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Abstract
Hierarchical embeddings, such as HSNE, address critical visual and computational scalability issues of traditional techniques
for dimensionality reduction. The improved scalability comes at the cost of the need for increased user interaction for explo-
ration. In this paper, we provide a solution for the interactive visual Focus+Context exploration of such embeddings. We explain
how to integrate embedding parts from different levels of detail, corresponding to focus and context groups, in a joint visualiza-
tion. We devise an according interaction model that relates typical semantic operations on a Focus+Context visualization with
the according changes in the level-of-detail-hierarchy of the embedding, including also a mode for comparative Focus+Context
exploration and extend HSNE to incorporate the presented interaction model. In order to demonstrate the effectiveness of our
approach, we present a use case based on the visual exploration of multi-dimensional images.

CCS Concepts
• Human-centered computing → Information visualization; Visualization theory, concepts and paradigms;

1. Introduction

In order to successfully benefit from the wealth of information
in large and complex datasets, interactive visual data exploration
and analysis is used in a variety of application areas such as text
analysis [MCCD13], fraud detection [LGM∗18], machine learn-
ing [PHvG∗18], and life sciences [OKB∗08, LvUH∗18]. Multi-
dimensional data is often a core challenge in these processes and
dimensionality reduction is regularly an essential part of the ap-
proach. Fortunately, a plethora of according techniques is avail-
able [BG06, vdMH08, EHH12]. However, with ever increasing
data-sizes, visualizing a complete dataset in a single plot is often
impossible or leads to a lack of detail or overview. Hierarchical
techniques can mitigate those problems through an overview first,
detail on demand approach and will likely become essential for vi-
sual analysis of large high-dimensional data.

A concept called Focus+Context [Mun14, Chapter 14] has been
proven effective for multiple level-of-detail visualization in a single
plot and has been used for many types of visualization [CKB09].
In essence, different visual encodings are used to separate seman-
tic groups corresponding to an area of interest (Focus) and areas
that provide Context. The original idea focused on transforming
the visual space, such as for lens views [Fur99] or by so-called
rubber-sheet warping [SSTR93]. Later on, the concept was general-
ized to use different visual channels besides space, such as opacity
or frequency [Hau06] for separating focus and context. Even with
extensive work in recent years, to the best of our knowledge, no
Focus+Context concept for embeddings has been proposed yet.

In this paper, we now introduce and specify the concept of
Focus+Context for the exploration of embeddings with multiple
levels of detail (hierarchical embeddings) such as Hierarchical
Stochastic Neighbor Embedding (HSNE) [PHL∗16] or Hierarchi-
cal Point Placement (HiPP) [PM08]. We implement the proposed
concept by extending HSNE and show its viability in a use case,
showing the interactive exploration of multi-dimensional imaging
data. The main contributions of this paper are twofold:

1. We specify the concept of Focus+Context for embeddings with
multiple levels of detail, including the design of

• a set of interactions supporting the exploration, and
• a visual representation supporting the distinction of focus and

context groups in the embedding.

2. We extend HSNE to support Focus+Context exploration by

• adapting the creation of the HSNE hierarchy to fit a more fine
grained exploration and by
• specifying multiple modes to define the similarity of points

originating from different levels of the hierarchy.

In the following, we first present a requirement analysis for
Focus+Context for embeddings (Section 2) and give an overview
of the related work (Section 3). In Section 4 we describe our inter-
action and visualization design, followed by the according exten-
sions to HSNE (Section 5). Then, we present a use case in Section 6
and conclude in Section 7.
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2. Problem Description
First, let us briefly define hierarchical embeddings. A hierarchical
embedding is a special type of embedding of high-dimensional data
in a low-dimensional (e.g., two-dimensional) space. Instead of lim-
iting the embedding to a single mapping, a hierarchy, consisting of
n levels L0 . . . Ln−1, is defined on the input data. Here, L0 con-
tains the complete dataset, while every level Lk+1 is less detailed
than the previous level Lk. An element Lk+1

i ∈ Lk+1, called a land-
mark, represents (→) a set of elements {Lk

i | Lk
i ← Lk+1

j } ⊂ Lk.

Similarly, we define→ on sets, i.e. a set Sk+1 represents a set on
the more detailed level Sk by the union of the sets represented by
its elements

Sk =
⋃
Sk+1

{
Lk

i | Lk
i ← Lk+1

j and Lk+1
j ∈ Sk+1

}
.

Typically, representation is achieved by aggregation or selection.
With the hierarchy defined, the embedding is then defined as a
set of mappings, one for each level of the hierarchy. Existing ex-
amples of hierarchical embeddings include HSNE [PHL∗16] and
HiPP [PNML08]. Other forms of hierarchical data representation
(e.g. through hierarchical clustering) with mappings in levels (e.g.
t-SNE per level) are certainly also viable.

Methods like HSNE [PHL∗16] enable an interactive exploration
of the hierarchical representation. Usually, the exploration starts on
the highest level n−1 of the hierarchy. The analyst can then select
any subset Sn−1 ⊂ Ln−1 and request a new plot that will contain
all elements Sn−2 ⊂ Ln−2, represented by the elements in Sn−1.
Typical exploration paths can roughly be divided into three groups,
illustrated in Figure 1. In the most simple case, the analyst is inter-
ested in a specific, large part of the data, separated on the highest
level of the hierarchy as Sn−1. Once the analyst has identified this
group they typically zoom into this group several times, until a de-
sired level of detail Sn−m with 0 < m ≤ n is reached (Figure 1a).
If the part of the data that is of interest is small and not directly
identifiable or separable at the top level of the hierarchy, the ana-
lyst zooms into a superset Sn−1 of this group Gn−1 ⊂ Sn−1 and
then recursively zooms into smaller and smaller subsets (Figure 1b)
until Gn−m can be separated. In case the analyst wants to compare
groups, they can use any combination of the aforementioned strate-
gies to zoom into two groups, Gk

1 and Gk
2 , and compare their struc-

ture on the same level k (Figure 1c).

