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Abstract

Constraint programming solvers provide a generalizable approach to finding solutions for optimization
problems. However, when comparing the performance of constraint programming solvers to the
performance of a heuristic solver for an optimization problem such as cluster editing, the heuristic solver
is able to find near-optimal and optimal solutions much faster. The goal of this research is to understand
how the behaviour of such a heuristic solver can assist the performance of constraint programming
solvers in optimization problems. In order to achieve this, first Chuffed [8], a state-of-the-art constraint
programming solver was combined with a heuristic approach to cluster editing, with the goal of
emulating the performance of the heuristic algorithm, in particular, being able to find near-optimal
solutions faster. Continuing, the goal was to generalize the behaviour observed by the modified solver,
by emulating the performance observed without the need for the specialized heuristic solver. The
generalized approach is tested on a wide variety of different tests. An approach to value selection
was developed that performs lookahead propagations for the two values of a boolean variable and
selects the value that has the most optimal solution within the domain after performing the lookahead
propagation. This approach added a significant time overhead that increased the overall solving time
for many problems, with the lookahead configuration having a median increase of 8.7% over the default
configuration for the optimization problems of the MiniZinc Challenge 2022 [24]. However, it was
able to successfully emulate the performance of the heuristic solver, finding near-optimal solutions
significantly faster than the default value selection. In particular, for the optimization problems of the
MiniZinc Challenge 2022 [24], on average, the lookahead configuration had a definite integral for the
time vs objective graph 54.7% lower than the default Chuffed configuration.
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Introduction

Constraint programming (CP) is a powerful approach for solving a wide range of problems involving
constraints. It deals with the modelling of problems with variables that are subject to constraints, and
solving them by providing a set of assignments to the variables, such that all constraints are satisfied.
Furthermore, for optimization problems, the variables also have to maximize an objective function [27].
One of the main advantages of constraint programming is that it only needs a model of the problem to
work, instead of a tailor-made algorithm, making them extremely versatile and generalizable.

Constraint programming has been applied to a wide range of real-world problems, including
scheduling, planning, resource allocation and configuration, and design problems, for many different
fields, such as bioinformatics, finance, telecommunications, engineering, and transportation [31, 29]. For
example, in scheduling, a model can be created that takes into account a wide range of constraints, such
as resource and personnel availability, and temporal constraints, while having an objective function, like
minimizing costs. The use of such a model can help better clarify what the conditions that need to be
met are, and allows for expandability, as adding additional variables and constraints does not require
modifying other parts of the model. A constraint programming solver can take as an input the said
model and can be used to find optimal, or near-optimal schedules that satisfy all constraints. Therefore,
solving, but also finding near-optimal answers for CP problems as quickly as possible is of great interest
to many companies that rely on CP solvers.

1.1. Background

The need for more efficient CP solvers has led to a race where different solvers constantly improve
year over year [24], with the goal of creating more efficient solvers. In particular, most solvers attempt
to reduce the search space as much as possible and use various heuristics to better guide the solver
through the search space.

Recently, CP has grown closer to propositional satisfiability (SAT), another NP-Hard problem. SAT
problems take as input a propositional formula, which is constructed with boolean variables and basic
logic operations, in particular AND, OR, and NOT. The goal of SAT solvers is to find an assignment of
all variables that make the given propositional formula true.

Lazy Clause Generation (LCG) provides a hybrid of CP-SAT, by converting the CP variables, for
example, integers, into sets of boolean variables and associated clauses. Two state-of-the-art solvers that
utilize such a hybrid CP-SAT approach are Chuffed [8] and OR-Tools [15], the latter having won gold in
the MiniZinc challenge every year since 2013. In addition, many heuristics have been used, such as
variable state independent decaying sum (VSIDS) and Solution Based Phase Saving (SBPS), with the
goal of further improving the performance of the solvers.

1.2. Motivation

Despite many improvements, CP solvers still struggle to find optimal, or near-optimal solutions at a
reasonable time for certain problems, in particular, when compared to heuristic solvers. Figure 1.1
showcases this performance disparity. For the problem of cluster editing, which will be the main focus
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2 Chapter 1. Introduction

of this research. When attempting to solve the same instance, Chuffed is able to find the optimal solution
of 42 in 56 seconds. In comparison, the heuristic solver finds the same solution in 6 milliseconds.

Time vs objective of best solution found

—— Chuffed CP solver
Kanpai heuristic solver

70 4

65 1

60 1

55 4

Objective value (lower is better)

50

45 +

3.90625 ms 15.625 ms 62.5 ms 250 ms 1s 4s 16s 64 s
Time

Figure 1.1: Performance disparity between the Kanpai heuristic algorithm[10] and Chuffed CP solver|[8] for the instance of the
cluster editing problem.

This performance disparity can be partially explained by the fact that a heuristic solver is specialized
for a specific problem, and therefore, has additional knowledge of the structure of the problem, and
how to achieve a near-optimal solution. Furthermore, looking at some heuristics used by CP solvers
such as Chuffed, in particular VSIDS and SBPS, these heuristics provide little assistance early on and
only have a significant effect on the solver after finding some solutions and conflicts.

Although approaches exist that utilize heuristic solvers, such as using them for warm start[14], this
only provides an initial solution to the CP solver and still keeps the CP solver separate from the heuristic
solver. Being able to learn what heuristic solvers does differently, and emulating this behaviour to a CP
solver could help decrease the gap between CP and heuristic solvers, especially in the early stages of
computation.

1.3. Research goal

CP-SAT solvers rely on various heuristics to make decisions during branching that will improve the
overall performance of the solver. In particular, the main steps in branching are selecting a variable, and
deciding on a value. The goal of this research is to modify the value selection of the VSIDS branching
heuristic for Chuffed, in an attempt to improve the performance of the solver, particularly early on.

In order to achieve this, the Cluster Editing problem will be used as a case study. The goal of cluster
editing is for a given undirected graph, to find the minimum number of edge edits, which includes edge
addition or removals, that transform the graph into a cluster graph. A cluster graph is a graph where
every connected component forms a clique [3].

Finding the optimal solution for this problem is NP-hard, however, just finding a solution that forms
a cluster graph is trivial. Simply put the nodes in any arrangement of clusters, and record the edits that
need to occur in order to achieve the desired cluster graph. As a result, heuristic algorithms are able to
find a solution for cluster editing relatively quickly, and then attempt to find near-optimal or optimal
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solutions through many different methods [3], like local searching, or using a set of heuristics.
Therefore, the first step of the research will be modifying the Chuffed solver, so that the value
selection will be determined by a heuristic algorithm specialized for solving cluster editing instances.
Two approaches are implemented for this step. The first approach fully solves the problem and returns
the value assigned to the selected variable. This approach is similar to a warm start, but it keeps
providing assistance throughout the entire progress of the solver, instead of just the very start. The
second approach will only perform one step of the heuristic algorithm. This approach should show how
well can the CP solver utilize intermediate solutions by the solver. Based on the previous steps’ findings,
the goal will become to emulate the performance noticed, without the need for the heuristic solver. First,
the new modified solver will be tested on the Cluster editing problem, and continuing, will be tested on
different optimization problems, in order to discover how generalizable are the findings of this research.

1.4. Research questions

Based on the aforementioned research goals, the main research question is How can the behaviour of
specialized heuristic solvers assist constraint programming solvers in optimization problems? This
research question can be divided into the following subquestions:

1. Can Chuffed be combined with a cluster editing heuristic algorithm to improve the performance
of the CP solver on cluster editing instances?

2. How can the performance of the combined algorithm be emulated without the need for the
heuristic algorithm?

3. How does the modified solver perform in different optimization problems?

1.5. Roadmap

The thesis will be organized as follows: In chapter 2, a description of the related work and state-of-the-art
in the relevant topics is provided. Next, chapter 3 provides a preliminary section of the problems
relevant to the research, in particular, cluster editing and constraint programming, detailing the concept
of the problems, as well as relevant notations and step-by-step examples for concepts that will be of
high importance during the research.

Continuing, the following two chapters address the first research sub-question. First, in chapter 4, a
description of how Chuffed can be combined with a heuristic solver is provided. Continuing, in chapter
5, the experimental setup to test the performance of the combined solver on cluster editing is detailed,
along with the results of the experiments and an analysis of the performance and generalizability of
these findings.

Next, the following two chapters address the second and third sub-questions. In particular, an
approach to emulate the performance of the combined algorithm is presented in chapter 6.

Chapter 7 presents the test results of the lookahead approach. First, in section 7.2, the cluster editing
performance of the new approach is tested, using an identical experimental setup as the previous tests,
in order to see how closely this approach emulates the previous approaches, and how it affects the
overall performance of the solver on cluster editing. Sections 7.3 and 7.4 address the last sub-question,
with the lookahead approach being tested using a set of different problems and instances. Lastly, chapter
8 discusses the main conclusion, along with future improvements.






Related Work

This chapter introduces the main concepts, along with related work in the fields of constraint program-
ming and cluster editing heuristic solvers.

2.1. Constraint programming

Before even the emergence of modern computers, the general concept of constraint satisfaction and
optimization already existed. The real-world uses for constraint satisfaction and optimization, like
scheduling or routing have always been problems in need of a solution. In fact, backtrack searching,
which is the concept of building a solution iteratively, by branching through a search tree and removing
solutions that cannot satisfy all constraints was used in recreational Mathematics in the nineteenth
century [22], as cited in chapter 2 of the handbook of constraint programming by F. Rossi et al. [27].

In general, the field of constraint programming can be split into two sub-fields. The first field
focuses on the languages used to model constraint problems and the second one has an interest in
constraint-solving algorithms.

2.11. Modelling

The core of constraint programming languages is based on variable relations and formal logic. One of
the first uses of constraints in a programming language comes from M.V. Wilkes, where programming
language statements are included, which are not explicitly assignment statements, but relations between
variables that need to be met. Prolog [9] was one of the first declarative programming languages based
on formal logic statements, hence the name PROgramming LOGic. Prolog is therefore considered an
early constraint programming language [27].

Nowadays, one of the state-of-the-art constraint modelling languages is MiniZinc [23], a high-
level modelling language for constraint satisfaction and optimization problems. MiniZinc is solver-
independent, by compiling into a low-level language, FlatZinc, which is understood by a wide range of
solvers. Due to its availability, efficiency and ease of use with any solver, MiniZinc will be used as the
modelling language throughout the research.

2.1.2. CP Solvers

The algorithms focused on solving constraint problems are generally split into two strategies: searching
or branching, and inference or propagation [27].

Searching is the task of navigating through the search tree of a problem, in order to find a solution
satisfying all constraints. Backtracking is the fundamental search method for CP problems, as it
guarantees to find a satisfactory solution if one exists [27]. Backtracking builds up a partial solution, by
selecting values for variables until reaching a solution, or a conflict, at which point, it backtracks to a
previous decision where a different choice can be made, and makes a different decision. This approach
potentially visits all feasible partial solutions and hence guarantees to find any existing satisfying
solutions. This approach is better than brute force, as it checks after each decision if the constraints
are met, instead of doing that only until a full solution is found. Hence, discovering that a partial
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6 Chapter 2. Related Work

solution cannot satisfy all constraints prunes the subtree of that partial solution, resulting in multiple
full solutions that do not satisfy all constraints being removed from consideration.

Figure 2.1: An example of backtracking. The starting point is shown in blue. The orange nodes represent an intermediate
solution, the red nodes represent a solution with conflicts, and the greed nodes represent a solution satisfying all constraints. The
arrows indicate decisions and backjumps

Figure 2.1 shows an example of backtracking. The solver starts with an empty solution and first
makes a decision that moves its state to an intermediate solution (I1). Continuing, the solver makes a
second decision, which leads to a solution with conflicts (S1). After backtracking, back to I1, the solver
now makes a different decision, which also leads to a solution with conflicts. Backjumping back to the
starting point, the solver now makes a decision that results in a different intermediate solution than I1.
From 12, the solver makes one last decision that results in the solution satisfying all constraints. This
process has explored all possible solutions, before finding a solution.

Propagation is a vital step in CP solvers, reducing the search space of candidate solutions, and
enabling solvers to work more efficiently, especially as the problem size increases. By default, using
backtracking to solve constraint satisfaction problems almost always leads to thrashing behaviours [27,
6]. Thrashing is the repeated exploration of sets of subtree modules that are failing due to the same
assignments and only differ in assignments that are not related to the cause of failure. As the size of the
problem increases, and hence, the size of the search space increases exponentially, the effect of thrashing
in the total runtime also increases exponentially. Propagation can significantly reduce thrashing, by
making implicit constraints explicit, and removing values from the domains of variables that are not
consistent, meaning that these values produce a non-satisfiable solution.

2.1.3. Hybrid CP-SAT approach

Another field of study similar to constraint programming is boolean satisfiability (SAT), which attempts
to satisfy formulas consisting of boolean variables and boolean operators. These two fields of study
have grown increasingly closer, in particular after researchers discovered that CP and SAT instances
can be mapped to each other [30, 7]. Due to SAT solvers being extremely efficient, encoding certain CP
problems as SAT problems could lead to great performance gains.

PJ. Stuckey [28] presents a hybrid CP-SAT approach where CP variables and constraints are mapped
to variables and clauses in an SAT solver. This approach utilized a technique called Lazy Clause
Generation(LCG). For example, an integer variable with a finite domain [I..u] would be represented by
a set of boolean variables like x < d, [ <d <uand x ==d,l <d < u.

The LCG technique combines finite domain propagation of CP solvers with the highly efficient
inference graph of SAT solving that records nogoods path and prevents similar failing parts of the
problem from being explored. Solvers such as Chuffed[8], utilize these techniques in order to create
highly efficient solvers.

21.4. CP Heuristics

One of the main ways of improving the branching performance was through the use of heuristics, which
better guide the solver through the search tree. One of the earlier concepts of heuristics was using a
lookahead procedure called forward checking, which employs the most likely to fail principle, which
branches on decisions that are more likely to fail [17]. This heuristic was shown to perform better than
standard backtracking.
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For LCG solvers such as Chuffed, using SAT branching heuristics, such as the Variable State
Independent Decaying Sum (VSIDS) heuristic, can further improve the variable selection[21]. VSIDS
works by assigning an activity score to each variable and increasing said score based on how many
clauses that variable is involved in. During branching, the variable with the highest activity is selected.
Through the use of additive bumping and multiplicative decay, a bias towards variables that have a
greater presence in recently learnt clauses is created. Due to VSIDS being independent of the current
state of assignments, backtracking does not require any changes to the activity score, making this
heuristic incredibly efficient.

Solution-based phase saving (SBPS) emulates local search, by attempting to search through the
neighbourhood around the current best solution [11]. This is done by setting the default polarity for
each variable to the value of the best solution found so far. This approach is useful for optimization
problems, finding more optimal solutions faster than the default value selection for certain problems.

Additional approaches that improve the performance of Chuffed using Machine learning exist, such
as initializing an activity score for VSIDS [12] or predicting unsatisfiable cores [13].

Overall, many techniques have been used to make CP solvers more efficient for both satisfaction and
optimization problems. New techniques are constantly being implemented that further improve the
performance of solvers in certain areas. However, for optimization problems, better guiding the SAT
value selection for Chuffed, especially in the early stages could potentially lead to finding near-optimal
solutions faster.

2.2. Heuristic approaches to Cluster editing

Cluster editing is the problem of finding a set of edge modifications that transform a graph into a cluster
graph. A more formal description of this problem is provided in section 3.1.

Finding a solution to the Cluster editing problem is NP-hard, with a time complexity of O(2.27%+|V|3)
using a branch and bound strategy [16].

From the PACE 2021 challenge [19], the top 9 heuristic algorithms that competed were all able to
achieve a score above 99/100 on the 200 instances, with sizes (nodes + edges) of up to five million. The
score is calculated by 100 * s, /s, with s,i, being the best solution known for a problem, and s the
solution produced by the heuristic solver. This indicated that the heuristic solvers were able to find
optimal, or near-optimal solutions for most instances. In particular, the top-scoring solver for both the
exact and heuristic track, KaPoCE [5] was able to achieve a score of 99.9989/100.

The main algorithm used in this research for cluster editing is the Kanpai approach [10], which was
the 5th best solver in the heuristic track of PACE 2021, with a score of 99.9786,/100 [19]. This algorithm
uses a bottom-up approach to solving this problem. At first, each node is in its own cluster. Next, the
algorithm iteratively combines nodes into clusters in a greedy fashion. In particular, if connecting two
nodes would decrease the number of nodes, then the two nodes are added to the same cluster. Once
a local minimum is reached, nodes in the same cluster a replaced by super-nodes, and the process
continues. In order to ensure that the program does not terminate after reaching a local minimum
early, it randomly makes sideways decisions if it can not find an improving move. This algorithm is
able to make big reductions in the minimum number of edits in the first few seconds of running, even
from some of the larger instances of the PACE 2021 heuristic track [19]. Due to its simplicity, yet high
performance, this algorithm is a perfect candidate for an attempt to emulate its behaviour with Chuffed.






Preliminary

In this chapter, a problem description and notations in relation to cluster editing and constraint
programming, as well as step-by-step examples of the Kanpai cluster editing algorithm and a barebones
CP solver are presented.

3.1. Cluster editing

’
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Figure 3.1: Left: An input graph. Right: A cluster graph is obtained by making two edge modifications in the input graph. The
thick red line is an added edge, and the dashed red line is a removed edge. Figure sourced from PACE 2021 [19].

Cluster editing, also known as correlation clustering, is a problem with many applications in
bioinformatics [4], data mining [1], and psychology [18]. It is a form of graph-based clustering, that
takes as an input a graph G = (V, E) that attempts to find the minimum set of edge modifications, which
includes edge insertions or deletions, that transforms a given graph into a cluster graph, a graph where
every connected component is a complete graph (clique). There are different variations of the cluster
editing problem, with different weights per edge, to represent values such as node similarities [2]. For
this research, the variation of cluster editing used will be the one used for PACE 2021 [19], which uses
graphs with unweighted edges. Figure 3.1 shows an example of cluster editing, with the left graph
representing an example of an input graph, and the right graph showing the optimal solution for cluster
editing for this example.

Unlike other common clustering techniques, cluster editing finds a cluster graph that is the most
similar to the input graph, without requiring the final number of clusters to be provided as input.

Finding an assignment of edge modifications that transforms a graph into a cluster graph can be
done in polynomial time. One example of a non-optimal cluster editing solution is simply removing
all edges. This results in a cluster graph, as each node is not connected to any other node, and hence,
forms a clique by itself. However, finding the set with the minimum number of edge modifications and
proving optimality is NP-Hard [19].

3.1.1. Cluster editing notation

Let G be an undirected and unweighted graph. Vi represents the set of vertices of a graph G and E¢

represents the set of edges. {u, v} € Eg represents an existing edge in G between u € Vg and v € V.
Two nodes u, v € Vi are adjacent, or neighbors, if an edge {1, v} € Eg between them exists. The

neighbourhood of a node u € V is the set of all neighbours of u and is denoted as N¢(v). The closed

9



10 Chapter 3. Preliminary

neighbourhood of a node u includes the neighbourhood of the node plus itself, and is defined as such:
Ngl[u] = Ng(u)Uu

The adjacency matrix of a graph G is a [| V|, |V|] matrix, where each row and column represents
each node, and each element, being 1 or 0 (true or false) represents whether the two nodes are adjacent.
In the following sections, the input graph will be denoted as G, and the output graph as g.

3.1.2. Step by step Kanpai algorithm

In this section, a more formal explanation of the Kansai algorithm [10] will be explained, through the
use of an example, along with important concepts of the algorithm, in particular, the super-nodes, which
will be relevant in the following sections.

01 101
1 0110
G=|11 011
01 101
10110

Figure 3.2: Input graph for the kanpai algorithm.

