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Abstract

Constraint programming solvers provide a generalizable approach to finding solutions for optimization

problems. However, when comparing the performance of constraint programming solvers to the

performance of a heuristic solver for an optimization problem such as cluster editing, the heuristic solver

is able to find near-optimal and optimal solutions much faster. The goal of this research is to understand

how the behaviour of such a heuristic solver can assist the performance of constraint programming

solvers in optimization problems. In order to achieve this, first Chuffed [8], a state-of-the-art constraint

programming solver was combined with a heuristic approach to cluster editing, with the goal of

emulating the performance of the heuristic algorithm, in particular, being able to find near-optimal

solutions faster. Continuing, the goal was to generalize the behaviour observed by the modified solver,

by emulating the performance observed without the need for the specialized heuristic solver. The

generalized approach is tested on a wide variety of different tests. An approach to value selection

was developed that performs lookahead propagations for the two values of a boolean variable and

selects the value that has the most optimal solution within the domain after performing the lookahead

propagation. This approach added a significant time overhead that increased the overall solving time

for many problems, with the lookahead configuration having a median increase of 8.7% over the default

configuration for the optimization problems of the MiniZinc Challenge 2022 [24]. However, it was

able to successfully emulate the performance of the heuristic solver, finding near-optimal solutions

significantly faster than the default value selection. In particular, for the optimization problems of the

MiniZinc Challenge 2022 [24], on average, the lookahead configuration had a definite integral for the

time vs objective graph 54.7% lower than the default Chuffed configuration.
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1
Introduction

Constraint programming (CP) is a powerful approach for solving a wide range of problems involving

constraints. It deals with the modelling of problems with variables that are subject to constraints, and

solving them by providing a set of assignments to the variables, such that all constraints are satisfied.

Furthermore, for optimization problems, the variables also have to maximize an objective function [27].

One of the main advantages of constraint programming is that it only needs a model of the problem to

work, instead of a tailor-made algorithm, making them extremely versatile and generalizable.

Constraint programming has been applied to a wide range of real-world problems, including

scheduling, planning, resource allocation and configuration, and design problems, for many different

fields, such as bioinformatics, finance, telecommunications, engineering, and transportation [31, 29]. For

example, in scheduling, a model can be created that takes into account a wide range of constraints, such

as resource and personnel availability, and temporal constraints, while having an objective function, like

minimizing costs. The use of such a model can help better clarify what the conditions that need to be

met are, and allows for expandability, as adding additional variables and constraints does not require

modifying other parts of the model. A constraint programming solver can take as an input the said

model and can be used to find optimal, or near-optimal schedules that satisfy all constraints. Therefore,

solving, but also finding near-optimal answers for CP problems as quickly as possible is of great interest

to many companies that rely on CP solvers.

1.1. Background
The need for more efficient CP solvers has led to a race where different solvers constantly improve

year over year [24], with the goal of creating more efficient solvers. In particular, most solvers attempt

to reduce the search space as much as possible and use various heuristics to better guide the solver

through the search space.

Recently, CP has grown closer to propositional satisfiability (SAT), another NP-Hard problem. SAT

problems take as input a propositional formula, which is constructed with boolean variables and basic

logic operations, in particular AND, OR, and NOT. The goal of SAT solvers is to find an assignment of

all variables that make the given propositional formula true.

Lazy Clause Generation (LCG) provides a hybrid of CP-SAT, by converting the CP variables, for

example, integers, into sets of boolean variables and associated clauses. Two state-of-the-art solvers that

utilize such a hybrid CP-SAT approach are Chuffed [8] and OR-Tools [15], the latter having won gold in

the MiniZinc challenge every year since 2013. In addition, many heuristics have been used, such as

variable state independent decaying sum (VSIDS) and Solution Based Phase Saving (SBPS), with the

goal of further improving the performance of the solvers.

1.2. Motivation
Despite many improvements, CP solvers still struggle to find optimal, or near-optimal solutions at a

reasonable time for certain problems, in particular, when compared to heuristic solvers. Figure 1.1

showcases this performance disparity. For the problem of cluster editing, which will be the main focus

1



2 Chapter 1. Introduction

of this research. When attempting to solve the same instance, Chuffed is able to find the optimal solution

of 42 in 56 seconds. In comparison, the heuristic solver finds the same solution in 6 milliseconds.

Figure 1.1: Performance disparity between the Kanpai heuristic algorithm[10] and Chuffed CP solver[8] for the instance of the

cluster editing problem.

This performance disparity can be partially explained by the fact that a heuristic solver is specialized

for a specific problem, and therefore, has additional knowledge of the structure of the problem, and

how to achieve a near-optimal solution. Furthermore, looking at some heuristics used by CP solvers

such as Chuffed, in particular VSIDS and SBPS, these heuristics provide little assistance early on and

only have a significant effect on the solver after finding some solutions and conflicts.

Although approaches exist that utilize heuristic solvers, such as using them for warm start[14], this

only provides an initial solution to the CP solver and still keeps the CP solver separate from the heuristic

solver. Being able to learn what heuristic solvers does differently, and emulating this behaviour to a CP

solver could help decrease the gap between CP and heuristic solvers, especially in the early stages of

computation.

1.3. Research goal
CP-SAT solvers rely on various heuristics to make decisions during branching that will improve the

overall performance of the solver. In particular, the main steps in branching are selecting a variable, and

deciding on a value. The goal of this research is to modify the value selection of the VSIDS branching

heuristic for Chuffed, in an attempt to improve the performance of the solver, particularly early on.

In order to achieve this, the Cluster Editing problem will be used as a case study. The goal of cluster

editing is for a given undirected graph, to find the minimum number of edge edits, which includes edge

addition or removals, that transform the graph into a cluster graph. A cluster graph is a graph where

every connected component forms a clique [3].

Finding the optimal solution for this problem is NP-hard, however, just finding a solution that forms

a cluster graph is trivial. Simply put the nodes in any arrangement of clusters, and record the edits that

need to occur in order to achieve the desired cluster graph. As a result, heuristic algorithms are able to

find a solution for cluster editing relatively quickly, and then attempt to find near-optimal or optimal
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solutions through many different methods [3], like local searching, or using a set of heuristics.

Therefore, the first step of the research will be modifying the Chuffed solver, so that the value

selection will be determined by a heuristic algorithm specialized for solving cluster editing instances.

Two approaches are implemented for this step. The first approach fully solves the problem and returns

the value assigned to the selected variable. This approach is similar to a warm start, but it keeps

providing assistance throughout the entire progress of the solver, instead of just the very start. The

second approach will only perform one step of the heuristic algorithm. This approach should show how

well can the CP solver utilize intermediate solutions by the solver. Based on the previous steps’ findings,

the goal will become to emulate the performance noticed, without the need for the heuristic solver. First,

the new modified solver will be tested on the Cluster editing problem, and continuing, will be tested on

different optimization problems, in order to discover how generalizable are the findings of this research.

1.4. Research questions
Based on the aforementioned research goals, the main research question is How can the behaviour of
specialized heuristic solvers assist constraint programming solvers in optimization problems? This

research question can be divided into the following subquestions:

1. Can Chuffed be combined with a cluster editing heuristic algorithm to improve the performance
of the CP solver on cluster editing instances?

2. How can the performance of the combined algorithm be emulated without the need for the
heuristic algorithm?

3. How does the modified solver perform in different optimization problems?

1.5. Roadmap
The thesis will be organized as follows: In chapter 2, a description of the related work and state-of-the-art

in the relevant topics is provided. Next, chapter 3 provides a preliminary section of the problems

relevant to the research, in particular, cluster editing and constraint programming, detailing the concept

of the problems, as well as relevant notations and step-by-step examples for concepts that will be of

high importance during the research.

Continuing, the following two chapters address the first research sub-question. First, in chapter 4, a

description of how Chuffed can be combined with a heuristic solver is provided. Continuing, in chapter

5, the experimental setup to test the performance of the combined solver on cluster editing is detailed,

along with the results of the experiments and an analysis of the performance and generalizability of

these findings.

Next, the following two chapters address the second and third sub-questions. In particular, an

approach to emulate the performance of the combined algorithm is presented in chapter 6.

Chapter 7 presents the test results of the lookahead approach. First, in section 7.2, the cluster editing

performance of the new approach is tested, using an identical experimental setup as the previous tests,

in order to see how closely this approach emulates the previous approaches, and how it affects the

overall performance of the solver on cluster editing. Sections 7.3 and 7.4 address the last sub-question,

with the lookahead approach being tested using a set of different problems and instances. Lastly, chapter

8 discusses the main conclusion, along with future improvements.





2
Related Work

This chapter introduces the main concepts, along with related work in the fields of constraint program-

ming and cluster editing heuristic solvers.

2.1. Constraint programming
Before even the emergence of modern computers, the general concept of constraint satisfaction and

optimization already existed. The real-world uses for constraint satisfaction and optimization, like

scheduling or routing have always been problems in need of a solution. In fact, backtrack searching,

which is the concept of building a solution iteratively, by branching through a search tree and removing

solutions that cannot satisfy all constraints was used in recreational Mathematics in the nineteenth

century [22], as cited in chapter 2 of the handbook of constraint programming by F. Rossi et al. [27].

In general, the field of constraint programming can be split into two sub-fields. The first field

focuses on the languages used to model constraint problems and the second one has an interest in

constraint-solving algorithms.

2.1.1. Modelling
The core of constraint programming languages is based on variable relations and formal logic. One of

the first uses of constraints in a programming language comes from M.V. Wilkes, where programming

language statements are included, which are not explicitly assignment statements, but relations between

variables that need to be met. Prolog [9] was one of the first declarative programming languages based

on formal logic statements, hence the name PROgramming LOGic. Prolog is therefore considered an

early constraint programming language [27].

Nowadays, one of the state-of-the-art constraint modelling languages is MiniZinc [23], a high-

level modelling language for constraint satisfaction and optimization problems. MiniZinc is solver-

independent, by compiling into a low-level language, FlatZinc, which is understood by a wide range of

solvers. Due to its availability, efficiency and ease of use with any solver, MiniZinc will be used as the

modelling language throughout the research.

2.1.2. CP Solvers
The algorithms focused on solving constraint problems are generally split into two strategies: searching

or branching, and inference or propagation [27].

Searching is the task of navigating through the search tree of a problem, in order to find a solution

satisfying all constraints. Backtracking is the fundamental search method for CP problems, as it

guarantees to find a satisfactory solution if one exists [27]. Backtracking builds up a partial solution, by

selecting values for variables until reaching a solution, or a conflict, at which point, it backtracks to a

previous decision where a different choice can be made, and makes a different decision. This approach

potentially visits all feasible partial solutions and hence guarantees to find any existing satisfying

solutions. This approach is better than brute force, as it checks after each decision if the constraints

are met, instead of doing that only until a full solution is found. Hence, discovering that a partial

5



6 Chapter 2. Related Work

solution cannot satisfy all constraints prunes the subtree of that partial solution, resulting in multiple

full solutions that do not satisfy all constraints being removed from consideration.

Figure 2.1: An example of backtracking. The starting point is shown in blue. The orange nodes represent an intermediate

solution, the red nodes represent a solution with conflicts, and the greed nodes represent a solution satisfying all constraints. The

arrows indicate decisions and backjumps

Figure 2.1 shows an example of backtracking. The solver starts with an empty solution and first

makes a decision that moves its state to an intermediate solution (I1). Continuing, the solver makes a

second decision, which leads to a solution with conflicts (S1). After backtracking, back to I1, the solver

now makes a different decision, which also leads to a solution with conflicts. Backjumping back to the

starting point, the solver now makes a decision that results in a different intermediate solution than I1.

From I2, the solver makes one last decision that results in the solution satisfying all constraints. This

process has explored all possible solutions, before finding a solution.

Propagation is a vital step in CP solvers, reducing the search space of candidate solutions, and

enabling solvers to work more efficiently, especially as the problem size increases. By default, using

backtracking to solve constraint satisfaction problems almost always leads to thrashing behaviours [27,

6]. Thrashing is the repeated exploration of sets of subtree modules that are failing due to the same

assignments and only differ in assignments that are not related to the cause of failure. As the size of the

problem increases, and hence, the size of the search space increases exponentially, the effect of thrashing

in the total runtime also increases exponentially. Propagation can significantly reduce thrashing, by

making implicit constraints explicit, and removing values from the domains of variables that are not

consistent, meaning that these values produce a non-satisfiable solution.

2.1.3. Hybrid CP-SAT approach
Another field of study similar to constraint programming is boolean satisfiability (SAT), which attempts

to satisfy formulas consisting of boolean variables and boolean operators. These two fields of study

have grown increasingly closer, in particular after researchers discovered that CP and SAT instances

can be mapped to each other [30, 7]. Due to SAT solvers being extremely efficient, encoding certain CP

problems as SAT problems could lead to great performance gains.

P.J. Stuckey [28] presents a hybrid CP-SAT approach where CP variables and constraints are mapped

to variables and clauses in an SAT solver. This approach utilized a technique called Lazy Clause

Generation(LCG). For example, an integer variable with a finite domain [𝑙..𝑢] would be represented by

a set of boolean variables like 𝑥 ≤ 𝑑, 𝑙 ≤ 𝑑 < 𝑢 and 𝑥 == 𝑑, 𝑙 ≤ 𝑑 < 𝑢.

The LCG technique combines finite domain propagation of CP solvers with the highly efficient

inference graph of SAT solving that records nogoods path and prevents similar failing parts of the

problem from being explored. Solvers such as Chuffed[8], utilize these techniques in order to create

highly efficient solvers.

2.1.4. CP Heuristics
One of the main ways of improving the branching performance was through the use of heuristics, which

better guide the solver through the search tree. One of the earlier concepts of heuristics was using a

lookahead procedure called forward checking, which employs the most likely to fail principle, which

branches on decisions that are more likely to fail [17]. This heuristic was shown to perform better than

standard backtracking.
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For LCG solvers such as Chuffed, using SAT branching heuristics, such as the Variable State

Independent Decaying Sum (VSIDS) heuristic, can further improve the variable selection[21]. VSIDS

works by assigning an activity score to each variable and increasing said score based on how many

clauses that variable is involved in. During branching, the variable with the highest activity is selected.

Through the use of additive bumping and multiplicative decay, a bias towards variables that have a

greater presence in recently learnt clauses is created. Due to VSIDS being independent of the current

state of assignments, backtracking does not require any changes to the activity score, making this

heuristic incredibly efficient.

Solution-based phase saving (SBPS) emulates local search, by attempting to search through the

neighbourhood around the current best solution [11]. This is done by setting the default polarity for

each variable to the value of the best solution found so far. This approach is useful for optimization

problems, finding more optimal solutions faster than the default value selection for certain problems.

Additional approaches that improve the performance of Chuffed using Machine learning exist, such

as initializing an activity score for VSIDS [12] or predicting unsatisfiable cores [13].

Overall, many techniques have been used to make CP solvers more efficient for both satisfaction and

optimization problems. New techniques are constantly being implemented that further improve the

performance of solvers in certain areas. However, for optimization problems, better guiding the SAT

value selection for Chuffed, especially in the early stages could potentially lead to finding near-optimal

solutions faster.

2.2. Heuristic approaches to Cluster editing
Cluster editing is the problem of finding a set of edge modifications that transform a graph into a cluster

graph. A more formal description of this problem is provided in section 3.1.

Finding a solution to the Cluster editing problem is NP-hard, with a time complexity of 𝑂(2.27
𝑘 ∗ |𝑉 |3)

using a branch and bound strategy [16].

From the PACE 2021 challenge [19], the top 9 heuristic algorithms that competed were all able to

achieve a score above 99/100 on the 200 instances, with sizes (nodes + edges) of up to five million. The

score is calculated by 100 ∗ 𝑠𝑚𝑖𝑛/𝑠, with 𝑠𝑚𝑖𝑛 being the best solution known for a problem, and 𝑠 the

solution produced by the heuristic solver. This indicated that the heuristic solvers were able to find

optimal, or near-optimal solutions for most instances. In particular, the top-scoring solver for both the

exact and heuristic track, KaPoCE [5] was able to achieve a score of 99.9989/100.

The main algorithm used in this research for cluster editing is the Kanpai approach [10], which was

the 5th best solver in the heuristic track of PACE 2021, with a score of 99.9786/100 [19]. This algorithm

uses a bottom-up approach to solving this problem. At first, each node is in its own cluster. Next, the

algorithm iteratively combines nodes into clusters in a greedy fashion. In particular, if connecting two

nodes would decrease the number of nodes, then the two nodes are added to the same cluster. Once

a local minimum is reached, nodes in the same cluster a replaced by super-nodes, and the process

continues. In order to ensure that the program does not terminate after reaching a local minimum

early, it randomly makes sideways decisions if it can not find an improving move. This algorithm is

able to make big reductions in the minimum number of edits in the first few seconds of running, even

from some of the larger instances of the PACE 2021 heuristic track [19]. Due to its simplicity, yet high

performance, this algorithm is a perfect candidate for an attempt to emulate its behaviour with Chuffed.





3
Preliminary

In this chapter, a problem description and notations in relation to cluster editing and constraint

programming, as well as step-by-step examples of the Kanpai cluster editing algorithm and a barebones

CP solver are presented.

3.1. Cluster editing

Figure 3.1: Left: An input graph. Right: A cluster graph is obtained by making two edge modifications in the input graph. The

thick red line is an added edge, and the dashed red line is a removed edge. Figure sourced from PACE 2021 [19].

Cluster editing, also known as correlation clustering, is a problem with many applications in

bioinformatics [4], data mining [1], and psychology [18]. It is a form of graph-based clustering, that

takes as an input a graph 𝐺 = (𝑉, 𝐸) that attempts to find the minimum set of edge modifications, which

includes edge insertions or deletions, that transforms a given graph into a cluster graph, a graph where

every connected component is a complete graph (clique). There are different variations of the cluster

editing problem, with different weights per edge, to represent values such as node similarities [2]. For

this research, the variation of cluster editing used will be the one used for PACE 2021 [19], which uses

graphs with unweighted edges. Figure 3.1 shows an example of cluster editing, with the left graph

representing an example of an input graph, and the right graph showing the optimal solution for cluster

editing for this example.

Unlike other common clustering techniques, cluster editing finds a cluster graph that is the most

similar to the input graph, without requiring the final number of clusters to be provided as input.

Finding an assignment of edge modifications that transforms a graph into a cluster graph can be

done in polynomial time. One example of a non-optimal cluster editing solution is simply removing

all edges. This results in a cluster graph, as each node is not connected to any other node, and hence,

forms a clique by itself. However, finding the set with the minimum number of edge modifications and

proving optimality is NP-Hard [19].

3.1.1. Cluster editing notation
Let 𝐺 be an undirected and unweighted graph. 𝑉𝐺 represents the set of vertices of a graph 𝐺 and 𝐸𝐺

represents the set of edges. {𝑢, 𝑣} ∈ 𝐸𝐺 represents an existing edge in 𝐺 between 𝑢 ∈ 𝑉𝐺 and 𝑣 ∈ 𝑉𝐺.

Two nodes 𝑢, 𝑣 ∈ 𝑉𝐺 are adjacent, or neighbors, if an edge {𝑢, 𝑣} ∈ 𝐸𝐺 between them exists. The

neighbourhood of a node 𝑢 ∈ 𝑉𝐺 is the set of all neighbours of 𝑢 and is denoted as 𝑁𝐺(𝑣). The closed

9
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neighbourhood of a node 𝑢 includes the neighbourhood of the node plus itself, and is defined as such:

𝑁𝐺[𝑢] = 𝑁𝐺(𝑢) ∪ 𝑢
The adjacency matrix of a graph 𝐺 is a [|𝑉𝐺 |, |𝑉𝐺 |]matrix, where each row and column represents

each node, and each element, being 1 or 0 (true or false) represents whether the two nodes are adjacent.

In the following sections, the input graph will be denoted as 𝐺, and the output graph as 𝑔.

3.1.2. Step by step Kanpai algorithm
In this section, a more formal explanation of the Kansai algorithm [10] will be explained, through the

use of an example, along with important concepts of the algorithm, in particular, the super-nodes, which

will be relevant in the following sections.

𝐺 =

©­­­­«
0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

1 0 1 1 0

ª®®®®¬
Figure 3.2: Input graph for the kanpai algorithm.

For this example, the input graph is shown in figure 3.2. This graph has 5 nodes and 8 edges, with

the minimum number of edits being two, achieved by adding an edge between 1 and 4, and 5 and 2,

essentially transforming the graph into a complete graph. Initially, the Kanpai algorithm will start with

each node being in its own cluster, and hence, the number of edits will be 8.

In each iteration, the algorithm will go through each node, and move it to a cluster that reduces the

number of edits the most. This is referred to as the best local move. If no moves exist that improve the

number of edits, the algorithm might randomly perform a sideways move if one exists, a move that

does not change the number of edits.

𝑔 =

©­­­­«
0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

ª®®®®¬
Figure 3.3: An intermediate solution produced by the kanpai algorithm. At this state, any move will be at best a sideways move.

