clearly shows as flat plateaus
the time steps at which the commanded 𝜔 was constant, as well as those transitional time steps at
which there is a linear increment. Given that it is known that there should be 5 plateaus, the constant
rpm time steps are separated programmatically by finding the 5 most repeated ESC values and their
corresponding time steps. The results can be observed in the plot of 𝜔 with respect to time shown in
Figure 9.56. The data corresponding to each rpm constant value is separated in different .csv files with
the following format: bX_aY_wZ_rR.csv, where R is the value of 𝜔 for that particular file.

0 20 40 60 80 100 120 140
Time [s]

1200

1400

1600

ES
C

 v
al

ue
 [µ

s]

1120
1236
1408
1567
1739

Figure 9.55: Smooth electrical input signal to the ESC for rpm
control with identified plateaus.

0 20 40 60 80 100 120 140
Time [s]

400

600

800

1000

M
ot

or
 E

le
ct

ric
al

 S
pe

ed
 [r

ad
/s

]

300
500
700
900
1100

Figure 9.56: Motor electrical speed with respect to time with
the identified commanded rpm values.

Performing the same operation directly on the 𝜔 signal would have been more challenging due to
its noise, its outliers and the effects of the challenges faced during the experimental campaign and
presented in subsection 9.4.2, such as the test stand resonance. Additionally, it can be observed in
Figure 9.57 that, despite a constant commanded rpm shown in Figure 9.55, the rpms signal at 1,100
rad/s is not constant but decreases linearly; observation which would further difficult the rpm separation
directly on the 𝜔 signal. The implementation of a smoothing filter would have introduced lag and an
inaccurate rpm separation.

122.5 125.0 127.5 130.0 132.5 135.0 137.5 140.0
Time [s]

1098

1100

1102

1104

M
ot

or
 E

le
ct

ric
al

 S
pe

ed
 [r

ad
/s

]

Figure 9.57: Motor electrical speed with respect to time zoom-in at 1,100 rad/s.

Now that each scenario has been isolated in each own file, the next pre-processing step is the cor-
rection of the data by adding the effect of the wind on the test stand. For that purpose, before finalising

188 9. Propeller damage

the experimental campaign, the thrust and torque were measured without a propeller installed at dif-
ferent wind speeds and angles with respect to the incoming flow. The mean measured wrenches were
then added to each file depending on their 𝑉∞ and 𝑖𝑝 values.

Finally, in the case of blade damage, it was observed that the forces and moments were increasing
with time even though the parameters in Table 9.3 were kept constant. This is considered an error of
the sensor and the signals are detrended as the final pre-processing step. As an example, Figure 9.58
shows the thrust measurements and their detrended values for a scenario with 10% blade damage, 0∘
of the propeller incidence angle, 2 m/s wind speed and 700 rad/s. The dash lines represent the linear
fit of each data set.

0 5 10 15 20
Time [s]

0.75

0.76

0.77

Th
ru

st
 [N

]

Data
Detrended data

Figure 9.58: Thrust data sample and its detrended counterpart with their fitted linear curves.

9.4.4. Experimental results
The current section will discuss the results from the data gathered during the experimental campaign.
Section 9.4.4.1 will present the results without blade damage followed by subsubsection 9.4.4.2 which
will present those in the presence of 10% and 25% blade damage.

9.4.4.1. Without blade damage
Now that the data has been compartmentalized into single scenario files and pre-processed, it can be
analysed. As it is shown in Table 9.3, there are four input parameters that define an scenario, namely
the blade damage, the propeller incidence angle, the wind speed and the propeller rotational speed.
This section will delve into analysing the impact of the last three on the performance of the BET model
when there is no blade damage (𝐵𝐷=0%). Additionally, in contrast when there is blade damage, it is
possible to compare BET’s performance to that of the gray-box aerodynamic model.

First, the effect of the angle of the propeller plane with respect to the incoming flow on the results can
be observed by fixing the wind speed and the propeller rotational speed to constant values, whereas 𝑖𝑝
is increased from 0∘ to 90∘. This is done, for 𝑉∞=2 m/s and 𝜔=700 rad/s in Figure 9.59 and Figure 9.60,
where the results are shown for thrust and torque, respectively. A wind speed of 2 m/s has been chosen
because the value of this parameter oscillates in the AirSim simulation between 0 and 3.6 m/s, and a
value of 700 rad/s for the propeller rotational speed because it is the median of the range in Table 9.3.
As a result, these plots show the performance for the average scenario to be encountered in simulation.

The upper window of each plot presents the values obtained in the experimental campaign (x-axis)
with respect to the values obtained by each of the models (y-axis) given the same conditions in terms
of ⃗⃗𝑉𝐵, ⃗⃗Ω⃗ and 𝜔. In an ideal scenario, both models’ data points would fall on the dash black line, which
would mean that both experimental and simulated results are equal. Unfortunately, that is mostly not
the case and the solid red and blue lines represent the linear fit of each model’s data. Besides that,
the data points are plotted with different degrees of transparency. The degree of transparency varies
linearly from the brightest or most opaque markers representing those data points measured at 𝑖𝑝=0∘
to the most transparent ones representing those data points measured at 𝑖𝑝=90∘. Finally, the whiskers
represent the range of values in which 95% of the experimental wrench data samples can be found
(≈2𝜎). For the computation of these value ranges, the standard deviation of the forces and moments

9.4. Model validation 189

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2
M

od
el

 th
ru

st
 [N

]

Gray-box model
BET model

−3 −2 −1 0 1 2 3
Thrust model absolute error [N] 1e−1

Figure 9.59: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental thrust would match.

−1.15 −1.10 −1.05 −1.00 −0.95 −0.90 −0.85
Experiments corrected torque [Nm] 1e−2

−1.5

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
Gray-box model
BET model

−6 −4 −2 0 2 4 6
Torque model absolute error [Nm] 1e−3

Figure 9.60: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental torque would match.

exerted by the wind on the test stand (subsection 9.4.3) were included. The lower window of each plot
shows the wrench absolute error of each model with respect to the experimental measurements, as
well as a fitted Gaussian curve to those error data points.

The plots corresponding to the different propeller rotational speeds with 0% blade damage and 2
m/s of wind speed can be found in section E.1. As expected, in general, the measured thrust decreases
with increasing 𝑖𝑝 (the less transparent, the lower the thrust) because the blade element angle of attack
is decreased due to a higher wind speed perpendicular to the plane of rotation. Furthermore, it can
be observed that the thrust is always positively biased and the torque is negatively biased for both
models. This indicates that there exist some unmodelled physical effects that have not been taken into
consideration, among which might be those outlined in subsection 9.3.3. Additionally, these plots show
that the performance of the BET and gray-box models is very similar, which supports the hypothesis
that the BET model has been well identified (the verification phase in subsection 9.2.3) and that the
errors are due to those in the gray-box model whose data was used for identification.

After having seen the effect of varying 𝑖𝑝, the next step would be the analysis of the influence of
the propeller rotational speed. All the results for different values of 𝜔 shown in section E.1 can be
synthesised and compressed in Figure 9.61 by plotting the mean of the absolute error with whiskers
representing 1.96 times the standard deviation (≈ 2𝜎; also known as the confidence interval or the
range where 95% of the data points can be found). Both the mean and the standard deviation were
obtained from the Gaussian curves in the lower window of all those plots. From these plots, two con-
clusions can be derived for the BET model compared to the gray-box aerodynamic model. First, the
BET model is more accurate in torque but less in thrust. Second, the BET is more (over) confident of
its predictions because of its smaller confidence intervals. The latter observation is also visible in the
plots shown in section E.1 due to the taller and narrower Gaussian fitted curves for the BET model.

−4

−2

0

T
er

ro
r [

N
]

1e−1

Gray-box model
BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

−5

0

5

Q
 e

rro
r [

N
m

]

1e−3

Figure 9.61: BET and gray-box aerodynamic model thrust
and torque absolute error for: 𝐵𝐷=0% and 𝑉∞=2 m/s.

−50

0

50

T
er

ro
r [

%
] Gray-box model

BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

−100

0

100

Q
 e

rro
r [

%
]

Figure 9.62: BET and gray-box aerodynamic model thrust
and torque relative error for: 𝐵𝐷=0% and 𝑉∞=2 m/s.

Figure 9.61 shows that both the mean and the standard deviation of the absolute error grows with

190 9. Propeller damage

increasing 𝜔. However, when the relative error is plotted instead, as shown in Figure 9.62, the opposite
is observed. This shows that model accuracy increases with 𝜔.

Finally, in order to observe the effect of the increasing wind speed, Figure 9.62 is repeated for each
wind speed listed in Table 9.3 within the same plot. This is shown in Figure 9.63 and Figure 9.64
for the gray-box aerodynamic and BET models, respectively. Note that the whiskers representing the
confidence intervals have been removed for clarity. From these plots, four observations can be made:

1. The performance of both thrust and torque degrades with increasing wind speed for both models.

2. The relative thrust error of the BET model has a sudden increase when the wind speed is 6 m/s
or higher when compared to the gray-box aerodynamic model.

3. The BET model performs better than the gray-box aerodynamic model in terms of torque except
at 12 m/s.

4. The performance of the gray-box aerodynamic model at a wind speed of 12 m/s for thrust and
higher than 4 m/s for torque is very low (sometimes with relative error values above 1000% for
torque).

The reason behind the first three differences in performance between models originates from a
design choice in subsection 9.2.3, namely that the BET model was identified with wind speeds up to
3.6 m/s; the highest speeds operated in the AirSim simulator. Hence, the BET model has never seen
data collected at wind speeds higher than 4 m/s. The last observation is unexpected as the gray-box
aerodynamic model was identified with data gathered at wind speeds up to 14 m/s.

0

250

500

T
er

ro
r [

%
] V∞=0

V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

2

Q
 e

rro
r [

%
]

1e3

Figure 9.63: Gray-box aerodynamic model thrust and torque
relative error for 𝐵𝐷=0%.

0

1

T
er

ro
r [

%
]

1e3
V∞=0
V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

2

Q
 e

rro
r [

%
]

1e3

Figure 9.64: BET model thrust and torque relative error for
𝐵𝐷=0%.

One general conclusion that can be derived from these observations is that the BET model archi-
tecture has a stronger physical foundation for torque than for thrust. Both were identified with data
collected at wind speeds lower than 3.6 m/s and the torque is able to perform better at those speeds
that the model had not seen before during identification, namely 4, 6, 9 m/s, when compared to the
thrust. In most cases, it even performs better than the gray-box aerodynamic model that was used
for the identification data generation. This highlights that the unmodelled aerodynamic effects have a
stronger impact on the thrust than on the torque.

9.4.4.2. With blade damage
In the presence of blade damage, two signal features need to be validated, namely the bias of the
signal and the amplitude of the damage induced oscillations. As in subsubsection 9.4.4.1, the same
sensitivity analysis will be performed in which the effect of the parameters in Table 9.3 will be analysed.
In this case, the blade will have 10% and 25% damage. Furthermore, the BET model with a healthy
propeller was observed to have errors which could be attributed to the gray-box aerodynamic model
used for identification. Hence, the BET model’s performance with blade damage will also be compared
to that presented in subsubsection 9.4.4.1 without blade damage. The latter serves as baseline since
it can be considered to be the expected default error introduced by the identification dataset, and not

9.4. Model validation 191

from the BET model’s architecture (namely the object of validation of the present section). Finally, as it
is the purpose of this research to fill a gap in the literature by developing a thrust and torque propeller
model capable of producing reliable estimations in the presence of blade damage, there is no signal
from the gray-box aerodynamic model that can be used for control; in contrast to what was done in
subsubsection 9.4.4.1.

To observe the impact on the results when varying 𝑖𝑝, Figure 9.65-9.68 show the thrust and torque
plots for both blade damages when 𝑉∞=2 m/s and 𝜔=700 rad/s. As in section E.1, the plots recorded
at the other propeller rotational speeds can be found in section E.2 and section E.3 for 10% and 25%
blade damage, respectively. In contrast to the scenarios without blade damage, when 𝐵𝐷=25% the
thrust and the torque are not always positively and negatively biased, respectively. This outlying be-
haviour can only be observed in the thrust plots when 𝜔=500 and 700 rad/s, and it is attributed to the
resonance of the test stand with the vertical beam and the platform — the presence of such vibrations
was noted in the experiment logbook close to those rotational frequencies.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure 9.65: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental thrust would match.

−1.1 −1.0 −0.9 −0.8 −0.7
Experiments corrected torque [Nm] 1e−2

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −2 0 2 4
Torque model absolute error [Nm] 1e−3

Figure 9.66: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental torque would match.

0.8 0.9 1.0 1.1 1.2 1.3
Experiments corrected thrust [N]

0.75

1.00

1.25

1.50

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure 9.67: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental thrust would match.

−1.10 −1.05 −1.00 −0.95 −0.90 −0.85 −0.80
Experiments corrected torque [Nm] 1e−2

−1.2

−1.0

−0.8

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −3 −2 −1 0 1 2 3 4
Torque model absolute error [Nm] 1e−3

Figure 9.68: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700
rad/s. The black dashed line represents the ideal scenario in
which the model and experimental torque would match.

For the evaluation of the impact of 𝜔 on the results, these plots are compressed in Figure 9.69 and
Figure 9.70 showing the relative error for each value of 𝜔 for both degrees of blade damage. As can
be seen, with 𝐵𝐷=10%, the relative error behaves in a similar manner as when there is no damage: its
mean and standard deviation decrease with 𝜔. However, when 𝐵𝐷=25%, that pattern is not observed
and the mean even crosses the x-axis for the thrust between 500 and 700 rad/s. Again, this anomalous
behaviour is attributed to the strong vibrations observed during the experimental campaign at those ro-
tational speeds and blade damage values.

As mentioned earlier, these results can be compared directly to those without blade damage in order
to discern between two potential sources of error: the identification dataset and the model architecture.
The reduction in performance beyond the error found without blade damage is associated to the BET

192 9. Propeller damage

−250

0

250

T
er

ro
r [

%
] BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

200

Q
 e

rro
r [

%
]

Figure 9.69: BET model thrust and torque relative error for:
𝐵𝐷=10% and 𝑉∞=2 m/s.

−50

0

T
er

ro
r [

%
] BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

100

Q
 e

rro
r [

%
]

Figure 9.70: BET model thrust and torque relative error for:
𝐵𝐷=25% and 𝑉∞=2 m/s.

model architecture, which is the object of validation of this section. To facilitate this assessment, Fig-
ure 9.71 shows the relative error signals with respect to 𝜔 for 𝐵𝐷=[0, 10, 25]%. It can be seen that
the performance is very similar with and without blade damage, especially at higher propeller rotational
speeds. Surprisingly, the 10% blade damage signal has a higher standard deviation than 25% 𝐵𝐷 and
performs worse at low 𝜔 values.

−250

0

250

T
er

ro
r [

%
]

BET model: 0%
BET model: 10%
BET model: 25%

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

200

Q
 e

rro
r [

%
]

Figure 9.71: BET model thrust and torque relative error for: 𝐵𝐷=[0, 10, 25]% and 𝑉∞=2 m/s.

In order to better assess the error originated from the BET model architecture in scenarios where
there is blade damage, Figure 9.72 shows the same curves for 𝐵𝐷=10% and 25% as in Figure 9.71
after having subtracting the error when 𝐵𝐷=0% — an error which could be attributed to the identifica-
tion data. This is known in the current work as Δerror. For clarity, the confidence intervals were not
included. This plot shows more clearly the worse performance of 𝐵𝐷=10% at low 𝜔 values up to 700
rad/s compared to 𝐵𝐷=25%. Additionally, two more observations can be made. First, the performance
at 𝐵𝐷=10% improves with 𝜔 whereas the performance at 𝐵𝐷=25% does not show a clear pattern (of
improvement). Second, the model architecture performance could have an error as high as 76.9%
(thrust, 𝐵𝐷=10%) and as low as 4.9% (torque, 𝐵𝐷=25%) for low and high 𝜔 values, respectively. Ta-
ble 9.4 shows the range of Δerror for both blade damages for thrust and torque.

Table 9.4: Δerror ranges for thrust and torque for 10% and 25% blade damage at 2 m/s wind speeds.

BD=10% BD=25%
T Δerror [%] [-76.9, -23.6] [-68.5, 15.8]
Q Δerror [%] [5.1, 39.8] [-4.9, 14.5]

9.4. Model validation 193

−50

0

T
Δe

rro
r [

%
]

BET model: 10%
BET model: 25%

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

20

40

Q
 Δ

er
ro

r [
%

]

Figure 9.72: BET model thrust and torque relative error for 𝐵𝐷=[10, 25]% and 𝑉∞=2 m/s, after subtracting the relative error when
𝐵𝐷=0%.

After having varied 𝑖𝑝 and 𝜔, the final parameter to be modified is the 𝑉∞, as shown in Figure 9.73
and Figure 9.74 for 10% and 25% blade damage, respectively. Again, a sudden decline in performance
is observed in both scenarios for wind speeds higher than 4 m/s, phenomenon attributed to the BET
model identification data limited to 3.6 m/s. Besides that, the relative error at those wind speeds is
higher at 10% blade damage than at 25%.

0

500

T
er

ro
r [

%
] V∞=0

V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0.0

0.5

1.0

Q
 e

rro
r [

%
]

1e3

Figure 9.73: BET model thrust and torque relative error for
𝐵𝐷=10%.

0

1

T
er

ro
r [

%
]

1e3
V∞=0
V∞=2
V∞=4

V∞=6
V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

1

Q
 e

rro
r [

%
]

1e3

Figure 9.74: BET model thrust and torque relative error for
𝐵𝐷=25%.

Finally, the amplitude of the damage induced oscillations needs to be validated. Unfortunately, the
sampling frequency is very low for reliable signal reconstruction, as discussed in subsection 9.4.2. In an
attempt to reconstruct the signals, the author tried two approaches, namely an evolutionary algorithmic
approach with Particle Swarm Optimisation (PSO) and an statistical approach with the Lomb-Scargle
periodogram. The goal is to fit a sinusoid with the same frequency as the 𝜔 at which the propeller was
oscillating to the experimental data.

In the case of the PSO, the algorithm had to identify two variables, namely the sinusoid phase
and its amplitude. The phase and the amplitude were constraint to the close intervals [0, 2𝜋] and [0,
0.5], respectively. The maximum attainable amplitude value of 0.5 was chosen from experience when
working with the BET model; the observed oscillations had always an amplitude below 0.5. It was
initialised with 5,000 particles with a maximum number of 20 iterations as stopping condition. The cost
function was defined as the Root Mean Squared Error (RMSE) between the experimental data points
and the value of the identified sinusoid at the sampled times. Figure 9.75 shows the amplitude relative
error results between the reconstructed experimental and model signals for 𝐵𝐷=10% and 𝑉∞=2 m/s
for different propeller rotational speeds. The result evidences the failed reconstruction attempt with
relative error values in the order of 106 for the torque. The reason behind such high errors is that PSO

194 9. Propeller damage

identified the torque signal amplitude to be very close to zero, which leads to very high values when
dividing by the experimental amplitude for relative error computation. Consequently, the amplitude of
the damaged propeller wrench oscillations can not be validated when reconstructing the experimental
signal with PSO.

−5

0
T

er
ro

r [
%

]

1e3

BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

−1

0

Q
 e

rro
r [

%
]

1e7

Figure 9.75: BETmodel thrust and torque oscillation amplitude relative error for 𝐵𝐷=10% and 𝑉∞=2m/s using the Particle Swarm
Optimisation for experimental signal reconstruction.

The alternative approach to PSOexplored for signal reconstruction is the Lomb-Scargle periodogram
[279–281]; statistical algorithm for detecting and characterizing periodic signals in unevenly sampled
data. It is widely used in astronomy [282–284] with some special cases in other fields, such as bioin-
formatics [285]. The Lomb-Scargle periodogram fits a sinusoidal model to the data at the propeller
rotational frequency, and the amplitude of that sinusoid is compared with the signals obtained from the
BET model.

Figure 9.76 shows again the amplitude relative error for a propeller at 10% blade damage with 2 m/s
wind speed. In this case, the Lomb-Scargle periodogram was used for experimental signal reconstruc-
tion. It can immediately been observed that the statistical approach has a superior performance with
respect to the evolutionary counterpart when estimating the amplitude of the torque oscillations. In-
stead of resulting in a relative error in the order of 106 due to zero amplitude signal reconstructions, the
Lomb-Scargle periodogram maintains a mean relative error below 100%. Furthermore, even though it
maintains a similar mean relative error for thrust as the PSO, its standard deviation is lower, especially
at higher values of 𝜔. Hence, the statistical approach is deemed the best option for damaged propeller
experimental signal reconstruction. Similar to section E.2 and section E.3, section E.4 and section E.5
contain the damage induced oscillation amplitude results corresponding to each propeller rotational
speed when the experimental signal has been reconstructed with the Lomb-Scargle periodogram for
10% and 25% blade damage, respectively. Appendix F presents a brief discussion about the impact
of measurement noise on the performance of this statistical approach for signal reconstruction.

As in the scenarios when there is no blade damage, from Figure 9.76 and Figure 9.77 it can be
observed that the BET model performs better for torque than for thrust for both degrees of 𝐵𝐷. This
further supports the general conclusion stated at the end of subsubsection 9.4.4.1, that the BET model
architecture has a stronger physical foundation for torque than for thrust. Moreover, no trend is ob-
served that shows an improvement in performance with increasing propeller rotational speed.

Lastly, Figure 9.78 and Figure 9.79 compare the results for different wind speeds. The data points
at zero wind speed are not shown since there are no oscillations in the thrust and torque signals. Again,
the relative error grows with increasing wind speed, especially for 9 and 12 m/s. Additionally, the per-
formance is observed to decrease for thrust at 500 and 700 rad/s with 25% blade damage. This is
attributed to the resonance behaviour with the test set-up found at these frequencies. Finally, when
compared to Figure 9.73 and Figure 9.74, the BET model presents a worse performance when esti-

9.4. Model validation 195

−1

0

T
er

ro
r [

%
]

1e3

BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

0

100

Q
 e

rro
r [

%
]

Figure 9.76: BET model thrust and torque oscillation am-
plitude relative error for 𝐵𝐷=10% and 𝑉∞=2 m/s using the
Lomb-Scargle periodogram for experimental signal recon-
struction.

−2

0

T
er

ro
r [

%
]

1e3

BET model

300 500 700 900 1100
Propeller rotational speed [rad/s]

−2

0

Q
 e

rro
r [

%
]

1e3

Figure 9.77: BET model thrust and torque oscillation am-
plitude relative error for 𝐵𝐷=25% and 𝑉∞=2 m/s using the
Lomb-Scargle periodogram for experimental signal recon-
struction.

mating the amplitude of the thrust and torque signal oscillations as opposed to their mean.

−5

0

T
er

ro
r [

%
]

1e3

V∞=2
V∞=4
V∞=6

V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

−2

0

Q
 e

rro
r [

%
]

1e3

Figure 9.78: BET model thrust and torque oscillation ampli-
tude relative error for 𝐵𝐷=10% using the Lomb-Scargle peri-
odogram for experimental signal reconstruction.

−1.0

−0.5

0.0
T

er
ro

r [
%

]
1e4

V∞=2
V∞=4
V∞=6

V∞=9
V∞=12

300 500 700 900 1100
Propeller rotational speed [rad/s]

−4

−2

0

Q
 e

rro
r [

%
]

1e3

Figure 9.79: BET model thrust and torque oscillation ampli-
tude relative error for 𝐵𝐷=25% using the Lomb-Scargle peri-
odogram for experimental signal reconstruction.

9.4.5. Validation conclusions
In the scenarios without blade damage, it is possible to compare the BET model performance with that
of the gray-box aerodynamic model. It was observed that the performance of both is very similar, which
indicates that the BET model has been well identified and its validation errors are attributed to the iden-
tification data gathered from the gray-box aerodynamic model, instead of the BET model architecture.
Besides that, the thrust is positively biased and the torque is negatively biased for both models. This
remark points to the existence of unmodelled physical effects, among which might be those outlined in
subsection 9.3.3. Additionally, the performance of both models decreases with lower values of 𝜔 and
higher values of 𝑉∞. This shows that both approaches struggle to correctly model blade sections under
a negative angle of attack; phenomenon mostly emergent in those 𝜔-𝑉∞ conditions for blade sections
close to the propeller hub.

