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12The Role of Haptic Interactions 
with Robots for Promoting Motor 
Learning 

Niek Beckers and Laura Marchal-Crespo 

Abstract 

Robot-assisted haptic training has the poten-
tial to facilitate motor learning and neurore-
habilitation for a diverse number of motor 
tasks, ranging from manipulating objects with 
unknown dynamics to relearning walking 
using robotic exoskeletons. In this chapter, 
we provide an overview of current haptic 
methods evaluated in motor (re)learning stud-
ies with the goal to discuss implications for 
the design of rehabilitation technology. We 
highlight the challenge point framework as a 
unifying view on how to guide the design of 
haptic training paradigms, based on the initial 
skill level of the learner and the characteristics 
of the task to be learned. Future work on 
robot-aided haptic training strategies should 
focus on adaptive training algorithms, provid-
ing more naturalistic congruent multisensory 

feedback that resembles out-of-the-lab train-
ing, and conduct long-term studies to assess 
the efficacy of haptic training on learning not 
only the trained task but importantly, on skill 
transfer to real tasks. 
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12.1 Introduction 

Humans go through a continuous process of 
acquiring new motor skills. Some skills are cru-
cial to meet fundamental needs such as ambula-
tion, nourishment, and self-care, and others 
involve more skilled movements that bring joy 
and sense to our lives, including playing sports, 
music, and dancing. We never stop learning new 
skills or brushing up on already gained skills. 
Despite their lower motor performance, elderly 
people still learn new motor skills [1] although at 
a slower rate [2, 3]. We might also encounter 
detrimental situations that demand us to relearn 
lost functions or learn other motor strategies to 
circumvent the loss of motor control through 
intensive neurorehabilitation, after suffering a 
brain injury. It is thought that motor learning and 
neurorehabilitation can be optimized by provid-
ing intensive meaningful movement training that

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08995-4_12&amp;domain=pdf
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promotes multi-sensory input to the central neu-
ral system (see Chap. 3). Given the impact on 
people’s lives, topics of motor learning and re-
learning of lost functions, and specifically how 
robotics can be employed to stimulate neurore-
habilitation, have been extensively studied—see 
reviews in [4–6]. 
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The possibility of using robotics to stimulate 
neurorehabilitation and motor learning is attrac-
tive because robots can provide controllable, 
repeatable, and intensive training paradigms 
while ensuring patients’ safety. Robots are gen-
erally used to assist the learner by physically 
guiding their limbs during movement training 
(haptic guidance) toward a physiological move-
ment or task goal, thus alleviating physical strain 
on therapists/trainers. Alternatively, robots could 
also be used to challenge the learner (haptic 
disturbance) to improve their task performance, 
by for example stimulating the exploration of 
novel training environments or novel movement 
strategies [4]. In addition, robots can provide 
haptic feedback, combined with other sensory 
modalities such as auditory and visual feedback, 
to stimulate motor learning [4, 5, 7]. 

While evidence is accumulating that haptic 
training could benefit the motor recovery of 
stroke patients [8, 9], the efficacy of robot-aided 
motor (re)learning in particular for healthy or 
less-severely impaired persons is not fully 
established yet. Although haptic guidance is 
often used in motor training to provide the cen-
tral nervous system with sensory input from 
physiological movements, there is currently little 
evidence that robotic guidance is more beneficial 
for human motor learning of healthy participants 
than unassisted practice [10, 11] or to a different 
form of guidance, such as auditory or visual 
feedback [4, 5]. Several studies have confirmed 
that only physically guiding movements to 
reduce performance errors does not aid motor 
learning and may, in fact, hamper it [12, 13]. 
Indeed, research in motor learning has stated that 
the learners’ effort and performance errors are 
crucial elements to drive motor learning [14, 15] 
and neuroplasticity [16]. Therefore, new haptic 
training methods have been proposed that make 
motor tasks more challenging, suggesting that 

enhancing or inducing errors, rather than reduc-
ing them, could be beneficial to some learners 
[17, 18]. 

Although the effectiveness of haptic training 
methods has been investigated by a myriad of 
motor learning studies, results remain inconclu-
sive. A potential rationale might be due to the 
diversity of the selected motor tasks to be 
learned, study protocol designs, selected haptic 
training methods, and the learners’ skill/disability 
level across studies. In this chapter, we provide 
an overview of current haptic training strategies 
and their effect on an individual’s motor learning. 
We end with the implications for robot-aided 
rehabilitation paradigms and possible research 
avenues. 

