
BECLR
Batch Enhanced Contrastive
Unsupervised Few-Shot

Learning

Stylianos Poulakakis-Daktylidis

BECLR
Batch Enhanced Contrastive
Unsupervised Few-Shot

Learning

by

Stylianos Poulakakis-Daktylidis

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday September 5, 2023 at 10:00.

Student number: 5592615
Project duration: November 1, 2022 – August 31, 2023
Thesis committee: Dr. ir. H. Jamali-Rad, TU Delft and Shell, Daily supervisor

Prof. dr. ir. M. Reinders, TU Delft, Advisor
Dr. ir. H. Caesar, TU Delft, External committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This report and scientific article: “BECLR: Batch Enhanced Contrastive Unsupervised Few-Shot Learn-
ing” presents the culmination of my work in the context of my Master’s thesis project and marks the
conclusion of my postgraduate studies at TU Delft. This research was conducted under the supervision
of Dr. Marcel Reinders and the daily supervision of Dr. Hadi Jamali-Rad, within the Computer Vision
Lab at TU Delft.

First, I would like to express my deepest appreciation for Dr. Hadi Jamali-Rad, who has not
only been my daily supervisor but also a mentor figure for me in the exciting realm of research. I
cannot thank you enough for investing so much of your time and effort in this thesis, as well as for your
ongoing interest and support on every step of my path. Our, sometimes endless, discussions have not
only imparted me with academic knowledge, but also invaluable life lessons. In addition, I would like to
sincerely thank my thesis advisor, Dr. Marcel Reinders, for the trust he showed me in the assignment
of this thesis and for the continuous support throughout our cooperation. I would also like to thank Dr.
Holger Caesar for his time and interest in my work and for participating in my defense committee.

I would also like to take this opportunity to express my gratitude to the people closest to me:
my parents, brothers, and girlfriend for constantly being there for me, supporting me in every possible
way and loving me unconditionally. Finally, I want to warmly thank all my friends, fellow students and
professors at TU Delft and all who stood by me throughout my postgraduate studies.

The past two years at Delft account for some of the most rewarding experiences and lessons
in my life. I have been among some of the brightest people I know, met new friends, made countless
memories, and further ignited my passion for research and computer science.

This report is structured in two main parts. The first part includes the scientific article on this
research (BECLR) and contains the motivation, related work, developed methodology and modules,
extensive evaluation, empirical results, and the concluding remarks of the current thesis. The second
part discusses all the fundamental concepts and background information that have made this work a
reality, in an attempt to make this report as self-contained as possible.

Stylianos Poulakakis-Daktylidis
Delft, September 2023

i

List of Publications

[1] Stylianos Poulakakis-Daktylidis, Ojas Kishore Shirekar, Hadi Jamali-Rad, “Batch Enhanced Con-
trastive Unsupervised Few-Shot Learning”, To be submitted to The 12th International Conference on
Learning Representations (ICLR). 2024.

ii

Contents

1 Introduction 1

2 Scientific Article (BECLR) 3

3 Deep Learning 23
3.1 Deep Feedforward Networks . 23
3.2 Activation Functions . 24
3.3 Optimisation and Backpropagation . 25

3.3.1 Loss Function. 25
3.3.2 Stochastic Gradient Descent. 25
3.3.3 Backpropagation . 26

4 Convolutional Neural Networks 28
4.1 Convolution . 29
4.2 Pooling . 30
4.3 Feature Extraction with CNNs . 30
4.4 Deep Residual Networks . 31

5 Self-Supervised Learning 32
5.1 Contrastive SSL . 33

5.1.1 SimCLR . 33
5.1.2 NNCLR . 35

5.2 Self-Distillation SSL . 35
5.2.1 BYOL . 36
5.2.2 SimSiam . 37

5.3 Masked Image Modeling . 37
5.3.1 Masked Siamese Networks . 39

6 Few-Shot Learning 41
6.1 Problem Formulation . 42
6.2 Model Agnostic Meta Learning. 43
6.3 Prototypical Networks . 44
6.4 Unsupervised Few-Shot Learning . 44

6.4.1 Unsupervised Meta Learning . 45
6.4.2 ProtoTransfer . 46
6.4.3 PDA-Net . 47
6.4.4 UniSiam . 49
6.4.5 Connection to BECLR . 50

7 Optimal Transport 52
7.1 Continuous Optimal Transport . 53
7.2 Discrete Optimal Transport. 54

7.2.1 Assignment Problem . 54
7.2.2 Working with Asymmetric Distributions . 55
7.2.3 The Kantorovich Relaxation . 55
7.2.4 Entropic Regularization . 56
7.2.5 Sinkhorn-Knopp Algorithm . 57

8 Conclusions and Future Directions 58

iii

1
Introduction

Deep learning has been crucial in advancing major progress in various scientific fields, including com-
puter vision, speech recognition, natural language processing, and more. However, despite these
breakthroughs, deep learning models and artificial intelligence (AI) are becoming increasingly data
hungry, requiring ever-growing amounts of training data and supervision to guarantee an acceptable
performance and generalization ability on even the simplest of downstream tasks. In stark contrast,
humans can quickly learn new skills much more efficiently with just a handful of data. Human intelli-
gence allows for learning of new abstract concepts, detecting patterns and similarities between objects
(analogous to how deep networks learn discriminative features), quick adaptation to novel tasks, or
inferring much richer (than deep learning models) relationships and abstractions, with minimal supervi-
sion and “data” examples. For instance, people who know how to ride a bike could use this knowledge
to learn to drive a motorcycle faster, with little demonstration. Additionally, humans from a very early
age can associate similar objects by intuitively parsing major (discriminate) components of the object,
e.g, children would be able to easily recognize cats and distinguish them from other animals after only
encountering them a single or a few times. Notably, deep learning models are quite poor at inferring
this type of abstractions.

Few-shot learning (FSL) aspires to bridge this fundamental gap between human and artificial
intelligence, by learning in a data-deficient setting, and thus has recently gained an upsurge of interest.
In particular, the few-shot model is trained to be able to generalize or adapt well to novel tasks and
environments that have not been encountered during training. In practice, very limited data samples
of the novel task configurations are used as part of a mini learning session for quickly adapting the
model to the unseen test tasks. The fundamental principle of FSL lies in learning a prior, then used
to solve unknown, downstream few-shot tasks. In the context of this work, we focus on the specific
few-shot learning instance of image classification, where the downstream task involves the prediction
of class labels for an unlabeled dataset (query set) based on a rather small labeled dataset (support
set) with only a few samples (typically 1 to 5) per evaluated class. The query and support set are
drawn from the same data distribution, and together comprise an episode or a few-shot task. Few-shot
classification approaches typically consist of two sequential phases: pretraining on a large dataset of
base classes, followed by a supervised inference/fine-tuning strategy on an unseen smaller dataset of
novel classes. The problem of interest of this paper is the more challenging and realistic unsupervised
few-shot learning (U-FSL), where we do not have access to the base class labels, and hence do not
depend on an expensive annotated dataset. In this exciting space, the goal of the pretraining phase is
to learn a feature extractor (i.e., backbone network or encoder) to capture the global structure of the
unlabeled data, followed by fitting a (linear) classifier on top of the “frozen” feature extractor to quickly
adapt to unseen but relevant downstream few-shot tasks. Ideally, the learned model (in the pretraining
phase) should be able to complete new unseen tasks and quickly learn their underlying concepts and
abstractions with minimal new samples (in the inference phase).

1

2

Various research approaches have been proposed to solve the challenging U-FSL problem from
various perspectives. Earlier approaches (Hsu, Levine, and Finn 2018; Antoniou and Storkey 2019;
Khodadadeh, Boloni, and Shah 2019; Khodadadeh, Zehtabian, et al. 2020) tackle U-FSL under the
meta-learning paradigm, where synthetic learning tasks (or episodes), which mimic the downstream
(also episodic) few-shot tasks, are used for pretraining the model. However, the complex meta-learning
pretraining strategy has been shown to be data-inefficient (Dhillon et al. 2019; Yonglong Tian et al. 2020;
Laenen and Bertinetto 2021), not fully utilizing information within a batch. Instead, more recent U-FSL
approaches (Medina, Devos, and Grossglauser 2020; Z. Chen, Maji, and Learned-Miller 2021; L. Chen,
K. Chen, and Chi-Guhn 2022; Kishorkumar Shirekar, A. Singh, and Jamali-Rad 2022; Jang, H. Lee, and
Shin 2023) follow a simpler, non-episodic pretraining, based on transfer learning, for learning optimal
representations. Exceptionally, state-of-the-art approaches (W. Chen et al. 2021; Lu et al. 2022; W. Hu
et al. 2023) successfully employ some form of contrastive learning in their self-supervised pretraining
and significantly outperform meta-learning methods. The underlying idea of contrastive representation
learning (T. Chen et al. 2020; He, Fan, et al. 2020; Xinlei Chen and He 2021) is to attract similar samples
(or positives) in the representation space while repelling dissimilar (or negatives) ones. Although fit for
purpose, these contrastive approaches seem to overlook an important perspective: contrastive learning
typically enforces consistency only at the instance-level, where each image within the batch (and its
augmentations) corresponds to a unique class (unrealistic assumption!). As a result, potential positives
(i.e., images of the same actual class), present within a batch, might be treated as negatives and pushed
apart in the representation space.

To make matters worse, in the U-FSL setting, the (pretraining) base and (inference) novel
classes are either mutually exclusive classes of the same dataset (in-domain setting) or originate from
different datasets all together (cross-domain setting) - both of interest and investigated in this work.
This distribution shift is usually addressed by supervised fine-tuning in conventional downstream task
settings. However, in FSL problems, due to the limited number of support samples at test time, the
support embeddings do not efficiently represent query characteristics, rendering fine-tuning inefficient
and debilitating the downstream performance in the inference phase. This issue is often referred to as
sample bias and is mostly ignored by U-FSL approaches, contrastive or otherwise.

Inspired by the efficiency of human intelligence in learning rich abstractions and semantic object
relationships from just a few examples, we develop a novel end-to-end methodology: BECLR, which
sets a new state-of-the-art in U-FSL settings. This body of work aims to learn rich representations, in
a self-supervised manner, capable of capturing abstractions and relationships between images, and
subsequently utilize those representations to tackle the few-shot learning problem. We build upon
contrastive learning (which have been shown to be front-runners in U-FSL) and propose a novel batch
enhanced contrastive U-FSL pretraining methodology (coined as BECLR) to infuse instance- and class-
level insights within a contrastive learning framework. To enable the sampling of meaningful positives,
within the contrastive loss of BECLR, we introduce an innovative dynamic clustered memory module
(DyCE), whichmaintains highly-separable latent space partitions, through iterative equipartitioned batch
updates. We also propose an effective, optimal transport (OT)-based feature alignment strategy (OpTA),
to structurally address sample bias in the U-FSL inference stage and further improve the end-to-end
performance of BECLR in low-shot settings.

2
Scientific Article (BECLR)

3

BATCH ENHANCED CONTRASTIVE
UNSUPERVISED FEW-SHOT LEARNING

Stylianos Poulakakis-Daktylidis1, Ojas Kishorkumar Shirekar1,2 & Hadi Jamali-Rad1,2

1Delft University of Technology (TU Delft), The Netherlands
2Shell Global Solutions International B.V., Amsterdam, The Netherlands
s.poulakakisdaktylidis@student.tudelft.nl
{o.k.shirekar, h.jamalirad}@tudelft.nl

ABSTRACT

There exists a fundamental gap between human and artificial intelligence. Deep
learning models are exceedingly data hungry for learning even the simplest of
tasks, whereas humans can easily adapt to new tasks with just a handful of sam-
ples. Unsupervised few-shot learning (U-FSL) aspires to bridge this gap, without
relying on costly annotations. Inspired by the efficiency of contrastive represen-
tation learning, we propose a novel batch enhanced contrastive U-FSL pretrain-
ing methodology (coined as BECLR) to infuse instance- and class-level insights
within a contrastive framework. To enable the sampling of meaningful positives,
we introduce an innovative dynamic clustered memory module (DyCE), which
maintains highly-separable latent space partitions, through iterative equiparti-
tioned updates. We also propose an effective, optimal transport (OT)-based feature
alignment strategy (OpTA), to address sample bias in the U-FSL inference stage
and further boost the end-to-end performance of BECLR in low-shot settings. Our
extensive experimental evaluation corroborates the efficacy of our design choices
in BECLR, which sets a new state-of-the-art on the most widely adopted U-FSL
benchmarks miniImageNet and tieredImageNet (offering up to 14% and 12% im-
provements, respectively), as well as on challenging cross-domain scenarios.1

1 INTRODUCTION

5-way 1-shot 5-way 5-shot

Figure 1: MiniImageNet (5-way, 1-shot) (left) and (5-way,
5-shot) (right) accuracy in the unsupervised few-shot learn-
ing landscape. Our method, BECLR, is shown in bold.

Deep learning models are becoming in-
creasingly data hungry, requiring ever-
growing amounts of training data to guar-
antee an acceptable performance and gen-
eralization ability on even the simplest of
downstream tasks. In stark contrast, hu-
mans can quickly learn new skills from a
handful of data, without extensive super-
vision. Few-shot learning (FSL) aspires to
bridge this fundamental gap between hu-
man and artificial intelligence, by learning
in a data-deficient setting, and thus has re-
cently gained an upsurge of interest. The
fundamental principle of FSL lies in learn-
ing a prior, then used to solve unknown,
downstream few-shot tasks. To this end,
FSL approaches typically consist of two
sequential phases: pretraining on a large
dataset of base classes, followed by a supervised inference/fine-tuning strategy on an unseen smaller
dataset of novel classes. The problem of interest of this paper is the more challenging and realis-
tic unsupervised few-shot learning (U-FSL), where we do not have access to the base class labels,

1Codebase and models are publicly available at https://github.com/stypoumic/BECLR.

4

and hence do not depend on an expensive annotated dataset. In this exciting space, the goal of the
pretraining phase is to learn a feature extractor (i.e., backbone network or encoder) to capture the
global structure of the unlabeled data, followed by fitting a (linear) classifier on top of the “frozen”
feature extractor to quickly adapt to unseen but relevant downstream few-shot tasks.

Earlier approaches (Hsu et al., 2018; Khodadadeh et al., 2019; 2020) tackle U-FSL under the meta-
learning paradigm, where synthetic learning tasks, which mimic the downstream few-shot tasks, are
used for pretraining the model. However, the complex meta-learning pretraining strategy has been
shown to be data-inefficient (Dhillon et al., 2019; Tian et al., 2020). Instead, more recent U-FSL
approaches (Medina et al., 2020; Chen et al., 2021b; 2022; Jang et al., 2023) follow a simpler, non-
episodic pretraining, based on transfer learning, for learning optimal representations. Exceptionally,
state-of-the-art approaches (Chen et al., 2021a; Lu et al., 2022) successfully employ contrastive
learning in their self-supervised pretraining and significantly outperform meta-learning methods.
The underlying idea of contrastive representation learning (Chen et al., 2020a; He et al., 2020) is
to attract similar samples in the representation space while repelling dissimilar ones. Although
fit for purpose, these contrastive approaches seem to overlook an important perspective: contrastive
learning typically enforces consistency only at the instance-level, where each image within the batch
(and its augmentations) corresponds to a unique class (unrealistic assumption!). As a result, potential
positives (i.e., images of the same actual class), present within a batch, might be pushed apart in
the representation space. To address this problem, we argue that membership/class-level insights
should be infused within the contrastive paradigm. Building upon this idea, we propose our Batch-
Enhanced Contrastive LeaRning (coined as BECLR) self-supervised pretraining methodology and
introduce a novel Dynamic Clustered mEmory (DyCE), which maintains a partitioned latent space
of past representations. In other words, we propose to enhance the positive sampling strategy within
a contrastive learning framework with a clustering-inspired perspective engraved through DyCE.

In U-FSL, the base and novel classes are either mutually exclusive classes of the same dataset (in-
domain setting) or originate from different datasets (cross-domain setting) - both of interest and
investigated in this paper. This distribution shift is usually addressed by supervised fine-tuning.
However, due to the limited number of support samples at test time, the support embeddings do not
efficiently represent query characteristics, debilitating the performance in the fine-tuning/inference
phase. This issue is often referred to as sample bias and is mostly ignored by U-FSL approaches. To
structurally address sample bias in U-FSL, we propose a simple add-on supervised inference strategy
and introduce Optimal Transport-based feature Alignment (OpTA), to align the representations of the
“biased” support and “unbiased” query sets. Our main contributions can be summarized as:

1. We propose BECLR, a self-supervised contrastive pretraining methodology that integrates
instance- and class-level cognizance within a contrastive framework, by enhancing the
original batch with additional meaningful positives from past representations.

2. We introduce a novel dynamic clustered memory, DyCE, which is iteratively updated with
equipartitioned batch assignments, converging into a highly-separable partitioned latent
space and enabling the positive sampling strategy within BECLR.

3. We present OpTA, an effective (especially in lower-shot settings) optimal transport-based
strategy, for addressing sample bias and inducing task awareness at the inference stage.

4. We perform extensive experimental evaluations to demonstrate that BECLR sets a new
state-of-the-art performance, outperforming all existing U-FSL baselines on miniImagenet
(see Fig. 1) and tieredImagenet (up to 14% and 12% improvement in the demanding 1-shot
setting), as well as reporting competitive performance in the cross-domain setting.

2 RELATED WORK

Self-Supervised Learning. Self-supervised learning (SSL) aims to obtain supervisory signals from
within the data itself, without relying on expensive labels or annotations. SSL methods are able to
learn robust representations in an unsupervised manner by defining pretext tasks, such as colorization
(Larsson et al., 2016), rotation prediction (Gidaris et al., 2018), inpainting (Pathak et al., 2016), or
solving jigsaw puzzles (Noroozi & Favaro, 2016). One of the most competitive SSL approaches
is contrastive learning, which solves the instance discrimination pretext task (Chen et al., 2020a).
Seminal contrastive approaches have pushed the state-of-the-art in U-FSL by introducing the popular

5

InfoNCE loss (Oord et al., 2018), self-distillation (or momentum) encoder schemes (Grill et al.,
2020), an asymmetrical architecture (Chen & He, 2021), or encouraging channel-level consistency
(Zbontar et al., 2021). BECLR builds on these ideas and tackles the challenging environment of
unsupervised few-shot learning (U-FSL) within a contrastive learning framework.

Unsupervised Few-Shot Learning. U-FSL aims at pretraining a model from an unlabeled dataset
of base classes, which is able to quickly generalize to novel tasks only with a few labeled examples.
Meta-learning approaches (Hsu et al., 2018; Antoniou & Storkey, 2019; Khodadadeh et al., 2019;
2020) tackle U-FSL, by generating synthetic learning tasks (or episodes), which mimic the down-
stream, also episodic, few-shot tasks, for pretraining the model. Nevertheless, the complex pretrain-
ing strategy of the meta-learning paradigm has recently been shown to be data-inefficient, not fully
utilizing information within a batch (Dhillon et al., 2019; Tian et al., 2020; Laenen & Bertinetto,
2021). Instead, state-of-the-art U-FSL approaches (Chen et al., 2021a; Lu et al., 2022; Chen et al.,
2022; Shirekar et al., 2022b) follow a simpler non-episodic pretraining, based on transfer learning
and contrastive SSL, outperforming meta-learning approaches by a significant margin. Despite their
worthy attempts, current contrastive U-FSL approaches only enforce consistency at the instance-
level, where each image within the batch corresponds to a unique class (unrealistic assumption!),
and mostly ignore the sample bias problem in the inference stage of U-FSL. BECLR also builds
on the contrastive pretraining setting, but infuses membership/class-level insights through our novel
DyCE memory module, showing that it is possible to build an effective few-shot learner, without
any base class labels. Finally, we also propose a simple add-on strategy, based on optimal transport,
to structurally address sample bias and further improve downstream performance of BECLR.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT: UNSUPERVISED FEW-SHOT LEARNING

The problem of interest of this paper is U-FSL. We follow the setup most commonly adopted in the
literature (Chen et al., 2021a;b; Lu et al., 2022; Jang et al., 2023), which consists of: (i) unsupervised
pretraining, followed by (ii) a supervised fine-tuning/inference strategy. Formally, we consider a
large unlabeled base dataset Dtr = {xi} for pretraining our model. The fine-tuning/inference phase
then involves transferring the model to unseen few-shot downstream tasks Ti, drawn from a smaller
labeled test dataset of novel classes Dtst = {(xi, yi)}. Each task Ti is composed of two parts [S,Q]:
(i) the support set S, from which the model learns to adapt to the novel classes, and (ii) the query
set Q, on which the model is evaluated. The support set S = {xsi , ysi }NKi=1 is constructed by drawing
K labeled random samples from N different classes, resulting in the so-called (N -way, K-shot)
settings. The query set Q = {xqj}

NQ
j=1 typically contains NQ unlabeled samples.

3.2 CONTRASTIVE UNSUPERVISED REPRESENTATION LEARNING

The underlying idea of contrastive representation learning (Wu et al., 2018; Chen et al., 2020a; He
et al., 2020; Chen & He, 2021) is to attract “positive” samples in the representation space (i.e.,
representations of the augmentations of the same image), while repelling “negative” samples (i.e.,
representations of different images). A commonly adopted loss function to drive contrastive learning
is infoNCE (Oord et al., 2018).

LiNCE = −
1

2B

2B∑
i=1

log
exp

(
d[zi, z

+
i]/τ

)
∑
j ̸=i exp (d [zi, zj] /τ)

= −
1

B

B∑
i=1

d[zi, z
+
i]/τ +

1

2B

2B∑
i=1

log
∑
j ̸=i

exp (d [zi, zj] /τ) , (1)

where τ is the temperature parameter, d is a distance metric (negative cosine similarity in our case),
B denotes the batch size, and z+

i stands for the latent embedding of the positive sample, correspond-
ing to sample i. The first term in Eq. 1 operates only on positive pairs, and the second term pushes
each representation away from all other batch representations and has a regularization effect.

4 PROPOSED METHOD

In this section, we first introduce our proposed self-supervised pretraining methodology (coined
as BECLR) including a novel Dynamic Clustered mEmory module (DyCE). Next, we discuss our

6

DyCE

DyCE

Figure 2: Overview of BECLR contrastive framework. Given two views X{α,β}, both views are passed
through a student hθ ◦gθ ◦fθ ◦µ and a teacher gψ ◦fψ network and next, to our DyCE memory module. DyCE
is responsible for (i) enhancing the original batch with meaningful positives and (ii) dynamically updating the
memory partitions with equipartitioned assignments. A contrastive loss is applied on the enhanced batch.

simple yet efficient supervised inference strategy (referred to as OpTA), to induce downstream task
awareness and alleviate sample bias in the U-FSL setting.

4.1 SELF-SUPERVISED PRETRAINING (BECLR)

Inspired by the recent success of contrastive representation learning frameworks in reaching state-
of-the-art performance in the U-FSL setting (Chen et al., 2021a; Lu et al., 2022; Hu et al., 2023),
we also build our proposed solution upon contrastive learning and solve the instance discrimina-
tion pretext task. The challenge with traditional contrastive learning approaches is that they enforce
consistency only at the instance-level, where each image within the batch has to correspond to a
unique class (unrealistic assumption!). As a result, potential positives, present within a batch, might
be treated as negatives, which can have a detrimental impact on performance. A common strat-
egy to combat this pitfall (also to avoid prohibitively large batch sizes) is to use a memory unit
(Wu et al., 2018; Zhuang et al., 2019; He et al., 2020; Caron et al., 2020; Dwibedi et al., 2021).
Exceptionally, NNCLR (Dwibedi et al., 2021) uses a nearest neighbor approach in sampling from
the memory to promote more meaningful positive pair generation in the contrastive loss landscape.
However, NNCLR uses a simplistic first-in-first-out memory queue and is oblivious to global mem-
berships (i.e., class-level information) in the latent space. On the other hand, clustering-based SwAV
(Caron et al., 2020) deviates from traditional contrastive learning and promotes soft clustering of la-
bel assignments. Instead, we build on the contrastive learning setting (which have been shown to
be frontrunners in U-FSL) and propose to infuse membership/class-level insights through a novel
Dynamic Clustered mEmory (DyCE) within our proposed Batch-Enhanced Contrastive LeaRning
(BECLR) setting. Notably, neither NNCLR nor SwAV are devised for the U-FSL setting. Even so,
we demonstrate later on that we outperform their reproduction by a margin in the U-FSL setting.
In other words, we propose to enhance the positive sampling strategy within a contrastive learning
framework with a clustering-inspired perspective engraved through DyCE. Figs. 2 and 3 provide a
schematic illustration of our framework (BECLR) and its dynamic memory module (DyCE).

