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ABSTRACT

The continuous pursuit of reducing drag in many speed sports, such as cycling and ice-skating, de-
mands novel approaches to gain further insight into flow phenomena around athletes. In recent years,
the Ring of Fire measurement technique has emerged as a feasible option to visualise and analyse flow
structures of transiting objects based on particle image velocimetry. The accuracy of this on-site mea-
surement technique has not yet been validated under equal test conditions.

This master’s thesis aims to compare drag area values of a cyclist from Ring of Fire measurements
to simultaneously acquired power meter data. Tests with the cyclist in upright and time-trial posture,
as well as different helmet types and various drafting distances, are envisaged to assess the correla-
tion between the two measurement techniques in multiple drag area regimes, and to gain insight into
large distance drafting above 3m, which, to the best knowledge of the author, has not yet been studied
in academic research. In addition, the campaign plans to remove any user operations during the test,
which would be another step towards a fully autonomous Ring of Fire system, as envisioned in the fu-
ture. A spacious indoor facility is suggested as the testing site to minimize environmental effects and
to allow for the continuous motion of the cyclist. The Ring of Fire method shows great potential, as
the measurements are conducted under simulated racing conditions and wake visualisation allows
the operator to locate origins of drag. Validating the drag area results could further attest to the Ring
of Fire’s viability as an optimisation tool in the upcoming years.

The conducted campaign, within the framework of this thesis, indicates good agreement between the
power meter and Ring of Fire techniques when assessing the relative drag area delta of a small-scale
helmet change and a large-scale posture change. In terms of absolute values, the power meter model
shows a high dependency on underlying model constants. Using literature-based coefficients, the ab-
solute C d A values are within 5% of the Ring of Fire derived values.

Furthermore, the feasibility of evaluating long distance drafting effects with the Ring of Fire system
is demonstrated. Measurable drag area savings of 15% are obtained by the trailing cyclist at front
wheel to front wheel distances of 7−9m. Due to non-uniform inflow conditions in front of the trail-
ing cyclist, a wake contouring algorithm needed to be employed to satisfy mass preservation within
the control volume by resizing the inlet and outlet plane. In addition, enclosure of the wake structure
and contouring of a representative inlet plane is achieved. The flow topology in the wake of the trail-
ing cyclist is acquired by a stereo-PIV system. Primary wake structures, as well as in-plane velocity
fields, are comparable to those observed behind isolated riders.
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1
BACKGROUND

In long-distance triathlon events, the best athletes spend around 4 h on the bike, covering the 180 km
long bike course at an average velocity of 45 kmh−1. Marginal improvements in drag value accumu-
late over time to create large differences in energy expenditure and could be the decisive factor in
the upcoming marathon, and ultimately in winning or losing the race.
Kyle et al. (2004) proposed that at cycling velocities beyond 15 kmh−1, the aerodynamic drag be-
comes the dominant resistance. At common race speeds exceeding 40 kmh−1, more than 90 % of
the athlete’s power is expended to overcome the air resistance as suggested by Kyle et al. (1984)
and later confirmed by Grappe et al. (1997), Di Prampero (2000), Belluye et al. (2001) and Lim et al.
(2011). It is therefore essential to optimise the aerodynamic efficiency of the entire system in order
to gain an advantage over the competition.
Over the course of the last 40 years, an ever-increasing effort was made to minimize the aerody-
namic drag in triathlon cycling. Compared to professional cycling, which is governed by rules of the
UCI, triathlon bikes enjoy more relaxed rules concerning frame geometry, rider seating position,
hydration, and other storage systems (Crouch et al., 2017). The development in bike technology is
apparent in Figures 1.1, 1.2 and 1.3.

Figure 1.1: Triathlete on normal
road bike, 1982. Adapted from

Allen (1982).

Figure 1.2: Triathlete breaking
course record with 4:18h, 2006.

Adapted from Hill (2006).

Figure 1.3: Triathlete riding third
fastest bike time in 2017 with 4:14h.

Adapted from Rauschendorfer (2017).

Here, the round frame tubes were replaced with airfoil shaped elements. The standard road bike
drops were removed and a pair of aerobar extensions was added. Integrated cables and novel stor-
age solutions were employed to further decrease the drag. Finally, deep rim bike wheels, aerody-
namically shaped helmets, and long-sleeve skin suits proved to be very effective in the pursuit of
drag reduction.
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2 1. BACKGROUND

Figures 1.4 and 1.5 demonstrate an example of the effort spent to marginally improve the aerody-
namic efficiency of a professional athlete. Here, a titanium aerobar pair was individually designed
and 3D printed for a customized fit with the athlete’s arm, removing the existing gap between the
round-tubed extension and the lower arm itself. This further allows for the leading edge of the
aerobar-arm system to be optimally shaped. A measurable drag benefit of the novel solution is
claimed to be in the range of 1–2 % based on wind tunnel testing.

Figure 1.4: Baseline extension bar setup with existing
gap. Adapted from Hilger (2018).

Figure 1.5: Innovative 3D printed aerobars,
individually shaped to fit the cyclist’s arm. Adapted

from Rauschendorfer (2018).

To preserve the spirit of an individual effort, drafting another contestant at less than 12 m distance
is prohibited, measured from front wheel to front wheel and according to the official racing reg-
ulations a violation of this rule would result in a time penalty (Ironman, 2018). However, various
non-academic sources and athletes have reported a noticeable drag benefit even outside the 12 m
range, which is underlined by Figure 1.6, showing the professional athletes in non-staggered config-
uration, riding as close to the legal limit as possible to gain the maximum aerodynamic advantage.

Figure 1.6: Pro athletes spaced at minimum legal drafting
distance for aerodynamic benefit. Adapted from Wechsel

(2017).



2
LITERATURE STUDY

This chapter begins in section 2.1 with an introduction to the emerging Ring of Fire measurement
technique and its reached milestones over recent years. Thereupon, previously conducted research
on the aerodynamic efficiency of different cycling helmet types are presented in section 2.2. Sections
2.3 and 2.4 intend to provide an overview of relevant studies on drafting in cycling, covering both
aerodynamic drag savings, as well as encountered flow field changes. The chapter is concluded with
the research objective and its relevance in section 2.5, before an outline of the remaining report is
provided to the reader in section 2.6.

2.1. RING OF FIRE METHOD
Nowadays, professional and ambitious amateur athletes are seeking small aerodynamic improve-
ments relying on wind tunnel balance measurements, velodrome tests, and outdoor field tests.
Many new companies have specialized in offering such testing days, which underlines the growing
importance and demand on improving the aerodynamic efficiency. However, one of the big draw-
backs of these traditional testing methods is that they act as a black box, as only overall drag data
can be extracted, without visualizing the flow structures around the cyclist, which could be used to
identify the region that offers the greatest potential. In order to gain further insight into the flow
around the cyclist, other approaches need to be tested. One of the methods is CFD (Computational
Fluid Dynamics) which allows simulating the airflow around the cyclist numerically. Even though
this method shows the capability of simulating complex flows in sports, as shown in Gardan et al.
(2017), it is often limited to an idealized environment without modelling the transiting behaviour
occurring in most sports, like the pedalling motion of a cyclist.

In recent years, particle image velocimetry (PIV) has grown in popularity, as an alternative method
to visualize the flow field around an object. This technique relies on the tracking of small parti-
cles, which are illuminated by short light pulses, while their positions are recorded by one or more
high-performance cameras. Through post-processing methods, it is possible to reconstruct instan-
taneous velocity fields of the measurement volume and to retrieve quantitative flow information,
like pressure. Even though small tracer particles are inserted into the flow, PIV is considered a non-
intrusive measurement technique. The tracer particles are carefully selected based on their light
scattering properties and their ability to follow the motion of the flow (Raffel et al., 2007).
Until lately, PIV measurement volumes were constrained to small dimensions, limiting the model
size and thus the Reynolds number, as similarity parameter to full-size objects. Bosbach et al. (2008)
investigated the use of Helium-filled soap bubbles (HFSB) with a diameter of 0.2–0.3 mm as possible
tracer particles. Improved light scattering properties were assigned to the HFSB over typically used
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micron-sized tracer particles. This enabled the authors to trace the bubbles in an area of interest
spanning 7 m2, proving the feasibility of large-scale PIV measurements. However, due to low bub-
ble production rates, HFSB seeding was not applicable to wind tunnel tests at that time. Scarano et
al. (2015) demonstrated the feasibility of using Helium-filled soap bubbles in the sub-millimetre
regime by achieving good tracing properties in the flow upstream of a circular cylinder. The authors
additionally accomplished a faster tracer production, yielding to a higher particle concentration in
large test volumes and thus paving the way for large-scale measurements in the wind tunnel.

Thereupon, Sciacchitano et al. (2015) proposed the Ring-of-Fire approach, where tomographic-PIV
is utilized to gain quantitative insight into the flow around a cyclist, traversing a measurement vol-
ume of more than 10,000 cm3. The authors envision, performing the experiment in a velodrome to
imitate racing conditions with the test object in motion, which cannot be simulated in wind tun-
nels or numerical methods. Until now, no velodrome test has been performed, as the soap bubbles
might harm the wooden track surface and cause slippery conditions for the test cyclists. A concep-
tual integration of the setup is illustrated in Figure 2.1.

Figure 2.1: Conceptual integration of Ring of Fire
system in velodrome (Sciacchitano et al., 2015)

Figure 2.2: Feasibility study of Ring of Fire approach on
a transiting sphere (Terra et al., 2017)

As an initial study on the proposed Ring of Fire technique, Terra et al. (2017) carried out a tomo-
graphic PIV experiment, measuring the aerodynamic drag of a sphere with a diameter of 0.1 m, as
seen in Figure 2.2. During the test, the sphere transits a PIV measurement volume at 1.5 ms−1. Us-
ing the time-averaged momentum equation it is possible to apply momentum conservation in a
control volume, as depicted in Anderson (2011). By comparing the flow field parameters before
and after the passage of the sphere it is possible to determine the sphere’s drag force. The results
show large drag fluctuations when taking wake data close to the sphere (x/0.1m < 2), where the
pressure term plays a dominant role. Further downstream, the drag value plateaus, as the pressure
term approaches zero. In the regime of (x/0.1m > 2) the drag value of the sphere is overestimated
by 8–20 %, compared to literature values. The author explains this behaviour by the presence of the
sphere’s support strut, which adds to the momentum deficit in the wake.

The first large-scale Ring of Fire experiment was conducted by Spoelstra et al. (2018), using a high-
speed stereo PIV setup recording at 2 kHz (Figure 2.3). The velocity component in the direction of a
moving cyclist is captured over a measurement plane of 1000mm x 1700mm, with the cyclists tran-
siting through the laser plane at a velocity of 8 ms−1. The results of this test show little fluctuations
in the drag area value for wake measurement taken further downstream than 3 m. The author con-
cludes furthermore, that the drag delta between upright and time trial position matches previously
published reference data well. However, compared to wind tunnel force balance measurements,
performed in the same study with the same rider’s posture and bike setup, the Ring of Fire showed a
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30 % lower drag area value. The author applies a correction due to the missing interaction between
a moving ground and the bike which reduces the difference between the two measurement tech-
niques to 10 %. The remaining discrepancy could originate from a different rider’s movement and
posture on the bike, which are difficult to accurately repeat. Finally, the added model supports and
the non-rotating wheels during the wind tunnel test are additional differences relative to the Ring of
Fire test. In order to assess the accuracy of the Ring of Fire system, conducting simultaneous mea-
surements with a power meter device, while the rider is passing through the Ring of Fire could lead
to a more representative comparison.

In the latest Ring of Fire experiment, performed by de Martino Norante (2018), the author inves-
tigated the applicability of low-speed cameras, sampling at 8 Hz. One of the major disadvantages
in the experiment by Spoelstra et al. (2018) was the storage time in the range of 5–8 min for the ac-
quired images, delaying the progress of the campaign. The Ring of Fire setup in de Martino Norante
(2018) was installed indoors, reducing the environmental effects, such as wind, on the measure-
ments. Considering these two changes, the author sought to further improve the accuracy of the
Ring of Fire compared to the maiden test. Any blockage effects of the tunnel, seen in Figure 2.3,
were eliminated by erecting a larger structure, as shown in Figure 2.4. The previously stated adjust-
ments lowered the uncertainty of the drag measurements from 5 %, as in Spoelstra et al. (2018) down
to 2 %. The usage of low-speed cameras reduced the time interval between two consecutive runs to
1–2 min, with the high-speed camera used for velocity measurements being the limiting factor. The
author suggests, relying on velocity data provided by a magnetic speed sensor mounted on the bike
instead, to enable shorter time intervals between runs. Similar to the high-speed Ring of Fire study,
the drag area plateaus at more than 3.3 m downstream of the cyclist. Furthermore, it has been es-
tablished that in the far wake, the effect of the pedal position on the drag area value diminishes, due
to mixing processes in the flow. The structures in the near wake of both the indoor and outdoor
experiments are in agreement with the results of Crouch et al. (2014), who conducted a wake study
using a pitot rake at various crank angles. Due to spatial limitations at the indoor facility, the exper-
iment could not be performed continuously, as the cyclists needed to accelerate and decelerate for
each run. The use of a larger indoor hall would allow the cyclist to ride at a constant velocity and
thus also improving the consistency of the rider’s posture between transits.

Figure 2.3: Outdoor large-scale Ring of Fire using
high-speed cameras (Spoelstra et al., 2018)

Figure 2.4: Indoor large-scale Ring of Fire using
low-speed cameras, enlarged tunnel structure

(de Martino Norante, 2018)

The main restrictions in previous Ring of Fire measurements can be assigned to: Firstly, the limita-
tion of space, which prevented the cyclist from maintaining a constant velocity. Secondly, extensive
storage times of acquired images from a high-speed camera to derive the rider’s velocity, causing
long time intervals between measurements. And finally, missing validation of Ring of Fire results
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with simultaneously acquired data.

2.2. AERODYNAMIC EFFECT OF HELMET SHAPE
In competitive cycling, the technical regulations of the UCI require all athletes to wear a helmet to
lower the risk of head injuries UCI (2018). As with all parts on the bike, the helmet has evolved con-
siderably over the years. Nowadays, the helmet serves not only the purpose of injury prevention
but can also be designed to improve the thermal comfort or aerodynamic efficiency of the cyclist.
In Alam et al. (2014), the authors mention that at speeds between 30–40 kmh−1 the various helmet
shapes contribute to 2–8 % of the overall drag. With most time-trial helmets the aerodynamic drag
is lowered compared to no helmet (Blair and Sidelko, 2009). Brownlie et al. (2010) explain this be-
haviour with the non-streamlike shape of the head. The same article also emphasises that the drag
difference between a road helmet and a time-trial helmet is significantly larger than the difference
between two time-trial helmets.

Alam et al. (2010) conducted a study concerning the relation between increased ventilation and
aerodynamic drag. The test consisted of six helmet shapes, ranging from low-cost road helmets to
professional time-trial helmets with an aerodynamically-shaped tail. The test was carried out in a
wind tunnel with the helmets mounted on a mannequin head. Lower drag area values were mea-
sured for the time-trial helmets when compared to the road type. This trend was confirmed by Blair
and Sidelko (2009), where 10 different time-trial helmets were compared to a road helmet, mounted
on an upper body mannequin in the wind tunnel, which is illustrated in Figure 2.5. The authors
found a measurable drag benefit of 1–1.5 N using a time-trial helmet over a road helmet at a test
velocity of 13.4 ms−1.

In Alam et al. (2014) the authors investigated the effect of surface roughness on the helmet by the
addition of dimples, comparable to a golf ball. For this test, six different helmets were used, four
time-trial helmets with a tail and two road helmets. Again, the helmets were installed on a man-
nequin placed in a wind tunnel, as shown in Figure 2.6.

Figure 2.5: Wind tunnel test setup of Blair and
Sidelko (2009)

Figure 2.6: Wind tunnel test setup of Alam et al.
(2014)

One could argue, that the lengths of the arms of the mannequin might not be sufficient for studying
the drag value of the helmets, as with the wider time-trial helmets the flow around the shoulders
and upper arms is considerably altered. Using this setup, the authors concluded that the time-trial
helmets again performed more aerodynamically efficient than the road helmets, but the difference
became only apparent for test velocities above 30 kmh−1. Moreover, the effect of adding dimples to
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the time trial helmets was not measurable.

Chowdhury et al. (2014) carried out a wind tunnel test with four different time trial helmets of dif-
ferent lengths and vent geometries. Longer tails were found to be aerodynamically more efficient
and the vent area, as seen from the front, should be minimized. Continuing the investigation of
the effect of vents on the drag area, Underwood et al. (2015) manufactured a prototype helmet with
twelve front and rear vent openings, which could be opened or blocked. Contrary to Chowdhury et
al. (2014), the author of Underwood et al. (2015) describes the importance of vent configurations as
negligible. It should be seen critical that for the latter campaign the mannequin only consisted of a
model head and therefore does not accurately represent the flow, in particular, due to the lack of a
torso.

In addition to the wind tunnel campaigns presented above, Sims et al. (2011) performed a numer-
ical study on the length of the helmet tail. The authors used the Giro Advantage time trial helmet
with a tail as a baseline and tested different truncation lengths together with trailing edge modifi-
cations. The aim of this study was to maintain the performance of the baseline helmet when the
athlete is looking forward and to improve the performance when the athlete is looking down. After
the initial numerical study, the best design was tested in the wind tunnel on a head model at dif-
ferent pitch angles. The results of both CFD and wind tunnel confirmed that the truncated helmet
shape performed better when the athlete was looking down, whilst maintaining the performance
for the standard head position to within 1 %. Again, similar to the study of Underwood et al. (2015)
it can be seen critical that no torso was included in the model.

A more representative numerical study was carried out by Beaumont et al. (2018), also focusing
on helmets with different lengths at head up and head down position. The results of the simulation
showed that a slightly truncated time trial helmet performs better than a long tail helmet in head
up position (Figure 2.7). This is opposite to what was suggested in Chowdhury et al. (2014), where
longer tails show improve aerodynamic efficiency. However, overall the author of Beaumont et al.
(2018) concludes that the performance of the three helmets in head up position is nearly identical.

Figure 2.7: Streamline plots of three helmet configurations tested by Beaumont et al. (2018)

In head down position, the two truncated helmets exhibited equal drag area data and outperformed
the long tail helmet. By plotting the pressure coefficient on the surface of the model the main source
of drag was appointed to pressure drag, which is due to the separation of the flow at the trailing edge
of the helmet.
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It can be summarized that all studies report improved aerodynamic efficiency using time trial hel-
mets over road helmets. No clear trend could be determined which shape causes the least drag,
concerning vent geometry and tail length. This might be explained by the different testing con-
ditions and models used in the presented studies. Nowadays, it is known that the most suitable
helmet depends very much on the athlete’s riding position and body stature and is therefore highly
individual (Blair and Sidelko, 2009).

2.3. DRAG SAVINGS IN DRAFTING CONFIGURATION
When observing team time trial events in cycling the streamwise aligned configuration becomes
apparent. This formation originates in the drafting effect that trailing cyclists experience following
another rider, allowing them to preserve energy. In the following, relevant research about drafting in
cycling is presented, starting with wind tunnel measurements, followed by field tests and numerical
investigations.

2.3.1. WIND TUNNEL STUDIES ON DRAFTING

The first wind tunnel study attempting to evaluate the drafting effects has been performed by Kawa-
mura (1953). Two 1/4 scaled model cyclist were used in racing position. Results of the drag savings
experienced by the trailing cyclist range from 54 % at no wheel gap to 40 % at a separation distance
of 2 m. Later, Zdravkovich et al. (1996) presented a wind tunnel test, that was conducted on full-
scale cyclists in a small test section, where the speed was set to 8.2 ms−1. Only the upright posture
with hands on the brake hoods was tested, as can be seen in Figure 2.8. The tests covered 20 differ-
ent drafting positions, not only changing the longitudinal distance between the cyclists but also the
lateral.

Figure 2.8: Setup by
Zdravkovich et al. (1996) in

staggered arrangement

Figure 2.9: Wind tunnel test at minimum separation distance, as conducted
in Barry et al. (2014a)

The results show a maximum drag reduction of the trailing cyclist of 49 %, at 0.1 m streamwise sepa-
ration and at non-staggered configuration. A linear decrease of the aerodynamic benefit is observed
when the gap is increased. The maximum separation distance in this test was 0.9 m, where the drag
reduction amounted to 15 %. Furthermore, it can be concluded that the larger the staggered dis-
tance is, the smaller the aerodynamic benefit becomes, considering zero yaw angle of the incoming
wind.

Barry et al. (2014a) set out to conduct similar tests as those of Zdravkovich et al. (1996). The test
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was carried out in the wind tunnel with two full-scale models on time-trial bikes at a test velocity of
65 kmh−1, simulating race conditions of a team pursuit in a velodrome. A maximum drag saving of
49 % was measured for the trailing rider at minimum achievable spacing (Figure 2.9), supporting the
findings of Zdravkovich et al. (1996). This configuration also resulted in a drag reduction of the lead-
ing cyclist of 5 %. At the maximum gap of 0.7 m, a 40 % drag saving could still be measured for the
trailing cyclist, while for the leading cyclist the benefit reduces to 2.5 %. Compared to Zdravkovich et
al. (1996) the aerodynamic benefit decreases less strong with increasing drafting distance, suggest-
ing that also at gaps larger than 1 m a drafting effect could be experienced. The difference between
the two studies can be attributed to the large blockage ratio of over 15 %, which was present in the
small wind tunnel used by Zdravkovich et al. (1996). The authors of Barry et al. (2014a) also noticed
that the leading rider’s body size is likely to affect the drag savings of the trailing cyclist, with larger
riders providing more shelter for the trailing cyclist, than smaller ones.

Continuing, Barry et al. (2015) increased the number of investigated athletes from two to four, sim-
ulating a team pursuit on time trial bikes. The wind tunnel test was conducted at a velocity of
65 kmh−1 with a separation distance of 0.12 m between each rider (Figure 2.10). The results showed
a mean drag saving of 5, 45, 55 and 57 %, for position 1, 2, 3 and 4, respectively. The authors addi-
tionally observed that drag savings found in isolated riding position also translated to drag savings
in the team configuration.