12.2 Haptic Training Methods 

Williams and Carnahan categorized the different 
haptic training methods into two main groups: 
performance-enhancing (haptic guidance) and 
performance-degrading (haptic disturbance) 
methods [11]. Performance-enhancing methods 
are commonly explored in robot-based therapy 
and encompass the haptic training methods that: 
(i) use a robotic device to haptically demon-
strate the desired tasks’ kinesthetic characteris-
tics while the learner remains passive (e.g., [19]); 
(ii) provide haptic cueing through tactile actua-
tors to signal the correct time to initiate an 
upcoming desired movement (e.g., [20]); (iii) use 
a robotic device to provide haptic assistance to 
guide a learner’s movements while the learner 
actively executes the motor task (e.g., [21]); and 
(iv) promote a participant’s motivation (e.g., [9, 
22]). Haptic assistance methods are derived from 
traditional physical and occupational therapy, in 
which therapists manually apply physical assis-
tance to aid patients in accomplishing their 
intended movements. 

Several different robotic controller designs 
can be found in the literature to provide haptic 
assistance, depending on which task features the 
experimenter is interested to teach (e.g., spatial, 
temporal, and/or spatiotemporal features). 
Among the most used controllers, we find



classical feedback controllers such as propor-
tional and/or derivative controllers that apply 
forces depending on the difference between the 
desired and actual position and/or velocity of the 
limb [23–26]. Path controllers are used to restrict 
the limb’s movement to an area around the 
desired trajectory by correcting the movement 
with forces that prohibit the limb to go outside of 
the predefined boundaries, providing safety while 
allowing for free movement [27, 28]. Other 
controllers apply a position-dependent velocity 
profile [29], enforce pre-recorded force profiles 
(haptic guidance in force) [30, 31], or match the 
frequency of a limb’s motion with that of a 
robotic device [32]. 
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While haptic guidance generally aims to 
reduce movement errors, research on motor 
learning has emphasized that errors are funda-
mental signals that drive motor adaptation [33, 
34]. Robotic strategies that deteriorate the 
learners’ performance during task execution are 
likely to increase effort, energy consumption, and 
attention [18, 19]. Thereby, researchers have 
proposed haptic disturbance methods that apply 
forces to degrade the performance during training 
rather than enhance performance (e.g., [14, 35]). 
One of the first haptic disturbance methods 
studied in literature aimed at amplifying the 
learners’ movements errors while they were 
executing the task (error augmentation) by 
applying forces to push learners away from the 
desired movement trajectory [17, 36, 37]. Other 
approaches used haptic resistance to the partici-
pant's limb movements during exercise, or force 
fields that required specific patterns of force 
generation [38, 39]. 

Not only the magnitude of the movement 
errors but also the history of the experienced 
errors drive motor learning. Variability in task 
execution, often assessed as variability in expe-
rienced movement errors, has also been shown to 
predict motor learning in unassisted reaching 
movements. Participants with higher task-
relevant motor variability improve faster their 
task performance compared to participants with 
lower motor variability [40]. Motor variability is 

believed to originate from noise in our motor 
system, in which a distinction is made between 
planning noise, originating in the brain, and ex-
ecution noise, emerging from the periphery (e.g., 
muscle activation noise, noise in neuronal 
transmission) [41]. Higher planning noise results 
in higher learning rates, while execution noise 
reduces learning rates; humans seem to optimally 
tune their learning rate to the planning and exe-
cution noise [42]. Yet, the causality of motor 
variability and motor learning still has to be fully 
established. 

Importantly, it is not well understood how 
motor variability, particularly motor variability 
stemming from planning noise, can be successfully 
stimulated by externally applying haptic forces. 
Some studies applied unexpected disturbing forces 
(haptic noise) during training [18, 35]. Other 
approaches aimed to hinder the participants’ nat-
ural motor variability as little as possible while still 
providing assistive forces when needed (minimal 
intervention), for example through using model 
predictive controllers [21]. 

In the majority of the aforementioned haptic 
training strategies, the controller parameters do 
not change during training (referred to as fixed 
guidance/disturbance). Fixed haptic training 
strategies often rely on manual tuning by a ther-
apist or teacher to adjust the haptic assistance/ 
resistance to account for interpersonal differences 
in skill and progress. Moreover, a learner’s per-
formance and learning state evolve over time, 
warranting training strategies that adapt accord-
ingly. A learner might initially benefit from haptic 
assistance that ensures movement with safety 
boundaries while exploring the task, and haptic 
disturbances to improve performance in later 
learning stages. This modulation can be achieved 
by adapting the controller’s parameters (e.g., the 
impedance) or applied haptic forces based on the 
online measurement of the learner’s performance 
(performance-based adaptive haptic training) 
[43–45]. Controller parameters can also be 
modulated based on the progression of the train-
ing, independent of the learner’s performance 
[28, 46, 47].
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12.3 Assessing Motor Learning 