Batch Enhanced Contrastive Learning (BECLR). Let ζa, ζb ∼ A be two randomly sampled data
augmentations from the set of all available augmentations, A. The current mini-batch can then be
denoted as X̂ = [x̂i]

2B
i=1 =

[
[ζa(xi)]

B
i=1, [ζ

b(xi)]
B
i=1

]
. As shown in Fig. 2, we adopt an enhanced

student-teacher (a.k.a. Siamese) asymmetric momentum architecture similar to Grill et al. (2020);
Chen & He (2021); Lu et al. (2022). The student ZS (of size 2B × d, with d the latent embedding
dimension) and teacher ZT (same size as ZS) representations are obtained as follows:

ZS = hθ ◦ gθ ◦ fθ
(
µ(X̂)

)
, ZT = gψ ◦ fψ(X̂), (2)

7

Algorithm 1: BECLR
Require: A, θ, ψ, fθ , fψ , gθ , gψ , hθ , µ, DyCE

1 X̂ =
[
ζα(X), ζβ(X)

]
for ζα, ζβ ∼ A

2 ZS = hθ ◦ gθ ◦ fθ
(
µ(X̂)

)
3 ZT = gψ ◦ fψ(X̂).detach()

4 ẐS , ẐT = DyCE(ZS), DyCE(ZT)

5 Compute loss: Lcontr. using Eq. 5 on ẐS , ẐT

Return: Lcontr.

where µ(·) is a patch-wise masking operator as in
Assran et al. (2022), f(·) is the backbone feature ex-
tractor (ResNet (He et al., 2016) in our case), g(·)
and h(·) are projection and prediction multi-layer
perceptrons (MLPs), respectively. The teacher pa-
rameters ψ are an exponential moving averaged2

(EMA) version of the student parameters θ (updated
through SGD). Upon extracting ZS and ZT , they
are fed into our novel dynamic memory module
(DyCE), where enhanced versions of the batch representations ẐS , ẐT (both of size 2B(k+1)×d,
with k denoting the number of selected nearest neighbors) are generated. Finally, we apply the
contrastive loss in Eq. 5 on the enhanced batch representations ẐS , ẐT . Upon finishing unsuper-
vised pretraining, only the student encoder (fθ) is kept for the subsequent inference stage. BECLR
is summarized in Algorithm 1, and a Pytorch-like pseudo-code can be found in Appendix D.

DyCE

Figure 3: Overview of our dynamic clustered memory
module (DyCE) and its two informational paths.

Algorithm 2: DyCE
Require: epochthr,M, Γ, Z,B, k

1 if |M| = M then
2 / / Path (i): top-k and batch enhancement)
3 if epoch≥ epochthr then
4 ν = [νi]

2B
i=1 =

[
argmin
j∈[N]

⟨zi,γj⟩
]2B
i=1

5 Yi ← top-k
(
{⟨zi,Pνi ⟩}

)
, ∀i ∈ [2B]

6 Ẑ = [Z,Y1, . . . ,Y2B]

7 / / Path (ii): iterative memory updating
8 Find OT plan between Z and Γ: π∗ ← Solve Eq. 4
9 UpdateM with new Z:M← update(M,π∗,Z)

10 Discard 2B oldest batch embeddings: dequeue(M)

11 else
12 Store new batch:M← store(M,Z)

Return: Ẑ

Dynamic Clustered Memory (DyCE). How do
we manage to enhance our batch with mean-
ingful true positives from a memory queue of
unlabeled samples? As we illustrate in Fig. 6,
the efficiency of BECLR relies on establish-
ing separable clusters within the memory (for
both student and teacher branches), ideally each
corresponding to a different class. We intro-
duce DyCE: a dynamically updated clustered
memory with equipartitioned batches to effi-
ciently repel the memory prototypes, moder-
ating the representation space during training.
We demonstrate later on in Section 5 that our
design choices in DyCE have a significant im-
pact on both pretraining performance as well as
the downstream few-shot classification.

Let us consider a memory unit M capable of
storing a maximum of M latent embeddings
(each of size d). To accommodate clustered
memberships within DyCE, we consider up to
P partitions in M = [P1, . . . ,PP], each of
which is represented by a prototype stored in
Γ = [γ1, . . . ,γP]. In practice, prototypes γi
are the average of the latent embeddings stored
in partition Pi. As shown in Fig. 3 and in Al-
gorithm 2, DyCE consists of two informational
paths (i) the top-k neighbor selection and batch
enhancement path (bottom branch of the fig-
ure), which uses the current state of M and Γ,
and (ii) the iterative memory updating via dynamic clustering path (top branch of the figure). DyCE
takes student or teacher embeddings (we simply use Z, for brevity) as input and returns the enhanced
versions Ẑ. Let us now walk you through the algorithm. Path (i) starts with assigning each zi ∈ Z
to its nearest (based on the Euclidean distance ⟨·⟩) neighbor prototype γνi , with the assignments
being stored in vector ν of size 2B (line 4, Algorithm 2). Next (in line 5), we select the top-k,
most similar memory embeddings to zi from the memory partition Pνi and store them in Yi (of size
k×d). Finally (in line 6), all Yi,∀i ∈ [2B] are concatenated in Ẑ = [Z,Y1, . . . ,Y2B] of size L×d
(L = 2B(k + 1)).

We next follow up with iterative memory updates on path (ii). This is based on optimal transport
(OT) (Cuturi, 2013) for enforcing an equipartitioning constraint to find a transport plan π mapping
Z to Γ (in line 8) by solving:

Π(r, c) =
{
π ∈ R2B × P

+ | π1P = r, π⊤12B = c
}
, (3)

2ψ ← mψ + (1−m)θ, as in Grill et al. (2020), where m the momentum hyperparameter.

8

OpTA

Figure 4: Overview of our inference strategy. Given a test episode, the support (S) and query (Q) sets are
passed to the pretrained feature extractor (fθ). Next, OpTA aligns support prototypes and query features.

with the added constraints r = 1 · 1/2B and c = 1 · 1/P for enforcing equipartitioning (i.e., uniform
assignments), where r ∈ R2B denotes the distribution of batch embeddings [zi]2Bi=1 and c ∈ RP the
distribution of memory cluster prototypes [γi]

P
i=1. A relaxed version of OT then finds the optimal

transport plan (or assignment) π⋆, which maximizes the overlap between the two distributions (r, c)
as follows:

π⋆ = argmin
π∈Π(r,c)

⟨π,D⟩F − εH(π), (4)

where D is a pairwise distance matrix between the elements of Z and Γ (of size 2B × P),
⟨·⟩F denotes the Frobenius dot product, ε controls the strength of the entropic regularisation, and
H(π) =

∑
ij πij log(πij) is the Shannon entropy. This is solved using the Sinkhorn-Knopp algo-

rithm (Cuturi, 2013). Next (in line 9), we add the latest embeddings Z to M and use π⋆ for updating
the partitions Pi and prototypes Γ (EMA between the current and previous prototype values). Fi-
nally, we discard the 2B oldest memory embeddings (line 10). Note that at the beginning of training
both the encoder representations and the memory embedding space are highly volatile. Thus, we
allow for an adaptation period epoch < epochthr (empirically epochthr = 20-50), during which
the batch enhancement path (i) of DyCE is not activated. On the contrary, the memory updating
path (ii) is activated for every training batch from the beginning of training, allowing our memory to
reach a highly-separable converged state, as empirically shown in Fig. 6.

Loss Function. Despite the popularity of infoNCE (Eq. 1) recent studies (Poole et al., 2019; Song
& Ermon, 2019) have shown that it is prone to high bias, especially when the batch size is small and
the mutual information (MI) is large. We adopt a variant of InfoNCE, which maximizes the same
MI objective, but has been shown to be less biased for edge cases (Lu et al., 2022):

Lcontr. = −
1

L

L/2∑
i=1

(
d[zSi ,z

T+
i] + d[zS+i ,zTi]

)
+ λ log

(
1

L

L∑
i=1

∑
j ̸=i,i+

exp(d[zSi · zSj /τ])
)
, (5)

where d is the negative cosine similarity, λ is a weighting hyperparameter and L = 2B(k+1). Our
loss is asymmetric (i.e., both views are passed to both student and teacher), which has been shown
to increase performance (Chen & He, 2021), when combined with an asymmetric architecture.

4.2 SUPERVISED INFERENCE

Supervised fine-tuning usually combats the distribution shift between training and test datasets.
However, the limited number of samples at test time (especially in low-shot scenarios in FSL set-
tings) leads to a significant performance degradation due to the so-called sample bias. This issue
is mostly ignored in recent state-of-the-art U-FSL baselines (Chen et al., 2021a; Lu et al., 2022;
Hu et al., 2023). As is customary in U-FSL, we evaluate our downstream performance on few-shot
tasks, as such, we propose a simple add-on inference strategy, based on Optimal Transport feature
Alignment (OpTA), to structurally address sample bias (distribution shift between query and sup-
port sets) contributing to the overall significant performance margin BECLR offers (see Section 5),
especially in low-shot regimes.

Optimal Transport Feature Alignment (OpTA). Let T = S ∪ Q be a downstream few-shot task.
We first extract the support ZS = fθ(S) (of sizeNK×d) and query ZQ = fθ(Q) (of sizeNQ×d)
embeddings and calculate the support set prototypes P S (class averages of size N × d). Next, we
find the optimal transport plan (π⋆) between P S and ZQ using Eqs. 3 and 4, with r ∈ RNQ the
distribution of ZQ and c ∈ RN the distribution of P S . Finally, we use π⋆ to create a barycentric

9

Table 1: Accuracies in (% ± std) on miniImageNet and tieredImageNet with Sup.: denoting supervised and
Unsup.: unsupervised pretraining settings. Encoders: RN: ResNet, WRN: wide residual network backbones.
†: denotes our reproduction. Style: best and second best.

miniImageNet tieredImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
SimCLR (Chen et al., 2020a) RN18 Unsup. 62.58 ± 0.37 79.66 ± 0.27 63.38 ± 0.42 79.17 ± 0.34

SwAV† (Caron et al., 2020) RN18 Unsup. 59.84 ± 0.52 78.23 ± 0.26 65.26 ± 0.53 81.73 ± 0.24

NNCLR† (Dwibedi et al., 2021) RN18 Unsup. 63.33 ± 0.53 80.75 ± 0.25 65.46 ± 0.55 81.40 ± 0.27

SimSiam (Chen & He, 2021) RN18 Unsup. 62.80 ± 0.37 79.85 ± 0.27 64.05 ± 0.40 81.40 ± 0.30

HMS (Ye et al., 2022) RN18 Unsup. 58.20 ± 0.23 75.77 ± 0.16 58.42 ± 0.25 75.85 ± 0.18

PsCo (Jang et al., 2023) RN18 Unsup. 46.70 ± 0.42 63.26 ± 0.37 - -
UniSiam + dist (Lu et al., 2022) RN18 Unsup. 64.10 ± 0.36 82.26 ± 0.25 67.01 ± 0.39 84.47 ± 0.28

Meta-DM + UniSiam + dist (Hu et al., 2023) RN18 Unsup. 65.64 ± 0.36 83.97 ± 0.25 67.11 ± 0.40 84.39 ± 0.28

MetaOptNet (Lee et al., 2019) RN18 Sup. 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

Transductive CNAPS (Bateni et al., 2022) RN18 Sup. 55.60 ± 0.90 73.10 ± 0.70 65.90 ± 1.10 81.80 ± 0.70

BECLR (Ours) RN18 Unsup. 75.74 ± 0.62 84.93 ± 0.33 76.35 ± 0.66 84.85 ± 0.37

SwAV† (Caron et al., 2020) RN50 Unsup. 63.34 ± 0.42 82.76 ± 0.24 68.02 ± 0.52 85.93 ± 0.33

NNCLR† (Dwibedi et al., 2021) RN50 Unsup. 65.42 ± 0.44 83.31 ± 0.21 69.82 ± 0.54 86.41 ± 0.31

PDA-Net (Chen et al., 2021a) RN50 Unsup. 63.84 ± 0.91 83.11 ± 0.56 69.01 ± 0.93 84.20 ± 0.69

UniSiam + dist (Lu et al., 2022) RN50 Unsup. 65.33 ± 0.36 83.22 ± 0.24 69.60 ± 0.38 86.51 ± 0.26

Meta-DM + UniSiam + dist (Hu et al., 2023) RN50 Unsup. 66.68 ± 0.36 85.29 ± 0.23 69.61 ± 0.38 86.53 ± 0.26

LEO (Rusu et al., 2018) WRN Sup. 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

CC+Rot (Gidaris et al., 2019) WRN Sup. 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36

BECLR (Ours) RN50 Unsup. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.86 ± 0.32

mapping of the support prototypes P S in the region occupied by the query embeddings ZQ:

P̂ S = π̂⋆TZQ, π̂⋆i,j =
π⋆i,j∑
j π

⋆
i,j

,∀i ∈ [NQ], j ∈ [N], (6)

where π̂⋆ is the normalized transport plan and P̂ S are the transported support prototypes. Finally,
we fit a logistic regression classifier on P̂ S to infer on the unlabeled query set. As shown in Sec-
tion 5, OpTA successfully minimizes the distribution shift (between support and query sets), and
thus, the effects of sample bias. Note that OpTA can straightforwardly be applied on top any U-FSL
approach. An overview of OpTA and our inference strategy is illustrated in Fig. 4.

5 EXPERIMENTAL EVALUATION

Our Goal. In this section, we aim to address the following three questions:
(Q1) How does BECLR perform against state-of-the-art in in-domain and cross-domain settings?
(Q2) Does DyCE affect pretraining performance by establishing separable memory partitions?
(Q3) Does our proposed OT-based feature alignment strategy (OpTA) address the sample bias?

Our implementation and training details are fully described in Appendix A.

Benchmark Datasets. We evaluate BECLR in terms of its in-domain performance on the two most
widely adopted few-shot image classification datasets: miniImageNet (Vinyals et al., 2016) and
tieredImageNet (Ren et al., 2018). We also evluate BECLR in a cross-domain setting on the Caltech-
UCSD Birds (CUB) dataset (Welinder et al., 2010) and a more recent cross-domain FSL (CDFSL)
benchmark (Guo et al., 2020). In these settings, miniImageNet is used as the pretraining (source)
dataset, and CUB (in Table 3), ChestX (Wang et al., 2017), ISIC (Codella et al., 2019), EuroSAT
(Helber et al., 2019) and CropDiseases (Mohanty et al., 2016) (in Table 2) as the test (target) datasets.

5.1 EVALUATION RESULTS

We report test accuracies with 95% confidence intervals over 2000 test episodes, each with 15 query
shots per class, for all tested datasets. The performance on miniImageNet, tieredImageNet and
miniImageNet → CUB is evaluated on (5-way, {1, 5}-shot) classification tasks, whereas for mini-
ImageNet → CDFSL we test on (5-way, {5, 20}-shot) tasks, as is customary across the literature
(Guo et al., 2020; Ericsson et al., 2021). We compare our BECLR performance against a wide va-
riety of methods: from (i) established SSL baselines (Chen et al., 2020a; Grill et al., 2020; Caron
et al., 2020; Chen et al., 2020b; Zbontar et al., 2021; Chen & He, 2021; Dwibedi et al., 2021) to (ii)
state-of-the-art U-FSL approaches (Chen et al., 2021a; Lu et al., 2022; Shirekar et al., 2022b; Chen

10

Table 2: Accuracies in (% ± std) on miniImageNet → CDFSL. †: our reproduc. Style: best and second best.

ChestX ISIC EuroSAT CropDiseases
Method 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 1-shot 5 way 20-shot

SwAV† (Caron et al., 2020) 25.70 ± 0.28 30.41 ± 0.25 40.69 ± 0.34 49.03 ± 0.30 84.82 ± 0.24 90.77 ± 0.26 88.64 ± 0.26 95.11 ± 0.21

NNCLR† (Dwibedi et al., 2021) 25.74 ± 0.41 29.54 ± 0.45 38.85 ± 0.56 47.82 ± 0.53 83.45 ± 0.57 90.80 ± 0.39 90.76 ± 0.57 95.37 ± 0.37

SAMPTransfer (Shirekar et al., 2022b) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 85.55 ± 0.60 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

PsCo (Jang et al., 2023) 24.78 ± 0.23 27.69 ± 0.23 44.00 ± 0.30 54.59 ± 0.29 81.08 ± 0.35 87.65 ± 0.28 88.24 ± 0.31 94.95 ± 0.18

UniSiam + dist (Lu et al., 2022) 28.18 ± 0.45 34.58 ± 0.46 45.65 ± 0.58 56.54 ± 0.5 86.53 ± 0.47 93.24 ± 0.30 92.05 ± 0.50 96.83 ± 0.27

ConFeSS (Das et al., 2021) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34

BECLR (Ours) 27.73 ± 0.24 33.81 ± 0.25 44.48 ± 0.31 57.89 ± 0.29 88.55 ± 0.23 93.92 ± 0.14 94.21 ± 0.25 97.72 ± 0.13

et al., 2022; Hu et al., 2023; Jang et al., 2023). Additionally, we compare against a set of competitive
supervised baselines (Rusu et al., 2018; Gidaris et al., 2019; Lee et al., 2019; Bateni et al., 2022).

Q1-a: In-Domain Setting. The results on both miniImageNet and tieredImageNet in the (5-way,
{1, 5}-shot) settings are reported in Table 1 (see Appendix C for a more complete version). Re-
gardless of backbone depth, BECLR sets a new state-of-the-art on both datasets, showing up to a
14% (66.68 → 80.57) setting, and 2.5% (85.29 → 87.82) gains on miniImageNet over the prior art
in U-FSL for the 1-shot and 5-shot settings, respectively. The results on tieredImageNet are anal-
ogous. Interestingly, BECLR outperforms all supervised baselines, without access to the base class
labels. Notice that the significant gains we report above prior art in the 1-shot setting corroborate
the efficacy of BECLR, as well as the major impact of the proposed OpTA inference strategy.

Table 3: Accuracies in (% ± std) on miniImageNet
→ CUB. †: our reproduc. Style: best and second best.

miniImageNet → CUB
Method 5-way 1-shot 5-way 5-shot
SimCLR (Chen et al., 2020a) 38.25 ± 0.49 55.89 ± 0.46

SwAV† (Caron et al., 2020) 38.34 ± 0.51 53.94 ± 0.43

NNCLR† (Dwibedi et al., 2021) 39.37 ± 0.53 54.78 ± 0.42

Barlow Twins (Zbontar et al., 2021) 40.46 ± 0.47 57.16 ± 0.42

Laplacian Eigenmaps (Chen et al., 2022) 41.08 ± 0.48 58.86 ± 0.45

PsCo (Jang et al., 2023) - 57.38 ± 0.44

BECLR (Ours) 42.12 ± 0.55 59.49 ± 0.45

Q1-b: Cross-Domain Setting. These settings
have recently been proposed for evaluating the
generalization capability of FSL approaches to
unseen (during pretraining) datasets. We follow
the commonly adopted setting, where we pre-
train on miniImageNet and evaluate on CDFSL
(consisting of ChestX, ISIC, EuroSAT, CropDis-
eases) and CUB, the results of which are sum-
marized in Tables 2 and 3, respectively (see Ap-
pendix C for more complete versions). BECLR
again sets a new state-of-the-art on CUB, EuroSAT, and CropDiseases, and remains competitive to
prior art on ChestX and ISIC. Notably, the data distributions of ChestX and ISIC are considerably
different from those of miniImageNet. This leads to poor initial representations at the inference
stage, which directly influence the efficacy of OpTA, as is empirically corroborated in Fig. 8.

Q1-c: Backbone Study. To substantiate the impact of our design choices in DyCE and BECLR, we
compare against some of the most influential contrastive SSL approaches: SimCLR (Chen et al.,
2020a), SwAV (Caron et al., 2020), NNCLR (Dwibedi et al., 2021) and the prior U-FSL state-of-
the-art: UniSiam (Lu et al., 2022), in terms of pure pretraining performance, by directly evaluating
the pretrained model on downstream FSL tasks (i.e., no fine-tuning or our add-on inference strategy
OpTA). Fig. 5 summarizes this comparison for various network depths RN{10,18,34,50} in the
(5-way, {1, 5}-shot) settings on miniImageNet. BECLR again outperforms all U-FSL/SSL frame-
works for all backbone configurations, even without any supervised inference strategy or OpTA.

Q2: Latent Memory Space Evolution. As a qualitative demonstration, we visualize 30 memory
embeddings from 25 partitions Pi within DyCE for the initial (left) and final (right) state of our
latent memory space (M). The 2-D UMAP (McInnes et al., 2018) plots in Fig. 6 provide qualita-
tive evidence of a significant improvement in terms of cluster separation, as training progresses. To
quantitatively substantiate this finding, the quality of the memory clusters is also measured by the
Davies-Bouldin score (DBI) (Davies & Bouldin, 1979), with a lower DBI indicating better inter-
cluster separation and intra-cluster “tightness”. The DBI value is significantly lower between parti-
tions Pi in the final state of M, further corroborating DyCE’s ability to establish highly separable
partitions. This pseudo-class cognizance of DyCE is explored in more detail in Appendix C.

Q3-a: Impact of OT-based Feature Alignment (OpTA). We visualize the UMAP projections for
a randomly sampled (3-way, 1-shot) miniImageNet test episode. Fig. 7 illustrates the original P S

(left) and transported P̂ S (right) support prototypes (♦), along with the embeddings of the query
set ZQ (•) and their latent distributions (in contours). As can be seen on the left-hand side (before
applying OpTA), the original prototypes P S are highly biased and deviate from the latent query

11

5-way, 5-shot

5-way, 1-shot

Figure 5: BECLR outperforms all baselines,
in terms of pure pretraining performance on
miniImageNet in the U-FSL setting.

Figure 6: The dynamic updates of DyCE allow for our memory
(M) to evolve into a highly separable, partitioned latent space.
Different combinations of (colors, markers) indicate partitions.

Before OpTA After OpTA

Figure 7: Our OT-based feature alignment (OpTA) effectively reduces
the distribution shift between support and query sets, alleviating the
sample bias. (♦): support prototypes. (•): query set embeddings.

Figure 8: OpTA yields larger per-
formance gains, the better the pre-
train performance on miniImageNet.

distributions. In stark contrast, OpTA pushes the transported prototypes P̂ S much closer to the
query distributions (contour centers), effectively diminishing sample bias. This also aligns with
the significantly higher final accuracy of the episode using the transported prototypes (after OpTA),
reported in the figure.

Q3-b: Relation between BECLR Pretraining and OpTA Inference Our proposed OT-based feature
alignment strategy (OpTA) operates under the assumption that query embeddings ZQ are representa-
tive of actual class distributions. Consequently, its efficiency depends on representations of sufficient
quality from the BECLR pretrained feature extractor. Fig. 8 assesses this intuition by comparing our
pretraining and downstream performance on miniImageNet for the (5-way, 1-shot) setting. As can
be seen, when the initial pretraining performance is poor, OpTA does not offer a meaningful perfor-
mance boost (and actually leads to performance degradation). On the contrary, it offers a significant
(ever-increasing) boost, as BECLR achieves a better pretraining performance. In a nutshell, these
two steps (pretraining and inference) are highly intertwined in the U-FSL setting.

5.2 ABLATION STUDIES

We investigate the impact of the main components of our approach, along with various important
hyper-parameters. We use the (5-way, {1, 5}-shot) settings for 2000 miniImageNet test episodes
and train with a ResNet50 backbone for all our ablation studies.

Table 4: Ablation study of BECLR’s main compo-
nents for miniImageNet. Accuracies in (% ± std).

Masking EMA DyCE OpTA 5-way 1-shot 5-way 5-shot

- - - - 63.57 ± 0.43 81.42 ± 0.28

✓ - - - 54.53 ± 0.42 68.35 ± 0.27

- ✓ - - 65.02 ± 0.41 82.33 ± 0.25

✓ ✓ - - 65.33 ± 0.44 82.69 ± 0.26

✓ ✓ ✓ - 67.75 ± 0.43 85.53 ± 0.27

✓ ✓ ✓ ✓ 80.57 ± 0.57 87.82 ± 0.29

Main Component Ablation. As part of our
ablations, we investigate the impact of each
of the main components of BECLR: masking,
momentum teacher encoder (EMA), our dy-
namic memory module (DyCE) and our infer-
ence strategy (OpTA). Table 4 demonstrates the
necessity of each component, by sequentially
adding the components one by one. When
applied individually, masking degrades perfor-
mance, while EMA gives a slight boost (1%)

12

Table 5: Hyperparameter ablation study for miniImageNet (5-way, 5-shot) tasks. Accuracies in (% ± std).

Masking Ratio # of NNs (k) # of Clusters (n) Memory Size (M) Neg. Loss Weight (λ) Output Dim. (d) Memory Updating Scheme
Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy Value Accuracy

10% 86.59 ± 0.25 1 86.58 ± 0.27 100 85.27 ± 0.24 2048 85.38 ± 0.25 0.0 85.45 ± 0.27 256 85.16 ± 0.26 first-in-first-out 84.05 ± 0.39

30% 87.82 ± 0.29 3 87.82 ± 0.29 200 87.82 ± 0.29 4096 86.28 ± 0.29 0.1 87.82 ± 0.29 512 87.82 ± 0.29 kmeans 85.37 ± 0.33

50% 83.36 ± 0.28 5 86.79 ± 0.26 300 85.81 ± 0.25 8192 87.82 ± 0.29 0.3 86.33 ± 0.29 1024 85.93 ± 0.31 DyCE 87.82 ± 0.29

70% 77.70 ± 0.20 10 86.17 ± 0.28 500 85.45 ± 0.20 12288 85.84 ± 0.22 0.5 85.63 ± 0.26 2054 85.42 ± 0.34

for both {1, 5}-shot settings, and their combination further increases the performance of the model.
As can be seen, DyCE and OpTA are the most crucial components of our approach, with the former
producing a consistent 2.42% and 2.84% accuracy increase from the previous model in the 1-shot
and 5-shot settings, respectively, and the latter a significant increase of 12.82% and 2.29%.