Despite their similarities, four differences can be found between both models. First, the BET model
is slightly more accurate in torque but less in thrust. Second, it is more (over) confident of its predic-
tions when compared to the gray-box aerodynamic model. Third, the BET model experiences a faster
decline in thrust performance for wind speeds higher than 4 m/s. Fourth, the BET model performs
better than the gray-box aerodynamic model in terms of torque except at 12 m/s. The reason behind
these divergences in performance originates from a design choice in subsection 9.2.3, namely that the
BET model was identified with wind speeds up to 3.6 m/s; the highest speeds operated in the AirSim
simulator. Hence, the BET model has never seen data collected at wind speeds higher than 4 m/s.
Furthermore, an unexpected result is the low performance of the gray-box aerodynamic model at high
speeds, as it was identified with wind tunnel data gathered at wind speeds up to 14 m/s.

196 9. Propeller damage

One final conclusion that can be derived from these observations without blade damage is that the
BET model architecture has a stronger physical foundation for torque than for thrust. Both were iden-
tified with data collected at wind speeds lower than 3.6 m/s and the torque is able to perform better
at those speeds that the model had not seen before during identification, namely 4, 6, 9 m/s, when
compared to the thrust. In most cases, it even performs better than the gray-box aerodynamic model
that was used for the identification data generation. This highlights that the unmodelled aerodynamic
effects have a stronger impact on the thrust than on the torque.

Regarding those scenarios with blade damage, it is necessary to validate the signal bias, as well
as the damage induced oscillations. When comparing the experimental and BET model signal bias,
that of 𝐵𝐷=10% behaves similarly to that of 𝐵𝐷=0%. On the contrary, when 𝐵𝐷=25% the thrust and
the torque are not always positively and negatively biased, respectively. Additionally, its relative error
does not decrease with 𝜔 as it would be expected. This outlying behaviour, especially noticeable when
𝜔=500 and 700 rad/s, is attributed to the resonance of the test stand with the vertical beam and the
platform. Moreover, a sudden decline in performance is again observed in both scenarios for wind
speeds higher than 4 m/s, phenomenon attributed to the BET model identification data limited to 3.6
m/s. Besides that, the relative error at those wind speeds is unexpectedly found to be higher at 10%
blade damage than at 25%.

Finally, for the validation of the oscillations’ amplitude, two approaches were implemented, namely
Particle Swarm Optimization (metaheuristic evolutionary optimization algorithm) and the Lomb-Scargle
periodogram (statistical algorithm). Unfortunately, the first option was not always able to fit a sinusoid
to the data, especially for the torque. Hence, the Lomb-Scargle was chosen for signal reconstruction.
Again, the BET model performs better for torque than for thrust, which supports the aforementioned
conclusion that the BETmodel architecture has a stronger physical foundation for torque than for thrust.
Additionally, the performance degrades with wind speed and it does not improve with propeller rota-
tional speed. Instead, it shows a notorious increase in thrust relative error at 500 and 700 rad/s with
25% blade damage, which is attributed to the resonance observed at those frequencies. Despite rela-
tive errors in the order of 1,000% for some scenarios, the validation of the amplitude of the oscillations
can not be reliably assessed due to the inaccuracies/noise of the load cell and the difficulty in recon-
struction attributed to the low sampling rate.

To conclude, the BET model has been well identified and it has a performance without blade dam-
age similar to that of the gray-box model. In the presence of blade damage, its performance at high
propeller rotational speeds is similar to that without blade damage, with differences in relative error
oscillating between 5% and 24%. However, the errors at low propeller rotational speeds can be more
than 3 times higher; oscillating between 15% and 75%. Besides that, the validation of the damage in-
duced oscillations amplitude is not possible due to the challenges encountered. As a result, it is difficult
to fully validate the BET model. The author hopes that the lessons outlined in the present validation
will serve as a basis in the design of a future experimental campaign with more specialised hardware.

10
Fault detection and diagnosis

The simulator developed in chapter 8 grants the engineer the possibility of creating an infinite number
of different simulations programmatically with or without actuator failures. Additionally, chapter 9 can
serve as recipe to develop higher fidelity blade damage simulations than currently available in literature.
Thanks to its modularity, the physics, controller and failure modules can be easily swapped for those
of other aerial platform. In contrast with readily available Matlab simulators, their integration with the
presented pipeline in Unreal Engine 4 allows the collection of photo-realistic visual data. Such data is
of superior quality when compared to alternative simulation environments, such as Gazebo, allowing
the development of applications with a reduced reality gap.

The last milestone of this master research project is the development of an actuator Fault Detection
and Diagnosis (FDD) framework, which does not only alert the drone computer about the presence
of an actuator failure, but it is able to point to the failed actuator and quantify the damage. For that
purpose, the author proposes an architecture which fuses the information obtained from the Inertial
Measurement Unit (IMU) and the camera on-board of the drone. Thanks to the collected medium size
dataset with the in-house developed simulator of in-flight drone actuator failures (section 8.6), it is pos-
sible to use knowledge-based approaches previously impossible due to the lack of data.

The chapter is organised in twomain sections. First, section 10.1 will discuss themodel architecture,
diving into the separate processing of the camera and IMU data, as well as the fusion of both sources
of information. Then, section 10.2 will present the results, including a short ablation study in order to
understand the effect of each model component. Finally, section 10.3 will outline the main conclusions
and some recommendations for further work.

10.1. FDD model architecture
The complete architecture of the model can be observed in Figure 10.1. Early in the pipeline it consists
of two separate paths for independently processing the camera and IMU information for the extraction
of features. Then, both paths’ features are concatenated and fed to a Long Short-TermMemory (LSTM)
for data fusion, architecture with feedback connections which allows the ingestion of sequential data.
Finally, the output is passed on to a dense Neural Network for classification with a number of neurons
equal to the number of distinct classes. For example, in the case of failure detection there are only two
classes, namely healthy or failure. Hence, the classifier only has two neurons in the output layer.

One of the main challenges for any FDD architecture that aims at fusing multiple data sources
with different sampling rates is the synchronisation of the information without discarding precious data.
On-board of most drones, the IMU is able to produce samples at rates multiple times higher than the
camera. A naive approach would be a running the FDD at the same frequency as the camera and tak-
ing the last data point from the camera and the IMU at every time step; discarding all the IMU samples
collected between camera shots. As it will be demonstrated later in this section, the developed FDD
architecture can run at a commanded frequency different than both sensors on board, as long as it is

197

198 10. Fault detection and diagnosis

IMU

buffer

Camera

buffer

Feature
extraction
(STFT)

Optical flow

(RAFT-S)

Feature extraction

(MobileNetv3-S)

Flattening

Concatenation

Resize

= 555 Hz
IMU

Accelerometer

Gyroscope

Time series model

3x

= 10 Hz

Classifier

x 17Camera

= 30 Hz
LSTM

30
cells

BN

Softmax
& argmax

Detection &

diagnosis

FR
BD50

Sensor fusion and classification module

Figure 10.1: The FDD pipeline consists of (i) an IMU time-frequency feature extractor in the form of a Short-Time Fourier Trans-
form, (ii) the MobileNetV3-S as feature extractor from the camera optical flow computed with RAFT-S and (iii) a Long Short-Term
Memory network followed by a single layer Neural Network as sensor fusion and classification module. The FDD framework is
run at 10 Hz and the sampling rate of the IMU and camera are 555 Hz and 30 Hz, respectively.

equal or smaller than the slower sensor. This highlights the flexibility of the architecture, being able to
adapt to different computation constraints.

Next, each of the architecture components will be explained in detail. Even though the framework
could be applied to any aerial platform, the values correspond to the Bebop 2 drone used in the present
research. First, subsection 10.1.1 will dive into the different components required for the image feature
extraction. Then, subsection 10.1.2 will discuss how the IMU data is processed. Finally, subsec-
tion 10.1.3 will show how the sensor features are translated to a detection and diagnosis prediction by
treating the tasks as a classification problem.

10.1.1. Camera data processing
The inspiration for the introduction of the camera into the FDD pipeline stems from the observation
that human beings are able to detect that they are falling thanks to their ”natural time differentiated
accelerometer” or vestibular system, an apparatus within the inner ear that provides information about
changes in acceleration, as well as from their visual sensory system. When the vestibular system is
saturated (e.g. rapidly rotating on an office chair) or the changes in acceleration are imperceptible
(e.g. accumulating slow changes in aircraft attitude), the visual sensory system is still able to detect
the subject’s ego motion thanks to the relative movement of elements of the environment in its visual
field. For instance, if a human subject sees a block moving to the right in a static environment, the
subject understands that it is moving then to the left.

The two main factors affecting judgement of self-motion are the gradients and the pattern of optical
flow which provide information about the relative velocity (amount) and direction of relative motion, re-
spectively. Hence, the author believes that knowledge about the magnitude and direction of the optical
flow could enhance the diagnosis component of the FDD framework by implicitly quantifying the failure
magnitude and identifying the failed actuator. For instance, if the front right clockwise rotating (from top
view) propeller is lost, then it is expected that the drone will lose lift, tilt forward and rotate clockwise.
In optical flow, this should translate to a vector field with an up-left direction. The stronger the gradient,
the greater the failure magnitude.

As mentioned in the literature study, there are two ways in which optical flow can be represented,
namely sparse and dense optical flow [21]. The main difference is that the first computes the optical
flow for a predetermined number of features of interest whereas the second computes it for the com-
plete frame. Even though the sparse optical flow is less computationally expensive, it has two main
problems. First, those features of interest may disappear or become hidden after a few frames, forcing
the optical flow approach to select new features. Second, the algorithm may choose different features
between frames as some become more salient than others throughout time. As a result, it is difficult to
infer a potential actuator failure from a specific optical flow change pattern as it could be attributed to the

10.1. FDD model architecture 199

tracking of different frame features. As an example, a feature far in the distance may be chosen at time
step t with a small optical flow gradient pointing to the left, whereas at time step t+1 is is replaced by
another closer feature with a large optical flow gradient pointing to the right. Despite the agent motion
being minimal, the optical flow may wrongly infer the opposite. Hence, dense optical flow was chosen
for the present research.

In literature there are two main classes of dense optical flow approaches, namely traditional or
classical energy-based and deep-learning based. In recent years, deep learning based approaches
have been able to surpass the traditional counterparts in accuracy and lower inference times, allowing
them to run in real time and becoming the de facto choice for computationally constrained devices and
platforms [286, 287]. In most cases, the performance of optical flow approaches is compared using
the Average End Point Error (AEPE) on the MPI-Sintel final dataset and the Fl-all in the KITTI2015
dataset [288]. The AEPE is the average Euclidean distance between the estimated and ground truth
optical flow vectors, and the Fl-all is the percentage of flow outliers averaged over all pixels. The MPI-
Sintel final dataset1 [289] is a 564 frame animated movie synthetic dataset with realistic illuminations,
reflections and rendering effects; whereas the KITTI2015 dataset2 [290, 291] is a 200 frame real-world
dataset collected from a moving car.

Within this deep-learning based approaches there are three architectures that, according to the
author, stand out from the literature for their high accuracy and low inference time, while providing their
code and trained model weights. With their trade-off metrics shown in Table 10.1, they are:

• CNNs for Optical Flow using Pyramid, Warping, and Cost Volume (PWC-NET) [292]. It was
published in June 2018, one of the fastest methods in literature and the fastest from the selection;
it is considered a milestone algorithm in the field [288].

• Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) [293]. It was published in November
2020 and it shows the highest performance of the three considered approaches in the MPI-Sintel
dataset with the highest reported inference time [293].

• Displacement-Invariant Matching Cost Learning for AccurateOptical FlowEstimation (DICL-Flow)
[294]. It was published in December 2020 and it shows a reported runtime and performance
between the PWC-NET and RAFT approaches.

Table 10.1: Performance and inference time comparison of dense optical flow approaches.

Time K-15 train K-15 test S-train (EPE) S-test (EPE)Method
(s) EPE Fl-all Fl-all Clean Final Clean Final

PWC-NET3 0.03 10.35 33.67% - 2.55 3.93 - -
RAFT4 0.2 5.04 17.4% - 1.43 2.71 - -
DICL-Flow5 0.08 8.70 23.6% - 1.94 3.77 - -
RAFT-S - 7.51 26.9% - 2.21 3.35 - -
Farneback [295] 1 10.50 - 53.09% - 8.9 - -

All of these deep-learning based approaches were trained with data from the FlyingChairs [296]
and FlyingThings3D [297] datasets. Next to them, Table 10.1 contains two more entries: a classical
approach for comparison, namely Gunnar Farneback’s algorithm [298] developed in 2003, and a small
pretrained RAFT model (RAFT-S) implemented within the Torchvision model library. In contrast with
the original RAFT model, it contains five times less parameters but is able to maintain superior per-
formance in the MPI-Sintel final train dataset when compared to the PWC-NET and DICL-Flow models.

1http://sintel.is.tue.mpg.de/
2https://www.cvlibs.net/datasets/kitti/
3https://github.com/philferriere/tfoptflow
4https://github.com/princeton-vl/RAFT
5https://github.com/jytime/DICL-Flow

200 10. Fault detection and diagnosis

Additionally, the inference time of all the implemented approaches with the datasets collected in this
research at different resolutions (section 8.6) are shown in Table 10.2. Each time value is the average
time that each algorithm took to predict the optical flow for 250 frames on a laptop with a 6 core Intel
Core i7-9750H CPU, 16 GB of RAM DDR4 and an NVIDIA Quadro P2000 with 5 GB of GDDR5 mem-
ory. As can be seen, even though DICL-Flow appears to be the intermediate option from literature, it
presents the worst inference time for all resolutions.

Table 10.2: Inference time comparison of dense optical flow approaches on the collected UE4 dataset at different resolutions.

Methods 256×144 512×288 1024×576
(s) (s) (s)

PWC-NET 0.073 0.143 0.423
RAFT 0.17 0.17 0.36
DICL-Flow 0.274 0.296 0.617
RAFT-S 0.06 0.10 0.35
Farneback 0.008 0.042 0.177

Figure 10.2 allows for a visual comparison of the approaches’ optical flow quality with a frame from
the 1024×576 dataset. As can be seen in Figure 10.2b, even though PWC-NET has the lowest run
time among the deep learning options, its optical flow prediction is very noisy without any recognisable
features, indicating a poor cross-dataset generalization. Furthermore, from Figure 10.2f it can be seen
that Farneback does not perceive slight movements. Most of the pixels are black, leading to the loss of
potential features (pixels) that could serve as rich sources of information further down the FDD pipeline.
Besides that, a strong flickering behaviour has been observed in Farneback’s optical flow over multiple
frames, which hints to unreliable predictions.

(a) Original (b) PWC-NET (c) RAFT (d) DICL-Flow (e) RAFT-S (f) Farneback

Figure 10.2: Dense optical flow visual quality comparison.

Given the high inference time of DICL-Flow with the collected dataset and the low visual qual-
ity of PWC-NET and Farneback, the two remaining options for optical flow computation are RAFT and
RAFT-S. As both show similar visual quality and RAFT-S has a run time three times lower than its larger
version for the lowest resolution, RAFT-S is chosen as the optical flow module of the FDD pipeline.

Returning the attention to Figure 10.1, the bottom information path shows the camera data process-
ing. In the case of the Bebop 2 drone, the camera captures images at 1080p, meaning frames of 1080
pixels in height and 1920 in width with three RGB channels [1080×1920×3], and they are resized to
a tensor of dimensions [144×256×3] before being stored in the camera buffer (𝑏cam). Then, at every
time step at which the FDD framework is executed, the 𝑏cam contains 𝑓cam/𝑓FDD + 1 samples, and the
first and last entry of the buffer are passed on to the optical flow model. Here, 𝑓cam stands for the fps
rate at which the drone collects image data and 𝑓FDD is the frequency at which the FDD pipeline is
executed on board of the drone. Next, the buffer is emptied except for the last stored image, which
remains in memory for the next FDD time step. This ensures the temporal coherence of the optical
flow over multiple FDD calls.

Once RAFT-S computes the optical flow, the output tensor is fed to a feature extractor. For this part
of the pipeline, the author opted for transfer learning instead of developing their own. The model of
choice was the backbone of MobileNetV3-Small [299] with frozen weights pre-trained on the ImageNet

10.1. FDD model architecture 201

dataset [300] because it has the lowest inference time among all keras pre-trained models6 at the time
of writing. A depth multiplier (alpha) of 0.75 was set in order to proportionally decrease the number of
filters in each layer, achieving a reduction in the number of parameters from 2.9 to 2.4 million (3 ms of
inference time). Finally, the last layer of MobileNetV3-Small is set to be a global average pooling layer
which collapses the width and height of the output tensor to a single feature, resulting in a 1D tensor
of 432 features.

10.1.2. IMU data processing
From the IMU, the FDD algorithm receives six 1D data streams, namely the linear acceleration and the
angular velocity in the x, y and z directions. Two key signal features that contribute to the detection
and classification of these failures are the evolution of their bias through time and the amplitude of their
oscillations; the latter especially in the case of blade damage, as highlighted in chapter 9. Informa-
tion about both features can be encapsulated in their Short-Time Fourier Transform (STFT), creating
compact time-frequency maps or spectrograms and removing potential sensor noise. To illustrate this,
Figure 10.3 shows the accelerometer signal in the x-direction and its spectogram for a random flight
within the dataset which experienced a blade damage failure of 0.8, 6.83 seconds after the start (as
highlighted by the red dashed vertical line). As can be seen, failure can easily be detected by the sud-
den appearance of signal content at high frequencies, in this case between 173 and 186 Hz.

0.0 2.5 5.0 7.5
Time [s]

−1.0

−0.5

0.0

0.5

1.0

a x
 [m

/s
2]

1e2

0.0 2.5 5.0 7.5
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

f [
H

z]

1e2

Figure 10.3: Drone acceleration along the x-axis and its spectrogram. The dashed vertical line denotes the time of failure.

From the IMU information path shown in the upper half of Figure 10.1, the incoming data from the
accelerometer and the gyroscope is stored in a buffer (𝑏IMU). Once the FDDmodule is called, the buffer
is emptied and its data is used for computing the STFT. This form of frequency analysis is a windowed
approach which divides the time signal into small equally sized segments and applies an independent
Fourier transform to each one of them. Hence, there is a trade-off between the time and frequency
resolutions; the wider the window the higher the frequency resolution at the expense of the time res-
olution. Since the STFT is applied to small sample sizes of 𝑛seg=⌊𝑓IMU/𝑓FDD⌋ at a time, a window size
of 𝑛win=⌊𝑛seg/4⌋ is chosen with 𝑜 = ⌊3/4𝑛win⌋ samples of overlap between windows, i.e. a stride of
s=⌈1/4𝑛win⌉. The sample vector is padded such that the time resolution or the number of steps in which
the time axis of the spectrogram is divided is 𝑡res=⌈𝑛seg/(𝑛win-𝑜)⌉+1. As can be seen, as 𝑛win increases,
𝑡res decreases. The opposite is observed in the frequency resolution 𝑓res=⌊𝑛win/2⌋ + 1.

For the present research, 𝑓IMU of the collected dataset and 𝑓FDD approximately equal 555 Hz and
10 Hz, respectively. Hence, 55 samples are fed to the STFT at every FDD time step, which outputs a
tensor of dimensions [7×15×6]. This means a frequency resolution of seven and a temporal resolution
of 15. Figure 10.4 and Figure 10.5 show the IMU signals and their STFTs for the same flight as in
Figure 10.3, using a time segment of 0.1 s (𝑓FDD=10 Hz) starting at 6.78 s in order to include the transi-
tion from a healthy to a failure state. Again, it can still be clearly observed when the blade damage has
taken place for failure detection. Finally, the STFT output tensor is flattened to a single dimensional ten-
sor of 630 features that will be fused with those coming from the camera processing path of the pipeline.

6https://keras.io/api/applications/

202 10. Fault detection and diagnosis

−5
0
5

a x
 [m

/s
2]

1e1

0.0

2.5

f [
H

z]

1e2

−1

0

a y
 [m

/s
2]

1e2

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−1.00

−0.95

a z
 [m

/s
2]

1e1

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Figure 10.4: Sample flight accelerometer signals and their
spectrograms for a 0.1 s time interval starting at 6.78 s.

−5

0

Ω x
 [r

ad
/s

] 1e−1

0.0

2.5

f [
H

z]

1e2

−5

0

Ω y
 [r

ad
/s

] 1e−1

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−2.5

0.0

Ω z
 [r

ad
/s

]

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Figure 10.5: Sample flight gyroscope signals and their spec-
trograms for a 0.1 s time interval starting at 6.78 s.

10.1.3. Sensor fusion and classification module
As can be seen in Figure 10.1, the features from the camera and the IMU are concatenated into a
single vector of [1062] features and fed to a sequence-to-sequence LSTM model, which allows the
FDD framework to take decisions based on current and previous data at every time step. LSTM cells
have an internal state that stores information from an arbitrary number of previous inputs which, in
conjunction with the current input, is used to extract sequential relationships to generate an output.
For the present research, the time series model consists of a simple stack of three LSTM layers of 30
cells, each followed by a Batch Normalization (BN) layer; transformation that maintains the mean and
standard deviation of its input batch close to 0 and 1, respectively. At every FDD time step, an input
vector of 1062 features is fed into the network which outputs a tensor of 30 features.

The last stage of the FDD pipeline is the classifier that will simultaneously perform the tasks of failure
detection, failure magnitude quantification and failed propeller identification. The problem is simplified
by considering each potential drone state, namely each failure mode and the healthy state, as a class.
As an example, if abrupt actuator saturation and abrupt propeller fly-off are considered as the only
modes of failure, then the classification layer would have to discern among nine classes, namely two
failure classes per propeller and one for the healthy state. To perform this classification task, a single
layer dense neural network layer is used with the number of neurons equal to the number of classes,
followed by the softmax activation function in order to generate a multinomial probability distribution;
the model outputs with what probability it believes the input belongs to each class. The goal is that the
highest probability is attributed to the correct failure or healthy drone state at each time during the flight.

Both the LSTM model and the classifier are the only two trainable components of the FDD pipeline,
as the RAFT-S and MobileNetV3-S weights are frozen. For their training, the sparse categorical cross-
entropy loss function and adamoptimizer are used, both extensively exploited in literature for multi-class
classification.

10.2. Results
To demonstrate the potential of the proposed FDD framework, only four modes of failure were consid-
ered per propeller, namely 20%, 40%, 60% and 80% blade damage. As a result, there are 17 classes
among which the FDD pipeline should discern. For this purpose, the dataset was split into 70% train-
ing, 20% validation and 10% testing. Each flight of this dataset has a variable duration between 6 and
16.9 seconds with an average length of 11.6 seconds. The first second of every flight is ignored in
order to avoid the acceleration transient after the flight has started. From the remaining flight time,
single 5.5-second data snippets are used per flight in order to batch train and evaluate the pipeline with
equal length data sequences without padding. Flights of length shorter than 6.5 seconds only constitute
0.72% of the total dataset and were eliminated. Besides that, flights that were not properly recorded in
UE4 — the drone does not take off or the sensor data is not recorded at the correct rate — were also
removed. At the end, the training dataset consisted of 3,468 5.5-second flights.

10.2. Results 203

Table 10.3 shows the results for the pipeline presented in section 10.1 in terms of inference time
and test accuracy. The runtime was obtained from the same compute setup that was used to generate
Table 10.2. Furthermore, three different types of test accuracy are considered, namely general, detec-
tion and diagnosis. The first refers to the accuracy outputted by the model. The second is obtained
by lumping the failure classes 2 to 17 into a single class and computing the resulting accuracy. This
means that a prediction of a data point whose ground truth is a failure class is deemed correct as long
as any class from 2 to 17 is chosen, independently of whether the right class is predicted. The third is
estimated by ignoring the data points whose ground truth is class 1 (the healthy state) and recomputing
the accuracy of correctly classifying the failure among the remaining classes.

Table 10.3: FDD accuracy and inference time results. With a total of 17 classes, four discrete and abrupt failure modes were
simulated for the Bebop 2 UAV per propeller, namely 20%, 40%, 60% and 80% single blade damage.

Data
processing

Data fusion model
Inference

time
General
accuracy

Detection
accuracy

Diagnosis
accuracy

(ms) (%) (%) (%)
IMU LSTM (l3-c30)+BN 88.20 80.70 99.98 50.52
CAM LSTM (l3-c30)+BN 240.01 95.93 98.53 89.94

CAM+IMU
LSTM (l3-c30)+BN 250.47 99.55 99.98 98.86
Dense (l3-c128)+BN 241.77 93.56 99.98 83.49

Additionally, the same metrics of modified versions of the pipeline are also presented in order to
demonstrate the added value of each of its components. The ”Data processing” column stands for
the active branches of the network, where CAM and IMU are networks with only the camera or the
IMU paths active. LSTM (l3-c30)+BN is the data fusion architecture explained in subsection 10.1.3,
whereas Dense(l3-c128)+BN is an alternative approach where the temporal relationships of the data
are ignored by substituting the LSTM network with a three-layer dense NN with 128 neurons per layer.