Motor learning refers to permanent changes in 
performance in a motor task, together with a 
reduction of physical and mental effort, as a 
result of training [48]. Because the general aim of 
haptic training is to enhance a learner’s perfor-
mance in the long term, the evaluation of their 
learning progress should only be performed by 
assessing the learners’ performance before 
(baseline) and after (retention) the haptic train-
ing, when no assistance or resistance from the 
robot is applied. As a general guideline, retention 
tests should be performed at least 24 h after 
training to ensure the memory consolidation of 
the acquired skill, i.e., to assess long-term 
learning [11, 49–51]. Retention tests performed 
right after the training only assess short-term 
learning. 

As important as getting skilled in the trained 
task is to transfer the acquired skill to untrained 
altered versions of the trained motor task (gen-
eralization). This is especially important in 
neurorehabilitation, in which acquired or recov-
ered skills and functionalities during robotic 
rehabilitation are desired to be transferred to 
better function of activities of daily living, 
beyond the tasks trained during the rehabilitation 
sessions (e.g., [52]). Despite the importance of 
skill transfer in motor learning, only a few 
studies on haptic training methods have evalu-
ated long-term skill transfer using a modified 
albeit similar version of the trained tasks [18, 32, 
53], and even fewer studies assessed the skill 
generalization to real-life tasks [54, 55]. 

Different outcome metrics can be selected to 
evaluate motor learning depending on the 
movement aspects to be mastered. Performance 
metrics can be based on deviation from the 
desired movement path (spatial aspect, e.g., in 
[56]), the timing of an action (temporal aspects, 
e.g., in [57]), or a combination of temporal and 
spatial aspects, such as velocity error or move-
ment smoothness (spatiotemporal aspects, e.g., 
in [31, 58]). 

A common approach to quantify learning is 
by comparing average task performance before 
and after training. However, depending on the 
task, average task performance can be similar 
between highly skilled and lowly skilled learners. 
Task performance variability—e.g., the standard 
deviation of movement errors with respect to a 
movement goal at the beginning of a training 
period and at the end of a training period—could 
then be indicative of motor learning. Highly 
skilled learners often show lower task perfor-
mance variability compared to higher task vari-
ability in lower-skilled learners, e.g., in [26, 59, 
60]. 

The listed haptic training strategies might 
have contrasting effects on the learning of dif-
ferent movement aspects. For example, several 
studies have shown the benefit of haptic guidance 
in learning to reproduce the temporal—but not 
the spatial—characteristics of complex spa-
tiotemporal curves [24, 61]. Schmidt et al. also 
highlight the importance of measuring physical 
and mental effort [48], as less physical and 
mental effort are expected in the final stages of 
motor learning [62]. However, measurements of 
physical and mental effort are hardly conducted 
in motor learning experiments, probably because 
the objective measurement of physical effort 
(e.g., using electromyography [19]) and mental 
effort (e.g., brain activation [63]) is cumbersome. 

Along with mental effort, there are other rel-
evant psychological factors that might have an 
effect on motor learning. The OPTIMAL theory 
states that trainees’ motivation and attention 
enhance motor learning, possibly due to the 
release of dopamine [64]. Motivation has been 
shown to have both indirect (e.g., by increasing 
the number of movement repetitions) and direct 
(e.g., improving memory consolidation) positive 
effects on learning [9, 65]. Other psychological 
factors, such as the sense of agency—i.e., the 
feeling of being in control over our own move-
ments [66], or personality traits are less studied 
in the motor learning literature, yet might play an 
important role in motor learning [21, 67].
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12.4 Current Evidence 
of the Effectiveness of Haptic 
Methods on Motor (Re) 
Learning 

Several factors might play a role in the effec-
tiveness of robot-based training, making it chal-
lenging to compare the results from studies in 
which similar haptic training methods were 
employed for different tasks or different strate-
gies for similar tasks. It is generally accepted that 
the learner’s initial skill level might play a crucial 
role in the effectiveness of robotic training 
methods [4]. This finding is in line with the 
challenge point framework, which states that 
motor learning is enhanced when the difficulty of 
the motor task to be learned is matched with the 
learner’s skill level (Fig. 12.1) [68]. Skill is 
defined as the ability to perform a task “with 
maximum certainty and minimum outlay of 
energy, or of time and energy”, which progresses 
as a result of task practice [69, 70]. This learning 
progression has been proposed to follow three 
stages: a first cognitive stage (novice), a 

motor/associative stage (advanced), and a final 
autonomous stage (expert) [62]. The majority of 
studies on robot-aided motor learning have been 
conducted with novice learners during the cog-
nitive stage, while the number of studies on 
advanced learners and experts is scarce [4]. 