Figure 2.10: Wind tunnel study with four in-line cyclists as conducted by Barry et al. (2015)

The latest wind tunnel campaign investigating drafting is presented in Belloli et al. (2016). Two full-
scale cyclists on road bikes in upright position are tested at a velocity of 50 kmh−1. The investigated
separation distance ranges from 0.05–1 m. At the smallest gap, the trailing cyclist experienced a
drag reduction of 48 %, which is comparable to the results of the studies presented above. For the
leading cyclist, a drag saving of 7 % was measured at this setpoint. At 1 m longitudinal separation,
the benefits degrade to 38 % for the trailing cyclist, while the front rider does not experience any drag
reduction. The authors also investigated the effect of side winds by introducing a yaw angle between
the pair of cyclists and the incoming wind. Here, the results show a decrease of drag savings with
increasing magnitude of the side wind angle. In this study, no staggered arrangements were tested,
which is commonly employed in cycling when encountering side wind conditions.

2.3.2. ON-SITE STUDIES ON DRAFTING

The first field study dedicated to drafting effects in cycling was carried out by (Kyle, 1979). A coast-
down test was envisioned in a 200 m long enclosed hallway. The campaign included measurements
with 1−4 cyclists, estimating their aerodynamic drag by the rate of deceleration. At a separation gap
between the two cyclists of 0.3 m, the results showed a drag decrease of 38 % independent of the test
velocities, which were between 24–56 kmh−1. No benefit for the leading cyclist was observed. The
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author also noticed a reduced drag saving for staggered formations compared to tests with equal
streamwise spacing but no offset, confirming the findings of Zdravkovich et al. (1996). Additionally,
it was established that larger body sizes of the leading cyclist result in larger drag benefits for the
trailing rider. Interestingly, Olds et al. (1995) uses these data to conclude that there is no drafting
effect at a wheel spacing of more than 3 m. This statement can be seen as highly critical as even
though this spacing was not tested by Kyle (1979), extrapolating the existent data would not suggest
this behaviour.

Edwards et al. (2007) conducted further on-site drafting measurements, with athletes of different
physical stature. The test subjects were asked to ride an outdoor 200 m flat segment from both di-
rections at a constant velocity of 45 kmh−1 and maintain a certain posture. The investigated drafting
distance was 0.5 m with no lateral offset. The power output of the athletes was measured by a hub
based power meter, which was utilized to extract the aerodynamic resistance from each test. The
main result of this research is that the leading athlete with the largest drag area also provided the
largest drag saving for the trailing cyclists (49.4 %), underlining the findings of Barry et al. (2014a).
The mean drag reduction for the trailing cyclist behind the intermediate and small-sized athlete was
41.8 % and 35.4 %, respectively. Moreover, no clear conclusion could be drawn whether the drafting
arrangement would benefit the leading cyclist. Ambient wind direction and speed were measured
for each test, however, the results will be affected by local wind behaviour. Additionally, it can be
argued that the drafting distance of 0.5 m was not kept constant throughout the test.

Broker et al. (1999) describe an outdoor velodrome test carried out with four cyclists riding as close
to each other as feasible. The power output from each rider was measured with an SRM crank-
sprocket power meter. Race conditions of a team pursuit were simulated at a target velocity of 57–
61 kmh−1. The study showed that the second, third and fourth rider in the arrangement saves 29.2,
35.9 and 36 %, respectively, of the leading cyclist’s power. As seen in previous studies, the authors
conclude that the size and posture of the leading rider has a big influence on the drag savings of the
trailing cyclists. Some of the gathered data were compromised due to increased spacing between
the riders.

Recently, Fitton et al. (2017) conducted a similar study to the one from Broker et al. (1999). Once
again, evaluating the correlation between the physical characteristics of athletes and their drag sav-
ings when riding at different positions in a team pursuit. For this, a mathematical model was cre-
ated, which uses power meter data and the geometry of the velodrome as input data. Four profes-
sional female athletes were then asked to ride once individually and once in close proximity to each
other, at a velocity of 50 kmh−1. Here, similar results were obtained as in Broker et al. (1999), where
the largest drag benefits were assigned to athlete 3 and 4, albeit slightly higher in magnitude. During
the test, the authors describe that due to the continuous circulation an artificial tailwind develops
in the hall. Similar to the aforementioned studies, it was concluded that the size and the mass of the
riders are correlating criteria with the drag area value of the athlete.

2.3.3. NUMERICAL STUDIES ON DRAFTING

An early numerical study on the subject of drafting in cycling is presented in Torre et al. (2009). Due
to the complexity and cost of 3D fluid dynamic simulations, the authors decided to investigate the
effect using a two-dimensional solver. The bike and rider system was modelled using a simplified
elliptic shape, which was tweaked to match experimental data of cyclists to within 5 %. The velocity
in the simulation was set to 15 ms−1 with a separation gap of 0.2 m. The results confirmed a drag
reduction of the leading cyclist by 5 %, as previous studies indicate. However, the drag saving of the
trailing cyclist is lower than in comparative literature, namely only 26 %. Due to the simple setup of
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the simulation, the authors tested a group of up to nine riders. Here, the riders in position two to
nine experience a drag benefit in the range of 32–34 %. Nowadays, it is known that complex vortical
structures play an important role in the flow around the cyclist and therefore this study, albeit pro-
viding a trend, cannot reproduce the correct magnitude of drag savings during drafting.

A more representative analysis was performed by Blocken et al. (2012), where 3D laser scanned
models were imported into the solver, which represent both the dropped position on a race bike
and the time trial position. One of the main goals of this research was to compare RANS (a time-
average approach) to LES (time-resolved approach). The velocity in the simulation was chosen to
be 15 ms−1. The separation distance was tested in the range of 0–1 m, resulting in drag savings
for the trailing cyclist in time trial position of 37–29 % for LES and 17–13 % for RANS. Both simula-
tions showed a linear decrease for increasing wheel gap, as already indicated by Zdravkovich et al.
(1996). Additionally, a maximum benefit of 3 % was observed for the leading cyclist at no separa-
tion distance. It can be concluded, that the choice of solver plays a critical role in the results of the
simulation, as large discrepancies between RANS and LES were found. It is important to add that
surface details of the scanned model were removed and no bicycle was included in the simulation.
The tested geometry is therefore not fully representing reality.

In a further study Blocken et al. (2013) attempt to explain the cause of drag reduction for both the
leading and trailing cyclist. The same rider-only model as in Blocken et al. (2012) is used and du-
plicated for drafting studies. Zero roughness was applied to the cyclist’s surface, which can be seen
critical as hair and suits do not provide a smooth surface. At minimum separation distance, the
numerical results show the largest drag reduction for the trailing cyclist in upright position and the
smallest for the time trial position, with 27 % and 14 %, respectively. The draft benefits again show
a linear decay for all three positions at increased drafting distance. At 1 m a drag benefit of 12 %
for the trailing cyclist in time trial position is reported. Looking at Figure 2.11, the region with low
pressure behind the isolated cyclist is weakened by the upstream pressure propagation of the draft-
ing cyclist. This high-pressure region extends further forward in time-trial position than in upright
position, explaining why the leading cyclist experiences the largest drag reduction in time-trial posi-
tion. Concerning the trailing cyclist, the high-pressure region in front is reduced, while the authors
also state a smaller low-pressure region on the back of the trailing cyclist (Figure 2.12).

Figure 2.11: Pressure interaction between
two drafting cyclists (Blocken et al., 2013)

Figure 2.12: Pressure distribution on cyclists as presented in
Blocken et al. (2013)
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In Defraeye et al. (2013) the authors conducted a numerical study on the cyclist’s drag in a team
pursuit, by scanning four male athletes and importing their geometry into the simulation. Similar
to Blocken et al. (2012) and Blocken et al. (2013), the bicycle was not included in the model in order
to reduce computational costs. The CFD simulation used a steady RANS approach, while the draft-
ing gap was assumed to be quasi-zero and the velocity was set to 60 kmh−1. As already described
in Blocken et al. (2013), the surface of the cyclist was modelled with zero-roughness. However, the
author acknowledges that increased surface roughness may have a positive effect on the drag values
of the cyclist. The results confirm the findings of previous studies, where the leading cyclist experi-
ences a drag reduction of 3 %, while the trailing cyclists encounter a drag benefit of up to 40 %.

In a recent non-peer reviewed study, the bike wheel manufacturer, Swissside, has investigated
the effect of drafting at larger distances. As mentioned above, the regulations in non-drafting races
state that a minimum distance of 12 m between front wheel and front wheel must be maintained
Ironman (2018). The study was conducted at 45 kmh−1, which is the common race velocity in long-
distance triathlons. The results are in line with previous studies, estimating the drag saving of the
trailing cyclist at minimum separation distance to 39.5 % (Figure 2.13). Furthermore, it is shown
that at 10 m wheel-to-wheel gap the drafting effect is still measurable for the trailing cyclist. A clear
velocity deficit can be observed in Figure 2.14 upstream of the second rider, leading to a drag re-
duction of 13.4 %. The results even show a small drag benefit of 8.9 % at a distance of 20 m trailing
the leading cyclist. These results contradict the statement of Olds et al. (1995), where the author
suggested negligible drafting effect at wheel gaps larger than 3 m.

Figure 2.13: Velocity plot at 0.1 m wheel gap as simulated by Swissside (2017)

Figure 2.14: Velocity plot at 10 m wheel gap as simulated by Swissside (2017)

The results of all presented studies are summarized in table 2.1. Here, the gap is defined as the
distance between the rear wheel of the lead cyclist and the front wheel of the trailing cyclist.
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Table 2.1: Summary of drafting studies

Drag reduction by rider [%]

Article Method
Velocity[
kmh−1

] Gap
[m]

Pos. # 1 # 2 # 3 # 4

Kawamura (1953) Wind tunnel N/A
0
2

D1 -
54
40

- -

Kyle (1979) Coastdown

24
40
56
40

0.3

1.4

D 0

38
38
38
29

- -

Zdravkovich et al. (1996) Wind tunnel 29.5
0.1
0.9

UP 2 0
49
15

- -

Broker et al. (1999) Velodrome 57-61 <0.3 TT3 - 29.2 35.9 36
Edwards et al. (2007) Field test 45 0.5 D 0 35.4-49.4 - -

Torre et al. (2009) CFD 54 0.2 -
4
4

26
31

-
32

-
30

Blocken et al. (2012)

CFD (RANS)

CFD (LES)
54

0
1
0
1

TT

3
0
2
0

16
13
36
30

- -

Defraeye et al. (2013) CFD (RANS) 60 0 TT 3 40 40 40

Blocken et al. (2013) CFD (RANS) 54

0
1
0
1
0
1

UP

D

TT

0.8
0.5
1.7
0.4
2.7
0.6

14
12
23
21
27
25

- -

Barry et al. (2014a) Wind tunnel 65
0

0.8
TT

5
3

49
45

- -

Barry et al. (2015) Wind tunnel 65 0.12 TT 5 45 55 57

Belloli et al. (2016) Wind tunnel 50
0.1
1

UP
7
0

47
38

- -

Swissside (2017) CFD 45

0.1
5

10
15
20

TT

4.4
0.4
0
0
0

39.5
20.3
13.4
10.6
8.9

- -

Fitton et al. (2017) Velodrome 50 <0.3 TT 4 42 48 47

1 Drops
2 Upright
3 Time-trial
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The aforementioned studies can be summarized by a measurable drag saving for the trailing cyclist
at small separation distances of less than 3 m. A trend towards a linear decreasing drag benefit at
increasing separation distance has been observed. At close drafting configuration, multiple authors
also report a positive effect on the lead cyclist. No academic investigations have been found con-
cerning a drafting distance beyond 3 m. However, a non-peer reviewed article suggests drag savings
for the trailing cyclist at a separation gap of up to 20 m. Numerous studies have confirmed that the
drafting effects are strongly related to the physical appearance of the riders involved.

2.4. FLOW TOPOLOGY BEHIND CYCLIST IN TIME-TRIAL POSITION
In recent years an increasing effort was made to conduct flow field measurements in the wake of
a cyclist and to indicate the main vortical structures. In the following, first, the wake topology be-
hind an individual cyclist is presented before moving on the drafting case. To conclude this chapter
relevant literature is presented discussing the potential dominant structures in the far wake.

2.4.1. WAKE TOPOLOGY OF INDIVIDUAL CYCLIST

An early study by Crouch et al. (2014) investigated the flow topology in the upper wake at different
crank angle positions. Multiple streamwise vortices downstream of the cyclist were observed, whose
strength and position showed a dependency on the leg position. For the asymmetric scenario, with
the pedals in vertical alignment, this statement is confirmed by a tomographic PIV study conducted
by Jux et al. (2018), in which distinct vortex structures could be extracted, as visualized in Figure
2.15.

Figure 2.15: Streamwise isosurface vorticity plot as created by
Jux et al. (2018) based on a wind tunnel experiment

To continue the research of Crouch et al. (2014), Crouch et al. (2016a) expanded the dimensions
of the measurement plane in vertical direction to capture the entire wake field behind the cyclist.
From this study, the authors concluded, that the differences in wake topology between a static pedal
position and its phase-averaged dynamic pedalling counterpart, are marginal, regardless of the ped-
alling frequency. This observation is supported by the results of the previous Ring of Fire campaign,
performed by de Martino Norante (2018), in which only the magnitude of the vorticity showed a
deviating value, explained by a different Reynolds number regime between the tests.

An initial attempt was made by Crouch et al. (2016a) and Griffith et al. (2014) to characterize the
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primary vortical structures in the wake of the cyclist. The origin of the dominating counter-rotating
vortex pair was assigned to the hip/thigh region of the cyclist. Subsequent, wind tunnel PIV mea-
surements, acquired in the wake of a 3D printed cycling mannequin in asymmetric pedal posi-
tion showed reoccurring structures, with the most prominent being the hip/thigh and foot vortices
(Terra et al. (2016), Shah (2017) and Jux et al. (2018)). Moreover, from the previous two Ring of Fire
experiments by Spoelstra (2017) and de Martino Norante (2018) asymmetric phase-locked vorticity
fields were obtained, which showed a more pronounced hip/thigh vortex pair, likely due to the dif-
ferent posture when compared to the mannequin used in the aforementioned wind tunnel studies.
Again, vortical structures originating from the foot region can be identified. The most recent Ring
of Fire campaign furthermore depicted a counter-rotating head vortex pair, which has not been ob-
served in preceding studies. The resultant vorticity plots behind a single rider from all previously
mentioned works are presented in Figure 2.16. Here, images 2.16d through 2.16f are conducted with
the same mannequin, equal to the one illustrated in Figure 2.15.
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(a) Numerical
steady-state (Griffith et

al., 2014)

(b) Numerical
transient (Griffith et al.,

2014)

(c) Wind tunnel (Crouch et al., 2016a)

(d) Wind tunnel (Shah, 2017) (e) Wind tunnel (Jux et
al., 2018)

(f) Wind tunnel (Terra et al.,
2016)

(g) Ring of Fire (Spoelstra et al., 2018) (h) Ring of Fire (de Martino Norante, 2018)

Figure 2.16: Labelled streamwise vorticity plots behind individual cyclist
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2.4.2. WAKE TOPOLOGY OF TRAILING CYCLIST

In order to study the flow field around a trailing cyclist, Barry et al. (2016a) tested two scaled cy-
clists in a water channel, as shown in Figure 2.17. The authors acknowledge a reduced Reynolds
number by an order of magnitude compared to the real condition. An increased rate of diffusion of
the streamwise vortex structures is assumed and therefore suggests that this configuration is more
representative for larger separation distances than were tested in this paper. Crouch et al. (2016b)
found that primary vortex structures observed in the scaled water channel test show good agree-
ment with the full-size wind tunnel campaign, confirming that the test by Barry et al. (2016a) is
representative. The flow field around the cyclist was captured with a planar PIV setup to acquire
time-averaged data. The selected measurement planes are depicted in Figure 2.18.

Figure 2.17: Water tunnel setup by Barry et al. (2016a) using a
single PIV meaurement plane.

Figure 2.18: 8 PIV measurement planes in
front and behind the trailing cyclist as used

in Barry et al. (2016a).

Two separation distances were investigated, namely 1/11 of a bike length and one bike length, when
translated into full scale. The results of the study are presented in Figure 2.19a to 2.19c, showing the
leading and trailing cyclist both in asymmetric leg position.

(a) Isolated rider (b) Trailing cyclist at 1/11 bike
length separation distance

(c) Trailing cyclist at 1 bike length
separation distance

Figure 2.19: Streamwise vorticity behind rider in asymmetric position (Barry et al., 2016a).

The authors concluded that the main wake structures stemming from the trailing cyclist are com-
parable to those from an isolated rider, despite the significant upstream disturbance. It should be
added that the strength of the upper hip vortex structures is slightly weakened, explained by the
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authors due to the reduced energy in the flow faced by the trailing rider. Streamwise vortical struc-
tures in the foot region are consistent, although weaker. Additionally, the findings of Blocken et al.
(2013) are supported in that the majority of the drag benefit for the trailing cyclist originates from
decreased stagnation pressure, due to the presence of the leading cyclist. For this, Barry et al. (2016a)
plotted the streamwise velocity contours just upstream of the trailing cyclist. A clear velocity deficit
can be identified for the small separation distance. A less pronounced deficit is observed at one bike
length behind the leading cyclist as depicted in Figure 2.20.

Figure 2.20: Streamwise velocity upstream
of trailing cyclist at gap of 1/11 (left) and 1

(right) bike length (Barry et al., 2016a)

Figure 2.21: Phase-averaged streamwise vorticity plots by
Barry et al. (2016b). Upper row isolated rider, lower row

trailing cyclist

Following the water tunnel test, Barry et al. (2016b) conducted a wind tunnel study, again with the
intention of comparing the wake topologies between isolated and trailing cyclist. The test was car-
ried out with full-scale riders in dynamic pedalling configuration. Similar to Barry et al. (2016a),
the main vortical structures, in particular, the hip vortices are consistent between the isolated and
trailing case, although the streamwise vorticity is weakened in magnitude. In Figure 2.21, phase-
averaged streamwise vorticity plots can be obtained comparing the wake structures of an isolated
rider to those of a trailing cyclist in tandem configuration with a separation distance of approxi-
mately 0.2 m. The author concludes that the drag savings of the trailing cyclist do not originate in
a change of wake structures. Lastly, the authors provided normalized streamwise velocity plots just
downstream of the isolated and trailing cyclist, which are given in Figure 2.22a and 2.22b, respec-
tively.

(a) Individual case (b) 0.3 m drafting gap

Figure 2.22: Time-averaged normalized streamwise velocity behind cyclist (Barry et al., 2016b)
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Similar to the primary flow structures, the velocity deficit contour in the near wake region behind a
trailing cyclist resembles the individual rider case, albeit the peak velocity deficit and width of the
lower wake are slightly more pronounced in the drafting case.

2.4.3. WAKE BEHAVIOUR FAR DOWNSTREAM

Considering drafting cases at larger separation distances, the downstream evolution of the lead cy-
clist’s wake is of importance, as it represents the flow field encountered by the trailing cyclist. The
previous two Ring of Fire studies provide flow field information in the far wake region, which are
shown in Figure 2.23b and 2.23d. In both results, the lower wake broadens in downstream direction,
with the peak velocity deficit being concentrated in the lower portion of the wake itself. The upper
wake region does not diffuse in width but stays rather narrow.

(a) x = 0.4m
(Spoelstra et al., 2018)

(b) x = 2.65m
(Spoelstra et al., 2018)

(c) x = 0.31m
(de Martino Norante, 2018)

(d) x = 2.4m
(de Martino Norante, 2018)

Figure 2.23: Normalized streamwise velocity plots at distance x behind cyclist obtained from Ring of Fire
measurements

From the previously investigated literature the hip/thigh couple can be considered as being the
most dominant vortex pair in the wake of a cyclist, as illustrated by Figure 2.24. It can be expected
that these structure outlast the smaller-scale features from the lower portion of the wake. This trend
is shown in Figure 2.25, extracted from the initial Ring of Fire study by Spoelstra (2017), where the
counter-rotating vortices from the hip/thigh region are still identifiable 3.025 m downstream of the
cyclist.

Figure 2.24: Asymmetric flow
topology in the wake (Crouch et al.,

2017)

Figure 2.25: Streamwise
vorticity at 3.025 m behind

cyclist (Spoelstra, 2017)
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2.5. OBJECTIVE AND RELEVANCE OF THIS THESIS
In the works of Spoelstra (2017) and de Martino Norante (2018), the Ring of Fire system has previ-
ously shown great potential in analysing the flow field around a transiting cyclist. Particularly strong
agreement to literature was found concerning the flow topology in the near wake. To evaluate the
accuracy of the drag area value, Spoelstra (2017) conducted a reference wind tunnel study in which
a before and after correction a 30 % and 10 % discrepancy to the Ring of Fire method was obtained.
To further assess the accuracy of the Ring of Fire system, this thesis intends to compare the resul-
tant drag area values from the Ring of Fire approach to simultaneously acquired power meter data,
which allows the formulation of the research objective as follows:

"Assessment of the Ring of Fire system for cycling aerodynamics by simultaneous state-of-the-art
power meter measurement techniques"

A successful outcome of the experiment would show good agreement between the drag results from
the two approaches and would attest to the Ring of Fire’s viability as measurement technique for
cycling aerodynamics. As part of the campaign, a long distance drafting beyond 3 m is envisaged,
as no academic research has been performed in this regime, to the best author’s knowledge and
belief. Based on the background provided in chapter 1, the drag savings in non-drafting races, such
as long-distance triathlon could be quantified and flow structures responsible for the downstream
wake behaviour could be identified.