Figure 3.3 shows the potential state of the algorithm after one iteration. In this state, the number of

edits is 4. There are no moves that can improve the number of edits, and at best, only sideways moves

can be made. Let’s say an attempt is made to move edge 1 to the cluster with 3,4 and 5, an edge will

have to be removed between 1 and 2, leading to 4 edits.
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𝑔′ =

(
1 0

0 3

)

Figure 3.4: The algorithm adds the existing clusters into super-nodes.

After not being able to improve the number of edits, the algorithm will add all current nodes into

super-nodes, as shown in figure 3.4. In this state, the previous clusters are treated as nodes. Furthermore,

the graph now acts as a weighted graph, in order to account for the fact that multiple edges are needed

to connect the two super-nodes.

𝑔′ =

(
1 6

6 3

)

Figure 3.5: The final result of the kanpai algorithm, after connecting the two super nodes.

In this iteration, connecting the two super nodes, as shown in figure 3.5, improves the number of

edits to 2. This also happens to be the best solution, although this algorithm does not guarantee to find

the optimal answer.

3.2. Constraint programming
A constraint programming solver takes as an input a model of a problem and attempts to produce a

solution, based on the model’s parameters. A constraint optimization model consists of 4 parts:

• Variables: The main part of a CP model is the set of variables that should be assigned a value.

• Domain: The domain of possible values that the variable can be assigned. Any assignment of

values within the domain of each variable is a candidate solution.

• Constraints: Each constraint is a condition that needs to be satisfied.

• Objective function: Optionally, a model can have an objective function that needs to be maximized

or minimized based on the problem. The goal of the research is to improve the performance of

CP solvers in optimization problems. Therefore, each used model will always have an objective

function.

The goal of a CP solver is to find a solution within the search space of the model, the search space

including all candidate solutions, that satisfies all constraints, and optimizes the objective function. In

general, to achieve this, a typical CP solver roughly performs the following two steps in each iteration:

propagation and branching. Propagation updates the domains of all variables, removing values that

would violate the constraints of the problem. Branching decides which part of the tree to explore next.

Many strategies and heuristics are used to better guide the CP solver during this phase.

For cluster editing, a CP model could be created as such. The variables are the adjacency matrix of

the output cluster graph. Essentially, the edges in the output graph are the variables. The constraints

indicate that if two nodes are connected in the output graph, then they must have the same neighbours,
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i.e. be connected to the exact same nodes, else, they must share no neighbours. Lastly, the objective

function is to minimize the number of edits. For this model, the goal of a CP solver would be to find an

assignment of variables for the adjacency matrix that satisfies the constraint and prove that no other

assignment of the adjacency matrix produces a lower amount of edits.

3.2.1. CP solver steps
For this section, a simplified view of the steps taken by a CP solver, like Chuffed, will be analyzed and

explained. The focus will mainly be on the branching decisions of the solver, while also keeping in mind

how variables are propagated.

Figure 3.6: An example of the main components of a simple constraint programming solver.

Figure 3.6 shows the barebones solver that will be used for this step-by-step example. At first, the

solver propagates all variables, updating their domain to only include values that satisfy the constraints.

Assuming there are no conflicts or a full solution, the solver takes the current state after the propagation,

and branches on a new variable and value. For this example, it is assumed that branching is random.

𝑔 =

©­­­«
0 1 1 0

1 0 0 0

1 0 0 1

0 0 1 0

ª®®®¬
Figure 3.7: Input graph for Chuffed.

A step-by-step showcases how these steps are relevant to cluster editing. Figure 3.7 shows an input

graph with 4 nodes and 3 edges. The optimal solution requires 1 edit, where the edge between 1 and 3

is removed.
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𝐺 =

©­­­«
0 0..1 0..1 0..1

0..1 0 0..1 0..1
0..1 0..1 0 0..1
0..1 0..1 0..1 0

ª®®®¬
Figure 3.8: Initial state of the solver.

At first, the solver will start with all variables empty,as shown in figure 3.8. At this point, the domain

for the number of edits is from 0 to 6. If edge 1, 2 ∈ 𝐸𝑔 is selected as the first variable, and assigned it 1.

After propagation, the domain for the number of edits is updated to 0..5.

𝐺 =

©­­­«
0 1 1 0..1
1 0 1 0..1
1 1 0 0..1

0..1 0..1 0..1 0

ª®®®¬
Figure 3.9: Intermediate state of the solver.

In the second iteration, selecting variable 1, 3 ∈ 𝑔 and assigning 1 will propagate edge 1, 2 ∈ 𝐸𝑔 to 1,

due to the constraints of cluster editing. Next, the number of edits is propagated to 1..4. The resulting

state is shown in figure 3.9. From this point, the solver will at best find a solution with 2 edits first before

finding the optimal solution. This is because if node 4 is connected to the existing cluster of 1, 2 and 3,

then the resulting solution will be 3 edits, whereas if 4 is not added to the cluster, the resulting solution

will be 2. Chuffed will restart the process and reattempt to find a solution, having learned additional

clauses that will assist in finding the optimal solution. However if in step 2, a different decision was

made, in particular, selecting value 0 for edge 1, 3 ∈ 𝑔, the solver would find the optimal solution faster.





4
Hybrid CP-Heuristic solver approach

This chapter will detail the first steps of the main contributions of the research. in particular, the cluster

editing model used, continued by the Chuffed modifications done to integrate the heuristic approach to

cluster editing with the CP solver.

4.1. Cluster editing Constraint model
In this section, the MiniZinc constraint model for cluster editing is presented, which will be used for

testing the performance of the modified chuffed solver.

The model is based on a viewpoint of the adjacency matrix of the output cluster graph 𝑔. As an

input, the model requires the number of nodes 𝑉𝐺, the number of edges in the original graph 𝐸𝐺, and a

list of size |𝐸𝐺 | that contains each edge {𝑢, 𝑣} ∈ 𝐸𝐺. The variables of this model include the adjacency

matrix of the final cluster graph 𝑔. The adjacency matrix is a [|𝑁 |, |𝑁 |]matrix, with each variable being

a Boolean. Next, the objective function is minimizing the number of edits. The main constraint of this

model says that if edge {𝑢, 𝑣} ∈ 𝐸𝑔 exists, then 𝑁𝑔[𝑢] = 𝑁𝑔[𝑣], else, 𝑁𝑔[𝑢] ∩ 𝑁𝑔[𝑣] = ∅. In other words,

this constraint ensures that if two nodes are connected, then they must have the exact same neighbours,

and if they are not connected, they must not share any neighbours.

In order to improve the performance of the model, additional optional constraints that limit the

search space are included. These constraints are based on the lemmas presented in the paper Cluster

Editing with Diamond-free Vertices by D. Rhebergen [26], and rely on the closed neighbourhood of the

original graph. In particular, they ensure the following two properties:

1. If two nodes 𝑢, 𝑣 ∈ 𝑉𝐺 are not adjacent in 𝐺, and |𝑁𝐺(𝑢) ∪ 𝑁𝐺(𝑣)| ≤ 1 then the two nodes will not

share an edge in the final cluster graph.

2. If two nodes 𝑢, 𝑣 ∈ 𝑉𝐺 are not adjacent in 𝐺, 𝑢, 𝑣 ∈ 𝐸𝑔 will exist only if |(𝑁𝑔(𝑢)∩𝑁𝑔(𝑣))∩ (𝑁𝐺(𝑢)∩
𝑁𝐺(𝑣))| ≥ 2.

These constraints significantly reduce the search space for many instances, resulting in significantly

faster performance. For certain instances with many possible optimal solutions, some optimal solutions

are also excluded from the search space, however, there is always at least one solution in the search

space that is optimal.

4.2. Chuffed solver modifications
This section describes the modifications done to the Chuffed solver in order to combine the solver with

the heuristic algorithm.

4.2.1. Value selection modifications
The following two modifications affect the 𝑆𝐴𝑇 :: 𝑏𝑟𝑎𝑛𝑐ℎ() function of Chuffed. In particular, in this

function, if a variable of the adjacency matrix of 𝑔, let’s say 𝑢, 𝑣 ∈ 𝐸𝑔 has been selected, a heuristic

15
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approach is used to determine the value of this variable. In other words, if 𝑢 and 𝑣 belong in the same

cluster, and hence, share an edge in the final cluster graph.

First is a simple heuristic value selection. After selecting variable 𝑢, 𝑣 ∈ 𝐸𝑔 , this heuristic approach

calculates how the number of edits changes if 𝑢 is added to the cluster of 𝑣. If the number of edits

decreases then the value selection returns 𝑡𝑟𝑢𝑒, adding an edge between the two nodes. Essentially, this

performs one step of the Kanpai algorithm. This approach will be referred to as the simple heuristic

value selection.

Continuing to the second approach, during value selection, the Kanpai algorithm solves the problem

and returns the value that variable 𝑢, 𝑣 ∈ 𝐸𝑔 has in the solved state of the heuristic algorithm. This

approach will be referred to as the Kanpai value selection.

For both approaches, the current state of the adjacency matrix of 𝑔 is passed to the heuristic

algorithms. Before starting the computations, the state of the heuristic algorithm copies the assigned

values of the passed variables, in order to reflect the state of the solver. Continuing, it is important

to assume that the state of the assigned variables in the solver will remain the same. Therefore, the

clusters that already exist in the current state of the solver are added into super-nodes, ensuring that the

heuristic algorithm keeps the state of the solver intact at the end of its computation.

4.2.2. Initial activity for VSIDS

Figure 4.1: This graph shows the time against the best solution found on a cluster editing instance, for a solver using 0 initial

activity, and one using 1000 initial activity. Both configurations use the Kanpai value selection

VSIDS starts with the same activity for all variables. As there are many variables that are not part

of the adjacency matrix but propagate the adjacency matrix variables, this resulted in the Chuffed

solver rarely using the heuristic approaches for value selection, leading to no significant performance

changes. As a result, the initial activity for the adjacency matrix variables was increased, in order to

force the solver to use the heuristic approach for value selection, especially in the earlier stages. This has

a significant effect on performance, particularly in finding the best solution earlier, as shown in figure

4.1. Using the Kanpai value selection, a configuration with 0 initial activity is able to find an optimal

solution in 192 seconds, while a configuration with 1000 initial activity for the variables of the adjacency

matrix, 𝑔 reaches the optimal solution in 0.03 seconds.
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4.2.3. Warm start
During early testing, the modified solvers, and in particular, the Kanpai value selection was able to find

the optimal solution almost immediately and spent the rest of the solve time simply proving optimality.

Therefore, another approach is designed. This approach starts by using the Kanpai approach, but

during variable selection, it only picks variables of the adjacency matrix first. When a solution is found

the solver reverts the normal variable and value selection.

4.2.4. Solution based phase saving [11]
An additional version of the two heuristic value selection algorithms is also implemented that uses an

approach similar to solution-based phase saving (SBPS) [11], which uses the best solution found so far

during value selection.

This approach alongside the current state of the adjacency matrix of 𝑔, also passes the adjacency

matrix of 𝑔 of the best solution found so far. After copying the current state of the adjacency matrix of 𝑔
and creating super nodes, the heuristic algorithm copies the adjacency matrix of the best solution found

so far by Chuffed, while ensuring that no conflicts are created. However, these new clusters are not

added into super-nodes, meaning that the solver does not have to keep the state of these clusters intact.

For variables not in the adjacency matrix of 𝑔, SBPS is used.

The following chapter will test the performance of these modifications. In particular, the metrics

used will represent the to total time taken to fully solve cluster editing instances and the quality of

solutions produced at each time point.





5
Initial Experimental Results

In this chapter, the experimental setup is described. Continuing, the initial results are presented,

comparing the performance of Chuffed using a cluster editing heuristic solver for value selection. First,

the data collected during the experiment are displayed, and next, an analysis detailing the performance

of each configuration, as well as how their benefits can be generalized is detailed. The full results are

shown in appendix A.

5.1. Experimental Setup
This section describes the overall setup used through the experimental process, including the selection

of instances, the changes between solver configurations, and the metrics used to evaluate performance.

Overall, 20 different graph instances were used to compare the performance of 8 different solver

configurations. The model presented in section 4.1 was used, in combination with MiniZinc Python to

run the tests.

5.1.1. Selection of Instances
For the selection of instances, in order to better represent the overall performance of the new modifications

for cluster editing, a wide range of instances had to be selected, with different sizes. Therefore 20

different graphs were used, 10 graphs that are solvable by the default chuffed solver in under 10 minutes,

and 10 larger graphs with a timeout of 10 minutes. The 20 graphs are either taken directly from instances

of graphs used for the exact track of PACE 2021 or generated based on the tools used to generate said

graphs [19].

For the small graphs, it was deemed important to select instances that are large enough for any

differences between runs to be because of the different configurations. Furthermore, it was also necessary

to select instances that are solvable multiple times in a reasonable amount of time. Therefore, instances

that are solvable in between 30 seconds to 10 minutes by default chuffed were selected.

In total 10 different small instances were used. In particular, the instances exact003 and exact005

were used from pace2021 [19]. The rest of the instances were generated based on the tools provided

by pace2021 [19], section 3.2, which transform weighted graphs into unweighted ones. In particular,

4 instances were generated using the real-world biological dataset [20]. Another 4 instances were

generated using randomly created action sequences. Table 5.1, presents details about the 10 small

graphs.

Continuing, 10 additional larger instances of increasing size were used. The goal of these instances

is to compare the early performance of the different Chuffed configurations and observe how each

configuration scales as the size of the graph increases. The graphs were all taken from the exact track of

pace 2021[19]. For each large graph, a time limit of 10 minutes is set. Table 5.2 presents the large graphs

used.

19
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Table 5.1: Small graphs

Graph Nodes Edges Optimal
exact003 20 73 42

exact005 20 97 46

instance_nr_11-csv-thres-0-40 22 141 39

instance_nr_313-csv-thres-0-45 20 107 42

instance_nr_1243-csv-thres-0-50 26 97 46

instance_nr_1679-csv-thres-0-45 24 154 50

pace_actionseq_21_10 21 69 44

pace_actionseq_22_2 22 133 33

pace_actionseq_23_10 23 79 41

pace_actionseq_26_2 26 195 41

Table 5.2: large graphs

Graph Nodes Edges Optimal
exact015 40 360 164

exact020 50 707 101

exact025 60 1053 439

exact030 70 1522 277

exact035 80 1831 385

exact040 90 2182 492

exact045 100 1981 1085

exact050 113 3848 1440

exact055 120 3723 1410

exact060 124 2288 1491

5.1.2. Solver configurations
Based on the modifications discussed in chapter 4, 8 different value selection configurations are

compared. In particular, those configurations are:

1. Default chuffed: Chuffed without any modifications. This will be used as a baseline, in order to

judge the performance of the algorithms.

2. Chuffed with SBPS: This version will be using SBPS, as described by E. Demirović et al.[11].

3. Simple heuristic value selection: This version uses the simple heuristic for value selection.

4. Simple heuristic value selection with SBPS: This version uses the simple heuristic for value

selection, in combination with SBPS as described in section 4.2.4.

5. Kanpai value selection: This version uses Kanpai for value selection.

6. Kanpai value selection with SBPS: This version uses Kanpai for value selection, in combination

with SBPS as described in section 4.2.4.

7. Warm start: This version uses warm start, as described in section 4.2.3.

8. Warm start with SBPS: This version uses warm start, in combination with SBPS, as described by

E. Demirović et al.[11].

The above configurations are based on version 0.10.4 of Chuffed[8]. Since all these value selection

configurations affect the VSIDS branching, VSIDS will be constantly enabled for all configurations, in

order to better observe any differences the value selection heuristics might have. Furthermore, for the

4 value selection configurations using kanpai or the simple heuristic value selection (3-6), the initial

activity for the variables that are part of the adjacency matrix is set to 1000. All other solver parameters

are not affected between configurations and are set to their default values, in order to ensure that any

difference observed between runs is caused by the different configurations.
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5.1.3. Measurements
In this experiment, the following variables will be recorded for all tests using the 10 small graphs:

1. Nodes: The total number of search space nodes explored by Chuffed during solving. This

metric will show any performance difference between configurations, without accounting for any

additional overhead caused by different value selection configurations.

2. Solve time: The time it takes for Chuffed to fully solve a problem, hence the time it takes to find

the optimal solution and prove optimality. This metric will show which configurations are overall

the fastest at fully solving a problem.

3. Optimal time: The time it takes for Chuffed to find the optimal solution, without proving

optimality. This will always be shorter than the solve time.

From these metrics, the expected outcome is to mainly see an improvement in the time taken to find

the optimal answer using the configurations with heuristic value selection, as the heuristic algorithm

is able to find the optimal answer almost instantly for most of these graphs. However, there is also

expected to be a small positive effect on the number of nodes, due to the heuristic approaches having

an effect on generating new clauses and as such, adding a stricter upper bound. However, due to the

additional overhead of the algorithms, the effect on solve time should be smaller, or there could even be

an overall increase in the solve time.

For the 10 large graphs, the best solution found by Chuffed by the end of each test will be recorded.

This metric will show how each configuration affects the solution quality after the same amount of time.

This scenario should present the main benefit for the heuristic approach, as the heuristic algorithm is

able to find near-optimal solutions almost instantly for even larger graphs, while the CP solver is only

able to find solutions with a high number of edits as the complexity of the problem increases.

Lastly, for all tests, the graph showing the time vs the number of edits will be generated. An example

of such a graph is shown in figure 1.1 and figure 4.1. Before a solver is able to find a solution, it is

assumed that the solution is the number of edges. Furthermore, the 0-point of the x-axis is the optimal

solution. This allows this metric to better represent how quickly a solver is able to find near-optimal or

optimal solutions. A good solver configuration should be able to find near-optimal or optimal solutions

early on. In order to compare how each configuration ranks in this aspect, the integral of this graph

will be calculated. Due to the behaviour of the heuristic algorithm being able to find near-optimal or

optimal solutions significantly faster than the CP solver, we can expect the configurations utilizing the

heuristic value selection to have the most significant advantage in this metric.

In order to better compare the results between all the different instances, all the previously mentioned

metrics, except for the best objective found, are normalized to the result of default chuffed. Therefore,

for example, a result of 100% would indicate the same performance as the default configuration. For

mean calculation of the normalized results, the geometric mean is preferred over the arithmetic mean,

as it provides correct results when normalizing in relation to other results [25]. The formula of the

geometric mean is as follows: (
𝑛∏
𝑖=1

𝑥𝑖

) 1

𝑛

For averaging the objective, instead of normalizing in comparison to the default configuration

solution, instead, a lower and upper bound is used for each instance, with the lower bound being 0 and

the upper bound being 1. The lower bound is the optimal number of edits, which is calculated using the

KaPoCE solver [5], the number one ranking solver from PACE 2021 for both the heuristic and exact track

[19]. the upper bound is the number of edges. The objective normalization is also used for the y-axis of

the integral before the main normalization, as it sets the 0-point of the y-axis to the optimal solution and

the default value when no solution has been found to 1.

Similar to calculating the integral, the lower bound is the optimal solution, and the upper bound is

the number of edges. The arithmetic mean is preferred, as the results are not normalized in relation to

another solution, but an upper and lower bound, which surrounds the domain of possible answers. The

main reason for the different normalization of the objective is that since some of the results could be 0,

using the geometric mean should be avoided, as the geometric mean multiplies the results instead of

adding them.
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Last, the t-score and the p-value of a statistical significance test for each configuration will be recorded.

The null hypothesis is that a configuration follows the same distribution as the default configuration.

The significance level will be at 𝑝 < 5%.

5.2. Results
The results presented here are averaged over the 20 different graphs for the integral, over the 10 smaller

graphs for the number of total nodes, solve time, and time taken to find the optimal answer, and over

the 10 larger graphs for the best value found for the objective. The plots present the boxplot of the

results, alongside the geometric or arithmetic mean for the normalized results of each value selection

configuration.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 2.385518 0.480567 1.244321 2.255587 3.447963 4.696202 2.516545 0.021553

Simple heuristic 1.040712 0.29784 0.790282 1.209851 1.46837 1.917982 0.225667 0.824003

Simple heuristic with SBPS 1.294866 0.595094 1.00839 1.226919 1.880836 2.891944 1.69725 0.106872

Kanpai 1.213998 0.73275 0.903951 1.025249 1.409997 1.748143 1.327822 0.200831

Kanpai with SBPS 1.378026 0.929949 1.206769 1.363693 1.595798 1.678569 3.696709 0.001651

Warm start 1.050639 0.581071 0.634487 1.049977 1.481506 2.595636 0.300204 0.767461

Warm start with SBPS 1.067259 0.510918 0.72846 1.129032 1.600441 2.071551 0.423892 0.676667

Figure 5.1: Average solve time for each configuration.

Figure 5.1 presents the average normalized solve time taken for each configuration. That is the time

taken to find and prove the optimal solution. A value above 100% indicates an increased solve time over

the default configuration, while a value under 100% indicates that the configuration had a faster solve

time over the default configuration.

From these results, we observe that SBPS with the current solver configuration does not perform

well in these instances, with a mean solve time of 238.55% of the solve time of the default Chuffed

results. This could potentially be caused due to SBPS getting stuck in local minima.