Fig. 12.1 Haptic training methods can help match the functional task difficulty to the learners’ skill level. Left figure: 
schematic representation of the optimal challenge points (gray circles) in relation to the learner’s skill level and 
functional task difficulty. According to the challenge point theory, motor learning is enhanced when the functional task 
difficulty is matched with the learner’s skill level, defined as their optimal challenge points. Right figure: examples of 
how haptic training methods can help adapt the functional task difficulty through modulating the conditional task 
difficulty such that the optimal challenge point (OCP) for a certain skill level is reached. For example, beginners can 
benefit from haptic assistance to decrease the functional task difficulty, and experts can benefit from haptic methods that 
challenge the learner. Figures adapted from [68] 

Although task difficulty has been studied in a 
large number of motor learning studies (e.g., [71, 
72]), a definition of the term has not yet been 
explicitly stated. Instead, three different but 
interconnected concepts are employed when 
talking about task difficulty: nominal task diffi-
culty, functional task difficulty, and conditional 
task difficulty. 

Nominal task difficulty can be defined as the 
objective and inherent challenge of the task to be 
learned due to the task’s spatial, temporal, and 
spatiotemporal performance requirements 
regardless of the differences between learners’ 
initial skill levels. In their recent review [4], 
Basalp et al. proposed a task classification tax-
onomy—an extension of the motor task organi-
zation introduced by Schmidt and Wrisberg in 
[70]—to categorize motor tasks depending on



their continuity (discrete vs. continuous), rhyth-
micity (single execution vs. rhythmic), and 
complexity—related to several factors, e.g., 
demands on attention, memory, and/or process-
ing capacity, or number of degrees of freedom, 
among others [7, 72]. Different motor task types, 
e.g., those that incorporate single task execution 
(e.g., pressing a key) versus rhythmic/repetitive 
motions (e.g., rowing or walking) have been 
shown to involve distinct control 
primitives/actions [73] and activate distinct brain 
areas [74]. Thus, haptic methods that support 
learning of one type of motor task might not be 
suitable to also support the learning of another 
task category [56, 75]. 
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The functional task difficulty depends on the 
initial skill level of the learner. It is related to 
how challenging the execution of the task itself is 
perceived by the—novice, advanced, or expert— 
learners during training. Importantly, providing 
haptic guidance or disturbance during training 
may change the challenge presented to the lear-
ner by modulating the amount of task-relevant 
information conveyed by the haptic training 
strategy (Fig. 12.1), which is referred to as the 
conditional task difficulty. Robots can adapt the 
conditional task difficulty, for example by mod-
ulating the task environment—e.g., changing the 
simulated water density in a rowing task (e.g., 
[76])—or by haptically assisting/challenging the 
learners (e.g., [27]). 

Current evidence supports the idea that the 
(lack of) effectiveness of state-of-the-art haptic 
methods can be explained by the challenge point 
framework. In particular, the effectiveness of 
haptic training seems to depend on: (1) the 
nominal task difficulty; (2) the task-relevant 
information conveyed by the haptic training 
method (conditional task difficulty); and (3) the 
initial skill level of the learner (functional task 
difficulty). 

When learners face the training of tasks with 
low nominal difficulty, for example, simple 
motor tasks such as steering a virtual car without 
dynamics [35] or synchronizing between leg 
movements [19], it was observed that the learn-
ers’ initial skill level was adequate to success-
fully learn the task. Thus, training with haptic 

methods did not promote motor learning in par-
ticularly simple tasks. Learning benefits of haptic 
methods over training without haptics were 
observed when learning tasks with higher nom-
inal difficulty, e.g., steering nonholonomic vehi-
cles [23, 28] and tracking of letters [31]. 

However, when haptic training was compared 
to training with other forms of feedback—e.g., 
visual feedback provided in virtual environments 
[47] or  terminal feedback (i.e., knowledge of 
results and performance after the task is per-
formed [5], no evident differences in motor 
learning were found between feedback modali-
ties. Thus, for a general sample of healthy 
learners, providing task-relevant information 
(conditional task difficulty) by other sources of 
feedback (e.g., visual or auditory) might promote 
motor learning at the same level as haptic 
methods. Nevertheless, when other sources of 
feedback are not available and/or when the initial 
skill/disability level of the learners is too low to 
perform the task by themselves in a safe and 
motivating environment, the employment of 
haptic training might be effective to enhance 
learning. 