Even though the IMU-only network feeds the sequential model with 46% more features than the
camera-only network, as can be seen in Figure 10.1, the latter shows an overwhelming superiority in
the diagnosis of the failures with a 39.42% difference in accuracy. The reason behind that difference
can be observed in Figure 10.6; its confusion matrix of the predicted and true failure modes. The
IMU-only network systematically confuses the front right (FR) and front left propellers (FL), as well as
the back right (BR) and back left (BL). However, despite being unable to identify the failed propeller,
it is able to infer the correct degree of damage. This is shown by the parallel diagonals three cells apart.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

224 0 0 0 304 0 0 0 1 0 0 0 0 0 0 0

0 150 0 0 0 461 0 0 0 0 0 0 0 0 0 0

0 1 898 0 0 0 55 0 0 0 0 0 0 1 2 0

0 1 0 531 0 0 0 190 0 0 0 1 0 0 1 0

62 0 0 0 582 0 0 0 0 0 0 0 0 0 0 0

0 127 0 0 0 416 0 0 0 0 0 0 0 0 0 0

0 0 484 0 0 0 61 0 0 0 0 0 0 0 0 0

0 0 0 441 0 0 0 208 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 41 0 0 0 805 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 402 0 0

0 1 0 0 0 0 0 0 0 0 560 0 0 0 74 0

0 0 4 0 0 0 0 0 0 0 0 800 0 0 3 10

0 0 0 0 0 0 0 0 16 0 0 0 533 0 0 0

0 0 0 0 0 2 0 0 0 1 0 0 0 765 0 0

0 1 0 0 0 0 0 0 0 0 765 2 0 1 154 0

0 0 1 0 0 0 0 1 0 0 0 785 0 0 2 18
0

100

200

300

400

500

600

700

800

Figure 10.6: IMU-only LSTM model confusion matrix of the
failure modes.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

568 7 0 0 0 0 0 0 10 0 0 0 0 0 0 0

17 642 8 7 0 0 0 0 0 0 0 0 12 0 0 0

1 9 660 172 0 0 0 0 0 0 0 0 0 1 1 0

0 4 21 615 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 619 2 0 0 4 0 0 0 0 0 0 0

0 0 0 0 3 617 2 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 654 88 0 1 0 0 0 0 0 0

0 0 0 0 1 0 20 571 0 0 2 0 0 0 0 1

0 0 0 0 2 0 0 0 718 4 0 0 0 0 0 0

0 0 0 0 0 1 0 0 3 488 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 227 39 0 0 0 0

0 0 0 0 0 0 0 0 0 0 30 601 0 0 0 4

41 15 0 0 10 0 0 0 1 0 0 0 714 1 0 0

0 0 0 0 0 0 0 0 0 2 0 0 2 614 1 0

0 0 0 0 1 0 0 0 2 0 0 0 0 4 517 124

1 0 0 1 0 0 0 0 0 0 0 0 0 1 18 763
0

100

200

300

400

500

600

700

Figure 10.7: Camera-only LSTM model confusion matrix of
the failure modes.

204 10. Fault detection and diagnosis

In contrast, Figure 10.7 shows that the camera-only network is able to correctly identify the failed
actuator but fails to always accurately quantify the damage. Most of the incorrectly labelled predictions
are one degree of damage higher or lower than the true label, but within the same actuator.

Both observations demonstrate the complementary nature of the camera and IMU sensors, which
combined lead to the highest measured diagnosis accuracy of 98.86%. Figure 10.8 shows the IMU+CAM
network confusion matrix with the main diagonal filled with -1’s in order to visually highlight error pat-
terns. From the multiple coloured parallel lines to the main diagonal, it can be inferred that the largest
source of error originates from failing to correctly identify the damaged actuator. However, it is not
constrained to the front and back propeller combinations, as it was the case for the IMU-only model.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

-1 0 0 0 3 0 0 0 1 0 0 0 2 0 0 0

1 -1 0 0 0 5 0 0 0 0 0 0 1 6 0 0

0 0 -1 0 0 0 4 0 0 1 0 0 0 0 6 0

0 0 0 -1 0 0 1 2 0 0 0 4 0 0 0 2

5 1 0 0 -1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 -1 0 0 0 1 0 0 0 2 0 0

0 0 4 0 0 0 -1 0 0 2 0 0 0 2 1 0

0 0 2 4 0 0 2 -1 0 0 0 0 0 1 1 1

2 0 0 0 1 0 0 0 -1 0 0 0 6 0 0 0

1 0 0 0 0 1 0 0 0 -1 0 0 0 2 0 0

0 0 1 0 0 0 0 0 0 0 -1 0 0 0 2 0

0 0 0 0 0 0 1 1 0 0 0 -1 0 0 2 1

0 0 0 0 2 0 0 0 4 0 0 0 -1 0 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 -1 0 0

0 0 1 0 0 0 0 0 0 0 2 1 0 0 -1 0

1 0 1 1 0 0 0 0 0 0 1 6 0 0 2 -1
1

0

1

2

3

4

5

6

Figure 10.8: IMU+CAM LSTM model confusion matrix of the
failure modes with -1’s in the main diagonal.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

376 0 0 0 292 0 0 0 4 0 0 0 1 0 0 0

0 538 0 0 0 162 0 0 0 1 0 0 0 1 0 0

0 0 633 0 0 2 223 0 0 1 0 0 0 0 1 0

0 0 0 539 0 0 0 112 0 0 0 2 0 0 1 0

177 0 0 0 458 0 0 0 3 0 0 0 0 1 0 0

0 115 0 0 0 512 0 0 0 1 0 0 0 1 0 0

0 0 15 0 0 0 745 0 0 3 1 0 0 0 0 0

0 0 1 25 0 0 3 576 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 625 0 0 0 170 0 0 0

0 0 0 0 0 2 0 0 0 469 0 0 0 31 0 0

0 0 0 0 0 0 1 0 0 0 262 0 0 0 12 0

0 0 0 0 0 0 0 1 0 0 1 623 0 0 0 20

5 0 0 0 3 0 0 0 161 0 0 0 653 0 0 0

0 0 0 0 0 1 0 0 0 45 0 0 0 587 0 0

0 0 0 0 0 0 0 0 0 0 47 0 0 0 610 0

0 0 0 1 0 0 0 0 0 0 2 99 0 0 0 694
0

100

200

300

400

500

600

700

Figure 10.9: IMU+CAM Dense model confusion matrix of the
failure modes.

Furthermore, the difference in diagnosis accuracy between the CAM+IMU LSTM and Dense models
highlights the importance of including the data temporal relationships in the FDD framework. However,
it can also be seen that this information does not play a role when detecting the presence of a failure.

From the confusion matrix of the CAM+IMU Dense model shown in Figure 10.9, the misinterpre-
tation among the failures in the front and back propeller groups can again be seen. From this, it can
be deduced that it is not the optical flow but its change that allows their decoupling. If the optical flow
and the LSTM can each be considered a first derivative in time, then it is the second derivative of the
camera’s visual information that carries the differentiation factor between left and right actuators.

Finally, despite the success of the combined sensor approach, it has an inference time 2.84 times
higher than the IMU-only approach: 8.03 ms (3.20%) for STFT, 72.30 ms (28.77%) for RAFT-S, 90.53
ms (36.03%) for MobileNetV3-S, and 80.41 ms (32.00%) for the LSTM+BN and classifier model. Fur-
ther work has to be done in reducing the compute required by the camera path of the model by, for
instance, developing tailored optical flow and feature extraction models. Additionally, an ablation study
has to be performed on the hyper-parameters of the LSTM network.

10.3. Conclusions and recommendations
This research proposes a novel UAV actuator FDD framework that fuses for the first time camera and
IMU data online with an LSTM network. The framework pre-processes the camera information by first
computing its optical flow with the RAFT-S model and then extracting features with the backbone of the
MobileNetV3-S model. Both are off the shelf pre-trained efficient SOTA deep neural networks. STFT
is applied on the IMU signals in order to obtain time-frequency features in the form of flattened spec-
trograms.

10.3. Conclusions and recommendations 205

To demonstrate the potential of the FDD framework, UUFOSim, developed in chapter 8, was used
to generate a dataset of 5,000 flights flown in a urban environment by a Bebop 2 platform with four
options of blade damage per propeller injected during flight. The drone platform was simulated using a
gray-box aerodynamic model [28] from literature complemented with the Blade Element Theory blade
damage model developed in chapter 9.

The IMU-only model has shown to fail to perform damage actuator identification by systematically
confusing the left and right propellers, whereas the camera-only model errors are from failure magni-
tude quantification. When combined, they fill the gap left by each other’s weaknesses. Results show
the complementary nature of the IMU and camera for FDD, achieving an accuracy of 99.98% for de-
tection and 98.86% for diagnosis on the test dataset.

The need for a model which considers the temporal relationships in sequential data was demon-
strated by substituting the LSTM layers with dense neural networks that do not share information about
previous inputs. This modified FDD model led to a decrease in accuracy by 15.37 percentage points
without any gain in inference time.

Despite the high accuracy of the proposed vision-based FDD framework, it has an inference time
of 250 ms, 2.84 times higher than the IMU-only alternative model. This observation calls for further
work on the reduction of the computations required to process the camera data by developing tailored
optical flow and feature extraction models for the task. Optical flow ground truth images can be re-
trieved from UUFOSim for the training and testing of an in-house optical flow model. MobileNetV3-S
could be further reduced in size by progressively removing the last layers and unfreezing its weights
for fine-tuning. Alternatively, it should be investigated whether the current camera pipeline could be
substituted by a sparse optical flow approach (e.g. Lucas-Kanade [184]) followed by two histograms,
one for the magnitude and another for the direction of the sparse optical flow vectors. The number of
the bucket with the highest count for each histogram would be fed to the sensor fusion. Since this work
has shown that the main contribution of the camera is the identification of the failed actuator, it may
be the case that only the vector direction histogram would be necessary. Moreover, an ablation study
should be performed on the hyper-parameters of the LSTM network, which could lead to a reduction
in layers and/or cells. The authors also expect the rise of compute power available by the time UAVs
and UAM concepts are introduced in urban environments.

Future work includes the study of a probabilistic classifier, such as a Bayesian NN, in order to pro-
vide a degree of confidence besides a prediction, as well as improving the explainability of the black-box
model. The potential of other architectures that ingest sequential (image) data, such as Convolutional
LSTMs and lightweight attention-based machine learning approaches should also be considered. An-
other alley of investigation is the substitution of MobileNetV3-S by an image Fourier Transform as a
more efficient feature extractor. Furthermore, atmospheric turbulence models should be implemented
within the simulator in order to assess the robustness of the FDD approach to external disturbances;
they could induce a similar initial UAV motion as actuator failure. Additionally, a hybrid dataset could
be built which combines large quantities of synthetic UUFOSim data with a smaller real world dataset
in order to reduce the reality gap. Data from multiple drones could be collected in order to make the
FDD framework platform agnostic. Finally, the proposed framework should be implemented on a real
Bebop 2 platform to validate the results.

To conclude, the proposed framework demonstrates the potential of including the UAV on-board
camera for online failure detection and diagnosis. The author hopes that it will open the doors to the
development of new approaches that exploit the potential of this sensor for making future drones more
resilient to failures.

V
Thesis conclusions and

recommendations

207

11
Conclusions

The future introduction of UAV and UAM concepts in cities is strongly coupled to the advances in safety
of these systems. To achieve this, actuator Fault Detection and Diagnosis (FDD) is a subfield of control
engineering which improves the vehicle’s self-awareness by detecting, identifying and quantifying on-
board failures. It empowers the system to take informed decisions when counteracting a failure; critical
situation in which it must decide when and whether to deploy safety emergency systems, such as a
parachute, switching between controllers or loading different internal physics models. FDD literature
is extensive but it has been constrained to the analysis of signals from the Inertial Measurement Unit
(IMU) or external sensors that add weight and complexity to the system. Even though cameras are
nowadays ubiquitous in commercial UAVs and their information is already processed for navigation
and state estimation, they have been ignored for this task. The main bottleneck for the implementation
of knowledge-based FDD approaches that are fed on rich visual information is the nonexistence of a
dataset that captures UAV sensor data with mid-flight injected failures. To fill the identified research
gaps, a three-step research project was conducted with the aim of assessing whether vision-based
information enhances the FDD performance. Its stages can be visualised in Figure 11.1.

BET blade damage
model UUFOSim Vision-based UAV

FDD framework

Figure 11.1: Research project stages

First, a white-box blade damage model based on Blade Element Theory was developed which
combines the effects caused by the shift of the centres of gravity and pressure. Based on the vehi-
cle’s linear and angular velocities, as well as the propeller rotational speed, it predicts the forces and
moments caused by the lost blade elements. In contrast with alternative approaches found in liter-
ature, the proposed method does not require expensive experimental campaigns for blade damage
modelling, enables the simulation of any blade damage degree and it can be used as a plug-in to the
healthy vehicle model, extending its range of operation to damaged cases. As a side contribution, 2D
airfoil aerodynamic properties can be identified with the presented BET model — information currently
unavailable for most off-the-shelf UAVs.

To validate the proposed methodology, a dedicated wind tunnel experimental campaign was per-
formed in the Open Jet Facility at TU Delft, where a Bebop 2 propeller was mounted to a static test
stand. Its forces and moments were compared to those predicted by the BET model at various condi-
tions of wind velocity magnitude and direction, degree of blade damage and propeller rotational speed.
The 2D aerodynamic properties of the Bebop propeller were identified using data from the gray-box
aerodynamic model [244], previously identified by the department for the same platform.

209

210 11. Conclusions

Results without blade damage show a similar performance to that of the gray-box model, which
decreases with lower propeller rotational rate (𝜔) and higher wind speed (𝑉∞). This shows that both
approaches struggle to correctly model blade sections under a negative angle of attack; phenomenon
mostly emergent in those 𝜔-𝑉∞ conditions for blade sections close to the propeller hub.

Furthermore, predicted thrust and torque signals by both models show a bias with respect to the
validation data, which points to the existence of unmodelled physical effects. Additionally, the gray-box
model shows low performance at high wind speeds. This behaviour is unexpected as the model is
reported to be identified with wind tunnel data gathered at speeds up to 14 m/s; value higher than the
maximum 12 m/s used in the present research.

Moreover, the BET model architecture has a stronger physical foundation for torque than for thrust.
Despite being trained with data collected at low wind speed, the torque is able to perform better at those
speeds that the model had not seen before during training when compared to the thrust.

In the presence of blade damage, it is necessary to validate the signal bias, as well as the ampli-
tude of the damage induced oscillations. When validating the bias, BET’s performance at high propeller
rotational speeds was similar to that without blade damage, with differences in relative error oscillat-
ing between 5% and 24%. However, the errors at low propeller rotational speeds were more than 3
times higher; oscillating between 15% and 75%. Unfortunately, the oscillations’ amplitude could not
be validated due to limitations in the experimental campaign, such as the sensor noise of the load cell,
the low sampling rate of wrench signals by the test stand and the observed resonance in the test set-up.

Second, a high-fidelity photo-realistic UAV simulator built in Unreal Engine 4 (UE4) on AirSim, called
UUFOSim (Unreal UAV Failure injectiOn Simulator), was proposed. It is based on the collection of
synthetic sensor data from drone flights in a urban UE4 environment. For that purpose, the UUFOSim
iterates over three stages. First, it generates an occupancy map of the environment. Second, it pro-
poses an A∗ navigation strategy which avoids the obstacles of the environment. Third, it executes the
flight, collects data and injects a failure. It is the first simulator that allows the collection of multi-sensor
UAV flight data with mid-flight actuator injected failures programmatically.

UUFOSim was used to collect a dataset of 5,000 flights of the Bebop 2 drone with different degrees
of blade damage. To this end, the aforementioned gray-box aerodynamic model, complemented with
the developed BET blade damage model, simulated the platform physics. To the author’s knowledge,
UUFOSim generated the first synthetic dataset in literature for the training and testing of UAV actuator
FDD approaches. Such data is of superior quality when compared to alternative simulation environ-
ments, such as Gazebo, allowing the development of applications with a reduced reality gap.

Third, to achieve the main goal of this research, a novel UAV actuator FDD framework that fuses
for the first time camera and IMU data online with an LSTM network was proposed. The framework
pre-processes the camera information by first computing its optical flow with the RAFT-S model and
then extracting features with the backbone of the MobileNetV3-S model. Both are off the shelf pre-
trained efficient state-of-the-art deep neural networks. IMU signals were pre-processed by applying a
Short-Time Fourier Transform to obtain time-frequency features in the form of flattened spectrograms.

The dataset collected with UUFOSim was used for training and testing the FDD framework. The
IMU-only variant of the model has shown to fail to perform damage actuator identification by system-
atically confusing the left and right propellers, whereas the camera-only variant errors are from failure
magnitude quantification. When combined, they fill the gap left by each other’s weaknesses. These ob-
servations show the complementary nature of the IMU and camera for FDD, which together are able to
achieve an accuracy of 99.98% for detection and 98.86% for diagnosis on the test dataset. In contrast,
the IMU-only and camera-only models achieve a diagnosis accuracy of 50.52% and 89.94%, respec-
tively. Additionally, the need for a model which considers the temporal relationships in sequential data
was demonstrated by substituting the LSTM layers with dense neural networks that do not share in-
formation about previous inputs. This modified FDD model led to a decrease in diagnosis accuracy by
15.37 percentage points without any gain in inference time.

211

Despite the high accuracy of the proposed vision-based FDD framework, it has an inference time
of 250 ms, 2.84 times higher than the IMU-only alternative model. This observation calls for further
work on the reduction of the computations required to process the camera data by developing tailored
optical flow and feature extraction models for the task; these components currently account for more
than 64% of the inference time. The author also expects the rise of compute power available by the
time UAVs and UAM concepts are introduced in urban environments.

To conclude, the results from the three-step research project demonstrate that FDD approaches
can be benefited from vision-based information, highlighting the complementary nature of the camera
and IMU sensors. Whereas the IMU excels in damage quantification, the camera is superior in damage
identification. Besides that, this work also contributes to the UAV research community by providing two
new tools: the BET blade damage model and UUFOSim. The developed ”plug-in” BET model with its
future work aspires to become an indispensable cost-effective tool for researchers when designing and
testing their work to build more resilient UAVs against blade damage in a wide range of fields, from
fault detection and diagnosis to fault-tolerant control. Also, the author hopes that UUFOSim will help
the research community to build benchmarks that will assist in the tracking of the future progress of
UAV FDD.

12
Recommendations for future work

First, multiple assumptions were highlighted when developing the BET blade damage model which
could be considered as points of improvement; refinement of the model would contribute to its gen-
eralisation and application to different propeller types. Here, only the recommendations derived from
geometrical and aerodynamic assumptions will be repeated. The reader is encouraged to review sub-
section 9.4.5 for a comprehensive list of assumptions and recommendations.

The geometrical assumptions, such as the discretisation of the propeller in trapezoids, the linearly
decreasing twist and the constant airfoil throughout the blade, could be eliminated by creating a 3D
model (digital twin) of the propeller using scanning technologies that probe the propeller through phys-
ical touch (with contact), such as Coordinate Measuring Machines [259], or scanning technologies that
exploit acoustic, optical or magnetic approaches (without contact), such as laser scanning, structured
light or photogrammetry [260, 261] (e.g. structure from motion). If translated to a CAD model, this
would allow the computation of the twist, chord and volume of each blade section, the latter being used
for the computation of the centre of gravity when the density of the material is known. Additionally,
such model would contribute to the potential discovery of multiple airfoils present in the blade.

The aerodynamic assumptions that should be revisited first are the neglect of the aeroelasticity ef-
fects and the blade root and tip losses. Drone rotors lack an articulated head, causing their material to
bend and the rotor to tilt with the possibility of flapping [263]. For that purpose, the field of wind energy
could be explored since Blade Element Momentum Theory approaches have been used as the aerody-
namic component of aeroelastic models [264]. Regarding the blade root and tip losses, the circulation
must be equal to zero at those locations, and at the tip there is an additional reduction of lift due to the
appearance of tip vortices. In the field of wind energy [265], these effects are taken into account by
multiplying the induced velocity with a correction factor that is a function of the distance to the centre
of rotation (r). This factor would acquire a value of 1 in the centre of the blade and a value of 0 at the
edges, allowing the induced velocity to fall to zero at the blade edges. Alternatively, previous literature
[29, 265, 266] has also proposed the Prandtl tip-loss factor approximation (B=0.95-0.98) to compute
the effective blade radius (R𝑒 = BR) and account for the loss of blade lift. As a result, the outer portion
of the blade (R-R𝑒) is considered to be incapable of carrying lift. Given that in helicopter aerodynamics
the introduction of the tip loss factor can cause rotor thrust reductions between 6-10% [29], the study of
its implementation in drone propellers is recommended for the further improvement of the BET thrust
and torque predictions.

Furthermore, due to the challenges encountered during the BET model validation, the author can
only recommend the in-house design of a test stand for the measurement of wrenches of partially dam-
aged propellers. Such a stand would require a sampling frequency above 100 Hz for measurements
carried out at the minimum rotational speed of 300 rad/s (or 350 Hz for 𝜔 of 1100 rad/s) and a dampen-
ing system which prevents resonance with the rest of the structure and the testing platform. Especially
designed load cells have to be used capable of withstanding at least 6g of sustained vibrations. In
addition, the characterization of the complete test set-up in order to identify its dynamics could con-

213

214 12. Recommendations for future work

tribute to the removal of the resonance present in the measurements. Knowledge about the complete
system behaviour would allow a deeper understanding of the measured signals and the separation of
the set-up dynamics from the ”pure” thrust and torque oscillations caused by the damaged propeller.
The author hopes that the outlined recommendations will serve as basis in the design of a future ex-
perimental campaign with more specialised hardware.

As final recommendation for future work applied to the BET model, the 2D aerodynamic properties
of the propeller could be identified with real drone data instead of an existing aerodynamic model. This
would prevent that the errors and assumptions in the aerodynamic model propagate to the BET model,
easing the validation analysis.

Second, the rate at which camera data was sampled from UUFOSim show a great spread due to its
dependence on the AirSim image retrieval functions. The author recommends the in-house develop-
ment of an image capture module which allows its coupling with the physics engine. This would lead to
a similar behaviour as observed with the IMU. Further work with UUFOSim would be its implementation
in a computer cluster in order to deploy multiple UFOs (UAVs) simultaneously with multi-threading and
decrease the time required for data gathering. Additionally, a benchmark dataset and web platform
could be built in order to track the progress of future FDD approaches and foster research in this field,
similar to how it is done with the Sintel and KITTI datasets.

Third, from the high inference time required by the proposed FDD framework, the computations
applied on camera information should be reduced. Optical flow ground truth images can be retrieved
from UUFOSim for the training and testing of an in-house optical flow model. MobileNetV3-S could
be further reduced in size by progressively removing the last layers and unfreezing its weights for fine-
tuning. Alternatively, it should be investigated whether the current camera pipeline could be substituted
by a sparse optical flow approach (e.g. Lucas-Kanade [184]) followed by two histograms, one for the
magnitude and another for the direction of the sparse optical flow vectors. The number of the bucket
with the highest count for each histogram would be fed to the sensor fusion. Since this work has shown
that the main contribution of the camera is the identification of the failed actuator, it may be the case
that only the vector direction histogram would be necessary. Moreover, an ablation study should be
performed on the hyper-parameters of the LSTM network, which could lead to a reduction in layers
and/or cells.

Other future work applied to the FDD framework includes the study of a probabilistic classifier, such
as a Bayesian NN, in order to provide a degree of confidence besides a prediction, as well as improving
the explainability of the black-box model. The potential of other architectures that ingest sequential (im-
age) data, such asConvolutional LSTMs and lightweight attention-basedmachine learning approaches,
should also be considered. Another alley of investigation is the substitution of MobileNetV3-S by an
image Fourier Transform as a more efficient feature extractor. Furthermore, atmospheric turbulence
models should be implemented within the simulator in order to assess the robustness of the FDD
approach to external disturbances; they could induce a similar initial UAV motion as actuator failure.
Additionally, a hybrid dataset could be built which combines large quantities of synthetic UUFOSim data
with a smaller real world dataset in order to reduce the reality gap. Data from multiple drones could
be collected in order to make the FDD framework platform agnostic. Finally, the proposed framework
should be implemented on a real Bebop 2 platform to validate the results.

VI
Appendices

215

A
Induced velocity computation:

gradient-descent approach
As discussed in subsection 9.2.1, the computation of the uniform induced velocity can not be solved
analytically and requires a numerical approach. However, this computation needs to happen in ev-
ery time step of the UE4 simulation after the drone has suffered blade damage in one of its propellers;
hence, the efficiency of this optimisation is of paramount importance for the gathering of large quantities
of simulation data. To this end, the goal of this chapter is to check the possibility of using a gradient-
descent approach with a low computational load.