2.6. OUTLINE OF THIS REPORT
Following the preceding introductory text in chapter 1, the current chapter chapter 2 presented a
literature review, concerning the Ring of Fire measurement technique, aerodynamic drag measure-
ments on different helmet types, as well as aerodynamic benefits and flow topology changes under
drafting condition. The subsequent chapter 3, introduces the employed model to extract drag area
values from the power meter recordings, before the working principles of the PIV technique are
presented, with particular emphasis on stereo-PIV setups. The theoretical framework chapter con-
cludes with the concept of the control volume approach. Chapter 4 informs the reader about the
experimental installation used for the measurement campaign, describing the test facility, the Ring
of Fire setup, the test object and the chosen acquisition settings. Thereupon, chapter 5 focuses on
the data reduction processes employed for both power meter and Ring of Fire data. The processed
data are then used in chapter 6 to compare the two measurement techniques against each other
and to discuss flow field changes around the trailing cyclist in drafting condition. A final conclusion
concerning the previous findings, as well as recommendations for future Ring of Fire experiments
are given in chapter 7. Supplementary information about an encountered seeding problematic can
be found in Appendix A. A sample code of the applied wake contouring algorithm is provided in
Appendix B.
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THEORETICAL FRAMEWORK

The subsequent chapter examines the underlying principles used to evaluate the cyclist’s drag through
power meter and PIV techniques. First, section 3.1 introduces the individual drag components that
must be overcome by the cyclist. Second, models and empirical formulas are provided, that allow
the determination of the aerodynamic drag from the power meter data (section 3.2). Third, section
3.3 explains the working principle of PIV, with particular emphasis on a stereoscopic configuration,
before presenting the control volume approach used to extract the aerodynamic drag from the PIV
measurements in section 3.4.

3.1. RESISTIVE FORCES DURING CYCLING
Cyclists expend their energy to overcome resistive forces that oppose their forward motion, com-
prising rolling and gradient resistance, friction forces in drivetrain and bearings components, bump
losses and finally the aerodynamic drag. A constant velocity is maintained when the cyclist’s power
output equals the sum of all opposing forces times the rider’s velocity. During acceleration and de-
celeration, inertial effects play an additional role. A schematic, shown in Figure 3.1, highlights the
origin of the drag components encountered during cycling.

Figure 3.1: Schematic representation of opposing forces during cycling

21
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The experiment in the framework of this project aims at a constant velocity of the cyclist riding
over a level surface with minimum undulations and thus inertial effects, bump losses and gradient
resistance can be neglected. Of the remaining forces, the aerodynamic drag dominates at veloci-
ties beyond 15 kmh−1, as established by Kyle et al. (2004) and contributes to 90 % at race velocities
around 45 kmh−1 (Kyle et al., 1984), of which 60–80 % can be attributed to the cyclist him/herself
(Defraeye et al. (2013), Blocken et al. (2013) and Crouch et al. (2017)). While the aerodynamic resis-
tance increases with the square of velocity, rolling resistance can be considered independent from
speed, as stated in Grappe et al. (1997). Empirical expressions for the drivetrain and bearing losses
are given in section 3.2 and together account for less than 5 % of the total resistance in racing con-
ditions, according to Wilson et al. (2004).

3.2. DRAG AREA EVALUATION THROUGH POWER METER
This master’s thesis objective is the validation of the Ring of Fire system with simultaneously ac-
quired measurements with a state-of-the-art power meter device. A wide range of power meter
types exist, with common mounting locations being the pedals, cranks, spider, bottom bracket and
the hub of the rear wheel. Each system offers advantages and disadvantages, in terms of cost, dura-
bility, accessibility and most important accuracy. The torque, resulting from the rider’s force on the
pedal, causes material deformations, which are measured by one or multiple strain gauges packaged
in the power meter. Together with the angular velocity, which is either measured by accelerometers
or magnetic sensors, the power output of the cyclist can be determined.
Throughout one crank cycle, the applied torque varies strongly, due to biomechanical properties
of the rider (Quintana-Duque et al., 2015). In order to extract meaningful information, the power
meter averages the acquired data over one crank cycle.

The recorded power data, Ptot al , can be utilized to obtain the total drag force D tot al , opposing the
rider’s motion, through the basic relation:

Ptot al = D tot al ·V → D tot al =
Ptot al

V
(3.1)

, where V is the cyclist’s velocity and D tot al comprises of:

D tot al = Daer o +Dr ol l i ng +Ddr i vetr ai n +Dbear i ng (3.2)

The aerodynamic drag must be extracted from equation 3.2, in order to compare the aerodynamic
drag value to the results of the Ring of Fire technique. It is therefore required to first determine the
remaining terms, through models, empirical values and data fitting.

- Wheel bearing resistance Measurements on wheel bearing losses were conducted by Dahn et
al. (1991). Based on these data Martin et al. (1998) formulated a numerical model to express
the wheel bearing losses in each wheel as a function of velocity:

Dbear i ng = (91+8.7V ) ·10−3 (3.3)

Losses within the bearing components can be expected to account for less than 2 % of the
overall drag force.

- Drivetrain resistance The drivetrain efficiency comprises friction losses within the chain and
at the interface with the front chainring and rear sprocket. Throughout studies by Spicer et al.
(2000), Kyle et al. (2001), Rohloff et al. (2004) as well as Hinzen et al. (2012) it is consistent that
transmission efficiency increase with larger power output. Ultimately, the data from the most
recent study by Hinzen et al. (2012) are utilized to quantify the chain drive resistance, as the
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study investigates power outputs as low as 50–200 W and are thus representative of the test
regime of the current experiment. Furthermore, the author claims to measure the drivechain
efficiency at per mille accuracy. The discrete results are linearly interpolated and plotted in
Figure 3.2, which displays the drivetrain efficiency as a function of the transmitted power and
the selected gear (number of chainring teeth and number of sprocket teeth).

Figure 3.2: Interpolated drivetrain efficiency, based on measurements conducted in Hinzen et al. (2012)

- Rolling resistance The rolling resistance is dependent on the tyre-pressure, -loading, -diameter
and -temperature, as well as the surface properties of the ground and the steering conditions
(Burke, 2003). In automotive engineering, the rolling coefficient, Cr r , is also a function of ve-
locity. However, Grappe et al. (1997) and Baldissera et al. (2017) regard the effect of speed on
the rolling coefficient in cycling as negligible and therefore use a speed-invariant Cr r value. A
wide range of rolling coefficient values are documented in literature based on bicycle tyre and
surface properties, mostly ranging between 0.0017–0.0043 for high-performance tyres on con-
crete (Kyle et al. (1985) and Lafford (2000)). For low inflation pressures this rolling resistance
coefficient increases up to 0.005–0.006 at 5 bar, according to Grappe et al. (1999) and Wilson
et al. (2004). In the current experiment, an attempt is made to evaluate the Cr r value under
local test conditions, using a linear regression method, based on Debraux et al. (2011), where
only the aerodynamic drag and the rolling drag are considered. To obtain the Cr r data, the
cyclist conducts tests at different velocities while maintaining a constant posture on the bike.
The power output at the different speeds is recorded with a power meter and thus allows the
extraction of the total resistive drag force. Debraux et al. (2011) assume a linear relationship
between the total resistive force and the squared velocity, since the rolling resistance is veloc-
ity invariant, as established above and the aerodynamic drag scales with the velocity squared
as defined by:

Daer o = 1

2
ρCd AV 2

r el (3.4)

Here, ρ is the air density, Cd the drag coefficient, A the frontal area and Vr el is the relative ve-
locity between the cyclist and the surrounding air. A linear regression can then be performed,
as shown in Figure 3.3.
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Figure 3.3: Linear regression analysis to determine Cr r (Debraux et al., 2011)

The rolling resistance, Dr ol l i ng , can be extracted from Figure 3.3, at the intercept between the
y-axis and the curve-fitted straight, as the aerodynamic drag becomes 0. The rolling resistance
coefficient is now derived using:

Dr ol l i ng =Cr r mg →Cr r =
Dr ol l i ng

mg
(3.5)

, where m is the combined mass of the rider and the bike and g is the gravitational accelera-
tion. The resultant rolling coefficient is used in formula 3.6 to compute the drag contribution
of the rolling resistance.

For the actual comparison between the power meter data and the Ring of Fire values, the drag of
the bearings, drivetrain and tyres are substituted into equation 3.2, isolating the aerodynamic drag.
In aerodynamic cycling studies, it is common practice to quantify the drag as drag area coefficient
C d A with dimensions of m2 to avoid the necessity of frontal area measurements. Ultimately, the
drag area value can be obtained by:

C d A =
2
(
ηdr i vetr ai n

Ptot al
V −Cr r mg − (91+8.7V ) ·10−3

)
ρV 2

r el

(3.6)

3.3. WORKING PRINCIPLE OF PARTICLE IMAGE VELOCIMETRY
PIV is considered a non-intrusive flow visualization method, which relies on capturing the motion
of tracer particles, entrained by the fluid flow. A high power laser light is used to illuminate the trac-
ers within a confined measurement region. Shortly separated light-pulses are synchronized with
one or multiple high-performance cameras, which record the scattered light from the tracer parti-
cles. The captured images are partitioned into multiple smaller "interrogation windows", in which a
cross-correlation function is applied to evaluate the mean particle motion between two consecutive
recordings. Ultimately, the instantaneous velocity field within the area of interest is derived from the
measured particle displacement and the time interval between the light pulses. A schematic repre-
sentation of a planar PIV system is shown in Figure 3.4, where a single camera is directed with the
lens axis orthogonal to the measurement plane.



3.3. WORKING PRINCIPLE OF PARTICLE IMAGE VELOCIMETRY 25

Figure 3.4: Process flow schematic of a planar PIV system, adapted from Giaquinta (2018)

3.3.1. TRACER PARTICLES

The choice of the appropriate tracer particle is important, as it must faithfully follow the fluid flow
and exhibit good light scattering properties. To quantify the tracing fidelity, the particle’s Stokes
number, Sp , is considered, which is defined as the ratio of the particle response time, τp , over the
flow characteristic time, τ f . For instantaneous tracing characteristics, the Stokes number should be
0. Stoke numbers above 0 indicate a velocity discrepancy, called slip velocity, between the fluid and
the particle, when a velocity gradient is encountered. Following such a velocity change, the particle
time response is defined as the time delay after which the particle velocity has reached 63 % of the
fluid velocity. τp is given in equation 3.7 as stated in Adrian and Westerweel (2011).

τp =

∣∣∣ (ρp−ρ)
ρ

∣∣∣d 2
p

18µ
(3.7)

, where ρ and ρp is the density of the air and the tracer particle, respectively. Additionally, dp repre-
sents the particle diameter and µ the dynamic viscosity of the fluid. To reduce the particle response
time and thus the Stokes number, the particle size should be minimized or the tracer should be-
have neutrally buoyant (ρ = ρp ). For incompressible flows, Samimy et al. (1991) conclude that the
measurement error introduced by the slip velocity is linearly increasing with the Stokes number
(Sp = 0.2 corresponds to an error of 2 %).

Contrary to the previously mentioned attribute of small tracer particles being advantageous for trac-
ing fidelity, light scattering properties improve with increasing particle size. Capturing high light in-
tensities on the camera sensor is desirable to increase the contrast to the background. Adrian and Y.
(1985) report that for particle sizes far smaller than the laser wavelength, λ, Rayleigh scattering ap-
plies and the scattering intensity scales according to, Ip ∝ d 4

p . The Mie scattering regime is defined

in a region where dp >>λ, in which Ip ∝ d 2
p holds. Figure 3.5 displays the light scattering behaviour

within the Mie scattering regime. In general, the dominant scattering direction is forward, while less
light is scattered at angles between 90–180°.
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Figure 3.5: Light scattering of a 4µm sized water droplet at (0,0,0) with λ= 633nm (Normal vector of light ray
[0 1 0]). Adapted from Michels (2010).

For large-scale PIV experiments, intense light scattering properties are required, which are not achieved
by traditional tracers in the micron-size regime. Bosbach et al. (2008) therefore investigated Helium-
filled soap bubbles (HFSB) with a diameter of 0.3 mm as potential tracer particles. The increased
amount of light scattering and the good tracing characteristic due to the neutrally buoyant be-
haviour of the HFSB (Scarano et al., 2015) enable the possibility of large-scale PIV measurements.

3.3.2. PARTICLE IMAGING

The sensor of the PIV camera detects the particle position by measuring the number of absorbed
light per pixel over a certain exposure time. This is realized by using one photo-diode in each pixel,
which converts the amount of absorbed photons into an electric current. This way, each pixel in the
sensor plane can be assigned its own distinct intensity value. The amount of incident light during
the exposure time can be controlled with the aperture diameter setting, called f# or f-stop, defined
as the ratio of the focal length over the lens aperture diameter (Goodman, 2004). Most lenses only
allow discrete f-stop settings, whereas each larger f# step halves the incoming light intensity com-
pared to the previous one.

In addition to the light intensity, the chosen f-stop affects the amount of particle image diffrac-
tion. For small particles, this effect is to a certain extent desirable as it prevents the occurrence of
"peak locking", by distributing the light intensity over adjacent pixel and thus allowing velocity re-
construction to sub-pixel accuracy. Smaller f# values lead to larger diffractions which result in a
circular pattern called "Airy disc". For small-scale PIV applications, the minimum particle image
diameter is typically limited by the diffraction diameter ddi f f and can be obtained through expres-
sion 3.8 (Raffel et al., 2007). Here, λ is the wavelength of the laser light and M is the magnification
factor, defined as the ratio of the sensor size over the field of view size. However, in large-scale PIV
experiments with increased particle size and higher Magnification factors, the geometrical image
size dg eom dominates the diffraction phenomenon and thus the minimum particle image size can
be approximated by formula 3.9. In the crossover range in between, the Euclidean sum of both con-
tributions is taken, resulting in a minimum image particle diameter as shown in equation 3.10:

ddi f f = 2.44λ (1+M) f# (3.8) dg eom = Mdp (3.9) dτ =
√

d 2
g eom +d 2

di f f (3.10)

, where dp is the particle diameter. It is advised by Adrian and Westerweel (2011) to ensure a min-
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imum particle image diameter dτ of at least 2-4 pixel, to prevent bias errors towards integer values
caused by peak-locking. Lastly, the f-stop setting can be adjusted to vary the focal depth δz, which
corresponds to the volumetric depth in which the imaged objects are in focus, according to:

δz = 4.88λ f 2
#

(
M +1

M

)2

(3.11)

Typically, the focal depth should exceed the laser sheet thickness to guarantee that all illuminated
particles are in focus. The desired focal length f of the lens itself can be formulated as:

1

f
= 1

di
+ 1

do
(3.12)

, where di is the distance between the image sensor and the lens and do is the distance between the
lens and the imaged object.

3.3.3. STEREOSCOPIC PIV
The single-camera setup as shown in Figure 3.4 is limited to the reconstruction of only the two
in-plane velocity components in x- and y-direction. Any out-of-plane movement within the mea-
surement domain introduces an error of the in-plane component. Planar PIV is therefore not rec-
ommended for highly three-dimensional flows. Instead, Stereoscopic PIV provides a method to
reconstruct the three component velocity vectors, by adding a second camera. Both cameras si-
multaneously record the same object but from different perspectives. Two common configurations
for stereoscopic PIV setups are used, namely the translation method and the angular-displacement
method, which are shown in Figure 3.6 and 3.7, respectively.

Figure 3.6: Translation stereo-PIV configuration
(Prasad, 2000)

Figure 3.7: Angular-displacement stereo-PIV
configuration (Prasad, 2000)

The translation method benefits from a parallel alignment between the image plane, lens plane and
object plane. Perspective distortions are minimized due to a constant magnification factor across
the image plane, leading to higher accuracies. However, this method is limited by the degrading
image quality due to increased optical aberrations at large opening angles between the cameras
(stereo-angle, 2θ). Prasad (2000) suggests a maximum stereo-angle of 30° for the translation config-
uration.

Larger stereo angles can be achieved with the more commonly used angular displacement setup,
as the lens plane is positioned under an angle to the object plane. For maximum accuracy of the
out-of-plane component, the stereo-angle is advised to be as close as possible to 90° (Raffel et al.,
2007). Increasing stereo-angles on the other hand, lead to more non-uniform magnification factors
across the image plane, which compromise the in-plane accuracy. Furthermore, the interrogation
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windows of the two cameras are differently sized when mapped to the object plane due to the dis-
tortion caused by the stereo-angle, as shown in Figure 3.8.

Figure 3.8: Stereo angle causes uniform grid in image plane to become warped in object plane. Adapted
from Prasad (2000).

It is therefore required to perform an additional interpolation step to merge the two images onto
one common de-warped mesh (Prasad, 2000). Furthermore, the angle between each camera and
the measurement plane causes the outer edges of the image to lose focus. To compensate for this
effect, a Scheimpflug adapter can be added to create an angle between the camera and the lens. The
Scheimpflug angle, α, is ideally selected such that the object, lens and image plane coincide in one
common point, which ensures that the entire object plane is in focus (Figure 3.7). For the angular-
displacement setup, Lawson et al. (1997) showed that the error-ratio, e, between the out-of-plane
component and in-plane components increases with decreasing half stereo-angle (θ = 45◦ : e ≈ 1,
θ = 15◦ : e ≈ 3.7, θ = 5◦: e > 10). For large-scale PIV measurements, the field of view requires the
cameras to be placed at a large distance and thus stereo-angles above 30° are challenging to achieve.

Using two cameras with different view angles onto the measurement plane provides six unique vari-
ables, namely the u and v velocities of a particle on each of the two sensors and the angles α and β,
which are measured between the cameras and the z-axis in the XZ- and YZ-plane, respectively. The
construction of the out-of-plane velocity vector in an angular-displacement stereo configuration is
displayed in Figure 3.9. Particle velocities u and v for each camera are defined by:

u1 =− ∆x1

M∆t
(3.13) u2 =− ∆x2

M∆t
(3.14)

v1 =− ∆y1

M∆t
(3.15) v2 =− ∆y2

M∆t
(3.16)

, with ∆x and ∆y being the horizontal and vertical displacement of the particle in the image plane.
∆t is the pulse separation time and M is the magnification factor. It is common practice to mount
the cameras at the same height, with the lens axis parallel to the ground. As a consequence, the
angle β measured in the YZ-plane is very close to 0. According to Raffel et al. (2007), the three
velocity components u,v ,w can then be determined by:

u = u1 tanα2 +u2 tanα1

tanα1 + tanα2
(3.17) v = v1 + v2

2
(3.18) w = u1 −u2

tanα1 + tanα2
(3.19)



3.4. CONTROL VOLUME APPROACH 29

Figure 3.9: Construct out-of-plane velocity vector (Raffel et al., 2007)

In order to map the two trapezoidal image planes onto a common rectangular mesh in the object
plane, the relative position between the cameras and the magnification factor distribution across
the image planes need to be known. For this, a calibration plate with known dimensions is placed
in the laser sheet plane, which consists of markings distributed over two levels of depth. A pinhole
approach approximates the camera’s positions with respect to each point on the calibration plate,
by means of triangulation. For each camera, the second-order mapping function, as employed by
Willert (1997), consists of twelve coefficients. A minimum of six calibration points is necessary to
determine the coefficients based on a least-square method. Wieneke (2005) further proposes to
perform a self-calibration procedure on 5−50 image pairs showing particles in motion. A disparity
map between the image planes is then created, using the ensemble-averaged cross-correlation. The
calibration error can be further reduced by shrinking and deforming the interrogation windows of
the disparity map, based on the previous self-calibration procedure.

3.4. CONTROL VOLUME APPROACH
Based on Anderson (2011), the aerodynamic drag force of a test object can be obtained, by solving
the instantaneous momentum equation within a control volume surrounding the test object. Up-
stream and downstream of the test object, the control volume is bound by one inlet and one outlet
plane, which are oriented perpendicular to the primary flow direction. For the Ring of Fire exper-
iment, the ground describes an impermeable boundary, while the sides of the control volume, as
well as the top surfaces, are assumed to be streamlines of the flow around the cyclist (see Figure
3.10).
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Figure 3.10: Control Volume around a cyclist

The instantaneous aerodynamic drag force F (t ) of the cyclist can then be determined by the integral
form of the momentum equation, which holds for incompressible flows and is defined in an inertial
frame of reference, thus assuming a constant test velocity, uc (Mohebbian et al., 2012).
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(3.20)

, where F (t ) is the instantaneous drag force of the object, S the control surface enclosing the con-
trol volume V , n the vector normal to S, while u, p, p∞, ρ and τ are the fluid velocity, local static
pressure, freestream static pressure, density and viscous stress, respectively. In order to avoid volu-
metric velocity measurements, Wu et al. (2005) utilizes a derivative-momentum transformation to
reformulate the volume integral of the unsteady term into a surface integral after which equation
3.20 can be rewritten into:
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(3.21)

, where the position vector x is defined in any fixed reference frame. In the following, each term of
the previous expression is revisited and assumptions are made to reduce formula 3.21.

- Unsteady term Similar to de Martino Norante (2018) and Spoelstra et al. (2018), the unsteady
contribution to the drag force due to the pedalling motion of the cyclist and the rotation of
the wheels is considered to be small and is subsequently neglected.

- Momentum term The change in momentum within the control volume is defined by the
product of the mass flow through all control surfaces and the velocity. As stated above the side
and top boundaries of the control volume are streamlines, so by definition, no mass crosses
these surfaces (u ·n = 0). Furthermore, no mass can enter or leave through the ground plane.
The net momentum flow across the control surfaces can thus be obtained by the surface in-
tegral over the inlet and outlet plane alone.

- Pressure term In most cases the side and top surfaces are chosen far away from the body, such
that freestream pressure conditions are recovered and thus the contribution to the aerody-
namic drag force is zero. In case the side and top surfaces are chosen closer to the body, a pres-
sure gradient across the surface would be present. However, due to the near-perpendicular
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orientation of the normal vector n with respect to the x-axis, the contribution to the drag force
can still be considered as small. The pressure forces on the ground act perpendicular to the
X-Y plane and thus do not add to the drag. Blocken et al. (2016) plot the pressure field in front
of a cyclist, from which it can be concluded that beyond 6 m upstream of the cyclist, pres-
sure effects are sufficiently decayed to be disregarded. Concerning the outlet plane, Terra et
al. (2017) showed that in the far wake (more than five characteristic length scales) behind a
spherical object the contribution of the pressure term approaches zero. More representative
to the present study, Shah (2017) reports a negligible pressure contribution at already 80 cm
behind the saddle of a time-trialing cyclist. When choosing the inlet and outlet plane outside
of these pressure-affected regions, the pressure term does not influence the instantaneous
drag force.