Every such selection and zoom operation leads to a new plot,
each limited to a single level of detail (LoD). As a result, multiple
disconnected plots separating the data of interest from the context

a) b) c)

Figure 1: Illustration of Typical Exploration Paths for hierarchi-
cal embeddings. Paths indicated by blue nodes in the hierarchy.
Repeated zooming into one subset, a), recursive subset selection
and zooming, b), and zooming into two groups for comparison, c).

new plot

new plot

Figure 2: Illustration of an Exploration of a hierarchical embed-
ding through a set of disconnected plots/views.

are created during a typical exploration session (compare Figure 2).
Such an interaction is typical for coordinated multiple views with
shared data as described by Munzner [Mun14, chapter 13], but can
impose a substantial cognitive load as “users are more likely to lose
track of their location”. Previously [HPvU∗18], we approached this
problem by offering a “meta-visualization” that collects the sepa-
rate plots and augments them with information that guides the ex-
ploration. This approach relies on at least two plots, the collection
plot and the main embedding where the context is lost.

Here, we now propose to use Focus+Context concepts to enable
the exploration of the hierarchy through a single, interactive plot.
In brief, instead of zooming into a selection in a separate plot, the
analyst creates a focus, i.e., a data group of interest, for which more
detail is added from the next level(s) of the hierarchy – directly in
the same plot. The remaining data points (the context) are kept in
the plot, but in a de-emphasized style and with less visualization
space provided to them. This approach requires less working mem-
ory from the users and therefore reduces their cognitive load. To
enable the main strategies for exploration as illustrated above, we
make use of multiple context groups at different levels of detail.
By adding a second focus group, similar to the polyfocal lenses
presented by Wang et al. [WWZ∗19], we also enable comparative
visualization. Since comparative visualization has certain specific
requirements, we separate between standard Focus+Context and
comparative Focus+Context throughout the manuscript.

Our new solution responds to the following requirements for the
interactions (I1 – I9), as well as for the visualization (V1 – V4),
which need to be met to support an effective exploration of hierar-
chical embeddings using Focus+Context concepts. Generally, the
analyst must be able to

I1 request more detail for all data,
I2 request less detail for all data, and
I3 return to the initial state.

For zooming into areas of interest, the analyst needs to be able to

I4 define an area of interest (focus),
I5a change the focus to a subset of the current focus,
I5b change the focus to a different set of points,
I6 request more detail for the focus, and
I7 request less detail for the focus.

To support a comparative analysis, all of the above need to be im-
plemented with the addition of the possibility to

I8 create a second focus for comparison and to
I9 resolve the second focus.

Fulfilling these requirements, we can support all of the above il-
lustrated exploration paths. By adding requirements I2, I3, I7, and
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I9, enabling the reversal of other interactions, we provide a fluid
traversal of the hierarchy in both directions and consequently mul-
tiple successive exploration paths. To support the analyst in the ex-
ploration, we consider the following characteristics as relevant for
the visual design:

V1 the focus must use extended space in the visualization,
V2 the focus must be separated from the context,
V3 connections between focus and context should be maintained,
V4 different hierarchy levels must be identifiable.

Requirements V2 and V3 are competing. Sometimes the analyst
might desire a clear separation between focus and context (V2), for
example when focussing on an already separated region in the em-
bedding (Figure 2, left). Providing a clear separation between focus
and context will then further improve the separation of the cluster.
In other cases, however, it might be desired that connections be-
tween data points of different levels of detail are maintained, at
least to a certain degree (V3). For example, when there is no strong
separation between data points that are to be assigned to separate
groups (Figure 2, middle). In such a case a mapping that respects
the connections between data points, while providing some separa-
tion, is desired.

3. Related Work

Munzner [Mun14, Chapter 14], as well as Cockburn et al. [CKB09]
give an overview of Focus+Context visualization for data explo-
ration. Focus+Context is an established concept to improve explo-
ration of large and complex data. To the best of our knowledge this
is the first approach that applies Focus+Context to the exploration
of embeddings of high dimensional data. Sedlmayr et al. [SMT13]
derive guidelines on the visualization of dimensionality reduced
data from an empirical user study. Brehmer et al. [BSIM14] present
a task analysis for dimensionality reduction based on interviews
with analysts. Finally, Sacha et al. [SZS∗17] provide an overview
of typical interaction patterns for dimensionality reduction visual-
izations through an in depth analysis of 58 papers on dimensional-
ity reduction in typical visual workflows.

While single-level-of-detail dimensionality reduction techniques
are ubiquitous, the number of hierarchical techniques is limited.
HSNE [PHL∗16] builds a hierarchy, by selecting representative
data-points at different levels of detail, and represents the similarity
at each level according to the underlying data. In its original con-
ception, the hierarchy is then explored top to bottom, starting with a
complete embedding of the lowest detail level. More and more de-
tailed embeddings are then computed, based on user-selected sub-
sets of the data, and visualized in disconnected views. Previously,
we added a hierarchy view [HPvU∗18] to the concept that collects
all plots in a single visualization. HiPP [PM08] uses Least-Square
Projection [PNML08] to map the data to a low dimensional space.
The mapped data is then hierarchically clustered and can be visu-
alized at different levels of detail. While this method also allows
for in-place expansion of selected groups it does not provide an im-
portance driven assignment of the visual space. Instead the layout
is largely identical for different levels of detail, driven by the point
placement on the most detailed level. Sparse Multi-Dimensional
Scaling (MDS) [SBT04] and MDSteer [WM04] are extension of
MDS with a hierarchical data backing. While these techniques

mostly aim at increasing computational performance of the tradi-
tional MDS, they could also be adapted to the Focus+Context tech-
nique presented in this paper. Approaches for hierarchical PCA ex-
ist [WKM98,JPLL01,AEGEALM07], however, they are not a good
fit for our proposed technique and the introduced distortion, due to
the linear nature of PCA. We have chosen HSNE to implement the
Focus+Context concept presented here, as its non-linear nature and
flexible and fast hierarchy computation make it a good fit.