For the configurations relying on heuristic value selection, there is a slight increase in solve time. In

particular, it is observed that the simple heuristic has the solve time closest to the default configuration,
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having a solve time of 104.07% of the solve time of the default configuration. The other configurations,

especially the ones that are relying on SBPS are even slower.

Looking at the p-value, for most configurations, the null hypothesis cannot be rejected, and hence,

there is not a significant enough change from the default configuration. However, with a p-value of

0.02 for the default configuration with SBPS, and 0.001 for the Kanpai with SBPS, which are below the

significance level of 0.05, the null hypothesis can be rejected. In particular, these 2 configurations have

significant evidence to state that their solve time is worse than the default configuration.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 2.045148 0.499285 1.173432 1.840574 2.529081 3.770233 2.092815 0.0508

Simple heuristic 0.747186 0.233207 0.589325 0.893452 0.99955 1.235428 -1.82643 0.084419

Simple heuristic with SBPS 0.885931 0.441158 0.70788 0.889867 1.108339 1.332441 -0.88356 0.388585

Kanpai 0.836554 0.541408 0.578376 0.839778 1.022355 1.220068 -1.35249 0.192968

Kanpai with SBPS 0.95231 0.607011 0.763386 1.02822 1.210889 1.316946 -0.53212 0.601149

Warm start 1.035598 0.563719 0.647511 1.022958 1.528113 2.532 0.215584 0.831736

Warm start with SBPS 0.957103 0.562359 0.677889 0.924078 1.377928 1.67752 -0.3351 0.741426

Figure 5.2: Average nodes for each configuration.

Next, figure 5.2 shows the nodes created during searching in Chuffed. Unlike figure 5.1, this

graph appears to show a slight improvement for most of the heuristic value selection configurations.

Although the number of nodes is highly correlated to the solve time, as they represent the iterations

taken on an instance, the additional overhead of the heuristic value selection configurations contributes

to an increased computation time per node, and hence, a higher solve time. Despite the apparent

improvements, for all heuristic value selection configurations, there is not enough evidence to reject the

null hypothesis.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 2.757653 0.271369 1.111295 2.561506 8.383388 11.05695 2.154184 0.045023

Simple heuristic 0.05062 0.000233 0.002914 0.237547 1.70658 1.727959 -2.46653 0.023912

Simple heuristic with SBPS 0.048017 0.000233 0.002873 0.177154 2.260137 3.51126 -2.51456 0.021642

Kanpai 0.011571 0.000243 0.000562 0.002027 0.387268 0.460839 -3.58082 0.002136

Kanpai with SBPS 0.008498 0.000243 0.000443 0.0082 0.169554 0.217301 -4.26861 0.000462

Warm start 0.082939 0.000254 0.000643 1.812864 2.65082 4.599752 -1.73705 0.09946

Warm start with SBPS 0.004538 0.000209 0.000407 0.000901 0.154549 0.205195 -5.01515 8.98E-05

Figure 5.3: Average optimal time for each configuration.

Continuing, figure 5.3 shows the time taken by the solver to find the optimal solution. Unlike the

solve time, this metric does not count the time taken to prove optimality.

Since the heuristic is able to find the optimal answer almost instantly, in comparison to Chuffed, it is

expected for the optimal answer to similarly be found extremely fast when using the Kanpai approach

for value selection. The results using the Kanpai results have an optimal time with a mean of 1.16%,

indicating that the answer compared to the default Chuffed configruation was found almost instantly.

Furthermore, the other configurations using a heuristic value selection also perform significantly better,

with the simple heuristic having a mean of 5.06%, and the warm start having a mean of 8.29%. Notably

combing the heuristic approaches with SBPS appears to have a mostly positive impact on the final

results, most apparent with the warm start with SBPS configuration, which achieved the lowest overall

mean of 0.45%.

For the optimal time, there is enough evidence to reject the null hypothesis for all configurations

with high confidence. Therefore, also considering the t-value it can be stated that all heuristic value

selection configurations result in a decrease of the total solve time.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default 0.568313 0.193106 0.425003 0.526528 0.709114 1.052455 0 1

Default with SBPS 0.648187 0.175249 0.422239 0.640206 0.692708 1.006274 0.606735 0.551604

Simple heuristic 0.210083 0.004016 0.10578 0.174122 0.333707 0.410289 -4.0064 0.000828

Simple heuristic with SBPS 0.210083 0.004016 0.10578 0.174122 0.333707 0.410289 -4.0064 0.000828

Kanpai 0.000125 0 0 0 0 0 -7.35483 7.94E-07

Kanpai with SBPS 0.000125 0 0 0 0 0 -7.35483 7.94E-07

Warm start 0.007489 0 0 0 0.003827 0.007528 -7.23667 9.91E-07

Warm start with SBPS 0.006979 0 0 0 0 0 -7.24293 9.80E-07

Figure 5.4: Average objective after 10 minutes for each configuration.

Moving to the results from the large graphs, figure 5.4 presents the normalized number of edits found.

In this scenario, The approaches utilizing Kanpai are able to find near-optimal or optimal solutions, with

all four approaches utilizing the full Kanpai algorithm achieving a median of 0, indicating that in more

than half the graphs, they were able to find the optimal solution. In particular, warm start was able to

find the optimal solution for 7 out of the 10 instances, while warm start with SBPS and Kanpai were able

to find the optimal solution for 8 out of the 10 instances. Last, Kanpai with SBPS was able to find the

optimal solution in 9 out of the 10 instances. In comparison, the other configurations did not able to find

the optimal solution for any of the large instances. For these 4 configurations, the p-value is lower than

10
−6

for all of them, indicating that the null hypothesis can be rejected with extremely high confidence.

From these results, the limitations of the simple heuristic, in comparison to the full Kanpai value

selection approach become more clear. Nonetheless, the simple heuristic is still able to find significantly

better solutions when compared to the default configuration, with a mean of 0.21, in comparison

to the mean of the default configuration of 0.57. Taking into account the p-value of 0.0082, there is

enough evidence to reject the null hypothesis, and hence prove that even a simple approach to heuristic

assistance in value selection can have great benefits.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 2.452597 0.464468 0.95999 1.284535 3.848816 3.848816 2.413331 0.020737

Simple heuristic 0.163475 0.00312 0.026534 0.210655 0.636215 0.858832 -3.75844 0.000574

Simple heuristic with SBPS 0.15704 0.00312 0.025785 0.210675 0.560174 0.56202 -3.7919 0.000521

Kanpai 0.01891 0.000827 0.003871 0.008653 0.057491 0.075826 -8.06616 9.33E-10

Kanpai with SBPS 0.016676 0.000852 0.003625 0.008646 0.051646 0.07634 -8.86974 8.57E-11

Warm start 0.045558 0.000912 0.005654 0.011026 0.380108 0.732328 -4.86532 2.02E-05

Warm start with SBPS 0.015202 0.000648 0.003517 0.008086 0.060682 0.118091 -8.86472 8.70E-11

Figure 5.5: Average integral value for each configuration.

The last metric presented in figure 5.5 shows the normalized to default Chuffed results of the definite

integral of the graph plotting the number of edits vs time, for all 20 graphs. These results encapsulate

some of the information presented in figure 5.3 and 5.4.

For all configurations, enough evidence exist to reject the null hypothesis. In particular, due to the

increased sample size of the integral results, using all 20 graphs, the null hypothesis can be rejected

with higher confidence for each configuration, when compared to the results for the optimal time and

the best objective found after 10 minutes.

Due to the Kanpai approach being able to find the optimal solution extremely fast even for larger

problems, the definite integral, hence the area under the graph has a mean of 1.89% of the area of default

Chuffed. Nonetheless, the simple heuristic approaches also have a significant effect on the integral,

recording a value of 16.35% and 15.70% for the versions without and with SBPS respectively.

Overall, for the 6 value selection configurations assisted by a heuristic algorithm, not enough

evidence exist to suggest that they have an effect on the overall solve time of the solver. However, they

do have, with above 95% confidence, a significant positive impact when it comes to finding near-optimal

solutions early on, as shown in the previous results.



5.3. Comparing performance differences 27

5.3. Comparing performance differences
In this section, the performance of each configuration will be discussed. In particular, the advantages

and drawbacks of each configuration will be presented, and next, how the findings of these results can

be generalized to other problems.

5.3.1. Simple heuristic value selection
The simple heuristic value selection, if the main goal is to get good solutions early on, performs in

between the default implementation and the approaches utilizing Kanpai. This approach, especially in

comparison to the Kanpai approach is more greedy, looking only one move forward. However, it still

provides great guidance to the CP solver that assists in finding good solutions faster.

The main benefit of this approach is that it can be more easily generalizable. It shows that at least for

the cluster editing problem, using the same simple greedy heuristics used by heuristic algorithms can

lead to finding good and optimal solutions faster, and also prove optimality faster.

In particular, This approach to value selection is also similar to the following lookahead process.

Try selecting both possible values for a variable and then propagate the rest of the variables for both

selected values. Continuing, compare how the objective function changes, and select the value that

increases the least the lower bound of the objective function in the case we want to minimize. This is

an approach that can be generalized to any optimization problem, and as a result, would not require

combining the solver with specialized code.

For example, an example problem has a set of variables 𝑉 and an objective function 𝑓 with domain

𝑙𝑏..𝑢𝑏 that needs to be minimized. After selecting a boolean variable 𝑥 ∈ 𝑉 , first, false is prematurely

selected for 𝑥 and the other variables and the objective function are propagated. After which, let’s

say the domain of 𝑓 becomes 𝑙𝑏 + 2..𝑢𝑏. Next prematurely selecting true for 𝑥, after propagation, the

domain of 𝑓 becomes 𝑙𝑏 + 1..𝑢𝑏 − 1. In this scenario, selecting true for 𝑥 results in a domain for 𝑓 where

the lower bound is lower than if selecting false. Hence, this approach would ultimately select true.

5.3.2. Kanpai value selection
Using the Kanpai value selection allowed the solver to find in most cases the optimal solution significantly

faster. One potential flaw of this solver is additional time overhead. Although the number of iterations

is limited when using the Kanpai approach, due to having to still fully solve the graph heuristically,

instead of only performing one step in the simple heuristic value selection, there is a greater time

overhead, as a result, slowing down the performance of the algorithm.

The Kanpai value selection is furthermore not easily generalizable to other problems. For the

simple heuristic value selection, a fully generalizable method, without needing modifications to the

solver between problems could be created. This approach does not provide any knowledge that can

be generalized, other than combining heuristic solvers with Chuffed could improve performance.

Furthermore, since most of the performance benefits of this approach come mostly from the early stages

of computation, using the heuristic result as warm start with solvers that support such an option allows

for a similar performance benefit without needing to modify the solver.

5.3.3. Warm Start
The warm start implementation is able to find a solution on average faster than default chuffed, however,

it still appears to be slower in some cases when compared to the other approaches using heuristic value

selection. One reason for this is that with a warm start, the optimal solution might not be found at the

first step, resulting in the algorithm having to take extra steps to find the optimal solution without any

heuristic assistance.

SBPS appears to have a positive effect on warm start. Using SBPS with default Chuffed, Chuffed

would often find solutions with a high number of edits first, and SBPS would only be able to find

local minima around these high solutions. Warm start instead provides an initial solution closer to the

optimal answer, hence, the effect of SBPS is more significant, being able to better guide the solver toward

the optimal solution.

This approach is more generalizable than the Kanpai approach. Many solvers allow for a warm start

input that is used in a similar way, meaning that no solver modification is required. Other research has

also shown this approach to have significant improvements in performance for other problems [14].
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5.3.4. SBPS with heuristic value selection
When using SBPS with the non-warm start heuristic value selection, as introduced in section 4.2.4,

there are at most only small performance advantages, especially when compared with the performance

advantage SBPS offers to warm start. Similar to the default SBPS configuration, it is possible that the

solver is getting stuck in local minima. Furthermore, the heuristic solver has to determine how to deal

with conflicts between the current state and the best solution found so far, and by default, it ignores

the edges from the best solution that cause conflicts, leading to a resulting interpretation of the graph

inside the heuristic solver that only lightly resembles the previous best solution in later stages.

5.4. Generalizing findings
Overall, using a heuristic solver for value selection has an insignificant effect on the total solve time.

However, this approach benefits more early on, as it allows the CP solver to emulate the performance of

the heuristic solver, by finding better solutions earlier.

A way of using lookahead propagations could potentially emulate the performance of the simple

heuristic value selection, generalizing this approach. From these results, it is also clear that the heuristic

algorithm value selection approach provides its main benefits before finding the optimal solution.

Therefore, a way to stop the solver earlier would be beneficial.
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Implementing a generalizable

approach

Based on the results of chapter 5, the main takeaways are that for a simple heuristic approach like

Kanpai, simply performing one step of the iteration instead of the entire algorithm is able to provide

significant performance improvements. Furthermore, from the warm start results, it is clear that the

major benefits of this approach are caused by the early steps of the iterations. However, simply stopping

after a solution that satisfies the constraints does not guarantee that a near-optimal solution has been

found. Therefore, based on this information, a new approach is developed that should be able to

emulate these findings, without the need for the cluster editing algorithm, and therefore, ideally be

generalizable to other problems. This chapter discusses this new lookahead approach, starting with the

main concept of the lookahead value selection, and continuing with additions to the algorithm that

attempt to address certain edge cases and improve performance.

6.1. Lookahead value selection
Based on the simple heuristic value selection, a generalized algorithm can be created that in theory

should make similar decisions. The simple heuristic value selection takes as an input the variable of

one of the edges of the adjacency matrix 𝑔, and the current state of the matrix, and calculates how

the number of edits changes based on if the boolean variable is true or false, while ensuring that all

constraints are satisfied, before returning an answer. In Chuffed, propagation updates the domain of

all variables, including the optimization function, through simplifying clauses after a value has been

assigned. This means that after each propagation, the domain for the possible values the optimization

function can now take is updated, becoming more strict. Therefore, the simple heuristic should be

similar to essentially propagating both possible values for a variable, before returning a final value that

has a better domain for the optimization function. This is the process that the lookahead approach

attempts to do.

The core process of the lookahead approach is shown in figure 6.1. After VSIDS selects an SAT

variable, first, a lookahead propagation is performed for one possible value for the variable, and the

domain of the optimization function after the lookahead propagation is recorded, if there are no

conflicts. Next, similarly, the lookahead propagation for the other possible value is performed, and

again, assuming no conflicts, the domain of the optimization function is recorded. After both lookahead

propagations are performed, the recorded optimization function domains for the two possible values

are compared. Finally, the value that has the domain that has a more optimal value is ultimately selected.

For example in cluster editing, since it is a minimization problem, the value selected is the value that

has the lower lowest bound for the domain of the optimization function.

In the case of a tie, the value that results in the smaller domain for the optimal value is selected.

This is based on the fail first strategy [17]. If one of the lookaheads ends in a conflict, the lookahead

performs an SAT analysis of the conflict and selects the other value. This allows the solver to quickly

learn additional clauses and nogoods. If a tie has not been resolved, the value is selected based on the

default behaviour of Chuffed.

29
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Figure 6.1: An example of the main components of the lookahead constraint programming solver.

The lookahead propagation performs the following steps. It takes as input the selected variable

and the candidate value, and first, create a temporary new decision level. Then, it updates the value

of the selected variable and enqueues the updated clauses for propagation. After fully propagating,

the updated optimization function domain is recorded, and if there has been a conflict, a sat analysis

is performed. After, a backjump is performed to the previous decision level, essentially undoing all

changes. Last, the recorded domain, and if there has been a conflict is returned. Algorithm 1 shows the

pseudocode of this function.

Algorithm 1 Lookahead Propagation

function lookaheadPropagate(variable, value)

newDecisionLevel

𝑎𝑠𝑠𝑖𝑔𝑛[𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒] ← 𝑣𝑎𝑙𝑢𝑒
sat.enqueue(variable, value)

propagate

𝑑𝑜𝑚𝑎𝑖𝑛 ← 𝑜𝑝𝑡𝑉𝑎𝑙.𝑑𝑜𝑚𝑎𝑖𝑛
𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← 𝑠𝑎𝑡.𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡
if 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 then

sat.analyze

end if
backjump(previousDecisionLevel)

return 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡
end function
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6.2. Lookahead approach additions
Now that the main core of the lookahead approach has been designed, further additions are made to

the algorithm, in order to improve performance in specific scenarios. These improvements include a

slightly different variable selection when many variables have the same activity score, preferring full

solutions, even if the domain could be further improved, a way to decrease unnecessary lookahead

propagations, and fully stopping lookaheads after a certain amount of conflicts.

First, from early testing, it was noted that the algorithm would often repeatedly pick SAT variables

generated from the same integer variable, and iterate toward one direction of its domain. One notable

example of the cluster editing problem was the algorithm selecting SAT variables generated for the

number of edits, and simply selecting values that would slowly decrease the upper bound of the domain

of edits. This led to a significant slowdown. Therefore, in order to avoid such a scenario, when multiple

variables have the same activity score, boolean variables are prioritized. As the solver starts assigning

different activity scores to each variable the effect of this issue diminishes.

Continuing, in order to produce solutions faster, when one of the two candidate values produces a

fixed value for the optimization function, that value is preferred. In case both values lead to a solution,

the more optimal solution is preferred. This allows the solver to produce solutions more often and

earlier.

The next improvement reduces the number of lookahead propagations in case of conflicts. Based on

the current implementation, if one value results in a conflict then there is no need to perform lookahead

for both values. Therefore, by always starting the lookahead propagation with the non-default value, if

there is a conflict after the propagation, then the default value can be selected without the need for

second a lookahead propagation. Based on these additions, algorithm 2 shows the full branch function

for the lookahead approach.

Algorithm 2 Lookahead Branch

function lookaheadBranch

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← variables tied for the highest activity score

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← an unassigned boolean variable from candidates if possible

𝑣𝑎𝑙𝑢𝑒 ← default value for 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑑𝑜𝑚𝑎𝑖𝑛0 , 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡0 ← lookaheadPropagate(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 , !𝑣𝑎𝑙𝑢𝑒)
if 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡0 then

return 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← 𝑣𝑎𝑙𝑢𝑒
end if
𝑑𝑜𝑚𝑎𝑖𝑛1 , 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡1 ← lookaheadPropagate(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 , 𝑣𝑎𝑙𝑢𝑒)
if 𝑑𝑜𝑚𝑎𝑖𝑛0 has a more optimal value than 𝑑𝑜𝑚𝑎𝑖𝑛1 𝑜𝑟 (𝑑𝑜𝑚𝑎𝑖𝑛0 most optimal solution is the same

as 𝑑𝑜𝑚𝑎𝑖𝑛1 𝑎𝑛𝑑 |𝑑𝑜𝑚𝑎𝑖𝑛0 | < |𝑑𝑜𝑚𝑎𝑖𝑛1 |) then
return 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ←!𝑣𝑎𝑙𝑢𝑒

end if
return 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← 𝑣𝑎𝑙𝑢𝑒

end function

Last, after finding the optimal, or near-optimal solution, the utility of the lookahead approach

diminishes, while the additional overhead of the lookahead propagations makes the algorithm signifi-

cantly slower. Based on testing on the 20 cluster editing graphs, approximately 40% of the total solve

time is spent on lookahead propagation, where a significant number of that time is after the solver

has found the best solution. Based on the previous tests it was shown that the warm-start approach

performs similarly to the heuristic value selection approaches. However, stopping only after finding

the first solution would not be ideal, as there is a high chance the solution is still far from optimal,

especially with a more greedy and generalizable approach. Therefore, it was decided to use the number

of conflicts caused after finding at least a solution as a stopping criterion for the lookahead approach.

This is because after finding a near-optimal or optimal solution, the chance for a conflict to occur after a

decision increases, due to the stricter domain bounds.

The code for Chuffed with the lookahead approach can be found in the following repository:

https://github.com/AZoumis/chuffed

https://github.com/AZoumis/chuffed
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Lookahead Results

In this chapter, first, the experimental setup for the lookahead configuration is explained, followed by

the results of the lookahead approach on cluster editing, being presented and compared to the results

from chapter 5. Continuing, the generalized results of the MiniZinc challenge [24] will be presented,

and next, the results for individual problems of the MiniZinc challenge will be discussed. Lastly, an

analysis of the performance of the lookahead approach will be made, where the main advantages and

disadvantages of the algorithm will be discussed.

A table of the full results for cluster editing can be found in appendix A, and the results for the

MiniZinc challenge can be found in appendix B.

7.1. Experimental Setup
To test the performance of the lookahead approach on cluster editing, the experimental setup from

section 5.1 will be used, with the addition of lookahead and lookahead with SBPS. The lookahead

stopping criterion is set at 100,000 conflicts. In order to better understand the behaviour of the lookahead

approach, the value selection of default chuffed, the lookahead approach, the simple heuristic, and

Kanpai value selection at the first decision level for each of the adjacency matrix variables will be

compared.