- Viscous term The viscous effect on the drag force, measured at the control surfaces, is negli-
gible, according to Kurtulus et al. (2007) and Mohebbian et al. (2012).

Unlike in the wind tunnel, where the flow passes over a fixed test object, the Ring of Fire experiment
is conducted by a cyclist in motion, transiting through a fixed measurement plane. The PIV mea-
surements acquired in the planes before the transit are equivalent to the upstream planes in a wind
tunnel, while the planes after the transit are regarded as the downstream planes. For the Ring of Fire
experiment, a control volume is considered that moves with the cyclist at test velocity. The cyclist
is thus at a fixed location in the control volume and the cyclist’s velocity is superimposed over the
streamwise velocity distribution of the inlet and outlet plane.
Rewriting equation 3.21 considering the previously stated assumptions results in:

F (t ) = ρ
Ï

Si nlet

(
ui nlet (y, z)+uc

)2 dS −ρ
Ï

Soutlet

(
uoutlet (y, z)+uc

)2 dS (3.22)

In addition to the momentum conservation within the control volume, also mass conservation is
invoked, which is stated in expression 3.23. As a result of the velocity deficit present in the outlet
plane and the assumption that no mass crosses the side walls, the inlet plane needs to be smaller-
sized than the outlet plane.

ρ
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The resultant drag force from equation 3.22 is transformed into the non-dimensional drag coeffi-
cient CD :

CD (t ) = 2F (t )

ρ
(
ui nlet +uc

)2 A
(3.24)

, where A is the frontal surface area of the cyclist. In the denominator of equation 3.24, the relative
velocity of the cyclist with respect to the surrounding fluid must be substituted and therefore the
velocity in the inlet plane is averaged and added to the velocity of the cyclist. Given that Si nlet and
Soutlet are chosen in accordance with the mass preservation law, the final expression is:
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4
EXPERIMENTAL INSTALLATION, SETTINGS

AND PROCEDURE

This chapter begins with an introduction to the experimental installation, which includes the setup of
the Ring of Fire system (section 4.1) and the description of the test objects (section 4.2). In addition, the
acquisition settings for the PIV system are presented in section 4.3, as well as the system’s calibration
procedure (section 4.4). The chapter concludes with the test matrix of the campaign and the task
sequence to be performed for each individual test, in sections 4.5 and 4.6, respectively.

4.1. RING OF FIRE SETUP
The current campaign envisages operating the Ring of Fire system with continuous motion of the
cyclist, which requires a spacious testing facility, preferably located indoors, to eliminate environ-
mental factors. The selected test location is presented before providing relevant information on the
individual components of the Ring of Fire system. The description is supported by a dimetric and a
frontal view of the installation shown in Figure 4.5.

4.1.1. TEST FACILITY

The measurement campaign is conducted in an indoor ice-rink, located at Vondellaan 41 in 2332
AA Leiden, Netherlands. The facility offers a 39.1 m wide and 77.4 m long flat concrete surface and
allows the cyclist to ride loops of 190 m length in clockwise direction. The lap can be described as
two semi-circles with a radius of 17.66 m, which are connected by two 39.5 m long parallel straights
(see Figure 4.1). A preliminary test has shown that the highest velocity that can be ridden continu-
ously and safely on this track is 33 kmh−1. During the PIV measurements, the overhead lamps above
the track are switched off to increase the contrast between the tracer particles and the background.
By illuminating the infield of the track and directing one external lamp into a darker region, it is en-
sured that the riders have sufficient visibility throughout the test. Ambient temperature, humidity
and pressure are measured by a mobile digital weather station.

33
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Figure 4.1: Top view of testing ground

4.1.2. TUNNEL STRUCTURE

In order to concentrate the seeding particles near the measurement plane, a 10 m long, 4 m wide,
and 3 m tall tunnel structure is erected and placed at the end of one of the two straights (Figure
4.2). Larger gaps in the modular panel construction are taped with black duct tape. An overhead
laser, installed at the tunnel ceiling, projects a thin red line onto the ground. Along with markings
on the floor the laser line guides the cyclists to the lateral centre of the tunnel when transiting the
measurement plane.
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Figure 4.2: Tunnel structure (side/rear view)

4.1.3. LASER LIGHT

The laser sheet itself is positioned 5.15 m downstream of the tunnel entrance and passes through
a 175 cm tall and 20 cm wide opening in the side wall. To avoid strong unwanted laser reflections,
which might lead to pixel saturation on the camera sensor, all metal beams in the field of view of
the cameras are covered with black duct tape. The tracer particles are illuminated with a double-
pulse Nd:YAG Evergreen 200 laser from the manufacturer Quantel, emitting a green laser with a
wavelength of 532 nm, a maximum pulse energy of 200 mJ, and a maximum repetition rate of 15 Hz
(Quantel, 2015). The optical laser head unit is placed in the infield of the track on a horizontal pro-
file beam, at a distance of 5.5 m measured from the side wall of the tunnel. To convert the 6.35 mm
wide circular light beam as emitted by the laser into the desired laser sheet, a combination of three
lenses are mounted on the head unit. First, the beam is expanded with a diverging spherical lens of
focal length f =−50mm, before a converging cylindrical lens with f = 60mm reduces the widening
in horizontal direction. Finally, a strong diverging cylindrical lens with f = −30mm is used to ex-
pand the beam in vertical direction. The lenses are mounted at a distance of 200 mm, 225 mm and
275 mm from the laser output aperture. The laser sheet in the tunnel spans the entire width and is
of trapezoidal shape by measuring 2 m height on the right and 3 m height on the left. The laser sheet
thickens from 32 mm on the right side to 50 mm on the left side, equating to an average thickness
of 41 mm. Thinner light sheets would increase the laser light intensity, but would lower the amount
of illuminated particles and reduce the depth of view in streamwise direction captured by the two
PIV-cameras.

4.1.4. ACQUISITION HARDWARE

Two scientific CMOS Imager cameras by LaVision are utilized to capture the PIV images (see Fig-
ure 4.3). This camera model is capable of recording images at 50 Hz in full resolution at 2560 px x
2160 px. A 16-bit image depth allows for 65,536 intensity levels to be distinguished. The pixel pitch
is given at 6.5µm, which corresponds to a sensor area of 16.6 mm x 14.0 mm. Both cameras are
equipped with a AF Nikkor 35 mm 1:2D lens, an optical bandpass filter, transmitting green wave-
lengths and a Scheimpflug adapter to reduce the out-of-focus effect caused by the inclination be-
tween the sensor plane and the measurement plane. On the lens, the f-stop setting is tuned to 8 to
ensure that all particles in the measurement plane are in focus.

The pair of cameras is placed 5.20 m upstream of the measurement plane in an angular-displacement
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stereo configuration. At either side of the 4 m wide tunnel entry, one sCMOS camera is mounted
horizontally at 0.91 m height, pointing towards the laser sheet’s center. The resultant field of view
captured by both cameras is 2533 mm x 2132 mm, yielding a magnification factor of 0.0065 and a
digital image resolution of 1.01 px/mm. Two MDR cables, transmitting the data from the left cam-
era to the computer terminal, need to cross the track, but are limited to 5 m length. According to
the camera manufacturer, longer cable length could lead to data loss. The cables are therefore sus-
pended by ropes from the tunnel ceiling at a height of 2.5 m above the ground, where the cyclists
can safely pass underneath.

4.1.5. SEEDING PRODUCTION

The tracer particles dispensed into the tunnel are helium-filled-soap-bubbles (HFSB) with a diam-
eter of 0.3 mm (Scarano et al., 2015), suitable for large-scale PIV measurements, as discussed in
section 2.1. The bubble production is operated through a Fluid Supply Unit (FSU) provided by LaV-
ision, where the pressure for helium, air and soap is adjusted. An air compressor unit is already
permanently installed at the testing facility, which serves as the air supply for the control unit. Prior
to the two main testing days, an external air filter from the manufacturer HBM Machines is installed
between the air compressor and the control unit to dehumidify the air and filter out small dust par-
ticles, which would otherwise clog the control unit. The helium is supplied by a pressurized bottle
while the soap solution is poured into a reservoir inside the FSU. In Scarano et al. (2015), the soap
solution is described as a mixture between water, glycerine and soap, and is commonly referred to as
bubble fluid solution (BFS). Continuous production of the tracer bubbles is achieved at helium, air
and soap pressures of 2.6bar , 2.1bar and 1.7bar , respectively. The control unit feeds the air, helium
and soap through separate hoses into a seeding rake, designed by the aerodynamics department of
the TU Delft. The seeding rake consists of 10 vertical wings, on which in total 200 3D-printed nozzles
are installed with a uniform spacing of 5 cm. Inside the nozzles, the helium, air and soap are mixed
to form the HFSB tracers. The bubble production rate per nozzle in nominal conditions lies between
20.000–60.000 bubbles per second according to Engler Faleiros et al. (2018). Of the 200 nozzles one
can expect at least 10 % not to function properly. The seeding rake itself is placed 2.5 m upstream
of the measurement plane, parallel and adjacent to the tunnel side wall (see Figure 4.4). Foaming
on the seeding rake eventually led to the soap dripping from the wing elements into a collection
basin. At the end of the campaign, which covered in total four full days of testing, three bottles with
dirt-contaminated soap were retrieved from the sump. During the last two days of the experiment,
the seeding system was operational for approximately 2.5 h, while 4 full bottles of the bubble fluid
solution were used, amounting to 37.5 min per bottle.

Figure 4.3: 1) BNC cable - 2) Multi-angle mount - 3)
MDR cables - 4) sCMOS camera - 5) Scheimpflug

adapter - 6) Lens - 7) Bandpass filter

Figure 4.4: Seeding rake attached to vertical tunnel
beam standing in a sump



4.1. RING OF FIRE SETUP 37

The continuous motion of the cyclist in the hall created a large-scale circulation in the building,
which was evident when the bubbles were carried downstream as soon as they were produced at the
seeding rake. After a number of passages, this led to inhomogeneous and insufficient seeding in the
measurement plane, as the particles agglomerated on the side of the seeding rake. To counteract this
circulation, a person carrying a 1.8 m x 1.55 m blanket, walked slowly, at approximately 1.25 ms−1,
through the tunnel in opposite cycling direction as soon as acquisition for each loop ended. A more
detailed explanation of this encountered problem is provided in appendix A.

4.1.6. TRIGGERING HARDWARE

To automate the process of image acquisition and thus improve the consistency between datasets,
a WS/WE12L-2P410 photo-detector (PHD) from SICK is installed 13.4 m upstream of the measure-
ment plane. The receiver and transmitter are placed on the ground on either side of the track at
a separation distance of 4.1 m. Each of the two components are connected by a round 6 mm thick
cable to the interface box. Since the cable to the transmitter has to cross the track, the effect on the
rider is minimized by replacing the standard cable with a flexible flat cable, which is then taped to
the ground. The photo-detector system feeds the triggering signal through a BNC cable from the
interface box to the Trigger Input terminal of the Programmable Timing Unit (PTU) through the
Trigger pin of the PTU connector 1008431.

The acquisition system is controlled through the Davis 8.4.0 software from LaVision, where a
recording sequence is created. In the image acquisition menu, the desired number of images and
the recording frequency are chosen. Furthermore, the trigger input is set to by "Start" input to dis-
able manual triggering by the Davis-user. The passage of the cyclist momentarily interrupts the
laser beam between the transmitter and the receiver, which triggers a signal transmission from the
photo-detector to the PTU. Image acquisition then either starts instantaneously or after a user-
defined time delay. After all images from one transit are acquired and saved, the system is active
again and waits for the next trigger input by the cyclist. Inside Davis, the number of repetitions of
this sequence can be controlled through the Loop item, which should be added into the recording
sequence in front of Image Acquisition.

During the test, no false triggering due to external objects passing the photo-detector occurred.
In some cases, the cyclist’s velocity was too high and storing of previously acquired images was not
completed in time. In these instances, the triggering system was not yet active, and for the single
cyclist no images were recorded for that particular transit, while in the drafting configuration the
second cyclist triggered the system and the amount of images in front of the leading cyclist were re-
duced. Here, verbal communication between the Davis-operator and the test riders was necessary
to re-synchronize their speed with the acquisition system.

4.1.7. DRAFTING DISTANCE

The second of the two main testing days focuses on drafting effects at separation distances between
the two riders of 8 m and 12 m. The drafting distance is measured from the front wheel of the lead-
ing cyclist to the front wheel of the trailing cyclist. At two locations around the lap, a pair of two
cones are placed and separated by the respective targeted drafting distance. The trailing cyclist is
responsible for maintaining a constant gap to the leading cyclist, but is supported by verbal feed-
back from a third person that visually monitors the distance between the riders from the infield of
the track. In order to quantify the rider’s spacing, a digital Panasonic Lumix DMC-FZ2000 camera
is placed in the infield 15.5 m away from the track, 9.2 m in front of the tunnel entry and at a height
of 1 m. This results in a side view of both cyclists capturing 18.2 m upstream of the tunnel and the
tunnel entry itself. Throughout the test, a video is recorded with minimum resolution of 640 px x
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480 px at 25 Hz to keep the data size low. The separation distance is then determined using digital
image processing, which is presented in section 5.7.

(a) Dimetric view of experimental setup

(b) Front view of experimental setup

Figure 4.5: 1) Drafting camera - 2) Evergreen Laser - 3) Laser line for lateral position - 4) Seeding rake - 5)
PC Terminal - 6) PTU - 7) sCMOS camera right - 8) Suspended MDR cable - 9) PHD interface box - 10) PHD
receiver - 11) sCMOS camera left - 12) Convergent trajectory markings - 13) PHD transmitter

4.2. TEST OBJECTS

The Ring of Fire experiment is conducted focusing on cycling aerodynamics. For this experiment, a
total of three test riders attended the campaign, namely one amateur and two professional cyclists.
Throughout two days with the amateur cyclist, the measurement procedure was revised. The final
results of chapter 6 are exclusively extracted from the measurements carried out with the profes-
sionals, so this section is limited to the information of these two participants and their respective
bicycles. Additionally, a description of the utilized power meter device is given.
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4.2.1. THE RIDERS

For the main testing phase of this campaign, a male and a female cyclist from Team Sunweb are
invited. The individual tests on the first testing day are conducted by the male athlete only, while
the drafting tests on the next day are carried out by both cyclists.
The female athlete is a current professional and performs the role of the leading rider during the
drafting experiment. Throughout the test, she wears a time trial skin suit with short legs and long
arms provided by Team Sunweb, as well as a Giant Rev Road Cycling helmet from 2017. Her body
height and weight amount to 170 cm and 59.1 kg, respectively.
The male is a former professional athlete and conducts the individual tests, as well as the drafting
tests, where he is assigned the role of the trailing cyclist. For the tests, the athlete wears a short leg
and short arm time trial skin suit from Team Sunweb. Throughout the two testing days two different
helmet types are tested, namely the 2017 Giant Rev Road Cycling helmet and the 2017 Rivet TT Time
Trial helmet, which are displayed in Figures 4.6a and 4.6b, respectively. His body height is measured
to be 187 cm, while his weight amounts to 79 kg.
In addition to the skin suit and helmets, the riders wear over-shoes extending to half of their calves,
as well as laser safety goggles that absorb the wavelengths of the light emitted by the PIV laser unit.

(a) 2017 Giant Rev Road Cycling helmet (b) 2017 Giant Rivet TT Time Trial helmet

Figure 4.6: Helmet types used throughout the campaign

4.2.2. THE BICYCLES

The bikes utilized in this experiment are the Team Sunweb time trial bikes, model Trinity Advanced
SL 2018 from Giant (LIV branded for the female athlete). Both bikes are equipped with a PRO Tubu-
lar disc as a rear wheel. The male athlete uses a 625 mm deep front wheel, whereas the female
athlete rides a four-spoke front wheel. All wheels have a diameter of 66.7 cm, including the Tubu-
lar Vittoria Corsa G 23mm tyre. The tyre pressure is checked with a SKS Rennkompressor pump
and set to 5 bar. On the male athlete’s bike, a magnetic sensor attached to the chainstay measures
the rear wheel rotations per time by detecting the passage of a magnet, which is taped to the disc
wheel. In combination with the tyre circumference of 2096 mm, the cyclist’s velocity can be deter-
mined. The same bike is equipped with a 39−53 chainring arrangement and an 11-speed cassette
with sprocket teeth of: 11-12-13-14-15-17-19-21-23-25-28. The overall length for the female bike
amounts to 1.60 m, while the male bike measures 1.666 m in length and weighs 8.8 kg.
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(a) Time trial bike of female rider (b) Time trial bike of male rider

Figure 4.7: Giant Trinity Advanced SL 2018

4.2.3. POWER MEASURING DEVICE

The main objective of this thesis is the comparison of the Ring of Fire measurements with simulta-
neously acquired power meter data. For this campaign, a crank-spider-based power meter is pro-
vided by Schober Rad Messtechnik (SRM), which is widely regarded as the benchmark for power
meter devices (Duc et al. (2007) and Passfield et al. (2017)). The model SRM Road Pro comes with
a crank length of 175 mm and is installed through the Shimano pressfit BB86 bottom bracket of the
male athlete’s bike (Figure 4.8b). Four strain gauges are placed with 90° spacing to each other inside
the crank-spider, measuring the deformation of the material, which is proportional to the torque
applied by the rider Betrucci et al. (2005). The torque is derived from the product of force on the
pedal and the length of the crank arm. To obtain the power output by the rider, the torque is mul-
tiplied by the angular velocity of the crankset. SRM claims a power output accuracy of ±2% over a
range of 0–4096 W. The measurable cadence range of this battery-powered SRM Road Pro model is
indicated to be 30–255 rpm SRM (2010). After each complete crank revolution, new power and ca-
dence numbers are obtained, which are then linearly interpolated with equation 4.1 (Underwood,
2012), before being transmitted from the power meter to the SRM PC8 head unit via the wireless
ANT+Sport protocol at 1 Hz.

P i
athlete = P p

i + ti − t p
i

t s
i − t p

i

(
P s

i −P p
i

)
(4.1)

, where P i
athlete is the instantaneous power produced by the rider in Watts at time ti , P p

i and t p
i are

the power and time of the previous recording, while P s
i and t s

i are the power and time readings at
the subsequent recording.
The power data recording is initialized with a 5 s time delay after the cyclist has gotten the bike
rolling, while the first velocity data is recorded after the magnet on the rear disc has passed the speed
sensor twice, which is typically within 1 s. The display background color of the PC8 head unit is
changed to black with white letters for better visibility. During the test, the following parameters are
shown on the display: Power in [W ], velocity in [kmh] with one decimal digit, cadence in [r pm] and
the distance in [km] with three decimal digits (Figure 4.8a). After the test, the data are transferred to
the computer, where SRMX Training Software is executed before further processing in Matlab is
performed.
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(a) SRM Power Control 8 head unit (b) SRM Road pro crank-spider-based power meter

Figure 4.8: Power measuring system

4.3. ACQUISITION SYSTEM TEST SETTINGS
The PIV image recording procedure is controlled through four main parameters, which are elabo-
rated on in this section. The selected values for each test throughout the campaign are summarized
in table 4.1.

4.3.1. PULSE SEPARATION TIME, ∆t
The PIV-images are recorded in double-frame double exposure mode. The two frames are tempo-
rally spaced by a pulse separation time, ∆t . In theory, long pulse separation times reduce the mea-
surement error, however, it also causes a decrease in the amount of particles that can be correlated
to each other and thus leads to an increase in measurement noise Raffel et al. (2007). Literature
suggests the maximum out-of-plane displacement of a particle to be 1/4 of the laser sheet thickness
Keane and Adrian (1990). The pulse separation between the two consecutive images is then de-
rived from this one-quarter rule. In section 4.1.3, it is established that the laser sheet has an average
thickness of 41 mm and therefore, according to the one-quarter rule, the maximum out-of-plane
displacement of the particles amounts to 10.25 mm. The seeding particles are transported by the
velocity field in the wake of the cyclist, which is a function of the cyclist’s velocity itself. Due to
turbulent diffusion, the wake velocity behind the rider decreases in streamwise direction. Ideally,
a non-constant ∆t would be defined, which increases with reducing wake strength. However, this
option is currently not available with the used acquisition software. A compromise for computing
∆t is thus found by using the average maximum out-of-plane velocity in the near wake, which is
equal to approximately 75 % of the cyclist velocity.

4.3.2. TIME DELAY OF TRIGGER

As mentioned in section 4.1.6, the trigger system is placed 13.4 m in front of the measurement plane.
To avoid excessive freestream data ahead of the cyclist and thus extensive storing times, a time delay
tdel ay is introduced, which retards the triggering of the PIV-system after the cyclist transits through
the photo-detector. The maximum time delay tdel ay of the solo test is derived from the requirement
that at least 10 m in front of the cyclist are acquired by the PIV-system, which ensures a sufficient
number of freestream planes that are neither influenced by pressure effects nor by the obstruction
caused by the cyclist.

tdel aymax =
dphd−l aser −10m

V
(4.2)

, where dphd−l aser is the distance between the photo-detector and the measurement plane and V is
the test velocity. During the individual tests, smaller tdel ay values are used to account for a possible
uncertainty in the triggering time. In the drafting configuration, the time delay is increased to re-
duce the number of freestream images in front of the leading cyclist, as those are of limited interest
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for the current investigation.

4.3.3. IMAGES PER LOOP

The upper limit of PIV-images taken per loop is determined by the number of images that can be
recorded and saved before the cyclist passes the photo-detector on the subsequent loop. This re-
quirement can be summarized as:

tl ap > tdel ay + tacqui si t i on + tstor i ng (4.3)

, with tl ap indicating the necessary time for the rider to complete one lap and taqui si t i on represent-
ing the recording time of the PIV-system. The last parameter, tstor i ng , is the time it takes to transfer
the images from the RAM storage of the camera onto the computer’s hard drive. The required time
is highly dependent on the writing speed to the hard drive. The installed SSD hard disk with a nomi-
nal writing speed of 500 MB/s allowed a storage rate of 2.25 image pairs per second at full 5.524M px
resolution.
For this test, it is desired to capture at least 10 m in front and 10 m behind the cyclist of interest,
which is the trailing cyclist in the drafting scenario. Additionally, the length of the bike needs to be
taken into account, which then amounts to a total measurement length of 21.66 m. The minimum
number of images is then a function of test velocity and recording frequency, fr ec .

ni mag esmi n =
21.66m

V
fr ec (4.4)

4.3.4. RECORDING FREQUENCY OF THE PIV-SYSTEM

The maximum recording frequency for this setup is limited by the Evergreen laser to 15 Hz. For
the individual runs, this settings is used while for the drafting tests, a lower recording frequency is
chosen to capture a larger measurement volume without increasing the amount of total images that
need to be stored.