4. Focus+Context for Hierarchical Embeddings

As outlined in Section 2, we aim to improve the interpretability of
hierarchical embeddings and make their exploration easier through
the use of Focus+Context concepts. Figure 3 illustrates the idea
of a Focus+Context exploration of a hierarchical embedding. To
realize our solution, we make use of two key concepts.

First, let’s assume that an embedding is a mapping from a high-
dimensional space to a low-dimensional space (here 2D for visual-
ization). Often, this mapping is non-linear. For example, similarity-
based embeddings, such as t-SNE [vdMH08], aim to preserve local
neighborhoods rather than distances. The main optimization goal is
that points that are neighbors in data space should be neighbors in
the visualization. While relative distances can provide information
about local structure they have little meaning for global structure.
Applying Focus+Context techniques to such a plot is then quite
natural. We can distort the space between groups without the risk
to compromise its interpretation too much, for example, by assign-
ing more visual space to an area of interest (focus). In fact, if we
incorporate the notion of Focus+Context regions directly into the
mapping, we do not even need to transform the resulting space—
instead, the mapping will adapt automatically. As a result, relative
local distances will be preserved within a level of detail (LoD)
while the analyst only needs to be careful to not compare distances
over multiple LoDs. To avoid this pitfall we provide a clear visual
separation between different LoDs (requirement V4).

Second, while this idea can already improve traditional embed-
dings with a single LoD, we can mix multiple levels of detail in the
same plot by adding a hierarchical representation of the data and
the corresponding mappings. This allows a more fine-grained sep-
aration between focus and context. We can show the context with
little detail while providing more detail for the focus.

Figure 3 illustrates both concepts through three stages of the
same exploration as in Figure 2. Note that here the three panels
correspond to different stages of the same view, while in Figure 2
they correspond to separate views. The exploration starts with a sin-
gle LoD on level 2 of a given hierarchy (left). The analyst selects
a part of the embedding (left, dashed blue line) as the focus. In the

Figure 3: Illustration of a Focus+Context Exploration of a hier-
archical embedding in a single view.
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next step (middle), the focus region has been expanded, more points
have been added from level 1 of the hierarchy. While the number
and hierarchy level of points in the context, C2, did not change, the
mapping was adjusted to move them slightly to the side and make
the representation a bit more compact. The focus, F1, takes more
visual space. In the third step, a subset (middle, dashed blue line) of
the previous focus was selected as the new focus F0 and expanded
with data from level 0 (right panel). We now have two context re-
gions, C2 and C1, at different LoDs and a detailed focus, F0.

4.1. Interaction Design
To enable the different exploration strategies presented in Section 2,
we define a set of interactions fulfilling requirements I1–I9. In gen-
eral, these interactions work on and produce sets of representations
of data points. We use the following sets: focus F k (comparative
focus F k

C), as defined on level k of the hierarchy; Ck stands for
the context set on level k; X k corresponds to a selection on level
k; and D denotes the union of the focus and context sets, active at
the current state of the exploration. The new focus and context after
the interaction are annotated as F

′k and C
′k.

Figure 4 provides an overview of the interactions. Some of the
requirements map directly to interactions. As requirements I1–I3
refer to all data, D , no additional information is required. We define
three according interactions as (I1) refine all data, f (D), (I2) sim-
plify all data, s(D), and (I3) reset all data, r(D).

Requirements I6 and I7 are similar in that they operate on a fixed
data subset—here, the focus F k instead of all data D . We define
two interactions, differentiate focus more, d+(F k), and differentiate
focus less, d–(F k), to fulfill these requirements. As indicated by the
term differentiate, these interactions are more general: the goal is
to increase or decrease the difference between focus and context.
By default, when executing these interactions, we simply request
more or less detail for the focus, as required by I6 and I7. However,
in some cases, for example when the focus is at the most detailed
level, differentiate focus more decreases the LoD of the context.

To define or change the focus (requirements I4, I5a, and I5b),
the part of the data X k that shall become the focus needs to be
specified. In practice, the analyst selects X k, for example by brush-
ing. Based on contextual information, we can fulfill requirements
I4, I5a, and I5b with a single interaction create focus & differen-
tiate, dc(X k), that updates the focus and context sets on their cor-
responding levels in the hierarchy. In any case, we first update the
context and then set the new focus to the selection.

All Data Focus+Context

f (D) refine dc(X k) create focus & differentiate

s(D) simplify d+(F k) differentiate focus more

r(D) reset d–(F k) differentiate focus less

cc(X k) create comparative group

cr(F k
c ) resolve comparative group

Figure 4: Scheme of the Proposed Focus+Context Interactions.
The left column shows generic interactions, while the right column
shows interactions, specific to Focus+Context with interactions for
comparative Focus+Context below the dashed line.