For this example, the input graph is shown in figure 3.2. This graph has 5 nodes and 8 edges, with
the minimum number of edits being two, achieved by adding an edge between 1 and 4, and 5 and 2,
essentially transforming the graph into a complete graph. Initially, the Kanpai algorithm will start with
each node being in its own cluster, and hence, the number of edits will be 8.

In each iteration, the algorithm will go through each node, and move it to a cluster that reduces the
number of edits the most. This is referred to as the best local move. If no moves exist that improve the
number of edits, the algorithm might randomly perform a sideways move if one exists, a move that

does not change the number of edits.

01 0 0 O
1 00 0O
¢g=/0 00 1 1
(@

Figure 3.3: An intermediate solution produced by the kanpai algorithm. At this state, any move will be at best a sideways move.

Figure 3.3 shows the potential state of the algorithm after one iteration. In this state, the number of
edits is 4. There are no moves that can improve the number of edits, and at best, only sideways moves
can be made. Let’s say an attempt is made to move edge 1 to the cluster with 3,4 and 5, an edge will
have to be removed between 1 and 2, leading to 4 edits.
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)€

Figure 3.4: The algorithm adds the existing clusters into super-nodes.

After not being able to improve the number of edits, the algorithm will add all current nodes into
super-nodes, as shown in figure 3.4. In this state, the previous clusters are treated as nodes. Furthermore,
the graph now acts as a weighted graph, in order to account for the fact that multiple edges are needed
to connect the two super-nodes.

1,2

3,4,5

Figure 3.5: The final result of the kanpai algorithm, after connecting the two super nodes.

In this iteration, connecting the two super nodes, as shown in figure 3.5, improves the number of
edits to 2. This also happens to be the best solution, although this algorithm does not guarantee to find
the optimal answer.

3.2. Constraint programming

A constraint programming solver takes as an input a model of a problem and attempts to produce a
solution, based on the model’s parameters. A constraint optimization model consists of 4 parts:

® Variables: The main part of a CP model is the set of variables that should be assigned a value.

* Domain: The domain of possible values that the variable can be assigned. Any assignment of
values within the domain of each variable is a candidate solution.

¢ Constraints: Each constraint is a condition that needs to be satisfied.

* Objective function: Optionally, a model can have an objective function that needs to be maximized
or minimized based on the problem. The goal of the research is to improve the performance of
CP solvers in optimization problems. Therefore, each used model will always have an objective
function.

The goal of a CP solver is to find a solution within the search space of the model, the search space
including all candidate solutions, that satisfies all constraints, and optimizes the objective function. In
general, to achieve this, a typical CP solver roughly performs the following two steps in each iteration:
propagation and branching. Propagation updates the domains of all variables, removing values that
would violate the constraints of the problem. Branching decides which part of the tree to explore next.
Many strategies and heuristics are used to better guide the CP solver during this phase.

For cluster editing, a CP model could be created as such. The variables are the adjacency matrix of
the output cluster graph. Essentially, the edges in the output graph are the variables. The constraints
indicate that if two nodes are connected in the output graph, then they must have the same neighbours,
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i.e. be connected to the exact same nodes, else, they must share no neighbours. Lastly, the objective
function is to minimize the number of edits. For this model, the goal of a CP solver would be to find an
assignment of variables for the adjacency matrix that satisfies the constraint and prove that no other
assignment of the adjacency matrix produces a lower amount of edits.

3.2.1. CP solver steps

For this section, a simplified view of the steps taken by a CP solver, like Chuffed, will be analyzed and
explained. The focus will mainly be on the branching decisions of the solver, while also keeping in mind
how variables are propagated.

d

Propagate

(>

No
\V,

Random variable and
value Branch

R

Figure 3.6: An example of the main components of a simple constraint programming solver.

Figure 3.6 shows the barebones solver that will be used for this step-by-step example. At first, the
solver propagates all variables, updating their domain to only include values that satisfy the constraints.
Assuming there are no conflicts or a full solution, the solver takes the current state after the propagation,
and branches on a new variable and value. For this example, it is assumed that branching is random.

Figure 3.7: Input graph for Chuffed.
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A step-by-step showcases how these steps are relevant to cluster editing. Figure 3.7 shows an input
graph with 4 nodes and 3 edges. The optimal solution requires 1 edit, where the edge between 1 and 3
is removed.
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Figure 3.8: Initial state of the solver.
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At first, the solver will start with all variables empty,as shown in figure 3.8. At this point, the domain
for the number of edits is from 0 to 6. If edge 1,2 € E, is selected as the first variable, and assigned it 1.
After propagation, the domain for the number of edits is updated to 0..5.
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In the second iteration, selecting variable 1,3 € ¢ and assigning 1 will propagate edge 1,2 € E; to 1,
due to the constraints of cluster editing. Next, the number of edits is propagated to 1..4. The resulting
state is shown in figure 3.9. From this point, the solver will at best find a solution with 2 edits first before
finding the optimal solution. This is because if node 4 is connected to the existing cluster of 1, 2 and 3,
then the resulting solution will be 3 edits, whereas if 4 is not added to the cluster, the resulting solution
will be 2. Chuffed will restart the process and reattempt to find a solution, having learned additional
clauses that will assist in finding the optimal solution. However if in step 2, a different decision was
made, in particular, selecting value 0 for edge 1,3 € g, the solver would find the optimal solution faster.

Figure 3.9: Intermediate state of the solver.






Hybrid CP-Heuristic solver approach

This chapter will detail the first steps of the main contributions of the research. in particular, the cluster
editing model used, continued by the Chuffed modifications done to integrate the heuristic approach to
cluster editing with the CP solver.

4.1. Cluster editing Constraint model

In this section, the MiniZinc constraint model for cluster editing is presented, which will be used for
testing the performance of the modified chuffed solver.

The model is based on a viewpoint of the adjacency matrix of the output cluster graph g. As an
input, the model requires the number of nodes V, the number of edges in the original graph Eg, and a
list of size |E¢| that contains each edge {u, v} € Eg. The variables of this model include the adjacency
matrix of the final cluster graph g. The adjacency matrix is a [[N|, [N |] matrix, with each variable being
a Boolean. Next, the objective function is minimizing the number of edits. The main constraint of this
model says that if edge {u, v} € E; exists, then Ng[u] = N¢[v], else, No[u] N Ng[v] = 0. In other words,
this constraint ensures that if two nodes are connected, then they must have the exact same neighbours,
and if they are not connected, they must not share any neighbours.

In order to improve the performance of the model, additional optional constraints that limit the
search space are included. These constraints are based on the lemmas presented in the paper Cluster
Editing with Diamond-free Vertices by D. Rhebergen [26], and rely on the closed neighbourhood of the
original graph. In particular, they ensure the following two properties:

1. If twonodes u, v € V¢ are not adjacent in G, and [Ng (1) U Ng(v)| < 1 then the two nodes will not
share an edge in the final cluster graph.

2. Iftwonodes u, v € V are not adjacentin G, u, v € E¢ will exist only if |(Ng (1) N Ng(v)) N (Ng(u) N
Ng(v))| = 2.

These constraints significantly reduce the search space for many instances, resulting in significantly
faster performance. For certain instances with many possible optimal solutions, some optimal solutions
are also excluded from the search space, however, there is always at least one solution in the search
space that is optimal.

4.2. Chuffed solver modifications

This section describes the modifications done to the Chuffed solver in order to combine the solver with
the heuristic algorithm.

4.2.1. Value selection modifications
The following two modifications affect the SAT :: branch() function of Chuffed. In particular, in this
function, if a variable of the adjacency matrix of g, let’s say u, v € E; has been selected, a heuristic

15
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approach is used to determine the value of this variable. In other words, if # and v belong in the same
cluster, and hence, share an edge in the final cluster graph.

First is a simple heuristic value selection. After selecting variable u,v € Eg, this heuristic approach
calculates how the number of edits changes if u is added to the cluster of v. If the number of edits
decreases then the value selection returns true, adding an edge between the two nodes. Essentially, this
performs one step of the Kanpai algorithm. This approach will be referred to as the simple heuristic
value selection.

Continuing to the second approach, during value selection, the Kanpai algorithm solves the problem
and returns the value that variable u,v € E, has in the solved state of the heuristic algorithm. This
approach will be referred to as the Kanpai value selection.

For both approaches, the current state of the adjacency matrix of g is passed to the heuristic
algorithms. Before starting the computations, the state of the heuristic algorithm copies the assigned
values of the passed variables, in order to reflect the state of the solver. Continuing, it is important
to assume that the state of the assigned variables in the solver will remain the same. Therefore, the
clusters that already exist in the current state of the solver are added into super-nodes, ensuring that the
heuristic algorithm keeps the state of the solver intact at the end of its computation.

4.2.2. Initial activity for VSIDS

Time vs objective of best solution found
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Figure 4.1: This graph shows the time against the best solution found on a cluster editing instance, for a solver using 0 initial
activity, and one using 1000 initial activity. Both configurations use the Kanpai value selection

VSIDS starts with the same activity for all variables. As there are many variables that are not part
of the adjacency matrix but propagate the adjacency matrix variables, this resulted in the Chuffed
solver rarely using the heuristic approaches for value selection, leading to no significant performance
changes. As a result, the initial activity for the adjacency matrix variables was increased, in order to
force the solver to use the heuristic approach for value selection, especially in the earlier stages. This has
a significant effect on performance, particularly in finding the best solution earlier, as shown in figure
4.1. Using the Kanpai value selection, a configuration with 0 initial activity is able to find an optimal
solution in 192 seconds, while a configuration with 1000 initial activity for the variables of the adjacency
matrix, g reaches the optimal solution in 0.03 seconds.
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4.2.3. Warm start

During early testing, the modified solvers, and in particular, the Kanpai value selection was able to find
the optimal solution almost immediately and spent the rest of the solve time simply proving optimality.
Therefore, another approach is designed. This approach starts by using the Kanpai approach, but
during variable selection, it only picks variables of the adjacency matrix first. When a solution is found
the solver reverts the normal variable and value selection.

4.2.4. Solution based phase saving [11]

An additional version of the two heuristic value selection algorithms is also implemented that uses an
approach similar to solution-based phase saving (SBPS) [11], which uses the best solution found so far
during value selection.

This approach alongside the current state of the adjacency matrix of g, also passes the adjacency
matrix of g of the best solution found so far. After copying the current state of the adjacency matrix of g
and creating super nodes, the heuristic algorithm copies the adjacency matrix of the best solution found
so far by Chuffed, while ensuring that no conflicts are created. However, these new clusters are not
added into super-nodes, meaning that the solver does not have to keep the state of these clusters intact.
For variables not in the adjacency matrix of g, SBPS is used.

The following chapter will test the performance of these modifications. In particular, the metrics
used will represent the to total time taken to fully solve cluster editing instances and the quality of
solutions produced at each time point.






Initial Experimental Results

In this chapter, the experimental setup is described. Continuing, the initial results are presented,
comparing the performance of Chuffed using a cluster editing heuristic solver for value selection. First,
the data collected during the experiment are displayed, and next, an analysis detailing the performance
of each configuration, as well as how their benefits can be generalized is detailed. The full results are
shown in appendix A.

5.1. Experimental Setup

This section describes the overall setup used through the experimental process, including the selection
of instances, the changes between solver configurations, and the metrics used to evaluate performance.

Overall, 20 different graph instances were used to compare the performance of 8 different solver
configurations. The model presented in section 4.1 was used, in combination with MiniZinc Python to
run the tests.

5.1.1. Selection of Instances

For the selection of instances, in order to better represent the overall performance of the new modifications
for cluster editing, a wide range of instances had to be selected, with different sizes. Therefore 20
different graphs were used, 10 graphs that are solvable by the default chuffed solver in under 10 minutes,
and 10 larger graphs with a timeout of 10 minutes. The 20 graphs are either taken directly from instances
of graphs used for the exact track of PACE 2021 or generated based on the tools used to generate said
graphs [19].

For the small graphs, it was deemed important to select instances that are large enough for any
differences between runs to be because of the different configurations. Furthermore, it was also necessary
to select instances that are solvable multiple times in a reasonable amount of time. Therefore, instances
that are solvable in between 30 seconds to 10 minutes by default chuffed were selected.

In total 10 different small instances were used. In particular, the instances exact003 and exact005
were used from pace2021 [19]. The rest of the instances were generated based on the tools provided
by pace2021 [19], section 3.2, which transform weighted graphs into unweighted ones. In particular,
4 instances were generated using the real-world biological dataset [20]. Another 4 instances were
generated using randomly created action sequences. Table 5.1, presents details about the 10 small
graphs.

Continuing, 10 additional larger instances of increasing size were used. The goal of these instances
is to compare the early performance of the different Chuffed configurations and observe how each
configuration scales as the size of the graph increases. The graphs were all taken from the exact track of
pace 2021[19]. For each large graph, a time limit of 10 minutes is set. Table 5.2 presents the large graphs
used.
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Table 5.1: Small graphs

Graph Nodes | Edges | Optimal
exact003 20 73 42
exact005 20 97 46
instance_nr_11-csv-thres-0-40 22 141 39
instance_nr_313-csv-thres-0-45 | 20 107 42
instance_nr_1243-csv-thres-0-50 | 26 97 46
instance_nr_1679-csv-thres-0-45 | 24 154 50
pace_actionseq_21_10 21 69 44
pace_actionseq_22_2 22 133 33
pace_actionseq_23_10 23 79 41
pace_actionseq_26_2 26 195 41

Table 5.2: large graphs

Graph Nodes | Edges | Optimal

exact015 | 40 360 164
exact020 | 50 707 101
exact025 | 60 1053 439
exact030 | 70 1522 277
exact035 | 80 1831 385
exact040 | 90 2182 492

exact045 | 100 1981 1085
exact050 | 113 3848 1440
exact055 | 120 3723 1410
exact060 | 124 2288 1491

5.1.2. Solver configurations
Based on the modifications discussed in chapter 4, 8 different value selection configurations are
compared. In particular, those configurations are:

1.

Default chuffed: Chuffed without any modifications. This will be used as a baseline, in order to
judge the performance of the algorithms.

Chuffed with SBPS: This version will be using SBPS, as described by E. Demirovi¢ et al.[11].
Simple heuristic value selection: This version uses the simple heuristic for value selection.

Simple heuristic value selection with SBPS: This version uses the simple heuristic for value
selection, in combination with SBPS as described in section 4.2.4.

Kanpai value selection: This version uses Kanpai for value selection.

Kanpai value selection with SBPS: This version uses Kanpai for value selection, in combination
with SBPS as described in section 4.2.4.

Warm start: This version uses warm start, as described in section 4.2.3.

Warm start with SBPS: This version uses warm start, in combination with SBPS, as described by
E. Demirovié et al.[11].

The above configurations are based on version 0.10.4 of Chuffed[8]. Since all these value selection
configurations affect the VSIDS branching, VSIDS will be constantly enabled for all configurations, in
order to better observe any differences the value selection heuristics might have. Furthermore, for the
4 value selection configurations using kanpai or the simple heuristic value selection (3-6), the initial
activity for the variables that are part of the adjacency matrix is set to 1000. All other solver parameters
are not affected between configurations and are set to their default values, in order to ensure that any
difference observed between runs is caused by the different configurations.
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5.1.3. Measurements
In this experiment, the following variables will be recorded for all tests using the 10 small graphs:

1. Nodes: The total number of search space nodes explored by Chuffed during solving. This
metric will show any performance difference between configurations, without accounting for any
additional overhead caused by different value selection configurations.

2. Solve time: The time it takes for Chuffed to fully solve a problem, hence the time it takes to find
the optimal solution and prove optimality. This metric will show which configurations are overall
the fastest at fully solving a problem.

3. Optimal time: The time it takes for Chuffed to find the optimal solution, without proving
optimality. This will always be shorter than the solve time.

From these metrics, the expected outcome is to mainly see an improvement in the time taken to find
the optimal answer using the configurations with heuristic value selection, as the heuristic algorithm
is able to find the optimal answer almost instantly for most of these graphs. However, there is also
expected to be a small positive effect on the number of nodes, due to the heuristic approaches having
an effect on generating new clauses and as such, adding a stricter upper bound. However, due to the
additional overhead of the algorithms, the effect on solve time should be smaller, or there could even be
an overall increase in the solve time.

For the 10 large graphs, the best solution found by Chuffed by the end of each test will be recorded.
This metric will show how each configuration affects the solution quality after the same amount of time.
This scenario should present the main benefit for the heuristic approach, as the heuristic algorithm is
able to find near-optimal solutions almost instantly for even larger graphs, while the CP solver is only
able to find solutions with a high number of edits as the complexity of the problem increases.

Lastly, for all tests, the graph showing the time vs the number of edits will be generated. An example
of such a graph is shown in figure 1.1 and figure 4.1. Before a solver is able to find a solution, it is
assumed that the solution is the number of edges. Furthermore, the 0-point of the x-axis is the optimal
solution. This allows this metric to better represent how quickly a solver is able to find near-optimal or
optimal solutions. A good solver configuration should be able to find near-optimal or optimal solutions
early on. In order to compare how each configuration ranks in this aspect, the integral of this graph
will be calculated. Due to the behaviour of the heuristic algorithm being able to find near-optimal or
optimal solutions significantly faster than the CP solver, we can expect the configurations utilizing the
heuristic value selection to have the most significant advantage in this metric.

In order to better compare the results between all the different instances, all the previously mentioned
metrics, except for the best objective found, are normalized to the result of default chuffed. Therefore,
for example, a result of 100% would indicate the same performance as the default configuration. For
mean calculation of the normalized results, the geometric mean is preferred over the arithmetic mean,
as it provides correct results when normalizing in relation to other results [25]. The formula of the
geometric mean is as follows:

noo\w
)

i=1

For averaging the objective, instead of normalizing in comparison to the default configuration
solution, instead, a lower and upper bound is used for each instance, with the lower bound being 0 and
the upper bound being 1. The lower bound is the optimal number of edits, which is calculated using the
KaPoCE solver [5], the number one ranking solver from PACE 2021 for both the heuristic and exact track
[19]. the upper bound is the number of edges. The objective normalization is also used for the y-axis of
the integral before the main normalization, as it sets the O-point of the y-axis to the optimal solution and
the default value when no solution has been found to 1.

Similar to calculating the integral, the lower bound is the optimal solution, and the upper bound is
the number of edges. The arithmetic mean is preferred, as the results are not normalized in relation to
another solution, but an upper and lower bound, which surrounds the domain of possible answers. The
main reason for the different normalization of the objective is that since some of the results could be 0,
using the geometric mean should be avoided, as the geometric mean multiplies the results instead of
adding them.
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Last, the t-score and the p-value of a statistical significance test for each configuration will be recorded.
The null hypothesis is that a configuration follows the same distribution as the default configuration.
The significance level will be at p < 5%.

5.2. Results

The results presented here are averaged over the 20 different graphs for the integral, over the 10 smaller
graphs for the number of total nodes, solve time, and time taken to find the optimal answer, and over
the 10 larger graphs for the best value found for the objective. The plots present the boxplot of the
results, alongside the geometric or arithmetic mean for the normalized results of each value selection
configuration.
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Default with SBPS 2.385518 0.480567 1.244321 2.255587 3.447963 4.696202 2.516545 0.021553
Simple heuristic 1.040712 0.29784 0.790282 1.209851 1.46837 1.917982 0.225667 0.824003
Simple heuristic with SBPS 1.294866 0.595094 1.00839 1.226919 1.880836 2.891944 1.69725 0.106872
Kanpai 1.213998 0.73275 0.903951 1.025249 1.409997 1.748143 1.327822 0.200831
Kanpai with SBPS 1.378026 0.929949 1.206769 1.363693 1.595798 1.678569 3.696709 0.001651
Warm start 1.050639 0.581071 0.634487 1.049977 1.481506 2.595636 0.300204 0.767461
Warm start with SBPS 1.067259 0.510918 0.72846 1.129032 1.600441 2.071551 0.423892 0.676667

Figure 5.1: Average solve time for each configuration.