Figure 4.9: Side view to scale of acquisition phase at V = 30kmh−1 and fr ec = 15H z. Time starts at passage of
photo-detector

4.4. SYSTEM CALIBRATION
At the beginning of each testing day, the PIV-system is calibrated using a wooden 1.2 m x 1.2 m x
0.04 m large calibration plate, manufactured by the aerodynamic department of the TU Delft. For
the calibration procedure, the calibration plate is placed in the tunnel centre, aligned with the plane
of the laser sheet. The front of the calibration plate consists of two levels, which are offset in depth
by 20 mm. On each plane, 156 white dots of 8 mm diameter are placed, with a horizontal and ver-
tical spacing of 90 mm to the neighbouring dot on the same plane, and a 45 mm horizontal and
vertical spacing to the adjacent dot on the other plane. During the transport, 44 white dots were
damaged and needed to be replaced by larger white round markings with a diameter of 15 mm. This
self-produced calibration plate requires the definition of a new calibration plate in Davis, where
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the above stated parameters are entered.

Initially, an intensity calibration of the cameras is performed with covered lenses. The aperture set-
ting on each lens is reduced to 2 for the calibration procedure. The Scheimpflug and focal length is
then manually adjusted, until the best focus for the area of interest is found. 10 images of the calibra-
tion plate are acquired and averaged, to perform the geometrical calibration. The final RMS fit did
not exceed 5.3px for one camera and 1.48px for the other. Compared to previous Ring of Fire exper-
iments, conducted by Spoelstra et al. (2018) and de Martino Norante (2018) these root mean square
fits show large values. One possible cause might be the two differently sized white dots placed on
the calibration plate. As shown in Figure 4.10, the software is unable to precisely locate the centre
of these larger-sized dots during the geometrical calibration, and could thus lead to a discrepancy
between the two cameras. To refine the calibration an additional self-calibration step is undertaken,
which requires the recording of 100 images capturing sufficient movement of tracer particles. For
this, the far wake of the cyclist is recorded at 15 Hz. In total, the self-calibration sequence is repeated
4 times, employing the procedure of Wieneke (2005) until convergence is reached. Two passes with
an interrogation window size of 64px x 64px and an overlap of 50% are performed, followed by two
passes using a 32px x 32px interrogation window size and 75% overlap. After self-calibration the
disparity reduced to 0.5px and is thus in the acceptable range according to Raffel et al. (2007). The
recreated stereo angle between the cameras amounted to 34.1°.

Figure 4.10: Big calibration plate with enlarged image of geometrical calibration

4.5. TESTING SCHEDULE
The experiment is scheduled for two weeks, the first day of which is used to transport and set up
the modular tunnel structure. A van with a loading bay, exceeding the length of the longest tunnel
beam (4 m) is required for transportation. With eight people, the tunnel structure is constructed
within one day. The second day is used to install the PIV-system, whereas the third day is spent
on creating the laser sheet and aligning, as well as calibrating the cameras. On the fourth and fifth
day, an amateur cyclist attends the campaign to troubleshoot the procedure planned for the fol-
lowing two main testing days, where the former professional male athlete participates on both days
and the professional female athlete attends for the second day. The test matrix of these two days
is presented in table 4.1. On the first of the two main days, the male athlete initially performs the
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rolling coefficient test, which is based on the method explained in section 3.2. Thereafter, individ-
ual PIV-measurements are acquired from the male athlete alone, comparing the aerodynamic drag
differences between upright and time trial positions, as well as between time trial and road helmets.
On the second day, the female rider is assigned the role of the lead cyclist, while the male rider fol-
lows her at a predefined distance at a target velocity. Here, the aerodynamic drag of only the male
rider is of interest and is compared to his individual runs performed previously. For this second
testing day, local journalists are invited to attend the campaign. Two days are then spent to disman-
tle the entire experiment including the tunnel structure, which is taken down by four people within
half a day.

Table 4.1: Test matrix

Helmet Acquisition system

Test name Pos.
Velocity[
kmh−1

] Gap
[m]

#1 #2 # Laps
∆t

[ms]
# Images

td el a y

[s]
fr ec

[H z]

Rolling coef.

UR 1

15
18
21
24
27
30
33

- - TT 10 - - - -

Individual

UR 30 - - TT 60 1.6 40 0.26 15
TT 2 30 - - TT 60 1.6 40 0.26 15
TT 30 - - Road 60 1.6 40 0.26 15

Drafting

TT 30 12 Road Road 40 1.6 37 0.8 10
TT 30 8 Road Road 40 1.6 37 0.8 12.5

1 Upright
2 Time-trial

4.6. TESTING PROCEDURE
The testing procedure can be divided into tasks that are performed once per testing day, once per
morning or afternoon session, as well as immediately prior to, during or after each run. Figure 4.11
provides an overview of the task sequence that needs to be executed throughout the experiment.
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Figure 4.11: Experimental procedure





5
DATA REDUCTION AND ANALYSIS

TECHNIQUES

The following chapter is intended to inform the reader about the processing techniques employed after
the measurement campaign to eventually obtain drag area values for both the power meter and the
Ring of Fire approach. This chapter begins with a description of the data reduction methods applied
to the power meter data in section 5.1, in which a necessary velocity correction during cornering is ex-
plained, followed by the implementation of the relative velocity, as well as the outlier removal process.
Section 5.2 covers the three main steps undertaken in the Davis software to obtain vector information
from the raw PIV images. Next, an algorithm is introduced in section 5.3, which aims to contour the
wake region behind the cyclist. An approach to compensate for upstream pressure effects is proposed
in section 5.4. The choice of the appropriate inlet plane under drafting conditions is examined in sec-
tion 5.5, before the wake alignment procedure is elaborated on in section 5.6. This chapter concludes
with the ansatz chosen to evaluate the drafting distance and to synchronize the Ring of Fire and power
meter data, which are given in sections 5.7 and 5.8, respectively.

5.1. DATA REDUCTION OF POWER METER DATA
In the beginning the post-processing steps are described, which are applied to the power meter
data. The recorded files from the SRM head unit were converted into a text file and loaded into the
MATLAB software, where further data processing takes place.

5.1.1. VELOCITY CORRECTION

The cyclist’s power output is utilized to move the mass of the entire bike-rider system around the
track. The mass can representatively be collapsed into the centre of gravity (CG), which is estimated
to be at the rider’s saddle height of 1.01 m. When negotiating the straight parts of the track, the
velocity measured by the speed magnet at the wheel coincides with the velocity of the centre of
gravity. However, in the corners, the cyclist leans towards the infield of the track, resulting in an
inboard shift of the CG, with respect to the contact patches of the wheels, which is a function of the
CG height and the lean angle Φ. Throughout the corner, a shorter distance is thus travelled by the
CG, which must be corrected. The difference between the two trajectories is illustrated in Figure 5.1.

47
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Figure 5.1: Difference in trajectory between wheel and CG Figure 5.2: FBD during
cornering to obtain lean

angleΦ.

Additionally, a free-body diagram (FBD) is depicted in Figure 5.2 that enables the cyclist’s lean angle
Φ to be calculated through an iterative process. For this experiment, the corner radius followed by
the wheels is rw = 17.66m. At a test velocity of 8.33 ms−1, the maximum lean angle is determined
to be 21.4°, which is not reached instantaneously when entering the corner, but rather increases
gradually towards the corner apex and decreases again towards the exit of the corner. This behaviour
is modelled by an underlying sinusoidal function in the range of 0◦ ≤ θ ≤ 180◦, representing the
position in the corner. It follows:

Φ(θ) = 21.4◦ · si nd(θ) (5.1)

The maximum difference in corner radius of the centre of gravity and the wheels is 0.37 m, obtained
at the apex of the corner. To achieve a larger corner radius, the cyclist aimed to exit the corner as
close to the wall as possible, which required additional steering and consequently leaning in the
10 m behind the corner to correct the lateral position on the straight. This region is modelled by
assuming an average lean angle of 5°. A comparison between the corrected and uncorrected phase-
averaged velocity around the track is given in Figure 5.3, where the green vertical line indicates the
position of the laser sheet in the tunnel.

Figure 5.3: Phase-averaged velocity plot using data of individual upright test at 8.33 ms−1.

5.1.2. RELATIVE VELOCITY

The velocity recorded by the SRM head unit represents the ground speed of the cyclist. By limiting
the computation of the drag area coefficient derived from the power meter data to this ground speed
velocity, it is assumed that the air mass within the test facility is quiescent. Throughout the test, it
became apparent that a large-scale circulation was forming in the hall, due to the rider’s motion,
which acted as a tailwind component and thus reduced the relative velocity between rider and air.
This phenomenon is implemented in the model by extracting the average velocity of the freestream
plane, Vxi nlet , acquired by the PIV system and adding it to the cyclist’s velocity. The final term for the
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C d A value changes then to:

C d A =
2
(
ηdr i vetr ai n

Ptot al
V −Cr r mg − (91+8.7V ) ·10−3

)
ρ

(
V +Vxi nlet

)2 (5.2)

Here, the sign convention of the PIV system is used for the parameter Vxi nlet , which defines the
velocity in the cycling direction as negative.

5.1.3. OUTLIER REMOVAL POWER METER DATA

The power and velocity traces are manually checked for outliers, such as power spikes or inconsis-
tent velocities. In particular, the first loop of each run is excluded, as the cyclist is still gradually
approaching the targeted test velocity throughout this lap. Furthermore, in order to maintain the
drafting gap, the trailing cyclist had to occasionally coast. Those laps are also discarded from the
data set.

5.2. DATA REDUCTION OF PIV MEASUREMENT DATA
In this section, the data reduction process for the PIV measurement data is presented, which com-
prises three stages, namely: image pre-processing, vector calculations and post-processing. de Mar-
tino Norante (2018) performed a thorough analysis of the appropriate settings used throughout the
processing steps. The study is based on a seeding density of 0.004−0.017 particles per pixel (ppp),
which is comparable to the seeding density present in the current experiment: 0.008− 0.018ppp.
The processing procedure revealed that the settings adopted from de Martino Norante (2018) re-
sulted in a good compromise between resolution and robustness of the PIV data. To evaluate the
particles per pixel, small regions of known dimensions are extracted from the field of view, in which
the number of tracers is manually counted.

5.2.1. PRE-PROCESSING

Several pre-processing steps within the software Davis 8.4.0 are undertaken before flow field data
are drawn from the raw images. To begin with, a set of images is acquired with each camera in the
absence of seeding particles in the tunnel. Other conditions, such as the shooting laser, the lighting
in the hall, or the placement of objects in the camera’s field of view are equal to those present dur-
ing the measurements. These images then serve as background images and their intensity values
are subtracted pixel by pixel from each subsequent image set recorded throughout the campaign to
remove the appearance of background objects and reduce the laser glare on the PIV images.
Before the vector calculation, two additional image pre-processing routines are employed. Within
the vector processing operation in Davis 8.4.0, the option of subtracting the sliding background
is chosen. This option further improves the background removal, by subtracting the minimum in-
tensity value found in a sliding window containing a predefined number of pixel. The window size
is chosen as 10x10px to exceed the average particle image size and thus not dampen the intensity
of the tracers (Deen et al., 2010). Subsequently, a local min/max-filter, as proposed by Westerweel
(1993), is applied to normalize the particle’s intensity over a 10x10px window size and thus balance
their contribution to the cross-correlation function (Shavit et al., 2006). Non-uniform light intensi-
ties can predominantly be attributed to inconsistent particle size, but also to varying properties of
the light sheet and reflections from the transiting test object.
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Figure 5.4: Comparison between raw image (left) and fully pre-processed image (right)

The effect of the pre-processing steps is apparent when comparing the two images in Figure 5.4.
Both images show an inverted grey-scale ranging from 0-500 counts. While the laser glare, as well as
objects in the background, are visible in the raw image, they are weakened or removed in the filtered
image.
The signal-to-noise ratio, defined as the ratio between the highest and second highest correlation
peak, is a measure of the robustness of the cross-correlation. High SNR values are desirable, as they
indicate good agreement between the displacements of multiple particle pairs within one interro-
gation window. In Figure 5.5, a comparison is made between the signal-to-noise ratio obtained
when vector processing the raw image and the filtered image. The settings used to generate the
vector-processed images are identical to those presented in the upcoming vector processing text.

Figure 5.5: Signal-to-noise ratio for each vector resulting from the vector processing of the raw image (left)
and the filtered image (right)

The importance of adequate image filtering is visible, as unwanted low SNR values are removed
from the image and instead a consistently high SNR is achieved throughout the area of interest, dis-
regarding the border regions, as they will be excluded during a masking operation at a later stage. It
should be remarked that the min/max normalization filter yields the greatest enhancement of the
SNR from the three pre-processing steps.

Concerning the signal-to-noise ratio in the wake region behind the cyclist, Figure 5.6 shows that
the ratio between the two highest correlation peaks in the near-wake is lower than in the far-wake.
The presence of the cyclist in an image, shortly acquired after the transit, mitigates the contrast be-
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tween the seeding particles and the background. Together with the increased turbulence level in the
near-wake region, this leads to a lower signal-to-noise ratio. Primarily recordings within 2.5 m be-
hind the rear wheel are affected, where the SNR in the wake reaches values below 3. In the far wake,
beyond 2.5 m, the SNR recovers to values of at least 3 with the majority of interrogation windows
exceeding 4.

Figure 5.6: Signal-to-noise ratio for 1.5 m behind cyclist (left) and 4 m behind cyclist (right)

5.2.2. VECTOR PROCESSING

In order to extract velocity vectors from the PIV measurement, the pre-processed image pairs need
to be cross-correlated. For this purpose, the domain is partitioned into smaller cells, so-called "in-
terrogation windows", with predefined pixel count. Within each cell a correlation peak is identified,
depicting the mean particle displacement between the two frames in pixel. To obtain the velocity
vector in ms−1, the evaluated particle image shift is multiplied by the pixel size and divided by the
magnification factor M , as well as the time separation between the two acquisitions, d t . In Davis
8.4.0 the stereo-cross correlation option is selected, employing a multi-pass correlation method
with decreasing interrogation window size. The interrogation windows between the image pairs are
shifted according to the mean displacement recorded in the prior iteration, to increase the number
of matched particle pairs and thus the SNR. Convergence between the window shift and the mean
particle displacement is commonly reached after 3 passes (Raffel et al., 2007). The initial cell size is
set to 96x96px and reduces after 3 iterations to 64x64px, where additional 3 passes are performed.
Further cell size shrinkage would lower the signal-to-noise ratio, particularly in sparsely seeded re-
gions, as the number of correlated particles decreases. For instance, a final interrogation window
size of 48x48px leads to an SNR decrease of approximately 1.5 compared to the image shown on
the right in Figure 5.5, and even shows local regions of absolute SNR values below 3. For each it-
eration, the window overlap is set to 75% to enhance the spatial resolution with the given seeding
density. Within one interrogation window pair, all pixel are weighted with an underlying roundly-
shaped Gaussian curve, whose peak coincides with the centre of the cell. As opposed to an elliptical
Gaussian weighting function, the circular distribution does not bias towards a certain displacement
direction. This procedure favours the particle displacements determined from the particles located
in the centre of the cells and decreases particle truncation near the edges (Wieneke, 2010).

5.2.3. POST-PROCESSING

In the post-processing stage, the universal outlier detection method introduced by Westerweel and
Scarano (2005) is employed on a filter range of 5x5px to remove spurious vectors from the results.
In the event of empty cells in the domain, Davis 8.4.0 provides the option to fill them by interpo-
lating surrounding values. In a final step, the raw image size is cropped to exclude the edges of the
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domain and the laser reflections on the ground, resulting in a rectangular image with the dimen-
sions of 2442mm and 1944mm in horizontal and vertical direction, respectively.
With a resolution of 1.01 millimetre per pixel, the dynamic spatial range (DSR) can be obtained.
Adrian (1997) defines this parameter to be the ratio between the largest to the smallest resolvable
scale. The largest is defined by the size of the field of view, while the smallest is at least the size of
the interrogation window. The minimum DSR in horizontal and vertical direction is then:

DSRh = 2442mm

1.01mmpx−164px
= 38 (5.3) DSRv = 1944mm

1.01mmpx−164px
= 30 (5.4)

In comparison to the previous Ring of Fire experiments the DSR value is higher, due to a larger
field of view and a finer pixel pitch of the sCMOS cameras. (de Martino Norante (2018) DSRv = 25,
Spoelstra (2017) DSRv = 16).
As a second indicator Adrian (1997) suggests the dynamic velocity range (DVR) to assess the velocity
scales that the PIV system is able to resolve. It is defined as the ratio between the largest measured
velocity and the smallest. The maximum particle displacement can be obtained in the near wake
behind the cyclist, in which out-of-plane velocities in the neighbourhood of −8 ms−1 are resolved.
For obtaining the smallest resolvable velocity scale, a near quiescent velocity field is considered, in
which the values within one standard deviation of the mean are assigned to measurement noise.
The standard deviation itself is then regarded as the smallest resolvable velocity scale and amounts
in the out-of-plane component to 0.03 ms−1.

DV R = |−7ms−1|
0.03ms−1 = 266 (5.5)

A higher dynamic velocity range is obtained than in de Martino Norante (2018) DV R = 250, which
may be substantiated by a higher test velocity and thus also a higher maximum velocity in the wake.
In Spoelstra (2017) a DV R of 100 was reported. In case the author employed the same technique to
acquire the smallest resolvable velocity scale, the presence of environmental winds in the outdoor
test would yield a higher standard deviation, causing the DV R value to reduce.

5.2.4. OUTLIER REMOVAL PIV DATA

Similar to the power meter data, selected loops are also omitted from the PIV measurements. In
particular, those that show low seeding concentration in the measurement plane, which commonly
occurs in the first loops of a run, before the draft of the cyclist transports the bubbles downstream
towards the laser sheet. Moreover, in the drafting configuration, loops are neglected in which the
two cyclists are laterally staggered by more than 20 cm. Loops in which miscellaneous errors have
occurred, such as laser blockage or corrupted data, are also discarded.

5.3. CONTOURING OF INLET AND OUTLET PLANE
This section describes the applied contouring procedure, to confine the considered region of the
inlet and outlet plane within the control volume. This process serves to reduce the measurement
noise and to comply with the law of mass preservation within the control volume.

5.3.1. SELECTING WAKE CONTOUR

Several steps are performed to define the wake region behind the cyclist, which are presented in
the schematic 5.7. A sample matrix is shown underneath each step, purely for illustration purposes.
The dimensions of the actual matrix are defined by the number of reconstructed velocity vectors
within the PIV image and exceed the size of the sample matrix. The out-of-plane velocity in the
measurement plane is shown, with negative velocity being defined in the direction of the cyclist.
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Figure 5.7: Flow schematic of contouring procedure

- Find cut-off velocity In the first step, a suitable cut-off velocity is defined, above which all
values are set to 0. Smaller velocities than the cut-off value are set to 1. The cut-off velocity is
dependent on two variables. First, one defines the wake velocity to be a certain percentage of
the largest negative velocity within the plane. Instead of using the single minimum velocity
value for this, a low percentile value around the 5th is chosen. Using the percentile rather than
the minimum velocity prevents the usage of outliers. As an example considering the sample
matrix: The 5th percentile is computed to be −3.266 ms−1. The percentage value is chosen to
be 30 %, yielding a final cut-off velocity of−0.98 ms−1. The two variables for the individual and
drafting scenario are found by manually inspecting the wake contours. The percentage values
are chosen to be 30 % and 50 %, respectively, while the 5th percentile within the regarded
planes proved to produce good results in both cases. Due to the attenuation of the velocity
deficit in downstream direction, it is important to define the cut-off value as a function of the
flow field within the examined plane. The use of one fixed value for all planes would lead to
excessive cutting of the wake in the far downstream planes or unnecessary inclusion of the
non-wake region in the planes close to the cyclist.

- Isolate largest island The wake behind a cyclist can be considered as one coherent structure.
This property can be utilized to filter out any regions outside the wake that show high negative
velocities but are not related to the cyclist. Since the size of the rider’s wake is always dominant
over structures in the surrounding, the largest cluster of 1′s is found in the velocity matrix.
Unity values, which are not included within that group, are set to 0.

- Dilate wake The cut-off velocity in the first step is chosen rather stringently in order to include
only those regions with a strong velocity deficit. In this step, a predefined number of 3x3
Gaussian filter operations are applied to the logical matrix, which dilates the wake region in
an attempt to also include the surrounding shear layers. In the resultant matrix, cells adjacent
to the "largest island" are affected by the Gaussian filter and show values above 0. To indicate
their inclusion in the wake, those cells are set to 1.

- Apply contour to original image The previously determined filter matrix is multiplied with
the velocity matrix of the raw image. This way, cells where the filter matrix is 0 remain 0 and
thus do not contribute to the momentum term. Those cells that show unity value are assigned
their original velocity value and therefore add to the momentum term. As a final step, positive
values in the resultant matrix are set to 0 as they are not considered to be part of the wake.

An exemplary code of the previously described procedure is contained in Appendix B, creating an
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N xN sample matrix.
In order to achieve satisfactory enclosure of the wake region, three values need to be adjusted based
on visual inspection, namely the two variables defining the cut-off velocity, as well as the number
of Gaussian filter operations. It should be noted that while this algorithm typically generates good
results, occasional misinterpretations of the wake region occur, which need to be manually detected
and removed from the sample pool.

5.3.2. CONTOUR ADAPTATION FOR MASS CONSERVATION

As explained in section 3.4, the control volume approach is predicated on the conservation of mass.
To comply with this requirement, the inlet plane must be smaller than the outlet plane, due to the
present velocity deficit in the outlet plane, under the assumption that no mass crosses the control
volume through the side or top boundaries.