If no focus is defined (I4), for instance at the beginning of the
exploration or after r(D), we can simply define the context as

C
′k :=D \X k (1)

according to the hierarchy level k on which the user interacted. To
fulfill requirements I5a and I5b, we need to evaluate the selec-
tion with respect to the Focus+Context subdivision on which the
user interacted and adjust the contexts, accordingly. While selec-
tions over multiple LoDs can be implemented by resolving and/or
merging the involved sets, we propose to limit selections to a sin-
gle level of detail for clarity. As a result, we have to consider two
potential cases. If the new selection does not overlap with the old
focus, X k ∩F l = ∅ (I5b), it must be part of a less detailed hierar-
chy level, l < k. In this case, the old focus F l needs to be reduced
in detail to level k, and the resulting F k added to the old context
without the selection X k to create the new context:

C
′k := (Ck \X k)∪F k (2)

If X k ⊂ F l (I5a), it follows that k = l and we can simply add a
new context on level k:

C
′k := F k \X k (3)

Note that several context sets can exist on different hierarchy levels.
After the context sets are updated, we update the focus in two steps:
First, we set the selection as the new focus, F

′k := X k. Then, we
differentiate the focus by adding the represented data points from
the next level, k−1, of the hierarchy:

F
′k−1 :=

{
Lk−1 | Lk−1← F

′k
}

(4)

To enable the comparison of two groups (requirements I8 & I9),
we define two interactions create comparative group, cc(X k), and
resolve comparative group, cr(F k

c ). In principal, cc(X k) works
very similar to dc(X k) with the distinction that the comparative
focus Fc must be disjunct from the existing primary focus F . The
same strategy for creating/changing the focus as described above
can then also be applied when the user executes cc(X k). To allow
a proper structural comparison, we expand Fc immediately to the
same hierarchy level as F instead of differentiating the new Fc just
once. Resolve comparative group maps directly to requirement I9.
Executing it simply dissolves the comparative focus and merges it
into the context group in the hierarchy level it was derived from.

4.1.1. Tree-based Interaction Data Structure
To implement the presented interactions, we propose a tree-based
data structure, to track the complete exploration process. A node in
the tree represents a semantic group in a given hierarchy level. All
leaf nodes combined correspond to the complete data, D, shown
in the Focus+Context plot. Edges in the tree have different inter-
pretations, depending on the number of outgoing edges of a node.
If a node has only one outgoing edge, this edge represents an in-
crease in LoD. If a node has more than one outgoing edge the child
nodes represent disjunct subgroups of the data points in the parent
node (at the same LoD). With this structure, we can implement all
(non-comparative) interactions described in Section 4.1.

Reset, r(D), simply cuts all children from the root, returning
to the initial state (Figure 5a). Operations that do not change the
focus, i.e. f (D), s(D), d+(F k), and d–(F k), simply append a more
detailed node to the impacted leaves or remove such leaves.
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any

a) b) c) d)

Figure 5: Interactions and their Effect on the Focus+Context Tree. r(D)resets the tree to the root node, a). The result of dc(X k)depends
on the selection. If we only have a single node (the root) and the selection is part of the root, a minimal tree is appended, b). If the selection is
part of a context, the tree below the first branching node above the corresponding context node is cut off and replaced by the minimal tree, c).
Finally, if the selection is part of a focus, a minimal tree is appended to the corresponding focus node, d). Faded nodes indicate no change.

Setting a new focus appends a minimal tree such as the one
shown in Figure 5b. As described in Equations 1 to 3, depending
on which points are selected, dc(X k) behaves differently. These
differences can be translated to slightly different strategies for ap-
pending the minimal tree as shown in Figures 5c and 5d. When
the selection is a subset of a context group, we replace the parent
node of this context with the minimal tree and define the nodes of
the template according to Equations 2 and 4 (Figure 5c). When the
selection is a subset of the root or current focus, we replace this
node with the tree template and define the nodes of the template
according to Equations 3 and 4, resulting in stacked context groups
(Figure 5d). These template replacements work on any subgraph of
arbitrarily complex state graphs of the exploration.

In the case of a comparative Focus+Context exploration, we
need to make sure that the primary and the comparative foci are at
the same level of detail. Accordingly, the difference between com-
parative and non-comparative interactions is mostly semantic in the
proposed data structure. A comparative focus is created by the same
operation on the tree as for creating the primary focus, but followed
by as many refine operations as needed to move the comparative fo-
cus to the same level of detail as the primary focus. Resolving the
secondary focus cuts off the tree at the original branching point.

4.2. Visual Design
As indicated in Section 4, requirements V1–V3 can be naturally
met by directly adjusting the mapping of the embedding, instead
of transforming the visual space of the embedding plot. There-
fore, their execution depends on the choice of the embedding tech-
nique. In Section 5, we present how we extended HSNE to support
Focus+Context exploration, as well as our extensions to support
requirements V1–V3.

Here, we focus on requirement V4 (different hierarchy levels
must be identifiable), which can be met universally by augment-
ing the embedding plot, independent of the type of the embedding.
Typically, embeddings are visualized as a scatterplot. In principal,
the hierarchy level is a property of each point. However, the visual
channels available in a scatterplot, per point (position, color, size,

shape) are usually used to show properties of the data itself. For ex-
ample, in a typical use case of HSNE [vUHP∗17], position is used
to indicate the similarity, size to indicate the number of represented
data points in the lower hierarchy levels, color to show metadata or
the values of one of the original dimensions, and a halo is used to
indicate selection status. Since the hierarchy level is the same for
all data points within a semantic group and groups shall not inter-
mix (compare requirement V2) we can assume that we can partition
the visual space into connected areas of equal LoD. Thus, instead
of indicating the LoD per point, we instead use the corresponding
regions to indicate the hierarchy level. Particularly, by partitioning
the complete visual space, we receive a discrete topographical map
where height values correspond to hierarchy levels. We can then use
standard methods for visualizing topographical information, such
as iso-contours or color-coding to represent the LoD. As illustrated
in Figure 3, we use increasingly lighter gray values for the back-
ground to indicate increasing LoD. We compute the background in
real-time by rendering all points with their respective level mapped
to the gray value, followed by an iterative region growing.

5. Focus+Context HSNE
We implemented a prototype of the proposed concept based on Hi-
erarchical Stochastic Neighbor Embedding [PHL∗16]. In the fol-
lowing, we give a brief introduction to HSNE (Section 5.1) and
present the methodological extensions to the original HSNE in or-
der to support Focus+Context exploration (Section 5.2).