Figure 5.1 presents the average normalized solve time taken for each configuration. That is the time
taken to find and prove the optimal solution. A value above 100% indicates an increased solve time over
the default configuration, while a value under 100% indicates that the configuration had a faster solve
time over the default configuration.

From these results, we observe that SBPS with the current solver configuration does not perform
well in these instances, with a mean solve time of 238.55% of the solve time of the default Chuffed
results. This could potentially be caused due to SBPS getting stuck in local minima.

For the configurations relying on heuristic value selection, there is a slight increase in solve time. In
particular, it is observed that the simple heuristic has the solve time closest to the default configuration,
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having a solve time of 104.07% of the solve time of the default configuration. The other configurations,
especially the ones that are relying on SBPS are even slower.

Looking at the p-value, for most configurations, the null hypothesis cannot be rejected, and hence,
there is not a significant enough change from the default configuration. However, with a p-value of
0.02 for the default configuration with SBPS, and 0.001 for the Kanpai with SBPS, which are below the
significance level of 0.05, the null hypothesis can be rejected. In particular, these 2 configurations have
significant evidence to state that their solve time is worse than the default configuration.
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Simple heuristic 0.747186 | 0.233207 | 0.589325 0.893452 0.99955 1.235428 -1.82643 0.084419
Simple heuristic with SBPS 0.885931 0.441158 0.70788 0.889867 1.108339 1.332441 -0.88356 0.388585
Kanpai 0.836554 | 0.541408 0.578376 0.839778 1.022355 1.220068 -1.35249 0.192968
Kanpai with SBPS 0.95231 0.607011 0.763386 1.02822 1.210889 1.316946 -0.53212 0.601149
Warm start 1.035598 0.563719 0.647511 1.022958 1.528113 2.532 0.215584 0.831736
Warm start with SBPS 0.957103 0.562359 0.677889 0.924078 1.377928 1.67752 -0.3351 0.741426

Figure 5.2: Average nodes for each configuration.

Next, figure 5.2 shows the nodes created during searching in Chuffed. Unlike figure 5.1, this
graph appears to show a slight improvement for most of the heuristic value selection configurations.
Although the number of nodes is highly correlated to the solve time, as they represent the iterations
taken on an instance, the additional overhead of the heuristic value selection configurations contributes
to an increased computation time per node, and hence, a higher solve time. Despite the apparent
improvements, for all heuristic value selection configurations, there is not enough evidence to reject the
null hypothesis.
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Time taken to find optimal solution
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Default with SBPS 2.757653 0.271369 1.111295 2.561506 8.383388 11.05695 2.154184 0.045023
Simple heuristic 0.05062 0.000233 0.002914 0.237547 1.70658 1.727959 -2.46653 0.023912
Simple heuristic with SBPS 0.048017 0.000233 0.002873 0.177154 2.260137 3.51126 -2.51456 0.021642
Kanpai 0.011571 0.000243 0.000562 0.002027 0.387268 0.460839 -3.58082 0.002136
Kanpai with SBPS 0.008498 0.000243 0.000443 0.0082 0.169554 0.217301 -4.26861 0.000462
Warm start 0.082939 0.000254 0.000643 1.812864 2.65082 4.599752 -1.73705 0.09946
Warm start with SBPS 0.004538 0.000209 0.000407 0.000901 0.154549 0.205195 -5.01515 8.98E-05

Figure 5.3: Average optimal time for each configuration.

Continuing, figure 5.3 shows the time taken by the solver to find the optimal solution. Unlike the
solve time, this metric does not count the time taken to prove optimality.

Since the heuristic is able to find the optimal answer almost instantly, in comparison to Chuffed, it is
expected for the optimal answer to similarly be found extremely fast when using the Kanpai approach
for value selection. The results using the Kanpai results have an optimal time with a mean of 1.16%,
indicating that the answer compared to the default Chuffed configruation was found almost instantly.
Furthermore, the other configurations using a heuristic value selection also perform significantly better,
with the simple heuristic having a mean of 5.06%, and the warm start having a mean of 8.29%. Notably
combing the heuristic approaches with SBPS appears to have a mostly positive impact on the final
results, most apparent with the warm start with SBPS configuration, which achieved the lowest overall
mean of 0.45%.

For the optimal time, there is enough evidence to reject the null hypothesis for all configurations
with high confidence. Therefore, also considering the t-value it can be stated that all heuristic value
selection configurations result in a decrease of the total solve time.
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Best objective found after 10 minutes

1.4 4
o]
1.2 4
1.0 1
[
2
5 0.8
BA
Q
o
e
s "
g 061 [
S
z
" T T
0.2 | |
i 2 2
0.0 ~ = = —— =
Def:ault Defaullt with Sirr;ple Sirr;ple Kar;pai Kanpa‘i with WarmI start WarmI start
SBPS heuristic heuristic SBPS with SBPS
with SBPS
Value selection configuration
Configuration Mean Lower Lower Median Upper Upper t-value p-value
whisker quartile quartile whisker
Default 0.568313 0.193106 0.425003 0.526528 0.709114 1.052455 0 1
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Warm start with SBPS 0.006979 0 0 0 0 0 -7.24293 9.80E-07

Figure 5.4: Average objective after 10 minutes for each configuration.

Moving to the results from the large graphs, figure 5.4 presents the normalized number of edits found.
In this scenario, The approaches utilizing Kanpai are able to find near-optimal or optimal solutions, with
all four approaches utilizing the full Kanpai algorithm achieving a median of 0, indicating that in more
than half the graphs, they were able to find the optimal solution. In particular, warm start was able to
find the optimal solution for 7 out of the 10 instances, while warm start with SBPS and Kanpai were able
to find the optimal solution for 8 out of the 10 instances. Last, Kanpai with SBPS was able to find the
optimal solution in 9 out of the 10 instances. In comparison, the other configurations did not able to find
the optimal solution for any of the large instances. For these 4 configurations, the p-value is lower than
107° for all of them, indicating that the null hypothesis can be rejected with extremely high confidence.

From these results, the limitations of the simple heuristic, in comparison to the full Kanpai value
selection approach become more clear. Nonetheless, the simple heuristic is still able to find significantly
better solutions when compared to the default configuration, with a mean of 0.21, in comparison
to the mean of the default configuration of 0.57. Taking into account the p-value of 0.0082, there is
enough evidence to reject the null hypothesis, and hence prove that even a simple approach to heuristic
assistance in value selection can have great benefits.
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Integral of time vs objective
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Warm start with SBPS 0.015202 0.000648 0.003517 0.008086 0.060682 0.118091 -8.86472 8.70E-11

Figure 5.5: Average integral value for each configuration.

The last metric presented in figure 5.5 shows the normalized to default Chuffed results of the definite
integral of the graph plotting the number of edits vs time, for all 20 graphs. These results encapsulate
some of the information presented in figure 5.3 and 5.4.

For all configurations, enough evidence exist to reject the null hypothesis. In particular, due to the
increased sample size of the integral results, using all 20 graphs, the null hypothesis can be rejected
with higher confidence for each configuration, when compared to the results for the optimal time and
the best objective found after 10 minutes.

Due to the Kanpai approach being able to find the optimal solution extremely fast even for larger
problems, the definite integral, hence the area under the graph has a mean of 1.89% of the area of default
Chuffed. Nonetheless, the simple heuristic approaches also have a significant effect on the integral,
recording a value of 16.35% and 15.70% for the versions without and with SBPS respectively.

Overall, for the 6 value selection configurations assisted by a heuristic algorithm, not enough
evidence exist to suggest that they have an effect on the overall solve time of the solver. However, they
do have, with above 95% confidence, a significant positive impact when it comes to finding near-optimal
solutions early on, as shown in the previous results.
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5.3. Comparing performance differences

In this section, the performance of each configuration will be discussed. In particular, the advantages
and drawbacks of each configuration will be presented, and next, how the findings of these results can
be generalized to other problems.

5.3.1. Simple heuristic value selection

The simple heuristic value selection, if the main goal is to get good solutions early on, performs in
between the default implementation and the approaches utilizing Kanpai. This approach, especially in
comparison to the Kanpai approach is more greedy, looking only one move forward. However, it still
provides great guidance to the CP solver that assists in finding good solutions faster.

The main benefit of this approach is that it can be more easily generalizable. It shows that at least for
the cluster editing problem, using the same simple greedy heuristics used by heuristic algorithms can
lead to finding good and optimal solutions faster, and also prove optimality faster.

In particular, This approach to value selection is also similar to the following lookahead process.
Try selecting both possible values for a variable and then propagate the rest of the variables for both
selected values. Continuing, compare how the objective function changes, and select the value that
increases the least the lower bound of the objective function in the case we want to minimize. This is
an approach that can be generalized to any optimization problem, and as a result, would not require
combining the solver with specialized code.

For example, an example problem has a set of variables V and an objective function f with domain
Ib..ub that needs to be minimized. After selecting a boolean variable x € V, first, false is prematurely
selected for x and the other variables and the objective function are propagated. After which, let’s
say the domain of f becomes [b + 2..ub. Next prematurely selecting true for x, after propagation, the
domain of f becomes [b +1..ub — 1. In this scenario, selecting true for x results in a domain for f where
the lower bound is lower than if selecting false. Hence, this approach would ultimately select true.

5.3.2. Kanpai value selection

Using the Kanpai value selection allowed the solver to find in most cases the optimal solution significantly
faster. One potential flaw of this solver is additional time overhead. Although the number of iterations
is limited when using the Kanpai approach, due to having to still fully solve the graph heuristically,
instead of only performing one step in the simple heuristic value selection, there is a greater time
overhead, as a result, slowing down the performance of the algorithm.

The Kanpai value selection is furthermore not easily generalizable to other problems. For the
simple heuristic value selection, a fully generalizable method, without needing modifications to the
solver between problems could be created. This approach does not provide any knowledge that can
be generalized, other than combining heuristic solvers with Chuffed could improve performance.
Furthermore, since most of the performance benefits of this approach come mostly from the early stages
of computation, using the heuristic result as warm start with solvers that support such an option allows
for a similar performance benefit without needing to modify the solver.

5.3.3. Warm Start

The warm start implementation is able to find a solution on average faster than default chuffed, however,
it still appears to be slower in some cases when compared to the other approaches using heuristic value
selection. One reason for this is that with a warm start, the optimal solution might not be found at the
first step, resulting in the algorithm having to take extra steps to find the optimal solution without any
heuristic assistance.

SBPS appears to have a positive effect on warm start. Using SBPS with default Chuffed, Chuffed
would often find solutions with a high number of edits first, and SBPS would only be able to find
local minima around these high solutions. Warm start instead provides an initial solution closer to the
optimal answer, hence, the effect of SBPS is more significant, being able to better guide the solver toward
the optimal solution.

This approach is more generalizable than the Kanpai approach. Many solvers allow for a warm start
input that is used in a similar way, meaning that no solver modification is required. Other research has
also shown this approach to have significant improvements in performance for other problems [14].
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5.3.4. SBPS with heuristic value selection

When using SBPS with the non-warm start heuristic value selection, as introduced in section 4.2.4,
there are at most only small performance advantages, especially when compared with the performance
advantage SBPS offers to warm start. Similar to the default SBPS configuration, it is possible that the
solver is getting stuck in local minima. Furthermore, the heuristic solver has to determine how to deal
with conflicts between the current state and the best solution found so far, and by default, it ignores
the edges from the best solution that cause conflicts, leading to a resulting interpretation of the graph
inside the heuristic solver that only lightly resembles the previous best solution in later stages.

5.4. Generalizing findings

Overall, using a heuristic solver for value selection has an insignificant effect on the total solve time.
However, this approach benefits more early on, as it allows the CP solver to emulate the performance of
the heuristic solver, by finding better solutions earlier.

A way of using lookahead propagations could potentially emulate the performance of the simple
heuristic value selection, generalizing this approach. From these results, it is also clear that the heuristic
algorithm value selection approach provides its main benefits before finding the optimal solution.
Therefore, a way to stop the solver earlier would be beneficial.



Implementing a generalizable
approach

Based on the results of chapter 5, the main takeaways are that for a simple heuristic approach like
Kanpai, simply performing one step of the iteration instead of the entire algorithm is able to provide
significant performance improvements. Furthermore, from the warm start results, it is clear that the
major benefits of this approach are caused by the early steps of the iterations. However, simply stopping
after a solution that satisfies the constraints does not guarantee that a near-optimal solution has been
found. Therefore, based on this information, a new approach is developed that should be able to
emulate these findings, without the need for the cluster editing algorithm, and therefore, ideally be
generalizable to other problems. This chapter discusses this new lookahead approach, starting with the
main concept of the lookahead value selection, and continuing with additions to the algorithm that
attempt to address certain edge cases and improve performance.

6.1. Lookahead value selection

Based on the simple heuristic value selection, a generalized algorithm can be created that in theory
should make similar decisions. The simple heuristic value selection takes as an input the variable of
one of the edges of the adjacency matrix g, and the current state of the matrix, and calculates how
the number of edits changes based on if the boolean variable is true or false, while ensuring that all
constraints are satisfied, before returning an answer. In Chuffed, propagation updates the domain of
all variables, including the optimization function, through simplifying clauses after a value has been
assigned. This means that after each propagation, the domain for the possible values the optimization
function can now take is updated, becoming more strict. Therefore, the simple heuristic should be
similar to essentially propagating both possible values for a variable, before returning a final value that
has a better domain for the optimization function. This is the process that the lookahead approach
attempts to do.

The core process of the lookahead approach is shown in figure 6.1. After VSIDS selects an SAT
variable, first, a lookahead propagation is performed for one possible value for the variable, and the
domain of the optimization function after the lookahead propagation is recorded, if there are no
conflicts. Next, similarly, the lookahead propagation for the other possible value is performed, and
again, assuming no contflicts, the domain of the optimization function is recorded. After both lookahead
propagations are performed, the recorded optimization function domains for the two possible values
are compared. Finally, the value that has the domain that has a more optimal value is ultimately selected.
For example in cluster editing, since it is a minimization problem, the value selected is the value that
has the lower lowest bound for the domain of the optimization function.

In the case of a tie, the value that results in the smaller domain for the optimal value is selected.
This is based on the fail first strategy [17]. If one of the lookaheads ends in a conflict, the lookahead
performs an SAT analysis of the conflict and selects the other value. This allows the solver to quickly
learn additional clauses and nogoods. If a tie has not been resolved, the value is selected based on the
default behaviour of Chuffed.
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Figure 6.1: An example of the main components of the lookahead constraint programming solver.

The lookahead propagation performs the following steps. It takes as input the selected variable
and the candidate value, and first, create a temporary new decision level. Then, it updates the value
of the selected variable and enqueues the updated clauses for propagation. After fully propagating,
the updated optimization function domain is recorded, and if there has been a conflict, a sat analysis
is performed. After, a backjump is performed to the previous decision level, essentially undoing all
changes. Last, the recorded domain, and if there has been a conflict is returned. Algorithm 1 shows the
pseudocode of this function.

Algorithm 1 Lookahead Propagation

function LookaHEADPROPAGATE(Variable, value)
NEWDECISIONLEVEL
assign[variable] « value
SAT.ENQUEUE(variable, value)
PROPAGATE
domain « optVal.domain
conflict « sat.conflict
if conflict then

SAT.ANALYZE

end if
BACKJUMP(previousDecisionLevel)
return domain, con flict

end function
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6.2. Lookahead approach additions

Now that the main core of the lookahead approach has been designed, further additions are made to
the algorithm, in order to improve performance in specific scenarios. These improvements include a
slightly different variable selection when many variables have the same activity score, preferring full
solutions, even if the domain could be further improved, a way to decrease unnecessary lookahead
propagations, and fully stopping lookaheads after a certain amount of conflicts.

First, from early testing, it was noted that the algorithm would often repeatedly pick SAT variables
generated from the same integer variable, and iterate toward one direction of its domain. One notable
example of the cluster editing problem was the algorithm selecting SAT variables generated for the
number of edits, and simply selecting values that would slowly decrease the upper bound of the domain
of edits. This led to a significant slowdown. Therefore, in order to avoid such a scenario, when multiple
variables have the same activity score, boolean variables are prioritized. As the solver starts assigning
different activity scores to each variable the effect of this issue diminishes.

Continuing, in order to produce solutions faster, when one of the two candidate values produces a
fixed value for the optimization function, that value is preferred. In case both values lead to a solution,
the more optimal solution is preferred. This allows the solver to produce solutions more often and
earlier.

The next improvement reduces the number of lookahead propagations in case of conflicts. Based on
the current implementation, if one value results in a conflict then there is no need to perform lookahead
for both values. Therefore, by always starting the lookahead propagation with the non-default value, if
there is a conflict after the propagation, then the default value can be selected without the need for
second a lookahead propagation. Based on these additions, algorithm 2 shows the full branch function
for the lookahead approach.

Algorithm 2 Lookahead Branch

function LOokAHEADBRANCH
candidates < variables tied for the highest activity score
variable « an unassigned boolean variable from candidates if possible
value « default value for variable
domaing, con flicty < LookaHEADPROPAGATE(variable, lvalue)
if conflicty then
return variable «— value
end if
domainy, con flict; <= LOOKAHEADPROPAGATE(variable, value)
if domaing has a more optimal value than domain; or (domaing most optimal solution is the same
as domainy and |domaing| < |domain,|) then
return variable «!value
end if
return variable «— value
end function

Last, after finding the optimal, or near-optimal solution, the utility of the lookahead approach
diminishes, while the additional overhead of the lookahead propagations makes the algorithm signifi-
cantly slower. Based on testing on the 20 cluster editing graphs, approximately 40% of the total solve
time is spent on lookahead propagation, where a significant number of that time is after the solver
has found the best solution. Based on the previous tests it was shown that the warm-start approach
performs similarly to the heuristic value selection approaches. However, stopping only after finding
the first solution would not be ideal, as there is a high chance the solution is still far from optimal,
especially with a more greedy and generalizable approach. Therefore, it was decided to use the number
of conflicts caused after finding at least a solution as a stopping criterion for the lookahead approach.
This is because after finding a near-optimal or optimal solution, the chance for a conflict to occur after a
decision increases, due to the stricter domain bounds.

The code for Chuffed with the lookahead approach can be found in the following repository:
https://github.com/AZoumis/chuffed


https://github.com/AZoumis/chuffed




L.ookahead Results

In this chapter, first, the experimental setup for the lookahead configuration is explained, followed by
the results of the lookahead approach on cluster editing, being presented and compared to the results
from chapter 5. Continuing, the generalized results of the MiniZinc challenge [24] will be presented,
and next, the results for individual problems of the MiniZinc challenge will be discussed. Lastly, an
analysis of the performance of the lookahead approach will be made, where the main advantages and
disadvantages of the algorithm will be discussed.

A table of the full results for cluster editing can be found in appendix A, and the results for the
MiniZinc challenge can be found in appendix B.

7.1. Experimental Setup

To test the performance of the lookahead approach on cluster editing, the experimental setup from
section 5.1 will be used, with the addition of lookahead and lookahead with SBPS. The lookahead
stopping criterion is set at 100,000 conflicts. In order to better understand the behaviour of the lookahead
approach, the value selection of default chuffed, the lookahead approach, the simple heuristic, and
Kanpai value selection at the first decision level for each of the adjacency matrix variables will be
compared.