To test the generalized performance of the lookahead approach, the MiniZinc challenge 2022 [24]

optimization models and instances will be used with the same experimental setup as the cluster editing

experiments. In total, there are 19 optimization problems, with 95 instances. In the case of the MiniZinc

challenge instances, the solver configurations utilizing the cluster editing solver will not be used, leaving

four different configurations for this setup, in particular:

1. Default Chuffed

2. Chuffed with SBPS

3. Lookahead

4. Lookahead with SBPS

Furthermore, for all problems in the MiniZinc challenge, a time limit of 10 minutes is added. The

same measurements as the cluster editing experiment will be recorded, with the exception of the optimal

value and the number of nodes, since there is no guarantee that the optimal value will be found and

that the solver will terminate. When a configuration does not terminate within the time limit, the solve

time is set to 10 minutes. For the integral and objective, since the minimum and maximum bounds are

unknown, instead, the best and worst values found for that instance in all runs will be used instead. In

particular, for the worst values, all intermediate full solutions will be considered, not just the final ones.

For consistency between minimization and maximization problems, all measurements are converted

so lower values indicate a better solution. In case a solution has not been found at a point in time, or

by the end of the 10 minutes, the objective is assumed to be twice the range between the lower and

upper bound. Therefore, for the objective, if a configuration did not find a single solution satisfying all
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constraints, the normalized objective will be 2. Last, an additional measurement of how many instances

each configuration is able to fully solve or find a solution for will be recorded.

7.2. Cluster editing results
The first value selection comparison compares the value selection for all the variables of the adjacency

matrix 𝑔, selected by the default, lookahead, simple heuristic, and Kanpai value selection. More

specifically, these results show how similar the value selection would be after the first propagation

between the four different configurations.

Default Lookahead Simple heuristic Kanpai
Default 100% 46.683365 % 44.173373 % 56.795098 %

Lookahead 46.683365 % 100% 97.490009 % 80.052239 %

Simple heuristic 44.173373 % 97.490009 % 100% 79.087293 %

Kanpai 56.795098 % 80.052239 % 79.087293 % 100%

Table 7.1: Initial value selection comparison between configurations.

Table 7.1 shows the results from the initial value selection comparison between configurations. These

results first show that the value selection initially for default Chuffed is around 50% similar to all other

value selection techniques. This is because the default value selection does not have any understanding

of the structure of the problem. Hence, since there are only two possible values a boolean variable can

take, a random value selection will be 50% similar to another value selection, assuming both values are

picked roughly with the same rate.

Continuing, the lookahead approach has an extremely high similarity with the simple heuristic,

at 97.49%. This measure, therefore, aligns with the claim that the lookahead approach emulates the

simple heuristic. Continuing both the simple heuristic and the lookahead approach have around an 80%

similarity with the Kanpai approach. The more greedy approach implemented by the lookahead and

simple heuristic lead to these two approaches not being as accurate as the Kanpai approach, however,

they are still able to better emulate the value selection of the full Kanpai approach in comparison to

default Chuffed.

Based on these results, the attempt to emulate the value selection of the simple heuristic appears to

be successful, with the lookahead approach having a largely similar behaviour to the simple heuristic.

Nonetheless, these results are not fully descriptive of the similarity between the two approaches.

In particular, they only show the value selection early on, and they ignore the fact that the simple

heuristic approach performs value selection for only variables within the adjacency matrix 𝑔, while the

generalized lookahead approach performs lookahead for all variables.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Lookahead 1.012878 0.469162 0.760995 1.028948 1.205426 1.341363 0.074967 0.941068

Lookahead with SBPS 1.090036 0.428444 0.760685 1.015147 2.009872 2.468145 0.423271 0.677112

Figure 7.1: Average nodes for each configuration.

Figure 7.1 present the average nodes used, in comparison to default Chuffed, to fully solve an

instance. These results show a minor increase in the number of nodes used, however, with p-values of

0.94 and 0.68, the null hypothesis cannot be rejected. Hence, not enough evidence exists to state that the

lookahead approach has a significant effect on the total number of nodes created for cluster editing.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Lookahead 1.510803 0.651806 1.20425 1.37355 1.849818 2.106442 2.289958 0.034318

Lookahead with SBPS 1.63243 0.57996 1.229219 1.414869 3.174621 3.739832 2.383762 0.028355

Figure 7.2: Average solve time for each configuration.

Figure 7.2 presents the average solve time taken by each configuration. The mean solve time taken is

151.08% of the default configuration for the lookahead configuration, and 163.24% for the lookahead

with SBPS configuration. With a p-value of 0.034 and 0.028 for the two lookahead configurations, there

are enough evidence to reject the null hypothesis and state that the lookahead configuration overall

increases the total solve time. Despite not observing a significant difference in the number of nodes

between configurations, the additional time overhead caused by the lookahead approach results in

significantly higher solve time.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Lookahead 0.152669 5.29E-05 0.148045 0.567645 2.238569 3.122573 -1.46698 0.159636

Lookahead with SBPS 0.174539 6.35E-05 0.285707 0.88106 1.41059 1.43608 -1.3739 0.186343

Figure 7.3: Average optimal time after 10 minutes for each configuration.

Figure 7.3 presents the average time taken to find the optimal time for all configurations including

the lookahead approach. These results show that the lookahead approach appears to perform worse

than all the approaches utilizing the heuristic algorithm for value selection. In particular, the lookahead

configuration has a mean of 15.27%, while the lookahead with SBPS configuration has a mean of 17.45%.

Although this is a big decrease when compared to the default configuration, the interquartile range

(IQR) ranges between 14.80% and 223.86% for the lookahead configuration, and between 28.57% and

141.06% for the lookahead with SBPS configuration. This shows that the mean is likely skewed by

certain well-performing instances, and in actuality, most instances have a worse score than the mean.

Furthermore, with p-values of 0.16 and 0.19, the null hypothesis cannot be rejected with high

confidence. It is likely that the more generalized view of the problem and the time overhead are likely

the cause for this worsening in performance when compared to the results of chapter 5.

Looking at the performance of the individual instances, shown in figure 5.3, it is observed that

certain cases perform significantly worse than the default approach. pace_actionseq_22_2 appears to

have the worse optimal time performance.

Figure 7.5 plots the time vs the number of edits for the default and lookahead approach. The major

cause for the performance disparity cannot be explained just by the additional time overhead. Instead, it

is observed that the lookahead approach reached a specific solution not reached by the default approach,

but then was unable to find a better solution before the default configuration.

In particular, a solution with 43 edits was found in 3 milliseconds for the lookahead approach.

Despite the default configuration finding a much worse solution with 106 edits first, it reached the

optimal solution in 19 seconds, while the lookahead approach took 137 seconds. It is therefore likely

that for the lookahead configuration, the solution found and the clauses generated led the solver to

repeatedly reach different local minima that did not improve on the final result.
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Figure 7.4: Average optimal time for each instance.

Figure 7.5: Results for time vs edits for pace_actionseq_22_2.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default 0.1439 0.078431 0.09709 0.112632 0.180769 0.27451 0 1

Simple heuristic 0.031319 0 0 0.009804 0.044376 0.092308 -4.25272 0.000479

Simple heuristic with SBPS 0.044222 0 0 0.009804 0.044376 0.092308 -2.9426 0.008706

Kanpai 0.01956 0 0 0 0.034314 0.04 -5.11256 7.28E-05

Kanpai with SBPS 0.016926 0 0 0 0.019737 0.026316 -5.26657 5.23E-05

Warm start 0.053111 0 0 0.014612 0.034902 0.04 -2.49725 0.022436

Warm start with SBPS 0.022165 0 0 0 0.014706 0.019608 -4.71128 0.000174

Lookahead 0.074752 0 0.004902 0.087861 0.09951 0.215686 -2.19178 0.041787

Lookahead with SBPS 0.100414 0 0.033937 0.097407 0.143421 0.254902 -1.25228 0.226494

Figure 7.6: Best normalized objective found after 1 second for the small graphs.

For the instance pace_actionseq_22_2, even if the overall time taken to find the optimal solution was

slower than the default, early on, the lookahead approach had found a better solution than the default

Chuffed configuration. In particular, figure 7.6 shows that in general, the lookahead, after 1 second more

often had better solutions, when compared to the default Chuffed value selection, further indicating

that the lookahead approach tends to lead the solver towards local minima. While the null hypothesis

cannot be rejected for the lookahead configuration with SBPS, due to a high p-value of 0.23, the null

hypothesis can be rejected for the lookahead configuration, due to having a p-value lower than 0.05.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Lookahead 0.12401 0 0.013033 0.044642 0.157702 0.18192 -4.51669 0.000267

Lookahead with SBPS 0.122981 0 0.013033 0.042659 0.158924 0.175223 -4.53002 0.000259

Figure 7.7: Average objective after 10 minutes for each configuration.

Continuing, figure 7.7 shows the normalized number of edits found for the 10 larger graphs. With a

normalized mean of 0.12, the lookahead approach performs better than the simple heuristic, which has

a normalized mean of 0.21. Furthermore, the median for the lookahead approach is 0.04, an even bigger

improvement over the simple heuristic, with a median of 0.17. With the measured p-values for both

lookahead configurations being under 0.0003, the null hypothesis can be rejected with high confidence.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Lookahead 0.122533 0.000291 0.029592 0.215486 0.925834 1.505768 -3.35508 0.00181

Lookahead with SBPS 0.13356 0.00029 0.029861 0.307724 0.768231 0.829741 -3.2323 0.002539

Figure 7.8: Average integral for each configuration.

Figure 7.8 shows the average integral in comparison to the default chuffed for all 20 graphs. Since

these results essentially group the results of figure 7.3 and 7.7, the performance of the lookahead

configuration also ranks between the two metrics. In particular, the performance displayed in 7.8

appears to not favor the lookahead approach as much as figure 7.7, however, when compared to 7.3,

the performance of lookahead appears much more positive overall. With p-values of 0.002 and 0.003,

enough evidence exist to reject the null hypothesis.

Based on the findings for the cluster editing problem, the lookahead configuration has a significant

increase in solve time when compared to the default configuration. However, there is a significant

improvement in the solutions found early on in the solve time, as shown in figures 7.6 and 7.8, and in

particular for larger problems, as shown in figure 7.7.
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7.3. Generalized results
This section will present the generalized results for the lookahead approach, using the MiniZinc

challenge 2022 [24]. For more generalized problems, similar to the cluster editing problem, most

of the benefits of this approach will likely be in the form of finding near-optimal solutions early on.

Furthermore, it is expected for this approach to perform best on larger instances, and for problems

where there is a clear correlation between the objective function value and the variables selected. On

the other hand, smaller instances with many local minima solutions will likely cause the lookahead

approach to perform worse overall.

Figure 7.9: Total number of instances where a solution was found (orange), or optimality was proved (blue)

The MiniZinc challenge has a total of 95 optimization problem instances. Within 10 minutes, the

default Chuffed configuration is able to find a solution satisfying all constraints for 82 out of the 95

problems, of which it proved optimality for 35. Continuing, SBPS found a satisfying solution for 82

instances and proved optimality for 38. Next, lookahead found a satisfying solution for 84 instances and

proved optimality for 37. Last, lookahead with SBPS found a satisfying solution for 84 instances and

proved optimality for 38.

Based on these results, the look-ahead approach has only a small effect on if a solution will be found.

Nonetheless, both lookahead approaches were able to find optimality for overall 2 more instances than

the default Chuffed configuration. However, SBPS was still able to fully solve 1 more instance when

compared to the lookahead approach without SBPS. Nontheless, the lookahead approach was able to

find a satisfying solution for 2 more problems over the default and SBPS configurations.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.941057 1 1 1 1 1 -1.2959 0.196599

Lookahead 0.932888 0.810253 1 1 1.14456 1.348515 -0.54847 0.584023

Lookahead with SBPS 0.88766 0.895206 1 1 1.071042 1.17427 -0.87913 0.380456

Figure 7.10: Average solve time for each configuration

Figure 7.10 shows the average time taken to fully solve an instance when compared to default chuffed.

In the case where the solver did not terminate within 10 minutes, the solve time is 600 seconds. The

default lookahead has a solve time of 94.10%, and the lookahead approach with SBPS has a solve time

of 88.76%. Unlike cluster editing, the mean solve time is lower than the default configuration solve

time, however, looking at the IQR, the lower quartile and the medial are at 100% for the lookahead

configurations, indicating that for 75% of the problems, the lookahead configurations had the same or

slower solve time as the default configuration. With high p-values of 0.58 and 0.38, the null hypothesis

cannot be rejected.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.87963 0.19366 0.596365 1 1.362735 2.132173 -1.3012 0.196587

Lookahead 0.863587 0.010923 0.928092 1.245853 1.543004 2.309313 -0.54619 0.586320

Lookahead with SBPS 0.777576 0.000942 0.519112 1.163622 2.107895 4.222537 -0.87793 0.382370

Figure 7.11: Average solve time for each configuration, including only instances where at least one configuration terminated

before the time limit (45 instances)

Figure 7.11 shows the solve time results, but filtered to include only instances where at least one

configuration managed to terminate before the 10-minute time limit. The recorded means are slightly

lower, with a value of 86.36% and 77.76% for the lookehaead and lookahead with SBPS configurations

respectively. Again, the p-values are similar to the ones recorded for figure 7.10, and therefore, the null

hypothesis cannot be rejected.

The median for both lookahead configurations is higher than the default configuration, with 124.59%

for the lookahead configuration, and 116.36% for the lookahead configuration with SBPS. This indicates

that similar to cluster editing, the lookahead approach potentially causes an overall time penalty to the

total solve time. However, for some instances, the lookahead configuration significantly improves the

solve time, leading to the mean being skewed towards a lower solve time.

The first reason why the lookahead configuration has a positive impact on the solve time for some

problems is that finding an improved solution faster allows the solver to create stricter domains, creating

many new nogoods, and decreasing the total search space that has to be explored. Next, since the

lookahead approach performs a sat analysis when a lookahead leads to a conflict, and furthermore has

a fail first strategy, where it biases decisions that decrease the domain, it likely also creates many new

clauses that limit the search space even more. Therefore, it appears that overall, these performance

benefits are able to better overcome the time overhead of the lookahead approach for certain instances.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default 0.343589 0 0 0.000396 0.446037 1 0 1

Default with SBPS 0.317792 0 0 0 0.41497 1 -0.31251 0.754997

Lookahead 0.223408 0 0 0 0.166477 0.411111 -1.54846 0.123194

Lookahead with SBPS 0.202514 0 0 0 0.055776 0.12727 -1.8143 0.071225

Figure 7.12: Best objective found after 10 minutes

Continuing, figure 7.12 shows the average best normalized objective found after 10 minutes. Here, 1

indicates the worse solution found throughout the search by all solvers in this instance that satisfies all

constraints, while 0 indicates the best overall solution. A solution of 2 indicates that no solution was

found. For each configuration, in the order presented, a mean of 0.3436, 0.3178, 0.2234, and 0.2025 was

recorded.

Although the means of the lookahead configurations are lower than the default configuration, with

p-values of 0.12 and 0.07, the null hypothesis cannot be rejected. One reason for this is likely due to the

high variance introduced by instances where no solution was found within the time limit. Therefore, it

is likely that removing these values could result in a lower p-value.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default 0.149093 0 0 0 0.191218 0.459642 0 1

Default with SBPS 0.141649 0 0 0 0.194444 0.452555 -0.17672 0.859957

Lookahead 0.074408 0 0 0 0.044602 0.105263 -2.05891 0.041166

Lookahead with SBPS 0.053656 0 0 0 0.009467 0.014514 -2.6927 0.007862

Figure 7.13: Best objective found after 10 minutes, including only instances where all configurations found a satisfying solution or

terminated within the time limit (79 instances)

Figure 7.13 shows the average best normalized objective found after 10 minutes, excluding instances

where at least one configuration did not find a solution within the time limit. With the filtered results,

the p-values for the lookahead configuration are under 0.05, indicating that the null hypothesis can be

rejected. Therefore, it can be stated with high confidence that for problems where a solution can be

found within a time limit, the solution produced by the lookahead configuration will be on average

closer to the optimal than the solution produced by the default configuration.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.698456 7.72E-05 0.559467 0.972961 1.027019 1.723453 -1.99523 0.047462

Lookahead 0.452958 3.05E-05 0.186817 0.950841 2.049801 4.838752 -2.75152 0.006513

Lookahead with SBPS 0.394823 5.64E-05 0.186463 0.894833 2.065496 4.86657 -3.12483 0.002061

Figure 7.14: Average integral for each configuration

Next, figure 7.14 shows the integral results compared to the default configuration. Overall, a mean

of 45.26% is observed for the lookahead approach, and a mean of 39.48% is observed for the lookahead

configuration with SBPS. Based on these results, low enough p-values were recorded, which provides

evidence to reject the null hypothesis for all configurations. These results show the main advantage

of the lookahead configuration, enabling it to find near-optimal solutions significantly faster than the

default configuration, by better guiding the solver towards near-optimal solutions significantly faster

than the default value selection.

SBPS was able to have a mean of 69.85%. However, when looking at the IQR for SBPS, it ranges

from 55.94%, up to 102.70%, while the range for the lookahead and lookahead with SBPS ranges from

18.68% to 204.98%, and from 18.64%, up to 206.54% respectively. This indicates a higher variance in the

effectiveness of the lookahead approach when compared to SBPS, with many instances resulting in an

overall worse integral performance.
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7.4. MiniZinc challenge individual results
In this section, certain special cases that are outliers compared to the average results will be presented.

These results better show how this configuration performs on certain edge case problems. For these

results, it is important to note the limited amount of instances, with each problem having only 5

instances, which can skew the results heavily.

7.4.1. Schelduling
The gfd-schedule problem is a scheduling problem with the following constraints. First, each item is

grouped by its kind. Each item is processed by a group using a facility. Each item has a produced day that it

has to be processed after. Last, the maximum number of processed items per day is fixed. The objective

is to minimize the use of the facilities and a deadline penalty that is added when items are processed after

their deadline.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.690231 0.378159 0.43922 0.943224 1 1 -1.711156 0.125416

Lookahead 0.006442 0.000641 0.004969 0.007975 0.020674 0.021129 -7.87458 4.89E-05

Lookahead with SBPS 0.002887 0.000312 0.001594 0.002112 0.011292 0.016908 -8.114235 3.94E-05

Figure 7.15: Average integral for gfd-schedule

Figure 7.15 shows the integral results for the problem gfd-schedule. This problem presents the biggest

overall improvement for the lookahead approach. The lookahead approach has a significantly faster

solve time, with the lookahead configuration having a mean solve time of 2.53%, and the lookahead

configuration with SBPS 1.51%. More notably, the default and SBPS configurations managed to find a

solution and solve only 2 out of the 5 instances, while the two lookahead configurations were able to

solve all 5 of the instances.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.129464 0.638874 0.638874 0.713348 0.809929 0.985332 -1.13631 0.288718

Lookahead 0.006399 3.05E-05 3.38E-05 0.008291 0.05173 0.05173 -2.52505 0.035528

Lookahead with SBPS 0.009197 5.64E-05 0.003349 0.008338 0.00942 0.00942 -2.81257 0.022753

Figure 7.16: Average integral for nfc

NFC, another scheduling problem that is modelled like a network graph, with the objective of

minimizing the network flow also was able to perform significantly better using the lookahead approach,

as shown in figure 7.16. with a mean integral of 0.64% and 0.92% for the lookahead configurations

without and with SBPS respectively.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.582046 0.130631 0.616329 0.78795 0.995581 1.057672 -1.40385 0.19797

Lookahead 0.001784 0.000225 0.000391 0.00152 0.006247 0.006247 -7.45778 7.21E-05

Lookahead with SBPS 0.000717 0.000682 0.000682 0.000759 0.000904 0.000904 -24.1287 9.28E-09

Figure 7.17: Average integral for wordpress

Continuing, wordpress is a scheduling problem concerning the assignment of certain components

with minimum required specs to virtual machines(VM), where each VM has certain specs and a cost. The

objective is to minimize the total cost of the used VMs. Figure 7.17 shows the results for this problem. In

particular, the mean for the lookahead configuration is 0.18%, and for the lookahead with SBPS 0.07%.
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7.4.2. Diameter-constrained minimum spanning tree
For the diameter-constrained minimum spanning tree problem, given an undirected weighted graph

𝐺 = (𝑉, 𝐸), and an integer 𝐷, the goal is to find a spanning tree from 𝐺 with minimum total weight

costs, where the shortest path between any two nodes in the tree, in other words, the diameter of the

tree is less than 𝐷.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 0.442305 0.029646 0.501194 0.779682 1 1.461253 -1.16924 0.275962

Lookahead 3.271864 0.325656 1.405826 2.763749 10.35485 10.35485 1.524203 0.165964

Lookahead with SBPS 2.535984 0.279567 1.784186 3.388908 4.396974 4.396974 1.442874 0.187042

Figure 7.18: Average integral for diameterc-mst

First, figure 7.18 shows the integral results for this problem. For the lookahead approach a value of

327.18% is observed. However, when looking at the average objective found after 10 minutes, shown

in figure 7.19, the lookahead approach appears superior in comparison to the default configuration.

Looking at the individual instances, all configurations managed to find optimality for 3 of the 5 instances.