In order to define the optimisation problem objective function, the alternative definition of the air-
speed at the rotor (𝑉𝑅) of Equation A.1 will be used in conjunction with the Glauert formula presented in
Equation 9.19. In contrast with Equation 9.20, the new definition of 𝑉𝑅 translates the 3 components of
the linear velocity of the propeller assembly (⃗⃗𝑉𝑃) into 2 components, namely its magnitude (𝑉) and the
angle of attack of the rotor disk relative to the oncoming flow (𝛼𝑑). The latter is illustrated in Figure A.1.

𝑉𝑅 = √(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 (A.1)

Tip plane

Figure A.1: Angle of attack of the rotor relative to the oncoming flow.

The optimisation problem objective function can be defined as described in Equation A.2, which is
the same as finding the location where the function 𝑓(𝑣0) intersects the x-axis.

min
𝑣0

|𝑓(𝑣0)| = |𝑇 − 2𝜌𝜋𝑅2𝑣0√(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2| (A.2)

217

218 A. Induced velocity computation: gradient-descent approach

Gradient-descent methods are used in optimization for finding the local minimum of a differentiable
function by traversing the solution space in the opposite direction of the function gradient, also known
as the direction of steepest descend. In the case of the present objective function, local minima will be
found where the derivative of 𝑓(𝑣0) with respect to 𝑣0 is zero and where 𝑓(𝑣0) = 0. In the case that it
can be proven that the function 𝑓(𝑣0) is strictly monotonic, meaning that it only increases or decreases,
then 𝑓(𝑣0) will not have local minima and it will be zero at a single value of 𝑣0. Then, there exists a
single (global) minimum in the objective function and a gradient-descent approach could be used to
find it. Given the definition of the Glauert formula (Equation 9.19), the uniform induced velocity can
only have a positive value. Hence, it is only required to prove the strict monotonocity for 𝑣0 values in
the half-open interval [0, ∞).

Equation A.3 shows the derivative of 𝑓(𝑣0) with respect to 𝑣0 and Equation A.4 shows the uni-
form induced velocity values that make it zero. As can be seen, 𝑓(𝑣0) has one or two optima when
9 sin2𝛼𝑑 − 8 ≥ 0. Since the uniform induced velocity can only be positive, the only interesting solution
comes from negative 𝛼𝑑 angles, ergo when the condition in Equation A.5 is met. When the angle of
attack of the rotating disk is higher than arcsin−2√2/3, the function is strictly monotone and gradient-
descent would be able to find the global minimum.

𝑑𝑓(𝑣0)
𝑑𝑣0

= −2𝜌𝜋𝑅2 (√(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 + 𝑣0
𝑉 sin𝛼𝑑 + 𝑣0

√(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2
) (A.3)

𝑣0 =
𝑉
4 (−3 sin𝛼𝑑 ±

√9 sin2𝛼𝑑 − 8) (A.4)

sin𝛼𝑑 ≤ −
2√2
3 (A.5)

During nominal flight, the drone will experience a positive 𝛼𝑑 when in cruise. However, in the case of
failure, when the induced velocity has to be computed, the drone could pitch or roll excessively causing
the air flow to impact the propeller from below. Hence, it is important to consider the presence of the
discovered local minima. Even though the function can contain local minima, they could be avoided by
a proper selection of hyper-parameters and initialisation of the optimisation; tuning the gradient-descent
to the particular (known) function.

Considering extreme values of 𝑣0, it can be observed in Equation A.2 that the second term of 𝑓(𝑣0)
is dominant. As a result, 𝑓(−∞) leads to a positive value and 𝑓(∞) to a negative one; the function is
decreasing in value independently of 𝛼𝑑. In the case that there is a local minimum (Equation A.5 is
fulfilled) and it takes place at a lower uniform induced velocity than when 𝑓(𝑣0) = 0, as illustrated in
Figure A.2, the gradient-descent could be initialised with a high value of 𝑣0 to guarantee that the opti-
misation will encounter the global optimum before the local minimum. Since the function is decreasing,
this approach would not work if 𝑓(𝑣0) < 0 at 𝑑𝑓(𝑣0)/𝑑𝑣0 = 0, as can be seen in Figure A.3. In order to
check whether this latter scenario exists, Equation A.4 is inserted in 𝑓(𝑣0), leading to Equation A.6.

𝑇 − 𝜌𝜋𝑅
2𝑉2
2 (−3 sin𝛼𝑑 ±√9 sin2𝛼𝑑 − 8)√cos2𝛼𝑑 +

1
16 (sin𝛼𝑑 ±

√9 sin2𝛼𝑑 − 8)
2

≤ 0 (A.6)

Since the local minimum can only be found when sin𝛼𝑑 ∈ [−1,−2√2/3] (Equation A.5 is met), the
two limits of this range are inserted in Equation A.6, resulting in the two conditions presented in Equa-
tion A.7 and Equation A.8. Observing both conditions, the second one is automatically met when the
first one is fulfilled. Hence only when Equation A.5 and Equation A.7 are met, there is a local minimum
which takes place with a higher uniform induced velocity than when 𝑓(𝑣0) = 0. In that case, initialising
the optimisation with a high value of 𝑣0 would most likely not converge to the undesired local minimum.

219

Figure A.2: Desired scenario: local minima takes place at
lower induced velocity than global minima, so gradient de-
scend will reach global minima first. The dotted line corre-
sponds to 𝑓(𝑣0), whereas the bold line to |𝑓(𝑣0)|.

Figure A.3: Undesired scenario: local minima takes place
at higher induced velocity than global minima, so gradient
descend will reach local minima first. The dotted line cor-
responds to 𝑓(𝑣0), whereas the bold line to |𝑓(𝑣0)|.

sin𝛼𝑑 = −
2√2
3 , 𝑇 < √3

3 𝜌𝜋𝑅
2𝑉2 (A.7)

sin𝛼𝑑 = −1, 𝑇 < 1
2𝜌𝜋𝑅

2𝑉2 (A.8)

To check whether the blade damage simulation with the Bebop 2 model would encounter scenarios
in which both conditions (Equation A.5 and Equation A.7) are met, 100,000 scenarios are run with the
following set of conditions: ⃗⃗𝑉𝐵𝑥 ∈ [−3, 3], ⃗⃗𝑉𝐵𝑦 = 0, ⃗⃗𝑉𝐵𝑧 ∈ [−3, 3], ⃗⃗Ω⃗ = ⃗⃗0 and 𝜔 ∈ [300, 1256]. When
compared to those nominal conditions presented in subsection 9.2.3, here the body velocity in the z-
direction can also acquire positive values and its absolute value is higher in order to account for the
failure cases.Figure A.4 shows 100,000 points representing all the scenarios in a plot of vehicle velocity
over the thrust (V-T). As can be observed, there is not overlap between the set of points that fulfil the
first condition in Equation A.5 (the pink points within the convex hull) and those that meet the second
condition in Equation A.7 (the green points under the dashed line). As a result, for the simulations of
the present research, only the desired scenario illustrated in Figure A.2 will be observed. Hence, if
the gradient-descent is initialised with a high positive value of 𝑣0, it will always encounter the global
minimum first.

Now that it has been proven to be beneficial to initialise the gradient-descent with a high positive
value of uniform induced velocity, the question is what should be the exact initialisation value. Ob-
serving Figure A.2, it is enough to initialise the gradient-descent with a uniform induced velocity value
higher than the maximum 𝑣0 that the local minimum could have. If initialised between the local and
global minimum, the gradient-descent will move the solution towards the global optimum to the right
along the 𝑣0 axis. If initialised to the right of the global minimum, the gradient-descent will move the
solution towards the global optimum to the left along the 𝑣0 axis.

Given Equation A.4, the maximum 𝑣0 that the local minimum could have is found when the output
of the square root is positive and 𝛼𝑑 has a value of -90∘; then, the uniform induced flow equals the
incoming flow velocity (𝑣0 = 𝑉). From the 100,000 scenarios presented in Figure A.4, the maximum
velocity observed is 4.24 m/s. Therefore, if the gradient-descent optimisation is initialised with 𝑣00=4.5
m/s, the initial function evaluation will always be carried out to the right of the local optima.

220 A. Induced velocity computation: gradient-descent approach

0 1 2 3 4
Velocity [m/s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ru

st
 [N

]

T=ρAV2√3/3
Convex hull: sinαd≤ − 2√2

2

T>ρAV2√3/3 & sinαd≥ − 2√2
2

T<ρAV2√3/3
sinαd≤ − 2√2

2

Figure A.4: V-T graph for 100,000 simulation scenarios of the Bebop 2 drone. The convex hull encapsulates all the pink points
that meet (first) the condition in Equation A.5. The green points under the dashed line meet the (second) condition outlined in
Equation A.7. The magenta points are those scenarios in which neither of the conditions are met. From the figure, there is no
overlap between both conditions sets.

Furthermore, the gradient-descent optimisation requires the selection of the learning rate (𝛾). This
hyper-parameter needs to be carefully chosen in order to avoid overshooting the global optimum and
landing in the local minimum. Given the update law of the gradient-descent provided by Equation A.9,
the algorithm can overshoot the global optimum by a value equal to 𝛾 𝑑|𝑓(𝑣0)|𝑑𝑣0

. Hence, the smaller this
update step, the lower the probability that the optimisation overshoots the global optimum and lands in
the local minimum.

𝑣0𝑖+1 = 𝑣0𝑖 − 𝛾
𝑑|𝑓(𝑣0𝑖)|
𝑑𝑣0

= 𝑣0𝑖 − 𝛾
𝑑𝑓(𝑣0𝑖)
𝑑𝑣0

𝑓(𝑣0𝑖)
|𝑓(𝑣0𝑖)|

(A.9)

For the current research, two values are considered for the learning rate, namely 0.5 and 0.1. Ad-
ditionally, the value of the learning rate is decreased by a factor of 0.5 every time 𝑑|𝑓(𝑣0)|

𝑑𝑣0
changes sign.

Using the same 100,000 simulation scenarios of the Bebop 2 drone presented in Figure A.4, the per-
formance results are observed in Table A.1. An optimisation is defined as successful when its output
is fed to 𝑓(𝑣0) and the result is less than 10−5. As can be seen, the gradient-descent approach has a
100% success rate for both learning rates, in contrast with the slight worse performance of 98.56% for
Nelder-Mead. Additionally, the gradient-descent optimisation shows an approximately 20% and 55%
computational time reduction with respect to the Nelder-Mead alternative for the 0.1 and 0.5 learning
rates, respectively. Hence, the chosen learning rate for the present research is 0.5.

Table A.1: Performance results of Nelder-Mead and Gradient-Descent with learning rate values of 0.1 and 0.5.

m
m

Success rate
[%]

Time per scenario
[ms]

Nelder-Mead 98.56 5.51
Gradient-descent (𝛾=0.1) 100 4.39
Gradient-descent (𝛾𝛾𝛾=0.5) 100 2.45

221

Finally, algorithm 1 shows the complete pseudo-code used for the simple implementation of the pre-
sented gradient-descent variant. No gradient-descent optimisation modifications, such as Momentum,
RMSprop or Adam, were considered since they would increase the chance of overshooting the global
minimum; especially due to the sharp discontinuity in the derivative 𝑑𝑓(𝑣0)

𝑑𝑣0
observed in Figure A.2. As

can be seen, the optimisation concludes when either of the following 3 conditions is met:

1. The maximum number of iterations is reached (𝑖𝑚𝑎𝑥=10,000).

2. The change in the solution is lower than a threshold (𝑚 < 0.01) for a certain number of iterations
(𝑐𝑚𝑎𝑥 = 20).

3. The denominator of the gradient update (|𝑓(𝑣0)|) is less than a very small value (𝜖 = 10−10)
because then the solution has been found.

222 A. Induced velocity computation: gradient-descent approach

Algorithm 1: Gradient-descent variant

Input : The derivative function 𝑑|𝑓(𝑣0)|
𝑑𝑣0

, the initialisation 𝑣00 and the function |𝑓(𝑣0)|.
Output: The uniform induced velocity (𝑣∗0).
// Initialise the parameter 𝑥𝑖, the previous gradient 𝑦𝑖−1 and the counter 𝑐
𝑥𝑖 ← 𝑣00 ;
𝑦𝑖−1 ←

𝑑|𝑓(𝑥𝑖)|
𝑑𝑣0

;
𝑐 ← 0;
while 𝑖 < 𝑖𝑚𝑎𝑥 do

// Check that the optimum has not already been found
if |𝑓(𝑥𝑖)| < 𝜖 then

return 𝑥𝑖;
end if
;
// Compute gradient at current parameter value and apply gradient update

𝑦𝑖 ←
𝑑|𝑓(𝑥𝑖)|
𝑑𝑣0

;
𝑥𝑖+1 ← 𝑥𝑖 − 𝛾𝑦𝑖;
;
// Check whether the global minimum has been overshot and reduce learning

rate
if 𝑦𝑖 ≠ 0 then

if 𝑦𝑖−1/𝑦𝑖 < 0 then
𝛾 ← 𝛾/2;

end if
end if
;
// Check whether the parameter change is smaller than threshold and whether

counter has reached maximum
if |𝑥𝑖+1 − 𝑥𝑖| < 𝑚 then

𝑐 ← 𝑐 + 1;
if 𝑐 > 𝑐𝑚𝑎𝑥 then

return 𝑥𝑖+1;
end if

else
𝑐 ← 0;

end if
;
// Update the parameter and its gradient for the next iteration
𝑥𝑖 ← 𝑥𝑖+1;
𝑦𝑖−1 ← 𝑦𝑖;

end while
return 𝑥𝑖;

B
Propeller damage flowcharts

Hyper-parameter selection

Offline blade lift
and drag

coefficient curve
identification

Propeller attitude

Propeller
geometry
definition

Mass related
force and

moment changes
computation

Aerodynamic
related force and
moment changes

computation

Environment
conditions

Damaged propellers'
forces and moments

computation

Eqs. (9.62) & (9.63)

Offline

Online

, , , , ,

,

Figure B.1: Flowchart of the damaged propeller offline and online computations. The lift and drag coefficient curves identification
takes place offline, whereas the computation of forces and moments due to propeller damage are performed online. The blocks
with a solid edge line are further expanded in the next figures.

223

224 B. Propeller damage flowcharts

Propeller centre
of gravity

computation

Eq. (9.8) & (9.10)

Blade centre of
gravity

computation

Gravity force
reduction

computation

Eq. (9.1)

Centre of gravity
shift related
moments

computation

Eq. (9.6)

Centrifugal force
computation

Eq. (9.9)

Propeller attitude

Propeller: i
i = 1, 2, 3, 4

Blade: j
j = 1, 2,

Propeller
geometry
definition

Figure B.2: Flowchart of the computation of the damaged propeller mass related forces and moments at one time step during
simulation.

225

Hyper-parameter selection

Gray-box model thrust and
torque computation

Data point input generation

Uniform induced inflow
computation

Eq. (9.19)

Blade section linear induced
inflow computation

Eq. (9.21)

Blade section airspeed
computation

Eq. (9.26)

Blade section angle of attack
computation

Eq. (9.27)

Blade section contribution to
regression matrix A

computation

Blade contribution to
regression matrix A

computation

Constrained problem
optimisation

Eq. (9.53)

Propeller contribution to
regression matrix A

computation

Eq. (9.36)-(9.39)

Blade section: k
k = 1, 2,

Blade: j
j = 1, 2,

Propeller contribution to A
over a complete propeller

rotation average computation

Eq. (9.43)

Propeller: i
i = 1

R
ep

ea
t q

 ti
m

es

Propeller
clockwise
rotation

Measurement vector
b composition

Eq. (9.42)

Regression matrix A
composition

Eq. (9.40)

Propeller
geometry
definition

Figure B.3: Flowchart of the offline lift and drag coefficient curves identification.

226 B. Propeller damage flowcharts

Environment conditions

Gray-box model thrust and
torque computation

Uniform induced inflow
computation

Eq. (9.19)

Lost blade section linear
induced inflow computation

Eq. (9.21)

Lost blade section angle of
attack computation

Eq. (9.27)

Lost blade section's lift and
drag computation

Eq. (9.11) & (9.12)

Lost blade section airspeed
computation

Eq. (9.26)

Propeller attitude

Offline blade lift
and drag

coefficient curve
identification

Lost blades' force and
moments computation

Eq. (9.56) - (9.61)

Lost blade section's thrust
and torque computation

Eq. (9.29) & (9.30)

, , ,

Propeller: i
i = 1, 2, 3, 4

Blade section: k
k = 1, 2,

Lost blade sections' thrust
and torque computation

Blade: j
j = 1, 2,

Propeller
geometry
definition

Figure B.4: Flowchart of the computation of the damaged propeller aerodynamic related forces and moments at one time step
during simulation.

C
UAV linear velocity sampling strategy for

simulation
When choosing the range of values for the linear drone velocity in the body coordinate frame, there
are 3 variables that are inter-dependent, namely the magnitude of the linear drone velocity, the velocity
component in the x-direction (𝑉𝐵𝑥) and the velocity component in the z-direction (𝑉𝐵𝑧). The velocity in
the y-direction is always zero for identification purposes since the same information can be gathered by
rotating the propeller with Equation 9.43. For the creation of input combinations (⃗⃗𝑉𝐵, ⃗⃗Ω⃗, 𝜔), 3 different
schemes were identified for the generation of linear drone velocity values and they are summarised in
Table C.1.

Table C.1: Linear body velocity input generation schemes. FV refers to Fix Value, FR refers to Fixed Range, VR refers to Variable
Range and CV means Computed Value. In all table entries, except those with CV, the corresponding value or range is included
in the table. The scheme in bold reflects the option chosen for the present research.

|⃗⃗𝑉𝐵| [m/s] 𝑉𝐵𝑧 [m/s] 𝑉𝐵𝑥 [m/s] Computation order
Scheme 1 FV (4) FR ([-2.5,-0.5]) CV |⃗⃗𝑉𝐵| → 𝑉𝐵𝑧 → 𝑉𝐵𝑥
Scheme 2 VR ([max (𝑉𝐵𝑧 , 2), 4]) FR ([-2.5,-0.5]) CV 𝑉𝐵𝑧 → |⃗⃗𝑉𝐵| → 𝑉𝐵𝑥
Scheme 3 CV FR ([-2.5,-0.5]) FR ([-3,3]) 𝑉𝐵𝑧 → 𝑉𝐵𝑥 → |⃗⃗𝑉𝐵|

The first scheme consists on fixing the magnitude of |⃗⃗𝑉𝐵| to 4 m/s, selecting a value of 𝑉𝐵𝑧 in the
range [-2,-0.5] m/s and computing 𝑉𝐵𝑥 from the relation that the sum of the squares of 𝑉𝐵𝑧 and 𝑉𝐵𝑥 should
be equal to the square of |⃗⃗𝑉𝐵|. In the second option, the value of |⃗⃗𝑉𝐵| was selected from the varying
range max (𝑉𝐵𝑧 , 2) m/s, meaning that it was dependent on 𝑉𝐵𝑧 . In the last scheme, 𝑉𝐵𝑥 and 𝑉𝐵𝑧 are
computed independently from their own fixed ranges and the magnitude of the linear body velocity is
computed with the aforementioned relation of squares. When looking at the computation order column
of Table C.1, it can be observed that the main difference between schemes is the step at which |⃗⃗𝑉𝐵| is
computed.

Even though the first scheme might be the most intuitive choice — it is known from chapter 8 that
the drone can not fly in simulation faster than 4 m/s — the third scheme is chosen. The reasoning be-
hind it can be observed when comparing the thrust and torque autocorrelation plots of the 3 schemes.
Figure C.1, Figure C.3 and Figure C.5 show those corresponding to the thrust, whereas Figure C.2,
Figure C.4 and Figure C.6 those corresponding to the torque. Table C.2 presents the number and
percentage of lags of the thrust and torque autocorrelation functions that lay outside of the 95% con-
fidence interval. Additionally, the Durbin Watson statistic (DW) [301] is shown for the thrust and the
torque. This test is used to determine whether autocorrelation is present in the identified model by
analysing the autocorrelation of the first lag with Equation C.1; the lag which tends to have the highest
autocorrelation value. If DW has a value close to 2, it indicates that no autocorrelation is present. The

227

228 C. UAV linear velocity sampling strategy for simulation

closer it approaches 0, the more evidence of positive serial correlation and the closer it approaches 4,
the more evidence of negative serial correlation. When the DW is within the acceptable range [1.5-2.5],
it can be stated that the residuals have relative independence according to this statistical test. Even
though all schemes pass the second metric, the DW test, it is clear that the third scheme outperforms
the alternatives in the first metric; the number of lags laying outside the 95% confidence bounds is
considerably lower. Hence, scheme 3 was chosen for this work. Other statistical tests for analysing
the presence of serial correlation considered for the present research, which lead to similar results as
the DW test, are the Ljung-Box test [302] and the Breusch-Godfrey test [303, 304].

Table C.2: Number of lags that lay outside of the 95% confidence bounds for the thrust and torque for the 3 linear body velocity
input generation schemes.

Thrust # points Thrust DW test Torque # points Torque DW test
Scheme 1 23,211 (72.53%) 1.92 6721 (21.00%) 1.98
Scheme 2 3303 (10.32%) 1.97 1261 (3.94%) 1.99
Scheme 3 603 (1.88%) 1.98 623 (1.94%) 2.01

𝐷𝑊 =
∑𝑁𝑡=1 (𝜖𝑡 − 𝜖𝑡−1)2

∑𝑁𝑡=0 𝜖2𝑡
(C.1)

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10

N
or

m
al

is
ed

 ε
τ

au
to

co
rre

la
tio

n
[-]

95% confidence bounds

Figure C.1: Zoom-in of scheme 1 normalised thrust autocor-
relation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10
N

or
m

al
is

ed
 ε
Q

 a
ut

oc
or

re
la

tio
n

[-]
95% confidence bounds

Figure C.2: Zoom-in of scheme 1 normalised torque autocor-
relation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10

N
or

m
al

is
ed

 ε
τ

au
to

co
rre

la
tio

n
[-]

95% confidence bounds

Figure C.3: Zoom-in of scheme 2 normalised thrust autocor-
relation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10

N
or

m
al

is
ed

 ε
Q

 a
ut

oc
or

re
la

tio
n

[-]

95% confidence bounds

Figure C.4: Zoom-in of scheme 2 normalised torque autocor-
relation with 95% confidence bounds.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10

N
or

m
al

is
ed

 ε
τ

au
to

co
rre

la
tio

n
[-]

95% confidence bounds

Figure C.5: Zoom-in of scheme 3 normalised thrust auto-
correlation with 95% confidence bounds. Zoom-in of Fig-
ure 9.18.

−15000 −10000 −5000 0 5000 10000 15000
Number of lags [-]

−0.05

0.00

0.05

0.10

N
or

m
al

is
ed

 ε
Q

 a
ut

oc
or

re
la

tio
n

[-]

95% confidence bounds

Figure C.6: Zoom-in of scheme 3 normalised torque auto-
correlation with 95% confidence bounds. Zoom-in of Fig-
ure 9.19.

D
BET hyper-parameter selection

The finer the blade discretisation and the number of data points used, the closer the BET approximates
reality and the better the input space is explored. At low 𝑛𝑏𝑠 and 𝑞 values, the optimised polynomial
coefficients of the 𝐶𝑙 − 𝛼 and 𝐶𝑑 − 𝛼 curves are very sensitive to changes in 𝑛𝑏𝑠 and 𝑞. As the value
of these hyperparameters is increased, convergence of the lift and drag coefficient curves is observed.
However, a higher discretisation of the blade and input space leads to higher computation times, as
well as slow blade damage simulations when implemented in UE4 due to a higher number of finer blade
sections. The sensitivity analysis aims at finding the lowest 𝑛𝑏𝑠 and 𝑞 values at which this convergence
is observed in order to minimise the computational time.

For that purpose, Figure D.1 and Figure D.2 shows a heat map of the value of the lift and drag
polynomial coefficients as a function of data points and blade sections. The number of data points
range from 1,000 to 100,000 in steps of 1,000, whereas the number of blade sections range from 50
to 800 in steps of 50. As can be observed, it is clear that the values greatly change when the num-
ber of samples (𝑞) is low, but it is very difficult to assess from these heat maps the convergence of the
optimisation due to the different magnitude of the identified coefficients and the range of the colour bars.

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

2.75

3.00

x 0
[

]

1e 1

4.50
4.75

x 1
[

]

1.160

1.155

x 2
[

]

1e1

Figure D.1: Heat map with the value of the polynomial
coefficients used for the lift coefficient identification (Equa-
tion 9.32).