To test the generalized performance of the lookahead approach, the MiniZinc challenge 2022 [24]
optimization models and instances will be used with the same experimental setup as the cluster editing
experiments. In total, there are 19 optimization problems, with 95 instances. In the case of the MiniZinc
challenge instances, the solver configurations utilizing the cluster editing solver will not be used, leaving
four different configurations for this setup, in particular:

1. Default Chuffed

2. Chuffed with SBPS

3. Lookahead

4. Lookahead with SBPS

Furthermore, for all problems in the MiniZinc challenge, a time limit of 10 minutes is added. The
same measurements as the cluster editing experiment will be recorded, with the exception of the optimal
value and the number of nodes, since there is no guarantee that the optimal value will be found and
that the solver will terminate. When a configuration does not terminate within the time limit, the solve
time is set to 10 minutes. For the integral and objective, since the minimum and maximum bounds are
unknown, instead, the best and worst values found for that instance in all runs will be used instead. In
particular, for the worst values, all intermediate full solutions will be considered, not just the final ones.
For consistency between minimization and maximization problems, all measurements are converted
so lower values indicate a better solution. In case a solution has not been found at a point in time, or
by the end of the 10 minutes, the objective is assumed to be twice the range between the lower and
upper bound. Therefore, for the objective, if a configuration did not find a single solution satisfying all
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constraints, the normalized objective will be 2. Last, an additional measurement of how many instances
each configuration is able to fully solve or find a solution for will be recorded.

7.2. Cluster editing results

The first value selection comparison compares the value selection for all the variables of the adjacency
matrix g, selected by the default, lookahead, simple heuristic, and Kanpai value selection. More
specifically, these results show how similar the value selection would be after the first propagation
between the four different configurations.

Default Lookahead | Simple heuristic | Kanpai
Default 100% 46.683365 % | 44.173373 % 56.795098 %
Lookahead 46.683365 % | 100% 97.490009 % 80.052239 %
Simple heuristic | 44.173373 % | 97.490009 % | 100% 79.087293 %
Kanpai 56.795098 % | 80.052239 % | 79.087293 % 100%

Table 7.1: Initial value selection comparison between configurations.

Table 7.1 shows the results from the initial value selection comparison between configurations. These
results first show that the value selection initially for default Chuffed is around 50% similar to all other
value selection techniques. This is because the default value selection does not have any understanding
of the structure of the problem. Hence, since there are only two possible values a boolean variable can
take, a random value selection will be 50% similar to another value selection, assuming both values are
picked roughly with the same rate.

Continuing, the lookahead approach has an extremely high similarity with the simple heuristic,
at 97.49%. This measure, therefore, aligns with the claim that the lookahead approach emulates the
simple heuristic. Continuing both the simple heuristic and the lookahead approach have around an 80%
similarity with the Kanpai approach. The more greedy approach implemented by the lookahead and
simple heuristic lead to these two approaches not being as accurate as the Kanpai approach, however,
they are still able to better emulate the value selection of the full Kanpai approach in comparison to
default Chuffed.

Based on these results, the attempt to emulate the value selection of the simple heuristic appears to
be successful, with the lookahead approach having a largely similar behaviour to the simple heuristic.
Nonetheless, these results are not fully descriptive of the similarity between the two approaches.
In particular, they only show the value selection early on, and they ignore the fact that the simple
heuristic approach performs value selection for only variables within the adjacency matrix g, while the
generalized lookahead approach performs lookahead for all variables.
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Figure 7.1: Average nodes for each configuration.

Figure 7.1 present the average nodes used, in comparison to default Chuffed, to fully solve an
instance. These results show a minor increase in the number of nodes used, however, with p-values of
0.94 and 0.68, the null hypothesis cannot be rejected. Hence, not enough evidence exists to state that the
lookahead approach has a significant effect on the total number of nodes created for cluster editing.
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Figure 7.2: Average solve time for each configuration.

Figure 7.2 presents the average solve time taken by each configuration. The mean solve time taken is
151.08% of the default configuration for the lookahead configuration, and 163.24% for the lookahead
with SBPS configuration. With a p-value of 0.034 and 0.028 for the two lookahead configurations, there
are enough evidence to reject the null hypothesis and state that the lookahead configuration overall
increases the total solve time. Despite not observing a significant difference in the number of nodes
between configurations, the additional time overhead caused by the lookahead approach results in
significantly higher solve time.
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Figure 7.3: Average optimal time after 10 minutes for each configuration.

Figure 7.3 presents the average time taken to find the optimal time for all configurations including
the lookahead approach. These results show that the lookahead approach appears to perform worse
than all the approaches utilizing the heuristic algorithm for value selection. In particular, the lookahead
configuration has a mean of 15.27%, while the lookahead with SBPS configuration has a mean of 17.45%.
Although this is a big decrease when compared to the default configuration, the interquartile range
(IQR) ranges between 14.80% and 223.86% for the lookahead configuration, and between 28.57% and
141.06% for the lookahead with SBPS configuration. This shows that the mean is likely skewed by
certain well-performing instances, and in actuality, most instances have a worse score than the mean.

Furthermore, with p-values of 0.16 and 0.19, the null hypothesis cannot be rejected with high
confidence. It is likely that the more generalized view of the problem and the time overhead are likely
the cause for this worsening in performance when compared to the results of chapter 5.

Looking at the performance of the individual instances, shown in figure 5.3, it is observed that
certain cases perform significantly worse than the default approach. pace_actionseq_22_2 appears to
have the worse optimal time performance.

Figure 7.5 plots the time vs the number of edits for the default and lookahead approach. The major
cause for the performance disparity cannot be explained just by the additional time overhead. Instead, it
is observed that the lookahead approach reached a specific solution not reached by the default approach,
but then was unable to find a better solution before the default configuration.

In particular, a solution with 43 edits was found in 3 milliseconds for the lookahead approach.
Despite the default configuration finding a much worse solution with 106 edits first, it reached the
optimal solution in 19 seconds, while the lookahead approach took 137 seconds. It is therefore likely
that for the lookahead configuration, the solution found and the clauses generated led the solver to
repeatedly reach different local minima that did not improve on the final result.
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Figure 7.6: Best normalized objective found after 1 second for the small graphs.

For the instance pace_actionseq_22_2, even if the overall time taken to find the optimal solution was
slower than the default, early on, the lookahead approach had found a better solution than the default
Chuffed configuration. In particular, figure 7.6 shows that in general, the lookahead, after 1 second more
often had better solutions, when compared to the default Chuffed value selection, further indicating
that the lookahead approach tends to lead the solver towards local minima. While the null hypothesis
cannot be rejected for the lookahead configuration with SBPS, due to a high p-value of 0.23, the null
hypothesis can be rejected for the lookahead configuration, due to having a p-value lower than 0.05.
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Figure 7.7: Average objective after 10 minutes for each configuration.

Continuing, figure 7.7 shows the normalized number of edits found for the 10 larger graphs. With a
normalized mean of 0.12, the lookahead approach performs better than the simple heuristic, which has
a normalized mean of 0.21. Furthermore, the median for the lookahead approach is 0.04, an even bigger
improvement over the simple heuristic, with a median of 0.17. With the measured p-values for both
lookahead configurations being under 0.0003, the null hypothesis can be rejected with high confidence.
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Figure 7.8: Average integral for each configuration.

Figure 7.8 shows the average integral in comparison to the default chuffed for all 20 graphs. Since
these results essentially group the results of figure 7.3 and 7.7, the performance of the lookahead
configuration also ranks between the two metrics. In particular, the performance displayed in 7.8
appears to not favor the lookahead approach as much as figure 7.7, however, when compared to 7.3,
the performance of lookahead appears much more positive overall. With p-values of 0.002 and 0.003,
enough evidence exist to reject the null hypothesis.

Based on the findings for the cluster editing problem, the lookahead configuration has a significant
increase in solve time when compared to the default configuration. However, there is a significant
improvement in the solutions found early on in the solve time, as shown in figures 7.6 and 7.8, and in
particular for larger problems, as shown in figure 7.7.
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7.3. Generalized results

This section will present the generalized results for the lookahead approach, using the MiniZinc
challenge 2022 [24]. For more generalized problems, similar to the cluster editing problem, most
of the benefits of this approach will likely be in the form of finding near-optimal solutions early on.
Furthermore, it is expected for this approach to perform best on larger instances, and for problems
where there is a clear correlation between the objective function value and the variables selected. On
the other hand, smaller instances with many local minima solutions will likely cause the lookahead
approach to perform worse overall.
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Figure 7.9: Total number of instances where a solution was found (orange), or optimality was proved (blue)

The MiniZinc challenge has a total of 95 optimization problem instances. Within 10 minutes, the
default Chuffed configuration is able to find a solution satisfying all constraints for 82 out of the 95
problems, of which it proved optimality for 35. Continuing, SBPS found a satisfying solution for 82
instances and proved optimality for 38. Next, lookahead found a satisfying solution for 84 instances and
proved optimality for 37. Last, lookahead with SBPS found a satisfying solution for 84 instances and
proved optimality for 38.

Based on these results, the look-ahead approach has only a small effect on if a solution will be found.
Nonetheless, both lookahead approaches were able to find optimality for overall 2 more instances than
the default Chuffed configuration. However, SBPS was still able to fully solve 1 more instance when
compared to the lookahead approach without SBPS. Nontheless, the lookahead approach was able to
find a satisfying solution for 2 more problems over the default and SBPS configurations.
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Figure 7.10: Average solve time for each configuration

Figure 7.10 shows the average time taken to fully solve an instance when compared to default chuffed.
In the case where the solver did not terminate within 10 minutes, the solve time is 600 seconds. The
default lookahead has a solve time of 94.10%, and the lookahead approach with SBPS has a solve time
of 88.76%. Unlike cluster editing, the mean solve time is lower than the default configuration solve
time, however, looking at the IQR, the lower quartile and the medial are at 100% for the lookahead
configurations, indicating that for 75% of the problems, the lookahead configurations had the same or
slower solve time as the default configuration. With high p-values of 0.58 and 0.38, the null hypothesis

cannot be rejected.
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Figure 7.11: Average solve time for each configuration, including only instances where at least one configuration terminated
before the time limit (45 instances)

Figure 7.11 shows the solve time results, but filtered to include only instances where at least one
configuration managed to terminate before the 10-minute time limit. The recorded means are slightly
lower, with a value of 86.36% and 77.76% for the lookehaead and lookahead with SBPS configurations
respectively. Again, the p-values are similar to the ones recorded for figure 7.10, and therefore, the null
hypothesis cannot be rejected.

The median for both lookahead configurations is higher than the default configuration, with 124.59%
for the lookahead configuration, and 116.36% for the lookahead configuration with SBPS. This indicates
that similar to cluster editing, the lookahead approach potentially causes an overall time penalty to the
total solve time. However, for some instances, the lookahead configuration significantly improves the
solve time, leading to the mean being skewed towards a lower solve time.

The first reason why the lookahead configuration has a positive impact on the solve time for some
problems is that finding an improved solution faster allows the solver to create stricter domains, creating
many new nogoods, and decreasing the total search space that has to be explored. Next, since the
lookahead approach performs a sat analysis when a lookahead leads to a conflict, and furthermore has
a fail first strategy, where it biases decisions that decrease the domain, it likely also creates many new
clauses that limit the search space even more. Therefore, it appears that overall, these performance
benefits are able to better overcome the time overhead of the lookahead approach for certain instances.
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Figure 7.12: Best objective found after 10 minutes

Continuing, figure 7.12 shows the average best normalized objective found after 10 minutes. Here, 1
indicates the worse solution found throughout the search by all solvers in this instance that satisfies all

constraints, while 0 indicates the best overall solution. A solution of 2 indicates that no solution was

found. For each configuration, in the order presented, a mean of 0.3436, 0.3178, 0.2234, and 0.2025 was

recorded.

Although the means of the lookahead configurations are lower than the default configuration, with
p-values of 0.12 and 0.07, the null hypothesis cannot be rejected. One reason for this is likely due to the
high variance introduced by instances where no solution was found within the time limit. Therefore, it
is likely that removing these values could result in a lower p-value.
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Figure 7.13: Best objective found after 10 minutes, including only instances where all configurations found a satisfying solution or
terminated within the time limit (79 instances)

Figure 7.13 shows the average best normalized objective found after 10 minutes, excluding instances
where at least one configuration did not find a solution within the time limit. With the filtered results,
the p-values for the lookahead configuration are under 0.05, indicating that the null hypothesis can be
rejected. Therefore, it can be stated with high confidence that for problems where a solution can be
found within a time limit, the solution produced by the lookahead configuration will be on average
closer to the optimal than the solution produced by the default configuration.
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Figure 7.14: Average integral for each configuration

Next, figure 7.14 shows the integral results compared to the default configuration. Overall, a mean
of 45.26% is observed for the lookahead approach, and a mean of 39.48% is observed for the lookahead
configuration with SBPS. Based on these results, low enough p-values were recorded, which provides
evidence to reject the null hypothesis for all configurations. These results show the main advantage
of the lookahead configuration, enabling it to find near-optimal solutions significantly faster than the
default configuration, by better guiding the solver towards near-optimal solutions significantly faster

than the default value selection.

SBPS was able to have a mean of 69.85%. However, when looking at the IQR for SBPS, it ranges
from 55.94%, up to 102.70%, while the range for the lookahead and lookahead with SBPS ranges from
18.68% to 204.98%, and from 18.64%, up to 206.54% respectively. This indicates a higher variance in the
effectiveness of the lookahead approach when compared to SBPS, with many instances resulting in an
overall worse integral performance.
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7.4. MiniZinc challenge individual results

In this section, certain special cases that are outliers compared to the average results will be presented.
These results better show how this configuration performs on certain edge case problems. For these
results, it is important to note the limited amount of instances, with each problem having only 5
instances, which can skew the results heavily.

7.4.1. Schelduling

The gfd-schedule problem is a scheduling problem with the following constraints. First, each item is
grouped by its kind. Each item is processed by a group using a facility. Each item has a produced day that it
has to be processed after. Last, the maximum number of processed items per day is fixed. The objective
is to minimize the use of the facilities and a deadline penalty that is added when items are processed after
their deadline.
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Figure 7.15: Average integral for gfd-schedule

Figure 7.15 shows the integral results for the problem gfd-schedule. This problem presents the biggest
overall improvement for the lookahead approach. The lookahead approach has a significantly faster
solve time, with the lookahead configuration having a mean solve time of 2.53%, and the lookahead
configuration with SBPS 1.51%. More notably, the default and SBPS configurations managed to find a
solution and solve only 2 out of the 5 instances, while the two lookahead configurations were able to
solve all 5 of the instances.
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Figure 7.16: Average integral for nfc

NFC, another scheduling problem that is modelled like a network graph, with the objective of
minimizing the network flow also was able to perform significantly better using the lookahead approach,
as shown in figure 7.16. with a mean integral of 0.64% and 0.92% for the lookahead configurations
without and with SBPS respectively.
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Figure 7.17: Average integral for wordpress

Continuing, wordpress is a scheduling problem concerning the assignment of certain components
with minimum required specs to virtual machines(VM), where each VM has certain specs and a cost. The
objective is to minimize the total cost of the used VMs. Figure 7.17 shows the results for this problem. In
particular, the mean for the lookahead configuration is 0.18%, and for the lookahead with SBPS 0.07%.
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7.4.2. Diameter-constrained minimum spanning tree

For the diameter-constrained minimum spanning tree problem, given an undirected weighted graph
G = (V,E), and an integer D, the goal is to find a spanning tree from G with minimum total weight
costs, where the shortest path between any two nodes in the tree, in other words, the diameter of the
tree is less than D.
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Figure 7.18: Average integral for diameterc-mst

First, figure 7.18 shows the integral results for this problem. For the lookahead approach a value of
327.18% is observed. However, when looking at the average objective found after 10 minutes, shown
in figure 7.19, the lookahead approach appears superior in comparison to the default configuration.
Looking at the individual instances, all configurations managed to find optimality for 3 of the 5 instances.
However, the non-lookahead configurations managed to find a solution only for 4 instances. This is
represented in figure 7.19 by the outlier values with a normalized objective value of 2. Meanwhile, both
lookahead configurations managed to find a solution for all 5 instances.
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Figure 7.19: Average objective for diameterc-mst
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7.4.3. Sudoku

The following problem is a variation of the sudoku problem, with the addition of an optimization function
with the goal of minimizing or maximizing the values of the cells depending on if they are odd or even.
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Figure 7.20: Average integral for sudoku_opt

Figure 7.20 shows the result for the integral of the sudoku problem. The lookahead configurations
without and with SBPS have a mean of 277.62% and 280.60%. For all instances and configurations, the
first solution found was optimal. Therefore, this problem does not benefit from a heuristic designed to
find optimal solutions, and hence, the lookahead approach has no positive effect on performance, while
adding a significant time overhead.
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7.4.4. Placing "Hearts" in Equilateral Triangular Grids

The following problem has the objective of maximizing the number of heartsas defined by the model,
that can be placed inside an equilateral triangular grid with sides N. At the same time, the hearts cannot
be placed lying on the corners of any possible equilateral triangle of any size or orientation.
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Figure 7.21: Average integral for triangular

Figure 7.21 shows the results of the integral for this problem, where the lookahead approach had
a mean integral of 1230.88%. Notably, SBPS also has a similar high integral value. Based on this, it
appears that using a generalized heuristic value selection to attempt to improve the optimal value for
this problem is an ineffective strategy.
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7.5. Results discussion

Based on the results, it appears that the lookahead approach can provide significant advantages to
Chuffed, not only for cluster editing but in general for many optimization problems. In particular, the
lookahead approach assists the solver in finding better solutions early on.

The main advantage of the lookahead approach over the default VSIDS configuration and SBPS, is
finding near-optmial solutions faster than the default configuration, as shown in figure 7.14. Furthermore,
for larger instances, the lookahead configuration finds on average solutions closer to the optimal, as
shown in figures 7.7 and 7.13. Continuing, combining the lookahead approach with SBPS, generally
appears also to have a positive effect, but this advantage varies heavily depending on the problem.

The biggest drawback of the lookahead approach is the additional time overhead added by performing
the lookahead propagations. As a result, the lookahead configuration often has an overall slower
solve time, despite the improvements provided early on. Decreasing the performance overhead of the
lookahead propagations, along with improving the stopping criterion of the lookahead approach would
contribute greatly to decreasing this performance disadvantage.

Furthermore, despite the lookahead approach being efficient at finding near-optimal solutions it
appears that the performance advantage shrinks when it comes to finding the optimal solution. This is
likely caused by the additional overhead added by the lookahead propagations, and the lookahead
approach being prone to reaching local minima.

Lastly, the lookahead approach seems to have varying performance depending on the problem. In
particular, the two lookahead configurations performed best on scheduling problems, where the quality
of the solutions at each point in time was on average significantly better than the default and SBPS
configurations. In addition, on the scheduling problems, the solve time was also significantly faster for
the lookahead configurations.






Conclusion & Future Improvements

This chapter discusses the main takeaways of the research, followed by future improvements that could
be added to the lookahead approach to improve its performance.

8.1. Conclusion

When it comes to finding near-optimal or optimal solutions for optimization problems, there is a huge
performance disparity between heuristic algorithms and constraint programming solvers. The research
goal was to better understand how the behaviour of specialized heuristic solvers can assist constraint
programming solvers in optimization problems.

Using the cluster editing problem as a case study, it was shown that combing the value selection of
Chuffed with a heuristic algorithm specialized for solving the cluster editing instances, in particular, the
Kanpai algorithm [10], could provide significant performance benefits to the performance of the CP
solver. In particular, the combined algorithm showed a significant improvement in the time it takes to
find near-optimal and optimal solutions.

Inspired by the steps taken in each interaction of the Kanpai algorithm [10], a generalized approach,
which performs lookahead propagations during value selection and then selects the value that has the
most optimal objective value within its domain was developed. This lookahead approach was able
to find near-optimal solutions for many problems significantly faster than a configuration of Chuffed
using just VSIDS, emulating the performance observed by heuristic solvers. In particular, on average,
the lookahead configuration had a definite integral for the time vs objective graph 54.70% lower than
the default Chuffed configuration on the generalized test suite.

Despite the overall improvements of the lookahead approach, performing lookahead propagations
has a significant time cost. Therefore, the time taken to solve an instance increased for most problems,
despite the benefits of the approach. Furthermore, the time penalty also affects the early solution quality
for many problems that do not greatly benefit from lookahead.