5.1. Background - HSNE
HSNE is a hierarchical dimensionality reduction technique, based
on the popular embedding technique t-SNE [vdMH08]. It con-
structs a hierarchy of so-called landmarks Lk

i , essentially data-
points that represent a local neighborhood in a level Lk of the hi-
erarchy. The set of landmarks forming the most fine-grained level
L0 equals the set of original data-points. Each subsequent level is
then a subset of the previous level (L0 ⊃ L1 ⊃ L2 ⊃ ·· · ⊃ Ln−1)
with n corresponding to the number of levels. The hierarchy is ex-
plored through similarity embeddings, typically starting by embed-
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ding all landmarks of the coarsest level Ln−1, followed by selecting
a subset of interest Sn−1 ⊆ Ln−1 and embedding the expanded se-
lection Sn−2 ←− Sn−1 part of Ln−2. The process is then repeated
iteratively, creating multiple disconnected plots. An in-depth de-
scription of HSNE is out of the scope of this publication, however,
we present the parts that we extend in more detail in the following.

Landmark Selection. The landmarks for level Lk, k > 0, are
selected based on their connectivity in level Lk−1. In practice, the
connectivity is defined by carrying out a set of random walks on the
underlying neighborhood graph. In the original HSNE implemen-
tation, a threshold is defined on the number of terminated random
walks, to identify the most important landmarks in a data-driven
manner. While, the threshold is a parameter that can be adjusted by
the user, this is not very intuitive—it is hard to predict and control
the number of landmarks on each level and the number of levels
needed for a desired reduction. We thus present a modified selec-
tion criterion providing better control over the reduction between
hierarchy levels in Section 5.2.1.

Landmark Expansion. When zooming into or expanding a set
of landmarks Sk to get more detail, HSNE makes use of a con-
cept called Area of Influence (AoI). To define the AoI of a land-
mark Lk

i , a second set of random walks is started from each node in
Lk−1. When a random walk reaches Lk

i the start node is added to
the AoI of Lk

i . The influence ILk
i
(Lk−1

j ) of a landmark Lk
i ∈ Lk on a

landmark Lk−1
j ∈ Lk−1 is defined by the fraction of random walks

started at Lk−1
j that end in Lk

i .

Ultimately, to expand a selection of landmarks Sk, we compute
the combined influence of all landmarks in the selection on every
landmark in Lk−1. The set of landmarks Sk−1 corresponding to the
expansion of Sk is then the set of landmarks for which the com-
bined influence of all landmarks in the selection is greater than a
predefined threshold γ:

Sk−1 =

Lk−1
j

∣∣∣∣∣ ∑
Lk

i∈Sk

ILk
i
(Lk−1

j )> γ

 (5)

Using γ this way means that the expansion of different sets can
produce identical or overlapping results. For example, expanding
either of the two sets {L1

1} or {L1
1,L

1
2} in Figure 6 with the default

γ = 0.5 results in the identical set {L0
1,L

0
2,L

0
3}. Accordingly, when

traversing the hierarchy upwards, we need to identify and select
one of the given sets. We contribute a solution for computing such
a set, presented in Section 5.2.2.

Landmark Similarity. Besides using the AoI for selecting the
landmarks used for expansion, the pairwise degree of overlap of the
respective AoIs of two landmarks in Li with i > 0 defines the sim-
ilarity between these two landmarks. By defining the similarity of
the two landmarks in terms of the underlying neighborhood graph
on the previous level the underlying manifold of the data is pre-
served even in the most abstract levels of the hierarchy. This notion
of similarity is defined per level and thereby defines the mapping
for the embedding per level. Therefore, the similarity cannot be di-
rectly computed when combining landmarks from different levels,
as could be done for example by using Euclidean distances. We dis-
cuss ways to combine similarity sub-matrices from different levels
in Section 5.2.3, fulfilling requirements V1–V3.

5.2. HSNE Extensions
To accommodate the integration of multiple HSNE levels into a
single embedding and to allow a more fine-grained exploration we
propose the following extensions to HSNE.

5.2.1. Landmark Selection
Here, instead of using a threshold on the number of terminated ran-
dom walks, the user can directly specify the fraction of the land-
marks on each level to proceed to the next level. In other words,
based on a user specified threshold p the top p-th percentile of
landmarks, according to the terminated random walks is chosen,
resulting in a fixed reduction of 1− p/100 between two adjacent
levels. Specifying the percentile is a more intuitive way of defining
the granularity of the hierarchy and since the reduction is known
at the time of computation the number of levels for the hierarchy
can be computed automatically. In practice we typically observed
reduction by approximately an order of magnitude in the original
implementation, with the default hard threshold. Consequentially,
setting p = 90 yields similar results. To allow a more fine grained
exploration of the hierarchy, we set the default value to p = 75,
meaning the number of landmarks is reduced to 25% between two
adjacent levels. Even lower reduction rates are possible, however,
they pose the risk of including uninformative landmarks.

5.2.2. Hierarchy Traversal
The proposed exploration of the HSNE hierarchy is much more flu-
ent than the rather rigid original approach. Originally, every zoom
operation results in an additional view and hierarchy traversal is
strictly top-down. Here, a complete analysis session is carried out
in a single embedding view. Typically, such a session will combine
multiple instances of any of the workflows introduced in Section 2.
As such, it will consist of subsequently setting the focus multiple
times, adding and resolving a secondary focus, increasing and de-
creasing the LoD in different regions. Such a fluid interaction re-
quires a more flexible handling of the traversal of the hierarchy.