However, the non-lookahead configurations managed to find a solution only for 4 instances. This is

represented in figure 7.19 by the outlier values with a normalized objective value of 2. Meanwhile, both

lookahead configurations managed to find a solution for all 5 instances.
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Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default 0.403623 0 0 0 0.018116 0.018116 0 1

Default with SBPS 0.4 0 0 0 0 0 0.006412 0.995041

Lookahead 0.053797 0 0 0 0.028986 0.028986 0.870529 0.409372

Lookahead with SBPS 0.010145 0 0 0 0 0 0.985572 0.353209

Figure 7.19: Average objective for diameterc-mst
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7.4.3. Sudoku
The following problem is a variation of the sudoku problem, with the addition of an optimization function

with the goal of minimizing or maximizing the values of the cells depending on if they are odd or even.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 1.014769 0.997167 1.006864 1.01611 1.025466 1.028571 2.549092 0.034223

Lookahead 2.776173 0.904762 2.249339 2.86119 4.838752 5.852795 3.101901 0.014624

Lookahead with SBPS 2.806016 0.914286 2.291657 2.922096 4.86657 5.838509 3.154064 0.013515

Figure 7.20: Average integral for sudoku_opt

Figure 7.20 shows the result for the integral of the sudoku problem. The lookahead configurations

without and with SBPS have a mean of 277.62% and 280.60%. For all instances and configurations, the

first solution found was optimal. Therefore, this problem does not benefit from a heuristic designed to

find optimal solutions, and hence, the lookahead approach has no positive effect on performance, while

adding a significant time overhead.
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7.4.4. Placing "Hearts" in Equilateral Triangular Grids
The following problem has the objective of maximizing the number of heartsas defined by the model,

that can be placed inside an equilateral triangular grid with sides 𝑁 . At the same time, the hearts cannot

be placed lying on the corners of any possible equilateral triangle of any size or orientation.

Configuration Mean Lower
whisker

Lower
quartile

Median Upper
quartile

Upper
whisker

t-value p-value

Default with SBPS 26.36469 2.935132 7.607625 9.121606 206.4276 302.9683 3.479405 0.008327

Lookahead 12.30881 1.11121 2.04019 7.771895 101.4007 158.1414 2.49844 0.037032

Lookahead with SBPS 28.0342 1.555162 12.07065 13.0853 175.4266 401.8426 3.324643 0.010467

Figure 7.21: Average integral for triangular

Figure 7.21 shows the results of the integral for this problem, where the lookahead approach had

a mean integral of 1230.88%. Notably, SBPS also has a similar high integral value. Based on this, it

appears that using a generalized heuristic value selection to attempt to improve the optimal value for

this problem is an ineffective strategy.
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7.5. Results discussion
Based on the results, it appears that the lookahead approach can provide significant advantages to

Chuffed, not only for cluster editing but in general for many optimization problems. In particular, the

lookahead approach assists the solver in finding better solutions early on.

The main advantage of the lookahead approach over the default VSIDS configuration and SBPS, is

finding near-optmial solutions faster than the default configuration, as shown in figure 7.14. Furthermore,

for larger instances, the lookahead configuration finds on average solutions closer to the optimal, as

shown in figures 7.7 and 7.13. Continuing, combining the lookahead approach with SBPS, generally

appears also to have a positive effect, but this advantage varies heavily depending on the problem.

The biggest drawback of the lookahead approach is the additional time overhead added by performing

the lookahead propagations. As a result, the lookahead configuration often has an overall slower

solve time, despite the improvements provided early on. Decreasing the performance overhead of the

lookahead propagations, along with improving the stopping criterion of the lookahead approach would

contribute greatly to decreasing this performance disadvantage.

Furthermore, despite the lookahead approach being efficient at finding near-optimal solutions it

appears that the performance advantage shrinks when it comes to finding the optimal solution. This is

likely caused by the additional overhead added by the lookahead propagations, and the lookahead

approach being prone to reaching local minima.

Lastly, the lookahead approach seems to have varying performance depending on the problem. In

particular, the two lookahead configurations performed best on scheduling problems, where the quality

of the solutions at each point in time was on average significantly better than the default and SBPS

configurations. In addition, on the scheduling problems, the solve time was also significantly faster for

the lookahead configurations.
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Conclusion & Future Improvements

This chapter discusses the main takeaways of the research, followed by future improvements that could

be added to the lookahead approach to improve its performance.

8.1. Conclusion
When it comes to finding near-optimal or optimal solutions for optimization problems, there is a huge

performance disparity between heuristic algorithms and constraint programming solvers. The research

goal was to better understand how the behaviour of specialized heuristic solvers can assist constraint

programming solvers in optimization problems.

Using the cluster editing problem as a case study, it was shown that combing the value selection of

Chuffed with a heuristic algorithm specialized for solving the cluster editing instances, in particular, the

Kanpai algorithm [10], could provide significant performance benefits to the performance of the CP

solver. In particular, the combined algorithm showed a significant improvement in the time it takes to

find near-optimal and optimal solutions.

Inspired by the steps taken in each interaction of the Kanpai algorithm [10], a generalized approach,

which performs lookahead propagations during value selection and then selects the value that has the

most optimal objective value within its domain was developed. This lookahead approach was able

to find near-optimal solutions for many problems significantly faster than a configuration of Chuffed

using just VSIDS, emulating the performance observed by heuristic solvers. In particular, on average,

the lookahead configuration had a definite integral for the time vs objective graph 54.70% lower than

the default Chuffed configuration on the generalized test suite.

Despite the overall improvements of the lookahead approach, performing lookahead propagations

has a significant time cost. Therefore, the time taken to solve an instance increased for most problems,

despite the benefits of the approach. Furthermore, the time penalty also affects the early solution quality

for many problems that do not greatly benefit from lookahead.

Overall, the lookahead approach presents a way to better emulate the performance of heuristic

solvers, in particular, finding near-optimal solutions faster for certain problems, but causes an overall

slight increase in the total solve time.

57
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8.2. Future Improvements
The main improvements for the lookahead approach concern decreasing the time penalty of the

additional lookahead propagations.

The first improvement would be to reuse the results of one of the lookahead propagations. The

propagation following the value selection should be equivalent to the lookahead propagation for the

same value. Therefore, using the outcome of the lookahead propagation, instead of recomputing the

propagation after selecting a value would help reduce the time penalty, as this would result in almost 1

additional propagation, instead of 2.

Continuing, the two lookahead propagation could run in parallel, as the two propagations do not

rely on the outcome of the other in order to compute their result. This should further reduce the time

penalty of the lookahead configuration.

Next, performing a lookahead for multiple variables, instead of the two values for a single variable

could improve the branching decisions made by the solver. In particular, it would potentially reduce

cases where the solver reaches local minima and is unable to improve the objective, as it would provide

more possible decisions at each level.

Last, an improved stopping criterion that more accurately stops the lookahead approach when it can

no longer provide significant benefits to the solver could improve the overall solve time.
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A
Cluster Editing Results

A.1. Number of nodes
Table A.1: Total number of nodes

Default Simple
heuristic

Kanpai Warm start Lookahead

exact003 315511

(1.000)

389791

(1.235)

287315

(0.911)

499527

(1.583)

332185

(1.053)

exact005 1426230

(1.000)

1423018

(0.998)

1403259

(0.984)

1545869

(1.084)

1268924

(0.890)

instance_nr_11-
csv-thres-0-40

324504

(1.000)

193377

(0.596)

175689

(0.541)

208178

(0.642)

189266

(0.583)

instance_nr_313-
csv-thres-0-45

439277

(1.000)

397769

(0.906)

258276

(0.588)

247629

(0.564)

315441

(0.718)

instance_nr_1243-
csv-thres-0-50

708572

(1.000)

416023

(0.587)

544836

(0.769)

681669

(0.962)

767368

(1.083)

instance_nr_1679-
csv-thres-0-45

1552858

(1.000)

1553092

(1.000)

1894593

(1.220)

2376777

(1.531)

2082946

(1.341)

pace_actionseq
_21_10

270194

(1.000)

238148

(0.881)

279698

(1.035)

410885

(1.521)

271558

(1.005)

pace_actionseq
_22_2

188794

(1.000)

44028 (0.233) 108591

(0.575)

114397

(0.606)

640672

(3.393)

pace_actionseq
_23_10

188985

(1.000)

232100

(1.228)

365258

(1.933)

478510

(2.532)

235521

(1.246)

pace_actionseq
_26_2

621440

(1.000)

341833

(0.550)

338780

(0.545)

413545

(0.665)

291556

(0.469)
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Table A.2: Total number of nodes for SBPS configurations

Default with
SBPS

Simple
heuristic
with SBPS

Kanpai with
SBPS

Warm start
with SBPS

Lookahead
with SBPS

exact003 279715

(0.887)

343024

(1.087)

262154

(0.831)

328724

(1.042)

233560

(0.740)

exact005 3641569

(2.553)

1590796

(1.115)

1845364

(1.294)

1149937

(0.806)

1367305

(0.959)

instance_nr_11-
csv-thres-0-40

741256

(2.284)

176415

(0.544)

207317

(0.639)

208443

(0.642)

146059

(0.450)

instance_nr_313-
csv-thres-0-45

506058

(1.152)

329017

(0.749)

325454

(0.741)

254638

(0.580)

361069

(0.822)

instance_nr_1243-
csv-thres-0-50

989786

(1.397)

547358

(0.772)

869365

(1.227)

992154

(1.400)

759312

(1.072)

instance_nr_1679-
csv-thres-0-45

5854636

(3.770)

2069092

(1.332)

1576226

(1.015)

2604950

(1.678)

3558017

(2.291)

pace_actionseq
_21_10

334407

(1.238)

272154

(1.007)

314176

(1.163)

354241

(1.311)

438952

(1.625)

pace_actionseq
_22_2

94262 (0.499) 83288 (0.441) 114600

(0.607)

106170

(0.562)

465971

(2.468)

pace_actionseq
_23_10

464237

(2.456)

359054

(1.900)

248883

(1.317)

286850

(1.518)

404107

(2.138)

pace_actionseq
_26_2

16705175

(26.881)

431388

(0.694)

647163

(1.041)

487535

(0.785)

266252

(0.428)
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A.2. Solve time
Table A.3: Solve time (seconds)

Default Simple
heuristic

Kanpai Warm start Lookahead

exact003 40.435

(1.000)

73.044

(1.806)

57.184

(1.414)

71.208

(1.761)

69.828

(1.727)

exact005 210.067

(1.000)

284.497

(1.354)

293.532

(1.397)

239.771

(1.141)

245.850

(1.170)

instance_nr_11-
csv-thres-0-40

45.624

(1.000)

41.885

(0.918)

38.903

(0.853)

28.396

(0.622)

40.281

(0.883)

instance_nr_313-
csv-thres-0-45

54.413

(1.000)

76.165

(1.400)

53.357

(0.981)

33.964

(0.624)

71.654

(1.317)

instance_nr_1243-
csv-thres-0-50

121.354

(1.000)

84.779

(0.699)

123.539

(1.018)

116.324

(0.959)

173.566

(1.430)

instance_nr_1679-
csv-thres-0-45

234.113

(1.000)

349.119

(1.491)

409.263

(1.748)

347.878

(1.486)

442.657

(1.891)

pace_actionseq
_21_10

42.379

(1.000)

45.150

(1.065)

43.756

(1.032)

62.221

(1.468)

55.346

(1.306)

pace_actionseq
_22_2

25.601

(1.000)

7.625 (0.298) 22.488

(0.878)

14.876

(0.581)

139.204

(5.437)

pace_actionseq
_23_10

19.203

(1.000)

36.831

(1.918)

68.327

(3.558)

49.844

(2.596)

40.450

(2.106)

pace_actionseq
_26_2

133.104

(1.000)

99.521

(0.748)

97.532

(0.733)

88.565

(0.665)

86.758

(0.652)
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Table A.4: Solve time for SBPS configurations (seconds)

Default with
SBPS

Simple
heuristic
with SBPS

Kanpai with
SBPS

Warm start
with SBPS

Lookahead
with SBPS

exact003 42.232

(1.044)

81.924

(2.026)

52.721

(1.304)

56.722

(1.403)

48.959

(1.211)

exact005 696.317

(3.315)

303.577

(1.445)

352.612

(1.679)

179.664

(0.855)

278.401

(1.325)

instance_nr_11-
csv-thres-0-40

127.761

(2.800)

35.354

(0.775)

42.428

(0.930)

30.027

(0.658)

35.543

(0.779)

instance_nr_313-
csv-thres-0-45

64.360

(1.183)

61.787

(1.136)

65.208

(1.198)

38.970

(0.716)

69.891

(1.284)

instance_nr_1243-
csv-thres-0-50

207.621

(1.711)

118.651

(0.978)

197.653

(1.629)

196.360

(1.618)

182.570

(1.504)

instance_nr_1679-
csv-thres-0-45

1099.442

(4.696)

493.302

(2.107)

350.467

(1.497)

391.360

(1.672)

838.225

(3.580)

pace_actionseq
_21_10

60.554

(1.429)

55.869

(1.318)

52.207

(1.232)

65.583

(1.548)

82.944

(1.957)

pace_actionseq
_22_2

12.303

(0.481)

15.235

(0.595)

25.356

(0.990)

13.080

(0.511)

93.700

(3.660)

pace_actionseq
_23_10

67.064

(3.492)

55.534

(2.892)

45.907

(2.391)

39.780

(2.072)

71.816

(3.740)

pace_actionseq
_26_2

3595.310

(27.011)

146.465

(1.100)

189.479

(1.424)

101.861

(0.765)

77.195

(0.580)
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A.3. Time taken to find the optimal solution
Table A.5: Time taken to find the optimal solution (seconds)

Default Simple
heuristic

Kanpai Warm start Lookahead

exact003 13.543

(1.000)

62.317

(4.601)

45.296

(3.345)

60.700

(4.482)

42.289

(3.123)

exact005 53.520

(1.000)

92.331

(1.725)

160.825

(3.005)

143.383

(2.679)

28.541

(0.533)

instance_nr_11-
csv-thres-0-40

34.134

(1.000)

0.052 (0.002) 0.021 (0.001) 0.019 (0.001) 11.975

(0.351)

instance_nr_313-
csv-thres-0-45

43.132

(1.000)

71.203

(1.651)

0.012 (0.000) 0.013 (0.000) 25.966

(0.602)

instance_nr_1243-
csv-thres-0-50

95.912

(1.000)

44.820

(0.467)

44.200

(0.461)

109.177

(1.138)

123.196

(1.284)

instance_nr_1679-
csv-thres-0-45

88.106

(1.000)

0.047 (0.001) 0.048 (0.001) 219.157

(2.487)

0.009 (0.000)

pace_actionseq
_21_10

11.858

(1.000)

0.084 (0.007) 1.975 (0.167) 30.429

(2.566)

0.954 (0.080)

pace_actionseq
_22_2

18.871

(1.000)

0.147 (0.008) 0.014 (0.001) 0.017 (0.001) 136.770

(7.248)

pace_actionseq
_23_10

9.664 (1.000) 16.699

(1.728)

0.032 (0.003) 44.452

(4.600)

24.707

(2.557)

pace_actionseq
_26_2

94.505

(1.000)

0.022 (0.000) 0.023 (0.000) 0.024 (0.000) 0.005 (0.000)
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Table A.6: Time taken to find the optimal solution for SBPS configurations (seconds)

Default with
SBPS

Simple
heuristic
with SBPS

Kanpai with
SBPS

Warm start
with SBPS

Lookahead
with SBPS

exact003 8.201 (0.606) 47.553

(3.511)

30.996

(2.289)

7.428 (0.548) 5.992 (0.442)

exact005 591.768

(11.057)

156.913

(2.932)

0.838 (0.016) 74.166

(1.386)

76.859

(1.436)

instance_nr_11-
csv-thres-0-40

113.477

(3.324)

0.053 (0.002) 0.021 (0.001) 0.020 (0.001) 7.969 (0.233)

instance_nr_313-
csv-thres-0-45

44.519

(1.032)

31.420

(0.728)

0.011 (0.000) 0.015 (0.000) 31.935

(0.740)

instance_nr_1243-
csv-thres-0-50

172.503

(1.799)

33.311

(0.347)

84.104

(0.877)

0.020 (0.000) 97.995

(1.022)

instance_nr_1679-
csv-thres-0-45

848.331

(9.629)

0.046 (0.001) 0.034 (0.000) 0.084 (0.001) 0.009 (0.000)

pace_actionseq
_21_10

15.993

(1.349)

0.083 (0.007) 0.312 (0.026) 0.031 (0.003) 15.820

(1.334)

pace_actionseq
_22_2

5.121 (0.271) 0.129 (0.007) 0.014 (0.001) 0.016 (0.001) 92.419

(4.897)

pace_actionseq
_23_10

44.918

(4.648)

26.776

(2.771)

2.100 (0.217) 1.983 (0.205) 33.856

(3.503)

pace_actionseq
_26_2

3551.174

(37.577)

0.022 (0.000) 0.023 (0.000) 0.025 (0.000) 0.006 (0.000)
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A.4. Integral
Table A.7: Integral of time (seconds) vs normalized edits plot

Default Simple
heuristic

Kanpai Warm start Lookahead

exact003 0.733 (1.000) 4.232 (5.777) 1.638 (2.236) 6.305 (8.606) 2.172 (2.965)

exact005 2.132 (1.000) 1.831 (0.859) 3.169 (1.486) 2.823 (1.324) 0.564 (0.265)

instance_nr_11-
csv-thres-0-40

3.124 (1.000) 0.023 (0.007) 0.021 (0.007) 0.019 (0.006) 0.480 (0.154)

instance_nr_313-
csv-thres-0-45

2.975 (1.000) 4.858 (1.633) 0.012 (0.004) 0.013 (0.004) 3.598 (1.209)

instance_nr_1243-
csv-thres-0-50

8.212 (1.000) 0.906 (0.110) 1.765 (0.215) 2.157 (0.263) 12.366

(1.506)

instance_nr_1679-
csv-thres-0-45

2.911 (1.000) 0.022 (0.008) 0.021 (0.007) 2.132 (0.732) 0.003 (0.001)

pace_actionseq
_21_10

0.561 (1.000) 0.017 (0.031) 0.150 (0.266) 1.234 (2.199) 0.097 (0.173)

pace_actionseq
_22_2

2.247 (1.000) 0.030 (0.013) 0.014 (0.006) 0.017 (0.008) 13.622

(6.061)

pace_actionseq
_23_10

0.520 (1.000) 0.926 (1.782) 0.020 (0.039) 4.976 (9.571) 1.544 (2.970)

pace_actionseq
_26_2

7.052 (1.000) 0.022 (0.003) 0.023 (0.003) 0.024 (0.003) 0.005 (0.001)

exact015 149.965

(1.000)

32.268

(0.215)

0.124 (0.001) 1.630 (0.011) 38.293

(0.255)

exact020 179.890

(1.000)

101.100

(0.562)

0.200 (0.001) 0.164 (0.001) 0.052 (0.000)

exact025 126.583

(1.000)

64.282

(0.508)

0.428 (0.003) 0.342 (0.003) 50.461

(0.399)

exact030 130.447

(1.000)

1.626 (0.012) 0.436 (0.003) 0.450 (0.003) 3.217 (0.025)

exact035 149.698

(1.000)

27.191

(0.182)

1.231 (0.008) 1.216 (0.008) 3.841 (0.026)

exact040 203.146

(1.000)

33.006

(0.162)

1.845 (0.009) 2.137 (0.011) 7.562 (0.037)

exact045 315.867

(1.000)

100.685

(0.319)

5.117 (0.016) 3.532 (0.011) 55.475

(0.176)

exact050 58.436

(1.000)

116.069

(1.986)

4.431 (0.076) 5.024 (0.086) 21.190

(0.363)

exact055 216.111

(1.000)

44.549

(0.206)

5.022 (0.023) 25.516

(0.118)

6.679 (0.031)

exact060 231.181

(1.000)

129.309

(0.559)

11.878

(0.051)

12.126

(0.052)

192.187

(0.831)
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Table A.8: Integral of time (seconds) vs normalized edits plot for SBPS configurations

Default with
SBPS

Simple
heuristic
with SBPS

Kanpai with
SBPS

Warm start
with SBPS

Lookahead
with SBPS

exact003 0.340 (0.464) 4.734 (6.462) 1.656 (2.260) 0.675 (0.921) 0.309 (0.421)

exact005 82.026

(38.465)

3.099 (1.453) 0.065 (0.031) 1.466 (0.687) 1.511 (0.709)

instance_nr_11-
csv-thres-0-40

31.282

(10.013)

0.022 (0.007) 0.021 (0.007) 0.020 (0.006) 0.605 (0.194)

instance_nr_313-
csv-thres-0-45

4.042 (1.359) 1.228 (0.413) 0.011 (0.004) 0.015 (0.005) 2.259 (0.760)

instance_nr_1243-
csv-thres-0-50

14.733

(1.794)

0.681 (0.083) 6.617 (0.806) 0.018 (0.002) 6.524 (0.794)

instance_nr_1679-
csv-thres-0-45

220.617

(75.779)

0.021 (0.007) 0.021 (0.007) 0.024 (0.008) 0.004 (0.001)

pace_actionseq
_21_10

0.712 (1.269) 0.017 (0.030) 0.030 (0.054) 0.019 (0.033) 1.639 (2.921)

pace_actionseq
_22_2

1.059 (0.471) 0.026 (0.011) 0.014 (0.006) 0.016 (0.007) 9.245 (4.114)

pace_actionseq
_23_10

7.824

(15.050)