Additional Ablations. We further analyze the classification performance and robustness of BECLR
across some of the most important hyperparameters, as is summarized in Table 5. In particular, we
carry out ablations on: (i) the masking ratio of student images, (ii) the number of nearest neighbors
selected k, (iii) the number of memory partitions/clusters P , (iv) the size of the memory M , (v) the
negative loss term weighting hyperparameter λ, (vi) the embedding latent dimension d, and (vii) the
memory updating mechanism. Looking at the results, a random masking ratio of 30% gives the best
performance. Note that the optimal masking ratio depends on the depth of the backbone, as previ-
ously demonstrated by Assran et al. (2022). Regarding the number of neighbors (k) selected, we
observe a trade-off between adding fewer true positives and including false positives, with a value
of k = 3 being the sweet spot. We find the optimal value for the number of memory partitions (P)
to be around 2× the number of classes in the training dataset (i.e., n = 200 for 100 classes in mini-
ImageNet). A trade-off can also be observed with respect to memory size (M), with performance
being directly proportional to M , until the threshold of around 40× the number of partitions (i.e.,
M = 8192 ≈ 40×200). Larger sizes actually degrade performance since older embeddings are kept
in the memory space, which might no longer be representative of their latent classes. The negative
loss term is not necessary to prevent a representation collapse, yet it allows the model to benefit from
stronger data augmentations as illustrated by Lu et al. (2022). A weighting value of λ = 0.1 yields
the best performance, which degrades slightly for values λ ≥ 0.3. We find an embedding dimension
of d = 512 to give the best results, which is in agreement with the literature (Chen & He, 2021; Lu
et al., 2022). Finally, we compare the memory updating mechanism of DyCE (path (ii)) with simple
first-in-first-out (He et al., 2020) updates and a kmeans-based approach, where batch embeddings Z
are assigned to memory prototypes Γ via a kmeans clustering step instead of OT. We notice that the
updating of DyCE is superior to both alternative approaches.

6 CONCLUDING REMARKS

In this work, we introduce a novel self-supervised pretraining methodology (coined as BECLR) that
ingrains both instance- and class-level insights within a contrastive learning framework. BECLR em-
ploys a dynamic clustered memory (DyCE) module, for providing a meaningful positive sampling
strategy and enhancing the original contrastive batch. We explore the effects of equipartitioned
assignments via optimal transport for updating DyCE and maintaining a highly-separable latent
memory space. We accentuate the sample bias problem in U-FSL and propose an intuitive and
effective OT-based feature alignment (OpTA) inference strategy for alleviating its effects. Our ex-
tensive evaluation results and qualitative experiments corroborate the efficacy of our design choices
in BECLR, DyCE and OpTA on a variety of both in-domain and cross-domain U-FSL tasks. We
demonstrate that BECLR sets a new state-of-the-art on the two most widely adopted few-shot clas-
sification benchmarks: miniImageNet and tieredImageNet, as well as on miniImagenet → {CUB,
CropDiseases, EuroSAT}. As future work, we plan to demonstrate the applicability of BECLR to
additional downstream computer vision tasks (beyond FSL) by training on larger datasets, such
as ImageNet. This would render BECLR an all-inclusive holistic approach towards representation
learning. Finally, we could also explore the effects of combining our current contrastive framework
with a clustering-based loss term, operating on the separable partitions of DyCE, or applying our
OpTA on a supervised episodic FSL approach, within a meta-learning framework.

13

REFERENCES

Antreas Antoniou and Amos Storkey. Assume, augment and learn: Unsupervised few-shot meta-
learning via random labels and data augmentation. arXiv preprint arXiv:1902.09884, 2019.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient
learning. In European Conference on Computer Vision, pp. 456–473. Springer, 2022.

Peyman Bateni, Jarred Barber, Jan-Willem Van de Meent, and Frank Wood. Enhancing few-shot im-
age classification with unlabelled examples. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 2796–2805, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Lee Chen, Kuilin Chen, and Kuilin Chi-Guhn. Unsupervised few-shot learning via deep laplacian
eigenmaps. arXiv preprint arXiv:2210.03595, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Wentao Chen, Chenyang Si, Wei Wang, Liang Wang, Zilei Wang, and Tieniu Tan. Few-shot learning
with part discovery and augmentation from unlabeled images. arXiv preprint arXiv:2105.11874,
2021a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Zitian Chen, Subhransu Maji, and Erik Learned-Miller. Shot in the dark: Few-shot learning with no
base-class labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2668–2677, 2021b.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gut-
man, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Debasmit Das, Sungrack Yun, and Fatih Porikli. Confess: A framework for single source cross-
domain few-shot learning. In International Conference on Learning Representations, 2021.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224–227, 1979.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

14

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With
a little help from my friends: Nearest-neighbor contrastive learning of visual representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9588–9597,
2021.

Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models
transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5414–5423, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Boosting
few-shot visual learning with self-supervision. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8059–8068, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko, Ta-
jana Rosing, and Rogerio Feris. A broader study of cross-domain few-shot learning. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XXVII 16, pp. 124–141. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. arXiv
preprint arXiv:1810.02334, 2018.

Wentao Hu, Xiurong Jiang, Jiarun Liu, Yuqi Yang, and Hui Tian. Meta-dm: Applications of diffu-
sion models on few-shot learning. arXiv preprint arXiv:2305.08092, 2023.

Huiwon Jang, Hankook Lee, and Jinwoo Shin. Unsupervised meta-learning via few-shot pseudo-
supervised contrastive learning. arXiv preprint arXiv:2303.00996, 2023.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. Unsupervised meta-learning for few-
shot image classification. Advances in neural information processing systems, 32, 2019.

Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladislau
Bölöni. Unsupervised meta-learning through latent-space interpolation in generative models.
arXiv preprint arXiv:2006.10236, 2020.

Steinar Laenen and Luca Bertinetto. On episodes, prototypical networks, and few-shot learning.
Advances in Neural Information Processing Systems, 34:24581–24592, 2021.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations for auto-
matic colorization. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 577–593. Springer, 2016.

15

Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-gmvae: Mixture of gaussian
vae for unsupervised meta-learning. In International Conference on Learning Representations,
2020.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10657–10665, 2019.

Shuo Li, Fang Liu, Zehua Hao, Kaibo Zhao, and Licheng Jiao. Unsupervised few-shot image
classification by learning features into clustering space. In European Conference on Computer
Vision, pp. 420–436. Springer, 2022.

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering algorithm.
Pattern recognition, 36(2):451–461, 2003.

Yuning Lu, Liangjian Wen, Jianzhuang Liu, Yajing Liu, and Xinmei Tian. Self-supervision can be
a good few-shot learner. In European Conference on Computer Vision, pp. 740–758. Springer,
2022.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Carlos Medina, Arnout Devos, and Matthias Grossglauser. Self-supervised prototypical transfer
learning for few-shot classification. arXiv preprint arXiv:2006.11325, 2020.

Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning for image-based
plant disease detection. Frontiers in plant science, 7:1419, 2016.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–
5180. PMLR, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
tion. arXiv preprint arXiv:1803.00676, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Ojas Shirekar, Ojas Shirekar, and Hadi Jamali-Rad. Self-supervised class-cognizant few-shot clas-
sification. In 2022 IEEE International Conference on Image Processing (ICIP), pp. 976–980.
IEEE, 2022a.

16

Ojas Shirekar, Anuj Singh, and Hadi Jamali-Rad. Self-attention message passing for contrastive
few-shot learning. arXiv e-prints, pp. arXiv–2210, 2022b.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. arXiv preprint arXiv:1910.06222, 2019.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16,
pp. 266–282. Springer, 2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Haoqing Wang and Zhi-Hong Deng. Cross-domain few-shot classification via adversarial task aug-
mentation. arXiv preprint arXiv:2104.14385, 2021.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2097–2106, 2017.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Han-Jia Ye, Lu Han, and De-Chuan Zhan. Revisiting unsupervised meta-learning via the character-
istics of few-shot tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):
3721–3737, 2022.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning
of visual embeddings. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6002–6012, 2019.

17

A IMPLEMENTATION DETAILS

BECLR is implemented on PyTorch (Paszke et al., 2019). We use the ResNet family (He et al., 2016)
for our backbone networks (fθ, fψ). The projection (gθ, gψ) and prediction (hθ) heads are 3- and 2-
layer MLPs, respectively, as in Chen & He (2021). Batch normalization (BN) and a ReLU activation
function are applied on each fully-connected (fc) layer, except for the output layers: no ReLU for
projection heads (gθ, gψ) and no BN, ReLU for prediction head (hθ). We use a latent dimension of
d = 512 in all our models and experiments, unless otherwise stated. Our DyCE memory module
consists of a memory unit M, initialized as a random table (of size M × d). We also maintain
up to P partitions in M = [P1, . . . ,PP], each of which is represented by a prototype stored in
Γ = [γ1, . . . ,γP]. In practice, prototypes γi are the average of the latent embeddings stored in
partition Pi. When the memory is full for the first time, we initialize the memory cluster prototypes
Γ and pseudo-labels for all stored memory embeddings, via a kmeans (Likas et al., 2003) clustering
step. The memory is of size M = 8192 and contains P = 200 partitions Pi and cluster prototypes
γi, when training on miniImageNet (M = 40960, P = 1000 for tieredImageNet). Note that both
M and P are important hyperparameters, which would need to be carefully tuned on an unknown
training dataset.

BECLR is pretrained on the training splits of miniImageNet and tieredImageNet with a batch size
of 256 and 512, respectively. Following Chen & He (2021), images are resized to 224× 224 for all
configurations. We use the SGD optimizer with a weight decay of 10−4, a momentum of 0.995, and
a cosine decay schedule of the learning rate. Note that we do not require large-batch optimizers, such
as LARS (You et al., 2017), or early stopping. Similarly to Lu et al. (2022), the initial learning rate is
set to 0.3 for the smaller miniImageNet dataset and 0.1 for tieredImageNet, and we train for 400 and
200 epochs, respectively. Note that at the beginning of training, both the encoder representations
and the memory embedding space are highly volatile. Thus, we allow for an adaptation period
(empirically 20-50 epochs), during which the batch enhancement path of DyCE is not activated (i.e.,
L = 2B). In contrast, the memory update path of DyCE is activated for each training batch from
the beginning of training, allowing our memory to reach a highly-separable, converged state. The
temperature scalar in the loss function is set to τ = 2. Upon finishing unsupervised pretraining, we
only keep the last training epoch checkpoint of the student encoder (fθ) for the subsequent inference
stage (fψ , gθ, gψ , hθ are discarded). For the inference and downstream few-shot classification
stage, we create (N -way, K-shot) tasks from the validation and testing splits of miniImageNet
and tieredImageNet for model selection and evaluation, respectively. In the inference stage and in
particular in the (5-way, 1-shot) setting, where the sample bias is most significant, we sequentially
perform δ = 3 consecutive passes of OpTA, with the transported prototypes of each pass acting as
the input of the following pass.

Table 6: Pytorch-like descriptions of the data augmentations, applied in the pretraining stage of BECLR.

Data Augmentations Description
RandomResizedCrop(size=224, scale=(0.2, 1))
RandomApply([ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)], p=0.1)

Default RandomGrayScale(p=0.2)
RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)
RandomHorizontalFlip(p=0.5)

RandomResizedCrop(size=224, scale=(0.2, 1))
RandomApply([ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.1)
RandomGrayScale(p=0.2)

Strong RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)
RandAugment(n=2, m=10, mstd=0.5)
RandomHorizontalFlip(p=0.5)
RandomVerticalFlip(p=0.5)

Augmentations We describe our data augmentations in Table 6, applied on both miniImageNet and
tieredImageNet images. The default data augmentations follow a common data augmentation strat-
egy in self-supervised learning, including RandomResizedCrop (with scale in [0.2, 1.0]), random
ColorJitter (Wu et al., 2018) of {brightness, contrast, saturation, hue} with a probability of 0.1,
RandomGrayScale with a probability of 0.2, random GaussianBlur with a probability of 0.5 and a
Gaussian kernel in [0.1, 2.0], and finally, RandomHorizontalFlip with a probability of 0.5. Following

18

Lu et al. (2022), the default data augmentations are expanded, to yield the strong data augmenta-
tions, which also include RadomVerticalFlip with a probability of 0.5 and RandAugment (Cubuk
et al., 2020) with n = 2 layers, a magnitude of m = 10, and a noise of the standard deviation of the
magnitude of mstd = 0.5. Unless otherwise stated, we use strong data augmentations for all our
experiments, and images are resized to 224× 224, before being passed to the backbone networks.

B EXPERIMENTAL SETUP

We here provide additional, detailed information on the tested in-domain and cross-domain few-shot
benchmark datasets, along with our followed procedure, for evaluating the downstream performance
of BECLR in the (5-way, {1, 5, 20}-shot) U-FSL settings.

B.1 ADDITIONAL DETAILS OF BENCHMARK DATASETS

MiniImageNet is a subset of ImageNet (Russakovsky et al., 2015), containing 100 classes with 600
images per class. We randomly select 64, 16, and 20 classes for training, validation, and testing,
following the predominantly adopted settings of Ravi & Larochelle (2016).

TieredImageNet is a larger subset of ImageNet, containing 608 classes and a total of 779, 165
images, grouped into 34 high-level categories, 20 (351 classes) of which are used for training, 6 (97
classes) for validation and 8 (160 classes) for testing.

CDFSL consists of four distinct datasets with decreasing domain similarity to ImageNet, ranging
from crop disease images in CropDiseases (Mohanty et al., 2016) and aerial satellite images in
EuroSAT (Helber et al., 2019) to dermatological skin lesion images in ISIC2018 (Codella et al.,
2019) and grayscale chest X-ray images in ChestX (Wang et al., 2017).

CUB consists of 200 classes and a total of 11, 788 images, split into 100 classes for training and 50
for both validation and testing as in Chen et al. (2019). Additional information for the cross-domain
few-shot benchmarks is provided in Table 7.

Table 7: Overview of cross-domain few-shot benchmarks, on which BECLR is evaluated. The
datasets are sorted with decreasing domain similarity to ImageNet.

ImageNet similarity Dataset # of classes # of samples

High CUB (Welinder et al., 2010) 200 11,788

Low CropDiseases (Mohanty et al., 2016) 38 43,456
Low EuroSAT (Helber et al., 2019) 10 27,000
Low ISIC (Codella et al., 2019) 7 10,015
Low ChestX (Wang et al., 2017) 7 25,848

B.2 EVALUATION PROCEDURES

To evaluate the performance of BECLR, we use three independently-trained models of different
random seeds (for each configuration) and report the average performance. We report test accuracies
with 95% confidence intervals over 2000 test episodes, each with 15 query shots per class, for all
tested datasets. The performance on miniImageNet, tieredImageNet and miniImageNet → CUB is
evaluated on (5-way, {1, 5}-shot) classification tasks, whereas for miniImageNet → CDFSL we test
on (5-way, {5, 20}-shot) tasks, as is customary across the literature (Guo et al., 2020).

C ADDITIONAL EXPERIMENTAL ANALYSIS

To further illustrate the class-cognisant aspect of DyCE (i.e., its ability to capture latent class distribu-
tions) we extract random (3-way, 3-shot) tasks from miniImageNet. For each of those embeddings,
we visualize their position in the latent memory space along with their assigned memory prototype.
In expectation, all 3-shot embeddings for each class should be mapped to similar areas and assigned
to the same memory prototype. In Fig. 9 we illustrate the 2-D UMAP projections for a random (3-
way, 3-shot) miniImageNet test task (•), the assigned memory prototypes (γi) for each class (⋆), and

19

some additional random memory prototypes for reference. As ca be seen, our intuition is confirmed,
since all 3-shots for each class get assigned to the same memory prototype, which corroborates
DyCE’s ability of enhancing the positive sampling strategy within a contrastive learning framework.

Figure 9: All three images of class i,∀i ∈ [3] get assigned to a single memory prototype γνi for a random
(3-way, 3-shot) miniImageNet test task. Test task images (•), memory prototypes (⋆).

C.1 IN-DOMAIN ADDITIONAL EXPERIMENTAL RESULTS

We here provide the full experimental results of Table 1, where we compare against additional
baselines, as seen in Table 8. We compare the performance of BECLR against a wide variety of
methods: from (i) established SSL baselines (Chen et al., 2020a; Chen & He, 2021) to (ii) state-
of-the-art U-FSL approaches (Chen et al., 2021a; Ye et al., 2022; Shirekar et al., 2022a; Li et al.,
2022; Shirekar et al., 2022b; Lu et al., 2022; Jang et al., 2023; Hu et al., 2023). Additionally, we
compare with a set of supervised baselines (Finn et al., 2017; Snell et al., 2017; Rusu et al., 2018;
Gidaris et al., 2019; Lee et al., 2019; Bateni et al., 2022). The top and bottom sections of the table
correspond to shallower and deeper backbones, respectively.

Table 8: Accuracies in (% ± std) on miniImageNet and tieredImageNet. Problem Setting: Sup.: supervised
pretraining, Unsup.: unsupervised pretraining. Encoder: Conv: convolutional blocks, RN: ResNet backbone,
WRN: wide residual network backbone. †: reproduction. Style: best and second best. Results are grouped based
on backbone depth: from shallower (Conv, RN12-34) to deeper (RN50, WRN) backbones.

miniImageNet tieredImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
CACTUs-Proto (Hsu et al., 2018) Conv4 Unsup. 39.18 ± 0.71 53.36 ± 0.70 - -
ProtoTransfer (Medina et al., 2020) Conv4 Unsup. 45.67 ± 0.79 62.99 ± 0.75 - -
Meta-GMVAE (Lee et al., 2020) Conv4 Unsup. 42.82 ± 0.45 55.73 ± 0.39 - -
C3LR (Shirekar et al., 2022a) Conv4 Unsup. 47.92 ± 1.20 64.81 ± 1.15 42.37 ± 0.77 61.77 ± 0.25

SAMPTransfer (Shirekar et al., 2022b) Conv4b Unsup. 61.02 ± 1.05 72.52 ± 0.68 49.10 ± 0.94 65.19 ± 0.82

LF2CS (Li et al., 2022) RN12 Unsup. 53.14 ± 0.62 67.36 ± 0.5 53.16 ± 0.66 66.59 ± 0.57

UMTRA (Khodadadeh et al., 2019) RN18 Unsup. 43.09 ± 0.35 53.42 ± 0.31 - -
SimCLR (Chen et al., 2020a) RN18 Unsup. 62.58 ± 0.37 79.66 ± 0.27 63.38 ± 0.42 79.17 ± 0.34

SwAV† (Caron et al., 2020) RN18 Unsup. 59.84 ± 0.52 78.23 ± 0.26 65.26 ± 0.53 81.73 ± 0.24

NNCLR† (Dwibedi et al., 2021) RN18 Unsup. 63.33 ± 0.53 80.75 ± 0.25 65.46 ± 0.55 81.40 ± 0.27

SimSiam (Chen & He, 2021) RN18 Unsup. 62.80 ± 0.37 79.85 ± 0.27 64.05 ± 0.40 81.40 ± 0.30

HMS (Ye et al., 2022) RN18 Unsup. 58.20 ± 0.23 75.77 ± 0.16 58.42 ± 0.25 75.85 ± 0.18

PsCo (Jang et al., 2023) RN18 Unsup. 46.70 ± 0.42 63.26 ± 0.37 - -
UniSiam + dist (Lu et al., 2022) RN18 Unsup. 64.10 ± 0.36 82.26 ± 0.25 67.01 ± 0.39 84.47 ± 0.28

Meta-DM + UniSiam + dist (Hu et al., 2023) RN18 Unsup. 65.64 ± 0.36 83.97 ± 0.25 67.11 ± 0.40 84.39 ± 0.28

MetaOptNet (Lee et al., 2019) RN18 Sup. 64.09 ± 0.62 80.00 ± 0.45 65.99 ± 0.72 81.56 ± 0.53

Transductive CNAPS (Bateni et al., 2022) RN18 Sup. 55.60 ± 0.90 73.10 ± 0.70 65.90 ± 1.10 81.80 ± 0.70

MAML (Finn et al., 2017) RN34 Sup. 51.46 ± 0.90 65.90 ± 0.79 51.67 ± 1.81 70.30 ± 1.75

ProtoNet (Snell et al., 2017) RN34 Sup. 53.90 ± 0.83 74.65 ± 0.64 51.67 ± 1.81 70.30 ± 1.75

BECLR (Ours) RN18 Unsup. 75.74 ± 0.62 84.93 ± 0.33 76.35 ± 0.66 84.85 ± 0.37

SwAV† (Caron et al., 2020) RN50 Unsup. 63.34 ± 0.42 82.76 ± 0.24 68.02 ± 0.52 85.93 ± 0.33

NNCLR† (Dwibedi et al., 2021) RN50 Unsup. 65.42 ± 0.44 83.31 ± 0.21 69.82 ± 0.54 86.41 ± 0.31

UBC-FSL (Chen et al., 2021b) RN50 Unsup. 56.20 ± 0.60 75.40 ± 0.40 66.60 ± 0.70 83.10 ± 0.50

PDA-Net (Chen et al., 2021a) RN50 Unsup. 63.84 ± 0.91 83.11 ± 0.56 69.01 ± 0.93 84.20 ± 0.69

UniSiam + dist (Lu et al., 2022) RN50 Unsup. 65.33 ± 0.36 83.22 ± 0.24 69.60 ± 0.38 86.51 ± 0.26

Meta-DM + UniSiam + dist (Hu et al., 2023) RN50 Unsup. 66.68 ± 0.36 85.29 ± 0.23 69.61 ± 0.38 86.53 ± 0.26

LEO (Rusu et al., 2018) WRN Sup. 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

CC+Rot (Gidaris et al., 2019) WRN Sup. 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36

BECLR (Ours) RN50 Unsup. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.86 ± 0.32

20

C.2 CROSS-DOMAIN ADDITIONAL EXPERIMENTAL RESULTS

We here provide the full experimental results of Tables 2 and 3, where we compare against additional
baselines, as seen in Tables 9 and 10, respectively. We compare against any existing unsupervised
baselines (Hsu et al., 2018; Khodadadeh et al., 2019; Chen et al., 2020a; Caron et al., 2020; Medina
et al., 2020; Grill et al., 2020; Chen et al., 2020b; Zbontar et al., 2021; Ye et al., 2022; Chen et al.,
2022; Lu et al., 2022; Shirekar et al., 2022b;a; Jang et al., 2023; Lee et al., 2020), for which this more
challenging cross-domain experiment has been conducted, along with two recent methods dedicated
to solving the cross-domain few-shot learning problem: ConFess (Das et al., 2021) and ATA (Wang
& Deng, 2021).

Table 9: Accuracies in (% ± std) on miniImageNet → CDFSL. †: our reproduc. Style: best and second best.

ChestX ISIC EuroSAT CropDiseases
Method 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 5-shot 5 way 20-shot 5 way 1-shot 5 way 20-shot
ProtoTransfer (Medina et al., 2020) 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32

BYOL (Grill et al., 2020) 26.39 ± 0.43 30.71 ± 0.47 43.09 ± 0.56 53.76 ± 0.55 83.64 ± 0.54 89.62 ± 0.39 92.71 ± 0.47 96.07 ± 0.33

MoCo v2 (Chen et al., 2020b) 25.26 ± 0.44 29.43 ± 0.45 42.60 ± 0.55 52.39 ± 0.49 84.15 ± 0.52 88.92 ± 0.41 87.62 ± 0.60 92.12 ± 0.46

SwAV† (Caron et al., 2020) 25.70 ± 0.28 30.41 ± 0.25 40.69 ± 0.34 49.03 ± 0.30 84.82 ± 0.24 90.77 ± 0.26 88.64 ± 0.26 95.11 ± 0.21

SimCLR (Chen et al., 2020a) 26.36 ± 0.44 30.82 ± 0.43 43.99 ± 0.55 53.00 ± 0.54 82.78 ± 0.56 89.38 ± 0.40 90.29 ± 0.52 94.03 ± 0.37

NNCLR† (Dwibedi et al., 2021) 25.74 ± 0.41 29.54 ± 0.45 38.85 ± 0.56 47.82 ± 0.53 83.45 ± 0.57 90.80 ± 0.39 90.76 ± 0.57 95.37 ± 0.37

C3LR (Shirekar et al., 2022a) 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31

SAMPTransfer (Shirekar et al., 2022b) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 85.55 ± 0.60 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

PsCo (Jang et al., 2023) 24.78 ± 0.23 27.69 ± 0.23 44.00 ± 0.30 54.59 ± 0.29 81.08 ± 0.35 87.65 ± 0.28 88.24 ± 0.31 94.95 ± 0.18

UniSiam + dist (Lu et al., 2022) 28.18 ± 0.45 34.58 ± 0.46 45.65 ± 0.58 56.54 ± 0.5 86.53 ± 0.47 93.24 ± 0.30 92.05 ± 0.50 96.83 ± 0.27

ConFeSS (Das et al., 2021) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34
ATA (Wang & Deng, 2021) 24.43 ± 0.2 - 45.83 ± 0.3 - 83.75 ± 0.4 - 90.59 ± 0.3 -

BECLR (Ours) 27.73 ± 0.24 33.81 ± 0.25 44.48 ± 0.31 57.89 ± 0.29 88.55 ± 0.23 93.92 ± 0.14 94.21 ± 0.25 97.72 ± 0.13

Table 10: Accuracies in (% ± std) on miniImageNet → CUB. †: our reproduc. Style: best and second best.

miniImageNet → CUB
Method 5-way 1-shot 5-way 5-shot
CACTUs-MAML (Hsu et al., 2018) 33.48 ± 0.49 49.97 ± 0.41

UMTRA (Khodadadeh et al., 2019) 33.59 ± 0.48 50.21 ± 0.45

Meta-GMVAE (Lee et al., 2020) 38.09 ± 0.47 55.65 ± 0.42

SimCLR (Chen et al., 2020a) 38.25 ± 0.49 55.89 ± 0.46

MoCo v2 (Chen et al., 2020b) 39.29 ± 0.47 56.49 ± 0.44

BYOL (Grill et al., 2020) 40.63 ± 0.46 56.92 ± 0.43

SwAV† (Caron et al., 2020) 38.34 ± 0.51 53.94 ± 0.43

NNCLR† (Dwibedi et al., 2021) 39.37 ± 0.53 54.78 ± 0.42

Barlow Twins (Zbontar et al., 2021) 40.46 ± 0.47 57.16 ± 0.42

Laplacian Eigenmaps (Chen et al., 2022) 41.08 ± 0.48 58.86 ± 0.45

HMS (Ye et al., 2022) 40.75 58.32
PsCo (Jang et al., 2023) - 57.38 ± 0.44

BECLR (Ours) 42.12 ± 0.55 59.49 ± 0.45

D PSEUDOCODE

Here, we provide the algorithms for our BECLR pretraining methodology and our dynamic clustered
memory (DyCE) in a Pytorch-like pseudocode format. Algorithm 3 provides an overview of BECLR
and is equivalent to Algorithm 1, while Algorithm 4 describes the two informational paths of DyCE,
similar to Algorithm 2.