Two different approaches are chosen, where in the first approach, the drag area evolution down-
stream of the cyclist is of interest. Here, the upstream plane is fixed and different wake planes
are considered. This method is used for both individual and drafting scenarios, while the second
method is only relevant for drafting cases. It aims to determine the C d A evolution when examining
different inlet planes and one fixed outlet plane.

Fixed inlet plane, variable outlet plane For the single rider test, a minimum of 5 planes far up-
stream (> 6m) of the cyclist are averaged. For the drafting case, one inlet plane approximately 1.5 m
upstream of the trailing cyclist is considered, when investigating the C d A evolution in the wake, as
will be justified later in section 5.5. In both cases, the single resultant plane serves as the freestream
plane. Downstream of the cyclist the wake evolution over a distance of 10 m is of interest. Again,
with reference to section 3.4, it is mentioned that the cyclist’s velocity is superimposed onto the
streamwise velocity distribution obtained through the PIV images to fix the cyclist in place. Due to
the underlying cyclist’s velocity, a broader wake structure demands more mass to pass the control
volume through the inlet than a narrow wake region, as can be seen in Figure 5.8.

Figure 5.8: Contour adaptation of fixed inlet, variable outlet plane case (contour color corresponds to color
framing the wake plane)

The initial contour of the freestream plane is the projected wake contour of the first wake plane
behind the cyclist, as this is most representative of the flow the cyclist encounters when transiting
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the air upstream. The contour of the inlet plane is then narrowed or broadened according to the
mass flow of the outlet plane.

Fixed Outlet Plane, Variable Inlet Plane As the flow conditions behind the leading cyclist are
changing rapidly, an appropriate inlet for the drafting case needs to be selected. For this investi-
gation, the previously described approach is modified, by using different inlet planes and one fixed
wake plane. For a better comparison between the inlet planes, the projected inlet contour remains
unchanged and the contour in the wake plane is altered to satisfy mass preservation.

Figure 5.9: Contour adaptation of fixed outlet, variable inlet plane case (contour color corresponds to color
framing the inlet plane)

As can be seen in Figure 5.9 the plane furthest upstream shows the largest velocity deficit caused
by the leading cyclist. The corresponding wake contour is smallest and enlarges marginally for the
inlet planes closer to the cyclist, compensating for a decreasing wake strength of the lead cyclist.

5.4. UPSTREAM PRESSURE PROPAGATION OF CYCLIST
For the drafting study, the preceding discussion included inlet planes that were located in close
vicinity to the cyclist. Upstream pressure propagation from the cyclist can lead to an additional
drag contribution in the control volume approach when the inlet plane is not chosen at a suffi-
cient distance from the cyclist. Pressure reconstruction from the PIV data is not performed. Apart
from the limitation that the out-of-plane velocity gradient cannot be reconstructed from stereo-PIV
(van Oudheusden, 2013), the blockage of the cyclist in the PIV image causes spurious velocity field
data, which make a cell-marching approach difficult. On the other hand, the expanded wake of the
leading cyclist reaches the edges of the field of view, which makes it challenging to establish valid
boundary conditions for the Poisson’s equation used in the pressure reconstruction process.

It is therefore decided to utilize the numerically-obtained pressure coefficients of a cyclist in time-
trial position from Blocken et al. (2016), in which the authors suggest a pressure coefficient (Cp ) of
0.019, 1.5 m upstream of the cyclist. In the configuration shown in Figure 5.10, negligible benefits
for the leading cyclist are reported and it is thusly assumed that the pressure field upstream is un-
affected by the motorcycle and representative for the current study. Using an inlet surface in near
proximity to the cyclist, the pressure integrated over the inlet surface yields a total drag increase of
around 10 %, which should not be neglected. For the individual case, where the inlet plane is more
than 6 m upstream of the cyclist, no pressure effects are taken into account, as the data from the ref-
erence study suggest an exponential decay of the Cp at increasing upstream distances. In the region
between 1.5–6 m, the pressure coefficient is interpolated using the data from Blocken et al. (2016).
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Figure 5.10: Pressure coefficient in centre line plane (Blocken et al., 2016). Box illustrates area of interest.
(Gap between cyclist and motorbike is 7.5 m.)

5.5. CHOICE OF INLET PLANE UNDER DRAFTING CONDITIONS
The choice of the inlet plane for the control volume approach under drafting conditions is impor-
tant, as the wake of the leading cyclist diffuses in downstream direction. Consequently, an inlet
plane in close proximity to the lead rider contains a large momentum deficit, as the entire wake
is concentrated within the contour bounding the inlet plane. Further downstream, the wake region
grows and mitigates and will eventually exceed the contour of the inlet plane, such that the momen-
tum deficit reduces. A study is performed where different recordings between the cyclists are used
as inlet planes for the control volume around the second cyclist. This approach follows the proce-
dure shown in Figure 5.9, where the first wake contour is projected onto the chosen inlet plane and
thereby defines the flow seen by the trailing cyclist. For the outlet, the first recorded plane in the far
wake is taken (xr w > 2.5m). To satisfy mass conservation within the control volume, the wake con-
tour of the outlet plane is modified. Figure 5.11 is limited to the drafting distances between 11–13 m
for illustration purposes, measured from front wheel to front wheel and indicated as ddr a f t i ng . The
sample pool consists of 16 transits, of which the average C d A value is plotted. The near wake behind
the leading cyclist is represented by a dashed line and values in this region should be treated with
care, as will be explained later in section 6.2. In the region between 1.5–6 m upstream of the trailing
cyclist, the effects due to the pressure propagation are included according to the data fit performed
with the results of Blocken et al. (2016). Velocity fields closer than 1.5 m cannot be employed due to
the field of view blockage caused by the incoming cyclist. In Figure 5.11, the dashed line illustrates
the distance between the last "freestream" image and the position of the trailing cyclist.
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Figure 5.11: Effect of inlet plane choice on the C d A value for trailing cyclist at 11–13 m drafting distance.
Images above show out-of-plane velocity, ranging from −2 to 1 ms−1, together with the applied contour

From the previous plot, it can be observed that the overall trend shows an increase of the mean
drag area value at inlet planes closer to the trailing cyclist. Four "freestream" flow fields along the
downstream direction are shown in Figure 5.11, which provide an example of the diffusion process.
In the first picture, the entire wake of the lead cyclist is enclosed by the contour and thus considered
for the control volume approach. In the following images, the intensity of the wake core reduces
and turbulent diffusion processes encourage the surrounding flow to be entrained. This leads to a
decreasing velocity deficit within the inlet plane contour, an overall increased momentum deficit
and subsequently an increase in C d A. The final image shows the silhouette of the incoming cyclist.
It has to be manually checked that none of the blocked regions are inside the contour, as this would
cause a high level of inaccuracies. The most representative incoming flow field is chosen to be the
final recording that is not closer than 1.5 m to the trailing cyclist. Using a more upstream location
would otherwise lead to an under-prediction of the drag area value due to the increased velocity
deficit. It is therefore decided to use the 1.5 m upstream location as inlet plane for the upcoming
analysis of the C d A evolution in the wake of the trailing cyclist in section 6.2 and use the data from
Blocken et al. (2016) to correct for the presence of upstream pressure propagation.

5.6. LONGITUDINAL WAKE ALIGNMENT
In order to draw conclusions about the streamwise drag evolution behind the cyclist between a
series of loops, it is necessary to know the precise distance of the acquired wake planes behind
the cyclist. By definition, the wake images capture the flow field after the entire cyclist has passed
through the laser sheet. Due to a non-constant velocity of the cyclist and an inconsistent trigger
delay, the time between transiting the photo-detector and leaving the measurement plane varies.
Consequently, the cyclist’s position is slightly different at each transit. For the upright case, a test
velocity of 8.33 ms−1 was targeted. Considering 57 loops, the velocity at the passage of the laser
sheet is on average 8.24 ms−1, with 8.01 ms−1 and 8.48 ms−1 being the minimum and maximum-
recorded velocities, respectively. The velocity of the passage is determined by utilizing the acquired
velocity data of the bike computer and averaging those over a 3 s time interval centred around the
transit of the measurement plane.
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In the following reference case, the number of recorded images between triggering the photo-detector
and exiting the laser sheet is assessed. The total travelled distance by the cyclist (dtot al = dphd−l aser+
lbi ke ) amounts to 13.2m+1.666m = 14.866m. Using the minimum and maximum-recorded velocity,
this distance is covered in a time of either 1.856 s or 1.75 s, respectively. In addition, a non-constant
time delay of 5–70 ms is estimated by the acquisition software Davis 8.4.0 between the triggering
and the recording of the first image. Given a recording frequency of 15 Hz the PIV system acquires
an image every 0.066 s. In the worst case, when both uncertainties, introduced by the velocity and
the time delay, are combined, the cyclist could exit the plane after 25.45 acquired images or after
28.05. The maximum longitudinal positioning error results then in 2.5 images, which justifies a cor-
rection procedure. It should be noted that setting a pre-defined time delay does not eliminate the
triggering uncertainty and moreover only affects the number of images acquired until the transit is
completed, not the relative error of 2.5 images between the two cases.

To relocate the wake images in streamwise direction with respect to the rear portion of the back
wheel, the last image in which the cyclist intersects the laser sheet is considered. Here, the longi-
tudinal position, di nter , of the intersecting laser sheet on the bike is determined. Using a side view
image of the bike the distance with respect to the most upstream point on the front wheel can be
measured. Given the bike length lbi ke , the cyclist’s velocity V and the acquisition frequency f of the
PIV system, the location of the first wake plane w.r.t the rear wheel,d#1 , can be obtained, as well as
the distance of each subsequent image d#n . A schematic of this process is given in Figure 5.12.

d#1 =
V

f
− (lbi ke −di nter ) (5.6) d#n = d#1 + (n −1)∗ V

f
(5.7)

Figure 5.12: Streamwise relocation of wake planes with respect to the rear portion of the rear wheel

5.7. DETERMINATION OF DRAFTING DISTANCE
Throughout the drafting experiments, the distance between the riders needs to be measured. In
accordance with the official rules stated in UCI (2018), the drafting distance between two riders is
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measured from the front wheel of the leading cyclist to the front wheel of the trailing cyclist. Two
different approaches were used to obtain this distance, which are presented below.

5.7.1. DRAFTING DISTANCE EXTRACTED FROM VIDEO

The first approach relies on extracting images from a video recorded by a DSLR camera, capturing
both cyclists in side view. The uncropped field of view of this camera ranges from 18.2 m upstream of
the tunnel entrance to the beginning of the tunnel itself. As mentioned in section 4.1, the resolution
of the video was set to 640px x 480px to keep the file size small for video lengths of approximately
20 min. This choice negatively affects the quality of the extracted image, which needed to be desat-
urated and further processed to enhance the contrast within the image. Figure 5.13 shows one of
the filtered images in cropped form. For this approach, it is assumed that the cyclists are aligned
with each other in streamwise direction. A reference length in that same x-z plane is taken between
the entry of the tunnel and the photo-detector, which is known to be 8.2 m. Measuring the pixel
length of the dashed line with the image processing ImageJ software, one can determine the pixel
to meter conversion of the image, which is then applied to the drafting distance, represented by the
solid line. Since the bicycles’ disc wheels provide a good contrast against the white background,
it is decided to measure the distance between the two most rearwards points of each bike. To be
consistent with the UCI definition, which is defined between the front wheels, the difference in bike
lengths between the leading female and trailing male bike needs to be subtracted from the resulting
distance.

Figure 5.13: Cropped and filtered image extracted from video, capturing side view of the cyclists before
entering the tunnel

The drawback of this approach is the spatial and temporal separation between capturing the image
to measure the drafting distance and the actual PIV acquisition. The separation distance between
the cyclists would only remain constant if the velocity of both cyclists were exactly the same. The
velocity recordings of the trailing cyclist show an almost constant velocity in the region of the mea-
surement plane. However, no velocity data are available of the leading cyclist, which entails an
uncertainty.

To assess the possible error caused by a difference in velocity of the two riders, a case study is per-
formed employing the data obtained in the 12 m drafting test, which is aimed at a test velocity of
8.33 ms−1. Averaging the velocity of the trailing cyclist over the 3 s time interval centred around the
transit of the laser sheet amounts to 8.35 ms−1, with a standard deviation of 0.137 ms−1. The pho-
tograph, as seen in Figure 5.13, shows the trailing cyclist approximately 22 m upstream of the laser
sheet. For each transit velocity the time is computed, in which the trailing cyclist covers those 22 m
to reach the measurement plane, where the drafting distance is of interest. The minimum and max-
imum distance travelled by the leading cyclist within this time span is computed using the velocity
from the trailing cyclist plus minus the standard deviation of 0.137 ms−1. The resultant upper and
lower bounds are calculated for each transit and are displayed in Figure 5.15.
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5.7.2. DRAFTING DISTANCE EXTRACTED FROM PIV IMAGES

In the second selected ansatz, the acquired PIV images are employed. Similar to the procedure ex-
plained in section 5.6, the image set is searched for the last capture of the leading cyclist intersecting
the laser plane, #I1. Additionally, the first image showing the pursuing cyclist traversing the mea-
suring plane is of interest, #I2 (see Figure 5.14). At these two locations in the image set, the location
of the intersection on the bike with respect to the front portion of the front wheel is manually de-
termined. Together with the bike’s length of the leading cyclist, the recorded test velocity and the
acquisition frequency of the PIV system the drafting distance between the two front wheels can be
determined through the following formula:

ddr a f t i ng = (#I2 −#I1)V

f
− (

lbi ke1 −di nter1

)−di nter2 + lbi ke1 =
(#I2 −#I1)V

f
+di nter1 −di nter2 (5.8)

Figure 5.14: Last image of leading cyclist (left) and first image of trailing cyclist (right) traversing the laser
sheet at two different time stamps

Similar to the preceding video approach, the drafting distance measurement does not temporally
correspond with the PIV measurement. The drafting distance is measured over a time interval, be-
tween the acquisitions of planes #I1 and #I2. In an ideal scenario, both cyclists follow the same
velocity and the true drafting distance would be found. However, in case the velocities are different,
the relative position of the cyclists’ alters. To asses the uncertainty, the conditions of the previous
reference case are revisited using the data from the 12 m drafting case at 8.33 ms−1. The time differ-
ence of arrival at the laser sheet between the two cyclists can be obtained with:

t = (#I2 −#I1)

f
+ di nter1 −di nter2

V
(5.9)

Again, the velocity of the trailing cyclist is adapted for the leading cyclist plus minus one standard
deviation of 0.137 ms−1. Within this time interval t the two cyclists then cover different distances
and thus the spatial separation between the cyclist at the time of the laser sheet transit of the trail-
ing cyclist has changed. The measured drafting distances using this approach, together with the
uncertainties are presented in Figure 5.15.

5.7.3. DRAFTING DISTANCE MEASUREMENT TECHNIQUE COMPARISON

In the following plot 5.15 the two previously described approaches are applied to the 12 m drafting
case with an aimed test velocity of 8.33 ms−1. In total, 31 loops are included in this comparison,
while throughout 8 loops in the middle of the run, no PIV images were acquired from the first cyclist
because the PIV system was triggered by the second rider. The remaining loop was disregarded due
to a non-constant velocity of the trailing cyclist in the measurement region.
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Figure 5.15: Comparison between the two approaches based on the video and the PIV images, respectively

The preceding Figure shows discrepancies between the two techniques within the first four loops
of the run. During this time, the two riders had to find a steady rhythm by approaching the correct
drafting distance while reaching and maintaining the aimed test velocity, which caused fluctuations
in the drafting distance. Beyond loop 4, the results between the two approaches are in good agree-
ment. Due to the longer time between the drafting distance measurement and the transit of the
laser sheet, the video approach shows a larger uncertainty. It is therefore decided to proceed with
the PIV-image based technique as primary source of the drafting distance, but to confirm the results
with the data obtained through the video method.

5.8. SYNCHRONIZATION OF THE DATA ACQUISITION SYSTEMS
In order to assess the measured drag difference between the Ring of Fire and the power meter, both
systems must be synchronized in time. Unfortunately, the system time stamp between the acquisi-
tion computer and the power meter did not coincide, requiring manual effort to match the two data
sources. For this, an externally recorded video is used showing the initial acceleration of the cy-
clist from standstill up to the point where the laser is triggered for the first time. The time duration
between the two events amounts to 16 s, according to the video. In the power meter file the time
stamp representing the start of the run can be easily identified, from which the time stamp of the
first laser sheet transit can be derived by adding 16 s. As a final step, the derived power meter time
stamp of the transit is compared with the PIV acquisition time stamp of the first passage. A constant
time offset of 2 min 20 s between the two systems is found, which needs to be corrected. Likewise,
the snapshots captured with the drafting camera must be manually linked to the corresponding PIV
acquisition.





6
RESULTS AND DISCUSSION

The forthcoming chapter discusses the results of both the power meter and the Ring of Fire measure-
ment techniques, obtained in the campaign conducted within the framework of this project. Sections
6.1 and 6.2 discuss the C d A results of the power meter and the Ring of Fire individually, before a
comparison between the two approaches is drawn in section 6.3. Thereupon, the drag savings under
drafting conditions are discussed in section 6.4. The chapter is concluded with an examination of the
flow conditions encountered upstream and downstream of the trailing cyclist (section 6.5).

6.1. POWER METER RESULTS
To begin with, the power meter (PM) data are presented in the following section, which are fed into
a model to isolate the aerodynamic drag from the other resistances. The rolling coefficient is one
of the model constants and its evaluation is given below. Furthermore, a phase-averaged data plot
around one lap is depicted in Figure 6.2, before the resulting drag area values for the different test
cases are presented in Figure 6.3.

6.1.1. LINEAR REGRESSION ANALYSIS FOR Cr r VALUE

Second to aerodynamic drag, rolling resistance is the next largest opposing force when cycling at
steady velocity on level ground. To evaluate its contribution to the current experiment the linear
regression method from Debraux et al. (2011), as described in section 3.2, is utilized. For this test,
the cyclist maintains a constant posture and rides 10 loops as close as possible to target velocity,
which is increased in steps of 3 kmh−1 ranging from 15–33 kmh−1. Figure 6.1 plots the scalar values
of the total resistive force against the square of velocity. All data are extracted from the power meter
recordings. Each circle in the upcoming figure represents the average value over one loop.
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Figure 6.1: Linear regression to determine Cr r . Data recorded at velocities of 15–33 kmh−1 in steps of
3 kmh−1

The preceding Figure illustrates an outlier behaviour of the recordings taken at 21 kmh−1. The cause
of this is after investigating the data traces still unclear but might be assigned to an inconsistent
posture of the cyclist. Ultimately, it is decided to discard the third measurement block and perform
the linear regression with the remaining data. The y-intercept of the resultant straight is found to be
2.678 N, with a slope of 0.205 kgm−1 and a coefficient of determination of 0.99. Despite a good linear
regression fit, the determined Cr r value of 0.003 is low compared to literature. At 5 bar inflation
pressure a rolling resistance coefficient in the range of 0.005–0.006 is suggested by Grappe et al.
(1999) and Wilson et al. (2004). In the following power meter analysis, it is decided to continue with
the literature based value of Cr r = 0.0055. However, the rolling coefficient derived from the linear
regression procedure is revisited when comparing the power meter data to the Ring of Fire data in
section 6.3, to assess the importance of a correctly chosen Cr r value for the absolute C d A value.

6.1.2. PHASE-AVERAGED POWER METER DATA

The power meter data of all runs are post-processed, using the model described in section 5.1 to
obtain instantaneous drag area values. Given the velocity and the time stamp of the laser sheet
passage, the phase-locked traces of velocity, power, cadence, and drag area value around the track
can be created, which are shown in Figure 6.2 for the individual upright measurements. Besides
the instantaneous traces of each loop, the mean value of all loops is included. The x-axis origin in
this plot represents the location on the back straight, which is exactly half a lap away from the laser
sheet. The southern-facing corner is negotiated before entering the tunnel, while "Corner North" is
located behind the tunnel.
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Figure 6.2: Phase-locked velocity, power, cadence, and drag area traces over one lap. Data from 30 kmh−1

upright individual test

From the previous image, it becomes apparent that while the velocity and cadence trace can be
regarded as near constant, the power and subsequently the drag area curve throughout one lap
cannot. The cyclist evidently outputs less power in cornering than on the straights. This observation
is in line with Olds et al. (2001) and Lukes et al. (2012). The latter reports that professional cyclists
in a velodrome have a subjective feeling of riding downhill in corners and uphill on straights. Given
the corner radius and the cyclist’s velocity, an average yaw angle of 1.35° is determined, at which
aerodynamic benefits in the range of 0–2 % are found (Barry et al., 2012). On the other hand, Kyle
(2003) reports an overall drag increase in cornering conditions due to tyre scrubbing between 0.4–
2.9 % as a function of the steering angle. The two previous phenomena counteract each other, which
makes their resultant effect small and therefore cannot be the cause of the power fluctuations as
observed in Figure 6.2. One possible source of error might be an underestimation of either the bank
angle or the centre of gravity height, which in turn would lead to a shorter corner radius of the (CG)
itself. As a result, the CG would travel slower in the corners than on the straights and inertial effects
due to acceleration at the exit of the corner and deceleration at the corner entry could cause the
fluctuating behaviour of the power trace. However, during the experiment, neither the centre of
gravity height nor the bank angle was accurately determined. It is therefore decided to eliminate
possible inertial effects by averaging the velocity and power values over one lap, where the number
of acceleration and deceleration phases is equal and thus cancel each other. The lap-averaging-
method is a common approach when aerodynamic tests are conducted in a velodrome to assign
C d A value to cyclists, as applied by Grappe et al. (1997), Broker et al. (1999) and Garcia-Lopez et al.
(2013).