Overall, the lookahead approach presents a way to better emulate the performance of heuristic
solvers, in particular, finding near-optimal solutions faster for certain problems, but causes an overall
slight increase in the total solve time.

57
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8.2. Future Improvements

The main improvements for the lookahead approach concern decreasing the time penalty of the
additional lookahead propagations.

The first improvement would be to reuse the results of one of the lookahead propagations. The
propagation following the value selection should be equivalent to the lookahead propagation for the
same value. Therefore, using the outcome of the lookahead propagation, instead of recomputing the
propagation after selecting a value would help reduce the time penalty, as this would result in almost 1
additional propagation, instead of 2.

Continuing, the two lookahead propagation could run in parallel, as the two propagations do not
rely on the outcome of the other in order to compute their result. This should further reduce the time
penalty of the lookahead configuration.

Next, performing a lookahead for multiple variables, instead of the two values for a single variable
could improve the branching decisions made by the solver. In particular, it would potentially reduce
cases where the solver reaches local minima and is unable to improve the objective, as it would provide
more possible decisions at each level.

Last, an improved stopping criterion that more accurately stops the lookahead approach when it can
no longer provide significant benefits to the solver could improve the overall solve time.
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Cluster Editing Results

A.1l. Number of nodes

Table A.1: Total number of nodes

Default Simple Kanpai Warm start Lookahead
heuristic

exact003 315511 389791 287315 499527 332185

(1.000) (1.235) (0.911) (1.583) (1.053)
exact005 1426230 1423018 1403259 1545869 1268924

(1.000) (0.998) (0.984) (1.084) (0.890)
instance_nr_11- 324504 193377 175689 208178 189266
csv-thres-0-40 (1.000) (0.596) (0.541) (0.642) (0.583)
instance_nr_313- 439277 397769 258276 247629 315441
csv-thres-0-45 (1.000) (0.906) (0.588) (0.564) (0.718)
instance_nr_1243- 708572 416023 544836 681669 767368
csv-thres-0-50 (1.000) (0.587) (0.769) (0.962) (1.083)
instance_nr_1679- 1552858 1553092 1894593 2376777 2082946
csv-thres-0-45 (1.000) (1.000) (1.220) (1.531) (1.341)
pace_actionseq 270194 238148 279698 410885 271558
2110 (1.000) (0.881) (1.035) (1.521) (1.005)
pace_actionseq 188794 44028 (0.233) | 108591 114397 640672
222 (1.000) (0.575) (0.606) (3.393)
pace_actionseq 188985 232100 365258 478510 235521
_23.10 (1.000) (1.228) (1.933) (2.532) (1.246)
pace_actionseq 621440 341833 338780 413545 291556
262 (1.000) (0.550) (0.545) (0.665) (0.469)
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Table A.2: Total number of nodes for SBPS configurations
Defaultwith | Simple Kanpai with | Warm start | Lookahead
SBPS heuristic SBPS with SBPS with SBPS
with SBPS
exact003 279715 343024 262154 328724 233560
(0.887) (1.087) (0.831) (1.042) (0.740)
exact005 3641569 1590796 1845364 1149937 1367305
(2.553) (1.115) (1.294) (0.806) (0.959)
instance_nr_11- 741256 176415 207317 208443 146059
csv-thres-0-40 (2.284) (0.544) (0.639) (0.642) (0.450)
instance_nr 313- 506058 329017 325454 254638 361069
csv-thres-0-45 (1.152) (0.749) (0.741) (0.580) (0.822)
instance_nr_1243- 989786 547358 869365 992154 759312
csv-thres-0-50 (1.397) (0.772) (1.227) (1.400) (1.072)
instance_nr_1679- 5854636 2069092 1576226 2604950 3558017
csv-thres-0-45 (3.770) (1.332) (1.015) (1.678) (2.291)
pace_actionseq 334407 272154 314176 354241 438952
_21.10 (1.238) (1.007) (1.163) (1.311) (1.625)
pace_actionseq 94262 (0.499) | 83288 (0.441) | 114600 106170 465971
222 (0.607) (0.562) (2.468)
pace_actionseq 464237 359054 248883 286850 404107
_23.10 (2.456) (1.900) (1.317) (1.518) (2.138)
pace_actionseq 16705175 431388 647163 487535 266252
_26_2 (26.881) (0.694) (1.041) (0.785) (0.428)
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A.2. Solve time
Table A.3: Solve time (seconds)
Default Simple Kanpai Warm start | Lookahead
heuristic

exact003 40.435 73.044 57.184 71.208 69.828

(1.000) (1.806) (1.414) (1.761) (1.727)
exact005 210.067 284.497 293.532 239.771 245.850

(1.000) (1.354) (1.397) (1.141) (1.170)
instance_nr_11- 45.624 41.885 38.903 28.396 40.281
csv-thres-0-40 (1.000) (0.918) (0.853) (0.622) (0.883)
instance_nr_313- 54.413 76.165 53.357 33.964 71.654
csv-thres-0-45 (1.000) (1.400) (0.981) (0.624) (1.317)
instance_nr_1243- 121.354 84.779 123.539 116.324 173.566
csv-thres-0-50 (1.000) (0.699) (1.018) (0.959) (1.430)
instance_nr_1679- 234.113 349.119 409.263 347.878 442 657
csv-thres-0-45 (1.000) (1.491) (1.748) (1.486) (1.891)
pace_actionseq 42.379 45.150 43.756 62.221 55.346
2110 (1.000) (1.065) (1.032) (1.468) (1.306)
pace_actionseq 25.601 7.625 (0.298) | 22.488 14.876 139.204
222 (1.000) (0.878) (0.581) (5.437)
pace_actionseq 19.203 36.831 68.327 49.844 40.450
2310 (1.000) (1.918) (3.558) (2.596) (2.106)
pace_actionseq 133.104 99.521 97.532 88.565 86.758
262 (1.000) (0.748) (0.733) (0.665) (0.652)
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Table A.4: Solve time for SBPS configurations (seconds)

Defaultwith | Simple Kanpai with | Warm start | Lookahead
SBPS heuristic SBPS with SBPS with SBPS
with SBPS
exact003 42.232 81.924 52.721 56.722 48.959
(1.044) (2.026) (1.304) (1.403) (1.211)
exact005 696.317 303.577 352.612 179.664 278.401
(3.315) (1.445) (1.679) (0.855) (1.325)
instance_nr_11- 127.761 35.354 42.428 30.027 35.543
csv-thres-0-40 (2.800) (0.775) (0.930) (0.658) (0.779)
instance_nr_313- 64.360 61.787 65.208 38.970 69.891
csv-thres-0-45 (1.183) (1.136) (1.198) (0.716) (1.284)
instance_nr_1243- 207.621 118.651 197.653 196.360 182.570
csv-thres-0-50 (1.711) (0.978) (1.629) (1.618) (1.504)
instance_nr_1679- 1099.442 493.302 350.467 391.360 838.225
csv-thres-0-45 (4.696) (2.107) (1.497) (1.672) (3.580)
pace_actionseq 60.554 55.869 52.207 65.583 82.944
_21_10 (1.429) (1.318) (1.232) (1.548) (1.957)
pace_actionseq 12.303 15.235 25.356 13.080 93.700
22 2 (0.481) (0.595) (0.990) (0.511) (3.660)
pace_actionseq 67.064 55.534 45.907 39.780 71.816
_23_10 (3.492) (2.892) (2.391) (2.072) (3.740)
pace_actionseq 3595.310 146.465 189.479 101.861 77.195
_26_2 (27.011) (1.100) (1.424) (0.765) (0.580)
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A.3. Time taken to find the optimal solution
Table A.5: Time taken to find the optimal solution (seconds)
Default Simple Kanpai Warm start | Lookahead
heuristic

exact003 13.543 62.317 45.296 60.700 42.289

(1.000) (4.601) (3.345) (4.482) (3.123)
exact005 53.520 92.331 160.825 143.383 28.541

(1.000) (1.725) (3.005) (2.679) (0.533)
instance_nr_11- 34.134 0.052 (0.002) | 0.021 (0.001) | 0.019 (0.001) | 11.975
csv-thres-0-40 (1.000) (0.351)
instance_nr_313- 43.132 71.203 0.012 (0.000) | 0.013 (0.000) | 25.966
csv-thres-0-45 (1.000) (1.651) (0.602)
instance_nr_1243- 95.912 44.820 44.200 109.177 123.196
csv-thres-0-50 (1.000) (0.467) (0.461) (1.138) (1.284)
instance_nr_1679- 88.106 0.047 (0.001) | 0.048 (0.001) | 219.157 0.009 (0.000)
csv-thres-0-45 (1.000) (2.487)
pace_actionseq 11.858 0.084 (0.007) | 1.975(0.167) | 30.429 0.954 (0.080)
_21.10 (1.000) (2.566)
pace_actionseq 18.871 0.147 (0.008) | 0.014 (0.001) | 0.017 (0.001) | 136.770
222 (1.000) (7.248)
pace_actionseq 9.664 (1.000) | 16.699 0.032 (0.003) | 44.452 24.707
_23.10 (1.728) (4.600) (2.557)
pace_actionseq 94.505 0.022 (0.000) | 0.023 (0.000) | 0.024 (0.000) | 0.005 (0.000)

_26_2

(1.000)
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Table A.6: Time taken to find the optimal solution for SBPS configurations (seconds)
Defaultwith | Simple Kanpai with | Warm start | Lookahead
SBPS heuristic SBPS with SBPS with SBPS
with SBPS
exact003 8.201 (0.606) | 47.553 30.996 7.428 (0.548) | 5.992 (0.442)
(3.511) (2.289)
exact005 591.768 156.913 0.838 (0.016) | 74.166 76.859
(11.057) (2.932) (1.386) (1.436)
instance_nr_11- 113.477 0.053 (0.002) | 0.021 (0.001) | 0.020 (0.001) | 7.969 (0.233)
csv-thres-0-40 (3.324)
instance_nr_313- 44.519 31.420 0.011 (0.000) | 0.015 (0.000) | 31.935
csv-thres-0-45 (1.032) (0.728) (0.740)
instance_nr_1243- 172.503 33.311 84.104 0.020 (0.000) | 97.995
csv-thres-0-50 (1.799) (0.347) (0.877) (1.022)
instance_nr_1679- 848.331 0.046 (0.001) | 0.034 (0.000) | 0.084 (0.001) | 0.009 (0.000)
csv-thres-0-45 (9.629)
pace_actionseq 15.993 0.083 (0.007) | 0.312(0.026) | 0.031 (0.003) | 15.820
_21_10 (1.349) (1.334)
pace_actionseq 5.121 (0.271) | 0.129 (0.007) | 0.014 (0.001) | 0.016 (0.001) | 92.419
222 (4.897)
pace_actionseq 44918 26.776 2.100 (0.217) | 1.983 (0.205) | 33.856
_23.10 (4.648) (2.771) (3.503)
pace_actionseq 3551.174 0.022 (0.000) | 0.023 (0.000) | 0.025 (0.000) | 0.006 (0.000)

_26_2

(37.577)
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Table A.7: Integral of time (seconds) vs normalized edits plot
Default Simple Kanpai Warm start | Lookahead
heuristic

exact003 0.733 (1.000) | 4.232 (5.777) | 1.638 (2.236) | 6.305 (8.606) | 2.172 (2.965)

exact005 2.132(1.000) | 1.831(0.859) | 3.169 (1.486) | 2.823 (1.324) | 0.564 (0.265)

instance_nr 11- 3.124 (1.000) | 0.023 (0.007) | 0.021 (0.007) | 0.019 (0.006) | 0.480 (0.154)

csv-thres-0-40

instance_nr_313- 2.975(1.000) | 4.858 (1.633) | 0.012 (0.004) | 0.013 (0.004) | 3.598 (1.209)

csv-thres-0-45

instance_nr 1243- 8.212 (1.000) | 0.906 (0.110) | 1.765 (0.215) | 2.157 (0.263) | 12.366

csv-thres-0-50 (1.506)

instance_nr_1679- 2.911 (1.000) | 0.022 (0.008) | 0.021 (0.007) | 2.132(0.732) | 0.003 (0.001)

csv-thres-0-45

pace_actionseq 0.561 (1.000) | 0.017 (0.031) | 0.150 (0.266) | 1.234(2.199) | 0.097 (0.173)

2110

pace_actionseq 2.247 (1.000) | 0.030 (0.013) | 0.014 (0.006) | 0.017 (0.008) | 13.622

222 (6.061)

pace_actionseq 0.520 (1.000) | 0.926 (1.782) | 0.020 (0.039) | 4.976 (9.571) | 1.544 (2.970)

_23_10

pace_actionseq 7.052 (1.000) | 0.022 (0.003) | 0.023 (0.003) | 0.024 (0.003) | 0.005 (0.001)

_26_2

exact015 149.965 32.268 0.124 (0.001) | 1.630(0.011) | 38.293
(1.000) (0.215) (0.255)

exact020 179.890 101.100 0.200 (0.001) | 0.164 (0.001) | 0.052 (0.000)
(1.000) (0.562)

exact025 126.583 64.282 0.428 (0.003) | 0.342 (0.003) | 50.461
(1.000) (0.508) (0.399)

exact030 130.447 1.626 (0.012) | 0.436 (0.003) | 0.450 (0.003) | 3.217 (0.025)
(1.000)

exact035 149.698 27.191 1.231 (0.008) | 1.216 (0.008) | 3.841 (0.026)
(1.000) (0.182)

exact040 203.146 33.006 1.845 (0.009) | 2.137 (0.011) | 7.562 (0.037)
(1.000) (0.162)

exact045 315.867 100.685 5.117 (0.016) | 3.532 (0.011) | 55.475
(1.000) (0.319) (0.176)

exact050 58.436 116.069 4.431 (0.076) | 5.024 (0.086) | 21.190
(1.000) (1.986) (0.363)

exact055 216.111 44.549 5.022 (0.023) | 25.516 6.679 (0.031)
(1.000) (0.206) (0.118)

exact060 231.181 129.309 11.878 12.126 192.187
(1.000) (0.559) (0.051) (0.052) (0.831)
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Table A.8: Integral of time (seconds) vs normalized edits plot for SBPS configurations
Defaultwith | Simple Kanpai with | Warm start | Lookahead
SBPS heuristic SBPS with SBPS with SBPS
with SBPS

exact003 0.340 (0.464) | 4.734 (6.462) | 1.656 (2.260) | 0.675(0.921) | 0.309 (0.421)

exact005 82.026 3.099 (1.453) | 0.065 (0.031) | 1.466 (0.687) | 1.511 (0.709)
(38.465)

instance_nr_11- 31.282 0.022 (0.007) | 0.021 (0.007) | 0.020 (0.006) | 0.605 (0.194)

csv-thres-0-40 (10.013)

instance_nr_313- 4.042 (1.359) | 1.228 (0.413) | 0.011 (0.004) | 0.015 (0.005) | 2.259 (0.760)

csv-thres-0-45

instance_nr_1243- 14.733 0.681 (0.083) | 6.617 (0.806) | 0.018 (0.002) | 6.524 (0.794)

csv-thres-0-50 (1.794)

instance_nr_1679- 220.617 0.021 (0.007) | 0.021 (0.007) | 0.024 (0.008) | 0.004 (0.001)

csv-thres-0-45 (75.779)

pace_actionseq 0.712 (1.269) | 0.017 (0.030) | 0.030 (0.054) | 0.019 (0.033) | 1.639 (2.921)

_21.10

pace_actionseq 1.059 (0.471) | 0.026 (0.011) | 0.014 (0.006) | 0.016 (0.007) | 9.245 (4.114)

22 2

pace_actionseq 7.824 1.457 (2.803) | 0.115(0.221) | 0.249 (0.480) | 3.716 (7.149)

2310 (15.050)

pace_actionseq 763.118 0.022 (0.003) | 0.023 (0.003) | 0.025 (0.004) | 0.006 (0.001)

_26_2 (108.208)

exact015 210.920 32.269 0.128 (0.001) | 0.097 (0.001) | 38.291
(1.406) (0.215) (0.255)

exact020 188.976 101.102 0.198 (0.001) | 0.176 (0.001) | 0.052 (0.000)
(1.051) (0.562)

exact025 117.793 64.291 0.431 (0.003) | 0.341 (0.003) | 50.926
(0.931) (0.508) (0.402)

exact030 119.676 1.629 (0.012) | 0.423 (0.003) | 0.448 (0.003) | 3.072 (0.024)
(0.917)

exact035 148.243 27.268 1.226 (0.008) | 1.208 (0.008) | 3.845 (0.026)
(0.990) (0.182)

exact040 197.011 33.075 1.849 (0.009) | 2.133 (0.010) | 6.545 (0.032)
(0.970) (0.163)

exact045 410.662 100.838 5.029 (0.016) | 3.575(0.011) | 53.543
(1.300) (0.319) (0.170)

exact050 53.112 116.077 4.461 (0.076) | 5.050 (0.086) | 21.044
(0.909) (1.986) (0.360)

exact055 211.103 44.556 5.044 (0.023) | 25.521 6.754 (0.031)
(0.977) (0.206) (0.118)

exact060 318.718 129.359 11.751 12.045 191.820
(1.379) (0.560) (0.051) (0.052) (0.830)
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A.5. Best objective value found after 10 minutes
Table A.9: Best objective value (edits) found after 10 minutes
Default Simple heuristic | Kanpai Warm start Lookahead
exact015 235 (0.362) 185 (0.107) 164 (0.000) 165 (0.005) 189 (0.128)
exact020 441 (0.554) 311 (0.337) 110 (0.000) 110 (0.000) 110 (0.000)
exact025 | 698 (0.422) 570 (0.213) 439 (0.000) 439 (0.000) 542 (0.168)
exact030 | 818 (0.435) 282 (0.004) 277 (0.000) 277 (0.000) 288 (0.009)
exact035 | 1106 (0.499) | 510 (0.086) 385 (0.000) 385 (0.000) 402 (0.012)
exact040 | 1636 (0.677) | 670 (0.105) 492 (0.000) 492 (0.000) 532 (0.024)
exact045 | 2028 (1.052) | 1376 (0.325) 1085 (0.000) | 1085 (0.000) | 1248 (0.182)
exact050 | 1905 (0.193) | 2350 (0.378) 1440 (0.000) | 1440 (0.000) | 1598 (0.066)
exact055 | 3075 (0.720) | 1722 (0.135) 1410 (0.000) | 1554 (0.062) | 1449 (0.017)
exact060 | 2104 (0.769) | 1818 (0.410) 1492 (0.001) | 1497 (0.008) | 1998 (0.636)

Table A.10: Best objective value (edits) found after 10 minutes for SBPS configurations (seconds)

Default with | Simple heuris- | Kanpai with | Warm  start | Lookahead

SBPS tic with SBPS | SBPS with SBPS with SBPS
exact015 295 (0.668) 185 (0.107) 164 (0.000) 164 (0.000) 189 (0.128)
exact020 483 (0.625) 311 (0.337) 110 (0.000) 110 (0.000) 110 (0.000)
exact025 680 (0.393) 570 (0.213) 439 (0.000) 439 (0.000) 543 (0.169)
exact030 773 (0.398) 282 (0.004) 277 (0.000) 277 (0.000) 288 (0.009)
exact035 1099 (0.494) 510 (0.086) 385 (0.000) 385 (0.000) 402 (0.012)
exact040 1600 (0.656) 670 (0.105) 492 (0.000) 492 (0.000) 526 (0.020)
exact045 2309 (1.366) 1376 (0.325) 1085 (0.000) 1085 (0.000) 1242 (0.175)
exact050 1862 (0.175) 2350 (0.378) 1440 (0.000) 1440 (0.000) 1597 (0.065)
exact055 3031 (0.701) 1722 (0.135) 1410 (0.000) 1554 (0.062) 1449 (0.017)
exact060 2293 (1.006) 1818 (0.410) 1492 (0.001) 1497 (0.008) 1997 (0.635)