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

9.25
9.50

y 0
[

]
1e 3

8.2
8.0

y 1
[

]

1e 1

1.50

1.55

y 2
[

]

1e1

Figure D.2: Heat map with the value of the polynomial co-
efficients used for the drag coefficient identification (Equa-
tion 9.33).

Optimisation convergence along the 𝑞 axis can also be understood as the approximation to zero
of the change in value of the identified coefficients from one 𝑞 value to the next. Hence, the change
in the identified coefficients values when increasing the number of data points is computed. Addition-
ally, these values are normalised with the corresponding lift/drag coefficient identified with the largest
number of data points (in this case 𝑎max =100,000), since it is assumed to be the most accurate value.
Equation D.1 shows an example of this calculation for the first polynomial coefficient of the lift coeffi-
cient presented in Equation 9.32.

229

230 D. BET hyper-parameter selection

𝐷𝑞𝑥0{𝑞𝑎;𝑛𝑏𝑠𝑏 } =
𝑥0{𝑞𝑎;𝑛𝑏𝑠𝑏 } − 𝑥0{𝑞(𝑎−1);𝑛𝑏𝑠𝑏 }

𝑥0{𝑞𝑎max ;𝑛𝑏𝑠𝑏 }
⋅ 100,

𝑞𝑎 = 1000 + 1000𝑎,
𝑛𝑏𝑠𝑏 = 50 + 50𝑏,

𝑎 = 1, 2, ..., 𝑎max
𝑏 = 0, 1, ..., 𝑏max

(D.1)

Figure D.3 and Figure D.4 shows the heat maps of the lift and drag coefficients’ gradients, respec-
tively. From the heat maps it can be seen that the general trend is that the change in the coefficients
decreases with the increasing number of data points. However, there exist blade sections (rows in the
heat maps) where this is not the case, especially when 𝑛𝑏𝑠 ∈ [250, 400].

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

1
0
1

D
qx

0
[%

]

1
0
1

D
qx

1
[%

]

1
0
1

D
qx

2
[%

]

Figure D.3: Heat map with the value of the change of the
polynomial coefficients used for the lift coefficient identifica-
tion along the number of data points axis.

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

1
0
1

D
qy

0
[%

]

1
0
1

D
qy

1
[%

]

1
0
1

D
qy

2
[%

]

Figure D.4: Heat map with the value of the change of the
polynomial coefficients used for the drag coefficient identifi-
cation along the number of data points axis.

Figure D.5 shows the change in the first lift polynomial coefficient for 300 blade sections as a func-
tion of the number of data points; a linear representation of the sixth row of the first lift heat map. As can
be seen, the graph is oscillating around the x axis and the mean of all the points is 2.83⋅10−4; the opti-
misation is oscillating between two close optima but it can be considered to have virtually converged.
Hence, in order to dampen this oscillatory behaviour from the heat maps, the moving average (MA)
is computed with a subset size (𝑠) of 10 points, as shown in Equation D.2 for the first lift polynomial
coefficient. Figure D.6 and Figure D.7 present the final updated heat maps.

0 20000 40000 60000 80000 100000
q [-]

1.5

1.0

0.5

0.0

0.5

1.0

D
qx

0
[%

]

nbs = 300
Mean = 2.83 10 4 [%]

Figure D.5: First lift polynomial coefficient change with respect to the number data points (𝐷𝑞𝑥0{𝑞𝑎;300}).

𝑀𝐴(𝐷𝑞𝑥0{𝑞𝑎;𝑛𝑏𝑠𝑏 } , 𝑠) =
∑min {𝑠,𝑎}−1
𝑘=0 𝐷𝑞𝑥0{𝑞(𝑎−𝑘);𝑛𝑏𝑠𝑏 }

min {𝑠, 𝑎} (D.2)

In order to be able to decide which is the right number of data points, a single metric as a function
of 𝑞 needs to be defined. For that purpose, all the heat maps are first collapsed into a single one by
taking for each 𝑞 − 𝑛𝑏𝑠 combination the maximum absolute value among all heat maps, as given by

231

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

1

0

1

M
A(

D
qx

0,
10

)[
%

]

1

0

1

M
A(

D
qx

1,
10

)[
%

]

1

0

1

M
A(

D
qx

2,
10

)[
%

]

Figure D.6: Moving average (Equation D.2) applied along the 𝑞 axis of Figure D.3; the polynomial coefficients of the lift coefficient
identification.

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

20000 40000 60000 80000 100000
q [-]

2
4
6
8

n b
s [

-]

1e2

1

0

1

M
A(

D
qy

0,
10

)[
%

]
1

0

1

M
A(

D
qy

1,
10

)[
%

]

1

0

1

M
A(

D
qy

2,
10

)[
%

]

Figure D.7: Moving average (Equation D.2) applied along the 𝑞 axis of Figure D.4; the polynomial coefficients of the drag
coefficient identification.

Equation D.3 and as can be observed in Figure D.8. The maximum absolute value is taken instead
of the average since it is desired that all the polynomial coefficients meet a certain metric that will be
later defined. If the average would be chosen among the lift and drag polynomial coefficients, the very
unstable behaviour of one coefficient could be dampened and hidden by the converging behaviour of
the rest. Furthermore, the final heat map is collapsed by taking the average among all the blade section
numbers, leading to the 1D function (ℎ𝑞(𝑞𝑎)) shown in Equation D.4 and illustrated in Figure D.9.

𝑔𝑞(𝑞𝑎 , 𝑛𝑏𝑠𝑏) =max {|𝑀𝐴(𝐷𝑞𝑥𝑗{𝑞𝑎;𝑛𝑏𝑠𝑏 } , 10)| ∶ 𝑗 = 0, 1, ..., 𝑚; |𝑀𝐴(𝐷𝑞𝑦𝑘{𝑞𝑎;𝑛𝑏𝑠𝑏 } , 10)| ∶ 𝑘 = 0, 1, ..., 𝑛}
(D.3)

ℎ𝑞(𝑞𝑎) =
∑𝑏max𝑏=0 𝑔(𝑞𝑎 , 𝑛𝑏𝑠𝑏)

𝑏max + 1
(D.4)

232 D. BET hyper-parameter selection

20000 40000 60000 80000 100000
q [-]

2

4

6

8

n b
s [

-]

1e2

0.0

0.2

0.4

0.6

0.8

1.0

g q
(q

,n
bs

)[
%

]

Figure D.8: Collapsed lift and drag polynomial coefficients’
heat maps according to Equation D.3

0 20000 40000 60000 80000 100000
q [-]

0.0

0.5

1.0

1.5

2.0

h q
(q

) [
%

]

Figure D.9: Collapsed heat map along the 𝑛𝑏𝑠 axis according
to Equation D.4.

Given ℎ𝑞(𝑞𝑎), the ideal number of data points (𝑞𝑖𝑖) used for the lift and drag coefficient identification
is such that max {ℎ𝑞(𝑞𝑎) ∶ 𝑎 = 𝑖𝑖, 𝑖𝑖 + 1, ..., 𝑎max} < 0.1. The threshold of 0.1 was chosen heuristically.
The horizontal dashed line in Figure D.9 represents this threshold. As can be seen, the ideal 𝑞𝑎 given
the previous condition is 16,000.

Repeating the same process along the 𝑛𝑏𝑠 axis in order to define the ideal number of blade sections,
leads to Figure D.10. As can be observed, the polynomial coefficients do not converge with respect to
the number of blade sections and the ℎ𝑞(𝑞𝑎) value remains above 0.1% but below 1%. This means
that with every 50 new blade sections, the maximum change in any of the polynomial coefficients is
less than 1%.

100 200 300 400 500 600 700 800
nbs [-]

0.0

0.2

0.4

0.6

0.8

1.0

h n
bs
(n

bs
) [

%
]

Figure D.10: Collapsed heat map along the 𝑞 axis in a similar procedure as the outlined to generate Figure D.9.

The number of blade sections is important for two aspects: the blade discretisation should be high
enough to allow multiple degrees of blade damage failure, and the blade discretisation should be low
enough in order to allow for low computation times upon blade damage failure during simulation in
UE4; allowing fast data gathering. For the present research, 100 blade sections were chosen since it
allows to divide the blade in integer percentages and it is low in the range of 𝑛𝑏𝑠 values considered in
the current section. The final selected number of data points and blade sections are summarised in
Table D.1.

Table D.1: Selected BET hyper-parameters (𝑞 − 𝑛𝑏𝑠).

Number of data points (𝑞) Number of blade sections (𝑛𝑏𝑠)
Selected hyper-parameter value 16,000 100

E
BET model validation results

This appendix shows an extended version of the results presented in subsection 9.4.4. section E.1
shows the thrust and torque results for different propeller speeds when there is no blade damage and
the wind speed is constant at 2 m/s. When there is propeller damage, two signal characteristics need
to be validated, namely the signal mean and the amplitude of its oscillations. First, section E.2 and
section E.3 show the same plots as section E.1 for the signal mean of 10% and 25% blade damage,
respectively. Finally, section E.4 and section E.5 repeat the same process comparing the model gen-
erated and the reconstructed experimental signal amplitudes.

E.1. Thrust and torque validation results for 𝐵𝐷=0% and 𝑉∞=2 m/s

1.0 1.2 1.4 1.6 1.8 2.0
Experiments corrected thrust [N] 1e−1

1

2

M
od

el
 th

ru
st

 [N
]

1e−1
Gray-box model
BET model

−1.0 −0.5 0.0 0.5 1.0
Thrust model absolute error [N] 1e−1

Figure E.1: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

−2.75 −2.50 −2.25 −2.00 −1.75 −1.50 −1.25
Experiments corrected torque [Nm] 1e−3

−2

0

M
od

el
 to

rq
ue

 [N
m

] 1e−3
Gray-box model
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−3

Figure E.2: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
Experiments corrected thrust [N] 1e−1

3

4

5

6

M
od

el
 th

ru
st

 [N
]

1e−1
Gray-box model
BET model

−1.0 −0.5 0.0 0.5 1.0
Thrust model absolute error [N] 1e−1

Figure E.3: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

−6.0 −5.5 −5.0 −4.5 −4.0
Experiments corrected torque [Nm] 1e−3

−8

−6

−4

−2

M
od

el
 to

rq
ue

 [N
m

] 1e−3
Gray-box model
BET model

−4 −2 0 2 4
Torque model absolute error [Nm] 1e−3

Figure E.4: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

233

234 E. BET model validation results

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2

M
od

el
 th

ru
st

 [N
]

Gray-box model
BET model

−3 −2 −1 0 1 2 3
Thrust model absolute error [N] 1e−1

Figure E.5: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

−1.15 −1.10 −1.05 −1.00 −0.95 −0.90 −0.85
Experiments corrected torque [Nm] 1e−2

−1.5

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
Gray-box model
BET model

−6 −4 −2 0 2 4 6
Torque model absolute error [Nm] 1e−3

Figure E.6: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

1.1 1.2 1.3 1.4 1.5
Experiments corrected thrust [N]

1.25

1.50

1.75

M
od

el
 th

ru
st

 [N
]

Gray-box model
BET model

−4 −3 −2 −1 0 1 2 3 4
Thrust model absolute error [N] 1e−1

Figure E.7: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

−1.9 −1.8 −1.7 −1.6 −1.5
Experiments corrected torque [Nm] 1e−2

−2.0

−1.5

−1.0
M

od
el

 to
rq

ue
 [N

m
] 1e−2

Gray-box model
BET model

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
Torque model absolute error [Nm] 1e−3

Figure E.8: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

1.7 1.8 1.9 2.0 2.1 2.2 2.3
Experiments corrected thrust [N]

2.0

2.5

M
od

el
 th

ru
st

 [N
]

Gray-box model
BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.9: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=1100
rad/s.

−2.9 −2.8 −2.7 −2.6 −2.5 −2.4 −2.3 −2.2
Experiments corrected torque [Nm] 1e−2

−4

−3

−2

−1

M
od

el
 to

rq
ue

 [N
m

] 1e−2
Gray-box model
BET model

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Torque model absolute error [Nm] 1e−2

Figure E.10: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=0%, 𝑉∞=2 m/s and 𝜔=1100
rad/s.

E.2. Thrust and torque validation results for 𝐵𝐷=10% and 𝑉∞=2 m/s 235

E.2. Thrust and torque validation results for 𝐵𝐷=10% and 𝑉∞=2 m/s

−0.5 0.0 0.5 1.0 1.5 2.0
Experiments corrected thrust [N] 1e−1

0

2

4

M
od

el
 th

ru
st

 [N
]

1e−1
BET model

−2 −1 0 1 2
Thrust model absolute error [N] 1e−1

Figure E.11: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
Experiments corrected torque [Nm] 1e−3

−2

0

2

4

M
od

el
 to

rq
ue

 [N
m

] 1e−3
BET model

−2 −1 0 1 2
Torque model absolute error [Nm] 1e−3

Figure E.12: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Experiments corrected thrust [N] 1e−1

2

4

6

M
od

el
 th

ru
st

 [N
]

1e−1
BET model

−3 −2 −1 0 1 2 3
Thrust model absolute error [N] 1e−1

Figure E.13: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0
Experiments corrected torque [Nm] 1e−3

−7.5

−5.0

−2.5

0.0
M

od
el

 to
rq

ue
 [N

m
] 1e−3

BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−3

Figure E.14: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Experiments corrected thrust [N] 1e−1

0.6

0.8

1.0

1.2

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.15: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

−1.1 −1.0 −0.9 −0.8 −0.7
Experiments corrected torque [Nm] 1e−2

−1.0

−0.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −2 0 2 4
Torque model absolute error [Nm] 1e−3

Figure E.16: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

236 E. BET model validation results

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Experiments corrected thrust [N]

1.0

1.5
M

od
el

 th
ru

st
 [N

]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.17: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2
Experiments corrected torque [Nm] 1e−2

−2.0

−1.5

−1.0

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−6 −4 −2 0 2 4 6
Torque model absolute error [Nm] 1e−3

Figure E.18: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

1.6 1.7 1.8 1.9 2.0 2.1 2.2
Experiments corrected thrust [N]

1.5

2.0

2.5

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.19: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and𝜔=1100
rad/s.

−2.7 −2.6 −2.5 −2.4 −2.3 −2.2 −2.1 −2.0
Experiments corrected torque [Nm] 1e−2

−3.0

−2.5

−2.0

−1.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−8 −6 −4 −2 0 2 4 6 8
Torque model absolute error [Nm] 1e−3

Figure E.20: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and𝜔=1100
rad/s.

E.3. Thrust and torque validation results for 𝐵𝐷=25% and 𝑉∞=2 m/s

0.8 1.0 1.2 1.4 1.6 1.8
Experiments corrected thrust [N] 1e−1

0

1

2

3

M
od

el
 th

ru
st

 [N
]

1e−1
BET model

−8 −6 −4 −2 0 2 4 6 8
Thrust model absolute error [N] 1e−2

Figure E.21: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1
Experiments corrected torque [Nm] 1e−3

−2.5

0.0

2.5

M
od

el
 to

rq
ue

 [N
m

] 1e−3
BET model

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Torque model absolute error [Nm] 1e−3

Figure E.22: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300
rad/s.

E.3. Thrust and torque validation results for 𝐵𝐷=25% and 𝑉∞=2 m/s 237

2.5 3.0 3.5 4.0 4.5 5.0 5.5
Experiments corrected thrust [N] 1e−1

4

6

M
od

el
 th

ru
st

 [N
]

1e−1
BET model

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Thrust model absolute error [N] 1e−1

Figure E.23: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

−4.8 −4.6 −4.4 −4.2 −4.0 −3.8 −3.6
Experiments corrected torque [Nm] 1e−3

−6

−4

M
od

el
 to

rq
ue

 [N
m

] 1e−3
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−3

Figure E.24: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500
rad/s.

0.8 0.9 1.0 1.1 1.2 1.3
Experiments corrected thrust [N]

0.75

1.00

1.25

1.50

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.25: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

−1.10 −1.05 −1.00 −0.95 −0.90 −0.85 −0.80
Experiments corrected torque [Nm] 1e−2

−1.2

−1.0

−0.8

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−4 −3 −2 −1 0 1 2 3 4
Torque model absolute error [Nm] 1e−3

Figure E.26: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700
rad/s.

0.7 0.8 0.9 1.0 1.1
Experiments corrected thrust [N]

1.0

1.5

M
od

el
 th

ru
st

 [N
]

BET model

−6 −4 −2 0 2 4 6
Thrust model absolute error [N] 1e−1

Figure E.27: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

−1.60 −1.55 −1.50 −1.45 −1.40 −1.35 −1.30 −1.25 −1.20
Experiments corrected torque [Nm] 1e−2

−2.0

−1.5

−1.0

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−6 −4 −2 0 2 4 6
Torque model absolute error [Nm] 1e−3

Figure E.28: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900
rad/s.

1.4 1.5 1.6 1.7 1.8 1.9 2.0
Experiments corrected thrust [N]

1.5

2.0

2.5

M
od

el
 th

ru
st

 [N
]

BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−1

Figure E.29: Experimental and model thrust measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and𝜔=1100
rad/s.

−2.4 −2.3 −2.2 −2.1 −2.0 −1.9
Experiments corrected torque [Nm] 1e−2

−3.0

−2.5

−2.0

−1.5

M
od

el
 to

rq
ue

 [N
m

] 1e−2
BET model

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Torque model absolute error [Nm] 1e−2

Figure E.30: Experimental and model torque measurements
and their absolute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and𝜔=1100
rad/s.

238 E. BET model validation results

E.4. Thrust and torque damage induced oscillation amplitude val-
idation results for 𝐵𝐷=10% and 𝑉∞=2 m/s

0.0 0.2 0.4 0.6 0.8 1.0
Experiments corrected thrust [N] 1e−2

0.0

0.5

1.0

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
Thrust model absolute error [N] 1e−3

Figure E.31: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5
Experiments corrected torque [Nm] 1e−4

0

1

2

3

M
od

el
 to

rq
ue

 [N
m

] 1e−4
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−4

Figure E.32: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=300 rad/s.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Experiments corrected thrust [N] 1e−3

0

2

4

M
od

el
 th

ru
st

 [N
]

1e−3
BET model

−3 −2 −1 0 1 2 3
Thrust model absolute error [N] 1e−3

Figure E.33: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Experiments corrected torque [Nm] 1e−5

0

2

4

M
od

el
 to

rq
ue

 [N
m

] 1e−5
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−5

Figure E.34: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=500 rad/s.

0 1 2 3 4 5
Experiments corrected thrust [N] 1e−3

0

2

4

6

M
od

el
 th

ru
st

 [N
]

1e−3
BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−3

Figure E.35: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Experiments corrected torque [Nm] 1e−5

0

2

4

M
od

el
 to

rq
ue

 [N
m

] 1e−5
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−5

Figure E.36: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=700 rad/s.

E.5. Thrust and torque damage induced oscillation amplitude validation results for 𝐵𝐷=25% and 𝑉∞=2
m/s 239

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Experiments corrected thrust [N] 1e−3

0.0

2.5

5.0

7.5

M
od

el
 th

ru
st

 [N
]

1e−3
BET model

−4 −2 0 2 4
Thrust model absolute error [N] 1e−3

Figure E.37: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Experiments corrected torque [Nm] 1e−5

0

2

4

M
od

el
 to

rq
ue

 [N
m

] 1e−5
BET model

−3 −2 −1 0 1 2 3
Torque model absolute error [Nm] 1e−5

Figure E.38: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=900 rad/s.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Experiments corrected thrust [N] 1e−3

0.0

0.5

1.0

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−6 −4 −2 0 2 4 6
Thrust model absolute error [N] 1e−3

Figure E.39: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=1100 rad/s.

0 1 2 3 4
Experiments corrected torque [Nm] 1e−5

0

2

4

6

M
od

el
 to

rq
ue

 [N
m

] 1e−5
BET model

−4 −2 0 2 4
Torque model absolute error [Nm] 1e−5

Figure E.40: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=10%, 𝑉∞=2 m/s and 𝜔=1100 rad/s.

E.5. Thrust and torque damage induced oscillation amplitude val-
idation results for 𝐵𝐷=25% and 𝑉∞=2 m/s

0.0 0.5 1.0 1.5 2.0 2.5
Experiments corrected thrust [N] 1e−2

0

1

2

3

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−2 −1 0 1 2
Thrust model absolute error [N] 1e−2

Figure E.41: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300 rad/s.

0 1 2 3 4 5 6 7
Experiments corrected torque [Nm] 1e−4

0.0

0.5

1.0

M
od

el
 to

rq
ue

 [N
m

] 1e−3
BET model

−8 −6 −4 −2 0 2 4 6 8
Torque model absolute error [Nm] 1e−4

Figure E.42: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=300 rad/s.

240 E. BET model validation results

0.0 0.5 1.0 1.5 2.0
Experiments corrected thrust [N] 1e−3

0.0

0.5

1.0
M

od
el

 th
ru

st
 [N

]

1e−2
BET model

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Thrust model absolute error [N] 1e−2

Figure E.43: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5
Experiments corrected torque [Nm] 1e−5

0.0

0.5

1.0

M
od

el
 to

rq
ue

 [N
m

] 1e−4
BET model

−8 −6 −4 −2 0 2 4 6 8
Torque model absolute error [Nm] 1e−5

Figure E.44: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=500 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Experiments corrected thrust [N] 1e−3

0.0

0.5

1.0

1.5

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Thrust model absolute error [N] 1e−2

Figure E.45: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700 rad/s.

0 1 2 3 4 5 6 7
Experiments corrected torque [Nm] 1e−5

0.0

0.5

1.0

M
od

el
 to

rq
ue

 [N
m

] 1e−4
BET model

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
Torque model absolute error [Nm] 1e−5

Figure E.46: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=700 rad/s.

0.0 0.5 1.0 1.5 2.0
Experiments corrected thrust [N] 1e−3

0

1

2

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Thrust model absolute error [N] 1e−2

Figure E.47: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900 rad/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Experiments corrected torque [Nm] 1e−5

0.0

0.5

1.0

1.5

M
od

el
 to

rq
ue

 [N
m

] 1e−4
BET model

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Torque model absolute error [Nm] 1e−4

Figure E.48: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=900 rad/s.

0.0 0.5 1.0 1.5 2.0
Experiments corrected thrust [N] 1e−3

0

1

2

M
od

el
 th

ru
st

 [N
]

1e−2
BET model

−2 −1 0 1 2
Thrust model absolute error [N] 1e−2

Figure E.49: Experimental and model damage induced thrust
oscillations amplitude measurements and their absolute error
for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=1100 rad/s.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Experiments corrected torque [Nm] 1e−5

0

1

2

M
od

el
 to

rq
ue

 [N
m

] 1e−4
BET model

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Torque model absolute error [Nm] 1e−4

Figure E.50: Experimental and model damage induced
torque oscillations amplitude measurements and their abso-
lute error for: 𝐵𝐷=25%, 𝑉∞=2 m/s and 𝜔=1100 rad/s.

F
Measurement noise impact on the
Lomb-Scargle periodogram signal

reconstruction
In subsubsection 9.4.4.2 it was shown that the Lomb-Scargle periodogram shows a superior perfor-
mance for signal reconstruction when compared to PSO. However, subsection 9.4.2 mentioned the
presence of multiple sources of error that could have polluted the experimental measurements, hin-
dering the reliable identification of the damage induced thrust and torque signal oscillations’ amplitude.
Hence, this section aims at analysing the impact of noise in the measurements for signal reconstruction.

For that purpose, the scenario presented in Figure 9.30 will be simulated as an example. The goal is
the identification of a sinusoid with a frequency of 95.5 Hz, 0.01 N of amplitude, a vertical displacement
of 0.05 N and a phase of 180∘. The wave spans 20 seconds and it is sampled every 0.1497 seconds
(6.68 Hz) with an error in the sampling time modelled by a normal distribution centred at zero and a
standard deviation equal to 0.0057 seconds, the actual sampling time error observed in the experimen-
tal data. In order to assess the impact of noise in the measurements, the sinusoidal signal is polluted
with zero mean Gaussian noise with an example standard deviation of 0.015. Figure F.1 shows the
first 0.5 seconds of the clean sinusoid, the noisy signal and the samples taken from the latter for signal
reconstruction using the Lomb-Scargle periodogram. Figure F.2 presents the reconstructed signal with
this statistical approach. As can be observed, the mean and the amplitude of the reconstructed signal
has some errors. For the purpose of the present research, only the amplitude error is exploited from
the signal reconstruction. In this case the amplitude relative error is 16.51%.