6.1.3. C d A VALUE FROM POWER METER

The previously described lap-averaging-method is employed to the different runs, performed through-
out the measurement campaign. Loops at the beginning of each run are excluded, as the target
velocity has not been reached. Furthermore, laps with high power fluctuations or inconsistent ped-
alling are also discarded, which occur mostly in the drafting scenario, while the trailing cyclist is
managing the separation gap to the leading rider. Figure 6.3 shows the resultant drag area coeffi-
cient for the male athlete when riding solo and under drafting conditions behind the female rider,
obtained from equation 3.6. Initially, only two distinct drafting distances of 8 m and 12 m were tar-
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geted. However, due to widespread of drafting distances over all laps, 4 zones are defined dividing
the range of drafting distances from 7–15 m in steps of 2 m. As mentioned in table 4.1, the drafting
experiment is conducted in time-trial (TT) posture, while the cyclist is wearing the road helmet.
In order to determine the C d A value, the wind speed relative to the cyclist needs to be known. In
addition to the cyclist’s velocity, as recorded by the head unit, the average velocity in the PIV plane
upstream of the cyclist is considered. This accounts for both the tail-wind velocity component in-
duced by the large-scale circulation in the hall and the encountered velocity deficit under drafting
conditions.

Figure 6.3: Drag area coefficient derived from power meter results. Drafting tests were conducted in
time-trial posture with a road helmet

For the individual test series, the previous plot confirms two trends reported by literature, namely
a decrease in drag area value, when comparing the time-trial posture against the upright posture
(Gibertini and Grassi (2008) and Barry et al. (2014b)) and a smaller-scale C d A increase when com-
paring the road helmet against the time-trial helmet (Alam et al. (2010), Blair and Sidelko (2009)
and Chowdhury et al. (2014)). It can furthermore be said that the 95 % confidence intervals for the
individual case depict a range of maximum 0.01 m2 and thus show high reliability. Contrarily, the
resultant C d A values from the drafting experiments show a large uncertainty, which can have sev-
eral reasons. Firstly, the number of samples in the 4 zones with increasing drafting distance are:
20, 15, 12 and 9, whereas on the other hand, each individual run consists of at least 40 samples.
Secondly, the drafting distance is derived from one local measurement, namely at the laser sheet
plane. Throughout the lap, this distance can vary and cause the resultant drag area values to be
more widespread. Finally, the effect of the drafting effect during cornering is unknown and it can be
questioned whether the trailing cyclist experiences the same velocity deficit or if the leading cyclist’s
wake is carried outwards. It is because of the aforementioned reasons that the C d A values obtained
in the drafting experiment should be regarded with care. A general trend towards lower drag area
values at smaller separation distances can be observed. Unexpectedly, the drafting cases beyond
9 m show a higher drag area coefficient than the individual case under equal time-trial position and
using the same road helmet. However, the individual case still falls well within the large confidence
interval of the drafting cases and no conclusion should be drawn from this. The discussion about
the drag area values is continued in section 6.3, when the Ring of Fire data are added. There, the
exact drag area values for each test are also presented in table 6.2.
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6.2. RING OF FIRE RESULTS
In the following section, the Ring of Fire results are presented, obtained from the control volume
approach introduced in section 3.4. First, the drag area values of the three single-rider tests are
presented before the drafting scenario is considered. Concerning the drafting related results, the
drag area evolution in the wake of the trailing cyclist is examined.

6.2.1. C d A VALUE FROM INDIVIDUAL TESTS

The individual measurements were conducted by the male athlete on the first of the two main test-
ing days. Three separate runs were performed, starting with the cyclist in upright position with his
hands on the brake hoods while wearing the time-trial helmet. For the next measurement, the cy-
clist changed into the time-trial position, while the helmet model remained unchanged. The last
test was again carried out in time-trial posture, but the time-trial helmet was replaced by a road
helmet. Under each test setting, at least 50 laps were negotiated. From the total 170 transits in the
individual test, approximately 9 % had to be excluded due to improper wake enclosure by the ap-
plied wake contouring procedure, as described in section 5.3. Some of these failures can be assigned
to cases where the wake splits up and the algorithm only considers the largest wake structure. The
other misinterpretation occurs when the wake structure merges with non-wake high-velocity fields,
which is predominantly an issue in the far wake, where the peak velocity deficit in the wake and
subsequently the cut-off velocity of the algorithm is approaching the velocity of the surrounding air
mass. Further, 6 % of the passages needed to be discarded, due to insufficient seeding. Finally, 4 %
of the PIV data set was not processed due to miscellaneous events, such as blockage of the laser,
corrupt data, or poor positioning of the cyclist. Overall 81 % of the acquired PIV data is used for the
following analysis.

The choice of inlet plane follows the discussion of section 5.3, where 5 inlet planes far upstream,
beyond 6 m, are averaged and the first wake contour is projected onto the resultant plane, which
describes the considered inlet area. Similarly, the applied wake contouring encloses the considered
area in the outlet planes. The wake is divided into two zones, namely the near and the far wake. In
the near wake zone, within five characteristic length scales behind a sphere, pressure effects can-
not be disregarded according to Terra et al. (2017). This is a conservative approach, as Shah (2017)
reports no pressure effects beyond 0.8 m behind a cyclist, with respect to the saddle. Pressure recon-
struction was not performed for this experiment due to the inability of a stereo-PIV setup to obtain
the out-of-plane velocity gradient, which consequently introduces an error in the planar pressure
field of highly three-dimensional flow (van Oudheusden, 2013). As a characteristic length, the shoul-
der width of the cyclist is measured to be wshoul der = 0.47m, which amounts to a pressure affected
region of 2.35 m following Terra et al. (2017). During the experiment, no predefined crank-angle was
chosen for the laser sheet transit. However, according to de Martino Norante (2018), the informa-
tion of the pedal position is lost in the far wake due to mixing of the flow. Following the previous
arguments and the discussion about the reduced SNR in the near-wake region (Figure 5.6), it is de-
cided to limit the C d A computation to the region of the far wake, which is indicated by a solid line
in the upcoming Figure 6.4. Additionally, the near wake is included as dashed line, together with the
drag area evolution of each transit, measured from the most rearward point of the rear wheel xr w .
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(a) Upright posture with time-trial helmet (46 samples) - C d A in far wake: 0.2565 m2

(b) Time-trial posture with time-trial helmet (49 samples) - C d A in far wake: 0.2183 m2

(c) Time-trial posture with road helmet (42 samples) - C d A in far wake: 0.2268 m2

Figure 6.4: Streamwise C d A evolution in wake of individual cyclist at 30 kmh−1
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The preceding Figure 6.4 shows the results of the three individual tests. The evaluated mean drag
area values in the distant wake between 2.5–7.5 m are once more averaged to obtain a single repre-
sentative C d A number. Beyond 7.5 m the diffusive process of the wake makes it increasingly diffi-
cult to accurately define a contour in the outlet plane including both, the wake and the shear layers.
This trend is already noticeable in all three plots of Figure 6.4, where the dispersion of the C d A mea-
surements per loop and consequently the 95 % confidence interval grows at large distances behind
the rear wheel. At the same time, the spread in the near wake is smallest, as the contour of the wake
structure is easily identifiable with the used algorithm. In all three tests, the drag area coefficient
remains rather constant throughout the wake region, which is contrary to the previous two Ring of
Fire experiments, where a lower drag area value in the near wake gradually increases in downstream
direction until it plateaus in the far wake. de Martino Norante (2018) assigns this behaviour to the
underestimation of the reconstructed pressure. The pressure effects behind the cyclist in upright
position can be considered small (Figure 6.4a) and negligible in time-trial position based on the
near-constant C d A evolution in downstream direction, which would be in agreement with Shah
(2017).

For the upright case, shown in Figure 6.4a, the computed C d A amounts to 0.2565 m2, with a proba-
bility of 95 % that a repeated experiment would result in a mean drag area value that falls within the
range of ± 0.0061 m2 around 0.2565 m2. For the time-trial position the drag area coefficient reduces
for the time-trial helmet down to 0.2183 m2 (Figure 6.4b), and for the road helmet to 0.2268 m2 (Fig-
ure 6.4c) with a 95 % confidence interval of ± 0.0046 m2 and ± 0.0053 m2, respectively. Compared to
the previous Ring of Fire campaigns conducted by de Martino Norante (2018) and Spoelstra (2017),
the 95 % confidence intervals in the wake are narrowed, from ±2.7–5.3 % and ±5 %, respectively,
down to ±2.1–2.3 % in the current measurement. This is likely due to a 1.5− 2 times larger sam-
ple pool with respect to the experiment conducted by de Martino Norante (2018) and a 4 times
larger sample size compared to the first Ring of Fire test by Spoelstra (2017). Additionally, the im-
plemented wake contouring procedure disregards the surrounding flow field and thus reduces the
induced noise, which yields less dispersed drag area values.

6.2.2. C d A VALUE FROM DRAFTING TESTS

On the second main testing day, the drafting experiment was carried out, where the female rider
was assigned the lead role, while the male cyclist followed her in a predefined distance. As already
mentioned in section 6.1, the drafting distance measured between the front wheel of the cyclists
varied considerably, such that 4 zones in steps of 2 m between 7–15 m are investigated rather than
two distinct drafting distances at 8 m and 12 m, as initially planned. Similarly to the individual test,
the near wake flow field at less than 2.5 m behind the cyclist is not considered. As established in sec-
tion 5.5, the control volume approach utilizes the next available inlet plane beyond 1.5 m in front
of the trailing cyclist, which is then modified according to the contoured wake of the outlet plane
to satisfy mass conservation. In total, 90 laps were negotiated during the drafting experiment. Re-
grettably, two periods of 20 and 6 consecutive laps had to be discarded due to insufficient seeding
within the measurement plane, which consequently led to low signal-to-noise ratios in the PIV im-
ages. In total, 27 of the 90 laps showed seeding issues, while in 7 passages the lateral alignment
between the two riders was poor and exceeded 200 mm. The observed drag area value in those
passages is increased and is excluded from the data pool, as it is not representative of the targeted
in-line drafting configuration. However, it underlines the result from Kyle (1979) and Zdravkovich et
al. (1996), which report a decreased drafting effect in staggered arrangement, albeit the maximum
longitudinal separation between the riders was only 0.3 m and 0.9 m, respectively. Finally, 5 further
transits needed to be removed due to excessive wake contouring. Contrary to the individual run, the
percentage parameter defining the cut-off velocity in the algorithm is increased from 30 % to 50 %,
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which results in a more stringent wake contouring. This is necessary to avoid enclosure of the wake
originating from the lead cyclist, as it is still present in the wake planes behind the trailing cyclist.
In total, 51 of the 90 acquisitions could be used for this analysis. Figure 6.5 plots the downstream
evolution of the drag area coefficient for the four zones.

Figure 6.5: Streamwise C d A evolution in wake of trailing cyclist at 30 kmh−1 under drafting conditions

The previous plot illustrates that the lowest drag area coefficient is achieved at drafting distances
of 7–9 m, followed by the 9–11 m range. Interestingly, for the two largest separation distances this
trend does not continue, as the 13–15 m zone indicates a smaller C d A value than the 11–13 m one.
This behaviour is more elaborately discussed in the upcoming section 6.3. To assign one represen-
tative C d A value to each of the four drafting ranges, the region of 2.5–5.5 m behind the rear wheel is
averaged. Further downstream, the algorithm becomes less reliable in clearly separating the wake
of the trailing cyclist with the wake of the leading cyclist, which is noticeable in the larger dispersion
and the tendency of lower drag area values of the C d A values per loop. Those mean values and their
95 % confidence interval, together with the average and the standard deviation of the drafting dis-
tance and the number of samples per zones can be obtained in table 6.1. The results of the 9–11 m
and 13–15 m drafting distances in particular should be treated with care, as the sample pool size is
small. The confidence interval for the drafting case is larger compared to the previously conducted
Ring of Fire measurements and thus also larger than the individual cases. It spans ±9–9.5 %, which
can be explained not only by the low sample pool size but also by the additionally added drafting
distance parameter, including values within a 2 m range. Together with the turbulent flow behaviour
behind the leading cyclist, wake inflow conditions will change for each transit and thus yield more
dispersed C d A results.

Table 6.1: Drag area coefficient in the four drafting zones. Standard deviation of drafting distance in brackets.

Zone ddr a f t i ng [m] C d A[m2] 95% C I [m2] #samples[−]

7-9m 7.93 ( 0.78) 0.1915 0.1756-0.2074 16
9-11m 9.92 (0.61) 0.2096 0.1892-0.2300 10

11-13m 11.9 (0.58) 0.2312 0.2210-0.2414 17
13-15m 14.1 (1.39) 0.2260 0.2164-0.2356 8
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6.3. COMPARISON C d A BETWEEN POWER METER AND RING OF FIRE
In this section, the comparison between power meter and Ring of Fire derived drag area coefficients
is drawn, which was the main objective of this work. For this, both individual and drafting scenarios
are considered, which cover a wide range of C d A values. The results are depicted in Figure 6.6,
where the drag area values from the Ring of Fire, as well as from the power meter are plotted. For
the power meter approach, two different rolling resistance coefficients are utilized to assess the
sensitivity of this parameter, namely the literature based value of Cr r = 0.0055 and the coefficient
derived from the linear regression, performed in section 6.1, Cr r = 0.003.

Figure 6.6: Comparison of drag area coefficients between power meter and Ring of Fire.

The preceding histogram can be studied in two different ways, namely by assessing the relative dif-
ference of the measurement techniques between each test condition, or by evaluating the absolute
values of the predicted C d A. Considering the relative performance for the individual cases, the
trends of the power meter and the Ring of Fire show good agreement, as a large-scale drag area in-
crease from time-trial to upright position is obtained. While the Ring of Fire predicts an increase in
C d A of 0.039 m2, the power meter results increase by 0.054 m2, regardless of the chosen rolling co-
efficient. Between the two helmet types a small-scale increase of 0.009 m2 can be extracted from the
Ring of Fire measurements, compared to a delta of 0.004 m2 for the two power meter approaches.
Regarding the absolute value, it becomes apparent how important a correctly chosen rolling re-
sistance coefficient is, as the two shown Cr r values yield a ∆C d A of 0.053 m2, which amounts to
16–20 %. At this point, it is clear that the power meter derived absolute value cannot be blindly
trusted due to the high dependency on the underlying model constants, while the relative values
are independent of the model, assuming a constant velocity of 30 kmh−1 between all tests.
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Table 6.2: C d A[m2] with ∆C d A[m2] in brackets w.r.t to individual time-trial test with time-trial helmet

Individual Drafting [m]

Upright
TT

TT helmet
TT

Road helmet
7-9 9-11 11-13 13-15

PM, Cr r = 0.003 0.318 (+0.054) 0.264 0.268 (+0.004) 0.278 0.285 0.286 0.291
PM, Cr r = 0.0055 0.265 (+0.054) 0.211 0.215 (+0.004) 0.214 0.221 0.224 0.231

Ring of Fire 0.257 (+0.039) 0.218 0.227 (+0.009) 0.192 0.21 0.231 0.226

For the individual test, the power meter model, using the literature based Cr r of 0.0055, results in
similar values as those obtained through the Ring of Fire measurements (within 5 %). Both ap-
proaches suggest the drag area coefficient in upright position to be around 0.26 m2. This value is
influenced by many factors, such as the rider’s posture, rider’s physical appearance, equipment and
test conditions, such as freestream turbulence and relative velocity. Therefore, it is difficult to com-
pare this value to available literature, where a C d A value for dynamic upright position in the range
of 0.28–0.343 m2 is reported by de Martino Norante (2018) and Barry et al. (2014b), respectively,
where the latter employed a force balance measurement in the wind tunnel. Both also reveal a drag
area reduction of 13.6 % and 17.5 % when the tests are repeated in time-trial posture. This is in ac-
cordance with the reduction obtained from the power meter (20 %) and the Ring of Fire (15 %) in the
current experiment.

The helmet change from time-trial to road type resulted in a drag increase of 2 %, as measured by
the power meter device and 4 % for the Ring of Fire approach. This follows the general reported
trend in literature that time-trial helmets are aerodynamically more efficient than road helmets, as
reported in Alam et al. (2010), Blair and Sidelko (2009) and Chowdhury et al. (2014). For the Ring of
Fire, the drag penalty of a road helmet amounts to approximately 0.4 N, compared to the time-trial
helmet. Blair and Sidelko (2009) report a difference of 1–1.5 N between the two helmet types in their
wind tunnel study. Rescaling the higher test velocity of 13.4 ms−1 to 8.3 ms−1, the obtained Ring of
Fire value falls within the rescaled range of 0.39–0.58 N. One could additionally argue that the Giant
River TT helmet is a conservative time-trial helmet due to the truncated tail, which might lead to
lower differences to the road helmet than a helmet with a longer tail. The confidence interval of the
Ring of Fire helmet tests show marginal overlap, indicating that the road helmet would very likely
be again tested worse than the time-trial helmet, which allows a high assurance in this observation.

The drafting test was conducted in time-trial position with road helmet and thus can be compared
to the individual TT-Road helmet run. Under drafting conditions, the power meter does not suggest
a C d A benefit when trailing behind another cyclist. However, as discussed in section 6.1 it is difficult
to draw strong conclusions, due to the large confidence interval. The Ring of Fire, on the other hand,
reliably predicts a reduction in drag area value for drafting distances of less than 9 m, compared to
the single-rider test. One would expect a similar drag area coefficient when the same object, in this
case the rider in TT position with road helmet, is tested. However, a change in aerodynamic ef-
ficiency could be explained by the changed inflow condition the trailing cyclist encounters under
drafting. Here, the turbulence intensity is increased and the relative velocity is decreased, resulting
in a changed Reynolds number, which could positively affect the flow over the cyclist. A Reynolds
number dependency of the drag area coefficient in cycling is presented in the work of Defraeye et
al. (2011), as shown in Figure 6.7.
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Figure 6.7: Reynolds number dependency of individual body parts and the entire cyclist as computed by
numerical studies and a full scale wind tunnel experiment (all tests in TT position). Reproduced from

Defraeye et al. (2011)

Considering a characteristic flow length scale equal to 1 m, as used in the study of Defraeye et al.
(2011), and the corresponding relative velocities for the individual, 7–9 m and 11–13 m drafting
range, the Reynolds numbers amount to: 5.5280·105, 4.6988·105 and 4.1460·105, respectively. Com-
paring those values to Figure 6.7 it is evident that they are located in a region with Reynolds number
sensitivity, of both the individual body parts and the entire cyclist. It should be mentioned that the
results of Defraeye et al. (2011) act more as an illustration of the Reynolds number dependency in
cycling, rather than a comparison in absolute terms, as the graph is expected to change for different
riders, equipment, and turbulence intensity levels, which are certainly present during drafting.

For the individual tests, it can be concluded that the relative drag area results of both measurement
techniques compared in this work show good agreement when considering the ensemble average of
all loops. Under drafting conditions, a direct comparison between the Ring of Fire method and the
power meter is not meaningful as the latter is influenced by variant drafting distances throughout
the lap and drafting effects during cornering, which are unknown.

6.4. DRAG SAVINGS UNDER DRAFTING CONDITION
The following discussion deals with the aerodynamic drag savings experienced in drafting condi-
tions. As baseline, the individual time-trial test with road helmet is used, against which the drafting
cases are compared. All five measurements are conducted at 30 kmh−1 in time-trial position, utiliz-
ing the road helmet. Figure 6.8 displays the normalized drag area value with respect to the single-
rider benchmark, as extracted from the Ring of Fire measurements. It should be noted that the 95 %
confidence intervals of the drafting cases are computed with a fixed C d Ai ndi vi dual value, which in
itself has a small uncertainty.
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Figure 6.8: Drag area coefficient change in drafting conditions at 30 kmh−1 as measured by the Ring of Fire

The previous Figure depicts a 15 % drag area saving in the drafting region of 7–9 m measured from
front wheel to front wheel. 2 m further downstream the aerodynamic drag benefit reduces on av-
erage to 9 %, while at drafting distances beyond 11 m no benefit is measured. Even though in this
region a velocity deficit is faced by the cyclist, as will be later shown in Figure 6.9c, the drag area
coefficient is not favourable over the individual case.

To the best knowledge of the author, no academic research has yet been performed on drafting
distances beyond 3 m. Olds et al. (1995) suggest negligible drag savings for larger drafting distances
exceeding this number. This study, however, reveals a drag area saving of at least 10 % at 7–9 m us-
ing the upper limit of the 95 % confidence interval. It is difficult from the investigations performed
at small separation distances to predict how the drafting benefit would develop at larger distances.
Most recent studies by Barry et al. (2014a), Blocken et al. (2012) and Blocken et al. (2013) measure
in time-trial position at 0.8 m, 1 m and 1 m, respectively and report a drag saving of 45 %, 30 % and
25 % for the trailing cyclist. Further, less relevant results of drafting studies can be obtained in table
2.1.

Non-peer reviewed sources such as Swissside (2017), report a drag saving of 13.4 % at drafting dis-
tances of 12 m as a result of a numerical study at 45 kmh−1. In the same test, a 7 m drafting distance
was tested to lower the drag by 20.3 %, which would be comparable to the findings of the current
experiment (15 %). A possible explanation for the absent drag savings at large separation distances
in this study could be the Reynolds number dependency. As illustrated in Figure 6.7, local drag area
plateaus can occur, which represent an insensitivity to the Reynolds number. Despite the decreased
inflow velocity at 9–11 m drafting (Figure 6.9c), the Reynolds number dependent C d A might share
the same plateau as the unaffected individual test. Additionally, at far drafting distances, the pri-
mary velocity deficit is downwashed and thus mostly affects the flow around the lower portion of
the bike (Figure 6.9c). The cyclist him/herself, who contributes to around 60–80 % of the overall
system drag (Defraeye et al. (2013), Blocken et al. (2013) and Crouch et al. (2017)), encounters a de-
creased velocity deficit that is in the range of 85–95 % of the freestream velocity only.
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Highly hypothetically, one could expect a drag benefit in the 11–13 m range when testing at higher
velocities, as the wake behind the leading cyclist has less time to diffuse until the trailing cyclist ar-
rives and thus a more pronounced Reynolds number difference between leading and trailing cyclist
would result. The tendency of Figure 6.7 shows a decreasing drag area coefficient at lower Reynolds
numbers, which could result in a C d A value, beneficial for the trailing cyclist. As most flow studies
around cyclists have shown, it is difficult to generalise the findings due to very individual Reynolds
number dependency for each rider and each test conditions.