MiniZinc Challenge Results

B.1. Solve time

Table B.1: Solve time (seconds)
Default Default Lookahead | Lookahead
with SBPS with SBPS

accap: 600.000 295.851 600.000 600.000
accap_al2_£100_t60 (1.000) (0.493) (1.000) (1.000)
accap: 600.000 600.000 600.000 600.000
accap_al8_f140_t85 (1.000) (1.000) (1.000) (1.000)
accap: 600.000 600.000 600.000 600.000
accap_a40_f800_t180 (1.000) (1.000) (1.000) (1.000)
accap: 394.994 478.413 600.000 353.601
accap_a4_f30_t15 (1.000) (1.211) (1.519) (0.895)
accap: 128.791 43.950 51.359 600.000
accap_a5_f40_t20 (1.000) (0.341) (0.399) (4.659)
arithmetic-target: 71.368 87.098 75.708 301.354
4108_with_1.2. 2 3 3 5 6.6 .7 89 (1.000) (1.220) (1.061) (4.223)
arithmetic-target: 99.084 81.340 228.816 249.995
6872_with_1.2 3.3 4.4 56_7_9_10 (1.000) (0.821) (2.309) (2.523)
arithmetic-target: 8.596 3.509 4.478 2.361
814_with. 1.2 4 6 6 7 89 (1.000) (0.408) (0.521) (0.275)
arithmetic-target: 281.403 600.000 600.000 330.443
8657_with_1.1.2 3 44558950 (1.000) (2.132) (2.132) (1.174)
arithmetic-target: 4.632 7.486 2.670 2.931
910_with_1_2 3 6_12_25 50 _87 (1.000) (1.616) (0.576) (0.633)
blocks-world: 377.276 149.257 533.765 493.779
16-4-13 (1.000) (0.396) (1.415) (1.309)
blocks-world: 600.000 207.266 567.108 600.000
16-4-40 (1.000) (0.345) (0.945) (1.000)
blocks-world: 600.000 600.000 600.000 600.000
16-4-45 (1.000) (1.000) (1.000) (1.000)
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Table B.1: Solve time (seconds) (Continued)

blocks-world: 600.000 600.000 302.527 111.653
16-4-5 (1.000) (1.000) (0.504) (0.186)
blocks-world: 600.000 273.580 600.000 244.675
16-4-83 (1.000) (0.456) (1.000) (0.408)
diameterc-mst: 48.594 54.319 60.541 85.071
c_v15_a105_dé6 (1.000) (1.118) (1.246) (1.751)
diameterc-mst: 148.092 308.145 280.956 232.927
c_v15_a105_d9 (1.000) (2.081) (1.897) (1.573)
diameterc-mst: 45.683 74.988 52.400 68.986
c_v20_a190_d4 (1.000) (1.641) (1.147) (1.510)
diameterc-mst: 600.000 600.000 600.000 600.000
c_v20_a190_d9 (1.000) (1.000) (1.000) (1.000)
diameterc-mst: 600.000 600.000 600.000 600.000
s_v40_a100_d7 (1.000) (1.000) (1.000) (1.000)
generalized-peacable-queens: 600.000 600.000 600.000 600.000
nll g5 (1.000) (1.000) (1.000) (1.000)
generalized-peacable-queens: 600.000 600.000 600.000 600.000
nl13_qg5 (1.000) (1.000) (1.000) (1.000)
generalized-peacable-queens: 600.000 600.000 600.000 600.000
n25_q4 (1.000) (1.000) (1.000) (1.000)
generalized-peacable-queens: 278.501 284.028 274.609 360.074
n8_q3 (1.000) (1.020) (0.986) (1.293)
generalized-peacable-queens: 600.000 600.000 600.000 600.000
n9_q5 (1.000) (1.000) (1.000) (1.000)
gfd-schedule: 600.000 600.000 11.655 6.037
n180f7d50m30k18_10124 (1.000) (1.000) (0.019) (0.010)
gfd-schedule: 600.000 600.000 30.274 19.132
n200f5d50m40k6_10124 (1.000) (1.000) (0.050) (0.032)
gfd-schedule: 3.464 0.985 0.219 0.147
n55f2d50m30k3_10124 (1.000) (0.284) (0.063) (0.042)
gfd-schedule: 2.752 1.996 0.258 0.171
n60f7d50m30k10_10124 (1.000) (0.725) (0.094) (0.062)
gfd-schedule: 600.000 600.000 1.074 0.565
n85f3d50m8k20_10124 (1.000) (1.000) (0.002) (0.001)
ma-path-finding: 113.941 73.111 92.321 56.128
ins_gl6_p10_a20 (1.000) (0.642) (0.810) (0.493)
ma-path-finding;: 406.227 239.732 600.000 255.317
ins_gl6_p10_a30 (1.000) (0.590) (1.477) (0.629)
ma-path-finding: 600.000 503.061 600.000 600.000
ins_gl6_p20_a30 (1.000) (0.838) (1.000) (1.000)
ma-path-finding: 112.699 79.286 182.731 131.139
ins_g24 p20_al0 (1.000) (0.704) (1.621) (1.164)
ma-path-finding: 600.000 600.000 600.000 600.000
ins_g32_p20_al0 (1.000) (1.000) (1.000) (1.000)
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Table B.1: Solve time (seconds) (Continued)

nfc: 600.000 600.000 6.554 6.609
12_2_11 (1.000) (1.000) (0.011) (0.011)
nfc: 600.000 600.000 600.000 600.000
18_3_12 (1.000) (1.000) (1.000) (1.000)
nfc: 600.000 600.000 600.000 600.000
24 4 2 (1.000) (1.000) (1.000) (1.000)
nfc: 600.000 600.000 600.000 600.000
30_5_12 (1.000) (1.000) (1.000) (1.000)
nfc: 600.000 600.000 600.000 600.000
30_5_6 (1.000) (1.000) (1.000) (1.000)
roster-sickness: 1.062 0.987 2.390 1.774
large-2-2 (1.000) (0.929) (2.250) (1.670)
roster-sickness: 203.561 286.518 280.283 490.507
large-2 (1.000) (1.408) (1.377) (2.410)
roster-sickness: 0.006 0.007 0.008 0.006
large-4-2 (1.000) (1.167) (1.333) (1.000)
roster-sickness: 600.000 600.000 600.000 600.000
large-4 (1.000) (1.000) (1.000) (1.000)
roster-sickness: 600.000 600.000 600.000 600.000
small-4 (1.000) (1.000) (1.000) (1.000)
spot5: 600.000 600.000 600.000 600.000
1405 (1.000) (1.000) (1.000) (1.000)
spot5: 600.000 600.000 600.000 600.000
1506 (1.000) (1.000) (1.000) (1.000)
spot5: 600.000 600.000 600.000 600.000
404 (1.000) (1.000) (1.000) (1.000)
spot5: 600.000 600.000 600.000 600.000
507 (1.000) (1.000) (1.000) (1.000)
spot5: 600.000 600.000 600.000 600.000
509 (1.000) (1.000) (1.000) (1.000)
stripboard: 600.000 600.000 600.000 600.000
common-emitter-complex (1.000) (1.000) (1.000) (1.000)
stripboard: 134.368 183.108 134.691 54.142
common-emitter-simple (1.000) (1.363) (1.002) (0.403)
stripboard: 600.000 600.000 600.000 600.000
envelope-detector (1.000) (1.000) (1.000) (1.000)
stripboard: 600.000 600.000 600.000 600.000
nand-gate (1.000) (1.000) (1.000) (1.000)
stripboard: 600.000 600.000 600.000 600.000
opamp-integrator (1.000) (1.000) (1.000) (1.000)
sudoku_opt: 1.515 2.460 2.043 2.092
sudoku_p20 (1.000) (1.624) (1.349) (1.381)
sudoku_opt: 84.988 224.850 130.078 176.187
sudoku_p22 (1.000) (2.646) (1.531) (2.073)
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Table B.1: Solve time (seconds) (Continued)

sudoku_opt: 6.512 9.741 13.890 20.933
sudoku_p23 (1.000) (1.496) (2.133) (3.215)
sudoku_opt: 8.884 16.810 20.407 21.031
sudoku_p29 (1.000) (1.892) (2.297) (2.367)
sudoku_opt: 0.129 0.163 0.240 0.320
sudoku_p90 (1.000) (1.264) (1.860) (2.481)
team-assignment: 0.043 0.055 0.074 0.040
datal_4_6 (1.000) (1.279) (1.721) (0.930)
team-assignment: 0.180 0.465 0.268 0.874
datal_6_6 (1.000) (2.583) (1.489) (4.856)
team-assignment: 153.245 91.390 209.457 254.380
data2_6_15 (1.000) (0.596) (1.367) (1.660)
team-assignment: 600.000 600.000 600.000 600.000
data3_4_31 (1.000) (1.000) (1.000) (1.000)
team-assignment: 600.000 600.000 600.000 600.000
data3_5_31 (1.000) (1.000) (1.000) (1.000)
tower: 600.000 600.000 600.000 600.000
100_100_20_100-04 (1.000) (1.000) (1.000) (1.000)
tower: 600.000 600.000 600.000 600.000
tower_070_070_15_070-09 (1.000) (1.000) (1.000) (1.000)
tower: 0.380 0.367 37.800 0.801
tower_070_070_15_085-09 (1.000) (0.966) (99.474) (2.108)
tower: 600.000 600.000 600.000 600.000
tower_300_300_40_200-00 (1.000) (1.000) (1.000) (1.000)
tower: 600.000 600.000 600.000 600.000
tower_500_500_50_300-01 (1.000) (1.000) (1.000) (1.000)
traveling-tppv: 600.000 600.000 600.000 600.000
circl4cnonbal (1.000) (1.000) (1.000) (1.000)
traveling-tppv: 600.000 600.000 600.000 600.000
circl4enonbal (1.000) (1.000) (1.000) (1.000)
traveling-tppv: 600.000 600.000 600.000 600.000
circ20bnonbal (1.000) (1.000) (1.000) (1.000)
traveling-tppv: 0.607 0.597 34.472 38.202
circ20fnonbal (1.000) (0.984) (56.791) (62.936)
traveling-tppv: 600.000 600.000 600.000 600.000
circ20jnonbal (1.000) (1.000) (1.000) (1.000)
triangular: 600.000 600.000 600.000 600.000
nl0 (1.000) (1.000) (1.000) (1.000)
triangular: 600.000 600.000 600.000 600.000
nl8 (1.000) (1.000) (1.000) (1.000)
triangular: 600.000 600.000 600.000 600.000
n24 (1.000) (1.000) (1.000) (1.000)
triangular: 600.000 600.000 600.000 600.000
n30 (1.000) (1.000) (1.000) (1.000)
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Table B.1: Solve time (seconds) (Continued)
triangular: 600.000 600.000 600.000 600.000
n39 (1.000) (1.000) (1.000) (1.000)
vaccine: 463.979 104.975 430.615 240.857
vll (1.000) (0.226) (0.928) (0.519)
vaccine: 525.355 101.740 600.000 600.000
v7 (1.000) (0.194) (1.142) (1.142)
vaccine: 600.000 600.000 600.000 600.000
v8 (1.000) (1.000) (1.000) (1.000)
vaccine: 13.008 2.808 13.458 6.806
v857 (1.000) (0.216) (1.035) (0.523)
vaccine: 55.881 53.083 77.236 600.000
v946 (1.000) (0.950) (1.382) (10.737)
wordpress: 600.000 600.000 600.000 600.000
Wordpress10_Offers500 (1.000) (1.000) (1.000) (1.000)
wordpress: 600.000 600.000 600.000 600.000
Wordpress11_Offers500 (1.000) (1.000) (1.000) (1.000)
wordpress: 600.000 600.000 600.000 600.000
Wordpress12_Offers500 (1.000) (1.000) (1.000) (1.000)
wordpress: 600.000 600.000 600.000 600.000
Wordpress7_Offers500 (1.000) (1.000) (1.000) (1.000)
wordpress: 600.000 600.000 600.000 600.000
Wordpress8_Offers500 (1.000) (1.000) (1.000) (1.000)
yumi-static: 600.000 600.000 600.000 600.000
example_instance_4_GS_SG_yumi._... (1.000) (1.000) (1.000) (1.000)
yumi-static: 600.000 600.000 600.000 600.000
p_10_GGGGG_GGGGG_yumi_grid_... | (1.000) (1.000) (1.000) (1.000)
yumi-static: 100.618 181.705 155.254 274.369
p_4_GG_GG_yumi_grid_setup_3_3 (1.000) (1.806) (1.543) (2.727)
yumi-static: 600.000 600.000 600.000 600.000
p_4_GS_SG_yumi_grid_setup_3_3 (1.000) (1.000) (1.000) (1.000)
yumi-static: 600.000 600.000 600.000 600.000
p_8_SSSSS_SSS_yumi_grid_setup_... (1.000) (1.000) (1.000) (1.000)
B.2. Objective
Table B.2: Best objective found after 10 minutes (N/A indicates no solution found)
Default Default Lookahead | Lookahead
with SBPS with SBPS
accap: 136.000 127.000 190.000 169.000
accap_al2_£100_t60 (0.002) (0.000) (0.016) (0.011)
accap: 157.000 154.000 274.000 264.000
accap_al8_f140_t85 (0.000) (0.000) (0.016) (0.015)
accap: 5446.000 4388.000 3005.000 2534.000
accap_a40_f800_t180 (0.937) (0.597) (0.152) (0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

accap: 103.000 103.000 103.000 103.000
accap_a4_f30_t15 (0.000) (0.000) (0.000) (0.000)
accap: 97.000 97.000 97.000 97.000
accap_a5_f40_t20 (0.000) (0.000) (0.000) (0.000)
arithmetic-target: 7.000 7.000 7.000 7.000
4108_with_1 2 2 3 3 5. 6_6_7 89 (0.000) (0.000) (0.000) (0.000)
arithmetic-target: 7.000 7.000 7.000 7.000
6872_with_ 1.2 3 3 44567910 (0.000) (0.000) (0.000) (0.000)
arithmetic-target: 5.000 5.000 5.000 5.000
814_with_ 1.2 4 6 6_7 89 (0.000) (0.000) (0.000) (0.000)
arithmetic-target: 7.000 10.000 17.000 7.000
8657_with_ 1.1 2 3 44 55 89 50 (0.000) (0.000) (0.000) (0.000)
arithmetic-target: 5.000 5.000 5.000 5.000
910_with_1 2 3 6_12 25 50_87 (0.000) (0.000) (0.000) (0.000)
blocks-world: 30.000 30.000 30.000 30.000
16-4-13 (0.000) (0.000) (0.000) (0.000)
blocks-world: 33.000 25.000 25.000 30.000
16-4-40 (0.348) (0.000) (0.000) (0.217)
blocks-world: 43.000 27.000 44.000 28.000
16-4-45 (0.432) (0.000) (0.459) (0.027)
blocks-world: 26.000 27.000 25.000 25.000
16-4-5 (0.036) (0.071) (0.000) (0.000)
blocks-world: 30.000 25.000 31.000 25.000
16-4-83 (0.172) (0.000) (0.207) (0.000)
diameterc-mst: 314.000 314.000 314.000 314.000
c_v15_al105_dé6 (0.000) (0.000) (0.000) (0.000)
diameterc-mst: 290.000 290.000 290.000 290.000
c_v15_al105_d9 (0.000) (0.000) (0.000) (0.000)
diameterc-mst: 349.000 349.000 349.000 349.000
c_v20_a190_d4 (0.000) (0.000) (0.000) (0.000)
diameterc-mst: 332.000 327.000 335.000 341.000
c_v20_a190_d9 (0.018) (0.000) (0.029) (0.051)
diameterc-mst: N/A N/A 821.000 773.000
s_v40_a100_d7 (0.240) (0.000)
generalized-peacable-queens: 4.000 4.000 N/A N/A
nll_qg5 (0.000) (0.000)
generalized-peacable-queens: N/A N/A N/A N/A
nl3_q5

generalized-peacable-queens: N/A N/A N/A N/A
n25_q4

generalized-peacable-queens: 4.000 4.000 4.000 4.000
n8_q3 (0.000) (0.000) (0.000) (0.000)
generalized-peacable-queens: N/A N/A 2.000 2.000
n9_q5 (0.000) (0.000)

Continued on next page




B.2. Objective 7
Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

gfd-schedule: N/A N/A 45.000 45.000
n180£7d50m30k18_10124 (0.000) (0.000)
gfd-schedule: N/A N/A 18.000 18.000
n200£5d50m40k6_10124 (0.000) (0.000)
gfd-schedule: 9.000 9.000 9.000 9.000
n55f2d50m30k3_10124 (0.000) (0.000) (0.000) (0.000)
gfd-schedule: 20.000 20.000 20.000 20.000
n60f7d50m30k10_10124 (0.000) (0.000) (0.000) (0.000)
gfd-schedule: N/A N/A 138.000 138.000
n85f3d50m8k20_10124 (0.000) (0.000)
ma-path-finding: 240.000 240.000 240.000 240.000
ins_gl6_p10_a20 (0.000) (0.000) (0.000) (0.000)
ma-path-finding: 334.000 334.000 356.000 334.000
ins_gl6_p10_a30 (0.000) (0.000) (0.062) (0.000)
ma-path-finding: 723.000 401.000 609.000 413.000
ins_gl6_p20_a30 (0.722) (0.000) (0.466) (0.027)
ma-path-finding: 193.000 193.000 193.000 193.000
ins_g24 p20_al0 (0.000) (0.000) (0.000) (0.000)
ma-path-finding: 409.000 253.000 319.000 275.000
ins_g32 p20_al0 (0.607) (0.000) (0.257) (0.086)
nfc: 1132.000 1032.000 784.000 784.000
12_2 11 (0.635) (0.453) (0.000) (0.000)
nfc: 1911.000 1662.000 1254.000 1218.000
18_3_12 (0.931) (0.597) (0.048) (0.000)
nfc: 2828.000 2824.000 1856.000 1848.000
24 4 2 (0.950) (0.946) (0.008) (0.000)
nfc: 3540.000 3310.000 2330.000 2340.000
30_5_12 (0.976) (0.790) (0.000) (0.008)
nfc: 3030.000 2915.000 N/A N/A
30_5_6 (0.793) (0.000)
roster-sickness: 191062.000 | 191062.000 | 191062.000 | 191062.000
large-2-2 (0.000) (0.000) (0.000) (0.000)
roster-sickness: 247896.000 | 247896.000 | 247896.000 | 247896.000
large-2 (0.000) (0.000) (0.000) (0.000)
roster-sickness: 233969.000 | 233969.000 | 233969.000 | 233969.000
large-4-2 (0.000) (0.000) (0.000) (0.000)
roster-sickness: 217452.000 | 217464.000 | 217450.000 | 217438.000
large-4 (0.006) (0.000) (0.007) (0.014)
roster-sickness: 14457.000 14457.000 14457.000 14457.000
small-4 (0.000) (0.000) (0.000) (0.000)
spot5: 551536.000 | 572547.000 | 520458.000 | 527464.000
1405 (0.270) (0.452) (0.000) (0.061)
spot5: 451707.000 | 463707.000 | 405669.000 | 420577.000
1506 (0.393) (0.495) (0.000) (0.127)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

spot5: 116.000 120.000 116.000 114.000
404 (0.041) (0.122) (0.041) (0.000)
spot5: 31425.000 32429.000 33439.000 32421.000
507 (0.000) (0.090) (0.181) (0.090)
spot5: 38544.000 | 43473.000 44478.000 43492.000
509 (0.000) (0.289) (0.349) (0.291)
stripboard: 190.000 140.000 N/A N/A
common-emitter-complex (0.833) (0.000)