From this simple example, it is already visible the deviation of the reconstructed signal from its orig-
inal counterpart due to the presence of measurement noise. In order to observe its impact depending
on the noise magnitude, Figure F.3 shows the reconstructed amplitude for different values of the noise
standard deviation. For each value of the standard deviation, 100 signals were reconstructed with
the same Gaussian distribution of measurement noise. Hence, each value of the x-axis has 100 data
points which have been reduced to a mean and a standard deviation in the form of a confidence interval.

Beyond the growing bias, the most important aspect is the growing confidence interval. When the
noise has a standard deviation equal to four times the expected amplitude (0.04), the reconstructed
one can be already twice as large (0.02), meaning a relative error of 100%. As mentioned in subsec-
tion 9.4.2, the load cell has an accuracy of ±0.0147 N. This could be approximately modelled as a
zero mean Gaussian noise with a standard deviation of 0.0147/2=0.00735 N. Looking at Figure F.3, a
sinusoid white noise standard deviation of 0.00735 N corresponds to a reconstructed amplitude with a
mean at 0.01 N and a confidence interval of two times 0.00201 N. This means that the Lomb-Scargle
periodogram could introduce a maximum reconstruction relative error of 20.1% when only considering
the load cell sensor noise for this particular example.

241

242 F. Measurement noise impact on the Lomb-Scargle periodogram signal reconstruction

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

0.0

0.5

1.0

Th
ru

st
 [N

]

1e−1

Clean signal
Noisy signal
Noisy signal samples

Figure F.1: Clean signal of a sinusoid with frequency of 95.5 Hz and amplitude of 0.01 N to be reconstructed with the samples
taken from its noisy version.

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

4

5

6

7

8

Th
ru

st
 [N

]

1e−2
Clean signal
Fitted sinusoid
Noisy signal samples

Fitted mean
True mean

Figure F.2: Clean and reconstructed sinusoids with frequency of 95.5 Hz and amplitude of 0.01 N with their mean values repre-
sented by the bold and dashed lines, respectively.

0.00 0.02 0.04 0.06 0.08 0.10
Sinusoid white noise standard deviation [-]

0.00

0.01

0.02

0.03

R
ec

on
st

ru
ct

ed
 a

m
pl

itu
de

 [-
]

Figure F.3: Reconstructed amplitude of a sinusoid with frequency of 95.5 Hz and amplitude of 0.01 N as a function of the
measurement noise Gaussian standard deviation.

243

The aforementioned relative error will be higher for lower propeller rotational speeds, lower propeller
damage and lower angles of the propeller plane with respect to the flow because the oscillation ampli-
tudes to be identified will be smaller, whereas the load cell noise will remain constant. A clear example
is the scenario given by 𝐵𝐷=10%, ∠⃗⃗𝑉𝐵=75%, ⃗⃗𝑉𝐵=2 m/s and 𝜔=300 rad/s (47.75 Hz), whose amplitude
is defined by the BET model in Figure E.31 as 10−3. Figure F.4 shows the reconstructed amplitude for
different levels of measurement noise for this particular scenario. In this case, the load cell noise with
a standard deviation of 0.00735 N corresponds to a reconstructed amplitude with a mean at 0.001547
N and a confidence interval of two times 0.001503 N. This means that the Lomb-Scargle periodogram
could introduce a maximum reconstruction relative error of 204.5%.

0.000 0.002 0.004 0.006 0.008 0.010
Sinusoid white noise standard deviation [-]

0

1

2

3

R
ec

on
st

ru
ct

ed
 a

m
pl

itu
de

 [-
]

1e−3

Figure F.4: Reconstructed amplitude of a sinusoid with frequency of 47.75 Hz and amplitude of 10−3 N as a function of the
measurement noise Gaussian standard deviation.

This shows that, even though the Lomb-Scargle periodogram is superior to the Particle Swarm Op-
timisation, it still can introduce relative errors in the reconstructed amplitude higher than 200%, calling
into question the validity of the damage induced thrust and torque oscillations’ amplitude validation.

Bibliography
[1] Inseok Hwang, S. Kim, Y. Kim, and C. E. Seah. A survey of fault detection, isolation, and re-

configuration methods. IEEE Transactions on Control Systems Technology, 18(3):636–653, 05
2010. doi: 10.1109/tcst.2009.2026285.

[2] Youmin Zhang and Jin Jiang. Bibliographical review on reconfigurable fault-tolerant control sys-
tems. Annual Reviews in Control, 32(2):229 – 252, 2008. doi: 10.1016/j.arcontrol.2008.03.
008.

[3] Xuewu Dai and Zhiwei Gao. From model, signal to knowledge: A data-driven perspective of fault
detection and diagnosis. IEEE Transactions on Industrial Informatics, 9(4):2226–2238, 11 2013.
doi: 10.1109/tii.2013.2243743.

[4] Mohammed Imran and Sarah A. Alsuhaibani. Chapter 7 - A neuro-fuzzy inference model for
diabetic retinopathy classification. In Intelligent Data Analysis for Biomedical Applications, In-
telligent Data-Centric Systems, pages 147 – 172. Academic Press, 2019. doi: 10.1016/
b978-0-12-815553-0.00007-0.

[5] Saed Hussain, Maizura Mokhtar, and Joe M. Howe. Sensor failure detection, identification, and
accommodation using fully connected cascade neural network. IEEE Transactions on Industrial
Electronics, 62(3):1683–1692, March 2015. doi: 10.1109/tie.2014.2361600.

[6] Payam Aboutalebi, Alireza Abbaspour, Parisa Forouzannezhad, and Arman Sargolzaei. A novel
sensor fault detection in an unmanned quadrotor based on adaptive neural observer. Journal of
Intelligent & Robotic Systems, 10 2017. doi: 10.1007/s10846-017-0690-7.

[7] Renato Tinos, Marco H. Terra, and Marcel Bergerman. Fault detection and isolation in cooper-
ative manipulators via artificial neural networks. In Proceedings of the 2001 IEEE International
Conference on Control Applications (CCA’01), pages 492–497, México City, México, Sep. 2001.
doi: 10.1109/cca.2001.973914.

[8] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli. Chapter
10 - Convolutional neural networks. In Andrea Mechelli and Sandra Vieira, editors, Machine
Learning, pages 173 – 191. Academic Press, 2020. doi: 10.1016/b978-0-12-815739-8.
00010-9.

[9] Dingfei Guo, Maiying Zhong, Hongquan Ji, Yang Liu, and Rui Yang. A hybrid feature model and
deep learning based fault diagnosis for unmanned aerial vehicle sensors. Neurocomputing, 319:
155 – 163, 2018. doi: 10.1016/j.neucom.2018.08.046.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[11] Jorge I. Mireles González. Deep recurrent neural networks for fault detection and classification.
Master’s thesis, University of Waterloo, Canada, 2018.

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1321–1330, International Convention Centre, Sydney, Australia, 08 2017. PMLR. doi:
10.5555/3305381.3305518.

[13] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Ben-
namoun. Hands-on bayesian neural networks — A tutorial for deep learning users. IEEE Com-
putational Intelligence Magazine, 17(2):29–48, 2022. doi: 10.1109/mci.2022.3155327.

245

http://www.deeplearningbook.org
http://www.deeplearningbook.org

246 Bibliography

[14] Weike Sun, Antonio R.C. Paiva, Peng Xu, Anantha Sundaram, and Richard D. Braatz. Fault
detection and identification using Bayesian recurrent neural networks. Computers & Chemical
Engineering, 141:106991, 2020. doi: 10.1016/j.compchemeng.2020.106991.

[15] Paul M. Frank and Birgit Köppen-Seliger. Fuzzy logic and neural network applications to fault
diagnosis. International Journal of Approximate Reasoning, 16(1):67 – 88, 1997. doi: 10.1016/
S0888-613x(96)00116-8.

[16] Mihiar Ayoubi. Fuzzy systems design based on a hybrid neural structure and application to the
fault diagnosis of technical processes. Control Engineering Practice, 4(1):35 – 42, 1996. doi:
10.1016/0967-0661(95)00204-8.

[17] Pedro Santos, Luisa Villa Montoya, Anibal Reñones, Andrés Bustillo, and Jesús Maudes. An
SVM-based solution for fault detection in wind turbines. Sensors, 15:5627–48, 03 2015. doi:
10.3390/s150305627.

[18] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep clustering with convolutional au-
toencoders. In Neural Information Processing, pages 373–382, Guangzhou, 2017. Springer
International Publishing. doi: 10.1007/978-3-319-70096-0_39.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates, Inc., 2017. doi: 10.5555/3295222.
3295349.

[20] Rana Abdallah, Raed Kouta, Charles Sarraf, Jaafar Gaber, andMaximeWack. Fault tree analysis
for the communication of a fleet formation flight of UAVs. In 2017 2nd International Conference
on System Reliability and Safety (ICSRS), pages 202–206, Milan, 2017. doi: 10.1109/icsrs.
2017.8272821.

[21] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. Optical flow modeling and computation:
A survey. Computer Vision and Image Understanding, 134:1–21, 2015. doi: 10.1016/j.cviu.
2015.02.008.

[22] Davide Scaramuzza and Zichao Zhang. Visual-inertial odometry of aerial robots. Encyclopedia
of Robotics, 2020. doi: 10.1007/978-3-642-41610-1_71-1.

[23] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Geometry-based next frame prediction
from monocular video. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1700–1707,
Los Angeles, CA, 2017. doi: 10.1109/ivs.2017.7995953.

[24] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised learning of depth and ego-
motion from monocular video using 3D geometric constraints. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5667–5675, 2018. doi: 10.1109/cvpr.2018.
00594.

[25] John Skinner, S. Garg, N. Sünderhauf, P. Corke, B. Upcroft, and M. Milford. High-fidelity sim-
ulation for evaluating robotic vision performance. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2737–2744, 2016. doi: 10.1109/iros.2016.
7759425.

[26] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-fidelity vi-
sual and physical simulation for autonomous vehicles. In Field and Service Robotics, pages
621–635, Zürich, Switzerland, 2018. Springer International Publishing. doi: 10.1007/
978-3-319-67361-5_40.

[27] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, Yizhou Wang,
and Alan Yuille. UnrealCV: Virtual worlds for computer vision. ACM Multimedia Open Source
Software Competition, page 1221–1224, 2017. doi: 10.1145/3123266.3129396.

Bibliography 247

[28] Sihao Sun and Coen de Visser. Aerodynamic model identification of a quadrotor subjected to
rotor failures in the high-speed flight regime. IEEE Robotics and Automation Letters, 4(4):3868–
3875, 2019. doi: 10.1109/lra.2019.2928758.

[29] J. Gordon Leishman. Principles of helicopter aerodynamics. Cambridge University Press, Cam-
bridge, 2006. ISBN 0521858607.

[30] Faculty of Aerospace Engineering at Delft University of Technology. Open jet
facility. URL https://www.tudelft.nl/lr/organisatie/afdelingen/
flow-physics-and-technology/facilities/low-speed-wind-tunnels/
open-jet-facility. Accessed: 2022-09-24.

[31] Jean-Philippe Aurambout, Konstantinos Gkoumas, and Biagio Ciuffo. Last mile delivery by
drones: an estimation of viable market potential and access to citizens across European cities.
European Transport Research Review, 11, 12 2019. doi: 10.1186/s12544-019-0368-2.

[32] Shushman Choudhury, Kiril Solovey, Mykel J. Kochenderfer, and Marco Pavone. Efficient
large-scale multi-drone delivery using transit networks. 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4543–4550, 2020. doi: 10.1613/jair.1.12450.

[33] David P. Thipphavong, Rafael Apaza, Bryan Barmore, Vernol Battiste, Barbara Burian, Quang
Dao, Michael Feary, Susie Go, Kenneth H. Goodrich, Jeffrey Homola, Husni R. Idris, Pari-
mal H. Kopardekar, Joel B. Lachter, Natasha A. Neogi, Hok Kwan Ng, Rosa M. Oseguera-Lohr,
Michael D. Patterson, and Savita A. Verma. Urban air mobility airspace integration concepts and
considerations. In 2018 Aviation Technology, Integration, and Operations Conference, Atlanta,
GA, 06 2018. doi: 10.2514/6.2018-3676.

[34] UNICEF Supply Division. How drones can be used to combat COVID-19. Technical report,
UNICEF, 2020. URL https://www.unicef.org. [Accessed 10 January 2021].

[35] Hameed Khan, Kamal K. Kushwah, Saurabh Singh, Harshika Urkude, Muni Raj Maurya, and
Kishor Kumar Sadasivuni. Smart technologies driven approaches to tackle COVID-19 pandemic:
a review. 3 Biotech, 11(2), 2021. doi: 10.1007/s13205-020-02581-y.

[36] Ira Boudway. Zipline medical drones begin flying in the United States, 2020. URL https:
//www.bloomberg.com. [Accessed 10 January 2021].

[37] Patrique Zaman. AVY receives EIC accelerator and flies above Europe, 2020. URL https:
//www.avy.eu. [Accessed 10 January 2021].

[38] Patrique Zaman. AVY joins AGS airports led consortium to develop UK’s first medical delivery
drone network, 2021. URL https://www.avy.eu. [Accessed 27 January 2021].

[39] V. Lappas, G. Zoumponos, V. Kostopoulos, H. Shin, A. Tsourdos, M. Tantarini, D. Shmoko,
J. Munoz, N. Amoratis, A. Maragkakis, T. Machairas, and A. Trifas. EuroDRONE, a European
UTM testbed for U-Space. In 2020 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1766–1774, 2020. doi: 10.1109/icuas48674.2020.9214020.

[40] Farhan Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar. UAVs for smart cities:
Opportunities and challenges. In 2014 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 267–273, 2014. doi: 10.1109/icuas.2014.6842265.

[41] Sihao Sun, Xuerui Wang, Qiping Chu, and Coen De Visser. Incremental nonlinear fault-tolerant
control of a quadrotor with complete loss of two opposing rotors. IEEE Transactions on Robotics,
PP:1–15, 08 2020. doi: 10.1109/tro.2020.3010626.

[42] Mark W. Mueller, Sergei Lupashin, Raffaello D’andrea, and Markus Waibel. Controlled flight of
a multicopter experiencing a failure affecting an effector, 08 2020. URL https://patents.
google.com/patent/EP3007973A1.

https://www.tudelft.nl/lr/organisatie/afdelingen/flow-physics-and-technology/facilities/low-speed-wind-tunnels/open-jet-facility
https://www.tudelft.nl/lr/organisatie/afdelingen/flow-physics-and-technology/facilities/low-speed-wind-tunnels/open-jet-facility
https://www.tudelft.nl/lr/organisatie/afdelingen/flow-physics-and-technology/facilities/low-speed-wind-tunnels/open-jet-facility
https://www.unicef.org
https://www.bloomberg.com
https://www.bloomberg.com
https://www.avy.eu
https://www.avy.eu
https://www.avy.eu
https://patents.google.com/patent/EP3007973A1
https://patents.google.com/patent/EP3007973A1

248 Bibliography

[43] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Au-
tonomous obstacle avoidance and manoeuvring on a vision-guided MAV using on-board pro-
cessing. In 2011 IEEE International Conference on Robotics and Automation, pages 2472–2477,
Shanghai, 2011. doi: 10.1109/icra.2011.5980095.

[44] Sihao Sun, Matthias Baert, Bram Schijndel, and Coen De Visser. Upset recovery control for
quadrotors subjected to a complete rotor failure from large initial disturbances. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 4273–4279, Paris, France,
05 2020. doi: 10.1109/icra40945.2020.9197239.

[45] Yan Jiang, Zhao Zhiyao, Liu Haoxiang, and Quan Quan. Fault detection and identification for
quadrotor based on airframe vibration signals: A data-driven method. 2015 34th Chinese Control
Conference (CCC), pages 6356–6361, 2015. doi: 10.1109/chicc.2015.7260639.

[46] Sergio García, M. E. López, R. Barea, L. M. Bergasa, A. Gómez, and E. J. Molinos. Indoor SLAM
for micro aerial vehicles control using monocular camera and sensor fusion. In 2016 International
Conference on Autonomous Robot Systems and Competitions (ICARSC), pages 205–210, 2016.
doi: 10.1109/icarsc.2016.46.

[47] Davide Falanga, Kevin Kleber, and Davide Scaramuzza. Dynamic obstacle avoidance for
quadrotors with event cameras. Science Robotics, 5(40), 2020. doi: 10.1126/scirobotics.
aaz9712.

[48] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–63, 2019.
doi: 10.1016/j.neunet.2018.12.002.

[49] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakr-
ishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and Vincent Van-
houcke. Using simulation and domain adaptation to improve efficiency of deep robotic grasping.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 4243–4250,
Brisbane, 2018. doi: 10.1109/icra.2018.8460875.

[50] Rolf Isermann. Fault diagnosis systems an introduction from fault detection to fault tolerance.
Fault-Diagnosis Systems, 01 2006. doi: 10.1007/3-540-30368-5.

[51] Rolf Isermann. Supervision, fault-detection and fault-diagnosis methods— An introduction. Con-
trol Engineering Practice, 5(5):639 – 652, 1997. doi: 10.1016/s0967-0661(97)00046-4.

[52] Rolf Isermann. Model-based fault-detection and diagnosis – status and applications. Annual
Reviews in Control, 29(1):71 – 85, 2005. doi: 10.1016/j.arcontrol.2004.12.002.

[53] Yinsheng Chen, Jingli Yang, Yonghui Xu, Shouda Jiang, Xiadong Liu, and Qi Wang. Status self-
validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Transac-
tions on Instrumentation and Measurement, 65(7):1626–1640, 2016. doi: 10.1109/tim.2016.
2540942.

[54] Khaoula Tidriri, Nizar Chatti, Sylvain Verron, and Teodor Tiplica. Bridging data-driven and model-
based approaches for process fault diagnosis and health monitoring: A review of researches and
future challenges. Annual Reviews in Control, 42(C):63–81, 2016. doi: 10.1016/j.arcontrol.
2016.09.008.

[55] Guillermo Heredia and Anibal Ollero. Detection of sensor faults in small helicopter UAVs using
observer/Kalman filter identification. Mathematical Problems in Engineering, 2011, 09 2011. doi:
10.1155/2011/174618.

[56] Shen Yin, Bing Xiao, Steven X. Ding, and Donghua Zhou. A review on recent development of
spacecraft attitude fault tolerant control system. IEEE Transactions on Industrial Electronics, 63
(5):3311–3320, 2016. doi: 10.1109/tie.2016.2530789.

Bibliography 249

[57] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and Surya N. Kavuri.
A review of process fault detection and diagnosis: Part I: Quantitative model-based methods.
Computers & Chemical Engineering, 27(3):293 – 311, 2003. doi: 10.1016/s0098-1354(02)
00160-6.

[58] Venkat Venkatasubramanian, Raghunathan Rengaswamy, and Surya N Kavuri. A review of pro-
cess fault detection and diagnosis: Part II: Qualitative models and search strategies. Computers
& Chemical Engineering, 27(3):313 – 326, 2003. doi: 10.1016/s0098-1354(02)00161-8.

[59] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, and Kewen Yin.
A review of process fault detection and diagnosis: Part III: Process history based methods.
Computers & Chemical Engineering, 27(3):327 – 346, 2003. doi: 10.1016/s0098-1354(02)
00162-x.

[60] Daoliang Li, Ying Wang, Jinxing Wang, Cong Wang, and Yanqing Duan. Recent advances in
sensor fault diagnosis: A review. Sensors and Actuators A: Physical, 309:111990, 2020. doi:
10.1016/j.sna.2020.111990.

[61] Ahmed Shokry and Antonio Espuña. The ordinary kriging in multivariate dynamic modelling and
multistep-ahead prediction. In 28th European Symposium on Computer Aided Process Engi-
neering, volume 43 of Computer Aided Chemical Engineering, pages 265 – 270. Elsevier, 2018.
doi: 10.1016/b978-0-444-64235-6.50047-4.

[62] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

[63] David Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986. doi: 10.1038/323533a0.

[64] Seongmin Heo and Jay H. Lee. Fault detection and classification using artificial neural networks.
10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018, 51(18):470
– 475, 2018. doi: 10.1016/j.ifacol.2018.09.380.

[65] Gino Iannace, Giuseppe Ciaburro, and Amelia Trematerra. Fault diagnosis for UAV blades using
artificial neural network. Robotics, 8:59, 07 2019. doi: 10.3390/robotics8030059.

[66] Bodgan M. Wilamowski. Neural network architectures and learning algorithms. IEEE Industrial
Electronics Magazine, 3(4):56–63, 12 2009. doi: 10.1109/mie.2009.934790.

[67] David Hunter, Hao Yu, Michael S. Pukish, III, Janusz Kolbusz, and Bodgan M. Wilamowski.
Selection of proper neural network sizes and architectures—A comparative study. IEEE Trans-
actions on Industrial Informatics, 8(2):228–240, May 2012. doi: 10.1109/tii.2012.2187914.

[68] Bogdan M. Wilamowski and H. Yu. Neural network learning without backpropagation. IEEE
Transactions on Neural Networks, 21(11):1793–1803, 11 2010. doi: 10.1109/tnn.2010.
2073482.

[69] Lifeng Wang, Yichong He, Zhixiang Zhang, and Congkui He. Trajectory tracking of quadrotor
aerial robot using improved dynamic inversion method. Intelligent Control and Automation, 04:
343–348, 01 2013. doi: 10.4236/ica.2013.44040.

[70] Hamed Ghazavi Khorasgani, Mohammad B. Menhaj, Heidar A. Talebi, and Firooz Bakhtiari-
Nejad. Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems.
IFACProceedings Volumes, 45(20):1029 – 1034, 2012. doi: 10.3182/20120829-3-mx-2028.
00203.

[71] Heidar A. Talebi and Rajni V. Patel. An intelligent fault detection and recovery scheme for reaction
wheel actuator of satellite attitude control systems. In 2006 IEEE Conference on Computer Aided
Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, pages 3282–3287, 10 2006. doi: 10.1109/
cacsd-cca-isic.2006.4777164.

250 Bibliography

[72] Mou Chen, Peng Shi, and Cheng-Chew Lim. Adaptive neural fault-tolerant control of a 3-DOF
model helicopter system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46
(2):260–270, 2016. doi: 10.1109/tsmc.2015.2426140.

[73] Ihab Samy, Ian Postlethwaite, and Da-Wei Gu. Survey and application of sensor fault detection
and isolation schemes. Control Engineering Practice, 19(7):658 – 674, 2011. doi: 10.1016/j.
conengprac.2011.03.002.

[74] Marco H. Terra and Renato Tinos. Fault detection and isolation in robotic systems via artificial
neural networks. In Proceedings of the 37th IEEEConference on Decision and Control, volume 2,
pages 1605–1610 vol.2, Tampa, FL, 12 1998. doi: 10.1109/cdc.1998.758522.

[75] Turker Ince, Serkan Kiranyaz, Levent Eren, Murat Askar, and Moncef Gabbouj. Real-time motor
fault detection by 1-D convolutional neural networks. IEEE Transactions on Industrial Electronics,
63(11):7067–7075, 11 2016. doi: 10.1109/tie.2016.2582729.

[76] Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia Loccufier, Steven Ver-
stockt, Rik Van de Walle, and Sofie Van Hoecke. Convolutional neural network based fault
detection for rotating machinery. Journal of Sound and Vibration, 377:331 – 345, 2016. doi:
10.1016/j.jsv.2016.05.027.

[77] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J.
Inman. 1D convolutional neural networks and applications: A Survey. Mechanical Systems and
Signal Processing, 151:107398, 2021. doi: 10.1016/j.ymssp.2020.107398.

[78] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 11 1997. doi: 10.1162/neco.1997.9.8.1735.

[79] Kunru Chen. Recurrent neural networks for fault detection : An exploratory study on a dataset
about air compressor failures of heavy duty trucks. Master’s thesis, Halmstad University, School
of Information Technology, 2018.

[80] H. A. Talebi, K. Khorasani, and S. Tafazoli. A recurrent neural-network-based sensor and actuator
fault detection and isolation for nonlinear systems with application to the satellite’s attitude control
subsystem. IEEE Transactions on Neural Networks, 20(1):45–60, 01 2009. doi: 10.1109/tnn.
2008.2004373.

[81] Haitao Zhao, Shaoyuan Sun, and Bo Jin. Sequential fault diagnosis based on LSTM neural
network. IEEE Access, 6:12929–12939, 2018. doi: 10.1109/access.2018.2794765.

[82] Divish Rengasamy, Hervé P. Morvan, and Grazziela P. Figueredo. Deep learning approaches
to aircraft maintenance, repair and overhaul: A review. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 150–156, 2018. doi: 10.1109/itsc.2018.
8569502.