In particular, HSNE does not provide means to zoom out. If less
detail is required, one would need to find the corresponding pre-
vious view and continue exploration from there. As described in

1.0

1.3
= 0.23 = 1.0 = 0.6 = 0.0

2.4 0.5 2.8
0.3 2.4 0.3 0.0

0.3 0.7 1.0 0.7 0.3 0.2 0.8 1.0 1.0

Figure 6: Example for Traversing the HSNE Hierarchy Up-
wards. To find the landmarks best representing the selection
S0 = {L0

1, L0
2, L0

3} in L1 we compute the fractional influence
IL norm(S0) for all landmarks and select those above a user-defined
threshold. For example using 0.5 would yield S1 = {L1

1, L1
2}. Note

that this is not the only possible set S1 as expanding L1
1 alone would

yield the same S0
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Section 4.1.1 we implemented a tree structure, tracking the com-
plete exploration. In most cases decreasing the LoD corresponds to
reverting a previous increase of the LoD and therefore we can re-
trieve the less detailed representation directly by moving up in the
existing tree structure. However, in rare cases it can be necessary to
create a new group on a lower LoD. For example, when differenti-
ating a focus that is already at the highest LoD, all contexts should
be moved to a lower LoD that might not be in the tree.

As described in Section 5.1 there is not necessarily a unique so-
lution to find the less detailed set Sk+1 corresponding to Sk. In
principal a minimal set can be found by testing out permutations
of all involved landmarks. Such an approach could become very
costly. Instead, we propose to approximate Sk+1 by computing the
fraction of the influence of every landmark Lk+1

i ∈ Lk+1 on the
selected landmarks Sk compared to its total influence.

ILk+1
i norm

(
Sk
)
=

ILk+1
i

(Sk)

ILk+1
i

(Lk)
(6)

Here, ILk+1
i

(Sk) is the total influence of the landmark Lk+1
i on the

selection Sk and ILk+1
i

(Lk) the total influence of the same landmark

on the complete level Lk. We can then select the landmarks with a
high relative influence on the selection, by thresholding on IL norm.
We found experimentally that a threshold of 0.5, meaning more
than half of the representation of a landmark corresponds to the
current selection, creates small sets representing all of the input.

While the resulting set can be one of multiple possible so-
lutions, in general it consists of the most important landmarks
for the given input. We illustrate the example introduced in Sec-
tion 5.1 in Figure 6. With IL norm = 0.5, decreasing the LoD of
S0 = {L0

1, L0
2, L0

3} results in the corresponding set S1 = {L1
1, L1

2}.
L1

2 is not strictly necessary in S1, as expanding only L1
1 would

produce the same S0. However, in such cases the additional land-
marks are of low impact (here IL1

2
(L0) = 0.5) and in practice would

rarely be selected as landmarks during the construction of the hier-
archy. Furthermore, in an explorative setting the user would be able
to probe the resulting embedding and inspect the similarity of the
landmarks allowing them to identify such outliers.

5.2.3. Landmark Similarity
To compute the similarity embedding of the data points, combined
from different levels of detail (LoDs), we first need to define the
similarities between these points. While this could be done by di-
rectly computing the distances in the high-dimensional space, the
resulting similarities would not reflect the non-linear distances pre-
served in the HSNE hierarchy. HSNE does provide a similarity
matrix LkLk at each level of the hierarchy. However, it does not
directly provide similarities for combinations of multiple LoDs.
Here, we discuss ways to create a similarity matrix for combining
multiple LoDs, underlying the similarity embedding.

One of the goals for the similarity embedding is that the focus
must use more space in the visualization (requirement V1). As dis-
cussed in Section 5.1, HSNE defines the similarity of two points by
the relative degree of overlap in their respective AoI. As the levels
become smaller and the neighborhoods less detailed towards the
higher levels of the hierarchy, the relative degree of overlap and

a) b) c)

0
0

0 0

Figure 7: Distance Matrix Combination Modes for a basic
Focus+Context graph shown in a). Simple Combination, b). Con-
nections between focus and context are set to 0. Pull-Up, c). The
focus is pulled up to the context level to extract the partial matrix
between focus and context.

consequently the values for the similarity become larger. We can
use this property to fulfill requirement V1, by creating the similar-
ity matrix as a combination of partial similarity matrices from dif-
ferent levels. For points that shall occupy more space in the embed-
ding (the focus), we take the partial similarity matrix from a more
detailed level, while for points that shall occupy less space (the con-
text) we take the partial similarity matrix from a less detailed level.
In principal the result is a mixed matrix consisting of four parti-
tions, the matrices for the focus, F kF k, and context, C lC l , as well
as two blocks describing the similarities between focus and context
F kC l and between context and focus C lF k. Since the distances in
HSNE are symmetric, F kC l is a rotated version of C lF k. In case
l = k the matrix is identical to the similarity matrix of the union
F k ∪ C l . Using F kF k and C lC l from their respective levels guar-
antees that their structure in the combined embedding is as close as
possible to the structure of the groups embedded separately.

Based on creating the similarity matrix through combination of
partial matrices from different hierarchy levels, we propose two dif-
ferent modes, Simple Matrix Combination and Pull-Up to fulfill the
competing requirements V2: the focus must be separated from the
context and V3: connections between focus and context should be
maintained.

Simple Matrix Combination. To achieve maximum separation
between focus and context (requirement V2) we can simply set sub-
matrices F kC l and C lF k to zero. This effectively cuts all inter-
group connections and the embedding will separate the groups.

a) b) c)

Figure 8: Distance Matrix Combination Modes with 3 levels of
detail. A new focus was defined on F1 from Figure 7, a), resulting
in the respective nested distance matrices in b) and c).
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b)a) c) d)

regular HSNE

Figure 9: Comparison of Embeddings resulting from different matrix combination modes. A high-level embedding of a single-cell
dataset [vULM∗16] consisting of one million data points is shown in a). Computing the hierarchy took 4:20 minutes, but only needs to
be done once. We focus on and differentiate the highlighted points (blue halos) in the inset of a) which are part of the larger structure indi-
cated by the magenta line. The connection between focus and context is lost in the simple matrix combination mode in b) (the line illustrating
the global structure breaks), in the pull up approach, c), the structure bends the context towards the focus, indicating the connection. Still,
a clear separation between focus and context is preserved. Finally, d) shows only the focus landmarks embedded with standard HSNE. The
structure is highly similar to the structure of the foci in b) and c). Starting from the embedding in a), computing b) and c) took 1:10 minutes.
Computing the embedding in d) took slightly longer with 1:25 minutes, despite showing fewer data points. This is mostly caused by the fact
that we initialized b) and c) with the previous embedding, while d) was computed from scratch, requiring more iterations until convergence.