Algorithm 3: Batch Enhanced Contrastive Learning (BECLR): PyTorch-like Pseudocode
{f, g, h} student: student backbone, projector, and predictor
{f, g} teacher: teacher backbone and projector
DyCE {student, teacher}: our dynamic clustered memory module for student and teacher paths (see Algorithm. 4)
def BECLR(x): # x: a mini-batch of L samples

x = [x1, x2] = [aug1(x), aug2(x)] # concatenate the two augmented views of x
z s = h student(g student(f student(mask(x)))) # (2B× d): student representations
z t = g teacher(f teacher(x)).detach() # (2B× d): teacher representations
z s, z t = DyCE student(z s), DyCE teacher(z t) # update memory via optimal transport & compute enhanced batch (2B(k+1)× d)
loss pos = - (z s ∗ z t).sum(dim=1).mean() # compute positive loss term
loss neg = (matmul(z s, z t.T) ∗ mask).div(temp).exp().sum(dim=1)).div(n neg).mean().log() # compute negative loss term
return loss pos + lambda ∗ loss neg # return final loss

21

Algorithm 4: DyCE: PyTorch-like Pseudocode
z: batch representations (2B×d)
self.memory: memory embedding space (M×d)
self.prototypes: memory partition prototypes (P×d)
def DyCE(self, z):

if self.memory.shape[0] == M:
- - - - - Path I: Top-k NNs Selection and Batch Enhancement - - - - -
if epoch≥ epoch thr

batch prototypes = assign prototypes(z, self.prototypes) # (2B×d): find nearest memory prototype for each batch embedding
y mem = top-k(self.memory, z, batch prototypes) # (2Bk×d): find top-k NNs, from memory partition of nearest prototype
z = [z, y mem] # (2B(k+1)×d): concatenate batch and memory representations to create the final enhanced batch

- - - - - Path II: Iterative Memory Updating - - - - -
opt plan = sinkhorn(D(z, self.prototypes)) # get optimal assignments between batch embeddings and prototypes (Solve Eq. 4)
self.update(z, opt plan) # add latest batch to memory and update memory partitions and prototypes, using the optimal assignments
self.dequeue() # discard the 2B oldest memory embeddings

else:
self.enqueue(z) # simply store latest batch until the memory is full for the first time

return z

22

3
Deep Learning

Deep learning constitutes a subbranch of machine learning that employs biologically inspired compu-
tational models (McCulloch and Pitts 1943), known as neural networks. Such networks are becoming
increasingly popular, since they are eligible to perform a wide variety of tasks from image classifica-
tion, detection, object localization and scene segmentation to 3D depth estimation, text modeling, and
speech synthesis, among other tasks. These networks are typically made up of individual and rather
simple nodes (or “neurons”), stacked on top of each other to approximate complex mathematical func-
tions. The main distinction between deep learning and classical machine learning approaches lies in
the fact that the former automatically learns to extract relevant features (or representations), instead of
relying on manual feature selection and design, and hence it is also known as representation learning.

3.1. Deep Feedforward Networks
Deep feedforward networks, also known as multilayer perceptrons (MLPs), are the most standard-
ized deep learning networks and are designed to process data and extract patterns and meaningful
information for statistical generalization. Different functions (or interchangeably called layers), inter-
connected in a sequential chain, compose this type of network. For instance, the network shown on
Figure 3.1 is comprised of 3 layers: 𝑓 (1), 𝑓 (2) and 𝑓 (3) and can be described by the function: 𝑓 =
𝑓 (1) ∘ 𝑓 (2) ∘ 𝑓 (3). Such chain structures are the building blocks of neural networks. The first (𝑓 (1)) and
last (𝑓 (3)) layers are called input and output layers respectively, whereas any intermediate layers
(such as 𝑓 (2)) are called hidden layers. The process of passing the input 𝑥 through the functions of
the network to produce an output 𝑓(𝑥), is called a forward pass, hence the name of these networks.

Figure 3.1: A 3-layer MLP with one hidden layer consisting of 4 hidden nodes.

23

3.2. Activation Functions 24

Formally, the output of an MLP layer can be calculated as:

𝒀 = 𝑓(𝑿; 𝜽) = 𝑓(𝑿; 𝑾 , 𝒃) = 𝑿𝑾 + 𝒃, (3.1)

where 𝑿 ∈ ℝ𝑁×𝑑 represents the input of 𝑁 samples and 𝑑 features, 𝑾 ∈ ℝ𝑑×ℎ and 𝒃 ∈ ℝ1×ℎ corre-
spond to the weights and biases of the layer respectively, and 𝒀 ∈ ℝ𝑁×ℎ represents the output.

The objective of deep forward networks is to approximate some true ideal function 𝑦 = 𝑓⋆(𝑥),
mapping the input 𝑥 to the output 𝑦. Network parameters 𝜃 are optimized during training, resulting in
the best approximation of the true function: 𝑓(𝑥; 𝜃) ≈ 𝑓⋆(𝑥). To understand the efficiency of MLPs and
the potential of deep learning in general, we need to ask the question: “How good are these networks
in approximating an ideal mathematical function ?”. In fact, several works (Micchelli 1984; Hornik 1991;
Cybenko 1992) have corroborated the property of MLPs as universal function approximators. That
is, even with a single layer, given sufficient neurons, an MLP is capable of learning such parameters
𝜃 to approximate any mathematical function. It should be noted, however, that standard MLP layers,
such as those in Figure 3.1, are only linear functions of their input. Consequently, to ensure the validity
of the global approximation theory, nonlinear fixed transformations, called activation functions, need
to be added to the affine transforms (controlled by 𝜃) of standard layers.

3.2. Activation Functions
Activation functions are differentiable operators, without trainable parameters of their own, that deter-
mine whether a node should be activated or not. They are utilized, in order to introduce some form of
non-linearity to an MLP layer:

𝒀 = 𝑔 ∘ 𝑓(𝑿; 𝑾 , 𝒃) = 𝑔(𝑿𝑾 + 𝒃), (3.2)

where 𝑔(⋅) the activation function. Some of the most popular activations are shown in Figure 3.2.

(a) ReLU (b) Sigmoid (c) Tanh

Figure 3.2: Popular activation functions.

The Rectified Linear Unit (ReLU) (Fukushima 1975) is perhaps the most popular activation
function, that directly outputs the input in case it is positive, and zero otherwise. It is often preferred
due to its computational simplicity and ability to output true zero values.

𝑟𝑒𝑙𝑢(𝒛) = max (0, 𝒛) (3.3)

Another really important function is the sigmoid, which maps the input to a real value between (0, 1).
A sigmoid is a smooth differentiable approximation of thresholding units (McCulloch and Pitts 1943),
which means that when the input value is below or above a certain threshold the output takes a value
of 0 or 1 respectively. It is often applied on binary classification or logistic regression problems, but can
be prone to vanishing gradients.

sigmoid(𝒛) = 1
1 + exp(−𝒛) (3.4)

The tanh function behaves similarly to the sigmoid and has been historically preferred for yielding better
performance with MLPs. Nevertheless, it does not solve the vanishing gradient problem that sigmoids
suffer from, which was tackled more effectively with the introduction of ReLU activations.

tanh(𝒛) = 1 − exp(−2𝒛)
1 + exp(−2𝒛) (3.5)

3.3. Optimisation and Backpropagation 25

3.3. Optimisation and Backpropagation
Until now, we have focused solely on the forward pass of deep neural networks, where the input 𝑥 is
processed by the network to output an approximation 𝑓(𝑥; 𝜃) ≈ 𝑓⋆(𝑥) of the desired output 𝑦. However,
considering the random initialization of the network parameters 𝜃, in order for this approximation to
be accurate, the network needs to learn an optimal set of values for its parameters 𝜃. Consequently,
networks must be optimized, with respect to their parameters 𝜃. Neural networks typically achieve
this through gradient-based optimization algorithms, which attempt to iteratively find better sets of
parameter values, to minimize a target function, known as the loss function.

3.3.1. Loss Function
It has already been established that MLPs act as universal function approximators. Therefore, we need
both a way to measure the efficiency of this approximation and a way to update the parameters 𝜃 using
gradient-based optimization. It turns out that the loss function of a neural network can satisfy both of
these functions. Let {𝒙(𝑖), 𝑦(𝑖)}𝑁

𝑖=1 be the network training set, where 𝒙𝑖 an input feature vector and 𝑦𝑖
the ground truth label. For each sample in the training set, a loss function can then be defined to
compare the prediction of the network 𝑓(𝑥(𝑖); 𝜃) with the expected output 𝑦 and measure their similarity.

The mean squared error (MSE) is a simple, and rather intuitive loss function, which is really
popular for regression problems, and can be defined for a single training sample as:

ℒ𝑀𝑆𝐸
𝑖 (𝒙(𝑖), 𝑦(𝑖), 𝜽) = 1

2‖𝑓(𝒙(𝑖); 𝜽) − 𝑦(𝑖)‖2 (3.6)

The cost function is then defined as the average of individual losses for all the training set samples:

𝒥𝑀𝑆𝐸(𝜽) = 1
𝑁

𝑁
∑
𝑖=1

ℒ𝑀𝑆𝐸
𝑖 (𝒙(𝑖), 𝑦(𝑖), 𝜽) = 1

2𝑁
𝑁

∑
𝑖=1

‖𝑓(𝒙(𝑖); 𝜽) − 𝑦(𝑖)‖2 (3.7)

Another loss function, being frequently applied on deep networks, is the cross-entropy (CE) loss,
which utilizes the softmax function to measure differences between two probability distributions. Let
us consider a multiclass classification problem, where 𝑦 ∈ {1, … , 𝐾}, 𝑓(𝒙) corresponds to a vector of
class probabilities (i.e., probabilities for 𝒙 to belong to a particular class), and 𝒚 = (0, ..., 0, 1, 0, ..., 0)
the one-hot encoded vector of 𝑦. We can define the cross-entropy loss for a single training sample as
follows:

ℒ𝐶𝐸
𝑖 (𝒙(𝑖), 𝒚(𝒊), 𝜽) = −

𝐾
∑
𝑗=1

𝑦(𝑖)
𝑗 log(̂𝑦(𝑖)

𝑗) , 𝑤ℎ𝑒𝑟𝑒

̂𝒚 = softmax(𝑓(𝒙(𝑖); 𝜽) = exp(𝑓(𝒙(𝑖); 𝜽))
∑𝐾

𝑘=1 exp(𝑓(𝒙(𝑘); 𝜽)

(3.8)

The softmax operator ensures that the network’s output vector of class probabilities is non-negative
and sums up to 1, thus 𝒚 and ̂𝒚 can be viewed as two distinct probability distributions. By averaging
over the entire training set, we can once again extract the aggregate cost function (𝒥(𝜽)):

𝒥𝐶𝐸(𝜽) = − 1
𝑁

𝑁
∑
𝑖=1

𝐾
∑
𝑗=1

𝑦(𝑖)
𝑗 log(̂𝑦(𝑖)

𝑗), (3.9)

where 𝑦(𝑖)
𝑗 and ̂𝑦(𝑖)

𝑗 are the true and predicted output for the 𝑖th input sample 𝒙𝑖 and the 𝑗th class.

3.3.2. Stochastic Gradient Descent
Gradient Descent (Robbins and Monro 1951), along with its variations, constitute the most widely
used parameter optimization methods in deep learning. As suggested by its name, gradient descent
is a gradient-based (or first-order) iterative optimization algorithm capable of finding a local minimum
or maximum on convex functions. Let us denote a differentiable function to be optimised 𝑦 = 𝑓(𝑥),
where 𝑥, 𝑦 ∈ ℝ, and 𝑓 ′(𝑥) = 𝑑𝑥

𝑑𝑦 its derivative (or gradient), corresponding to the slope of the function.
The slope indicates the effect of making a small change 𝜖 to the input 𝑥 on the output of the network:

3.3. Optimisation and Backpropagation 26

Figure 3.3: Illustration of the gradient descent algorithm, which utilizes the slope of the cost function to guide
the direction of movement for the parameters. Regardless of the initial position (positive or negative) of 𝑥, the
gradient descent will converge to a local minima. Figure courtesy of Ian Goodfellow and Courville 2018.

𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝜖𝑓 ′(𝑥). Hence, the gradient information can guide the direction of movement of the
parameters 𝜃, until they converge in a local minima, where 𝑓 ′(𝑥) ≈ 0, as illustrated on Figure 3.3. The
direction of steepest descent guides the iterative process and can define the following update rule:

𝒙′ = 𝒙 − 𝜖∇𝑥𝑓(𝒙) (3.10)

In the context of deep learning, gradient descent operates on the cost function and we are mostly
interested in finding a local minima (close to the global minimum), because of the vast parameter space
(in the thousands or even millions). A gradient descent step can be defined as:

∇𝜽𝒥(𝜽) = 1
𝑁

𝑁
∑
𝑖=1

∇𝜽ℒ𝑖(𝒙(𝑖), 𝑦(𝑖), 𝜽), (3.11)

with a computation cost of 𝒪(𝑁). However, deep learning is extremely “data-hungry”, often relying on
very large training datasets for better generalization, which can make gradient descent computationally
intractable, when the training set contains millions of samples. A possible workaround is stochastic
gradient descent (SGD) (Amari 1993), where only a significantly smaller minibatch of 𝑚 << 𝑁 sam-
ples is used to calculate the gradient. In practice, the expectation of the gradient, utilized by SGD, is
a good approximation of the full gradient and has been broadly adopted by deep learning approaches.
A stochastic gradient descent step can be defined as:

𝑮 = 1
𝑚∇𝜽

𝑚
∑
𝑖=1

ℒ𝑖(𝒙(𝑖), 𝑦(𝑖), 𝜽) (3.12)

The entire training set (of size 𝑁) is used for making multiple passes of randomly sampled mini-batches
of size 𝑚. Finally, the parameters of the network 𝜃 are updated by taking steps in the opposite direction
of the gradient: 𝜽 ← 𝜽 − 𝜖𝑮.

3.3.3. Backpropagation
In the previous subsection, the stochastic gradient descent procedure was explained, which necessi-
tates computing the derivative of the cost function with respect to the network parameters 𝜃, which
can be thousands or even millions. The backpropagation algorithm (Rumelhart, Hinton, and Williams
1986) facilitates this need for an efficient stochastic gradient descent computation. It involves comput-
ing the gradients of the outputs of the function (or layer) with respect to their inputs and parameters,

3.3. Optimisation and Backpropagation 27

starting from the final output of the network (corresponding to the value of the loss function) and work-
ing backward through the network layers. This recursive computation is terminated when the input
layer of the neural network has been reached, ensuring that all required derivatives are calculated in
the process. In essence, the whole procedure is an application of the chain rule of derivatives of
calculus. Finally, given a deep neural network with ℎ layers, backpropagation collects all the computed
derivatives into a vector of gradients as follows:

𝜵𝜽ℒ(𝑓(𝒙; 𝜽), 𝑦) = [𝜕ℒ
𝜕𝑤(ℎ) , 𝜕ℒ

𝜕𝑏(ℎ) , 𝜕𝐿
𝜕𝑤(ℎ−1) , 𝜕ℒ

𝜕𝑏(ℎ−1) , … , 𝜕ℒ
𝜕𝑤(1) , 𝜕ℒ

𝜕𝑏(1)]
⊤

, (3.13)

where 𝑤(𝑙) and 𝑏(𝑙) are the weights and biases of layer 𝑙 and 𝜵𝜽𝐿(𝑓(𝒙; 𝜽), 𝑦) a vector of partial deriva-
tives with respect to the neural network’s parameters.

4
Convolutional Neural Networks

The novel convolutional neural network (CNN) architecture, first introduced by LeCun, Boser, et al.
(1989), is specifically designed to handle contextual data with a “grid-like” structure. This property
makes CNNs highly suitable for processing image data (represented in 2𝐷 pixel grids) and thus a nat-
ural tool for efficiently tackling computer vision tasks. The first CNN variants (W. Zhang et al. 1990;
LeCun, Jackel, et al. 1995), were capable of extracting simple visual features, such as edges or corners,
but it was not until AlexNet (Krizhevsky, Sutskever, and Hinton 2012), when CNNs started achieving
groundbreaking results and firmly established a dominant role in computer vision problems. Before
further elaborating on the details and attractive qualities of the CNN architecture, let us consider the
limitations of MLPs when applied to image data. Firstly, an MLP would need to flatten an input image
(𝑁 × 𝑁 pixels), yielding an input dimension of 𝑁2. Therefore, when the image resolution is high, the
network would need a massive number of parameters, which makes the optimization process both time
and space inefficient. Additionally, an MLP operates on the latent assumption that each pixel is inde-
pendent (because of the flattened input), completely disregarding the spatial structure of an image,
which is really important for learning discriminative image features. CNNs are capable of overcoming
both of these MLP shortcomings, thanks to the convolution operator, finding applications in a wide
range of visual tasks (Eickenberg et al. 2017; Kuzovkin et al. 2018; Lindsay 2021).

Figure 4.1 provides an overview of the CNN architecture, which is typically composed of two
major components: (𝑖) a feature extractor and (𝑖𝑖) a classification head. The building blocks of the
feature extractor are convolutional layers, followed by non-linear activation functions, and some spatial
pooling, whereas the classification head flattens the feature extractor’s output, before passing it to fully
connected layers and finally a softmax operator, to extract class probabilities.

Figure 4.1: An overview of the CNN architecture.

28

4.1. Convolution 29

4.1. Convolution
Before delving deeper into CNNs, it seems appropriate to thoroughly understand the convolution
operator, from which CNNs are named. In particular, given two real-valued functions 𝑥, 𝑤 ∈ ℝ, the
convolution function can be defined as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎) 𝑑𝑎, (4.1)

where 𝑥 is referred to as the input, 𝑤 as the kernel, and the output 𝑠(𝑡) as a feature map. Intuitively,
the overlap between input functions is measured by convolution, when one (the kernel 𝑤 in this case)
has been flipped and shifted by 𝑡. For discrete functions, the integral becomes a summation:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
∞

∑
−∞

𝑥(𝑎)𝑤(𝑡 − 𝑎) (4.2)

However, in deep learning and particularly computer vision settings we are interested inmulti-dimensional
data (such as 2-dimensional images), and thus need to apply the convolution operator over multiple
axes. In the 2𝐷 case, the convolution function can be defined as

𝑺(𝑖, 𝑗) = (𝑰 ∗ 𝑲)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑚, 𝑛)𝑲(𝑖 − 𝑚, 𝑗 − 𝑛), (4.3)

where 𝑰, 𝑲 the 2-dimensional input and kernel, respectively. Due to the commutative property of
convolutions, Equation (4.3) can be rewritten to accommodate a more convenient implementation:

𝑺(𝑖, 𝑗) = (𝑲 ∗ 𝑰)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑖 − 𝑚, 𝑗 − 𝑛)𝑲(𝑚, 𝑛). (4.4)

Due to the commutative property of convolution, it seems like the kernel is flipped relative to the input.
This means that as 𝑚, 𝑛 increase, the input and kernel indexes increase and decrease, respectively.
Empirically, it has been shown that while this is useful for mathematical proofs, it is not, in fact, nec-
essary for actual implementation purposes. Instead, most deep learning libraries, such as PyTorch
(Paszke et al. 2019) implement cross-correlation as in Equation (4.5), which is equivalent to convolu-
tion, without the flipping of the kernel. For the remainder of this report, the terms cross-correlation and
convolution will be used interchangeably, as is common practice in the deep learning literature.

𝑺(𝑖, 𝑗) = (𝑲 ∗ 𝑰)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝑰(𝑖 + 𝑚, 𝑗 + 𝑛)𝑲(𝑚, 𝑛). (4.5)

Figure 4.2: An example of 2𝐷 convolution (cross-correlation), as implemented by most Deep Learning frame-
works. Figure courtesy of Ian Goodfellow and Courville 2018.

4.2. Pooling 30

Figure 4.2 provides a visual interpretation of the convolution operator, when applied on a 2𝐷 grid
(which could be interpreted as an image). In practise, the 2𝐷 kernel is a sliding window over the input
feature map. At each location, the products between the kernel and the input elements are calculated
and subsequently summed, resulting in the convolution output. Each output element corresponds to
a single application of the kernel on the input. In this simple example, only a single kernel is applied
on the input, but in the more general case multiple kernels could be applied by the same convolutional
layer. The number of kernels in a convolutional layer is called the number of channels.

4.2. Pooling

Figure 4.3: The main components
of a typical convolutional layer. Fig-
ure courtesy of Ian Goodfellow and
Courville 2018.

Another fundamental component of the CNN architecture are pool-
ing operations. The motivation behind the pooling operation is to
summarize certain regions of a feature map using aggregation
functions, for example, taking themaximum or average values over
a window of the input. Consequently, pooling can be used effec-
tively to reduce the size of the input featuremap (pooling with down-
sampling). Pooling operators are applied similarly to the convolu-
tional operators as in Figure 4.2, i.e., by using a sliding window over
the input feature map. The only distinction is that the linear combi-
nation of input and kernel elements of the convolution is replaced
by an aggregation function (e.g., maximum or average) over the
input elements in the case of pooling.

Pooling plays a crucial role in learning meaningful represen-
tations from images, in that it allows the network to be approxi-
mately invariant to small translations of the input. Invariance to
local translation implies that if we shift the input by a small amount,
the majority of the pooled output values remain unchanged. Invari-
ance can be highly valuable in cases where we are mostly inter-
ested in the presence of a particular feature rather than its precise
location. For instance, a class-discriminative feature can help us
recognize an image of its particular class regardless of its spatial
position in the image. Due to the pooling operators, CNNs are ro-
bust to slight shifts in the input data, allowing them to generalize
better and focus on detecting important features rather than their
exact positions. Finally, Figure 4.3 illustrates the components of a
convolutional layer, which is composed of a convolution stage,
followed by an activation function (non-linearity) and finally a
pooling stage, and in turn constitutes the building block of the
CNN architecture.

4.3. Feature Extraction with CNNs
Several components influence the behavior of a convolutional layer (in a CNN), such as the padding
and stride values, along with the kernel size and the number of channels. Therefore, it is not trivial
to infer the impact of each kernel and convolutional operation. Empirically, however, it has been shown
that each kernel acts as an individual feature extractor, and thus by stacking these kernels and
learning their weights, a CNN is, in fact, learning a wide range of image features.

Figure 4.4 was generated using feature visualization techniques (Olah, Mordvintsev, and Schu-
bert 2018) and showcases the different features and patterns a CNN is capable of extracting from
images. It should be noted that the deeper a convolutional layer is, the more intricate and compli-
cated patterns it is able to detect. In particular, the first layers typically learn simple and much more
generic visual features, such as edges, lines, and basic shapes and textures. As the number of lay-
ers increases, however, the network is able to aggregate the information from previous layers to learn
muchmore specific features, associated with objects and classes. For instance, in Figure 4.4 the
network has learnt features that correspond to the shape of a dog head and snout. This demonstrates

4.4. Deep Residual Networks 31

Figure 4.4: Features learned by a CNN. As the number of layers increases, the complexity of the features and
patterns learned by the network increases as well. Figure courtesy of Molnar 2020.

how CNNs progressively acquire more sophisticated and discerning representations as information
passes through deeper layers of the network.