[83] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

[84] John Mitros and Brian Mac Namee. On the validity of Bayesian neural networks for uncertainty
estimation. In Artificial Intelligence and Cognitive Science, 2019.

[85] Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Linchuan Zhang, Ghassen
Jerfel, and Dustin Tran. Measuring calibration in deep learning. ArXiv, abs/1904.01685, 2019.

[86] Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In NeurIPS, 2019.
doi: 10.5555/3454287.3454627.

[87] Sebastien Haneuse. Part I: The Bayesian paradigm. Harvard University Lecture, 2015.

[88] Don van Ravenzwaaij, Peter Cassey, and Scott Brown. A simple introduction to Markov
chain Monte–Carlo sampling. Psychonomic Bulletin & Review, 25, 03 2016. doi: 10.3758/
s13423-016-1015-8.

Bibliography 251

[89] Adrian F. M. Smith and Gareth O. Roberts. Bayesian computation via the Gibbs sampler and
related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B
(Methodological), 55(1):3–23, 1993. doi: 10.1111/j.2517-6161.1993.tb01466.x.

[90] Cajo ter Braak. AMarkov chain Monte Carlo version of the genetic algorithm differential evolution:
Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16:239–249, 09
2006. doi: 10.1007/s11222-006-8769-1.

[91] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Ann. Math. Statist.,
22(1):79–86, 03 1951. doi: 10.1214/aoms/1177729694.

[92] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. In Advances in Neural Information Processing Systems 28, pages 2575–2583.
Curran Associates, Inc., 2015. doi: 10.5555/2969442.2969527.

[93] Zhi-Hua Zhou. Ensemble Learning, pages 270–273. Springer US, Boston, MA, 2009. doi:
10.1007/978-0-387-73003-5_293.

[94] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1613–1622, Lille, France, 07–
09 Jul 2015. PMLR. doi: 10.5555/3045118.3045290.

[95] Alex Graves. Practical variational inference for neural networks. In Advances in Neural In-
formation Processing Systems 24, pages 2348–2356. Curran Associates, Inc., 2011. doi:
10.5555/2986459.2986721.

[96] Manfred Opper. A Bayesian Approach to On-Line Learning, page 363–378. Cambridge Univer-
sity Press, USA, 1999. doi: 10.5555/304710.304756.

[97] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli ap-
proximate variational inference. ArXiv, abs/1506.02158, 2015.

[98] Yaniv Ovadia, E. Fertig, J. Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dillon,
Balaji Lakshminarayanan, and J. Snoek. Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift. InNeurIPS, 2019. doi: 10.5555/3454287.3455541.

[99] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
overconfidence in ReLU networks. In ICML, 2020. doi: 10.5555/3524938.3525442.

[100] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why ReLU networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 41–50,
2019. doi: 10.1109/cvpr.2019.00013.

[101] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter? Structural
Safety, 31:105–112, 03 2009. doi: 10.1016/j.strusafe.2008.06.020.

[102] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. De-
composition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In
ICML, Stockholm, 2018.

[103] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image
data. In ICML, 2017. doi: 10.5555/3305381.3305504.

[104] Toan Tran, Thanh-Toan Do, I. Reid, and G. Carneiro. Bayesian generative active deep learning.
In ICML, 2019.

[105] Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neural networks. CoRR,
abs/1704.02798, 2017.

252 Bibliography

[106] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. Proceedings of The 33rd International Conference on Machine
Learning, 06 2015. doi: 10.5555/3045390.3045502.

[107] Nick Pawlowski, Martin Rajchl, and Ben Glocker. Implicit weight uncertainty in neural networks.
ArXiv, abs/1711.01297, 2017.

[108] Christos Louizos andMaxWelling. Multiplicative normalizing flows for variational Bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70
ofProceedings of Machine Learning Research, pages 2218–2227, International Convention Cen-
tre, Sydney, Australia, 06–11 Aug 2017. PMLR. doi: 10.5555/3305890.3305910.

[109] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In ICML, Lille, 2015. doi: 10.5555/3045118.3045316.

[110] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 1027–1035, Red Hook, NY, USA, 2016. Curran Associates
Inc. doi: 10.5555/3157096.3157211.

[111] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353, 1965. doi: 10.1016/
S0019-9958(65)90241-X.

[112] Lotfi A. Zadeh. Fuzzy algorithms. Information and Control, 12(2):94 – 102, 1968. ISSN 0019-
9958. doi: 10.1016/s0019-9958(68)90211-8.

[113] Petr Cintula, Christian G. Fermüller, and Carles Noguera. Fuzzy Logic. In The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2017 edition, 2017.

[114] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on
Systems, Man, and Cybernetics, 20(2):404–418, March 1990. doi: 10.1109/21.52551.

[115] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Transactions
on Systems, Man, and Cybernetics, 20(2):419–435, March 1990. doi: 10.1109/21.52552.

[116] Robert Babuška. Fuzzy modeling - a control engineering perspective. In IEEE International
Conference on Fuzzy Systems, volume 4, pages 1897 – 1902 vol.4, Barcelona, 04 1995. doi:
10.1109/fuzzy.1995.409939.

[117] Robert Babuška and Henk B. Verbruggen. An overview of fuzzy modeling for control. Control
Engineering Practice, 4(11):1593 – 1606, 1996. doi: 10.1016/0967-0661(96)00175-x.

[118] Robert Babuška. Fuzzy modeling and identification. PhD dissertation, Delft University of Tech-
nology, Delft, The Netherlands, 1996.

[119] Rolf Isermann. On fuzzy logic applications for automatic control, supervision, and fault diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 28(2):
221–235, March 1998. doi: 10.1109/3468.661149.

[120] Sauter, Mary, Sirou, and Thieltgen. Fault diagnosis in systems using fuzzy logic. In 1994 Pro-
ceedings of IEEE International Conference on Control and Applications, pages 883–888 vol.2,
Glasgow, UK, Aug 1994. doi: 10.1109/cca.1994.381205.

[121] Rita A. Ribeiro. Fuzzy space monitoring and fault detection applications. Journal of Decision
Systems, 15(2-3):267–286, 2006. doi: 10.3166/jds.15.267-286.

[122] Ebrahim H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy logic
controller. International Journal of Man-Machine Studies, 7(1):1 – 13, 1975. doi: 10.1016/
s0020-7373(75)80002-2.

[123] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1):116–
132, 01 1985. doi: 10.1109/tsmc.1985.6313399.

Bibliography 253

[124] Javad J. Jassbi, Paulo J. A. Serra, Rita A. Ribeiro, and Alessandro Donati. A comparison of
Mandani and Sugeno inference systems for a space fault detection application. In 2006 World
Automation Congress, pages 1–8, Budapest, July 2006. doi: 10.1109/wac.2006.376033.

[125] Linlin Li, Steven X. Ding, Ying Yang, and Yong Zhang. Robust fuzzy observer-based fault de-
tection for nonlinear systems with disturbances. Neurocomputing, 174:767 – 772, 2016. doi:
10.1016/j.neucom.2015.09.102.

[126] Kenneth Chi hang Lo, Eric H. K. Fung, and Yiu-KwongWong. Intelligent automatic fault detection
for actuator failures in aircraft. IEEE Transactions on Industrial Informatics, 5(1):50–55, Feb 2009.
doi: 10.1109/tii.2008.2008642.

[127] Hong-Chan Chin. Fault section diagnosis of power system using fuzzy logic. IEEE Transactions
on Power Systems, 18(1):245–250, Feb 2003. doi: 10.1109/tpwrs.2002.807095.

[128] Adrián Rodríguez Ramos, Carlos Domínguez Acosta, P. J. Torres, Eileen I. Serrano Mercado,
Gerson Beauchamp-Báez, L. A. Rifón, and O. Llanes-Santiago. An approach to multiple fault
diagnosis using fuzzy logic. Journal of Intelligent Manufacturing, 30:429–439, 2019.

[129] Chaochao Chen, Bin Zhang, George Vachtsevanos, and Marcos Orchard. Machine condition
prediction based on adaptive neuro–fuzzy and high-order particle filtering. IEEE Transactions on
Industrial Electronics, 58(9):4353–4364, Sep. 2011. doi: 10.1109/tie.2010.2098369.

[130] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning The-
ory, COLT ’92, page 144–152, New York, NY, USA, 1992. Association for Computing Machinery.
doi: 10.1145/130385.130401.

[131] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013. doi: 10.1007/978-1-4757-3264-1.

[132] David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under test. Neuro-
computing, 55(1):169 – 186, 2003. doi: 10.1016/s0925-2312(03)00431-4.

[133] Prashant M. Pawar and Sung Nam Jung. Support vector machine based online composite heli-
copter rotor blade damage detection system. Journal of Intelligent Material Systems and Struc-
tures, 19(10):1217–1228, 2008. doi: 10.1177/1045389X07084713.

[134] Sheng-Fa Yuan and Fu-Lei Chu. Support vector machines-based fault diagnosis for turbo-pump
rotor. Mechanical Systems and Signal Processing, 20(4):939 – 952, 2006. doi: 10.1016/j.
ymssp.2005.09.006.

[135] Jaroslaw Kurek and Stanislaw Osowski. Support vector machine for fault diagnosis of the broken
rotor bars of squirrel-cage induction motor. Neural Computing and Applications, 19:557–564,
2009. doi: 10.1007/s00521-009-0316-5.

[136] Bernhard Scholkopf and Alexander J. Smola. Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN
0262194759.

[137] Elgiz Baskaya, Murat Bronz, and Daniel Delahaye. Fault detection diagnosis for small UAVs via
machine learning. In 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pages
1–6, St. Petersburg, Sep. 2017. doi: 10.1109/dasc.2017.8102037.

[138] Kicheol Jeong and Seibum Choi. Model-based sensor fault diagnosis of vehicle suspensions
with a support vector machine. International Journal of Automotive Technology, 20:961–970,
2019. doi: 10.1007/s12239-019-0090-z.

[139] Gao Yun-hong, Zhao Ding, and Li Yi-bo. Small UAV sensor fault detection and signal reconstruc-
tion. In Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineer-
ing and Computer (MEC), pages 3055–3058, Shenyang, 12 2013. doi: 10.1109/mec.2013.
6885550.

254 Bibliography

[140] Fang Deng, Su Guo, Rui Zhou, and Jie Chen. Sensor multifault diagnosis with improved support
vector machines. IEEE Transactions on Automation Science and Engineering, 14(2):1053–1063,
April 2017. doi: 10.1109/tase.2015.2487523.

[141] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006. doi: 10.1126/science.1127647.

[142] Pangun Park, Piergiuseppe Di Marco, Hyejeon Shin, and Junseong Bang. Fault detection and
diagnosis using combined autoencoder and long short-termmemory network. Sensors, 19, 2019.
doi: 10.3390/s19214612.

[143] Li Jiang, Zhihuan Song, Zhiqiang Ge, and Junghui Chen. Robust self-supervised model and its
application for fault detection. Industrial & Engineering Chemistry Research, 56(26):7503–7515,
2017. doi: 10.1021/acs.iecr.7b00949.

[144] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines,
pages 599–619. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi: 10.1007/
978-3-642-35289-8_32.

[145] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Comput., 14(8):1771–1800, August 2002. doi: 10.1162/089976602760128018.

[146] Xin Huang, Xiaodong Zhang, Yiwei Xiong, Hongcheng Liu, and Yingjie Zhang. A novel intelligent
fault diagnosis approach for early cracks of turbine blades via improved deep belief network
using three-dimensional blade tip clearance. IEEE Access, 9:13039–13051, 2021. doi: 10.
1109/access.2021.3052217.

[147] Pandit Dash, Bighnaraj Naik, Janmenjoy Nayak, and Vimal Shanmuganthan. Deep belief
network-based probabilistic generative model for detection of robotic manipulator failure exe-
cution. Soft Computing, 01 2021. doi: 10.1007/s00500-021-05572-0.

[148] Saibo Xing, Yaguo Lei, Shuhui Wang, and Feng Jia. Distribution-invariant deep belief network
for intelligent fault diagnosis of machines under new working conditions. IEEE Transactions on
Industrial Electronics, 68(3):2617–2625, 2021. doi: 10.1109/tie.2020.2972461.

[149] Xue-Mei Chen, Chun-Xue Wu, Yan Wu, Nai-xue Xiong, Ren Han, Bo-Bo Ju, and Sheng Zhang.
Design and analysis for early warning of rotor UAV based on data-driven DBN. Electronics, 8
(11), 2019. doi: 10.3390/electronics8111350.

[150] Jake Lever, Martin Krzywinski, and Naomi Altman. Principal component analysis. Nature Meth-
ods, 14(7):641–642, 07 2017. doi: 10.1038/nmeth.4346.

[151] Zhong-Gai Zhao and Fei Liu. On-line nonlinear process monitoring using kernel principal compo-
nent analysis and neural network. In Advances in Neural Networks, pages 945–950, Chengdu,
China, 2006. Springer Berlin Heidelberg.

[152] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component anal-
ysis? J. ACM, 58(3), June 2011. doi: 10.1145/1970392.1970395.

[153] Ivan Portnoy, Kevin Melendez, Horacio Pinzon, and Marco Sanjuan. An improved weighted
recursive PCA algorithm for adaptive fault detection. Control Engineering Practice, 50:69–83,
2016. doi: 10.1016/j.conengprac.2016.02.010.

[154] Xueqin Liu, Uwe Kruger, Tim Littler, Lei Xie, and Shuqing Wang. Moving window kernel PCA for
adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems,
96(2):132–143, 2009. doi: 10.1016/j.chemolab.2009.01.002.

[155] Chun-Mei Feng, Ying-Lian Gao, Jin-Xing Liu, Chun-Hou Zheng, Sheng-Jun Li, and Dong Wang.
A simple review of sparse principal components analysis. In Intelligent Computing Theories and
Application, pages 374–383, Lanzhou, 2016. Springer International Publishing. doi: 10.1007/
978-3-319-42294-7_33.

Bibliography 255

[156] Lei Xie, Xiao-Zhong Lin, and Jiusun Zeng. Shrinking principal component analysis for enhanced
process monitoring and fault isolation. Industrial & Engineering Chemistry Research, 52:17475–
17486, 2013. doi: 10.1021/ie401030t.

[157] Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Piergiovanni, Michael S. Ryoo, Anelia
Angelova, Kris M. Kitani, and Wei Hua. Attentionnas: Spatiotemporal attention cell search for
video classification. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision – ECCV 2020, pages 449–465, Cham, 2020. Springer International
Publishing. doi: 10.1007/978-3-030-58598-3_27.

[158] Jong-Min Lee, ChangKyoo Yoo, Sang Wook Choi, Peter A. Vanrolleghem, and In-Beum Lee.
Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering
Science, 59(1):223–234, 2004. doi: 10.1016/j.ces.2003.09.012.

[159] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations
(ICLR), San Diego, CA, 01 2015.

[160] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations (ICLR), Ethiopia, 2020.

[161] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. ArXiv, abs/2006.04768, 2020.

[162] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual
network: Backpropagation without storing activations. In NIPS, pages 2211–2221, Long Beach,
CA, 2017. doi: 10.5555/3294771.3294982.

[163] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4055–4064, Stockholmsmässan, Stockholm Sweden, 07
2018. PMLR.

[164] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. In International Conference on Learning Representations
(ICLR), Ethiopia, 2020.

[165] Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, and Jonathon Shlens. Attention augmented
convolutional networks. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 3285–3294, Seoul, 2019. doi: 10.1109/iccv.2019.00338.

[166] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with Transformers. In Computer Vision –
ECCV 2020, pages 213–229, Glasgow, 2020. Springer International Publishing. doi: 10.1007/
978-3-030-58452-8_13.

[167] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and
Jonathon Shlens. Stand-alone self-attention in vision models. In NeurIPS, Vancouver, Canada,
2019.

[168] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan,
and Mubarak Shah. Transformers in vision: A survey. ACM Comput. Surv., 54(10s), sep 2022.
doi: 10.1145/3505244.

[169] Tian Wang, Meina Qiao, Mengyi Zhang, Yi Yang, and Hichem Snoussi. Data-driven prognostic
method based on self-supervised learning approaches for fault detection. Journal of Intelligent
Manufacturing, 31, 10 2020. doi: 10.1007/s10845-018-1431-x.

256 Bibliography

[170] Seyed M. Mousavi, William L. Ellsworth, Weiqiang Zhu, Lindsay Y. Chuang, and Gregory C.
Beroza. Earthquake transformer—an attentive deep-learning model for simultaneous earth-
quake detection and phase picking. Nature Communications, 11, 2020. doi: 10.1038/
s41467-020-17591-w.

[171] Woon S. Lee, Doris L. Grosh, Frank A. Tillman, and Chang H. Lie. Fault tree analysis, methods,
and applications: A review. IEEE Transactions on Reliability, R-34(3):194–203, 1985. doi: 10.
1109/tr.1985.5222114.

[172] Georgios Kladis, John Economou, Antonios Tsourdos, Brian White, and Kevin Knowles. Fault
diagnosis with matrix analysis for electrically actuated unmanned aerial vehicles. Proceedings of
The Institution of Mechanical Engineers Part G-journal of Aerospace Engineering, 223:543–563,
08 2009. doi: 10.1243/09544100jaero422.

[173] Shi-Ning Ju, Cheng-Liang Chen, and Chuei-Tin Chang. Constructing fault trees for advanced
process control systems application to cascade control loops. IEEE Transactions on Reliability,
53(1):43–60, 2004. doi: 10.1109/tr.2004.823849.

[174] Chang Jun Lee, Gibaek Lee, Chonghun Han, , and En Sup Yoon. A hybrid model for fault
diagnosis using model based approaches and support vector machine. Journal of Chemical
Engineering of Japan, 39(10):1085–1095, 2006. doi: 10.1252/jcej.39.1085.

[175] Gibaek Lee. Multiple-fault diagnosis based on system decomposition and dynamic PLS. Indus-
trial & Engineering Chemistry Research, 42, 10 2003. doi: 10.1021/ie030084v.

[176] Wang Xiaolei, Yu Zhengning, Niu Xuemin, Lu Xianfeng, Yang Hao, and Liu Zhongjiawen. Com-
bination multiple faults diagnosis method applied to the aero-engine based on improved signed
directed graph. In 2019 4th International Conference on Measurement, Information and Control
(ICMIC), pages 1–10, Harbin, China, 2019. doi: 10.1109/icmic48233.2019.9068567.

[177] Shu-Hsien Liao. Expert system methodologies and applications—a decade review from 1995 to
2004. Expert Systems with Applications, 28(1):93–103, 2005. doi: 10.1016/j.eswa.2004.08.
003.

[178] Yuan Bo and Yang Jun. The application of a new intelligence expert system in the complex
damage faults diagnosis of UAV’s control surface. In The Proceedings of the Multiconference
on ”Computational Engineering in Systems Applications”, volume 2, pages 2062–2068, Beijing,
2006. doi: 10.1109/cesa.2006.4281978.

[179] Jie Zhang and Peter D. Roberts. Process fault diagnosis with diagnostic rules based on structural
decomposition. Journal of Process Control, 1(5):259–269, 1991. ISSN 0959-1524. doi: 10.
1016/0959-1524(91)85017-d.

[180] Shendy M. El-Shal and Alan S. Morris. A fuzzy expert system for fault detection in statistical
process control of industrial processes. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 30(2):281–289, 2000. doi: 10.1109/5326.868449.

[181] Markus Lappe. Optic flow, pages 3035–3039. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. doi: 10.1007/978-3-540-29678-2_4245.

[182] Hugh C. Longuet-Higgins and Kvetoslav Prazdny. The interpretation of a moving retinal image.
Proceedings of the Royal Society of London. Series B. Biological Sciences, 208:385 – 397, 1980.
doi: 10.1098/rspb.1980.0057.

[183] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence, 17(1):
185–203, 1981. doi: 10.1016/0004-3702(81)90024-2.

[184] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application
to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’81, page 674–679, San Francisco, CA, USA, 1981. Morgan Kaufmann Pub-
lishers Inc. doi: 10.5555/1623264.1623280.

Bibliography 257

[185] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey Vision Confer-
ence, Manchester, 1988.

[186] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In
Computer Vision – ECCV 2006, pages 430–443, Graz, Austria, 2006. Springer Berlin Heidelberg.
doi: 10.1007/11744023_34.

[187] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 593–600, Seattle, WA, 1994. doi: 10.1109/
cvpr.1994.323794.

[188] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Proceed-
ings of the 13th Scandinavian Conference on Image Analysis, pages 363–370, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg. doi: 10.1007/3-540-45103-X_50.

[189] Bruno Herissé, Tarek Hamel, Robert Mahony, and François Russotto. Landing a VTOL un-
manned aerial vehicle on a moving platform using optical flow. IEEE Transactions on Robotics,
28(1):77–89, 2012. doi: 10.1109/tro.2011.2163435.

[190] Guido C.H.E. de Croon, HannW. Ho, Christophe DeWagter, Erik-Jan van Kampen, Bart Remes,
and Qiping P. Chu. Optic-flow based slope estimation for autonomous landing. International
Journal of Micro Air Vehicles, 5(4):287–297, 2013. doi: 10.1260/1756-8293.5.4.287.

[191] Hann W. Ho, Guido C. H. E. de Croon, Erik-Jan van Kampen, Qiping Chu, and Max Mulder.
Adaptive gain control strategy for constant optical flow divergence landing. IEEE Transactions
on Robotics, 34(2):508–516, 2018. doi: 10.1109/tro.2018.2817418.

[192] Guido Croon. Monocular distance estimation with optical flow manoeuvres and efference
copies: A stability-based strategy. Bioinspiration & Biomimetics, 11, 01 2016. doi: 10.1088/
1748-3190/11/1/016004.

[193] Bas Hordijk, Kirk Scheper, and Guido Croon. Vertical landing for micro air vehicles using event-
based optical flow. Journal of Field Robotics, 35:69–90, 01 2018. doi: 10.1002/rob.21764.

[194] Farid Kendoul, Isabelle Fantoni, and Kenzo Nonami. Optic flow-based vision system for au-
tonomous 3D localization and control of small aerial vehicles. Robotics and Autonomous Sys-
tems, 57(6):591–602, 2009. doi: 10.1016/j.robot.2009.02.001.

[195] Francesco Valenti, Domenico Giaquinto, Luigi Musto, Andrea Zinelli, Massimo Bertozzi, and
Alberto Broggi. Enabling computer vision-based autonomous navigation for unmanned aerial
vehicles in cluttered GPS-denied environments. In 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC), pages 3886–3891, Maui, HI, 2018. doi: 10.1109/itsc.
2018.8569695.

[196] Luis Arreola, Andres Montes de Oca, Alejandro Flores, Jose Sanchez, and Gerardo Flores.
Improvement in the UAV position estimation with low-cost GPS, INS and vision-based system:
Application to a quadrotor UAV. In 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1248–1254, Dallas, TX, 2018. doi: 10.1109/icuas.2018.8453349.

[197] Vikrant More, Hitendra Kumar, Sarthak Kaingade, Pradeep Gaidhani, and Nitin Gupta. Visual
odometry using optic flow for unmanned aerial vehicles. In 2015 International Conference on
Cognitive Computing and Information Processing(CCIP), pages 1–6, Noid, India, 2015. doi:
10.1109/ccip.2015.7100731.

[198] Kent Rosser, Tran Nguyen, Philip Moss, and Javaan Chahl. Low complexity visual UAV track
navigation using long�wavelength infrared. Journal of Field Robotics, 01 2021. doi: 10.1002/
rob.22015.

[199] Stefan Hrabar, Gaurav S. Sukhatme, Peter I. Corke, Kane Usher, and Jonathan Roberts. Com-
bined optic-flow and stereo-based navigation of urban canyons for a UAV. In 2005 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 3309–3316, Edmonton, 2005.
doi: 10.1109/iros.2005.1544998.

258 Bibliography

[200] Pinghai Gao, Daibing Zhang, Qiang Fang, and Shaogang Jin. Obstacle avoidance for micro
quadrotor based on optical flow. In 2017 29th Chinese Control And Decision Conference (CCDC),
pages 4033–4037, Chongqing, 2017. doi: 10.1109/ccdc.2017.7979206.

[201] Volker Grabe, Heinrich H. Bülthoff, and Paolo R. Giordano. On-board velocity estimation
and closed-loop control of a quadrotor UAV based on optical flow. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, pages 491–497, Saint Paul, MN, 2012. doi:
10.1109/icra.2012.6225328.

[202] Shijie Zhang, Xiangtian Zhao, and Botian Zhou. Robust vision-based control of a rotorcraft UAV
for uncooperative target tracking. Sensors, 20:3474, 06 2020. doi: 10.3390/s20123474.