Considering that we already have the similarity matrices per group,
the most straight forward approach to do this simply concatenate
these matrices. Figure 7a shows the basic Focus+Context tree with
a single focus and context group, respectively. For this example the
context C2 is taken from hierarchy level 2, while the focus F1 is
one level more detailed. Figure 7b illustrates the combined similar-
ity matrix for this approach.

Pull-Up Approach. To balance requirements V2 and V3, we
need to sensibly fill F kC l and C lF k. As described in Section 5.1
each less detailed level Lk is a subset of the previous level Lk−1.
This means, we can find all points contained in Lk in Lk−1 and,
vice versa, some points contained in Lk−1 in Lk. There are sev-
eral ways to exploit this fact to construct a similarity matrix that
considers interaction between focus and context.

Here, we propose to pull-up the focus to the context level and
partially fill the empty part of the similarity matrix with those
connections available in the context level. We start with the sub-
matrices from the simple approach for the intra-group connections.
Since we track the exploration in the Focus+Context tree, we can
directly look-up F2. With F2, we can now extract the parts F2C2

and C2F2 of the similarity matrix from level 2 of the HSNE hier-
archy. However, the landmarks that were added when zooming into
L1 are not available in level 2 and therefore do not have connec-
tions to C2. Figure 7c shows the resulting matrix.

For the examples in Figure 7 we used a simple graph with
only one level difference between the focus and context. In prac-
tice the distance can vary, for example after applying multiple
d+(F k)operations. Independent of the number of levels between
the two groups, the matrix is constructed in the same way. For ex-
plorations with multiple context sets (Figure 8) the process of com-
bining the similarity matrices is repeated iteratively. Independent of
the mode we can simply replace the similarity matrix for the previ-

ous focus (here, F1F1) with a new sub-matrix that is constructed
in the same way as described above.

Discussion. We found that the simple matrix combination
method is very effective when the main goal is a strong separa-
tion between the focus and context groups while pull-up approach
effectively balances requirements V2 and V3 while adhering to V1.
For cases where we separated a cluster in focus and context groups,
the groups stay close together at their separation points, but sepa-
rate enough to not disturb the intrinsic focus partition (Figure 9c).
The generally stronger connections from the less detailed hierar-
chy level effectively balance the connections missed for points that
exist in F2 but not in F1. For the pull-up approach we ad some
links between the focus and context groups by pulling the focus
to the more abstract level of the context. In principal we can also
push the context landmarks to the focus level without adding addi-
tional detail. This would allow us to fill the complete intra-group
sub-matrices. We expected that adding such a large amount of con-
nections weakens the separation between the groups too much. We
implemented two methods based on pulling down the context and
could indeed observe undesired mixing in experiments. All meth-
ods introduce some distortion, as compared to embedding data
from a single LoD, only. For the simple matrix combination this
distortion is between groups and easy to identify. The introduction
of links between groups in the pull-up approach can additionally
lead to distortions within a group, as only some landmarks within
a group will be connected to another group. If such landmarks are
weakly connected within their specific groups, they could be pulled
out of their respective group. In practice, however, we noticed that
this rarely happens as the landmarks that are connected to other
groups are also strongly connected within their respective groups,
as this was a criteria to select them as landmarks initially. This can
also be seen in the examples in Figure 9 where the structure of the
foci in Figure 9b and Figure 9c is very similar to the original HSNE
embedding of the focus only in Figure 9d.
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Surface

Space

h)

t:35s t:30s t:30s t:20st:20s

j)
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k) l)
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i)

d) e) f)

m)
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t:20s pull-up t:20s

m)
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l)

t:20s

l)l)l)

t:30s t:30s

k)

Figure 10: Example of a Focus+Context Exploration with HSNE. The input data are shown in a). Each of the images corresponds to
one dimension. Focus+Context HSNE embeddings shown in b) to g). Landmarks are colored according to their (x,y)-coordinates in the
embedding using the 2D colormap shown in b). Required computation time to achieve the presented results shown below the embeddings.
Images with pixels colored according to their corresponding landmarks shown in h) to m).

5.3. Implementation
We extended the open source High Dimensional Inspector library
to allow the described seamless traversal of the hierarchy in both
directions. The prototype for illustrating the interaction design is
implemented in Cytosplore [HPvU∗16,vUHP∗17]. The library and
application are implemented in C++. Computation of the hierar-
chy and embeddings are performed with the original HSNE library.
For a detailed analysis of the computational performance we re-
fer to our previous work on the HSNE algorithm itself [PHL∗16].
Typically a Focus+Context embedding will converge slightly faster
since we initialize it with the previous positions, whereas the orig-
inal HSNE creates a new embedding that is initialized randomly.
On the other hand, some of this gain will be offset by the fact that
the context adds additional landmarks to the embedding compared
to the standard HSNE of only the focus selection. For an intuition,
we provide computation times for the examples in Figure 9 and
Figure 10. All measurements were taken using a quad core intel
core i7 6820HQ at 2.7Ghz with all data in working memory. We
use OpenGL for fast rendering of the embeddings and to derive the
topographical maps for visualizing the level of detail on-the-fly, di-
rectly during the optimization.