stripboard: 40.000 40.000 40.000 40.000
common-emitter-simple (0.000) (0.000) (0.000) (0.000)
stripboard: 110.000 80.000 130.000 77.000
envelope-detector (0.268) (0.024) (0.431) (0.000)
stripboard: 90.000 56.000 N/A N/A
nand-gate (0.236) (0.000)

stripboard: N/A N/A N/A N/A
opamp-integrator

sudoku_opt: -3.000 -3.000 -3.000 -3.000
sudoku_p20 (0.000) (0.000) (0.000) (0.000)
sudoku_opt: 229.000 229.000 229.000 229.000
sudoku_p22 (0.000) (0.000) (0.000) (0.000)
sudoku_opt: -227.000 -227.000 -227.000 -227.000
sudoku_p23 (0.000) (0.000) (0.000) (0.000)
sudoku_opt: -359.000 -359.000 -359.000 -359.000
sudoku_p29 (0.000) (0.000) (0.000) (0.000)
sudoku_opt: -55.000 -55.000 -55.000 -55.000
sudoku_p90 (0.000) (0.000) (0.000) (0.000)
team-assignment: 2948.000 2948.000 2948.000 2948.000
datal 4 6 (0.000) (0.000) (0.000) (0.000)
team-assignment: 6970.000 6970.000 6970.000 6970.000
datal_6_6 (0.000) (0.000) (0.000) (0.000)
team-assignment: 26773.000 26773.000 26773.000 26773.000
data2_6_15 (0.000) (0.000) (0.000) (0.000)
team-assignment: 24622.000 27664.000 31584.000 | 41683.000
data3_4_31 (0.460) (0.378) (0.272) (0.000)
team-assignment: N/A N/A 37564.000 37674.000
data3_5_31 (0.105) (0.000)
tower: 88.000 50.000 90.000 86.000
100_100_20_100-04 (0.042) (0.833) (0.000) (0.083)
tower: 57.000 48.000 57.000 57.000
tower_070_070_15_070-09 (0.000) (0.167) (0.000) (0.000)
tower: 85.000 85.000 85.000 85.000
tower_070_070_15_085-09 (0.000) (0.000) (0.000) (0.000)
tower: 149.000 104.000 157.000 163.000
tower_300_300_40_200-00 (0.122) (0.513) (0.052) (0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

tower: 167.000 111.000 167.000 153.000
tower_500_500_50_300-01 (0.000) (0.709) (0.000) (0.177)
traveling-tppv: 504.000 474.000 480.000 474.000
circl4cnonbal (0.288) (0.000) (0.058) (0.000)
traveling-tppv: 476.000 432.000 476.000 464.000
circl4enonbal (0.367) (0.000) (0.367) (0.267)
traveling-tppv: 1498.000 1468.000 1482.000 1400.000
circ20bnonbal (0.377) (0.262) (0.315) (0.000)
traveling-tppv: N/A N/A N/A N/A
circ20fnonbal

traveling-tppv: 1498.000 1428.000 1462.000 1388.000
circ20jnonbal (0.611) (0.222) (0.411) (0.000)
triangular: 20.000 20.000 20.000 20.000
n10 (0.000) (0.000) (0.000) (0.000)
triangular: 38.000 35.000 38.000 34.000
n18 (0.000) (0.150) (0.000) (0.200)
triangular: 52.000 43.000 53.000 41.000
n24 (0.034) (0.345) (0.000) (0.414)
triangular: 67.000 58.000 67.000 53.000
n30 (0.000) (0.346) (0.000) (0.538)
triangular: 89.000 61.000 68.000 66.000
n39 (0.000) (0.651) (0.488) (0.535)
vaccine: 85.000 85.000 85.000 85.000
vil (0.000) (0.000) (0.000) (0.000)
vaccine: 45.000 45.000 43.000 45.000
v7 (0.000) (0.000) (0.105) (0.000)
vaccine: N/A N/A N/A N/A

v8

vaccine: 127.000 127.000 127.000 127.000
v857 (0.000) (0.000) (0.000) (0.000)
vaccine: 85.000 85.000 85.000 85.000
v946 (0.000) (0.000) (0.000) (0.000)
wordpress: 42941.000 3232.000 3466.000 3350.000
Wordpress10_Offers500 (0.210) (0.000) (0.001) (0.001)
wordpress: 33136.000 57195.000 3531.000 3464.000
Wordpress11_Offers500 (0.124) (0.225) (0.000) (0.000)
wordpress: 67739.000 76868.000 3920.000 4004.000
Wordpress12_Offers500 (0.312) (0.357) (0.000) (0.000)
wordpress: 2022.000 2116.000 2126.000 2022.000
Wordpress7_Offers500 (0.000) (0.001) (0.001) (0.000)
wordpress: 6230.000 4124.000 2924.000 2674.000
Wordpress8_Offers500 (0.027) (0.011) (0.002) (0.000)
yumi-static: 482.000 482.000 509.000 482.000
example_instance_4_GS_SG_yumi._... (0.000) (0.000) (0.026) (0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

yumi-static: N/A N/A N/A N/A
p_10_GGGGG_GGGGG_yumi_grid_...

yumi-static: 626.000 626.000 626.000 626.000
p_4_GG_GG_yumi_grid_setup_3_3 (0.000) (0.000) (0.000) (0.000)
yumi-static: 595.000 617.000 589.000 557.000
p_4_GS_SG_yumi_grid_setup_3_3 (0.060) (0.094) (0.050) (0.000)
yumi-static: N/A N/A N/A N/A
p_8_SSSSS_SSS_yumi_grid_setup_...
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B.3. Integral
Table B.3: Integral of time (seconds) vs normalized edits plot
Default Default Lookahead | Lookahead
with SBPS with SBPS

accap: 8.191 8.177 253.807 255.281
accap_al2_£100_t60 (1.000) (0.998) (30.988) (31.168)
accap: 15.923 25.497 9.650 8.934
accap_al8_f140_t85 (1.000) (1.601) (0.606) (0.561)
accap: 562.472 466.883 111.080 22.020
accap_a40_f800_t180 (1.000) (0.830) (0.197) (0.039)
accap: 2.553 0.632 2.502 2.332
accap_a4_f£30_t15 (1.000) (0.248) (0.980) (0.914)
accap: 2.551 0.351 0.249 8.410
accap_a5_f40_t20 (1.000) (0.137) (0.098) (3.297)
arithmetic-target: 26.194 1.625 17.227 30.494
4108_with_1 2 2 3 3 5 6_6_7 8 9 (1.000) (0.062) (0.658) (1.164)
arithmetic-target: 6.185 23.580 61.412 24.350
6872_with_ 1.2 3 3 44567910 (1.000) (3.812) (9.929) (3.937)
arithmetic-target: 4.132 3.715 0.577 0.563
814_with_ 1.2 4 6_6_7 89 (1.000) (0.899) (0.140) (0.136)
arithmetic-target: 40.005 3.187 138.337 35.798
8657 with_ 1.1 2.3 4 4 558 9 50 (1.000) (0.080) (3.458) (0.895)
arithmetic-target: 6.928 6.923 0.322 0.322
910_with_1 2 3 6_12 25 50_87 (1.000) (0.999) (0.046) (0.046)
blocks-world: 73.426 42.808 716.147 725.440
16-4-13 (1.000) (0.583) (9.753) (9.880)
blocks-world: 442.735 47.552 129.177 145.595
16-4-40 (1.000) (0.107) (0.292) (0.329)
blocks-world: 510.588 315.119 386.154 219.309
16-4-45 (1.000) (0.617) (0.756) (0.430)
blocks-world: 544.305 509.435 161.421 47.473
16-4-5 (1.000) (0.936) (0.297) (0.087)
blocks-world: 190.179 363.861 175.088 188.036
16-4-83 (1.000) (1.913) (0.921) (0.989)
diameterc-mst: 1.955 0.058 2.749 3.489
c_v15_al05_dé (1.000) (0.030) (1.406) (1.784)
diameterc-mst: 0.499 0.389 14.279 7.041
c_v15_al105_d9 (1.000) (0.780) (28.618) (14.112)
diameterc-mst: 0.170 0.249 1.762 0.748
c_v20_a190_d4 (1.000) (1.461) (10.355) (4.397)
diameterc-mst: 16.865 8.453 46.610 57.153
c_v20_a190_d9 (1.000) (0.501) (2.764) (3.389)
diameterc-mst: 1200.000 1200.000 390.787 335.481
s_v40_a100_d7 (1.000) (1.000) (0.326) (0.280)
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

generalized-peacable-queens: 12.928 12.694 302.655 302.359
nll_q5 (1.000) (0.982) (23.411) (23.388)
generalized-peacable-queens: 202.639 0.471 203.625 1200.000
nl13_q5 (1.000) (0.002) (1.005) (5.922)
generalized-peacable-queens: N/A N/A N/A N/A
n25_q4

generalized-peacable-queens: 0.011 0.011 0.005 0.005
n8_q3 (1.000) (1.000) (0.455) (0.455)
generalized-peacable-queens: 600.000 600.000 51.507 51.462
n9_q5 (1.000) (1.000) (0.086) (0.086)
gfd-schedule: 1200.000 1200.000 5.963 2.534
n180£f7d50m30k18_10124 (1.000) (1.000) (0.005) (0.002)
gfd-schedule: 1200.000 1200.000 9.570 1.912
n200f5d50m40ke6_10124 (1.000) (1.000) (0.008) (0.002)
gfd-schedule: 1.460 0.641 0.031 0.016
n55f2d50m30k3_10124 (1.000) (0.439) (0.021) (0.011)
gfd-schedule: 1.488 1.403 0.031 0.025
n60f7d50m30k10_10124 (1.000) (0.943) (0.021) (0.017)
gfd-schedule: 572.406 216.460 0.367 0.179
n85f3d50m8k20_10124 (1.000) (0.378) (0.001) (0.000)
ma-path-finding: 87.450 60.658 45.611 37.083
ins_g16_p10_a20 (1.000) (0.694) (0.522) (0.424)
ma-path-finding: 298.886 158.425 404.728 300.305
ins_gl6_p10_a30 (1.000) (0.530) (1.354) (1.005)
ma-path-finding: 616.863 330.592 748.052 639.589
ins_gl6_p20_a30 (1.000) (0.536) (1.213) (1.037)
ma-path-finding: 81.999 64.134 80.204 64.695
ins_g24 p20_al0 (1.000) (0.782) (0.978) (0.789)
ma-path-finding: 626.702 460.196 512.796 487.726
ins_g32_p20_al0 (1.000) (0.734) (0.818) (0.778)
nfc: 381.041 271.814 0.013 0.022
12 2 11 (1.000) (0.713) (0.000) (0.000)
nfc: 561.703 358.858 29.057 1.881
18_3_12 (1.000) (0.639) (0.052) (0.003)
nfc: 575.903 567.456 4.775 5.425
24 4 2 (1.000) (0.985) (0.008) (0.009)
nfc: 585.626 474.315 0.018 4.883
30_5_12 (1.000) (0.810) (0.000) (0.008)
nfc: 479.826 0.037 1200.000 1200.000
30_5_6 (1.000) (0.000) (2.501) (2.501)
roster-sickness: 0.018 0.020 0.079 0.070
large-2-2 (1.000) (1.106) (4.266) (3.798)
roster-sickness: 0.066 0.088 0.180 0.191
large-2 (1.000) (1.345) (2.743) (2.913)
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

roster-sickness: 0.006 0.006 0.008 0.005
large-4-2 (1.000) (1.000) (1.333) (0.833)
roster-sickness: 4.143 1.210 6.705 8.407
large-4 (1.000) (0.292) (1.618) (2.029)
roster-sickness: 1.880 0.019 0.089 0.373
small-4 (1.000) (0.010) (0.047) (0.198)
spot5: 290.830 292.696 0.848 37.273
1405 (1.000) (1.006) (0.003) (0.128)
spot5: 332.950 323.948 5.960 77.441
1506 (1.000) (0.973) (0.018) (0.233)
spot5: 43.946 78.585 33.159 10.170
404 (1.000) (1.788) (0.755) (0.231)
spot5: 10.896 58.465 108.918 53.913
507 (1.000) (5.366) (9.996) (4.948)
spot5: 126.504 197.310 209.241 175.631
509 (1.000) (1.560) (1.654) (1.388)
stripboard: 974.842 786.472 1200.000 1200.000
common-emitter-complex (1.000) (0.807) (1.231) (1.231)
stripboard: 13.263 23.561 25.614 11.870
common-emitter-simple (1.000) (1.777) (1.931) (0.895)
stripboard: 328.798 91.218 416.025 21.778
envelope-detector (1.000) (0.277) (1.265) (0.066)
stripboard: 291.326 72.595 1200.000 275.438
nand-gate (1.000) (0.249) (4.119) (0.945)
stripboard: N/A N/A N/A N/A
opamp-integrator

sudoku_opt: 0.706 0.704 2.020 2.063
sudoku_p20 (1.000) (0.997) (2.861) (2.922)
sudoku_opt: 16.608 16.722 80.362 80.824
sudoku_p22 (1.000) (1.007) (4.839) (4.867)
sudoku_opt: 4.159 4.226 9.355 9.531
sudoku_p23 (1.000) (1.016) (2.249) (2.292)
sudoku_opt: 3.220 3.302 18.846 18.800
sudoku_p29 (1.000) (1.025) (5.853) (5.839)
sudoku_opt: 0.105 0.108 0.095 0.096
sudoku_p90 (1.000) (1.029) (0.905) (0.914)
team-assignment: 0.020 0.022 0.007 0.005
datal 4 6 (1.000) (1.090) (0.360) (0.234)
team-assignment: 0.037 0.075 0.016 0.155
datal_6_6 (1.000) (2.022) (0.441) (4.141)
team-assignment: 183.286 139.957 137.957 41.305
data2_6_15 (1.000) (0.764) (0.753) (0.225)
team-assignment: 474.804 393.635 164.114 1.236
data3_4 31 (1.000) (0.829) (0.346) (0.003)
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

team-assignment: 1200.000 1200.000 272.079 19.903
data3_5_31 (1.000) (1.000) (0.227) (0.017)
tower: 244.493 544.424 17.836 132.934
100_100_20_100-04 (1.000) (2.227) (0.073) (0.544)
tower: 79.882 147.488 144.905 46.465
tower_070_070_15_070-09 (1.000) (1.846) (1.814) (0.582)
tower: 0.752 0.726 14.954 0.978
tower_070_070_15_085-09 (1.000) (0.965) (19.886) (1.300)
tower: 279.066 480.956 58.470 63.744
tower_300_300_40_200-00 (1.000) (1.723) (0.210) (0.228)
tower: 126.538 431.918 21.761 133.136
tower_500_500_50_300-01 (1.000) (3.413) (0.172) (1.052)
traveling-tppv: 211.092 10.188 37.183 51.128
circl4cnonbal (1.000) (0.048) (0.176) (0.242)
traveling-tppv: 243.462 96.448 231.493 189.891
circl4enonbal (1.000) (0.396) (0.951) (0.780)
traveling-tppv: 267.195 286.708 204.821 122.152
circ20bnonbal (1.000) (1.073) (0.767) (0.457)
traveling-tppv: N/A N/A N/A N/A
circ20fnonbal

traveling-tppv: 374.015 294.252 259.466 135.376
circ20jnonbal (1.000) (0.787) (0.694) (0.362)
triangular: 5.867 17.221 6.520 9.125
n10 (1.000) (2.935) (1.111) (1.555)
triangular: 0.313 94.693 31.693 125.596
nl8 (1.000) (302.968) (101.401) (401.843)
triangular: 22.691 206.980 46.294 273.897
n24 (1.000) (9.122) (2.040) (12.071)
triangular: 27.308 207.750 212.236 357.335
n30 (1.000) (7.608) (7.772) (13.085)
triangular: 1.895 391.132 299.641 332.393
n39 (1.000) (206.428) (158.141) (175.427)
vaccine: 254.590 24.998 581.574 383.854
vll (1.000) (0.098) (2.284) (1.508)
vaccine: 14.513 1.189 73.793 41.228
v7 (1.000) (0.082) (5.085) (2.841)
vaccine: N/A N/A N/A N/A
v8

vaccine: 6.864 0.936 7.192 5.033
v857 (1.000) (0.136) (1.048) (0.733)
vaccine: 2.179 1.644 4.488 4.580
v946 (1.000) (0.754) (2.059) (2.102)
wordpress: 591.408 466.001 0.899 0.535
Wordpress10_Offers500 (1.000) (0.788) (0.002) (0.001)
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

wordpress: 1030.613 1090.051 0.403 0.260
Wordpress11_Offers500 (1.000) (1.058) (0.000) (0.000)
wordpress: 1159.268 1154.145 0.261 0.880
Wordpress12_Offers500 (1.000) (0.996) (0.000) (0.001)
wordpress: 21.966 2.869 0.475 0.015
Wordpress7_Offers500 (1.000) (0.131) (0.022) (0.001)
wordpress: 184.791 113.892 1.154 0.297
Wordpress8_Offers500 (1.000) (0.616) (0.006) (0.002)
yumi-static: 97.672 51.436 21.359 17.066
example_instance_4_GS_SG_yumi._... (1.000) (0.527) (0.219) (0.175)
yumi-static: N/A N/A N/A N/A
p_10_GGGGG_GGGGG_yumi_grid_...

yumi-static: 11.931 10.971 7.826 23.230
p_4_GG_GG_yumi_grid_setup_3_3 (1.000) (0.920) (0.656) (1.947)
yumi-static: 74.613 70.393 79.533 57.356
p_4_GS_SG_yumi_grid_setup_3_3 (1.000) (0.943) (1.066) (0.769)
yumi-static: N/A N/A N/A N/A

p_8_SSSSS_SSS_yumi_grid_setup_...
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Lookahead Chuffed value selection for constraint
optimization problems

Angelos Zoumis

TU Delft, The Netherlands

Abstract. Constraint programming solvers provide a generalizable ap-
proach to finding solutions for optimization problems. As constraint
programming is used for many real-world applications, such as bioin-
formatics, finance, telecommunications, engineering, and transportation
[12, 11], improving the performance of constraint programming solvers
on optimization problems is of great importance. A new ”lookahead” ap-
proach for value selection is developed that attempts to assist the solver
in finding near-optimal solutions faster. This approach works by tem-
porarily performing additional propagations before selecting a value and
then selecting the value that includes a more optimal solution within its
domain after propagation. When combining this approach with Chuffed
[2], this approach added a significant time overhead that increases the
overall solving time for many problems, with the lookahead configuration
having a median solve time of 8.67% for the optimization problems of the
MiniZinc Challenge 2022 [8]. However, the lookahead configuration was
able to find near-optimal solutions significantly faster than the default
value selection. In particular, for the same optimization problems, on
average, the lookahead configuration had a definite integral for the time
vs objective graph 54.70% lower than the default Chuffed configuration.

Keywords: Constraint Programming - Optimization problem - Chuffed
- Lookahead - Value Selection.

1 Introduction

Constraint programming (CP) is a powerful approach for solving a wide range
of problems involving constraints. It deals with the modelling of problems with
variables that are subject to constraints, and solving them by providing a set of
assignments to the variables, such that all constraints are satisfied. Furthermore,
for optimization problems, the variables also have to maximize an objective
function [10]. One of the main advantages of constraint programming is that it
only needs a model of the problem to work, instead of a tailor-made algorithm,
making them extremely versatile and generalizable.

Constraint programming has been applied to a wide range of real-world
problems, including scheduling, planning, resource allocation and configuration,
and design problems, for many different fields, such as bioinformatics, finance,
telecommunications, engineering, and transportation [12, 11]. For example, in
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scheduling, constraint programming can be used to find optimal, or near-optimal
schedules that take into account a wide range of constraints, such as resource
and personnel availability, and temporal constraints, while having an objective
function, like minimizing costs. Therefore, solving, but also finding near-optimal
answers for CP problems as quickly as possible is of great interest to many
companies that rely on CP solvers.