[203] Yanhua Shao, Wenfeng Li, Hongyu Chu, Zhiyuan Chang, Xiaoqiang Zhang, and Huayi Zhan.
A multitask cascading CNN with multiscale infrared optical flow feature fusion-based abnormal
crowd behavior monitoring UAV. Sensors, 20(19), 2020. doi: 10.3390/s20195550.

[204] Zhongyuan Chen, Wanchun Chen, Xiaoming Liu, and Chuang Song. Fault-tolerant optical flow
sensor/SINS integrated navigation scheme for MAV in a GPS-denied environment. J. Sensors,
2018:1–17, 2018. doi: 10.1155/2018/9678505.

[205] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale.
Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Rob. Res., 34(3):
314–334, March 2015. doi: 10.1177/0278364914554813.

[206] Tong Qin, Peiliang Li, and Shaojie Shen. VINS-Mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018. doi: 10.1109/
tro.2018.2853729.

[207] Jeffrey Delmerico and Davide Scaramuzza. A benchmark comparison of monocular visual-
inertial odometry algorithms for flying robots. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2502–2509, Brisbane, 2018. doi: 10.1109/icra.2018.
8460664.

[208] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct monocular
visual odometry. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 15–22, Hong Kong, 2014. doi: 10.1109/icra.2014.6906584.

[209] Guoquan Huang. Visual-inertial navigation: A concise review. In 2019 International Conference
onRobotics and Automation (ICRA), pages 9572–9582, Montreal, Canada, 2019. doi: 10.1109/
icra.2019.8793604.

[210] Vincent Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth prediction without the sensors:
Leveraging structure for unsupervised learning from monocular videos. In AAAI, Hawaii, 2019.
doi: 10.1609/aaai.v33i01.33018001.

[211] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. Depth from videos in the wild:
Unsupervised monocular depth learning from unknown cameras. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8976–8985, 2019. doi: 10.1109/iccv.2019.
00907.

[212] Javier Selva Castelló. A comprehensive survey on deep future frame video prediction. Master’s
thesis, Universitat de Barcelona, 2018.

[213] Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami, Tim Taubner,
Eric Cristofalo, Davide Scaramuzza, Mac Schwager, and Ashish Kapoor. AirSim drone racing
lab. In Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123
of Proceedings of Machine Learning Research, pages 177–191, Vancouver, Canada, 12 2020.
PMLR.

[214] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith, and Bernard Ghanem. Sim4CV:
A photo-realistic simulator for computer vision applications. International Journal of Computer
Vision, 126(9):902–919, 03 2018. doi: 10.1007/s11263-018-1073-7.

Bibliography 259

[215] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flight-
mare: A flexible quadrotor simulator. In Conference on Robot Learning, pages 1147–1157.
PMLR, 2020. doi: 10.5167/uzh-193792.

[216] Winter Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman. Flightgoggles: Photorealistic sen-
sor simulation for perception-driven robotics using photogrammetry and virtual reality. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 6941–
6948, 2019. doi: 10.1109/iros40897.2019.8968116.

[217] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin Lemaignan. Modular open
robots simulation engine: MORSE. In 2011 IEEE International Conference on Robotics and
Automation, pages 46 – 51, Shanghai, 06 2011. doi: 10.1109/icra.2011.5980252.

[218] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. RotorS – A Modular Gazebo
MAV Simulator Framework, chapter 7, pages 595–625. Springer International Publishing, 01
2016. doi: 10.1007/978-3-319-26054-9_23.

[219] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Petersen, Uwe Klingauf, and Os-
kar von Stryk. Hector open source modules for autonomous mapping and navigation with rescue
robots. In Sven Behnke, Manuela Veloso, Arnoud Visser, and Rong Xiong, editors, RoboCup
2013: Robot World Cup XVII, pages 624–631, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg. doi: 10.1007/978-3-662-44468-9_58.

[220] Ori Ganoni and Ramakrishnan Mukundan. A framework for visually realistic multi-robot simula-
tion in natural environment. In International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG), 2017.

[221] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. De-
tection and tracking meet drones challenge. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2021. doi: 10.1109/tpami.2021.3119563.

[222] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Qinghua Hu, and Haibin Ling. Vision meets
drones: Past, present and future. arXiv preprint arXiv:2001.06303, 2020.

[223] A. Kouris and C.S. Bouganis. Learning to fly by myself: A self-supervised CNN-based approach
for autonomous navigation. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5216–5223, Oct 2018. doi: 10.1109/iros.2018.8594204.

[224] Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq, Matthias Faessler, and Davide Scaramuzza.
Are we ready for autonomous drone racing? the UZH-FPV drone racing dataset. In IEEE Int.
Conf. Robot. Autom. (ICRA), pages 6713–6719, 2019. doi: 10.1109/icra.2019.8793887.

[225] Andras Majdik, Charles Till, and Davide Scaramuzza. The Zurich urban micro aerial vehicle
dataset. The International Journal of Robotics Research, 36:027836491770223, 04 2017. doi:
10.1177/0278364917702237.

[226] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B. Car-
doso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M. Paixão, Filipe Mutz, Lucas de
Paula Veronese, Thiago Oliveira-Santos, and Alberto F. De Souza. Self-driving cars: A survey.
Expert Systems with Applications, 165:113816, 2021. doi: 10.1016/j.eswa.2020.113816.

[227] Jorge Godoy, V. Jiménez, Antonio Artuñedo, and J. Villagra. A grid-based framework for col-
lective perception in autonomous vehicles. Sensors (Basel, Switzerland), 21(3), 2021. doi:
10.3390/s21030744.

[228] Raffaella Carloni, Vincenzo Lippiello, Massimo D’Auria, Matteo Fumagalli, A.Y. Mersha, Stefano
Stramigioli, and Bruno Siciliano. Robot vision: Obstacle-avoidance techniques for unmanned
aerial vehicles. Robotics & Automation Magazine, IEEE, 20:22–31, 12 2013. doi: 10.1109/
mra.2013.2283632.

260 Bibliography

[229] Marc Steven Krämer and Klaus-Dieter Kuhnert. Multi-sensor fusion for UAV collision avoidance.
In Proceedings of the 2018 2nd International Conference on Mechatronics Systems and Control
Engineering, ICMSCE 2018, page 5–12, New York, NY, USA, 2018. Association for Computing
Machinery. doi: 10.1145/3185066.3185081.

[230] A. Toma, H. Hsueh, H. Jaafar, R. Murai, P. J. Kelly, and S. Saeedi. Pathbench: A benchmarking
platform for classical and learned path planning algorithms. In 2021 18th Conference on Robots
and Vision (CRV), pages 79–86, Los Alamitos, CA, USA, May 2021. IEEE Computer Society.
doi: 10.1109/crv52889.2021.00019.

[231] Christian Zammit and Erik-Jan Van Kampen. Comparison of A* and RRT in real–time 3D path
planning of UAVs. Unmanned Systems, 10(02):129–146, 2022. doi: 10.2514/6.2020-0861.

[232] Adham Atyabi and David Powers. Review of classical and heuristic-based navigation and path
planning approaches. International Journal of Advancements in Computing Technology (IJACT),
5(14), 2013.

[233] Steven M. LaValle. Planning algorithms. Cambridge University Press, USA, 2006. doi: 10.
1017/cbo9780511546877.

[234] Howie Choset. Robotic motion planning lectures, September 2010.

[235] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on
Intelligent Vehicles, 1(1):33–55, 2016. doi: 10.1109/tiv.2016.2578706.

[236] B.K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, and A. Jagadeesh. A review: On path
planning strategies for navigation of mobile robot. Defence Technology, 15(4):582–606, 2019.
doi: 10.1016/j.dt.2019.04.011.

[237] F. Arambula Cosío and M.A. Padilla Castañeda. Autonomous robot navigation using adaptive
potential fields. Mathematical and Computer Modelling, 40(9):1141–1156, 2004. doi: https:
//doi.org/10.1016/j.mcm.2004.05.001.

[238] Xin Chen and Yangmin Li. Smooth path planning of a mobile robot using stochastic particle
swarm optimization. In 2006 International Conference on Mechatronics and Automation, pages
1722–1727, 2006. doi: 10.1109/icma.2006.257474.

[239] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic approaches
in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016. doi:
10.1016/j.robot.2016.08.001.

[240] Mohd Nadhir Ab Wahab, Samia Nefti-Meziani, and Adham Atyabi. A comparative review on
mobile robot path planning: Classical or meta-heuristic methods? Annual Reviews in Control, 50:
233–252, 2020. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2020.10.001.

[241] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846–894, 2011. doi: 10.1177/
0278364911406761.

[242] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 1996. doi: 10.1109/70.508439.

[243] Kesheng Wang. B-splines joint trajectory planning. Computers in Industry, 10(2):113–122, 1988.
ISSN 0166-3615. doi: https://doi.org/10.1016/0166-3615(88)90016-4.

[244] Sihao Sun, Coen C. de Visser, and Qiping Chu. Quadrotor gray-box model identification from
high-speed flight data. Journal of Aircraft, 56(2):645–661, 2019. doi: 10.2514/1.c035135.

[245] Ewoud J. J. Smeur, Qiping Chu, and Guido C. H. E. de Croon. Adaptive incremental nonlinear
dynamic inversion for attitude control of micro air vehicles. Journal of Guidance, Control, and
Dynamics, 39(3):450–461, 2016. doi: 10.2514/1.G001490.

Bibliography 261

[246] P. Schofield. Computer simulation studies of the liquid state. Computer Physics Communications,
5(1):17–23, 1973. doi: 10.1016/0010-4655(73)90004-0.

[247] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. A computer simu-
lation method for the calculation of equilibrium constants for the formation of physical clusters of
molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649,
1982. doi: 10.1063/1.442716.

[248] Shuo Li, Michaël M.O.I. Ozo, Christophe De Wagter, and Guido C.H.E. de Croon. Autonomous
drone race: A computationally efficient vision-based navigation and control strategy. Robotics
and Autonomous Systems, 133:103621, 2020. doi: https://doi.org/10.1016/j.robot.2020.
103621.

[249] Remus C. Avram, Xiaodong Zhang, and Mohsen Khalili. Quadrotor actuator fault diagnosis with
real-time experimental results. In Annual Conference of the PHM Society, volume 8, 10 2016.
doi: 10.36001/phmconf.2016.v8i1.2504.

[250] Behnam Ghalamchi, Zheng Jia, and Mark Wilfried Mueller. Real-time vibration-based propeller
fault diagnosis for multicopters. IEEE/ASME Transactions on Mechatronics, 25(1):395–405,
2020. doi: 10.1109/tmech.2019.2947250.

[251] Rajan Gill and Raffaello D’Andrea. Computationally efficient force and moment models for pro-
pellers in UAV forward flight applications. Drones, 3(4), 2019. doi: 10.3390/drones3040077.

[252] Robert Niemiec and Feny Gandhi. Effects of inflow model on simulated aeromechanics of a
quadrotor helicopter. In Proceedings of the 2016 72nd American Helicopter Society (AHS) Inter-
national Annual Forum, 05 2016.

[253] J. J. Howlett. UH-60A Black Hawk engineering simulation program, volume 1. NTIS, Springfield,
Va., 1981.

[254] Dale Pitt and David Peters. Theoretical prediction of dynamic inflow derivatives. Vertica, 5, 01
1981.

[255] Fred White and Bruce B. Blake. Improved method of predicting helicopter control response and
gust sensitivity. In Proceedings of the 1979 35th Annual Forum of American Helicopter Society,
5 1979.

[256] J.M. Drees. A theory of airflow through rotors and its application to some helicopter problems.
Journal of the Helicopter Association of Great Britain, 3, 2:79–104, 07 1949.

[257] Rajan Gill and Raffaello D’Andrea. Propeller thrust and drag in forward flight. In 2017 IEEE
Conference on Control Technology and Applications (CCTA), pages 73–79, 2017. doi: 10.1109/
CCTA.2017.8062443.

[258] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm for large-scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999. doi: 10.1137/
S1052623497325107.

[259] Abdel-Bary Mostafa and Mostafa Ebrahim. 3D laser scanners’ techniques overview. In-
ternational Journal of Science and Research (IJSR), 4:5–611, 10 2015. doi: 10.1007/
s41062-021-00550-9.

[260] Juan-Carlos Perez-Cortes, Alberto Perez, Sergio Saez-Barona, Jose-Luis Guardiola, Ismael Sal-
vador Igual, and Sergio Sáez-Barona. A system for in-line 3D inspection without hidden surfaces.
Sensors, 18:2993, 09 2018. doi: 10.3390/s18092993.

[261] Abdul Qadir Bhatti, AbdulWahab, andWadea Sindi. An overview of 3D laser scanning techniques
and application on digitization of historical structures. Innovative Infrastructure Solutions, 6(4):
186, 7 2021. doi: 10.1007/s41062-021-00550-9.

262 Bibliography

[262] Daniel Viguera Leza. Development of a blade element method for CFD simulations of helicopter
rotors using the actuator disk approach. Master’s thesis, Delft University of Technology, 2018.

[263] Sammy Omari, Minh-Duc Hua, Guillaume Ducard, and Tarek Hamel. Nonlinear control of VTOL
UAVs incorporating flapping dynamics. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2419–2425, 2013. doi: 10.1109/iros.2013.6696696.

[264] Pinting Zhang and Shuhong Huang. Review of aeroelasticity for wind turbine: Current status,
research focus and future perspectives. Frontiers in Energy, 5(4):419–434, 2011. doi: 10.1007/
s11708-011-0166-6.

[265] Tony Burton, David Sharpe, Nick Jenkins, and Ervin Bossanyi. Wind energy handbook, pages
511 – 558. John Wiley & Sons, Ltd, 04 2002. doi: 10.1002/0470846062.ch9.

[266] Alfred Gessow and Garry C. Myers. Aerodynamics of the helicopter. F. Ungar Pub. Co., New
York, 1967. ISBN 0-8044-4275-4.

[267] K. W. Mangler and H. B. Squire. The induced velocity field of a rotor. Ministry of Supply, Aero-
nautical Research Council, London, 1950.

[268] W. Z. Stepniewski. Rotary-wing aerodynamics, 1984.

[269] Robert A. Ormiston. An actuator disk theory for rotor wake induced velocities. Advisory Group
for Aerospace Research and Development (AGARD-CP-111), Aerodynamics of Rotary Wings,
1972. doi: 10.1007/978-3-030-05455-7_2-2.

[270] Robert A. Ormiston. Induced power of the helicopter rotor. In 60th Annual Forum of the American
Helicopter Society International, pages 33–53, 7–10 Jun 2004.

[271] Peter Rowland Payne. Helicopter dynamics and aerodynamics, volume 63. Pitman & Sons,
1959. doi: 10.1017/S0368393100071728.

[272] D. A. Peters and N. Haquang. Dynamic inflow for practical applications. Journal of the American
Helicopter Society, 33(4):64–68, 1988. doi: 10.4050/jahs.33.64.

[273] David A. Peters, David Doug Boyd, and Cheng He. Finite-state induced-flow model for rotors
in hover and forward flight. Journal of The American Helicopter Society, 34:5–17, 1989. doi:
10.4050/jahs.34.5.

[274] David A. Peters and Cheng He. Correlation of measured induced velocities with a finite-state
wake model. Journal of The American Helicopter Society, 36:59–70, 1991. doi: 10.4050/jahs.
36.59.

[275] JG Zhao, J.V.R. Prasad, and David Peters. Rotor dynamic wake distortion model for helicopter
maneuvering flight. Journal of The American Helicopter Society, 49:414–424, 10 2004. doi:
10.4050/jahs.49.414.

[276] J. Gordon Leishman, Mahendra J. Bhagwat, and Ashish Bagai. Free-vortex filament methods for
the analysis of helicopter rotor wakes. Journal of Aircraft, 39(5):759–775, 2002. doi: 10.2514/
2.3022.

[277] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-augmented pre-
dictive modeling of turbulent separated flows over airfoils. AIAA Journal, 55(7):2215–2227, 2017.
doi: 10.2514/1.j055595.

[278] Pedro Stefanin Volpiani, Morten Meyer, Lucas Franceschini, Julien Dandois, Florent Renac,
Emeric Martin, Olivier Marquet, and Denis Sipp. Machine learning-augmented turbulence mod-
eling for rans simulations of massively separated flows. Physical Review Fluids, 6:064607, 6
2021. doi: 10.1103/physrevfluids.6.064607.

[279] N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Astrophysics and
Space Science, 39(2):447–462, 2 1976. doi: 10.1007/bf00648343.

Bibliography 263

[280] Jeffrey D. Scargle. Studies in astronomical time series analysis. II. Statistical aspects of spectral
analysis of unevenly spaced data. Astrophysical Journal, 263:835–853, 12 1982. doi: 10.1086/
160554.

[281] Jeffrey D. Scargle. Studies in astronomical time series analysis. III. Fourier transforms, auto-
correlation functions, and cross-correlation functions of unevenly spaced data. Astrophysical
Journal, 343:874, 8 1989. doi: 10.1086/167757.

[282] R. V. Baluev. Assessing the statistical significance of periodogram peaks. Monthly Notices of the
Royal Astronomical Society, 385(3):1279–1285, March 2008. ISSN 0035-8711. doi: 10.1111/
j.1365-2966.2008.12689.x.

[283] Zechmeister, M. and Kürster, M. The generalised Lomb-Scargle periodogram - a new formalism
for the floating-mean and keplerian periodograms. A&A, 496(2):577–584, 2009. doi: 10.1051/
0004-6361:200811296.

[284] G. Larry Bretthorst. Frequency estimation and generalized Lomb-Scargle periodograms. In
Statistical Challenges in Astronomy, pages 309–329, New York, NY, 2003. Springer New York.
ISBN 978-0-387-21529-7.

[285] Earl F. Glynn, Jie Chen, and Arcady R. Mushegian. Detecting periodic patterns in unevenly
spaced gene expression time series using Lomb–Scargle periodograms. Bioinformatics, 22(3):
310–316, November 2005. ISSN 1367-4803. doi: 10.1093/bioinformatics/bti789.

[286] Junhwa Hur and Stefan Roth. Optical flow estimation in the deep learning age. In Modelling
HumanMotion: FromHuman Perception to Robot Design, pages 119–140. Springer International
Publishing, Cham, 2020. doi: 10.1007/978-3-030-46732-6_7.

[287] Syed Tafseer Haider Shah and Xiang Xuezhi. Traditional and modern strategies for optical flow:
an investigation. SNApplied Sciences, 3(3):289, 2 2021. doi: 10.1007/s42452-021-04227-x.

[288] Mingliang Zhai, Xuezhi Xiang, Ning Lv, and Xiangdong Kong. Optical flow and scene flow estima-
tion: A survey. Pattern Recognition, 114:107861, 2021. doi: 10.1016/j.patcog.2021.107861.

[289] D. Butler, J. Wulff, G. Stanley, and Michael J. Black. A naturalistic open source movie for optical
flow evaluation. In ECCV, 2012. doi: 10.1007/978-3-642-33783-3_44.

[290] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3D estimation of vehicles and scene
flow. In Proc. of the ISPRSWorkshop on Image Sequence Analysis (ISA), pages 427–434, 2015.
doi: 10.5194/isprsannals-ii-3-w5-427-2015.

[291] Moritz Menze, Christian Heipke, and Andreas Geiger. Object scene flow. ISPRS Journal of
Photogrammetry and Remote Sensing, 140:60–76, 2018. doi: 10.1016/j.isprsjprs.2017.09.
013.

[292] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In CVPR, pages 8934–8943, 06 2018. doi: 10.1109/cvpr.
2018.00931.

[293] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vi-
sion – ECCV 2020, pages 402–419, Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-58536-5_24.

[294] Jianyuan Wang, Yiran Zhong, Yuchao Dai, Kaihao Zhang, Pan Ji, and Hongdong Li.
Displacement-invariant matching cost learning for accurate optical flow estimation. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, page
15220–15231, Red Hook, NY, USA, 2020. Curran Associates Inc. doi: 10.5555/3495724.
3497000.

264 Bibliography

[295] Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow using dense inverse
search. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision –
ECCV 2016, pages 471–488, Cham, 2016. Springer International Publishing. doi: 10.1007/
978-3-319-46493-0_29.

[296] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
and T. Brox. FlowNet: Learning optical flow with convolutional networks. In IEEE International
Conference on Computer Vision (ICCV), pages 2758–2766, 2015. doi: 10.1109/iccv.2015.
316.

[297] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset
to train convolutional networks for disparity, optical flow, and scene flow estimation. In IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), pages 4040–
4048, 06 2016. doi: 10.1109/cvpr.2016.438.

[298] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Josef Bi-
gun and Tomas Gustavsson, editors, Image Analysis, pages 363–370, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg. doi: 10.1007/3-540-45103-x_50.

[299] AndrewHoward, Ruoming Pang, Hartwig Adam, Quoc Le, Mark Sandler, Bo Chen, WeijunWang,
Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching for
MobileNetV3. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages
1314–1324, 10 2019. doi: 10.1109/iccv.2019.00140.

[300] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 248–255, 2009. doi: 10.1109/cvpr.2009.5206848.

[301] J. Durbin and G. S. Watson. Testing for serial correlation in least squares regression: I.
Biometrika, 37(3/4):409–428, 1950. doi: 10.2307/2332391.

[302] Greta Ljung and G. Box. On a measure of lack of fit in time series models. Biometrika, 65, 08
1978. doi: 10.1093/biomet/65.2.297.

[303] T. S. Breusch. Testing for autocorrelation in dynamic linear models. Australian Economic Papers,
17(31):334–355, 1978. doi: 10.1111/j.1467-8454.1978.tb00635.x.

[304] L. G. Godfrey. Testing against general autoregressive and moving average error models when
the regressors include lagged dependent variables. Econometrica, 46(6):1293–1301, 1978. doi:
10.2307/1913829.

	List of Figures
	List of Tables
	I Thesis introduction
	Introduction

	II Literature study
	Fault detection and diagnosis
	Quantitative knowledge: supervised learning
	Artificial Neural Networks
	Bayesian classifier
	Fuzzy logic
	Support Vector Machines

	Quantitative knowledge: unsupervised learning
	Auto-Encoders
	Restricted Boltzmann Machines
	Principal Component Analysis
	Transformers

	Qualitative knowledge (symbolic AI)
	Fault trees
	Signed digraph
	Expert systems

	Vision
	Optic flow
	Visual Inertial Odometry
	Next frame prediction

	Photo-realistic simulator
	Literature study conclusion

	III Scientific papers
	Scientific Paper 1: Blade Element Theory Model for UAV Blade Damage Simulation
	Scientific Paper 2: Unreal Success: Vision-Based UAV Fault Detection and Diagnosis Framework

	IV Thesis report
	UUFOSim: Unreal UAV Failure injectiOn Simulator
	Environment and occupancy map
	Path planning
	Start and goal selection
	Path planning algorithm selection
	B-spline path point number reduction
	Cubic spline path smoothing
	Flight path transformation to AirSim drone inertial coordinate frame

	Data collection
	Sensor initialisation and drone teleportation
	Failure type & mode selection and initialisation
	Drone flight: guidance, control and physics model
	Sensor data collection, failure injection and flight termination
	Flight & failure metadata logging and sensor data storage

	Clockspeed selection
	Debugging tool: signal scoping
	Dataset

	Propeller damage
	Mass related force and moment changes
	Aerodynamics related force and moment changes
	Blade Element Theory
	Airfoil lift and drag coefficients identification
	Bebop 2 airfoil lift and drag coefficients identification
	Aerodynamic forces and moments computation

	Results, assumptions and recommendations
	Bebop 2 mass and aerodynamic forces and moments
	Importance of induced velocity
	Assumptions and recommendations

	Model validation
	Experimental campaign rationale
	Test set-up, data collection and challenges
	Experimental data pre-processing
	Experimental results
	Validation conclusions

	Fault detection and diagnosis
	FDD model architecture
	Camera data processing
	IMU data processing
	Sensor fusion and classification module

	Results
	Conclusions and recommendations

	V Thesis conclusions and recommendations
	Conclusions
	Recommendations for future work

	VI Appendices
	Induced velocity computation: gradient-descent approach
	Propeller damage flowcharts
	UAV linear velocity sampling strategy for simulation
	BET hyper-parameter selection
	BET model validation results
	Thrust and torque validation results for BD=0% and Vinf=2 m/s
	Thrust and torque validation results for BD=10% and Vinf=2 m/s
	Thrust and torque validation results for BD=25% and Vinf=2 m/s
	Thrust and torque damage induced oscillation amplitude validation results for BD=10% and Vinf=2 m/s
	Thrust and torque damage induced oscillation amplitude validation results for BD=25% and Vinf=2 m/s

	Measurement noise impact on the Lomb-Scargle periodogram signal reconstruction
	Bibliography