As a final remark, it should be added that the drafting effect, as investigated by Kyle (1979), Ed-
wards et al. (2007) and Fitton et al. (2017), is furthermore dependent on the physical appearance of
the lead cyclist. A rider with a small stature provides less shelter to the trailing cyclist than a larger
one. In this experiment, a female athlete with a small stature led the male athlete, which needs to
be considered when looking at the drag saving values.

6.5. FLOW TOPOLOGY UNDER DRAFTING CONDITIONS
In this section, the flow topology under drafting condition is compared to the single-rider case. This
discussion is limited to the drafting regions of 7–9 m and 11–13 m, as most passages were performed
within these two zones. Even though the laser line on the ground helped to guide the cyclist to the
lateral centre of the tunnel, a manual correction method after de Martino Norante (2018) needed to
be applied to laterally align all images with respect to the y = 0m coordinate.

6.5.1. MEAN OUT-OF-PLANE VELOCITY UPSTREAM

To start, the out-of-plane velocity in the inlet plane, 1.3–1.7 m upstream of the cyclist, is ensemble
averaged. The results are normalized according to a reference frame that is moving with the cyclist,
such that:

Vxnor m (y, z) = Vx (y, z)+V

V
(6.1)

, with Vx being the PIV-measured out-of-plane velocity component and V representing the cyclist’s
velocity. The flow field of the inlet planes are depicted in Figure 6.9. It should be noted that due to
the close proximity of the inlet plane to the cyclist, the incoming rider is captured at the edge of the
field of view, which cause spurious vector reconstruction. However, this region of the inlet plane is
not important, as the rider transits the plane in the centre.

(a) Individual case (b) 7–9 m drafting case (c) 11–13 m drafting case

Figure 6.9: Normalized out-of-plane velocity 1.3–1.7 m upstream of cyclist

First to be observed in Figure 6.9a is the less than unity normalized out-of-plane velocity. This can be
explained by the circulation forming in the testing facility, due to the continuing looping of the cy-
clist, which effectively induces a tail-wind component. Considering the drafting cases, an expected
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trend is shown, in that the trailing cyclist faces a region of increased velocity deficit compared to a
solo rider. The averaged wake velocity in the 7–9 m drafting case, shows its peak deficit to be around
75 % of the cyclist’s velocity, while for 11–13 m the lowest velocity is found at 80 %. A comparative
study by Barry et al. (2016a) manifests this observation, where a velocity deficit is measured just
upstream of the trailing cyclist. In the previously mentioned paper, the authors find a peak velocity
deficit of 10 % and 40 %, defined according to equation 6.1, at drafting distances of 1/11 bike length
and 1 bike length, respectively (Figure 2.20). From Figure 6.9 it can be further stated, that the wake
region in the closer drafting case is spatially more concentrated, while at further drafting distances
a more expanded wake region is faced. The previous two observations underline the diffusive na-
ture of the wake in downstream direction, in which it broadens and weakens. The wake behind the
leading cyclist is furthermore downwashed, as can be obtained from image 6.9b and 6.9c. Given
that the cyclist’s body contributes to 60–80 % of the overall drag (Defraeye et al. (2013), Blocken et
al. (2013) and Crouch et al. (2017)), it would likely be beneficial for drafting effects at large distances
if the region of the velocity deficit would remain at the height of the rider.

6.5.2. MEAN OUT-OF-PLANE VELOCITY DOWNSTREAM

The following investigation deals with the ensemble-averaged out-of-plane velocity in the near
wake of the individual and trailing cyclist. In order to capture a well-defined wake structure, ac-
quired planes 0.4–0.6 m behind the cyclist of interest are considered. However, as mentioned before,
the PIV vector reconstruction in this region is impaired by the low signal-to-noise ratios caused by
the presence of the cyclist in the background of the field of view and the high flow turbulence. For
this investigation, images with locally appearing SNR of below 3 are tolerated, while samples with
large-scale patches consisting of worse SNR are discarded. The velocity field is once again normal-
ized, according to equation 6.1.

(a) Individual case (b) 7–9 m drafting case (c) 11–13 m drafting case

Figure 6.10: Normalized out-of-plane velocity 0.4–0.6 m downstream of cyclist

The mean streamwise velocity plots, shown in Figure 6.10, are comparable with each other, in that
the shape and peak velocity deficit resemble each other. The narrowest part of the wake can be
obtained near the ground, where the wheels of the bicycle are the main contributors. At increased
heights, the wake structure broadens. Its peak velocity deficit can be found between−600 cm<z<0 cm
in all three images, which is in line with the results from Barry et al. (2016a), in terms of location and
magnitude. The reference study suggests a slight widening of the wake for the trailing cyclist, which
cannot be strongly identified in the present results.

6.5.3. MEAN VORTICITY IN WAKE

To conclude, the flow topology investigation of the drafting cyclist, an averaged streamwise vorticity
plot is provided in Figure 6.11. Once again, all considered planes are acquired between 0.4–0.6 m
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downstream of the rear wheel. Previously conducted experiments shown in Figure 2.16 agree, that
the dominant flow structures, emerging from the cyclist, originate in the hip region. This statement
is clearly observed in Figure 6.11b, which shows the individual case. For the ease of comparison
one reference plot is replotted in Figure 6.11a. Additional similarities between the individual and
the reference case can be found, namely the head counter-rotating head vortex pair, which has not
been observed prior to the Ring of Fire experiment of de Martino Norante (2018). Furthermore,
distinct structures stemming from the lower hip, upper hip, and inner thighs can be identified. No
conclusion can be drawn from the lower part of the wake structure, as the different pedal positions
between the passages prohibit a consistent wake topology. The peak vorticity is increased compared
to the reference case, likely due to an increased Reynolds number, which is 1.6 times higher in the
current study.

(a) Reference case (de Martino Norante, 2018) (b) Individual case

(c) 7–9 m drafting case (d) 11–13 m drafting case

Figure 6.11: Streamwise vorticity 0.4–0.6 m downstream of cyclist

In the drafting cases, depicted in Figure 6.11c and 6.11d, the vortex structures are less coherent, as
the sample pool size is small (14 < nsamples < 18) and the inconsistent inflow creates large variabil-
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ity between the cases. Again, disregarding the lower portion of the wake, one can obtain that the
region around z = 0 is dominated by two counter-rotating structures, which can be assigned to the
hip/thigh region, as illustrated in Figure 2.24. Compared to the present study, Barry et al. (2016a)
and Barry et al. (2016b) obtain more coherent and consistent wake structures, as these particular
tests are conducted in a controlled water/wind tunnel environment at smaller drafting distances.

Next to the vorticity, one can also look at the in-plane velocity vectors, to assess the similarity be-
tween the flow field in isolated and drafting conditions. Here it becomes apparent that the primary
features are consistent throughout Figures 6.11b, 6.11c and 6.11d, in that a strong downwash exist
near the vertical centreline. It can be reasoned that this characteristic is responsible for the down-
ward movement of the wake structure, as seen in Figure 6.10. Furthermore, a strong inwash be-
tween 0 cm<z<300 cm is induced by the main hip vortices in all cases, which is further increased
by the head vortices as present in Figure 6.11b. Image 2.25 suggests the hip/thigh vortex structure
to outlast the smaller vortex structures, which in turn means that those will dominate the wake be-
haviour in the far wake. There, the induced inwash causes a narrowing of the upper wake, while the
broadening of the lower wake structure can be assigned to the induced outwash by the vortex pair,
as well as the present ground, which constrains the downwash, as illustrated in schematic 6.12. A
narrow upper wake together with a broadened lower wake structure has already been observed by
Spoelstra (2017) and de Martino Norante (2018) in the preceding Ring of Fire campaigns.

Figure 6.12: Schematic showing responsible flow
features for downwashed wake, as well as upper wake

narrowing and lower wake broadening.



7
CONCLUSION AND RECOMMENDATIONS

Two days of testing with professional cyclists in an indoor ice-rink were scheduled, during which
continuous riding of a 190 m long loop aimed at a target velocity of 30 kmh−1 was possible. The
Ring of Fire system was kept in ongoing operation for 20 min at a time, to acquire around 40 transits
of the cyclist through the measurement plane. Initially, the large-scale circulation within the hall,
caused by the repeated looping, resulted in seeding problems, which were cured by walking a 2.8 m2

blanket through the tunnel in opposite cycling direction after each transit.

The main objective of this Master’s Thesis was to compare the drag area value of a cyclist obtained
with the Ring of Fire technique against the C d A derived from simultaneously acquired power meter
data. To assess the concordance between the two approaches in different regimes, three individual
tests were performed to first create a large-scale drag area change by comparing upright to time-
trial posture. Second, a small-scale C d A delta is investigated by replacing a time-trial helmet with a
road helmet, while the posture between the two tests remained unchanged.

An attempt was made to evaluate the rolling resistance coefficient, adapting the approach of De-
braux et al. (2011) under test conditions for utilization in the power meter model. However, the
linear-regression-derived value under-predicts the rolling coefficient (Cr r = 0.003), compared to
literature values for equally low tyre pressure (Cr r = 0.0055 according to Wilson et al. (2004) and
Grappe et al. (1999)). Due to large power fluctuations between the corner and the straight parts the
recordings of the power meter were averaged over one lap.

Regardless of the underlying rolling coefficient in the power meter model, both small- and large-
scale deltas were well captured by both the Ring of Fire technique and the power meter approach
and are in accordance with available literature values (de Martino Norante (2018), Barry et al. (2014b)
and Blair and Sidelko (2009)). Between the time-trial and upright positions, a drag area increase of
0.039 m2 and 0.054 m2, respectively, was determined. Replacing the time-trial helmet with the road
helmet led to an increase in the C d A value of 0.009 m2 and 0.004 m2, respectively. In terms of abso-
lute drag area values the literature-based rolling coefficient of Cr r = 0.0055 shows good agreement
in all three test conditions with the C d A numbers derived from the Ring of Fire (within 5 %). The
Ring of Fire derived drag area value for the upright position is 0.257 m2, while for the time-trial po-
sition with time-trial helmet the C d A amounts to 0.218 m2, and with the road helmet to 0.227 m2.
In the same order, the power meter with Cr r = 0.0055 gives 0.265 m2, 0.211 m2 and 0.215 m2.

In addition, drafting tests were conducted with a female athlete leading a male cyclist at distances
between 7–15 m, measured from front wheel to front wheel. The power meter data in this scenario
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have to be treated with care, as drafting effects during cornering are unknown. Additionally, the
drafting distance between the cyclists was measured in one location only, but is prone to change
throughout the lap, which causes large uncertainties. The Ring of Fire method, on the other hand,
shows a clear trend towards lower drag area values at drafting distances below 9 m, which amount
to a reduction of 15 %. In the range between 9–11 m, a smaller drag benefit can still be expected,
whereas above 11 m, no gain was measured for the trailing cyclist. The observed behaviour is as-
signed to a reduction in Reynolds number due to lower relative velocities encountered by the draft-
ing rider. The absence of drafting benefits at large separation distances is allocated to non-linear
Reynolds number dependencies for a cyclist, as reported in literature (Blocken et al., 2013).

Considering the flow field, it can be concluded that the trailing cyclist encounters a slower velocity
due to the wake of the leading rider. This velocity deficit mitigates at larger downstream distances
and amounts to 75 % and 85 % of the cyclist velocity, at 7–9 m and 11–13 m, respectively. As already
stated in Barry et al. (2016b), the wake in immediate vicinity behind the cyclist does not show no-
ticeable differences between isolated and drafting scenarios. The vortex features behind the cyclist,
captured in the individual case, show dominant hip/thigh and head structures comparable to those
found in the previous Ring of Fire campaign by de Martino Norante (2018). The lower wake region
cannot be compared due to the lack of phase-locked pedal position in this experiment. Behind the
trailing cyclist, only dominant features in the hip/thigh region can be identified. Other structures
are not coherent due to the high variability of testing conditions. Both individual and drafting flow
fields show a downwashing behaviour behind the cyclist, as well as inwash at the upper wake, dom-
inated by the hip/thigh vortices. Further downstream, this will lead to a downwash of the wake,
with a narrowing of the upper wake and a broadening at the bottom, due to the ground constraint.
At drafting distances beyond 7 m, the main velocity deficit is thus encountered by the lower part of
the bike, rather than the cyclist him/herself who, according to literature, accounts for 60–80 % of the
drag (Defraeye et al. (2013), Blocken et al. (2013) and Crouch et al. (2017)).

Based on the current campaign, recommendations can be given for future Ring of Fire tests. First,
an investigation of the cyclist’s upstream pressure propagation should be considered. So far, the
pressure is either neglected or reference values from literature are utilized. Placing the acquisition
cameras at the tunnel exit would allow for an unobstructed view of the inlet plane, benefiting the
pressure reconstruction process. In this setup, the immediate wake region behind the cyclist would
be compromised, and near-wake flow topologies could be challenging to retrieve. Two cameras on
both tunnel entry and exit would solve this problem, however, it would also increase the complexity
of the setup. Concerning the cameras at the tunnel exit, contamination of the lenses should taken
into consideration, as they face the entrained particles.

Furthermore, it is advised to equip the cyclist with a black suit to improve the pixel contrast, when
the cyclist is present in the images. For the current campaign, an f-stop setting of 8 was selected,
which attenuated the light intensity and consequently reduced the signal-to-noise ratio. It should
be investigated whether or not a smaller f-stop setting would also provide sufficient view of depth.

To remove the walking process after each transit, a system should be designed to reduce the draft
after acquisition. In the current experiment, an effort was made to block the flow with a 5 m2 wall,
placed either at the tunnel entry or exit, leading to unsatisfactory results. Closing off the entire
tunnel entry/exit area for an endured time period may prove successful. The use of fans facing in
opposite cycling direction should be treated with care, as additional turbulence is added into the
flow.
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Throughout the current project, an attempt was made to quantify the unsteady term of the mo-
mentum equation, which led to unreasonably high drag values. By logical reasoning, the unsteady
effects in the present scenario were deemed disregardable. However, a simplified numerical case
study could provide insight into the importance of this unsteady term.

In case another power meter study will be conducted, it is suggested to place the tunnel on a long
straight to achieve more steady power traces before the transit. A future experiment at the Tom-
Dumoulin-Bike-Park in Sittard is envisioned, which would provide such desirable track layout.

For future drafting tests, an improved system for indicating the target drafting distance to the trail-
ing cyclist is proposed. Projecting a laser line, as planned in this campaign, is suggested. However,
the saddle mount must be revised. More representative values for professional athletes could be
derived from test at higher velocities (40–45 kmh−1), where drag savings at 12 m could be measur-
able.
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A
SEEDING PROBLEM INDUCED BY

CIRCULATION

Throughout preliminary tests with the amateur cyclist, it became apparent that the circulation in
the hall induced by the cyclist causes the soap bubbles to be entrained downstream, as soon as
they were produced by the seeding rake (Figure A.1). This caused inhomogeneous and insufficient
seeding in the measurement plane located downstream with the tracers agglomerate on the right
hand side, as can be seen in Figure A.2.

Figure A.1: Bubbles carried downstream
immediately after production by seeding rake

Figure A.2: Initial seeding distribution in
measurement plane

To stop the bubbles from exiting the tunnel and distribute the tracers more evenly in the measure-
ment plane, three different approaches were tested. For the first two attempts a movable wall-like
structure was constructed using large mats, which were stacked vertically on a small wagon, result-
ing in wall dimensions of 2.5 m height and 2 m width. After each passage, the wall was wheeled onto
the track to block the circulation caused by the cyclist. Before the cyclist approached, the structure
was retrieved. The wall structure was tested once at the entry and once at the exit, whereas neither
approaches yielded satisfying seeding distributions. As a third approach, two mats were connected
to a rod, which was carried through the tunnel slowly after each passage in opposite cycling direc-
tion by one of the operators, as shown in Figure A.3. It has been found that this procedure results
in an homogeneous and sufficient seeding distribution in the measurement plane (Figure A.4) and
was thus added to the measurement procedure for the rest of the campaign. The mats were later
replaced by a lighter blanket with dimensions of 1.8 m x 1.55 m to reduce the human effort.
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Figure A.3: Mats and later blanket carried
by one operator in opposite cycling

direction to reduce circulation effect in
tunnel

Figure A.4: Improved seeding distribution in
measurement plane due to reduced circulation



B
SAMPLE CODE FOR WAKE CONTOURING

PROCEDURE

clear a l l ; close a l l ; c l c ;

% −−− Create sample matrix with out−of−plane v e l o c i t e s
size_m = 10; % Define dimensions of sample matrix
v_lower = −8; % Lowest_expected_velocity [m/ s ]
v_higher = 2 ; % Highest_expected_velocity [m/ s ]
Vx_sample = v_lower + ( v_higher−v_lower ) . * rand ( size_m , size_m ) ; % F i l l sample matrix

% −−−3 parameters that define the wake contouring−−−
percenti le = 2 ; % P e r c e n t i l e to determine "maximum value " ( Avoids o u t l i e r s )
p = 50; % Percentage of maximum value , defining the i n t i a l wake boundary [%]
gaussian = 3 ; % Number of gaussian f i l t e r operations ( higher −> d i l a t e s wake more)

% −−− Find cut−o f f v e l o c i t y −−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Cutoff_velocity = p/100* p r c t i l e ( Vx_sample ( : ) , percenti le ) ; % Defines cut−o f f v e l o c i t y
Vx_0=Vx_sample ; % Save o r i g i n a l matrix on variable Vx_0
Vx_sample ( Vx_sample>Cutoff_velocity ) = 0 ; % Set a l l values above cut−o f f v e l o c i t y to 0
Vx_sample ( Vx_sample<Cutoff_velocity ) = 1 ; % Set a l l values above cut−o f f v e l o c i t y to 1
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% −−− I s o l a t e l a r g e s t island −−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I = bwlabel ( Vx_sample , 4 ) ; % Check 4 neighbours i f Vx_sample>0 and c l u s t e r c e l l s
s t a t s = regionprops ( I , ’ area ’ ) ; % Determines number of c e l l s included in each c l u s t e r
[~ , I _ l a r g e s t ] = max( [ s t a t s . Area ] ) ; % Define which c l u s t e r / island i s l a r g e s t
Vx_logical = I == I _ l a r g e s t ; % Returns l o g i c a l matrix ( Largest island=1 / r e s t =0)

% Convert l o g i c a l matrix into numeric matrix
for a =1: size_m % march through matrix in horizontal d i r e c t i o n

for b=1: size_m % march through matrix in v e r t i c a l d i r e c t i o n
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i f Vx_logical ( a , b)== true
V x _ f i l t e r ( a , b) = 1 ; % C e l l s within l a r g e s t island are s e t to 1

else
V x _ f i l t e r ( a , b) = 0 ; % C e l l s outside l a r g e s t island are s e t to 0

end
end

end
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% −−− Dilate wake −−−
% −−−−−−−−−−−−−−−−−−−
h = f s p e c i a l ( ’ gaussian ’ ) ; % Defines 2−D f i l t e r as 3x3 gaussian
for i =1: gaussian % Repeat gaussian f i l t e r operation as defined by user

V x _ f i l t e r = f i l t e r 2 (h , V x _ f i l t e r ) ; % Apply gaussian f i l t e r on sample matrix
end
V x _ f i l t e r ( V x _ f i l t e r >0)=1; % Set c e l l s >0 ( a f f e c t e d by gaussian f i l t e r ) to 1

% −−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−

% −−− Apply contour to o r i g i n a l image −−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Vx_final= V x _ f i l t e r . * Vx_0 ; % Multiply f i l t e r matrix with o r i g i n a l matrix
Vx_final ( Vx_final >0)=0; % Set a l l values above 0 to 0

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


	Preface
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Background
	Literature Study
	Ring of Fire Method
	Aerodynamic Effect of Helmet Shape
	Drag Savings in Drafting Configuration
	Wind Tunnel Studies on Drafting
	On-site Studies on Drafting
	Numerical Studies on Drafting

	Flow Topology Behind Cyclist in Time-Trial Position
	Wake Topology of Individual Cyclist
	Wake Topology of Trailing Cyclist
	Wake Behaviour Far Downstream

	Objective and Relevance of This Thesis
	Outline of This Report

	Theoretical Framework
	Resistive Forces During Cycling
	Drag Area Evaluation Through Power Meter
	Working Principle of Particle Image Velocimetry
	Tracer Particles
	Particle Imaging
	Stereoscopic PIV

	Control Volume Approach

	Experimental Installation, Settings and Procedure
	Ring of Fire Setup
	Test Facility
	Tunnel Structure
	Laser Light
	Acquisition Hardware
	Seeding Production
	Triggering Hardware
	Drafting Distance

	Test Objects
	The Riders
	The Bicycles
	Power Measuring Device

	Acquisition System Test Settings
	Pulse Separation Time, t
	Time Delay of Trigger
	Images per Loop
	Recording Frequency of the PIV-System

	System Calibration
	Testing Schedule
	Testing Procedure

	Data Reduction and Analysis Techniques
	Data Reduction of Power Meter Data
	Velocity Correction
	Relative Velocity
	Outlier Removal Power Meter Data

	Data Reduction of PIV Measurement Data
	Pre-Processing
	Vector Processing
	Post-Processing
	Outlier Removal PIV Data

	Contouring of Inlet and Outlet Plane
	Selecting Wake Contour
	Contour Adaptation for Mass Conservation

	Upstream Pressure Propagation of Cyclist
	Choice of Inlet Plane Under Drafting Conditions
	Longitudinal Wake Alignment
	Determination of Drafting Distance
	Drafting Distance Extracted from Video
	Drafting Distance Extracted from PIV Images
	Drafting Distance Measurement Technique Comparison

	Synchronization of the Data Acquisition Systems

	Results and Discussion
	Power Meter Results
	Linear Regression Analysis for Crr Value
	Phase-Averaged Power Meter Data
	CdA Value from Power Meter

	Ring of Fire Results
	CdA Value from Individual Tests
	CdA Value from Drafting Tests

	Comparison CdA Between Power Meter and Ring of Fire
	Drag Savings Under Drafting Condition
	Flow Topology Under Drafting Conditions
	Mean Out-of-Plane Velocity Upstream
	Mean Out-of-Plane Velocity Downstream
	Mean Vorticity in Wake


	Conclusion and Recommendations
	Bibliography
	Seeding Problem Induced by Circulation
	Sample Code for Wake Contouring Procedure