Despite many improvements, CP solvers still struggle to find optimal, or
near-optimal solutions at a reasonable time for certain problems in comparison
to other approaches to finding near-optimal solutions, such as heuristic solvers.
Therefore, the goal of this paper is to present a new value selection approach for
constraint optimization solvers that allow the discovery of near-optimal solutions
faster.

This research paper describes a lookahead approach for value selection that
attempt to prioritize reaching solutions with a more optimal optimization value
first.

The paper will be organized as follows. First, section 2 describes the back-
ground work of constraint programming. Next, the lookahead approach that
is developed will be presented in section 3. Continuing, section 4 details the
experimental setup and section 5 shows and analyzes the results. Section 6 dis-
cusses other related work, detailing different state-of-the-art techniques, focused
mainly on approaches affecting the branching of Chuffed. Section 7 discusses
various different possible future improvements to the lookahead approach, and
finally, section 8 presents the conclusion of the paper.

2 Background

This section details the background work on which the lookahead approach is
built. In particular, constraint programming will be detailed.

The main concept of Constraint programming is modelling a problem and
solving said problem through the use of CP solvers. Therefore the field of con-
straint programming is split into two sub-fields. One focused on the modelling of
the problems and the languages designed to implement said models. The second
field focuses on the algorithms used to solve or optimize said models [10].

2.1 Modeling

A constraint programming model describes the rules and restrictions of a prob-
lem. A constraint optimization model consists of 4 parts:

— Variables: The main part of a CP model is the set of variables that should
be assigned a value.

— Domain: The domain of possible values that the variable can be assigned.
Any assignment of values within the domain of each variable is a candidate
solution.

— Constraints: Each constraint is a condition that needs to be satisfied.
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— Objective function: Optionally, a model can have an objective function
that needs to be maximized or minimized based on the problem. The goal
of the research is to improve the performance of CP solvers in optimization
problems. Therefore, each used model will always have an objective function.

2.2 CP solvers

Constraint programming solvers take as an input a model and attempt to find
a solution, where each variable has an assigned value that is within the domain
of each variable while satisfying all the constraints and maximizing/minimizing
the optimization function. In general, algorithms that attempt to solve such
problems are split into two cooperating strategies, propagation or inference, and
branching or searching [10].

Propagation is a vital step in CP solvers, reducing the search space of can-
didate solutions, and enabling solvers to work more efficiently, especially as the
problem size increases. By default, using backtracking to solve constraint satis-
faction problems almost always leads to thrashing behaviours [10, 1]. Thrashing
is the repeated exploration of sets of subtree modules that are failing due to
the same assignments and only differ in assignments that are not related to the
cause of failure. As the size of the problem increases, and hence, the size of the
search space increases exponentially, thrashing becomes the main contributor to
running time in backtracking. Propagation can significantly reduce thrashing,
by making implicit constraints explicit, and removing values from the domains
of variables that are not consistent, meaning that these values produce a non-
satisfiable solution.

Searching is the task of navigating through the search tree of a problem, in or-
der to find a solution satisfying all constraints. Backtracking is the fundamental
search method for CP problems, as it guarantees to find a satisfactory solution if
one exists [10]. Backtracking builds up a partial solution, by selecting values for
variables until reaching a solution, or a conflict, at which point, it backtracks to
a previous decision where a different choice can be made, and makes a different
decision. This approach potentially visits all feasible partial solutions and hence
guarantees to find any existing satisfying solutions. This approach is better than
brute force, as it checks after each decision if the constraints are met, instead of
doing that only until a full solution is found. Hence, discovering that a partial
solution cannot satisfy all constraints prunes the subtree of that partial solu-
tion, resulting in multiple full solutions that do not satisfy all constraints being
removed from consideration.

3 Approach

This section describes the basic concept behind the lookahead value selection
algorithm, along with certain implementation details.
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3.1 Lookahead value selection

The lookahead approach presents a new method to perform value selection, where
certain propagations are prematurely performed, in order to observe how select-
ing a candidate value affects the domain of the optimization function.

! Y

Propagate Propagate

v
Backjump to original
decision level

No

\V,
Select non-picked Picked all
value values
A

No

V
VSIDS variable Select best value
selection based on lookahead

Fig.1: An example of the main components of the lookahead constraint pro-
gramming solver.

The core process of the lookahead approach is shown in figure 1. After VSIDS
selects an SAT wvariable, first, a lookahead propagation is performed for one
possible value for the variable, and the domain of the optimization function after
the lookahead propagation is recorded, if there are no conflicts. Next, similarly,
the lookahead propagation for the other possible value is performed, and again,
assuming no conflicts, the domain of the optimization function is recorded. After
both lookahead propagations are performed, the recorded optimization function
domains for the two possible values are compared. Finally, the value that has
the domain that has a more optimal value is ultimately selected.

In the case of a tie, the value that results in the smaller domain for the
optimal value is selected. This is based on the fail first strategy [6]. If one of
the lookaheads ends in a conflict, the lookahead performs an SAT analysis of
the conflict and selects the other value. This allows the solver to quickly learn
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additional clauses and nogoods. If a tie has not been resolved, the value is selected
based on the default behaviour of Chuffed.

The lookahead propagation performs the following steps. It takes as input
the selected variable and the candidate value, and first, create a temporary new
decision level. Then, it updates the value of the selected variable and enqueues
the updated clauses for propagation. After fully propagating, the updated op-
timization function domain is recorded, and if there has been a conflict, a sat
analysis is performed. After, a backjump is performed to the previous decision
level, essentially undoing all changes. Last, the recorded domain, and if there has
been a conflict is returned. Algorithm 1 show the pseudocode of this function.

Algorithm 1 Lookahead Propagation

function LOOKAHEADPROPAGATE((variable, value)
NEWDECISIONLEVEL
assignlvariable] <+ value
SAT.ENQUEUE(variable, value)
PROPAGATE
domain < optVal.domain
conflict < sat.con flict
if conflict then

SAT.ANALYZE

end if
BACKJUMP (previousDecisionLevel)
return domain, con flict

end function

3.2 Lookahead approach additions

Now that the main core of the lookahead approach has been designed, further
additions are made to the algorithm, in order to improve performance in specific
scenarios. These improvements include a slightly different variable selection when
many variables have the same activity score, preferring full solutions, even if the
domain could be further improved, a way to decrease unnecessary lookahead
propagations, and fully stopping lookaheads after a certain amount of conflicts.

First, from early testing, it was noted that the algorithm would often repeat-
edly pick SAT variables generated from the same integer variable, and iterate
toward one direction of its domain. Therefore, in order to avoid such a scenario,
when multiple variables have the same activity score, SAT variables generated
from boolean variables are prioritized. As the solver starts assigning different
activity scores to each variable the effect of this issue diminishes.

Continuing, in order to produce solutions faster, when one of the two can-
didate values produces a fixed value for the optimization function, that value is
preferred. In case both values lead to a solution, the more optimal solution is
preferred. This allows the solver to produce solutions more often and earlier.
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The next improvement reduces the number of lookahead propagations in
case of conflicts. Based on the current implementation, if one value results in a
conflict then there is no need to perform lookahead for both values. Therefore, by
always starting the lookahead propagation with the non-default value, if there is
a conflict after the propagation, then the default value can be selected without
the need for second a lookahead propagation. Based on these additions, algorithm
2 shows the full branch function for the lookahead approach.

Algorithm 2 Lookahead Branch

function LOOKAHEADBRANCH
candidates < variables tied for the highest activity score
variable <~ an unassigned boolean variable from candidates if possible
value < default value for variable
domaing, con flicty < LOOKAHEADPROPAGATE(variable, lvalue)
if conflicty then
return variable < value
end if
domaina, conflict; < LOOKAHEADPROPAGATE(variable, value)
if domaing has a more optimal value than domaini or (domaing most optimal
solution is the same as domaini and |domaing| < |domain,|) then
return variable <value
end if
return variable < value
end function

Last, after finding the optimal, or near-optimal solution, the utility of the
lookahead approach diminishes, while the additional overhead of the lookahead
propagations makes the algorithm significantly slower. Based on early testing,
approximately 40% of the total solve time is spent on lookahead propagation,
where a significant number of that time is after the solver has found the best
solution. Stopping only after finding the first solution would not be ideal, as there
is a high chance the first solution found is still far from optimal. Therefore, it
was decided to use the number of conflicts caused after finding at least a solution
as a stopping criterion for the lookahead approach. This is because after finding
a near-optimal or optimal solution, the chance for a conflict to occur after a
decision increases, due to the stricter domain bounds.

The code for Chuffed with the lookahead approach can be found in the fol-
lowing repository: https://github.com/AZoumis/chuffed

4 Experimental Setup

This section describes the experimental setup along with the data that will be
used to test the performance of the lookahead algorithm.

To test the performance of the lookahead configuration, the implementation
of the lookahead configuration will be tested against the VSIDS [7] value selection
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of Chuffed without using the lookahead algorithm in certain metrics. Solution-
based phase saving (SBPS) [3] will also be compared and combined with the
lookahead implementation, as it is another value-selection heuristic that also
similarly attempts to improve the performance of the solver on optimization
problems.

The instances used will be the ones used for the MiniZinc challenge 2022 [8],
with a time limit of 10 minutes for each instance.

The following metrics are used:

1. Solve time: The time it takes for Chuffed to solve a problem, hence the time
it takes to find the optimal solution and prove optimality. This metric will
show which configurations are overall the fastest at fully solving a problem.
The graph is normalized in relation to the default configuration solve time,
with the default configuration solve time being 1.0.

2. Objective: The best objective value found within the 10-minute time limit.
The objective is normalized by setting the best value found by all config-
urations to 0.0, and the worst possible value found at any point by any
configuration to 1.0. If a configuration has not found any solution, the ob-
jective is set to 2.0.

3. Definite integral: The definite integral, or area under the graph of the
time vs objective graph of each instance. The y-axis, representing the best
objective found at a point in time is normalized the same way as the plain
objective metric. The overall integral is normalized in the same way as the
solve time, with the default configuration having a normalized integral value
of 1.0.

For calculating the mean for the solve time and integral, the geometric mean
is used, as it produces a mean that better represents the actual performance
differences between configurations [9].

5 Results

This section will present the averaged results for the lookahead approach, using
the MiniZinc challenge 2022 [8]. It is expected that this approach might have
an increased overall solve time due to the additional time overhead of this ap-
proach. However, when it comes to finding near-optimal and optimal solutions,
the approach is expected to perform best for problems where there is a clear
correlation between the objective function value and the variables selected, and
for larger instances, where with the default value selection, Chuffed struggles
to find near-optimal solutions. On the other hand, smaller instances with many
local minima solutions will likely cause the lookahead approach to perform worse
overall.

The MiniZinc challenge has a total of 95 optimization problem instances.
Within 10 minutes, the default Chuffed configuration is able to find a solution
satisfying all constraints for 82 out of the 95 problems, of which it proved op-
timality for 35. Continuing, SBPS found a satisfying solution for 82 instances
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Fig. 2: Total number of instances where a solution was found (orange), or opti-
mality was proved (blue)

and proved optimality for 38. Next, lookahead found a satisfying solution for
84 instances and proved optimality for 37. Last, lookahead with SBPS found a
satisfying solution for 84 instances and proved optimality for 38.

Based on these results, the look-ahead approach has only a small effect on if a
solution will be found. Nonetheless, both lookahead approaches were able to find
optimality for overall 2 more instances than the default Chuffed configuration.
However, SBPS was still able to fully solve 1 more instance when compared
to the lookahead approach without SBPS. Nonetheless, the lookahead approach
was able to find a satisfying solution for 2 more problems over the default and
SBPS.

Figure 3 shows the average time taken to fully solve an instance when com-
pared to default chuffed. In the case where the solver did not terminate within
10 minutes, the solve time is 600 seconds. The default lookahead has a solve
time of 94.10%, and the lookahead approach with SBPS has a solve time of
88.76%. Although the mean solve time is lower than the default configuration
solve time, looking at the IQR, the lower quartile and the medial are at 100%
for the lookahead configurations, indicating that for 75% of the problems, the
lookahead configurations had the same or slower solve time as the default con-
figuration. With high p-values of 0.58 and 0.38, the null hypothesis cannot be
rejected.
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Fig. 3: Average solve time for each configuration

Figure 4 shows the solve time results, but filtered to include only instances
where at least one configuration managed to terminate before the 10-minute
time limit. The recorded means are slightly lower, with a value of 86.36% and
77.76% for the lookehaead and lookahead with SBPS configurations respectively.
Again, the p-values are similar to the ones recorded for figure 3, and therefore,
the null hypothesis cannot be rejected.

The median for both lookahead configurations is higher than the default
configuration, with 124.59% for the lookahead configuration, and 116.36% for the
lookahead configuration with SBPS. This indicates that the lookahead approach
potentially causes an overall time penalty to the total solve time. However, for
some instances, the lookahead configuration significantly improves the solve time,
leading to the mean being skewed towards a lower solve time.

The first reason why the lookahead configuration has a positive impact on
the solve time for some problems is that finding an improved solution faster
allows the solver to create stricter domains, creating many new nogoods, and
decreasing the total search space that has to be explored. Next, since the looka-
head approach performs a sat analysis when a lookahead leads to a conflict,
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Fig. 4: Average solve time for each configuration, including only instances where
at least one configuration terminated before the time limit (45 instances)

and furthermore has a fail first strategy, where it biases decisions that decrease
the domain, it likely also creates many new clauses that limit the search space
even more. Therefore, it appears that overall, these performance benefits are
able to better overcome the time overhead of the lookahead approach for certain
instances.

Continuing, figure 5 shows the average best normalized objective found after
10 minutes. Here, 1 indicates the worse solution found throughout the search
by all solvers in this instance that satisfies all constraints, while 0 indicates the
best overall solution. A solution of 2 indicates that no solution was found. For
each configuration, in the order presented, a mean of 0.3436, 0.3178, 0.2234, and
0.2025 was recorded.

Although the means of the lookahead configurations are lower than the de-
fault configuration, with p-values of 0.12 and 0.07, the null hypothesis cannot
be rejected. One reason for this is likely due to the high variance introduced
by instances where no solution was found within the time limit. Therefore, it is
likely that removing these values could result in a lower p-value.
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Fig. 5: Best objective found after 10 minutes

Figure 6 shows the average best normalized objective found after 10 minutes,
excluding instances where at least one configuration did not find a solution
within the time limit. With the filtered results, the p-values for the lookahead
configuration are under 0.05, indicating that the null hypothesis can be rejected.
Therefore, it can be stated with high confidence that for problems where a
solution can be found within a time limit, the solution produced by the lookahead
configuration will be on average closer to the optimal than the solution produced
by the default configuration.
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Fig. 6: Best objective found after 10 minutes, including only instances where all
configurations found a satisfying solution or terminated within the time limit
(79 instances)

Next, figure 7 shows the integral results compared to the default configura-
tion. Overall, a mean of 45.26% is observed for the lookahead approach, and a
mean of 39.48% is observed for the lookahead configuration with SBPS. Based
on these results, low enough p-values were recorded, which provides evidence
to reject the null hypothesis for all configurations. These results show the main
advantage of the lookahead configuration, enabling it to find near-optimal so-
lutions significantly faster than the default configuration, by better guiding the
solver towards near-optimal solutions significantly faster than the default value
selection.

SBPS was able to have a mean of 69.85%. However, when looking at the
IQR for SBPS, it ranges from 55.94%, up to 102.70%, while the range for the
lookahead and lookahead with SBPS ranges from 18.68% to 204.98%, and from
18.64%, up to 206.54% respectively. This indicates a higher variance in the ef-
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Fig. 7: Average integral for each configuration

fectiveness of the lookahead approach when compared to SBPS, with many in-
stances resulting in an overall worse integral performance.

Based on the results, it appears that the lookahead approach can provide
significant advantages to Chuffed, for many optimization problems. In particular,
the lookahead approach on average managed to find near-optimal and optimal
solutions significantly faster than the default configuration. However, due to the
additional time overhead of this approach, the solve time is often increased, and
many problems and instances that do not greatly benefit from the lookahead
approach will overall perform worse, with an increase in time taken to find
similar solutions to the default configuration.
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6 Related Work

The following section discusses related work that was used to implement the
lookahead approach, such as MiniZinc and Chuffed, as well as other state-of-
the-art approaches used by CP solvers to improve performance.

One of the main ways of improving the branching performance was through
the use of heuristics, which better guide the solver through the search tree. One of
the earlier concepts of heuristics was using a lookahead procedure called forward
checking, which employs the most likely to fail principle, which branches on
decisions that are more likely to fail[6]. This heuristic was shown to perform
better than standard backtracking.

For hybrid CP-SAT solvers such as Chuffed, using SAT branching heuristics,
such as the Variable State Independent Decaying Sum (VSIDS) heuristic, can
further improve the variable selection[7]. VSIDS works by assigning an activity
score to each variable and increasing said score based on how many clauses that
variable is involved in. During branching, the variable with the highest activity
is selected. Through the use of additive bumping and multiplicative decay, a
bias towards variables that have a greater presence in recently learnt clauses is
created. Due to VSIDS being independent of the current state of assignments,
backtracking does not require any changes to the activity score, making this
heuristic incredibly efficient.

Solution-based phase saving (SBPS) tries to emulate local search, by attempt-
ing to search through the neighbourhood around the current best solution.[3].
This approach is useful for optimization problems, finding more optimal solu-
tions faster than the default value selection for certain problems. Similar to the
looked approach, SBPS also affects the value selection.

Additional approaches that improve the performance of Chuffed using Ma-
chine learning exist, such as initializing an activity score for VSIDS[4] or pre-
dicting unsatisfiable cores[5].

Overall, many techniques have been used to make CP solvers more efficient
for both satisfaction and optimization problems, and new techniques are con-
stantly being implemented that further improve the performance of solvers in
certain areas. Many of the mentioned heuristics rely on first gathering informa-
tion about the problem, making them less impactful at the start. The lookahead
approach attempts to better guide the SAT value selection, especially in the
early stages of computation.

7 Future Improvements

The main improvements for the lookahead approach concern decreasing the time
penalty of the additional lookahead propagations.

The first improvement would be to reuse the results of one of the lookahead
propagations. The propagation following the value selection should be equivalent
to the lookahead propagation for the same value. Therefore, using the outcome
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of the lookahead propagation, instead of recomputing the propagation after se-
lecting a value would help reduce the time penalty, as now, only a maximum of
1 additional propagation would occur, instead of 2.

Continuing, the two lookahead propagation could run in parallel, as the two
propagations do not rely on the outcome of the other in order to compute their
result. This should further reduce the time penalty of the lookahead configura-
tion.

Next, performing a lookahead for multiple variables, instead of the two values
for a single variable could improve the branching decisions made by the solver.
In particular, it would potentially reduce cases where the solver reaches local
minima and is unable to improve the objective, as it would provide more possible
decisions at each level.

Last, an improved stopping criterion that more accurately stops the looka-
head approach when it can no longer provide significant benefits to the solver
could improve the overall solve time.

8 Conclusion

The lookahead approach to value selection for optimization problems has an
average positive effect in regards to assisting the solver in finding near-optimal
solutions faster. In particular, the lookahead configuration had a definite in-
tegral for the time vs objective graph 54.70% lower than the default Chuffed
configuration on the generalized test suite.

Despite the overall improvements of the lookahead approach, performing
lookahead propagations has a significant time cost. Therefore, the total solve
time increased for most problems, despite the benefits of the approach. Further-
more, the time penalty also affects the early solution quality for many problems
that do not benefit from lookaheads.

Overall, the lookahead approach presents a way to better emulate the per-
formance of heuristic solvers, in particular, finding near-optimal solutions faster,
but causes an overall slight increase in the total solve time.
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