1.457 (2.803) 0.115 (0.221) 0.249 (0.480) 3.716 (7.149)

pace_actionseq
_26_2

763.118

(108.208)

0.022 (0.003) 0.023 (0.003) 0.025 (0.004) 0.006 (0.001)

exact015 210.920

(1.406)

32.269

(0.215)

0.128 (0.001) 0.097 (0.001) 38.291

(0.255)

exact020 188.976

(1.051)

101.102

(0.562)

0.198 (0.001) 0.176 (0.001) 0.052 (0.000)

exact025 117.793

(0.931)

64.291

(0.508)

0.431 (0.003) 0.341 (0.003) 50.926

(0.402)

exact030 119.676

(0.917)

1.629 (0.012) 0.423 (0.003) 0.448 (0.003) 3.072 (0.024)

exact035 148.243

(0.990)

27.268

(0.182)

1.226 (0.008) 1.208 (0.008) 3.845 (0.026)

exact040 197.011

(0.970)

33.075

(0.163)

1.849 (0.009) 2.133 (0.010) 6.545 (0.032)

exact045 410.662

(1.300)

100.838

(0.319)

5.029 (0.016) 3.575 (0.011) 53.543

(0.170)

exact050 53.112

(0.909)

116.077

(1.986)

4.461 (0.076) 5.050 (0.086) 21.044

(0.360)

exact055 211.103

(0.977)

44.556

(0.206)

5.044 (0.023) 25.521

(0.118)

6.754 (0.031)

exact060 318.718

(1.379)

129.359

(0.560)

11.751

(0.051)

12.045

(0.052)

191.820

(0.830)
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A.5. Best objective value found after 10 minutes
Table A.9: Best objective value (edits) found after 10 minutes

Default Simple heuristic Kanpai Warm start Lookahead
exact015 235 (0.362) 185 (0.107) 164 (0.000) 165 (0.005) 189 (0.128)

exact020 441 (0.554) 311 (0.337) 110 (0.000) 110 (0.000) 110 (0.000)

exact025 698 (0.422) 570 (0.213) 439 (0.000) 439 (0.000) 542 (0.168)

exact030 818 (0.435) 282 (0.004) 277 (0.000) 277 (0.000) 288 (0.009)

exact035 1106 (0.499) 510 (0.086) 385 (0.000) 385 (0.000) 402 (0.012)

exact040 1636 (0.677) 670 (0.105) 492 (0.000) 492 (0.000) 532 (0.024)

exact045 2028 (1.052) 1376 (0.325) 1085 (0.000) 1085 (0.000) 1248 (0.182)

exact050 1905 (0.193) 2350 (0.378) 1440 (0.000) 1440 (0.000) 1598 (0.066)

exact055 3075 (0.720) 1722 (0.135) 1410 (0.000) 1554 (0.062) 1449 (0.017)

exact060 2104 (0.769) 1818 (0.410) 1492 (0.001) 1497 (0.008) 1998 (0.636)

Table A.10: Best objective value (edits) found after 10 minutes for SBPS configurations (seconds)

Default with
SBPS

Simple heuris-
tic with SBPS

Kanpai with
SBPS

Warm start
with SBPS

Lookahead
with SBPS

exact015 295 (0.668) 185 (0.107) 164 (0.000) 164 (0.000) 189 (0.128)

exact020 483 (0.625) 311 (0.337) 110 (0.000) 110 (0.000) 110 (0.000)

exact025 680 (0.393) 570 (0.213) 439 (0.000) 439 (0.000) 543 (0.169)

exact030 773 (0.398) 282 (0.004) 277 (0.000) 277 (0.000) 288 (0.009)

exact035 1099 (0.494) 510 (0.086) 385 (0.000) 385 (0.000) 402 (0.012)

exact040 1600 (0.656) 670 (0.105) 492 (0.000) 492 (0.000) 526 (0.020)

exact045 2309 (1.366) 1376 (0.325) 1085 (0.000) 1085 (0.000) 1242 (0.175)

exact050 1862 (0.175) 2350 (0.378) 1440 (0.000) 1440 (0.000) 1597 (0.065)

exact055 3031 (0.701) 1722 (0.135) 1410 (0.000) 1554 (0.062) 1449 (0.017)

exact060 2293 (1.006) 1818 (0.410) 1492 (0.001) 1497 (0.008) 1997 (0.635)





B
MiniZinc Challenge Results

B.1. Solve time

Table B.1: Solve time (seconds)

Default Default
with SBPS

Lookahead Lookahead
with SBPS

accap:
accap_a12_f100_t60

600.000

(1.000)

295.851

(0.493)

600.000

(1.000)

600.000

(1.000)

accap:
accap_a18_f140_t85

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

accap:
accap_a40_f800_t180

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

accap:
accap_a4_f30_t15

394.994

(1.000)

478.413

(1.211)

600.000

(1.519)

353.601

(0.895)

accap:
accap_a5_f40_t20

128.791

(1.000)

43.950

(0.341)

51.359

(0.399)

600.000

(4.659)

arithmetic-target:
4108_with_1_2_2_3_3_5_6_6_7_8_9

71.368

(1.000)

87.098

(1.220)

75.708

(1.061)

301.354

(4.223)

arithmetic-target:
6872_with_1_2_3_3_4_4_5_6_7_9_10

99.084

(1.000)

81.340

(0.821)

228.816

(2.309)

249.995

(2.523)

arithmetic-target:
814_with_1_2_4_6_6_7_8_9

8.596

(1.000)

3.509

(0.408)

4.478

(0.521)

2.361

(0.275)

arithmetic-target:
8657_with_1_1_2_3_4_4_5_5_8_9_50

281.403

(1.000)

600.000

(2.132)

600.000

(2.132)

330.443

(1.174)

arithmetic-target:
910_with_1_2_3_6_12_25_50_87

4.632

(1.000)

7.486

(1.616)

2.670

(0.576)

2.931

(0.633)

blocks-world:
16-4-13

377.276

(1.000)

149.257

(0.396)

533.765

(1.415)

493.779

(1.309)

blocks-world:
16-4-40

600.000

(1.000)

207.266

(0.345)

567.108

(0.945)

600.000

(1.000)

blocks-world:
16-4-45

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

Continued on next page
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Table B.1: Solve time (seconds) (Continued)

blocks-world:
16-4-5

600.000

(1.000)

600.000

(1.000)

302.527

(0.504)

111.653

(0.186)

blocks-world:
16-4-83

600.000

(1.000)

273.580

(0.456)

600.000

(1.000)

244.675

(0.408)

diameterc-mst:
c_v15_a105_d6

48.594

(1.000)

54.319

(1.118)

60.541

(1.246)

85.071

(1.751)

diameterc-mst:
c_v15_a105_d9

148.092

(1.000)

308.145

(2.081)

280.956

(1.897)

232.927

(1.573)

diameterc-mst:
c_v20_a190_d4

45.683

(1.000)

74.988

(1.641)

52.400

(1.147)

68.986

(1.510)

diameterc-mst:
c_v20_a190_d9

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

diameterc-mst:
s_v40_a100_d7

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

generalized-peacable-queens:
n11_q5

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

generalized-peacable-queens:
n13_q5

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

generalized-peacable-queens:
n25_q4

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

generalized-peacable-queens:
n8_q3

278.501

(1.000)

284.028

(1.020)

274.609

(0.986)

360.074

(1.293)

generalized-peacable-queens:
n9_q5

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

gfd-schedule:
n180f7d50m30k18_10124

600.000

(1.000)

600.000

(1.000)

11.655

(0.019)

6.037

(0.010)

gfd-schedule:
n200f5d50m40k6_10124

600.000

(1.000)

600.000

(1.000)

30.274

(0.050)

19.132

(0.032)

gfd-schedule:
n55f2d50m30k3_10124

3.464

(1.000)

0.985

(0.284)

0.219

(0.063)

0.147

(0.042)

gfd-schedule:
n60f7d50m30k10_10124

2.752

(1.000)

1.996

(0.725)

0.258

(0.094)

0.171

(0.062)

gfd-schedule:
n85f3d50m8k20_10124

600.000

(1.000)

600.000

(1.000)

1.074

(0.002)

0.565

(0.001)

ma-path-finding:
ins_g16_p10_a20

113.941

(1.000)

73.111

(0.642)

92.321

(0.810)

56.128

(0.493)

ma-path-finding:
ins_g16_p10_a30

406.227

(1.000)

239.732

(0.590)

600.000

(1.477)

255.317

(0.629)

ma-path-finding:
ins_g16_p20_a30

600.000

(1.000)

503.061

(0.838)

600.000

(1.000)

600.000

(1.000)

ma-path-finding:
ins_g24_p20_a10

112.699

(1.000)

79.286

(0.704)

182.731

(1.621)

131.139

(1.164)

ma-path-finding:
ins_g32_p20_a10

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

Continued on next page
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Table B.1: Solve time (seconds) (Continued)

nfc:
12_2_11

600.000

(1.000)

600.000

(1.000)

6.554

(0.011)

6.609

(0.011)

nfc:
18_3_12

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

nfc:
24_4_2

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

nfc:
30_5_12

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

nfc:
30_5_6

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

roster-sickness:
large-2-2

1.062

(1.000)

0.987

(0.929)

2.390

(2.250)

1.774

(1.670)

roster-sickness:
large-2

203.561

(1.000)

286.518

(1.408)

280.283

(1.377)

490.507

(2.410)

roster-sickness:
large-4-2

0.006

(1.000)

0.007

(1.167)

0.008

(1.333)

0.006

(1.000)

roster-sickness:
large-4

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

roster-sickness:
small-4

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

spot5:
1405

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

spot5:
1506

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

spot5:
404

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

spot5:
507

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

spot5:
509

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

stripboard:
common-emitter-complex

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

stripboard:
common-emitter-simple

134.368

(1.000)

183.108

(1.363)

134.691

(1.002)

54.142

(0.403)

stripboard:
envelope-detector

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

stripboard:
nand-gate

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

stripboard:
opamp-integrator

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

sudoku_opt:
sudoku_p20

1.515

(1.000)

2.460

(1.624)

2.043

(1.349)

2.092

(1.381)

sudoku_opt:
sudoku_p22

84.988

(1.000)

224.850

(2.646)

130.078

(1.531)

176.187

(2.073)

Continued on next page
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Table B.1: Solve time (seconds) (Continued)

sudoku_opt:
sudoku_p23

6.512

(1.000)

9.741

(1.496)

13.890

(2.133)

20.933

(3.215)

sudoku_opt:
sudoku_p29

8.884

(1.000)

16.810

(1.892)

20.407

(2.297)

21.031

(2.367)

sudoku_opt:
sudoku_p90

0.129

(1.000)

0.163

(1.264)

0.240

(1.860)

0.320

(2.481)

team-assignment:
data1_4_6

0.043

(1.000)

0.055

(1.279)

0.074

(1.721)

0.040

(0.930)

team-assignment:
data1_6_6

0.180

(1.000)

0.465

(2.583)

0.268

(1.489)

0.874

(4.856)

team-assignment:
data2_6_15

153.245

(1.000)

91.390

(0.596)

209.457

(1.367)

254.380

(1.660)

team-assignment:
data3_4_31

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

team-assignment:
data3_5_31

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

tower:
100_100_20_100-04

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

tower:
tower_070_070_15_070-09

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

tower:
tower_070_070_15_085-09

0.380

(1.000)

0.367

(0.966)

37.800

(99.474)

0.801

(2.108)

tower:
tower_300_300_40_200-00

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

tower:
tower_500_500_50_300-01

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

traveling-tppv:
circ14cnonbal

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

traveling-tppv:
circ14enonbal

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

traveling-tppv:
circ20bnonbal

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

traveling-tppv:
circ20fnonbal

0.607

(1.000)

0.597

(0.984)

34.472

(56.791)

38.202

(62.936)

traveling-tppv:
circ20jnonbal

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

triangular:
n10

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

triangular:
n18

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

triangular:
n24

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

triangular:
n30

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

Continued on next page



B.2. Objective 75

Table B.1: Solve time (seconds) (Continued)

triangular:
n39

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

vaccine:
v11

463.979

(1.000)

104.975

(0.226)

430.615

(0.928)

240.857

(0.519)

vaccine:
v7

525.355

(1.000)

101.740

(0.194)

600.000

(1.142)

600.000

(1.142)

vaccine:
v8

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

vaccine:
v857

13.008

(1.000)

2.808

(0.216)

13.458

(1.035)

6.806

(0.523)

vaccine:
v946

55.881

(1.000)

53.083

(0.950)

77.236

(1.382)

600.000

(10.737)

wordpress:
Wordpress10_Offers500

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

wordpress:
Wordpress11_Offers500

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

wordpress:
Wordpress12_Offers500

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

wordpress:
Wordpress7_Offers500

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

wordpress:
Wordpress8_Offers500

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

yumi-static:
example_instance_4_GS_SG_yumi_...

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

yumi-static:
p_10_GGGGG_GGGGG_yumi_grid_...

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

yumi-static:
p_4_GG_GG_yumi_grid_setup_3_3

100.618

(1.000)

181.705

(1.806)

155.254

(1.543)

274.369

(2.727)

yumi-static:
p_4_GS_SG_yumi_grid_setup_3_3

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

yumi-static:
p_8_SSSSS_SSS_yumi_grid_setup_...

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

600.000

(1.000)

B.2. Objective

Table B.2: Best objective found after 10 minutes (N/A indicates no solution found)

Default Default
with SBPS

Lookahead Lookahead
with SBPS

accap:
accap_a12_f100_t60

136.000

(0.002)

127.000

(0.000)

190.000

(0.016)

169.000

(0.011)

accap:
accap_a18_f140_t85

157.000

(0.000)

154.000

(0.000)

274.000

(0.016)

264.000

(0.015)

accap:
accap_a40_f800_t180

5446.000

(0.937)

4388.000

(0.597)

3005.000

(0.152)

2534.000

(0.000)

Continued on next page
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

accap:
accap_a4_f30_t15

103.000

(0.000)

103.000

(0.000)

103.000

(0.000)

103.000

(0.000)

accap:
accap_a5_f40_t20

97.000

(0.000)

97.000

(0.000)

97.000

(0.000)

97.000

(0.000)

arithmetic-target:
4108_with_1_2_2_3_3_5_6_6_7_8_9

7.000

(0.000)

7.000

(0.000)

7.000

(0.000)

7.000

(0.000)

arithmetic-target:
6872_with_1_2_3_3_4_4_5_6_7_9_10

7.000

(0.000)

7.000

(0.000)

7.000

(0.000)

7.000

(0.000)

arithmetic-target:
814_with_1_2_4_6_6_7_8_9

5.000

(0.000)

5.000

(0.000)

5.000

(0.000)

5.000

(0.000)

arithmetic-target:
8657_with_1_1_2_3_4_4_5_5_8_9_50

7.000

(0.000)

10.000

(0.000)

17.000

(0.000)

7.000

(0.000)

arithmetic-target:
910_with_1_2_3_6_12_25_50_87

5.000

(0.000)

5.000

(0.000)

5.000

(0.000)

5.000

(0.000)

blocks-world:
16-4-13

30.000

(0.000)

30.000

(0.000)

30.000

(0.000)

30.000

(0.000)

blocks-world:
16-4-40

33.000

(0.348)

25.000

(0.000)

25.000

(0.000)

30.000

(0.217)

blocks-world:
16-4-45

43.000

(0.432)

27.000

(0.000)

44.000

(0.459)

28.000

(0.027)

blocks-world:
16-4-5

26.000

(0.036)

27.000

(0.071)

25.000

(0.000)

25.000

(0.000)

blocks-world:
16-4-83

30.000

(0.172)

25.000

(0.000)

31.000

(0.207)

25.000

(0.000)

diameterc-mst:
c_v15_a105_d6

314.000

(0.000)

314.000

(0.000)

314.000

(0.000)

314.000

(0.000)

diameterc-mst:
c_v15_a105_d9

290.000

(0.000)

290.000

(0.000)

290.000

(0.000)

290.000

(0.000)

diameterc-mst:
c_v20_a190_d4

349.000

(0.000)

349.000

(0.000)

349.000

(0.000)

349.000

(0.000)

diameterc-mst:
c_v20_a190_d9

332.000

(0.018)

327.000

(0.000)

335.000

(0.029)

341.000

(0.051)

diameterc-mst:
s_v40_a100_d7

N/A N/A 821.000

(0.240)

773.000

(0.000)

generalized-peacable-queens:
n11_q5

4.000

(0.000)

4.000

(0.000)

N/A N/A

generalized-peacable-queens:
n13_q5

N/A N/A N/A N/A

generalized-peacable-queens:
n25_q4

N/A N/A N/A N/A

generalized-peacable-queens:
n8_q3

4.000

(0.000)

4.000

(0.000)

4.000

(0.000)

4.000

(0.000)

generalized-peacable-queens:
n9_q5

N/A N/A 2.000

(0.000)

2.000

(0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

gfd-schedule:
n180f7d50m30k18_10124

N/A N/A 45.000

(0.000)

45.000

(0.000)

gfd-schedule:
n200f5d50m40k6_10124

N/A N/A 18.000

(0.000)

18.000

(0.000)

gfd-schedule:
n55f2d50m30k3_10124

9.000

(0.000)

9.000

(0.000)

9.000

(0.000)

9.000

(0.000)

gfd-schedule:
n60f7d50m30k10_10124

20.000

(0.000)

20.000

(0.000)

20.000

(0.000)

20.000

(0.000)

gfd-schedule:
n85f3d50m8k20_10124

N/A N/A 138.000

(0.000)

138.000

(0.000)

ma-path-finding:
ins_g16_p10_a20

240.000

(0.000)

240.000

(0.000)

240.000

(0.000)

240.000

(0.000)

ma-path-finding:
ins_g16_p10_a30

334.000

(0.000)

334.000

(0.000)

356.000

(0.062)

334.000

(0.000)

ma-path-finding:
ins_g16_p20_a30

723.000

(0.722)

401.000

(0.000)

609.000

(0.466)

413.000

(0.027)

ma-path-finding:
ins_g24_p20_a10

193.000

(0.000)

193.000

(0.000)

193.000

(0.000)

193.000

(0.000)

ma-path-finding:
ins_g32_p20_a10

409.000

(0.607)

253.000

(0.000)

319.000

(0.257)

275.000

(0.086)

nfc:
12_2_11

1132.000

(0.635)

1032.000

(0.453)

784.000

(0.000)

784.000

(0.000)

nfc:
18_3_12

1911.000

(0.931)

1662.000

(0.597)

1254.000

(0.048)

1218.000

(0.000)

nfc:
24_4_2

2828.000

(0.950)

2824.000

(0.946)

1856.000

(0.008)

1848.000

(0.000)

nfc:
30_5_12

3540.000

(0.976)

3310.000

(0.790)

2330.000

(0.000)

2340.000

(0.008)

nfc:
30_5_6

3030.000

(0.793)

2915.000

(0.000)

N/A N/A

roster-sickness:
large-2-2

191062.000

(0.000)

191062.000

(0.000)

191062.000

(0.000)

191062.000

(0.000)

roster-sickness:
large-2

247896.000

(0.000)

247896.000

(0.000)

247896.000

(0.000)

247896.000

(0.000)

roster-sickness:
large-4-2

233969.000

(0.000)

233969.000

(0.000)

233969.000

(0.000)

233969.000

(0.000)

roster-sickness:
large-4

217452.000

(0.006)

217464.000

(0.000)

217450.000

(0.007)

217438.000

(0.014)

roster-sickness:
small-4

14457.000

(0.000)

14457.000

(0.000)

14457.000

(0.000)

14457.000

(0.000)

spot5:
1405

551536.000

(0.270)

572547.000

(0.452)

520458.000

(0.000)

527464.000

(0.061)

spot5:
1506

451707.000

(0.393)

463707.000

(0.495)

405669.000

(0.000)

420577.000

(0.127)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

spot5:
404

116.000

(0.041)

120.000

(0.122)

116.000

(0.041)

114.000

(0.000)

spot5:
507

31425.000

(0.000)

32429.000

(0.090)

33439.000

(0.181)

32421.000

(0.090)

spot5:
509

38544.000

(0.000)

43473.000

(0.289)

44478.000

(0.349)

43492.000

(0.291)

stripboard:
common-emitter-complex

190.000

(0.833)

140.000

(0.000)

N/A N/A

stripboard:
common-emitter-simple

40.000

(0.000)

40.000

(0.000)

40.000

(0.000)

40.000

(0.000)

stripboard:
envelope-detector

110.000

(0.268)

80.000

(0.024)

130.000

(0.431)

77.000

(0.000)

stripboard:
nand-gate

90.000

(0.236)

56.000

(0.000)

N/A N/A

stripboard:
opamp-integrator

N/A N/A N/A N/A

sudoku_opt:
sudoku_p20

-3.000

(0.000)

-3.000

(0.000)

-3.000

(0.000)

-3.000

(0.000)

sudoku_opt:
sudoku_p22

229.000

(0.000)