4.4. Deep Residual Networks
A recurring question regarding deep neural networks, and CNNs in particular, can be formulated as:
“Is deeper always better ?”. In fact, several studies (Simonyan and Zisserman 2014; Szegedy et al.
2015) have shown that network depth is a crucial factor for CNN performance. However, a possible
obstacle to stacking an ever increasing number of layers is the vanishing gradient problem (Hochreiter
1991; Bengio, Simard, and Frasconi 1994), which hampers the optimization and convergence of the
network. Moreover, other studies (He and Sun 2015; He, X. Zhang, et al. 2016) have explored a
degradation behavior: as the network depth increases the accuracy saturates and then degrades
rapidly. This higher training error of deeper models has been shown to be unrelated to overfitting (He
and Sun 2015), indicating that not all parts of a deep network are similarly easy to optimize.

Figure 4.5: The building block of residual
learning. Figure courtesy of He, X. Zhang,
et al. 2016.

Deep residual networks (ResNets) (He, X. Zhang,
et al. 2016) address both of these issues and have been
shown to (𝑖) make deeper networks much easier to optimize
and (𝑖𝑖) significantly improve performance on several down-
stream tasks. Rather than relying on the expectation that a
few stacked layers will directly learn the desired underlying
mapping, ResNets explicitly let these layers fit a residual
mapping. In this setting, the layers are designed to learn
the residual or the difference between the desired mapping
and the input, and, in doing so, they can focus on captur-
ing any deviations needed to push the initial input closer
to the desired output. ResNets are implemented by lever-
aging identity short-cut connections (Bishop 1995; Ripley
2007) as shown in Figure 4.5, which skip one or more layers
and are used to stack the outputs or shallower and deeper
layers. Finally, ResNets can be easily implemented by most deep learning libraries, such as PyTorch
(Paszke et al. 2019), without adding extra parameters or computational complexity. BECLR utilizes the
ResNet architecture as the backbone network (or feature extractor) for both the student and teacher
paths. After pretraining is completed, only the student ResNet encoder is kept, which is in turn utilised
for few-shot image classification.

5
Self-Supervised Learning

Self-supervised learning (SSL) constitutes a really promising approach to efficiently advancemachine
learning and has even been referred to as the “dark matter of artificial intelligence” (Balestriero et
al. 2023). In contrast to traditional supervised learning, which relies on labeled data, SSL can take
advantage of large amounts of unlabeled data to learn meaningful representations (T. Chen et al. 2020;
Misra and Maaten 2020). SSL has already been instrumental in pushing the state-of-the-art in the
natural language processing (NLP) (Brown et al. 2005; Popel et al. 2020) domain on various tasks
by exploiting large-scale unlabeled text corpora. Following the success of SSL in NLP, there has been
increasing interest in applying SSL on computer vision tasks. In fact, SEER (Goyal, Caron, et al. 2021)
was trained on 1 billion images and successfully demonstrated how SSL approaches can be on par
or even surpass supervised models on highly competitive computer vision benchmarks like ImageNet
(Deng et al. 2009), without having access to any labels.

In the absence of supervision, SSL methods define pretext tasks from unlabeled inputs to
generate descriptive and interpretable representations (Hastie et al. 2009; Ian Goodfellow and Courville
2018). In the NLP case for instance, a common SSL pretext task involves the masking of a word and the
prediction of its surrounding words, which encourage the network to capture inter-word dependencies.
The same intuition can be transferred to the computer vision domain, where SSL models are learning to
predict masked patches of an image or representation (Grill et al. 2020; He, Xinlei Chen, et al. 2022a).
An alternative SSL objective is to encourage different views of the same image, typically generated
through random data augmentation techniques, to bemapped to similar locations in the representation
space (T. Chen et al. 2020; Xinlei Chen and He 2021). The model is pre-trained on the aforementioned
pretext tasks, which allow for the learning of useful representations (stored in encoder’s frozen weights)
that can in turn be applied to various downstream tasks.

Figure 5.1: General pipeline of SSL. The knowledge (representations, feature extractor) learned from a pretext
task is transferred to downstream tasks. Figure courtesy of Bastanlar and Orhan 2022.

32

5.1. Contrastive SSL 33

SSLmethods can be applied on vast corpora of unlabeled data, which comes with many benefits,
such as learning generic representations, applicable to multiple tasks. In contrast, supervised learning
methods are trained on an “a priori” specified task based on the availability of labeled data, and their
learned features can be too rigid to adapt to novel tasks. SSL methods have also gained popularity
in domains where labels are naturally scarce or costly to obtain, such as medicine, or when the target
task cannot be known “a priori” (Krishnan, Rajpurkar, and Topol 2022; Ciga, T. Xu, and Martel n.d.),
whereas their learned representations have been shown to be more robust to label corruption and input
perturbations (Hendrycks et al. 2019; Goyal, Duval, et al. 2022) compared to supervised features.

A high-level overview of the SSL pipeline is given in Figure 5.1. Visual representations (CNN fea-
ture extractor) are learned through self-supervision by solving a pretext task on an unlabeled dataset
and are subsequently transferred and adapted to other downstream computer vision tasks (e.g., im-
age classification) through supervised fine-tuning. The performance of downstream tasks is highly
dependent on the quality of the SSL learned representations; therefore, SSL can also be considered
as a form of representation learning. In representation learning we are not interested in the pre-
text performance, but rather in the quality of the learned representations. Ideally, the representation
space should include semantic and structural information, e.g., embeddings from the same latent class
should correspond to similar areas of the embedding space, while being separable from embeddings
of different classes, as shown in Figure 5.2.

Figure 5.2: Given three distinct images 𝒙1, 𝒙2 and 𝒙3, the network should ideally learn to place the dogs closer
together (𝒛1 and 𝒛2) in the representation space and the cat (𝒛3) further away.

5.1. Contrastive SSL
The principle of encouraging similarity between semantically transformed versions of input constitutes
the basis of contrastive learning in the context of SSL. This principle was first turned into a learning
objective by the contrastive loss, introduced in (Bromley et al. 1993) and formally defined in (Chopra,
Hadsell, and LeCun 2005; Hadsell, Chopra, and LeCun 2006). In contrastive learning, the goal is to
train a network to be able to predict whether two inputs belong to the same class or not and accordingly
adjust their embeddings to be closer or farther from each other. In the SSL setting, known semantic-
preserving data transformations are applied to identify similar inputs, since we do not have access
to ground-truth labels. For each input image, the variants produced through the transformations are
called positives and all remaining images and their variations are considered negatives. One of the
most prominent methods coming from the contrastive paradigm is SimCLR (T. Chen et al. 2020), which
we will also use as an archetype to dive deeper into contrastive learning.

5.1.1. SimCLR
The fundamental idea behind SimCLR is rather elegant and intuitive, encouraging the similarity be-
tween two augmented views of an image. First, a minibatch of 𝑁 random images is sampled. The
process then involves forming two positive views (𝑥𝑖, 𝑥+

𝑖) of an image by applying a combination of ran-
dom image augmentations, such as random cropping, resizing, color jittering etc., resulting in a total of
2𝑁 input images. Figure 5.3 showcases some of the typical data augmentations applied by SimCLR
and other contrastive methods. Negative samples are not sampled explicitly. Instead, given a positive
pair (𝑥𝑖, 𝑥+

𝑖), the rest 2(𝑁 −1) samples are treated as negatives. The learned representations are more
robust and generalizable since the network is encouraged to learn augmentation invariance.

5.1. Contrastive SSL 34

(a) Original (b) Crop & resize (c) Crop, resize & flip (d) Color distort (drop) (e) Color distort (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 5.3: Illustrations of data augmentation operators, commonly applied in contrastive SSL. Figure courtesy
of T. Chen et al. 2020.

Figure 5.4: A simple framework for
contrastive learning of visual represen-
tations. Figure courtesy of T. Chen et
al. 2020.

Figure 5.5: The two positive views
should be close to each other in the
embedding space while being repelled
from the representations of other aug-
mented images.

All input images are then encoded by a CNN encoder
ℎ𝑖 = 𝑓(𝑥𝑖), followed by an MLP projection head 𝑧𝑖 = 𝑔(ℎ𝑖), which
maps the output of the encoder to a representation space, where
the contrastive loss is applied, as shown in Figure 5.4. Finally,
given an input image, the objective of the contrastive loss is to
bring its embedding closer to that of its positive pair in the repre-
sentation space, while repelling the representations of all nega-
tive samples, as shown in Figure 5.5. The contrastive loss that
SimCLR leverages, is called NT-Xent (normalized temperature-
scaled cross-entropy loss) (T. Chen et al. 2020) and is a variant
of the fundamental InfoNCE loss (Oord, Li, and Vinyals 2018).
Equation (5.1) defines the loss for a positive pair (𝑖, 𝑖+), with the
final loss being the average of all positive pairs in a batch.

ℓ(𝑖, 𝑖+) = − log
exp (d [𝒛𝑖, 𝒛+

𝑖] /𝜏)
∑2𝑁

𝑗=1 𝟙[𝑗≠𝑖] exp (d [𝒛𝑖, 𝒛𝑗] /𝜏)
, (5.1)

where 𝜏 the temperature scaling factor and d a distance metric,
in this case the negative cosine similarity:

d [𝒛𝑖, 𝒛𝑗] = −𝒛⊤
𝑖 𝒛𝑗

(‖𝒛𝑖‖ ∥𝒛𝑗∥)
(5.2)

A key component of Equation (5.1) is the non-parametric soft-
max, initially introduced by Wu et al. 2018, which has been
adopted bymost contrastivemethods in the literature. This name
is motivated by removing the need to have a “parametrized” lin-
ear layer on top of the representation to compute the softmax op-
erator, but instead directly comparing representations with each
other.

Finally, the temperature parameter 𝜏 controls the “sharp-
ness” of the output probability distributions, with higher val-
ues of 𝜏 leading to “softer” or less confident predictions (e.g.,
[0.2, 0.2, 0.6]) and 𝜏 → 0 leading to “sharper” predictions (e.g.,
[0.01, 0.01, 0.98]). In practice, lower temperature values can help
the network avoid a potential representation collapse. A repre-
sentation collapse occurs when the network learns a “shortcut”,

5.2. Self-Distillation SSL 35

i.e., manages to get incredibly low values for the contrastive loss, by simply outputting the same rep-
resentation, regardless of the input. Nevertheless, such representations are redundant for any down-
stream task, which requires the learned features to be discriminative and hold semantic information.

5.1.2. NNCLR
Another popular contrastive learning method is NNCLR (Nearest-Neighbor Contrastive Learning of
Visual Representations) (Dwibedi et al. 2021), which builds upon SimCLR, but also introduces amem-
ory queue of past representations, as a means of sampling positives of higher quality. In particular,
despite the profound success of contrastive learning in SSL, these approaches strictly rely on data
augmentations for positive generation, which cannot cover all the variance in a given class (e.g., ob-
ject deformations, different viewpoints). Even more importantly, traditional contrastive learning tries to
enforce consistency only at the instance-level (each image in a batch corresponds to a unique class),
rather than the class-level. The possibility of additional positives being present within a batch (e.g.,
different cat images) is not only overlooked, but additionally such samples are treated as negatives.
Consequently, the network could learn different representations for images belonging to the same la-
tent class. NNCLR attempts to alleviate these problems by going beyond single-instance positives.

Figure 5.6: Overview of NNCLR training. Figure courtesy of Dwibedi et al. 2021.

As in SimCLR, for each image in a batch we generate two views through random data augmen-
tations, which are then passed through the network to get the embeddings 𝒛𝒊 on which the contrastive
loss operates. In contrast to SimCLR however, NNCLR enforces consistency (in the contrastive loss)
between the nearest neighbor of 𝒛𝒊 and 𝒛+

𝒊 , that is:

ℓ(𝑖, 𝑖+) = − log
exp (d [NN(𝒛𝑖), 𝒛+

𝑖] /𝜏)
∑2𝑁

𝑗=1 𝟙[𝑗≠𝑖] exp (d [NN(𝒛𝑖), 𝒛𝑗] /𝜏)
, (5.3)

where NN(𝒛𝑖) denotes the nearest neighbour of 𝒛𝑖 from the memory. The memory is implemented as
a FIFO (fist in first out) queue of past representations, similarly to He, Fan, et al. 2020, which tries
to capture the global distribution of the training set. Figure 5.6 shows an overview of the NNCLR
architecture. The nearest neighbor of an image can be an image of the same latent class, which,
however, does not necessarily correspond to the same original instance. The positive pairs used by
NNCLR have been shown to be more useful to the network, since they incorporate information that a
contrastive loss typically ignores. NNCLR led to performance improvements, compared to traditional
contrastive SSL approaches, when applied on computer vision benchmarks such as ImageNet.

5.2. Self-Distillation SSL
The working principle of self-distillation methods relies on a rather straightforward mechanism. This
involves, similarly to contrastive methods, the generation of two different views. However, these two
views are fed into two separate encoders, often referred to as student and teacher. The objective is
then to map the student encoder’s output to that of the teacher, by relying on a prediction head and
typically an asymmetry in the architecture. This is achieved by applying a contrastive loss between the

5.2. Self-Distillation SSL 36

teacher’s projected representations and the student’s predicted representations. Various techniques
have been developed to prevent representation collapse, with one common approach involving up-
dating the teacher’s weights with a running average of the student’s weights. This EMA (exponential
moving average) or self-distillation encoder scheme can help maintain diversity in the representa-
tions learned by the encoders and promote more meaningful learning. By updating the encoders in this
manner, self-distillation methods can achieve better performance, compared to their pure contrastive
counterparts, and generate more diverse and informative embeddings for downstream tasks. Two of
the most prominent self-distillation SSL approaches are BYOL (Grill et al. 2020) and SimSiam (Xinlei
Chen and He 2021), which will be used to dig deeper into the mechanics of self-distillation.

5.2.1. BYOL
BYOL (Bootstrap Your Own Latent) was the first method to introduce self-distillation as a means of
preventing representation collapse. In BYOL, two encoder networks are used together with a predictor
to map the output of one encoder to the other. The network responsible for predicting the output is
known as the online or student network, while the network producing the target output is referred to as
the target or teacher network. Different views of the same image, which are created through various
image transformations, similarly to those shown on Figure 5.3, including random resizing, cropping,
color jittering, and brightness alterations, are given as input to each network.

As the training progresses, the student network is updated using stochastic gradient descent,
just as in normal deep learning training. However, normal SGD training is not applied for the teacher
network. Instead of using direct gradient updates, the weights of the teacher network are updated
with an exponential moving average (EMA) of the weights of the student network: 𝜉 ← 𝑚 ∗ 𝜉 +
(1 − 𝑚) ∗ 𝜃, where 𝜃, 𝜉 are the parameters of the student and the teacher, respectively, and 𝑚 the
momentum parameter that controls to what degree the teacher network preserves its history. The slow
updates induced by EMA create an asymmetry that is crucial to the success of BYOL. A high-level
overview of BYOL’s architecture is shown in Figure 5.7. The combination of self-distillation and the
use of image augmentations leads to a powerful learning mechanism that helps the student network
produce meaningful and diverse representations without collapsing to trivial solutions. This approach
has proven to be effective in various self-supervised learning tasks and has led to state-of-the-art results
in the field.

Figure 5.7: BYOL’s architecture. Figure courtesy of Grill et al. 2020.

Before elaborating on BYOL’s loss function, let us take a closer look on InfoNCE (Oord, Li, and
Vinyals 2018), which has been the basis of most modern contrastive loss functions:

ℒ𝑖𝑁𝐶𝐸 = − 1
2𝑁

2𝑁
∑
𝑖=1

log
exp (d [𝒛𝑖, 𝒛+

𝑖] /𝜏)
∑𝑗≠𝑖 exp (d [𝒛𝑖, 𝒛𝑗] /𝜏) =

− 1
𝑁

𝑁
∑
𝑖=1

d [𝒛𝑖, 𝒛+
𝑖] /𝜏

⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑝𝑜𝑠

+ 1
2𝑁

2𝑁
∑
𝑖=1

log∑
𝑗≠𝑖

exp (d [𝒛𝑖, 𝒛𝑗] /𝜏)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℒ𝑛𝑒𝑔

(5.4)

5.3. Masked Image Modeling 37

InfoNCE can be decomposed into two distinct terms: (𝑖) ℒ𝑝𝑜𝑠, only applied between positive pairs 𝒛𝑖
and 𝒛+

𝑖 to bring their representations together, and (𝑖𝑖) ℒ𝑛𝑒𝑔, which pushes each representation away
from all other batch representations and has a regularizing effect (preventing representation collapse).
BYOL discards the negative term ℒ𝑛𝑒𝑔 all together, relying on the self-distillation mechanism to prevent
representations from collapsing:

ℒ𝐵𝑌 𝑂𝐿 = 1
2𝑁

𝑁
∑
𝑖=1

d [𝒑𝑖, 𝒛+
𝑖] + d [𝒛𝑖, 𝒑+

𝑖] , (5.5)

where 𝒑 = 𝑞𝜃(𝑔𝜃(𝑓𝜃(𝒙))) the student’s predicted representations and 𝒛 = 𝑔𝜉(𝑓𝜉(𝒙)) the teacher’s pro-
jected representations. The distance metric d used by BYOL is the euclidean distance and the embed-
dings are 𝑙2 normalized before its application.

5.2.2. SimSiam

Figure 5.8: SimSiam’s simple
Siamese architecture. Figure courtesy
of Xinlei Chen and He 2021.

The main objective of SimSiam (Xinlei Chen and He 2021) was
to understand which components of BYOL are essential for pre-
venting representations from collapsing. It should be noted that
contrastive SSL avoided trivial representations by relying on
negative samples, whereas BYOL relied on momentum en-
coder. SimSiam showed that it is possible to prevent represen-
tations from collapsing in Siamese (same architecture for stu-
dent and teacher) networks without relying on any of these ap-
proaches. It showed that BYOL’s EMA is not necessary in prac-
tice, albeit it leads to a small boost in performance. SimSiam
shares the weights between the student and the teacher, with a
stop-gradient operation being applied on the teacher path. An
overview of SimSiam’s architecture is shown in Figure 5.8. The
loss function of SimSiam is very similar to that of BYOL and is
described as:

ℒ𝐵𝑌 𝑂𝐿 = − 1
2𝑁

𝑁
∑
𝑖=1

sim [𝒑𝑖, 𝒛+
𝑖] + sim [𝒛𝑖, 𝒑+

𝑖] , (5.6)

where sim [𝒛𝑖, 𝒛𝑗] = −𝒛⊤
𝑖 𝒛𝑗

(‖𝒛𝑖‖∥𝒛𝑗∥) the cosine similarity, which replaces the euclidean distance of BYOL.
SimSiam acted as a simple baseline, showing that the Siamese architecture can naturally introduce
inductive biases to model invariance. In fact, Xinlei Chen and He 2021 argue that similar to how
convolutions can model translation invariance via weight-sharing, weight-sharing Siamese networks
can model invariance with respect to more complicated data transformations, , i.e., data augmentations.

BECLR adopts the asymmetrical architecture and EMA encoder of BYOL. This is combined with
a less biased version of SimSiam’s contrastive loss, which also includes a negative loss term. Finally,
similar to NNCLR, BECLR exploits past representations to directly modify the contrastive objective and
introduce more useful positives in a training batch. However, instead of replacing the teacher’s embed-
dings with that of their nearest neighbours and using a simplistic FIFO memory queue, we leverage
a class-cognizant dynamic clustered memory (DyCE). DyCE is iteratively updated with equipartitioned
batch assignments, converging into a highly-separable paritioned latent space and enabling the mean-
ingful positive sampling strategy and batch enhancement of BECLR. This allows BECLR to distill both
instance- and class-level insights within a contrastive learning framework.

5.3. Masked Image Modeling
In the early stages of self-supervised pretraining for computer vision, various prominent approaches
applied some form of degradation to input images to encourage more robust representations, such
as decolorization (R. Zhang, Isola, and Efros 2016), Gaussian noise (Vincent et al. 2008), or patch
shuffling (Noroozi and Favaro 2016). Another such technique was called context encoders (Pathak
et al. 2016), where large parts of an image were masked out and replaced with white pixels. Then
an auto-encoder was trained to inpaint the missing parts. However, this early attempt at masked

5.3. Masked Image Modeling 38

Figure 5.9: High-level overview of masked image modelling.

image modeling (MIM) failed to achieve competitive performance compared to supervised learning in
downstream tasks. Figure 5.9 provides a high-level abstraction of MIM.

More recently, BERT (Devlin et al. 2018) revolutionized the NLP world by introducing masked
language modeling (MLM), which involved placing text tokens in a transformer language model with
learnable mask tokens and training the model to recover the original text. MLM can be considered a
form of SSL, which relies on input degradation (masking), and remains extremely popular for training
state-of-the-art large language models.

Following the success of MLM, Dosovitskiy et al. 2020 introduced the Vision Transformer in
the context of MIM and computer vision. They masked-out patches of an image and trained the model
to directly predict pixel values, yet found this pretraining strategy ineffective compared to its supervised
counterparts. It turns out that directly applying the BERT strategy to images can be challenging, since
image patches are eligible for a vastly higher number of possible values than words. Instead, BEiT
(Bao et al. 2021) treats MIM as a regression problem, using an autoencoder to map image patches
to discrete tokens and then pretraining a vision transformer to predict the discrete token values for
masked tokens. BEiT achieved significant downstream task improvement compared to both supervised
and self-supervised approaches, yet its performance is dependent on a powerful autoencoder for the
creation of the discrete tokens. More recent approaches (He, Xinlei Chen, et al. 2022b; Xie et al. 2022)
directly reconstruct masked image patches instead of using discrete image tokens extracted from an
encoder, as in BEiT, advancing the downstream performance on several tasks and showcasing that
MIM can be an effective SSL technique for computer vision. Finally, some of the most recent and
successful approaches to representation learning iBOT (J. Zhou et al. 2021) and DINOV2 (Oquab
et al. 2023) employ a mix of MIM and more classical SSL approaches, such as self-distillation. For
instance, in iBOT the MIM reconstruction objective is applied in latent space, with the teacher network
providing the reconstruction targets, instead of the original image. The MIM objective is combined with
a contrastive loss based on self-distillation, as shown on Figure 5.10.

Figure 5.10: Overview of iBOT framework. Figure courtesy of J. Zhou et al. 2021.

5.3. Masked Image Modeling 39

Figure 5.11: Overview of MSN framework. Figure courtesy of Assran, Caron, Misra, Bojanowski, Bordes, et al.
2022.

5.3.1. Masked Siamese Networks
Another powerful SSL approach, which relies on masking, is Masked Siamese Networks (MSN) (As-
sran, Caron, Misra, Bojanowski, Bordes, et al. 2022), which further pushed the state-of-the-art on stan-
dard computer vision benchmarks, along with showing a promising performance in extreme low-shot
settings (e.g., using only 1−5 images per class on an ImageNet downstream task). MSN’s fundamental
idea is to apply mask denoising while avoiding pixel- and token-level reconstruction, but rather relying
on self-distillation and a contrastive loss variant. A schematic of the method is illustrated in Figure 5.11.
The architecture is similar to that of self-distillation SSL methods, with the distinction that a patch-wise
masking step is applied on the anchor (or student) view, while the target (or teacher) view remains
unmasked. The objective is for the vision transformer (ViT) encoders to output similar representations
for both views. MSN does not directly predict the masked patches, but rather performs an implicit de-
noising step at the representation level, by making the masked view’s predicted prototype assignments
consistent with those of the unmasked view. Another advantage of MSN is its computational scaling,
since only the unmasked patches are passed through the ViT network, which is even more evident with
more aggressive masking ratios.

Unlike standard contrastive approaches, which apply the loss directly to the student and teacher
representations, in MSN learning occurs by computing a soft distribution (can be viewed as a soft
assignment problem) over a set of stored prototypes for both views, much like clustering-based SSL
approaches (Caron, Misra, et al. 2020; Assran, Caron, Misra, Bojanowski, Joulin, et al. 2021). These
assignments of anchor and target representations are calculated using the time-efficient Sinkhorn-
Knopp algorithm (Cuturi 2013), which solves a relaxed variant of the Optimal Transport (OT) prob-
lem (Cuturi 2013; Peyré, Cuturi, et al. 2019). Finally, the objective is to bring the assignments of the
representations of masked anchor and unmasked target views as close as possible. Several masked
anchor views are generated for each image, and the loss is aggregated over all of them.

Given 𝐾 > 1 learnable prototypes 𝒒 ∈ ℝ𝐾×𝑑 and a masked anchor representation 𝑧𝑖,𝑚, MSN
finds an optimal transport plan or “prediction” 𝑝𝑖,𝑚 in the K-dimensional simplex bymeasuring the cosine
similarity to the prototype matrix:

𝑝𝑖,𝑚 = softmax(𝑧𝑖,𝑚 ⋅ 𝒒
𝜏) (5.7)

A standard cross-entropy loss 𝐻(𝑝+
𝑖 , 𝑝𝑖,𝑚) as in Equation (3.8) between the student 𝑝𝑖,𝑚 and teacher

predictions 𝑝+
𝑖 is used to penalize different predictions. Additionally, the mean entropy maximization

(ME-MAX) regularizer is utilized to encourage the use of the entire set of prototypes, as in (Joulin and
Bach 2012; Assran, Caron, Misra, Bojanowski, Joulin, et al. 2021). By aggregating over the number of

5.3. Masked Image Modeling 40

masked views and the number of images in the batch, we get the final loss:

ℒ𝑀𝑆𝑁 = 1
𝑀𝐵

𝐵
∑
𝑖=1

𝑀
∑
𝑚=1

𝐻(𝑝+
𝑖 , 𝑝𝑖,𝑚) − 𝜆𝐻(̄𝑝), (5.8)

where ̄𝑝 = 1
𝑀𝐵 ∑𝐵

𝑖=1 ∑𝑀
𝑚=1 𝑝𝑖,𝑚 and 𝜆 controls the effect of the ME-MAX regularization. Finally, gra-

dients are computer only for the anchor network, with the target network’s parameters being updated
with an EMA of the anchor network’s parameters, much like the self-distillation approaches.