6. Use Case
To illustrate the effectiveness of Focus+Context HSNE, we fol-
low a use case of the original work by Pezzotti et al. [PHL∗16]
on the exploration of hyperspectral images of the sun. We use the
same data-set as presented in the original work, downloaded from
the Solar Dynamics Observatory. The dataset consists of twelve
dimensions, represented each by a gray-scale image, correspond-
ing to different spectral regions (Figure 10a). The image resolution
is 1,024× 1,024. We consider every pixel a twelve-dimensional

data point, resulting in roughly one million data points as input
to HSNE. An illustration of the original exploration is shown in
the original publication [PHL∗16, Figure 6]. As indicated in Sec-
tion 2, originally, the low-detail overview embedding is explored
first, by probing different regions of the embedding. Selecting a
region in the embedding highlights the corresponding pixels in an
image view. After identifying and zooming into two regions of in-
terest, the more detailed plots are displayed separately in new views
and further exploration and probing is limited to these sub-regions.

Here, in addition to using the presented Focus+Context ap-
proach for the exploration, we augment the visualization in image
space by recoloring. Cheng et al. [CXM18] present recoloring of
multi-dimensional images, based on an optimized 2D projection,
here we follow a similar approach, but use the (x,y) coordinates in
the embedding, as shown by Abdelmoula et al. [APH∗18]. When
inspecting the embedding and image views, the user needs to be
able to identify the origin of pixels in the HSNE map and com-
pare different pixels according to their origin. Furthermore, we do
not want to steer attention with the colormap. Therefore, we picked
several colormaps that provide a reasonable compromise between
tasks ER2, ER3, SR2 presented by Bernard et al. [BSM∗15, Ta-
ble 3]. For the example in Figure 10, we chose the Mittelstädt
et al. colormap [SBM∗14]. In the implemented prototype we al-
low the user to choose between the Bremm et al. regular and
stretched [BLBS11], TeulingFig3NoWhitening [TSS11], and the
presented Mittelstädt et al. colormaps. We extracted the colormaps
from ColorMap-Explorer [SBT∗15].

The exploration starts with a single-level-of-detail embedding
shown in Figure 10b. Landmarks are drawn as semi-transparent cir-
cles, the size corresponding to their influence on the lower level and
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the color corresponding to their location in the plot. We can imme-
diately identify two main groups in this plot. Comparing the spatial
representation in Figure 10h we can see that the two groups corre-
spond to the surface of the sun (pink) and the space (green). While
some more fine-grained structure can already be identified at this
LoD the main focus here is on the separation of the two groups.

Following the example of Pezzotti et al. [PHL∗16], we first want
to inspect the space cluster in the embedding. Therefore, we select
this cluster and create and differentiate the focus, dc( ). The re-
sulting embedding is shown in Figure 10c and the corresponding
image in Figure 10i. We can see that the embedding behaves as
desired, leading to a more compact representation of the context,
C , while the focus, F , becomes larger and more detailed. A curi-
ous detail shown in the the original work becomes visible here. A
small group of points (arrow in Figure 10c) separates from the main
group. Comparing the image view, we see that this cluster corre-
sponds to the overlaid AIA-logo. We create a new focus, excluding
this group, and differentiate, dc( ), resulting in the embedding in
Figure 10d. Now the focus strongly dominates the plot, while the
context groups are again more compact. As a result the surface now
hardly shows any structure in the image view Figure 10j, leading
the attention to the increased structure in the focus. Here, we can
now clearly see the layered structure of the corona by its color from
deep purple to light blue. Two strong sunflares can be identified on
the left side of the image in blue, while areas with reduced activity
show up on the top right (arrow) and bottom.

In the next step we want to investigate the surface in more de-
tail. Thanks to the proposed Focus+Context interaction model we
can simply select the corresponding landmarks in Figure 10d and
call set focus & differentiate, dc( ). As described in Section 4 the
selection now becomes the new focus, one level more detailed than
its initial level, while the remaining data becomes the context and
is moved back up to the initial LoD. The resulting embedding (Fig-
ure 10e) now assigns much more space to the surface group, while
the space group collapses to a much smaller region. We can already
see more detail on the sun surface (Figure 10k). Hotter regions are
on the lower-right part in the embedding, resulting in a purple color
in the image view, while orange parts correspond to lower tem-
perature regions. In particular, three active regions on the surface
start to appear (Figure 10k, white arrows). The same differentiation
had been observed by Pezzotti et al. [PHL∗16]. Finally, we select
a small region on the bottom part as the new focus and differenti-
ate, dc( ). We can now clearly see that the purple area corresponds
in large part to a large low-temperature area on the top right of the
surface, corresponding to an area that also showed clear differentia-
tion in the corona (black arrows in Figure 10j–10l). For computing
the combined similarity matrix, we used the pull-up approach as
described in Section 5.2.3. As indicated by the purple arrow in Fig-
ure 10f the points in the focus area are still in close proximity to
the points they were separated from during selection. For compari-
son we show the same focus and context groups with the similarity
matrix combined with the simple approach in Figure 10g. Here, the
new focus is completely separated from its origin. While the recol-
ored images (Figure 10l and 10m) show very similar structure, the
connection between the surface context and focus groups is lost in
the embedding with the simple approach. In most cases the pull-up
approach, preserving this information, should be preferred.

7. Conclusion

We have presented a framework, including an interaction model
and visual design for Focus+Context exploration of hierarchical
embeddings. We extended the hierarchical dimensionality reduc-
tion technique HSNE to support the proposed model. We have
demonstrated its effectiveness in an exemplary use case on hy-
perspectral images. In particular, incorporating the Focus+Context
concept directly into the mapping of the dimensionality reduction
by combining similarity matrices from different levels of detail, is
a natural fit for non-linear embeddings. This approach can be tuned
by selecting the type of similarity matrix combination.

While our extensions to the HSNE hierarchy allow for a much
more fine-grained exploration compared to the original implemen-
tation, the depth of a zoom operation is left to be specified by the
user. A future research direction could be to optimize the levels ac-
cording to the available space. For example, skipping several levels
during the differentiate operation while reducing detail of the con-
text at the same time. We illustrate a brief case study for the explo-
ration of multi-dimensional images in Section 6. The application of
the presented techniques to real-world data exploration tasks along-
side a structured evaluation for these tasks provide open questions
for future work.
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