229.000

(0.000)

229.000

(0.000)

229.000

(0.000)

sudoku_opt:
sudoku_p23

-227.000

(0.000)

-227.000

(0.000)

-227.000

(0.000)

-227.000

(0.000)

sudoku_opt:
sudoku_p29

-359.000

(0.000)

-359.000

(0.000)

-359.000

(0.000)

-359.000

(0.000)

sudoku_opt:
sudoku_p90

-55.000

(0.000)

-55.000

(0.000)

-55.000

(0.000)

-55.000

(0.000)

team-assignment:
data1_4_6

2948.000

(0.000)

2948.000

(0.000)

2948.000

(0.000)

2948.000

(0.000)

team-assignment:
data1_6_6

6970.000

(0.000)

6970.000

(0.000)

6970.000

(0.000)

6970.000

(0.000)

team-assignment:
data2_6_15

26773.000

(0.000)

26773.000

(0.000)

26773.000

(0.000)

26773.000

(0.000)

team-assignment:
data3_4_31

24622.000

(0.460)

27664.000

(0.378)

31584.000

(0.272)

41683.000

(0.000)

team-assignment:
data3_5_31

N/A N/A 37564.000

(0.105)

37674.000

(0.000)

tower:
100_100_20_100-04

88.000

(0.042)

50.000

(0.833)

90.000

(0.000)

86.000

(0.083)

tower:
tower_070_070_15_070-09

57.000

(0.000)

48.000

(0.167)

57.000

(0.000)

57.000

(0.000)

tower:
tower_070_070_15_085-09

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

tower:
tower_300_300_40_200-00

149.000

(0.122)

104.000

(0.513)

157.000

(0.052)

163.000

(0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

tower:
tower_500_500_50_300-01

167.000

(0.000)

111.000

(0.709)

167.000

(0.000)

153.000

(0.177)

traveling-tppv:
circ14cnonbal

504.000

(0.288)

474.000

(0.000)

480.000

(0.058)

474.000

(0.000)

traveling-tppv:
circ14enonbal

476.000

(0.367)

432.000

(0.000)

476.000

(0.367)

464.000

(0.267)

traveling-tppv:
circ20bnonbal

1498.000

(0.377)

1468.000

(0.262)

1482.000

(0.315)

1400.000

(0.000)

traveling-tppv:
circ20fnonbal

N/A N/A N/A N/A

traveling-tppv:
circ20jnonbal

1498.000

(0.611)

1428.000

(0.222)

1462.000

(0.411)

1388.000

(0.000)

triangular:
n10

20.000

(0.000)

20.000

(0.000)

20.000

(0.000)

20.000

(0.000)

triangular:
n18

38.000

(0.000)

35.000

(0.150)

38.000

(0.000)

34.000

(0.200)

triangular:
n24

52.000

(0.034)

43.000

(0.345)

53.000

(0.000)

41.000

(0.414)

triangular:
n30

67.000

(0.000)

58.000

(0.346)

67.000

(0.000)

53.000

(0.538)

triangular:
n39

89.000

(0.000)

61.000

(0.651)

68.000

(0.488)

66.000

(0.535)

vaccine:
v11

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

vaccine:
v7

45.000

(0.000)

45.000

(0.000)

43.000

(0.105)

45.000

(0.000)

vaccine:
v8

N/A N/A N/A N/A

vaccine:
v857

127.000

(0.000)

127.000

(0.000)

127.000

(0.000)

127.000

(0.000)

vaccine:
v946

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

85.000

(0.000)

wordpress:
Wordpress10_Offers500

42941.000

(0.210)

3232.000

(0.000)

3466.000

(0.001)

3350.000

(0.001)

wordpress:
Wordpress11_Offers500

33136.000

(0.124)

57195.000

(0.225)

3531.000

(0.000)

3464.000

(0.000)

wordpress:
Wordpress12_Offers500

67739.000

(0.312)

76868.000

(0.357)

3920.000

(0.000)

4004.000

(0.000)

wordpress:
Wordpress7_Offers500

2022.000

(0.000)

2116.000

(0.001)

2126.000

(0.001)

2022.000

(0.000)

wordpress:
Wordpress8_Offers500

6230.000

(0.027)

4124.000

(0.011)

2924.000

(0.002)

2674.000

(0.000)

yumi-static:
example_instance_4_GS_SG_yumi_...

482.000

(0.000)

482.000

(0.000)

509.000

(0.026)

482.000

(0.000)
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Table B.2: Best objective found after 10 minutes (N/A indicates no solution found) (Continued)

yumi-static:
p_10_GGGGG_GGGGG_yumi_grid_...

N/A N/A N/A N/A

yumi-static:
p_4_GG_GG_yumi_grid_setup_3_3

626.000

(0.000)

626.000

(0.000)

626.000

(0.000)

626.000

(0.000)

yumi-static:
p_4_GS_SG_yumi_grid_setup_3_3

595.000

(0.060)

617.000

(0.094)

589.000

(0.050)

557.000

(0.000)

yumi-static:
p_8_SSSSS_SSS_yumi_grid_setup_...

N/A N/A N/A N/A
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B.3. Integral

Table B.3: Integral of time (seconds) vs normalized edits plot

Default Default
with SBPS

Lookahead Lookahead
with SBPS

accap:
accap_a12_f100_t60

8.191

(1.000)

8.177

(0.998)

253.807

(30.988)

255.281

(31.168)

accap:
accap_a18_f140_t85

15.923

(1.000)

25.497

(1.601)

9.650

(0.606)

8.934

(0.561)

accap:
accap_a40_f800_t180

562.472

(1.000)

466.883

(0.830)

111.080

(0.197)

22.020

(0.039)

accap:
accap_a4_f30_t15

2.553

(1.000)

0.632

(0.248)

2.502

(0.980)

2.332

(0.914)

accap:
accap_a5_f40_t20

2.551

(1.000)

0.351

(0.137)

0.249

(0.098)

8.410

(3.297)

arithmetic-target:
4108_with_1_2_2_3_3_5_6_6_7_8_9

26.194

(1.000)

1.625

(0.062)

17.227

(0.658)

30.494

(1.164)

arithmetic-target:
6872_with_1_2_3_3_4_4_5_6_7_9_10

6.185

(1.000)

23.580

(3.812)

61.412

(9.929)

24.350

(3.937)

arithmetic-target:
814_with_1_2_4_6_6_7_8_9

4.132

(1.000)

3.715

(0.899)

0.577

(0.140)

0.563

(0.136)

arithmetic-target:
8657_with_1_1_2_3_4_4_5_5_8_9_50

40.005

(1.000)

3.187

(0.080)

138.337

(3.458)

35.798

(0.895)

arithmetic-target:
910_with_1_2_3_6_12_25_50_87

6.928

(1.000)

6.923

(0.999)

0.322

(0.046)

0.322

(0.046)

blocks-world:
16-4-13

73.426

(1.000)

42.808

(0.583)

716.147

(9.753)

725.440

(9.880)

blocks-world:
16-4-40

442.735

(1.000)

47.552

(0.107)

129.177

(0.292)

145.595

(0.329)

blocks-world:
16-4-45

510.588

(1.000)

315.119

(0.617)

386.154

(0.756)

219.309

(0.430)

blocks-world:
16-4-5

544.305

(1.000)

509.435

(0.936)

161.421

(0.297)

47.473

(0.087)

blocks-world:
16-4-83

190.179

(1.000)

363.861

(1.913)

175.088

(0.921)

188.036

(0.989)

diameterc-mst:
c_v15_a105_d6

1.955

(1.000)

0.058

(0.030)

2.749

(1.406)

3.489

(1.784)

diameterc-mst:
c_v15_a105_d9

0.499

(1.000)

0.389

(0.780)

14.279

(28.618)

7.041

(14.112)

diameterc-mst:
c_v20_a190_d4

0.170

(1.000)

0.249

(1.461)

1.762

(10.355)

0.748

(4.397)

diameterc-mst:
c_v20_a190_d9

16.865

(1.000)

8.453

(0.501)

46.610

(2.764)

57.153

(3.389)

diameterc-mst:
s_v40_a100_d7

1200.000

(1.000)

1200.000

(1.000)

390.787

(0.326)

335.481

(0.280)

Continued on next page
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

generalized-peacable-queens:
n11_q5

12.928

(1.000)

12.694

(0.982)

302.655

(23.411)

302.359

(23.388)

generalized-peacable-queens:
n13_q5

202.639

(1.000)

0.471

(0.002)

203.625

(1.005)

1200.000

(5.922)

generalized-peacable-queens:
n25_q4

N/A N/A N/A N/A

generalized-peacable-queens:
n8_q3

0.011

(1.000)

0.011

(1.000)

0.005

(0.455)

0.005

(0.455)

generalized-peacable-queens:
n9_q5

600.000

(1.000)

600.000

(1.000)

51.507

(0.086)

51.462

(0.086)

gfd-schedule:
n180f7d50m30k18_10124

1200.000

(1.000)

1200.000

(1.000)

5.963

(0.005)

2.534

(0.002)

gfd-schedule:
n200f5d50m40k6_10124

1200.000

(1.000)

1200.000

(1.000)

9.570

(0.008)

1.912

(0.002)

gfd-schedule:
n55f2d50m30k3_10124

1.460

(1.000)

0.641

(0.439)

0.031

(0.021)

0.016

(0.011)

gfd-schedule:
n60f7d50m30k10_10124

1.488

(1.000)

1.403

(0.943)

0.031

(0.021)

0.025

(0.017)

gfd-schedule:
n85f3d50m8k20_10124

572.406

(1.000)

216.460

(0.378)

0.367

(0.001)

0.179

(0.000)

ma-path-finding:
ins_g16_p10_a20

87.450

(1.000)

60.658

(0.694)

45.611

(0.522)

37.083

(0.424)

ma-path-finding:
ins_g16_p10_a30

298.886

(1.000)

158.425

(0.530)

404.728

(1.354)

300.305

(1.005)

ma-path-finding:
ins_g16_p20_a30

616.863

(1.000)

330.592

(0.536)

748.052

(1.213)

639.589

(1.037)

ma-path-finding:
ins_g24_p20_a10

81.999

(1.000)

64.134

(0.782)

80.204

(0.978)

64.695

(0.789)

ma-path-finding:
ins_g32_p20_a10

626.702

(1.000)

460.196

(0.734)

512.796

(0.818)

487.726

(0.778)

nfc:
12_2_11

381.041

(1.000)

271.814

(0.713)

0.013

(0.000)

0.022

(0.000)

nfc:
18_3_12

561.703

(1.000)

358.858

(0.639)

29.057

(0.052)

1.881

(0.003)

nfc:
24_4_2

575.903

(1.000)

567.456

(0.985)

4.775

(0.008)

5.425

(0.009)

nfc:
30_5_12

585.626

(1.000)

474.315

(0.810)

0.018

(0.000)

4.883

(0.008)

nfc:
30_5_6

479.826

(1.000)

0.037

(0.000)

1200.000

(2.501)

1200.000

(2.501)

roster-sickness:
large-2-2

0.018

(1.000)

0.020

(1.106)

0.079

(4.266)

0.070

(3.798)

roster-sickness:
large-2

0.066

(1.000)

0.088

(1.345)

0.180

(2.743)

0.191

(2.913)

Continued on next page
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

roster-sickness:
large-4-2

0.006

(1.000)

0.006

(1.000)

0.008

(1.333)

0.005

(0.833)

roster-sickness:
large-4

4.143

(1.000)

1.210

(0.292)

6.705

(1.618)

8.407

(2.029)

roster-sickness:
small-4

1.880

(1.000)

0.019

(0.010)

0.089

(0.047)

0.373

(0.198)

spot5:
1405

290.830

(1.000)

292.696

(1.006)

0.848

(0.003)

37.273

(0.128)

spot5:
1506

332.950

(1.000)

323.948

(0.973)

5.960

(0.018)

77.441

(0.233)

spot5:
404

43.946

(1.000)

78.585

(1.788)

33.159

(0.755)

10.170

(0.231)

spot5:
507

10.896

(1.000)

58.465

(5.366)

108.918

(9.996)

53.913

(4.948)

spot5:
509

126.504

(1.000)

197.310

(1.560)

209.241

(1.654)

175.631

(1.388)

stripboard:
common-emitter-complex

974.842

(1.000)

786.472

(0.807)

1200.000

(1.231)

1200.000

(1.231)

stripboard:
common-emitter-simple

13.263

(1.000)

23.561

(1.777)

25.614

(1.931)

11.870

(0.895)

stripboard:
envelope-detector

328.798

(1.000)

91.218

(0.277)

416.025

(1.265)

21.778

(0.066)

stripboard:
nand-gate

291.326

(1.000)

72.595

(0.249)

1200.000

(4.119)

275.438

(0.945)

stripboard:
opamp-integrator

N/A N/A N/A N/A

sudoku_opt:
sudoku_p20

0.706

(1.000)

0.704

(0.997)

2.020

(2.861)

2.063

(2.922)

sudoku_opt:
sudoku_p22

16.608

(1.000)

16.722

(1.007)

80.362

(4.839)

80.824

(4.867)

sudoku_opt:
sudoku_p23

4.159

(1.000)

4.226

(1.016)

9.355

(2.249)

9.531

(2.292)

sudoku_opt:
sudoku_p29

3.220

(1.000)

3.302

(1.025)

18.846

(5.853)

18.800

(5.839)

sudoku_opt:
sudoku_p90

0.105

(1.000)

0.108

(1.029)

0.095

(0.905)

0.096

(0.914)

team-assignment:
data1_4_6

0.020

(1.000)

0.022

(1.090)

0.007

(0.360)

0.005

(0.234)

team-assignment:
data1_6_6

0.037

(1.000)

0.075

(2.022)

0.016

(0.441)

0.155

(4.141)

team-assignment:
data2_6_15

183.286

(1.000)

139.957

(0.764)

137.957

(0.753)

41.305

(0.225)

team-assignment:
data3_4_31

474.804

(1.000)

393.635

(0.829)

164.114

(0.346)

1.236

(0.003)

Continued on next page



84 Appendix B. MiniZinc Challenge Results

Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

team-assignment:
data3_5_31

1200.000

(1.000)

1200.000

(1.000)

272.079

(0.227)

19.903

(0.017)

tower:
100_100_20_100-04

244.493

(1.000)

544.424

(2.227)

17.836

(0.073)

132.934

(0.544)

tower:
tower_070_070_15_070-09

79.882

(1.000)

147.488

(1.846)

144.905

(1.814)

46.465

(0.582)

tower:
tower_070_070_15_085-09

0.752

(1.000)

0.726

(0.965)

14.954

(19.886)

0.978

(1.300)

tower:
tower_300_300_40_200-00

279.066

(1.000)

480.956

(1.723)

58.470

(0.210)

63.744

(0.228)

tower:
tower_500_500_50_300-01

126.538

(1.000)

431.918

(3.413)

21.761

(0.172)

133.136

(1.052)

traveling-tppv:
circ14cnonbal

211.092

(1.000)

10.188

(0.048)

37.183

(0.176)

51.128

(0.242)

traveling-tppv:
circ14enonbal

243.462

(1.000)

96.448

(0.396)

231.493

(0.951)

189.891

(0.780)

traveling-tppv:
circ20bnonbal

267.195

(1.000)

286.708

(1.073)

204.821

(0.767)

122.152

(0.457)

traveling-tppv:
circ20fnonbal

N/A N/A N/A N/A

traveling-tppv:
circ20jnonbal

374.015

(1.000)

294.252

(0.787)

259.466

(0.694)

135.376

(0.362)

triangular:
n10

5.867

(1.000)

17.221

(2.935)

6.520

(1.111)

9.125

(1.555)

triangular:
n18

0.313

(1.000)

94.693

(302.968)

31.693

(101.401)

125.596

(401.843)

triangular:
n24

22.691

(1.000)

206.980

(9.122)

46.294

(2.040)

273.897

(12.071)

triangular:
n30

27.308

(1.000)

207.750

(7.608)

212.236

(7.772)

357.335

(13.085)

triangular:
n39

1.895

(1.000)

391.132

(206.428)

299.641

(158.141)

332.393

(175.427)

vaccine:
v11

254.590

(1.000)

24.998

(0.098)

581.574

(2.284)

383.854

(1.508)

vaccine:
v7

14.513

(1.000)

1.189

(0.082)

73.793

(5.085)

41.228

(2.841)

vaccine:
v8

N/A N/A N/A N/A

vaccine:
v857

6.864

(1.000)

0.936

(0.136)

7.192

(1.048)

5.033

(0.733)

vaccine:
v946

2.179

(1.000)

1.644

(0.754)

4.488

(2.059)

4.580

(2.102)

wordpress:
Wordpress10_Offers500

591.408

(1.000)

466.001

(0.788)

0.899

(0.002)

0.535

(0.001)

Continued on next page
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Table B.3: Integral of time (seconds) vs normalized edits plot (Continued)

wordpress:
Wordpress11_Offers500

1030.613

(1.000)

1090.051

(1.058)

0.403

(0.000)

0.260

(0.000)

wordpress:
Wordpress12_Offers500

1159.268

(1.000)

1154.145

(0.996)

0.261

(0.000)

0.880

(0.001)

wordpress:
Wordpress7_Offers500

21.966

(1.000)

2.869

(0.131)

0.475

(0.022)

0.015

(0.001)

wordpress:
Wordpress8_Offers500

184.791

(1.000)

113.892

(0.616)

1.154

(0.006)

0.297

(0.002)

yumi-static:
example_instance_4_GS_SG_yumi_...

97.672

(1.000)

51.436

(0.527)

21.359

(0.219)

17.066

(0.175)

yumi-static:
p_10_GGGGG_GGGGG_yumi_grid_...

N/A N/A N/A N/A

yumi-static:
p_4_GG_GG_yumi_grid_setup_3_3

11.931

(1.000)

10.971

(0.920)

7.826

(0.656)

23.230

(1.947)

yumi-static:
p_4_GS_SG_yumi_grid_setup_3_3

74.613

(1.000)

70.393

(0.943)

79.533

(1.066)

57.356

(0.769)

yumi-static:
p_8_SSSSS_SSS_yumi_grid_setup_...

N/A N/A N/A N/A
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Lookahead Chuffed value selection for constraint
optimization problems

Angelos Zoumis

TU Delft, The Netherlands

Abstract. Constraint programming solvers provide a generalizable ap-
proach to finding solutions for optimization problems. As constraint
programming is used for many real-world applications, such as bioin-
formatics, finance, telecommunications, engineering, and transportation
[12, 11], improving the performance of constraint programming solvers
on optimization problems is of great importance. A new ”lookahead” ap-
proach for value selection is developed that attempts to assist the solver
in finding near-optimal solutions faster. This approach works by tem-
porarily performing additional propagations before selecting a value and
then selecting the value that includes a more optimal solution within its
domain after propagation. When combining this approach with Chuffed
[2], this approach added a significant time overhead that increases the
overall solving time for many problems, with the lookahead configuration
having a median solve time of 8.67% for the optimization problems of the
MiniZinc Challenge 2022 [8]. However, the lookahead configuration was
able to find near-optimal solutions significantly faster than the default
value selection. In particular, for the same optimization problems, on
average, the lookahead configuration had a definite integral for the time
vs objective graph 54.70% lower than the default Chuffed configuration.

Keywords: Constraint Programming · Optimization problem · Chuffed
· Lookahead · Value Selection.

1 Introduction

Constraint programming (CP) is a powerful approach for solving a wide range
of problems involving constraints. It deals with the modelling of problems with
variables that are subject to constraints, and solving them by providing a set of
assignments to the variables, such that all constraints are satisfied. Furthermore,
for optimization problems, the variables also have to maximize an objective
function [10]. One of the main advantages of constraint programming is that it
only needs a model of the problem to work, instead of a tailor-made algorithm,
making them extremely versatile and generalizable.

Constraint programming has been applied to a wide range of real-world
problems, including scheduling, planning, resource allocation and configuration,
and design problems, for many different fields, such as bioinformatics, finance,
telecommunications, engineering, and transportation [12, 11]. For example, in
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scheduling, constraint programming can be used to find optimal, or near-optimal
schedules that take into account a wide range of constraints, such as resource
and personnel availability, and temporal constraints, while having an objective
function, like minimizing costs. Therefore, solving, but also finding near-optimal
answers for CP problems as quickly as possible is of great interest to many
companies that rely on CP solvers.

Despite many improvements, CP solvers still struggle to find optimal, or
near-optimal solutions at a reasonable time for certain problems in comparison
to other approaches to finding near-optimal solutions, such as heuristic solvers.
Therefore, the goal of this paper is to present a new value selection approach for
constraint optimization solvers that allow the discovery of near-optimal solutions
faster.

This research paper describes a lookahead approach for value selection that
attempt to prioritize reaching solutions with a more optimal optimization value
first.

The paper will be organized as follows. First, section 2 describes the back-
ground work of constraint programming. Next, the lookahead approach that
is developed will be presented in section 3. Continuing, section 4 details the
experimental setup and section 5 shows and analyzes the results. Section 6 dis-
cusses other related work, detailing different state-of-the-art techniques, focused
mainly on approaches affecting the branching of Chuffed. Section 7 discusses
various different possible future improvements to the lookahead approach, and
finally, section 8 presents the conclusion of the paper.