Similarly to MSN, BECLR applies patch-wise masking on the student path and relies on the
contrastive loss to enforce an implicit mask denoising step. The motivation for MIM is similar to that
of data augmentations in that by making the training task more difficult, the network is encouraged to
learn better representations, which are robust to input degradation (like masking).

6
Few-Shot Learning

Deep learning has been crucial for advancing major progress in various scientific fields, including com-
puter vision, speech recognition, natural language processing, and more. However, despite these
breakthroughs, deep learning and artificial intelligence (AI) in general are largely dependent on the
availability of vast amounts of data to allow models to learn meaningful features and generalizations. In
stark contrast, human intelligence allows learning new abstract concepts or even skills with minimal
“data” examples. For example, children would be able to easily recognize cats and distinguish them
from other animals after only encountering them a few times. Similarly, humans are capable of de-
tecting patterns and similarities between objects (analogous to how deep networks learn discriminative
features) with just one or a few examples and are adept at inferring relationships and abstractions. The
motivation behind few-shot learning (FSL) is to bridge this gap between AI and human intelligence. In
this setting, the model is trained to be able to generalize to new classes and tasks when provided with
only a few samples per class. In the context of this work, we focus on the specific few-shot learning
instance of image classification, where the downstream task involves the prediction of class labels
for an unlabeled dataset (query set) based on a rather small labeled dataset (support set) with only a
few samples (typically 1 to 5) per evaluated class.

Figure 6.1: Illustration of a (2-way, 4-shot) episodic setting. Each dotted box corresponds to a task or episode
𝒯𝑖, which is comprised of a labelled support 𝒮𝑖 and unlabelled query 𝒬𝑖 set. Meta learning approaches sample
multiple tasks during training, instead of larger conventional batches. During testing, typically 600-2000 tasks are
sampled for an unbiased estimate of the performance, but only 1 task 𝒯𝑗 is shown for the sake of simplicity.

41

6.1. Problem Formulation 42

Our approach follows the standard practice of few-shot image classification approaches, which
consists of two sequential phases: (𝑖) pretraining on a large dataset of base classes, followed by (𝑖𝑖)
simple inference or fine-tuning on an unseen smaller dataset, consisting of novel classes. The goal of
the pretraining phase is to learn a global feature extractor (i.e., backbone network or encoder) from the
base dataset, followed by simply fitting a classifier (inference) or learning a trainable classification layer
(supervised fine-tuning) on top of the frozen feature extractor to adopt to the novel classes. The base
and novel classes are either mutually exclusive classes of the same dataset (in-domain) or originate
from different datasets (cross-domain). In this paper we tackle the more challenging unsupervised
few-shot learning (U-FSL) problem, which means that we do not have access to the actual class labels
for the base dataset. Hence, we adopt a self-supervised (also interchangeably called “unsupervised”
in the literature) pretraining, followed by a simple supervised inference phase.

Two primary approaches have emerged to address the few-shot learning problem.

Meta Learning. In this approach, the algorithm is designed to “learn how to learn”, with the goal
of finding a model that can quickly adapt and generalize to new tasks or classes. Meta learning was
one of the first approaches that successfully tackled the challenging FSL task, with various methods
falling under this category (Finn, Abbeel, and Levine 2017; Hsu, Levine, and Finn 2018; Antoniou and
Storkey 2019; Ji et al. 2019; Khodadadeh, Boloni, and Shah 2019; D. B. Lee et al. 2020; Ye, Han, and
Zhan 2022). Meta learning is based on an episodic training process, which involves creating synthetic
“tasks” (or episodes) that mimic the downstream, also episodic, fine-tuning phase. By repeatedly ex-
posing the model to a variety of episodes, it learns to extract generalized patterns and representations.

Transfer Learning. In this approach, the model is initially trained non-episodically to learn
optimal representations, which can be generalized to novel tasks with minimal updates, during the
pretraining phase from a large base dataset. The pre-trained feature extractor, usually trained using a
form of metric learning (e.g., contrastive learning), captures the underlying structure of the unlabeled
data. Then, during the episodic fine-tuning or inference phase, a simple predictor, often a linear layer
or classifier, is combined with the pre-trained feature extractor for rapid adaptation to novel classes.
The better the feature extractor captures the global structure of the unlabeled data, the easier it will be
for the predictor to adapt to novel unseen classes in the testing phase. Several methods have adopted
the transfer learning approach to FSL (Dhillon et al. 2019; Medina, Devos, and Grossglauser 2020;
Yonglong Tian et al. 2020; W. Chen et al. 2021; Kishorkumar Shirekar, A. Singh, and Jamali-Rad 2022;
Lu et al. 2022).

Despite the popularity of both approaches, several recent studies (Dhillon et al. 2019; Med-
ina, Devos, and Grossglauser 2020; Yonglong Tian et al. 2020; Laenen and Bertinetto 2021; Lu et al.
2022) have questioned the suitability of meta-learning on the few-shot classification task and showed
that episodic meta-learning training is data-inefficient, failing to adequately exploit the training batch.
These studies have shown competitive performance on FSL benchmarks, without using episodic pre-
training, but rather following the transfer learning approach. Notably, in the U-FSL setting, the current
state-of-the-art (Lu et al. 2022) on the two most popular few-shot classification benchmarks: miniIm-
ageNet (Vinyals et al. 2016) and tieredImageNet (Ren et al. 2018) adopts a self-distillation-based
self-supervised pretraining, inspired from SimSiam (Xinlei Chen and He 2021), and conclusively
demonstrates transfer learning’s superiority to meta learning in terms of downstream classification per-
formance. Our approach BECLR also follows the transfer learning paradigm and manages to further
advance the state-of-the-art performance on both benchmarks in the U-FSL regime.

6.1. Problem Formulation
Let us consider a large labeled dataset 𝒟 = {(𝒙𝑖, 𝑦𝑖)}𝑀

𝑖=1 of images 𝒙𝒊, labels 𝑦𝑖 and of size 𝑀 . This
dataset is divided into three disjoint datasets {𝒟tr ∪ 𝒟val ∪ 𝒟tst} ∈ 𝒟, referring to the training, valida-
tion and test subsets, respectively. The validation set is typically used for model selection, and the test
set is for evaluation. The base classes contained in the training set are mutually exclusive to the novel
classes contained in the validation and test sets. The training set 𝒟tr = {(𝒙𝑖, 𝑦𝑖)}𝑀 tr

𝑖=1 is composed of a
set of randomly sampled images in the case of transfer learning, or a set of randomly sampled tasks
𝒯𝑖 in the case of meta learning. Model selection and testing are performed by randomly sampling

6.2. Model Agnostic Meta Learning 43

tasks 𝒯𝑗 from 𝒟val and 𝒟tst, respectively. A task 𝒯𝑖 consists of two parts: (𝑖) the support set 𝒮, from
which the model learns, and (𝑖𝑖) the query set 𝒬, on which the model is evaluated. The support set
𝒮 = {𝒙𝑠

𝑖 , 𝑦𝑠
𝑖 }𝑁𝐾

𝑖=1 contains 𝐾 labeled random samples from 𝑁 different classes, while 𝑄 unlabeled sam-
ples for each class comprise the query set 𝒬 = {𝒙𝑞

𝑗}𝑁𝑄
𝑗=1 . In a 𝑁 -way, 𝐾-shot task (also referred to as

episode), the number of labeled samples 𝐾 is relatively small (e.g.„ 1 or 5). By convention, we denote
a few-shot task as: 𝒯𝑖 = 𝒮 ∪ 𝒬 with (𝑁 -way, 𝐾-shot). Figure 6.1 shows some (2-way, 4-shot) training
and testing tasks.

6.2. Model Agnostic Meta Learning
Meta-learning (Schmidhuber 1987), often referred to as “learning-to-learn”, involves improving a learn-
ing algorithm by leveraging multiple learning episodes, distinguishing it from conventional machine
learning, which utilizes multiple data instances. Meta-learning is comprised of (𝑖) an inner learning
algorithm, which solves a task (e.g., image classification), and (𝑖𝑖) an outer algorithm, which updates
the inner parameters to improve a broader and more general objective.

Figure 6.2: MAML optimizes for model parameters
𝜃, capable of quickly adapting to novel tasks. Figure
courtesy of Finn, Abbeel, and Levine 2017.

Figure 6.3: MAML algorithm for FSL. The support
set for each training task is used to compute the
inner updates 𝜃′, with the query set being evaluated
on the inner updated parameters. The loss applied
on the task query sets is used for meta-updating 𝜃,
through backpropagation. Figure courtesy of Finn,
Abbeel, and Levine 2017.

Model-agnostic meta-learning (MAML) (Finn,
Abbeel, and Levine 2017) constitutes one of the fun-
damental few-shot meta-learning-based methods,
aiming to improve the learning strategy over multi-
ple training episodes. Its main objective is to find
an initial set of model weights that can be quickly
adapted to new tasks with just a few gradient de-
scent steps. The sensitivity of the loss function to
the parameters of new tasks 𝜃′

𝑖 is maximized, allow-
ing small changes in the parameters to lead to sig-
nificant changes in the loss of the task. This allows
quicker adaptation to new tasks. As shown in Fig-
ure 6.2 given a neural network 𝑓𝜃 to be optimized
for FSL, the objective is to find an optimal set of pa-
rameters, capable of fast generalization (with only a
few steps of gradient descent). Figure 6.3 describes
the entire training process, which involves perform-
ing a few gradient descent steps on the support set
of each randomly sampled task (within a metabatch),
resulting in the individual inner updated parameters
𝜃′

𝑖 for each task. Finally, the meta-update step calcu-
lates the final loss over all the corresponding query
sets using their respective inner-updated parame-
ters. The inner updates along with the meta-update
comprise one iteration of the MAML algorithm, with
multiple iterations carried out until the outer parame-
ters have converged to an optimal value: 𝜃 → 𝜃∗.

MAML describes a rather straightforward ap-
proach, which has its merits in that it can be applied
on any deep learning model and no additional pa-
rameters need to be introduced for meta-learning.
Additionally, it’s optimization is based on the thor-
oughly applied gradient descent, without the need
of more complicated optimization algorithms, and
it has found applications on a plethora of domains
from image classification to reinforcement learning.
Nevertheless, meta-learning has been shown to be
data inefficient and can become computationally
intensive because of its utilization of higher-order
gradients.

6.3. Prototypical Networks 44

6.3. Prototypical Networks
Prototypical networks (protonets) (Snell, Swersky, and Zemel 2017) constitute another fundamental
approach to tackle FSL, which, unlike MAML, belongs to the metric learning approaches. The objec-
tive of metric learning is to learn a representation function capable of mapping objects to a latent
embedding space, which is suitable for classification. The latent space should satisfy certain proper-
ties, like preserving relations between input images, i.e., similar/dissimilar inputs should be closer/
farther in the embedding space. In order for proto-nets to avoid overfitting due to the small number of
samples and ensure better generalization on novel tasks, the authors argue that the classifier should
have a small inductive bias. The objective is to learn a representation function that clusters all inputs
of the same class around their single-class prototype and farther from prototypes of other classes in
the episode.

Figure 6.4: Few-shot prototypes 𝒄𝑛 are computed as the mean of embedded support examples for each class.
Figure courtesy of Snell, Swersky, and Zemel 2017.

A neural network encoder 𝑓𝜃 acts as the representation function mapping the input images to
latent space feature vectors, and is trained under the supervised setting. Then, since training is per-
formed episodically, given a (𝑁 -way, 𝐾-shot) episode, the 𝐾 embeddings for each of the 𝑁 classes
are averaged to compute the class prototypes. The prototypes for each class 𝑛 ∈ 𝒩 are supposed to
represent the entire class and are defined as the mean feature vector of the embeddings of the support
set:

𝒄𝑛 = 1
|𝒮𝑛| ∑

(𝒙𝑖,𝑦𝑖)∈𝒮𝑛

𝑓𝜽(𝒙𝑖). (6.1)

Given a query input, a differentiable distance metric (in this case euclidean distance) is applied between
the query embedding and the class prototype vectors, followed by a softmax in order to calculate the
distribution over the support classes:

𝑃(𝑦 = 𝑛|𝒙) = softmax (−d(𝑓𝜽(𝒙), 𝒄𝑛)) = exp(−d(𝑓𝜽(𝒙), 𝒄𝑛))
∑𝑛′∈𝒩 exp(−d(𝑓𝜽(𝒙), 𝒄𝑛′)) (6.2)

Finally, the network parameters are updated through gradient descent by minimizing the negative log
likelihood 𝐽(𝜽) = − log𝑃𝜽(𝑦 = 𝑘|𝒙) of the class-conditional probabilities 𝑃(𝑦 = 𝑛|𝒙). It should be noted
that since the prototypes correspond to the mean of each class, and Euclidean distances are utilized to
compute the probability distributions, this method is essentially equivalent to applying a nearest-mean
linear classifier on the learned representations 𝑓𝜽(𝒙), as shown on Figure 6.4.

6.4. Unsupervised Few-Shot Learning
Until now we have only discussed supervised few-shot learning approaches, which rely on the exis-
tence of labels in the training set. Nevertheless, our method addresses the more challenging unsu-
pervised few-shot learning objective. Formally, the training set 𝒟tr = {(𝒙𝑖, 𝑦𝑖)}𝑀 tr

𝑖=1 that we defined in
Section 6.1 is now replaced by 𝒟tr = {(𝒙𝑖)}𝑀 tr

𝑖=1 without access to ground truth labels 𝑦. However, most
supervised FSL methods adopt an episodic training scheme, which in turn depends on the existence
of labels to create valid training episodes. This challenge sheds more light on the superiority of trans-
fer learning methods, which typically rely on self-supervised pre-text tasks and self-distillation, over

6.4. Unsupervised Few-Shot Learning 45

meta-learning approaches, which depend on episode generation for training. In the following sections
we will further elaborate on some unsupervised few-shot learning methods from earlier approaches,
which are based on their MAML and protonets supervised counterparts, to more competitive methods,
which apply self-supervised based pretraining and are much closer to our approach.

6.4.1. Unsupervised Meta Learning
CACTUs. One of the first approaches to unsupervised few-shot classification was CACTUs (Hsu,
Levine, and Finn 2018), which tries to fully incorporate the training scheme and the MAML objective
but adapt it to the unsupervised setting. Hence, it retains the episodic training of MAML. However, in
the absence of labels, CACTUs introduces a clustering-based task creation process for generating
the episodes needed for MAML’s meta-training.

...,

, ...

,

,

2a. cluster embeddings multiple times

embedding function

1. run embedding learning

test
train

3. run meta-learning on tasks

2b. automatically construct tasks without supervision

, ..., meta-learner learning procedure

Figure 6.5: Illustration the meta-learning procedure of CACTUs. Figure courtesy of Hsu, Levine, and Finn 2018.

The first step of CACTUs involves the separate training of a representation learning algorithm
𝒛𝑖 = 𝑓(𝒙𝑖) on the training set. Hsu, Levine, and Finn 2018 opt for utilizing DeepCluster (Caron, Bo-
janowski, et al. 2018), BiGAN (Berthelot et al. 2018), ACAI (Donahue, Krähenbühl, and Darrell 2016),
and InfoGAN (Xi Chen et al. 2016) for this step, although in practice any self-supervised method can
be combined with the CACTUs pipeline. The next step applies multiple iterations of k-means clus-
tering (𝑃 times) to generate a set of partitions, from which meta learning episodes can be sampled.
Subsequently, CACTUs first samples a random partition 𝑃 , before sampling a random cluster of 𝐾
elements from the chosen partition 𝑃 . The whole sampling process is repeated until 𝑁 clusters have
been chosen to form the support set of a (𝑁 way, 𝐾 shot) episode, which in turn can be used in MAML.
Similarly, 𝑁 clusters of 𝑄 elements are sampled for the MAML outer update. Figure 6.5 illustrates
the entire CACTUs training pipeline. The quality of the representation learning algorithm used in the
first step influences the quality of the k-means clustering, which is used to sample the meta-learning
episodes.

A major limitation of CACTUs is that its performance depends on the first step of separate repre-
sentation learning, which, in fact, employs deeper models (e.g., AlexNet (Krizhevsky, Sutskever, and
Hinton 2012)) on smaller few-shot benchmarks like miniImageNet (Vinyals et al. 2016). Additionally,
several surveys (He, X. Zhang, et al. 2016; Dosovitskiy et al. 2020) have empirically shown that deeper
neural networks are capable of learning much better representations than shallower models in most
scenarios. Consequently, in the case of CACTUs, a deeper model is used to guide the meta-learning
training of a shallower (typically Conv4) model, which can be considered a form of knowledge distilla-
tion. However, this approach defeats the purpose of a self-contained end-to-end unsupervised few-shot
learning algorithm.

UMTRA. Another early unsupervised approach, which again relies on the inner and outer up-
dates of meta-learning, is unsupervised meta-learning with tasks constructed by random sampling and
augmentation (UMTRA) (Khodadadeh, Boloni, and Shah 2019). In contrast to CACTUs, neither does
UMTRA depend on a deeper model nor focuses on generating “optimal” episodes for MAML. Instead,
like its name suggests, it relies on augmentations of the unlabeled input images to create “pseudo-
labels” and in turn create a valid query set.

Figure 6.6 illustrates the complete UMTRA training process. The first step involves the sampling

6.4. Unsupervised Few-Shot Learning 46

𝑥′1 𝑥′2 𝑥′3
... 𝑥′n

 () () () () ()

𝑥1 𝑥2 𝑥3
... 𝑥n

Updated
Model

1 2 3 ... N

ℒ Update
Model
Parameters
based on
outer loss

1 2 3 ... N

ℒ

Model

Sample N data points 𝑥′i = (𝑥i)

Figure 6.6: Illustration of UMTRA training process. 𝑁 data points are sampled to create the support set for the
inner update, whereas the query set (for the meta update) is formed by applying augmentation function 𝒜 on
each of the 𝑁 training images. Figure courtesy of Khodadadeh, Boloni, and Shah 2019.

of 𝑁 images from the training set 𝒟tr, which are used for the inner update of MAML. Subsequently, an
augmentation function is applied to each of the training images 𝒙𝑖 to generate query images 𝒙′

𝑖 =
𝒜(𝒙𝑖), which are utilized by the MAML outer update. The working principle behind UMTRA is that
data augmentations are class-preserving transformations, hence the support and query sets, and
by extension the inner and outer objectives, contain the same classes, despite the lack of ground-truth
labels. Nevertheless, it should be noted that UMTRA makes the latent assumption that in the absence
of labels, each image sampled from the training set, along with its augmentations, corresponds to a
unique class. Hence, UMTRA operates on the instance-level, since each image instance is treated as
a unique class. As a result, images within a batch that could correspond to the same “latent” class (e.g.,
different images of cats) are treated as distinct classes, which could make the network erroneously
learn different distributions for such images. BECLR alleviates this problem, which is ubiquitous in
unsupervised few-shot learning approaches, by ingraining class-level information along the default
instance-level in a contrastive loss.

6.4.2. ProtoTransfer
Despite their success in supervised few-shot learning, meta-learning approaches, such as CACTUs
and UMTRA, have been shown to be inefficient in the unsupervised case, as we discussed in the
introduction of Chapter 6. Instead, transfer learning has been proven to be the most competitive
approach for U-FSL. Transfer learning methods methods typically consist of two sequential phases to
solve the U-FSL problem: (𝑖) pretraining on a large unlabeled dataset of base classes, followed by (𝑖𝑖)
simple inference or fine-tuning on an unseen smaller dataset, consisting of novel classes. The goal
of the pretraining phase is to learn a global feature extractor (i.e., backbone network or encoder) from
the base dataset, which is leverages standard self-supervised training instead of an episodic training
scheme. Finally, the supervised inference or fine-tuning phase involves fitting a classifier (inference)
or learning a trainable classification layer (supervised fine-tuning) on top of the frozen feature extractor
to adopt to the novel classes. In fact, BECLR also adopts this popular training paradigm and is able
to outperform meta-learning approaches by a significant margin in both in-domain (base and novel
classes come from the same dataset but are mutually exclusive) and cross-domain (base and novel
classes come from different datasets altogether) settings.

One of the first methods, which demonstrated the effectiveness of transfer learning in the U-
FSL regime, was ProtoTransfer (Medina, Devos, and Grossglauser 2020), which extends the idea of
proto-nets in the absence of ground-truth labels. ProtoTransfer does not rely on a task-based episodic
scheme, but instead adopts a contrastive SSL approach, inspired by SimCLR, for its pretraining phase,
followed by supervised fine-tuning of a linear layer (MLP). ProtoTransfer’s pretraining modules is aptly
denoted ProtoCLR, since its pretraining loss can be interpreted as a self-supervised version of the
prototypical loss (Snell, Swersky, and Zemel 2017) in line with contrastive learning. In ProtoCLR, the
original image 𝒙𝑖 is augmented 𝑄 times and the network is trained through contrastive loss, which

6.4. Unsupervised Few-Shot Learning 47

𝑓𝜃(𝒙𝑖)

𝑓𝜃(�̃�𝑖,1)

𝑓𝜃(�̃�𝑖,2) 𝑓𝜃(�̃�𝑖,3) 𝑓𝜃(𝒙2)

𝑓𝜃(𝒙1)

𝒄1

𝒄2 𝒄3𝑓𝜃(𝒒)

(a) Self-Supervised Prototypical Pretraining (b) Prototypical Fine-Tuning & Inference

Figure 6.7: Self-Supervised Prototypical Transfer Learning. (a): In the embedding space, the original images 𝒙𝑖
serve as class prototypes around which their 𝑄 augmented views �̃�𝑖,𝑞 should cluster. (b): The prototypes 𝒄𝑘 are
the means of embedded support examples for each class 𝑛 and initialize a final linear layer for fine-tuning. An
embedded query point 𝒒 is classified via a softmax over the fine-tuned linear layer. Figure courtesy of Medina,
Devos, and Grossglauser 2020.

enforces consistency between the original image (acts as the prototype) and all its augmentations.

It should be noted that in the supervised case, proto-nets utilized the support set to calculate
the prototypes and were evaluated on the query set. In the unsupervised setting, similar to UMTRA,
ProtoTransfer treats each sample instance as its own class. Hence, a training batch of 𝑛 samples
{𝒙}𝑖=1…𝑛 acts as a 1-shot support set with each sample corresponding to a class prototype. Each
prototype 𝒙𝑖 is then randomly augmented 𝑄 times to form the query samples �̃�𝑖,𝑞, on which the loss is
evaluated. Consequently, ProtoTransfer is also susceptible to UMTRA’s instance-level assumption.

The second phase of ProtoTransfer involves a prototypical supervised fine-tuning denoted as
ProtoTune. In this second stage, ProtoTransfer is evaluated on FSL downstream tasks, which include
a labeled support set of few samples per class, from which the network needs to learn to adapt to the
novel classes, and an unlabeled query set on which the method is evaluated. ProtoTransfer is based
on the linear layer property of protonets, as described in Section 6.3, to initialize a linear classification
layer from the support set of each test episode. Then, random subsets of the support set are used
for fine-tuning (using a standard cross-entropy loss) the linear layer for some iterations. Finally, the
representations of the query set are passed through the encoder network 𝑓𝜃 and the linear classification
layer to obtain the final predictions. The entire pipeline of ProtoTransfer is illustrated on Figure 6.7.

6.4.3. PDA-Net
Prototypical contrastive approaches like ProtoTransfer are quite intuitive and able to outperformmetalearning-
based approaches. However, the state-of-the-art performance in U-FSL is achieved from different ap-
proaches. These approaches also follow the transfer learning paradigm, which consists of pretraining
on an unlabeled base dataset and fine-tuning or evaluating on few-shot tasks. However, instead of
relying on protonets, these methods adopt a self-supervised distillation-based approach, typically
applied on general representation learning, for their pretraining phase, with the objective of attaining
the best possible representations from the first phase of transfer learning. The motivation is that the
better the feature extractor can capture the global structure and latent semantic relationships of the
base dataset, the easier it would be for the classifier to adapt to novel few-shot tasks, when given only
a few support samples.