2 Background

This section details the background work on which the lookahead approach is
built. In particular, constraint programming will be detailed.

The main concept of Constraint programming is modelling a problem and
solving said problem through the use of CP solvers. Therefore the field of con-
straint programming is split into two sub-fields. One focused on the modelling of
the problems and the languages designed to implement said models. The second
field focuses on the algorithms used to solve or optimize said models [10].

2.1 Modeling

A constraint programming model describes the rules and restrictions of a prob-
lem. A constraint optimization model consists of 4 parts:

– Variables: The main part of a CP model is the set of variables that should
be assigned a value.

– Domain: The domain of possible values that the variable can be assigned.
Any assignment of values within the domain of each variable is a candidate
solution.

– Constraints: Each constraint is a condition that needs to be satisfied.
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– Objective function: Optionally, a model can have an objective function
that needs to be maximized or minimized based on the problem. The goal
of the research is to improve the performance of CP solvers in optimization
problems. Therefore, each used model will always have an objective function.

2.2 CP solvers

Constraint programming solvers take as an input a model and attempt to find
a solution, where each variable has an assigned value that is within the domain
of each variable while satisfying all the constraints and maximizing/minimizing
the optimization function. In general, algorithms that attempt to solve such
problems are split into two cooperating strategies, propagation or inference, and
branching or searching [10].

Propagation is a vital step in CP solvers, reducing the search space of can-
didate solutions, and enabling solvers to work more efficiently, especially as the
problem size increases. By default, using backtracking to solve constraint satis-
faction problems almost always leads to thrashing behaviours [10, 1]. Thrashing
is the repeated exploration of sets of subtree modules that are failing due to
the same assignments and only differ in assignments that are not related to the
cause of failure. As the size of the problem increases, and hence, the size of the
search space increases exponentially, thrashing becomes the main contributor to
running time in backtracking. Propagation can significantly reduce thrashing,
by making implicit constraints explicit, and removing values from the domains
of variables that are not consistent, meaning that these values produce a non-
satisfiable solution.

Searching is the task of navigating through the search tree of a problem, in or-
der to find a solution satisfying all constraints. Backtracking is the fundamental
search method for CP problems, as it guarantees to find a satisfactory solution if
one exists [10]. Backtracking builds up a partial solution, by selecting values for
variables until reaching a solution, or a conflict, at which point, it backtracks to
a previous decision where a different choice can be made, and makes a different
decision. This approach potentially visits all feasible partial solutions and hence
guarantees to find any existing satisfying solutions. This approach is better than
brute force, as it checks after each decision if the constraints are met, instead of
doing that only until a full solution is found. Hence, discovering that a partial
solution cannot satisfy all constraints prunes the subtree of that partial solu-
tion, resulting in multiple full solutions that do not satisfy all constraints being
removed from consideration.

3 Approach

This section describes the basic concept behind the lookahead value selection
algorithm, along with certain implementation details.
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3.1 Lookahead value selection

The lookahead approach presents a new method to perform value selection, where
certain propagations are prematurely performed, in order to observe how select-
ing a candidate value affects the domain of the optimization function.

Fig. 1: An example of the main components of the lookahead constraint pro-
gramming solver.

The core process of the lookahead approach is shown in figure 1. After VSIDS
selects an SAT variable, first, a lookahead propagation is performed for one
possible value for the variable, and the domain of the optimization function after
the lookahead propagation is recorded, if there are no conflicts. Next, similarly,
the lookahead propagation for the other possible value is performed, and again,
assuming no conflicts, the domain of the optimization function is recorded. After
both lookahead propagations are performed, the recorded optimization function
domains for the two possible values are compared. Finally, the value that has
the domain that has a more optimal value is ultimately selected.

In the case of a tie, the value that results in the smaller domain for the
optimal value is selected. This is based on the fail first strategy [6]. If one of
the lookaheads ends in a conflict, the lookahead performs an SAT analysis of
the conflict and selects the other value. This allows the solver to quickly learn
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additional clauses and nogoods. If a tie has not been resolved, the value is selected
based on the default behaviour of Chuffed.

The lookahead propagation performs the following steps. It takes as input
the selected variable and the candidate value, and first, create a temporary new
decision level. Then, it updates the value of the selected variable and enqueues
the updated clauses for propagation. After fully propagating, the updated op-
timization function domain is recorded, and if there has been a conflict, a sat
analysis is performed. After, a backjump is performed to the previous decision
level, essentially undoing all changes. Last, the recorded domain, and if there has
been a conflict is returned. Algorithm 1 show the pseudocode of this function.

Algorithm 1 Lookahead Propagation

function lookaheadPropagate(variable, value)
newDecisionLevel
assign[variable]← value
sat.enqueue(variable, value)
propagate
domain← optV al.domain
conflict← sat.conflict
if conflict then

sat.analyze
end if
backjump(previousDecisionLevel)
return domain, conflict

end function

3.2 Lookahead approach additions

Now that the main core of the lookahead approach has been designed, further
additions are made to the algorithm, in order to improve performance in specific
scenarios. These improvements include a slightly different variable selection when
many variables have the same activity score, preferring full solutions, even if the
domain could be further improved, a way to decrease unnecessary lookahead
propagations, and fully stopping lookaheads after a certain amount of conflicts.

First, from early testing, it was noted that the algorithm would often repeat-
edly pick SAT variables generated from the same integer variable, and iterate
toward one direction of its domain. Therefore, in order to avoid such a scenario,
when multiple variables have the same activity score, SAT variables generated
from boolean variables are prioritized. As the solver starts assigning different
activity scores to each variable the effect of this issue diminishes.

Continuing, in order to produce solutions faster, when one of the two can-
didate values produces a fixed value for the optimization function, that value is
preferred. In case both values lead to a solution, the more optimal solution is
preferred. This allows the solver to produce solutions more often and earlier.
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The next improvement reduces the number of lookahead propagations in
case of conflicts. Based on the current implementation, if one value results in a
conflict then there is no need to perform lookahead for both values. Therefore, by
always starting the lookahead propagation with the non-default value, if there is
a conflict after the propagation, then the default value can be selected without
the need for second a lookahead propagation. Based on these additions, algorithm
2 shows the full branch function for the lookahead approach.

Algorithm 2 Lookahead Branch

function lookaheadBranch
candidates← variables tied for the highest activity score
variable← an unassigned boolean variable from candidates if possible
value← default value for variable
domain0, conflict0 ← lookaheadPropagate(variable, !value)
if conflict0 then

return variable← value
end if
domain1, conflict1 ← lookaheadPropagate(variable, value)
if domain0 has a more optimal value than domain1 or (domain0 most optimal

solution is the same as domain1 and |domain0| < |domain1|) then
return variable←!value

end if
return variable← value

end function

Last, after finding the optimal, or near-optimal solution, the utility of the
lookahead approach diminishes, while the additional overhead of the lookahead
propagations makes the algorithm significantly slower. Based on early testing,
approximately 40% of the total solve time is spent on lookahead propagation,
where a significant number of that time is after the solver has found the best
solution. Stopping only after finding the first solution would not be ideal, as there
is a high chance the first solution found is still far from optimal. Therefore, it
was decided to use the number of conflicts caused after finding at least a solution
as a stopping criterion for the lookahead approach. This is because after finding
a near-optimal or optimal solution, the chance for a conflict to occur after a
decision increases, due to the stricter domain bounds.

The code for Chuffed with the lookahead approach can be found in the fol-
lowing repository: https://github.com/AZoumis/chuffed

4 Experimental Setup

This section describes the experimental setup along with the data that will be
used to test the performance of the lookahead algorithm.

To test the performance of the lookahead configuration, the implementation
of the lookahead configuration will be tested against the VSIDS [7] value selection
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of Chuffed without using the lookahead algorithm in certain metrics. Solution-
based phase saving (SBPS) [3] will also be compared and combined with the
lookahead implementation, as it is another value-selection heuristic that also
similarly attempts to improve the performance of the solver on optimization
problems.

The instances used will be the ones used for the MiniZinc challenge 2022 [8],
with a time limit of 10 minutes for each instance.

The following metrics are used:

1. Solve time: The time it takes for Chuffed to solve a problem, hence the time
it takes to find the optimal solution and prove optimality. This metric will
show which configurations are overall the fastest at fully solving a problem.
The graph is normalized in relation to the default configuration solve time,
with the default configuration solve time being 1.0.

2. Objective: The best objective value found within the 10-minute time limit.
The objective is normalized by setting the best value found by all config-
urations to 0.0, and the worst possible value found at any point by any
configuration to 1.0. If a configuration has not found any solution, the ob-
jective is set to 2.0.

3. Definite integral: The definite integral, or area under the graph of the
time vs objective graph of each instance. The y-axis, representing the best
objective found at a point in time is normalized the same way as the plain
objective metric. The overall integral is normalized in the same way as the
solve time, with the default configuration having a normalized integral value
of 1.0.

For calculating the mean for the solve time and integral, the geometric mean
is used, as it produces a mean that better represents the actual performance
differences between configurations [9].

5 Results

This section will present the averaged results for the lookahead approach, using
the MiniZinc challenge 2022 [8]. It is expected that this approach might have
an increased overall solve time due to the additional time overhead of this ap-
proach. However, when it comes to finding near-optimal and optimal solutions,
the approach is expected to perform best for problems where there is a clear
correlation between the objective function value and the variables selected, and
for larger instances, where with the default value selection, Chuffed struggles
to find near-optimal solutions. On the other hand, smaller instances with many
local minima solutions will likely cause the lookahead approach to perform worse
overall.

The MiniZinc challenge has a total of 95 optimization problem instances.
Within 10 minutes, the default Chuffed configuration is able to find a solution
satisfying all constraints for 82 out of the 95 problems, of which it proved op-
timality for 35. Continuing, SBPS found a satisfying solution for 82 instances
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Fig. 2: Total number of instances where a solution was found (orange), or opti-
mality was proved (blue)

and proved optimality for 38. Next, lookahead found a satisfying solution for
84 instances and proved optimality for 37. Last, lookahead with SBPS found a
satisfying solution for 84 instances and proved optimality for 38.

Based on these results, the look-ahead approach has only a small effect on if a
solution will be found. Nonetheless, both lookahead approaches were able to find
optimality for overall 2 more instances than the default Chuffed configuration.
However, SBPS was still able to fully solve 1 more instance when compared
to the lookahead approach without SBPS. Nonetheless, the lookahead approach
was able to find a satisfying solution for 2 more problems over the default and
SBPS.

Figure 3 shows the average time taken to fully solve an instance when com-
pared to default chuffed. In the case where the solver did not terminate within
10 minutes, the solve time is 600 seconds. The default lookahead has a solve
time of 94.10%, and the lookahead approach with SBPS has a solve time of
88.76%. Although the mean solve time is lower than the default configuration
solve time, looking at the IQR, the lower quartile and the medial are at 100%
for the lookahead configurations, indicating that for 75% of the problems, the
lookahead configurations had the same or slower solve time as the default con-
figuration. With high p-values of 0.58 and 0.38, the null hypothesis cannot be
rejected.



Lookahead Chuffed value selection for constraint optimization problems 9

Configuration Mean Lower
whisker

Lower
quar-
tile

Median Upper
quar-
tile

Upper
whisker

t-value p-value

Default with SBPS 0.941057 1 1 1 1 1 -1.2959 0.196599

Lookahead 0.932888 0.810253 1 1 1.14456 1.348515 -0.54847 0.584023

Lookahead with SBPS 0.88766 0.895206 1 1 1.071042 1.17427 -0.87913 0.380456

Fig. 3: Average solve time for each configuration

Figure 4 shows the solve time results, but filtered to include only instances
where at least one configuration managed to terminate before the 10-minute
time limit. The recorded means are slightly lower, with a value of 86.36% and
77.76% for the lookehaead and lookahead with SBPS configurations respectively.
Again, the p-values are similar to the ones recorded for figure 3, and therefore,
the null hypothesis cannot be rejected.

The median for both lookahead configurations is higher than the default
configuration, with 124.59% for the lookahead configuration, and 116.36% for the
lookahead configuration with SBPS. This indicates that the lookahead approach
potentially causes an overall time penalty to the total solve time. However, for
some instances, the lookahead configuration significantly improves the solve time,
leading to the mean being skewed towards a lower solve time.

The first reason why the lookahead configuration has a positive impact on
the solve time for some problems is that finding an improved solution faster
allows the solver to create stricter domains, creating many new nogoods, and
decreasing the total search space that has to be explored. Next, since the looka-
head approach performs a sat analysis when a lookahead leads to a conflict,
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Configuration Mean Lower
whisker

Lower
quar-
tile

Median Upper
quar-
tile

Upper
whisker

t-value p-value

Default with SBPS 0.87963 0.19366 0.596365 1 1.362735 2.132173 -1.3012 0.196587

Lookahead 0.863587 0.010923 0.928092 1.245853 1.543004 2.309313 -0.54619 0.586320

Lookahead with SBPS 0.777576 0.000942 0.519112 1.163622 2.107895 4.222537 -0.87793 0.382370

Fig. 4: Average solve time for each configuration, including only instances where
at least one configuration terminated before the time limit (45 instances)

and furthermore has a fail first strategy, where it biases decisions that decrease
the domain, it likely also creates many new clauses that limit the search space
even more. Therefore, it appears that overall, these performance benefits are
able to better overcome the time overhead of the lookahead approach for certain
instances.

Continuing, figure 5 shows the average best normalized objective found after
10 minutes. Here, 1 indicates the worse solution found throughout the search
by all solvers in this instance that satisfies all constraints, while 0 indicates the
best overall solution. A solution of 2 indicates that no solution was found. For
each configuration, in the order presented, a mean of 0.3436, 0.3178, 0.2234, and
0.2025 was recorded.

Although the means of the lookahead configurations are lower than the de-
fault configuration, with p-values of 0.12 and 0.07, the null hypothesis cannot
be rejected. One reason for this is likely due to the high variance introduced
by instances where no solution was found within the time limit. Therefore, it is
likely that removing these values could result in a lower p-value.
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Configuration Mean Lower
whisker

Lower
quar-
tile

Median Upper
quar-
tile

Upper
whisker

t-value p-value

Default 0.343589 0 0 0.000396 0.446037 1 0 1

Default with SBPS 0.317792 0 0 0 0.41497 1 -0.31251 0.754997

Lookahead 0.223408 0 0 0 0.166477 0.411111 -1.54846 0.123194

Lookahead with SBPS 0.202514 0 0 0 0.055776 0.12727 -1.8143 0.071225

Fig. 5: Best objective found after 10 minutes

Figure 6 shows the average best normalized objective found after 10 minutes,
excluding instances where at least one configuration did not find a solution
within the time limit. With the filtered results, the p-values for the lookahead
configuration are under 0.05, indicating that the null hypothesis can be rejected.
Therefore, it can be stated with high confidence that for problems where a
solution can be found within a time limit, the solution produced by the lookahead
configuration will be on average closer to the optimal than the solution produced
by the default configuration.
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Configuration Mean Lower
whisker

Lower
quar-
tile

Median Upper
quar-
tile

Upper
whisker

t-value p-value

Default 0.149093 0 0 0 0.191218 0.459642 0 1

Default with SBPS 0.141649 0 0 0 0.194444 0.452555 -0.17672 0.859957

Lookahead 0.074408 0 0 0 0.044602 0.105263 -2.05891 0.041166

Lookahead with SBPS 0.053656 0 0 0 0.009467 0.014514 -2.6927 0.007862

Fig. 6: Best objective found after 10 minutes, including only instances where all
configurations found a satisfying solution or terminated within the time limit
(79 instances)

Next, figure 7 shows the integral results compared to the default configura-
tion. Overall, a mean of 45.26% is observed for the lookahead approach, and a
mean of 39.48% is observed for the lookahead configuration with SBPS. Based
on these results, low enough p-values were recorded, which provides evidence
to reject the null hypothesis for all configurations. These results show the main
advantage of the lookahead configuration, enabling it to find near-optimal so-
lutions significantly faster than the default configuration, by better guiding the
solver towards near-optimal solutions significantly faster than the default value
selection.

SBPS was able to have a mean of 69.85%. However, when looking at the
IQR for SBPS, it ranges from 55.94%, up to 102.70%, while the range for the
lookahead and lookahead with SBPS ranges from 18.68% to 204.98%, and from
18.64%, up to 206.54% respectively. This indicates a higher variance in the ef-
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Configuration Mean Lower
whisker

Lower
quar-
tile

Median Upper
quar-
tile

Upper
whisker

t-value p-value

Default with SBPS 0.698456 7.72E-
05

0.559467 0.972961 1.027019 1.723453 -1.99523 0.047462

Lookahead 0.452958 3.05E-
05

0.186817 0.950841 2.049801 4.838752 -2.75152 0.006513

Lookahead with SBPS 0.394823 5.64E-
05

0.186463 0.894833 2.065496 4.86657 -3.12483 0.002061

Fig. 7: Average integral for each configuration

fectiveness of the lookahead approach when compared to SBPS, with many in-
stances resulting in an overall worse integral performance.

Based on the results, it appears that the lookahead approach can provide
significant advantages to Chuffed, for many optimization problems. In particular,
the lookahead approach on average managed to find near-optimal and optimal
solutions significantly faster than the default configuration. However, due to the
additional time overhead of this approach, the solve time is often increased, and
many problems and instances that do not greatly benefit from the lookahead
approach will overall perform worse, with an increase in time taken to find
similar solutions to the default configuration.
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6 Related Work

The following section discusses related work that was used to implement the
lookahead approach, such as MiniZinc and Chuffed, as well as other state-of-
the-art approaches used by CP solvers to improve performance.

One of the main ways of improving the branching performance was through
the use of heuristics, which better guide the solver through the search tree. One of
the earlier concepts of heuristics was using a lookahead procedure called forward
checking, which employs the most likely to fail principle, which branches on
decisions that are more likely to fail[6]. This heuristic was shown to perform
better than standard backtracking.

For hybrid CP-SAT solvers such as Chuffed, using SAT branching heuristics,
such as the Variable State Independent Decaying Sum (VSIDS) heuristic, can
further improve the variable selection[7]. VSIDS works by assigning an activity
score to each variable and increasing said score based on how many clauses that
variable is involved in. During branching, the variable with the highest activity
is selected. Through the use of additive bumping and multiplicative decay, a
bias towards variables that have a greater presence in recently learnt clauses is
created. Due to VSIDS being independent of the current state of assignments,
backtracking does not require any changes to the activity score, making this
heuristic incredibly efficient.

Solution-based phase saving (SBPS) tries to emulate local search, by attempt-
ing to search through the neighbourhood around the current best solution.[3].
This approach is useful for optimization problems, finding more optimal solu-
tions faster than the default value selection for certain problems. Similar to the
looked approach, SBPS also affects the value selection.

Additional approaches that improve the performance of Chuffed using Ma-
chine learning exist, such as initializing an activity score for VSIDS[4] or pre-
dicting unsatisfiable cores[5].

Overall, many techniques have been used to make CP solvers more efficient
for both satisfaction and optimization problems, and new techniques are con-
stantly being implemented that further improve the performance of solvers in
certain areas. Many of the mentioned heuristics rely on first gathering informa-
tion about the problem, making them less impactful at the start. The lookahead
approach attempts to better guide the SAT value selection, especially in the
early stages of computation.

7 Future Improvements

The main improvements for the lookahead approach concern decreasing the time
penalty of the additional lookahead propagations.

The first improvement would be to reuse the results of one of the lookahead
propagations. The propagation following the value selection should be equivalent
to the lookahead propagation for the same value. Therefore, using the outcome
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of the lookahead propagation, instead of recomputing the propagation after se-
lecting a value would help reduce the time penalty, as now, only a maximum of
1 additional propagation would occur, instead of 2.

Continuing, the two lookahead propagation could run in parallel, as the two
propagations do not rely on the outcome of the other in order to compute their
result. This should further reduce the time penalty of the lookahead configura-
tion.

Next, performing a lookahead for multiple variables, instead of the two values
for a single variable could improve the branching decisions made by the solver.
In particular, it would potentially reduce cases where the solver reaches local
minima and is unable to improve the objective, as it would provide more possible
decisions at each level.

Last, an improved stopping criterion that more accurately stops the looka-
head approach when it can no longer provide significant benefits to the solver
could improve the overall solve time.

8 Conclusion

The lookahead approach to value selection for optimization problems has an
average positive effect in regards to assisting the solver in finding near-optimal
solutions faster. In particular, the lookahead configuration had a definite in-
tegral for the time vs objective graph 54.70% lower than the default Chuffed
configuration on the generalized test suite.

Despite the overall improvements of the lookahead approach, performing
lookahead propagations has a significant time cost. Therefore, the total solve
time increased for most problems, despite the benefits of the approach. Further-
more, the time penalty also affects the early solution quality for many problems
that do not benefit from lookaheads.

Overall, the lookahead approach presents a way to better emulate the per-
formance of heuristic solvers, in particular, finding near-optimal solutions faster,
but causes an overall slight increase in the total solve time.
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