PDA-Net (part discovery and augmentation network) (W. Chen et al. 2021) is one of the most
competitive U-FSL approaches, which adopts the instance discrimination pre-text task of contrastive
learning for its pretraining. PDA-Net features an asymmetrical architecture, along with an EMA updated
teacher encoder, inspired by MoCo (He, Fan, et al. 2020). Its pretraining module is denoted as PDN
(part discovery network) and tries to enforce consistency (via the contrastive loss) between an input

6.4. Unsupervised Few-Shot Learning 48

Figure 6.8: The PDA-Net framework. Figure courtesy of W. Chen et al. 2021.

image and its most discriminative part. First, each input image 𝒙, is cropped into 𝑛 patches {𝒙𝑝
𝑖 }𝑛

𝑖=1,
which in turn are augmented through random transformations, along with a larger global crop 𝒙𝑔. The
global and patch views are passed through the CNN encoder network 𝑓𝜃 to acquire global 𝒉𝑔 and part
{𝒉𝑝

𝑖 }𝑛
𝑖=1 representations. The next step involves the selection of the most discriminative part from

{𝒉𝑝
𝑖 }𝑛

𝑖=1, which is the part representation with the largest average distance from the global views of all
other images in a batch 𝒟− = {𝒉𝑔

𝑗}𝑁−
𝑗=1:

𝒉𝑝 = 𝒉𝑝
𝑖∗ , 𝑖∗ = argmax

𝑎
(d [𝒉𝑝

𝑖 , 𝒟−]) , (6.3)

where d [𝒉𝑝
𝑖 , 𝒟−] the mean distance between each part image 𝒉𝑝

𝑖 and 𝒟−:

d [𝒉𝑝
𝑖 , 𝒟−] = 1

|𝒟−| ∑
𝒉𝑔−

− sim(𝒉𝑝
𝑖 , 𝒉𝑔−) (6.4)

Once themost discriminative parts have been selected for each image in the training batch, the InfoNCE
(Oord, Li, and Vinyals 2018) contrastive loss is applied to train the network to map the global view and
the most discriminative view to similar embeddings in the latent space, as in Equation (5.4) with the
distance metric corresponding to the negative cosine similarity.

Figure 6.9: Illustration of C2AM. Figure courtesy
of W. Chen et al. 2021.

The second phase of PDA-Net is denoted as
PAN (part augmentation network), which attempts to
augment the support set of testing episodes, by incor-
porating relevant part-based features from the base
dataset (used during pretraining). First, given a test
episode, its support set is used to train a linear classi-
fier in a supervised manner. Subsequently, the trained
classifier is applied to the entire base dataset, with the
𝑁𝛼 images, corresponding to the most confident pre-
dictions for each of the 𝑘 classes present in the support
set, being kept. The feature maps of these 𝑁𝛼 images
for a particular class 𝑘 are denoted as: 𝒜𝑘 = {𝑴𝑘

𝑖 }𝑁𝛼
𝑖=1.

PAN then applies a class attention map (CAM) mech-
anism (B. Zhou et al. 2016), denoted as the class competitive attention map (C2AM) as shown in Fig-
ure 6.9. C2AM obtains attention maps 𝑺𝑘 for all the feature maps 𝑴𝑘 ∈ 𝒜𝑘, indicating their relevance
for class 𝑘 at each spatial location:

𝑺𝑘(𝑖, 𝑗) = 𝑾 𝑘𝑴𝑘(𝑖, 𝑗) + 𝑏𝑘, (6.5)

6.4. Unsupervised Few-Shot Learning 49

where 𝑾 𝑘, 𝑏𝑘 the learnt classifier’s weight vector and bias and 𝑺𝑘(𝑖, 𝑗), 𝑴𝑘(𝑖, 𝑗) the classification score
for class k and the feature vector at location (i, j), respectively. Subsequently, a softmax operator is
applied on 𝑺𝑘(𝑖, 𝑗) to highlight parts that have a higher confidence score only for class 𝑘 and not for
all classes, resulting in revised competitive attention maps 𝒂𝑘. Then 𝒂𝑘 is combined with the feature
maps 𝑴𝑘 to produce augmented support features:

𝒛𝑘 =
∑𝑖,𝑗 𝒂𝑘(𝑖, 𝑗)𝑴𝑘(𝑖, 𝑗)

∑𝑖,𝑗 𝒂𝑘(𝑖, 𝑗) (6.6)

Finally, the new features form the augmented support set 𝒜 = ∪𝑘𝒜𝑘, where 𝒜𝑘 = {𝒛𝑘
𝑖 }𝑁𝛼

𝑖=1. The
augmented support set 𝒜 and the original support set 𝒮 are then combined to refine the classifier
weights. Despite its competitive performance, PDA-Net adds a significant computational overhead
since not only does the linear classification layer have to be trained twice for each testing episode, but
more importantly, the entire (much larger) base dataset needs to be evaluated by the classifier in order
to obtain the augmented support features of PAN. Additionally, this approach exploits information from
the vastly larger base dataset, while evaluating on a much smaller few-shot task, which in practice
defeats the purpose of a self-contained few-shot learning approach, that only uses the few support
samples to adapt to the novel classes quickly.

6.4.4. UniSiam
UniSiam (Lu et al. 2022) constitutes another transfer learning approach, which applies self-supervision
via self-distillation for its pretraining phase. In contrast to PDA-Net, UniSiam does not rely on elabo-
rate techniques in its pretraining and fine-tuning stages, but instead focuses on representation quality.
By adopting SimSiam’s (Xinlei Chen and He 2021) asymmetrical architecture and stop-gradient oper-
ation on the teacher path, introducing even more aggressive data augmentations, and applying a less
biased variant of the popular InfoNCE contrastive loss, UniSiam manages to reach state-of-the-art per-
formance on the most popular U-FSL benchmarks, miniImageNet (Vinyals et al. 2016) and tieredIma-
geNet (Ren et al. 2018). Lu et al. 2022 utilize SimSiam’s intuitive architecture, as shown on Figure 6.10,
and demonstrate that self-supervision can in fact be a very competitive few-shot learner.

Given a mini-batch of 𝐵 random samples from the base dataset (𝒟𝑡𝑟), two augmented views
are produced from 𝑿 by applying random image augmentations, which are then fed to the student
and teacher networks to get the student’s predictions 𝑷 = 𝑞𝜃(𝑔𝜃(𝑓𝜃(𝑿))) and teacher’s projections
𝒁 = SG(𝑔𝜃(𝑓𝜃(𝒁))), respectively. Then, a contrastive loss is applied to enforce consistency between
𝑷 and 𝒁. The objective of InfoNCE contrastive loss is to maximize the Mutual Information (MI)
between the two augmented views of an image. Despite its popularity, however, recent studies (Poole
et al. 2019; Song and Ermon 2019) have shown that it is prone to high bias, especially when the
batch size is small and the MI is large. Instead, UniSiam introduces a different contrastive loss, which

Figure 6.10: (a) SimCLR (T. Chen et al. 2020) architecture for comparison. (b) UniSiam for self-supervised pre-
training. (c) UniSiam for self-supervised pretraining with knowledge distillation. Figure courtesy of Lu et al. 2022.

6.4. Unsupervised Few-Shot Learning 50

maximizes the same MI objective, but has been shown to be less biased for edge cases:

ℒ𝑖𝑀𝐼𝑁𝐸 = − 1
𝐵

𝐵
∑
𝑖=1

d [𝑍𝑖, 𝑍+
𝑖] /𝜏

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

+ log⎛⎜
⎝

1
2𝐵

2𝐵
∑
𝑖=1

∑
𝑗∈𝑁𝑒𝑔(𝑖)

exp (d [𝑍𝑖, 𝑍𝑗] /𝜏)⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦

, (6.7)

where alignment and uniformity correspond to the positive and negative terms of InfoNCE (Equa-
tion (5.4)), respectively and d the negative cosine similarity. Thus, each embedding is 𝑙2 normalized
before applying a dot product to compute the distance. UniSiam also introduces an asymmetric align-
ment, which has been shown to produce better results (Xinlei Chen and He 2021) in combination with
an asymmetric architecture (prediction only on the student path), yielding the final contrastive loss:

ℒ = − 1
2𝐵

𝐵
∑
𝑖=1

(𝑃𝑖 ⋅ 𝑍+
𝑖 + 𝑃 +

𝑖 ⋅ 𝑍𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

+ 𝜆 log(1
2𝐵

2𝐵
∑
𝑖=1

∑
𝑗∈𝑁𝑒𝑔(𝑖)

exp (𝑍𝑖 ⋅ 𝑍𝑗/𝜏))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦

, (6.8)

where 𝜆 a weighting hyperparameter and 𝜏 the temperature scaling factor. Finally, Lu et al. 2022 also
incorporates a simple self-supervised knowledge distillation scheme, as shown in Figure 6.10, which
utilizes pretrained deeper models (e.g., ResNet50) to improve the performance of shallower models
(e.g., ResNet12).

UniSiam demonstrated that supervised pretraining and self-supervised pretraining try to optimize
for different objectives in terms of mutual information, with the former maximizing mutual information
between representations and labels (𝐼(𝒁; 𝑌) and the latter between the representations of 2 views
(𝐼(𝒁1; 𝒁2), which is a lower bound of mutual information between representations and data (𝐼(𝒁; 𝑿).
Hence, self-supervision aims to preserve the raw data information as much as possible in the learned
representations, which in expectation would allow for better generalization to the novel classes. This
is corroborated by Lu et al. 2022, who empirically demonstrate that self-supervised methods such as
UniSiam can outperform supervised methods in the FSL regime, without relying on ground truth labels.

6.4.5. Connection to BECLR
UniSiam was chosen as the basis for our BECLR pretraining due to its intuitive architecture, robust-
ness and focus on representation quality, with its novel loss function being adapted by our framework.
However, UniSiam, like most U-FSL approaches, is susceptible to two main limitations:

• Despite the profound success of contrastive learning and self-distillation approaches, like PDA-
Net and UniSiam, in U-FSL (current state-of-the-art), these approaches strictly rely on data aug-
mentations for positive generation, which cannot cover all the variance in a given class (e.g.,
object deformations, different viewpoints). Even more importantly, traditional contrastive learning
tries to enforce consistency only on at the instance-level (each image in a batch corresponds to
a unique class), rather than the class-level, as it was briefly discussed in Section 6.4.1. The pos-
sibility of additional positives being present within a batch (e.g., different cat images) is not only
overlooked, but additionally such samples are treated as negatives. Consequently, the network
could learn different representations for images belonging to the same latent class.

• Despite a good feature extractor (learned in the pretraining phase) being essential for cluster-
ing unseen data, in the U-FSL setting there is a distribution shift between training and testing
datasets, i.e., the base and novel classes are mutually exclusive. Downstream standard rep-
resentation learning tasks, such as image classification, typically rely on supervised fine-tuning
training schemes using novel classes to account for this distribution shift (Grill et al. 2020; He,
Fan, et al. 2020). However, due to the intrinsic nature of FSL tasks, only a small number of sam-
ples from the support set are available, which are insufficient for adapting the network’s weights,
rendering fine-tuning redundant. Consequently, the final FSL performance is strongly correlated
with the sample quality of the support data. In case the support set is not representative of the
latent class distribution or contains outlier data, the learned classifier will be biased. This is known
as the sample bias problem and is accentuated in lower-shot regimes (e.g., 1-shot).

6.4. Unsupervised Few-Shot Learning 51

• BECLR introduces a dynamici clustered memory (DyCE), which is used to draw more meaning-
ful positive pairs and, as empirically shown, manages to capture the latent class distribution of
the base dataset quite accurately thanks to novel equipartitioned memory updates, which lever-
age optimal transport (OT). DyCE is utilized to incorporate both a class-level and the default
instance-level insights within a contrastive learning framework. Additionally, we introduce OpTA
- a supervised inference strategy, which applies an OT-based feature alignment between the sup-
port prototypes and query set embeddings. OpTA successfully pushes the support set prototypes
closer to the query set (and, by extension, ground-truth) class distributions. Consequently, it re-
stricts the effects of sampling bias and results in a significant performance boost in downstream
classification performance, especially in the 1-shot setting (where the sampling bias is most sig-
nificant). Importantly, this performance boost cannot be achieved only by pre-training, rendering
OpTA an efficient module, which could be applied on top of existing (not necessarily contrastive)
U-FSL approaches. By tackling these two limitations, BECLR is able to push the state-of-the-art
in U-FSL benchmarks by a significant margin, especially in the 1-shot setting (up to 14% increase
in accuracy performance).

7
Optimal Transport

When faced with a decision-making problem, humans often opt for the “shortest path” approach,
which involves the least amount of effort (or highest “reward”) possible. Similarly, in statistics and ma-
chine learning problems, we are interested in finding a meaningful distance metric between probability
distributions, capable of capturing the “shortest path” approach, while maintaining attractive qualities,
such as symmetry and triangle inequality. Nevertheless, divergences (i.e., weaker “distance” no-
tions often applied between probability distributions) more often than not fail to satisfy these properties.
We will use the popular Kullback-Lieibler (KL) divergence (Kullback and Leibler 1951) as an example
to illustrate the shortcomings of such methods, and how Optimal Transport (OT) constitutes a better
alternative. The KL divergence is denoted as:

𝐷𝐾𝐿(𝑃 ||𝑄) = ∫ 𝑝(𝑥)𝑙𝑜𝑔(𝑝(𝑥)
𝑞(𝑥)) 𝑑𝑥 (7.1)

where 𝑃 , 𝑄 denote two probability distributions. Despite being one of the most useful and fundamental
metrics in information theory, KL-divergence suffers from two main shortcomings: (𝑖) not being a sym-
metric operation (i.e., 𝐷𝐾𝐿(𝑃 ||𝑄) ≠ 𝐷𝐾𝐿(𝑄||𝑃) and (𝑖𝑖) taking infinite values, when the support of 𝑃 , 𝑄
do not match. Although the first limitation can be alleviated by a symmetric variant of the KL-divergence
(Solomon Kullback 1997), the second one can be rather important, as sketched by Figure 7.1. In par-
ticular, the KL-divergence is infinite (𝐷𝐾𝐿(𝑃 ||𝑄) = +∞) for all 3 distribution pairs, denoting that they
are equally dissimilar, which is rather counterintuitive. By smoothing the probability distributions so
that their supports match, it is possible to alleviate the problem, but in certain cases it can be quite
challenging to choose a suitable bandwidth parameter for the smoothing kernel.

Figure 7.1: These density functions are infinitely far apart according to KL-divergence. On the contrary, their
Wasserstein distance is finite and matches our intuition.

52

7.1. Continuous Optimal Transport 53

In contrast to KL-divergence, optimal transport can yield an alternative distance metric between
distributions, which is not susceptible to either of the aforementioned limitations. In particular, OT
defines an optimal transport plan (often denoted as Wasserstein distance, or even “Earth Mover’s
distance” in the literature) between two probability distributions, which is both symmetric and finite
for distributions with different support. As shown in Figure 7.1, the Wasserstein distance is indeed
finite in all cases, with its values matching our intuition: i.e., the middle and right panels correspond
to the largest and smallest distance, respectively. Additionally, OT satisfies the triangular inequality,
has no trainable parameters, maintains differentiability, and under certain conditions can ensure equi-
partitioned assignments. All these attractive qualities have made it rather popular in different pipelines,
with applications in imaging (J. Lee, Bertrand, and Rozell 2020), generative deep networks (Adler and
Lunz 2018), and even biological data analysis (Schiebinger et al. 2019).

BECLR leverages OT in both self-supervised pretraining (as part of the memory updating in
DyCE) and supervised inference (for the feature alignment of OpTA) stages. During pretraining, we
use OT to update our DyCE memory modules in a class-cognizant manner by finding optimal assign-
ments between batch embeddings andmemory prototypes, while ensuring equipartitioned assignments
to the memory prototypes. The equipartitioning prevents the creation of dominant large clusters in the
memory space, and along with the better encoder representations (as the training progresses) allows
the memory embedding space to evolve from containing volatile and cluttered clusters (upon initializa-
tion) to comprising of highly separable ones. For the inference stage, given a test FSL task, we apply
OT in order to “transport” the support set prototypes into the domain of the query set embeddings (de-
noted as the OpTA add-on). The transportation step essentially increases the spread of the support
set prototypes in the query set’s domain, reducing the distribution shift between support and query set
and by extension the sampling bias problem. Subsequently, we simply fit a logistic classifier from the
transported support prototypes, which is used to make the final predictions on the unlabelled query set.

7.1. Continuous Optimal Transport
Despite the fact that modern optimal transport is typically applied in statistics and machine learning,
optimal transport theory was originally grounded in physical intuition. In particular, in the late 18𝑡ℎ

century, Gaspard Monge1 was the first to formulate the optimal transport problem in its simplest form,
i.e., “how to transport soil between excavations with minimal transport expenses?”. Let us consider a
toy example of the Monge problem shown in Figure 7.2 to get a better intuition about OT. The objective
is to find the most efficient transportation plan, which moves all the dirt from the dirt piles to fill all the
available holes (if we consider the piles as prototypes and the holes as individual elements, it becomes
clear that OT can act as an assignment or clustering algorithm). The piles and holes correspond to two
probability distributions, and we assume that their total volume is equal.

Figure 7.2: 2D optimal transport example. The dirt piles (red) need to fill all the holes (blue). The arrow schema-
tizes 𝑤 units of dirt being transported from location (𝑥0, 𝑦0) to (𝑥1, 𝑦1). A complete transport plan specifies trans-
port paths like this over all pairs of locations.

1https://mathshistory.st-andrews.ac.uk/Biographies/Monge/

https://mathshistory.st-andrews.ac.uk/Biographies/Monge/

7.2. Discrete Optimal Transport 54

The first step involves defining the transportation cost of moving a single unit of dirt from (𝑥0, 𝑦0)
to (𝑥1, 𝑦1). Equation (7.2) defines the transportation cost, when the Euclidean distance is used as a
distance metric (although alternative metrics are also used in practice).

𝐶(𝑥0, 𝑦0, 𝑥1, 𝑦1) = (𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2 (7.2)

Next we need to define the transportation plan , which tells us how many units of dirt to move from
(𝑥0, 𝑦0) to (𝑥1, 𝑦1), for instance:

𝜋(𝑥0, 𝑦0, 𝑥1, 𝑦1) = 𝑤, (7.3)

where the dirt pile (𝑥0, 𝑦0) needs to contain at least 𝑤 units of dirt, and the hole (𝑥0, 𝑦0) needs to be
able to fit at least 𝑤 units of dirt. Only positive values are allowed for transportation plans. Additionally,
we are allowed to transport dirt from a single pile to multiple holes, and a single hole can receive dirt
from multiple piles. Finally, the transport plan needs to satisfy the following conditions:

∫ ∫ 𝜋(𝑥0, 𝑦0, 𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = 𝑟(𝑥0, 𝑦0), ∀ (𝑥0, 𝑦0) ∈ 𝑑𝑖𝑟𝑡 𝑝𝑖𝑙𝑒𝑠

∫ ∫ 𝜋(𝑥, 𝑦, 𝑥1, 𝑦1)𝑑𝑥 𝑑𝑦 = 𝑐(𝑥1, 𝑦1), ∀ (𝑥1, 𝑦1) ∈ ℎ𝑜𝑙𝑒𝑠,
(7.4)

where 𝑟, 𝑐 density functions encoding dirt volume. Intuitively, the first constraint ensures that all avail-
able dirt is transported for each pile, and the second constraint ensures that all holes are filled. Finally,
given a transport plan 𝜋 function, we can define the total cost to be minimized:

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∫ ∫ ∫ ∫ 𝐶(𝑥0, 𝑦0, 𝑥1, 𝑦1)𝜋(𝑥0, 𝑦0, 𝑥1, 𝑦1)𝑑𝑥0 𝑑𝑦0 𝑑𝑥1 𝑑𝑦1 (7.5)

In practice, a transport plan 𝜋 can be interpreted as a probability distribution. Specifically, if the two
probability distributions are defined in some space 𝒳, 𝜋 can be viewed as a probability distribution
defined in 𝒳 × 𝒳, where × is the Cartesian product.

7.2. Discrete Optimal Transport
Despite the intuitive aspect of the 2D toy example, continuous OT can be intractable for most real-world
applications (Peyré, Cuturi, et al. 2019). Nevertheless, by discretizing the problem into atomic elements,
we can compute reasonable estimates of optimal transport. BECLR, likemostmodern approaches, does
in fact apply the discretized version of optimal transport; hence we will describe the full notation and
mathematical formulations of discrete optimal transport.

7.2.1. Assignment Problem

Figure 7.3: Non-unique assignments.
The other solution is dashed. Figure
courtesy of Peyré, Cuturi, et al. 2019.

In its simplest form, discrete OT can be considered as an assign-
ment problem between sets, that is: “which is the best configu-
ration among all possible configurations?” This simplest form of
the problem is quite restrictive and really hard to solve, in that the
source and target sets are required to be of exactly the same
size. Each set can be represented as a histogram (or vector) 𝒓,
that belongs to the probability simplex - the components of the
vector sum up to 1:

𝒓 ∈ {𝑥 = (𝑥1, …, 𝑥𝑁) ∈ ℝ𝑁 ∶
𝑁

∑
𝑖=1

𝑥𝑖 = 1} (7.6)

We can denote 𝐂𝑖,𝑗 the cost of moving an element from 𝑖 to 𝑗,
then the total cost to be minimized is ∑𝑁

𝑖=1 𝐂𝑖,𝜎(𝑖), where 𝜎 de-
notes a permutation of the set {1, … , 𝑁}, and can be viewed as
an assignment of the 𝑖𝑡ℎ bin of the source probability histogram
𝑟 to the 𝑗𝑡ℎ bin of the target probability histogram 𝑐. In this set-
ting, OT corresponds to a combinatorial problem, which can be
summarized as:

7.2. Discrete Optimal Transport 55

How can we assign every element 𝑖 ∈ {1, … , 𝑁} to elements 𝑗 ∈ {1, … , 𝑁} in order to minimize
∑𝑁

𝑖=1 𝐂𝑖,𝜎(𝑖)?

The result of this search is the optimal assignment or Wasserstein distance. It should be
noted that this version of OT is very difficult to solve as 𝑁 grows large, since there are 𝑁! possible
solutions and the optimal assignment is not unique, as illustrated in Figure 7.3

7.2.2. Working with Asymmetric Distributions

Figure 7.4: Optimal transport with asymmetric dis-
tributions. Figure courtesy of Peyré, Cuturi, et al.
2019.

The restriction of equal-sized histograms is very
strong and is not representative of real-world prob-
lems. Therefore, in this setting several points 𝑥𝑖 can
be mapped to the same 𝑦𝑖 (much like the piles and
holes in the Monge problem), but the conservation
constraint of mass or volume still needs to be held.

In this case, the assignment between source
and target histograms is no longer a permutation but
rather a surjective2 mapping 𝑇 . If points {𝑥1, … , 𝑥𝑛}
have weights 𝒓 = (𝑟1, … , 𝑟𝑛) and points {𝑦1, … , 𝑦𝑚}
have weights 𝒄 = (𝑐1, … , 𝑐𝑚), 𝜋 must verify:

∀𝑗 ∈ {1, … 𝑚}, 𝑐𝑗 = ∑
𝑖∶𝜋(𝑥𝑖)=𝑦𝑗

𝑟𝑖 (7.7)

This equation describes the mass conservation con-
straint. Even with this formulation, OT is not easier
to solve since it remains an assignment problem.

7.2.3. The Kantorovich Relaxation
Another fundamental idea for modern OTwas proposed in 1942 by Kantorovich 1942, who proposed the
relaxation3 of the deterministic aspect of transportation. In this relaxed variant of the initial assignment
problem, the source points 𝑥𝑖 are no longer required to map to a single target point 𝑦𝑖, that is, 𝑥𝑖 can
be fragmented into smaller pieces, which are distributed among multiple 𝑦𝑖. This property is known as
mass splitting. This new formulation is much more suitable for real-world applications, for instance
logistic problems, and was summarized by Hitchcock 1941 as:

When several factories supply a product to a number of cities, we seek the least costly method
of distribution. Due to freight rates and other matters, the cost of a ton of product to a particular
city will vary according to which factory supplies it, and will also vary from city to city.

In this setting our previous formulation needs to change, in that the permutation function 𝜎 is
replaced by a coupling matrix 𝝅 = 𝝅𝑖𝑗 ∈ ℝ𝑛×𝑚

+ , which can be viewed as a possible transport plan and
corresponds to an arrow from factory 𝑖 to city 𝑗 in Figure 7.5. The collection of all possible assignments
can be denoted as:

𝜫(𝒓, 𝒄) = {𝝅 ∈ ℝ𝑛×𝑚
+ ∣ 𝝅1𝑚 = 𝒓, 𝝅⊤1𝑛 = 𝒄} , (7.8)

where 𝒓, 𝒄 are the probability simplexes. 𝜫(𝒓, 𝒄) contains all nonnegative 𝑛 × 𝑚 matrices for which
all rows sum up to 𝒓 and all columns sum up to 𝒄 and is essentially a collection of transport plans
(couplingmatrix) of which some are better than others. This formulation is symmetric, i.e., if 𝜋 ∈ 𝜫(𝒓, 𝒄),
then 𝜋𝑇 ∈ 𝜫(𝒄, 𝒓). Given a cost matrix 𝑪, the cost of mapping 𝒓 to 𝒄 using a transport plan (or joint
probability) 𝝅 can be quantified as ⟨𝝅, 𝑪⟩𝐹 , we can now formulate the problem in a much cleaner
fashion.

𝝅⋆ = min
𝜋∈𝜫(𝑟,𝑐)

∑
𝑖,𝑗

𝑪𝑖,𝑗𝜋𝑖,𝑗 = min
𝝅∈𝜫(𝑟,𝑐)

⟨𝝅, 𝑪⟩𝐹 , (7.9)

2A surjective function is a function 𝑓 that maps an element 𝑥 to every element 𝑦, i.e., there is a 𝑥 such that 𝑓(𝑥) = 𝑦.
3Relaxation denotes an easier to solve approximate problem in relation to the more difficult original problem.

7.2. Discrete Optimal Transport 56

Figure 7.5: Factories with different supply capacities have to deliver goods to cities with various demands.

where 𝝅⋆ is the optimal transport plan and ⟨⋅, ⋅⟩𝐹 is the Frobenius dot product. When the cost matrix is
based on a valid distance metric, the optimum 𝝅⋆ is known as Wasserstein distance, and defines a
distance metric between probability distributions. This formulation of OT can now be formulated as a
linear program, where the constraints are a set of 𝑚 + 𝑛 equality constraints.

7.2.4. Entropic Regularization
Despite the Kantorovich relaxation significantly reduced the computational requirements of OT, it is still
not easy to solve, with most convex solvers (for linear programs) having polynomial complexities with
exponents larger than 2, and sometimes exponential worst-case complexities. Further regularization
of OT was proposed by Hitchcock 1941, who added an additional regularization term to the objective
function, further relaxing the problem. First, we need to define the entropy of a coupling matrix 𝝅:

𝑯(𝝅) = − ∑
𝑖𝑗

𝝅𝑖𝑗 log𝝅𝑖𝑗. (7.10)

According to information theory, the entropy of a random variable can be viewed as the level of “uncer-
tainty” inherent in the possible outcomes of the variable. Hence, a matrix of assignments (such as 𝝅)
corresponding to low entropy values would be sparser, since its nonzero values would only be concen-
trated in a few points with high confidence. Conversely, a matrix with high entropy will be smoother,
with the maximum entropy achieved with a uniform distribution of values between its elements. We can
now formulate OT with entropic regularization:

𝝅⋆ = min
𝜋∈𝚷(𝑟,𝑐)

⟨𝝅, 𝑪⟩𝐹 − 𝜀ℍ(𝝅), (7.11)

where 𝜀 the regularisation coefficient, which controls the level of regularization. When its value in-
creases, the resulting coupling matrix will be smoother, and as 𝜀 → 0 the coupling matrix will be sparser
(or sharper) and the solution will be closer to that of the original relaxed OT problem in Equation (7.9).
Figure 7.6 shows the effect of decreasing the regularization strength for a simple 1D optimal transport
problem. The intuition behind entropy regularization is similar to the temperature-normalized cross-
entropy (NT-Xent) discussed in Section 5.1.1. Finally, with the addition of the entropic regularisation,
the optimal transport problem has become convex. Therefore, there is a unique optimal solution 𝝅⋆

with the following form:

∀(𝑖, 𝑗) ∈ {1, …, 𝑛} × {1, …, 𝑚}, 𝝅𝑖,𝑗 = 𝐮𝑖𝑲𝑖,𝑗𝐯𝑗, 𝝅 = diag(𝐮)𝑲 diag(𝐯), (7.12)

where 𝑲𝑖,𝑗 = exp (−𝑪𝑖,𝑗/𝜀) calculated with 𝑪 and 𝐮 and 𝐯 are unknown scaling variables. The formu-
lation in Equation (7.12) is really important because now we have an explicit formula for an optimal
transport plan.

7.2. Discrete Optimal Transport 57

Figure 7.6: Effect of entropic regularization on optimal transport. Figure courtesy of Peyré, Cuturi, et al. 2019.

7.2.5. Sinkhorn-Knopp Algorithm
Equation (7.12) describes a matrix scaling problem, where the objective is to find two diagonal scal-
ing matrices 𝐮 and 𝐯, which when multiplied by 𝑲 give 𝝅. It is important to note that 𝝅 is a doubly
stochastic matrix, and, by extension, the product diag(𝐮)𝑲 diag(𝐯) is also doubly stochastic. To
compute these diagonal matrices, we utilize Sinkhorn’s algorithm (Cuturi 2013), which involves se-
quentially updating 𝐮 and 𝐯 alternately through the following equations:

𝐮(𝑘+1) = 𝒓
𝑲𝐯(𝑘) (7.13)

𝐯(𝑘+1) = 𝒄
𝑲⊤𝐮(𝑘+1) (7.14)

This iterative method ensures that all rows and columns of 𝝅 sum up to 1. Cuturi 2013 showed that not
only does this iterative process converge, but does so at a linear rate. Sinkhorn’s algorithm is the most
popular algorithm for solving the entropic regularized optimal transport problem, hence theWasserstein
distance is also often denoted as Sinkhorn’s distance.

A significant advantage of the Sinkhorn-Knopp algorithm is its differentiability, which allows
seamless backpropagation if its iterations, making it well suited for deep learning models. This prop-
erty has sparked renewed interest in the community, particularly after a paper by Cuturi 2013, which
showcased the efficiency and scalability of Sinkhorn updates as approximations to optimal transport.
Consequently, the Sinkhorn-Knopp algorithm has found practical applications in various areas. For
example, successful self-supervised learning methods such as SWaV (Caron, Misra, et al. 2020) and
SeLa (Asano, Rupprecht, and Vedaldi 2019), along with supervised a few shot learning methods such
as PT-MAP (Y. Hu, Gripon, and Pateux 2021), have made use of the Sinkhorn-Knopp algorithm and
OT.

8
Conclusions and Future Directions

In this work, we introduce a novel self-supervised pretraining methodology (coined as BECLR) that in-
grains both instance- and class-level insights within a contrastive learning framework. BECLR employs
a dynamic clustered memory (DyCE) module, for providing a meaningful positive sampling strategy
and enhancing the original contrastive batch. We explore the effects of equipartitioned assignments
via optimal transport for updating DyCE and maintaining a highly-separable latent memory space. We
accentuate the sample bias problem in U-FSL and propose an intuitive and effective OT-based fea-
ture alignment (OpTA) inference strategy to alleviate its effects. Our extensive evaluation results and
qualitative experiments corroborate the efficacy of our design choices in BECLR, DyCE and OpTA on
a variety of both in-domain and cross-domain U-FSL tasks. We demonstrate that BECLR sets a new
state-of-the-art on the two most widely adopted few-shot classification benchmarks: miniImageNet and
tieredImageNet, as well as on miniImagenet → {CUB, CropDiseases, EuroSAT}.

As future work, we plan to demonstrate the applicability of BECLR on generic representation
learning and additional computer vision downstream tasks (beyond FSL) by training deeper models
(e.g., deeper vision transformer architectures would allow us to only pass unmasked patches to the net-
works and offer significant computation gains) on larger datasets, such as ImageNet. This would render
BECLR as an all-inclusive holistic self-supervised learning approach toward representation learning and
computer vision. Another potential future direction could be the exploration of the effects of combining
our current contrastive framework with a clustering/assignment-based loss term, which would oper-
ate on the separable partitions of DyCE and enforce consistency between student and teacher on a
clustering-level. Furthermore, our OT-based feature alignment OpTA between support and query sets
could find applications on supervised FSL, and in particular, within a meta-learning episodic pretraining
framework, where we would first align the support and query embeddings before applying the loss term.
Finally, in this work, we have not explicitly targeted the large distribution shift between base and novel
classes in the cross-domain setting. A potential future work could involve an additional add-on compo-
nent, which would bridge this distribution shift (similar to how OpTA accounted for the distribution shift
between support and query sets). This module could potentially be combined with our current BECLR,
DyCE and OpTA to further advance the state-of-the-art in cross-domain U-FSL settings.

58

Bibliography

[1] Frank L Hitchcock. “The distribution of a product from several sources to numerous localities”.
In: Journal of mathematics and physics 20.1-4 (1941), pp. 224–230 (cit. on pp. 55, 56).

[2] L Kantorovich. “On the transfer of masses (in Russian)”. In: Doklady Akademii Nauk. Vol. 37.
1942, p. 227 (cit. on p. 55).

[3] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133 (cit. on pp. 23, 24).

[4] S Kullback and RA Leibler. “10.1214/aoms/1177729694”. In: Ann. Math. Stat 22 (1951), pp. 79–
86 (cit. on p. 52).

[5] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The annals of
mathematical statistics (1951), pp. 400–407 (cit. on p. 25).

[6] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural network”. In: Biological
cybernetics 20.3-4 (1975), pp. 121–136 (cit. on p. 24).

[7] Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. Springer, 1984 (cit. on p. 24).

[8] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by
back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 26).

[9] Jürgen Schmidhuber. “Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook”. PhD thesis. Technische Universität München, 1987 (cit. on p. 43).

[10] Yann LeCun, Bernhard Boser, et al. “Backpropagation applied to handwritten zip code recogni-
tion”. In: Neural computation 1.4 (1989), pp. 541–551 (cit. on p. 28).

[11] Wei Zhang et al. “Parallel distributed processing model with local space-invariant interconnec-
tions and its optical architecture”. In: Applied optics 29.32 (1990), pp. 4790–4797 (cit. on p. 28).

[12] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. In: Diploma, Technis-
che Universität München 91.1 (1991), p. 31 (cit. on p. 31).

[13] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural net-
works 4.2 (1991), pp. 251–257 (cit. on p. 24).

[14] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics
of Control, Signals and Systems 5 (1992), pp. 455–455 (cit. on p. 24).

[15] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In: Neurocomput-
ing 5.4-5 (1993), pp. 185–196 (cit. on p. 26).

[16] Jane Bromley et al. “Signature verification using a” siamese” time delay neural network”. In:
Advances in neural information processing systems 6 (1993) (cit. on p. 33).

[17] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE transactions on neural networks 5.2 (1994), pp. 157–166
(cit. on p. 31).

[18] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press, 1995
(cit. on p. 31).

[19] Yann LeCun, Larry Jackel, et al. “Comparison of learning algorithms for handwritten digit recogni-
tion”. In: International conference on artificial neural networks. Vol. 60. 1. Perth, Australia. 1995,
pp. 53–60 (cit. on p. 28).

[20] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997 (cit. on p. 52).
[21] Tom B Brown et al. “Language Models are Few-Shot Learners. 2020. doi: 10.48550”. In: arxiv

(2005), pp. 5–7 (cit. on p. 32).
[22] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a similarity metric discriminatively, with

application to face verification”. In: 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 539–546 (cit. on p. 33).

59

Bibliography 60

[23] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by learning an invari-
ant mapping”. In: 2006 IEEE computer society conference on computer vision and pattern recog-
nition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–1742 (cit. on p. 33).

[24] Brian D Ripley. Pattern recognition and neural networks. Cambridge university press, 2007 (cit.
on p. 31).

[25] Pascal Vincent et al. “Extracting and composing robust features with denoising autoencoders”.
In: Proceedings of the 25th international conference on Machine learning. 2008, pp. 1096–1103
(cit. on p. 37).

[26] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on p. 32).

[27] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009 (cit. on p. 32).

[28] Armand Joulin and Francis Bach. “A convex relaxation for weakly supervised classifiers”. In:
arXiv preprint arXiv:1206.6413 (2012) (cit. on p. 39).

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Advances in neural information processing systems 25 (2012)
(cit. on pp. 28, 45).

[30] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances
in neural information processing systems 26 (2013) (cit. on pp. 39, 57).

[31] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014) (cit. on p. 31).

[32] Kaiming He and Jian Sun. “Convolutional neural networks at constrained time cost”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 5353–
5360 (cit. on p. 31).

[33] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on p. 31).

[34] Xi Chen et al. “Infogan: Interpretable representation learning by information maximizing genera-
tive adversarial nets”. In: Advances in neural information processing systems 29 (2016) (cit. on
p. 45).

[35] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learning”. In: arXiv
preprint arXiv:1605.09782 (2016) (cit. on p. 45).

[36] Kaiming He, Xiangyu Zhang, et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778
(cit. on pp. 31, 45).

[37] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations by solving
jigsaw puzzles”. In: European conference on computer vision. Springer. 2016, pp. 69–84 (cit. on
p. 37).

[38] Deepak Pathak et al. “Context encoders: Feature learning by inpainting”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 2536–2544 (cit. on
p. 37).

[39] Oriol Vinyals et al. “Matching networks for one shot learning”. In: Advances in neural information
processing systems 29 (2016) (cit. on pp. 42, 45, 49).

[40] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In: Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part III 14. Springer. 2016, pp. 649–666 (cit. on p. 37).

[41] Bolei Zhou et al. “Learning deep features for discriminative localization”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 2921–2929 (cit. on
p. 48).

[42] Michael Eickenberg et al. “Seeing it all: Convolutional network layers map the function of the
human visual system”. In: NeuroImage 152 (2017), pp. 184–194 (cit. on p. 28).

[43] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adapta-
tion of deep networks”. In: International conference onmachine learning. PMLR. 2017, pp. 1126–
1135 (cit. on pp. 42, 43).

[44] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot learning”.
In: Advances in neural information processing systems 30 (2017) (cit. on pp. 44, 46).

Bibliography 61

[45] Jonas Adler and Sebastian Lunz. “Banach wasserstein gan”. In: Advances in neural information
processing systems 31 (2018) (cit. on p. 53).

[46] David Berthelot et al. “Understanding and improving interpolation in autoencoders via an adver-
sarial regularizer”. In: arXiv preprint arXiv:1807.07543 (2018) (cit. on p. 45).

[47] Mathilde Caron, Piotr Bojanowski, et al. “Deep clustering for unsupervised learning of visual fea-
tures”. In: Proceedings of the European conference on computer vision (ECCV). 2018, pp. 132–
149 (cit. on p. 45).

[48] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (2018) (cit. on p. 38).

[49] Kyle Hsu, Sergey Levine, andChelsea Finn. “Unsupervised learning viameta-learning”. In: arXiv
preprint arXiv:1810.02334 (2018) (cit. on pp. 2, 42, 45).

[50] Yoshua Bengio Ian Goodfellow and Aaron Courville. “Deep learning: The MIT Press, 2016,
800 pp, ISBN: 0262035618”. In: Genetic programming and evolvable machines 19.1-2 (2018),
pp. 305–307 (cit. on pp. 26, 29, 30, 32).

[51] Ilya Kuzovkin et al. “Activations of deep convolutional neural networks are aligned with gamma
band activity of human visual cortex”. In: Communications biology 1.1 (2018), p. 107 (cit. on
p. 28).

[52] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature visualization: How neural
networks build up their understanding of images”. In: distill (2018) (cit. on p. 30).

[53] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive
predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018) (cit. on pp. 34, 36, 48).

[54] Mengye Ren et al. “Meta-learning for semi-supervised few-shot classification”. In: arXiv preprint
arXiv:1803.00676 (2018) (cit. on pp. 42, 49).

[55] Zhirong Wu et al. “Unsupervised feature learning via non-parametric instance discrimination”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 3733–3742 (cit. on p. 34).

[56] Antreas Antoniou and Amos Storkey. “Assume, augment and learn: Unsupervised few-shot
meta-learning via random labels and data augmentation”. In: arXiv preprint arXiv:1902.09884
(2019) (cit. on pp. 2, 42).

[57] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. “Self-labelling via simultaneous
clustering and representation learning”. In: arXiv preprint arXiv:1911.05371 (2019) (cit. on p. 57).

[58] Guneet SDhillon et al. “A baseline for few-shot image classification”. In: arXiv preprint arXiv:1909.02729
(2019) (cit. on pp. 2, 42).

[59] Dan Hendrycks et al. “Using self-supervised learning can improve model robustness and uncer-
tainty”. In: Advances in neural information processing systems 32 (2019) (cit. on p. 33).

[60] Zilong Ji et al. “Unsupervised few-shot learning via self-supervised training”. In: arXiv preprint
arXiv:1912.12178 (2019) (cit. on p. 42).

[61] Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. “Unsupervised meta-learning for
few-shot image classification”. In: Advances in neural information processing systems 32 (2019)
(cit. on pp. 2, 42, 45, 46).

[62] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”. In:
Advances in neural information processing systems 32 (2019) (cit. on pp. 29, 31).

[63] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport: With applications to data
science”. In: Foundations and Trends® in Machine Learning 11.5-6 (2019), pp. 355–607 (cit. on
pp. 39, 54, 55, 57).

[64] Ben Poole et al. “On variational bounds of mutual information”. In: International Conference on
Machine Learning. PMLR. 2019, pp. 5171–5180 (cit. on p. 49).

[65] Geoffrey Schiebinger et al. “Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming”. In: Cell 176.4 (2019), pp. 928–943 (cit. on p. 53).

[66] Jiaming Song and Stefano Ermon. “Understanding the limitations of variational mutual informa-
tion estimators”. In: arXiv preprint arXiv:1910.06222 (2019) (cit. on p. 49).

[67] Mathilde Caron, Ishan Misra, et al. “Unsupervised learning of visual features by contrasting clus-
ter assignments”. In: Advances in neural information processing systems 33 (2020), pp. 9912–
9924 (cit. on pp. 39, 57).

Bibliography 62

[68] Ting Chen et al. “A simple framework for contrastive learning of visual representations”. In:
International conference on machine learning. PMLR. 2020, pp. 1597–1607 (cit. on pp. 2, 32–
34, 49).

[69] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020) (cit. on pp. 38, 45).

[70] Jean-Bastien Grill et al. “Bootstrap your own latent-a new approach to self-supervised learning”.
In: Advances in neural information processing systems 33 (2020), pp. 21271–21284 (cit. on
pp. 32, 36, 50).

[71] Kaiming He, Haoqi Fan, et al. “Momentum contrast for unsupervised visual representation learn-
ing”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 9729–9738 (cit. on pp. 2, 35, 47, 50).

[72] Siavash Khodadadeh, Sharare Zehtabian, et al. “Unsupervised meta-learning through latent-
space interpolation in generative models”. In: arXiv preprint arXiv:2006.10236 (2020) (cit. on
p. 2).

[73] Dong Bok Lee et al. “Meta-gmvae: Mixture of gaussian vae for unsupervised meta-learning”. In:
International Conference on Learning Representations. 2020 (cit. on p. 42).

[74] John Lee, Nicholas P Bertrand, and Christopher J Rozell. “Unbalanced optimal transport reg-
ularization for imaging problems”. In: IEEE Transactions on Computational Imaging 6 (2020),
pp. 1219–1232 (cit. on p. 53).

[75] CarlosMedina, Arnout Devos, andMatthias Grossglauser. “Self-supervised prototypical transfer
learning for few-shot classification”. In: arXiv preprint arXiv:2006.11325 (2020) (cit. on pp. 2, 42,
46, 47).

[76] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-invariant rep-
resentations”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 6707–6717 (cit. on p. 32).

[77] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020 (cit. on p. 31).
[78] Martin Popel et al. “Transforming machine translation: a deep learning system reaches news

translation quality comparable to human professionals”. In: Nature communications 11.1 (2020),
p. 4381 (cit. on p. 32).

[79] Yonglong Tian et al. “Rethinking few-shot image classification: a good embedding is all you
need?” In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV 16. Springer. 2020, pp. 266–282 (cit. on pp. 2, 42).

[80] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, et al. “Semi-
supervised learning of visual features by non-parametrically predicting view assignments with
support samples”. In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 8443–8452 (cit. on p. 39).

[81] Hangbo Bao et al. “Beit: Bert pre-training of image transformers”. In: arXiv preprint arXiv:2106.08254
(2021) (cit. on p. 38).

[82] Wentao Chen et al. “Few-shot learning with part discovery and augmentation from unlabeled
images”. In: arXiv preprint arXiv:2105.11874 (2021) (cit. on pp. 2, 42, 47, 48).

[83] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learning”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 15750–
15758 (cit. on pp. 2, 32, 36, 37, 42, 49, 50).

[84] Zitian Chen, Subhransu Maji, and Erik Learned-Miller. “Shot in the dark: Few-shot learning with
no base-class labels”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 2668–2677 (cit. on p. 2).

[85] Debidatta Dwibedi et al. “With a little help from my friends: Nearest-neighbor contrastive learn-
ing of visual representations”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 9588–9597 (cit. on p. 35).

[86] Priya Goyal, Mathilde Caron, et al. “Self-supervised pretraining of visual features in the wild”. In:
arXiv preprint arXiv:2103.01988 (2021) (cit. on p. 32).

[87] YuqingHu, Vincent Gripon, and Stéphane Pateux. “Leveraging the feature distribution in transfer-
based few-shot learning”. In: International Conference on Artificial Neural Networks. Springer.
2021, pp. 487–499 (cit. on p. 57).

Bibliography 63

[88] Steinar Laenen and Luca Bertinetto. “On episodes, prototypical networks, and few-shot learn-
ing”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 24581–24592 (cit.
on pp. 2, 42).

[89] GraceW Lindsay. “Convolutional neural networks as amodel of the visual system: Past, present,
and future”. In: Journal of cognitive neuroscience 33.10 (2021), pp. 2017–2031 (cit. on p. 28).

[90] Jinghao Zhou et al. “ibot: Image bert pre-training with online tokenizer”. In: arXiv preprint arXiv:2111.07832
(2021) (cit. on p. 38).

[91] MahmoudAssran,Mathilde Caron, IshanMisra, Piotr Bojanowski, Florian Bordes, et al. “Masked
siamese networks for label-efficient learning”. In: European Conference on Computer Vision.
Springer. 2022, pp. 456–473 (cit. on p. 39).

[92] Yalin Bastanlar and Semih Orhan. “Self-supervised contrastive representation learning in com-
puter vision”. In: Artificial Intelligence Annual Volume 2022. IntechOpen, 2022 (cit. on p. 32).

[93] Lee Chen, Kuilin Chen, and Kuilin Chi-Guhn. “Unsupervised Few-shot Learning via Deep Lapla-
cian Eigenmaps”. In: arXiv preprint arXiv:2210.03595 (2022) (cit. on p. 2).

[94] Priya Goyal, Quentin Duval, et al. “Vision models are more robust and fair when pretrained
on uncurated images without supervision”. In: arXiv preprint arXiv:2202.08360 (2022) (cit. on
p. 33).

[95] Kaiming He, Xinlei Chen, et al. “Masked autoencoders are scalable vision learners”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 16000–
16009 (cit. on p. 32).

[96] Kaiming He, Xinlei Chen, et al. “Masked autoencoders are scalable vision learners”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 16000–
16009 (cit. on p. 38).

[97] Ojas Kishorkumar Shirekar, Anuj Singh, and Hadi Jamali-Rad. “Self-Attention Message Passing
for Contrastive Few-Shot Learning”. In: arXiv e-prints (2022), arXiv–2210 (cit. on pp. 2, 42).

[98] Rayan Krishnan, Pranav Rajpurkar, and Eric J Topol. “Self-supervised learning in medicine and
healthcare”. In: Nature Biomedical Engineering 6.12 (2022), pp. 1346–1352 (cit. on p. 33).

[99] Yuning Lu et al. “Self-supervision can be a good few-shot learner”. In: European Conference on
Computer Vision. Springer. 2022, pp. 740–758 (cit. on pp. 2, 42, 49, 50).

[100] Zhenda Xie et al. “Simmim: A simple framework for masked imagemodeling”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 9653–9663
(cit. on p. 38).

[101] Han-Jia Ye, Lu Han, and De-Chuan Zhan. “Revisiting unsupervised meta-learning via the char-
acteristics of few-shot tasks”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 45.3 (2022), pp. 3721–3737 (cit. on p. 42).

[102] Randall Balestriero et al. “A cookbook of self-supervised learning”. In: arXiv preprint arXiv:2304.12210
(2023) (cit. on p. 32).

[103] Wentao Hu et al. “Meta-DM: Applications of Diffusion Models on Few-Shot Learning”. In: arXiv
preprint arXiv:2305.08092 (2023) (cit. on p. 2).

[104] Huiwon Jang, Hankook Lee, and Jinwoo Shin. “UnsupervisedMeta-learning via Few-shot Pseudo-
supervised Contrastive Learning”. In: arXiv preprint arXiv:2303.00996 (2023) (cit. on p. 2).

[105] Maxime Oquab et al. “Dinov2: Learning robust visual features without supervision”. In: arXiv
preprint arXiv:2304.07193 (2023) (cit. on p. 38).

[106] O Ciga, T Xu, and AL Martel. “Self supervised contrastive learning for digital histopathology.
arXiv 2020”. In: arXiv preprint arXiv:2011.13971 () (cit. on p. 33).

	Introduction
	Scientific Article (BECLR)
	Deep Learning
	Deep Feedforward Networks
	Activation Functions
	Optimisation and Backpropagation
	Loss Function
	Stochastic Gradient Descent
	Backpropagation

	Convolutional Neural Networks
	Convolution
	Pooling
	Feature Extraction with CNNs
	Deep Residual Networks

	Self-Supervised Learning
	Contrastive SSL
	SimCLR
	NNCLR

	Self-Distillation SSL
	BYOL
	SimSiam

	Masked Image Modeling
	Masked Siamese Networks

	Few-Shot Learning
	Problem Formulation
	Model Agnostic Meta Learning
	Prototypical Networks
	Unsupervised Few-Shot Learning
	Unsupervised Meta Learning
	ProtoTransfer
	PDA-Net
	UniSiam
	Connection to BECLR

	Optimal Transport
	Continuous Optimal Transport
	Discrete Optimal Transport
	Assignment Problem
	Working with Asymmetric Distributions
	The Kantorovich Relaxation
	Entropic Regularization
	Sinkhorn-Knopp Algorithm

	Conclusions and Future Directions