Indeed, performance-enhancing haptic meth-
ods seem to be especially promising in promot-
ing motor learning in initially less skilled 
(novice) healthy participants [57, 77], children 
[46, 78], and in brain-injured patients [9, 79]. 
Healthy novices seem to benefit from 
performance-enhancing haptic methods to learn 
the spatial (e.g., reducing the spatial error during 
path tracing tasks [39, 80]), temporal (e.g., tim-
ing turning in curves [23, 78]), and spatiotem-
poral aspects of the tasks (e.g., learning velocities 
[26]). This enhanced learning is probably due to 
the robotic assistance reducing the conditional 
task difficulty, and thereby, optimally challeng-
ing novices. The studies conducted with children, 
who usually adapt at slower rates [81], further 
support these findings [46]. Studies performed 
with neurologic patients seem to be in line with 
these findings, especially in the learning of the 
task’s temporal aspects [9, 79]. 

Performance-degrading haptic methods, on 
the other hand, might provide a more optimal 
task challenge to advanced learners, by



increasing the learner’s effort and attention [18, 
19] and by promoting the exploration of more 
advanced movements to achieve the task more 
efficiently [26]. Although only a few studies with 
rather small sample sizes have been conducted 
with advanced and expert learners, initial find-
ings suggest that performance-degrading haptic 
methods are especially beneficial for learning 
spatial aspects of the tasks, but not temporal nor 
spatiotemporal aspects, in initially more skilled 
participants. The limited effectiveness of haptic 
disturbance methods to improve temporal and 
spatiotemporal aspects might be due to the 
design of these methods, as most error augmen-
tation methods have been designed to only aug-
ment spatial errors [37, 55]. 
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Haptic error augmentation and haptic noise 
increase movement variability and—although 
results are still inconclusive—could benefit 
advanced learners more than novices [18, 57]. 
Haptic error augmentation methods have also 
been found to be more effective than conven-
tional repetitive training (e.g., [17, 82, 83]) and 
performance-enhancing haptic methods (e.g., 
[17, 84, 85]) for re-learning motor tasks’ spatial 
aspects in neurologic patients. Yet, caution 
should be put when designing performance-
degrading methods, as in some cases, the per-
formance degradation might result in a decrease 
of the learners’ perceived competence, hamper-
ing learners’ motivation [26], and therefore, 
potentially hindering motor learning [64]. 

12.5 Implications for Rehabilitation 
Technology Design 

12.5.1 The Personal and Temporal 
Nature of Motor 
Learning Highlights 
the Need for Adaptive 
Haptic Training 
Paradigms 

As outlined earlier, current evidence highlights 
the essential role that the learner’s initial skill 
level plays in the effectiveness of the different 
haptics methods on motor learning. As stated by 

the challenge point framework, motor learning 
can be maximized when the difficulty of the task 
to be learned matches the current learner’s skill 
level [68]. Thus, adapting the haptic methods to 
adjust the task difficulty to match the learner’s 
ongoing performance may have direct positive 
effects (i.e., by providing the optimal amount of 
information to enhance the performance and 
prevent slacking), and indirect effects (e.g., by 
enhancing learner’s motivation and agency) on 
motor learning. 

Although recent efforts have been made to 
develop adaptive algorithms (e.g., [43, 45, 86– 
88]), those have not yet been extensively inves-
tigated in motor learning studies. Most studies 
assess adaptive algorithms for haptic assistance 
over short time periods, ranging from hours to a 
few days, likely for practical reasons. Yet, 
learning is a long-term process that typically 
starts at a cognitive stage when the learner is still 
a novice and ends in an autonomous stage as a 
skillful performer or expert [62]. So, the 
requirements for haptic training paradigms 
depend on the learning stage over extended 
periods of time, in which the haptic training 
could be used to appropriately challenge the 
learners to promote their learning. Systematic 
studies showed that different learners need dif-
ferent types and levels of assistance, and adaptive 
paradigms need to appropriately account for 
these differences across individuals and time. 

The majority of the adaptive haptic training 
paradigms focus on isolated aspects of motor 
learning, including cognitive and/or physical 
states, yet due to the interdependence of the 
factors governing motor learning, there is a need 
for holistic approaches that combine the insights 
gained in haptic training studies. Recent artificial 
intelligence (AI) approaches for therapy person-
alization have yielded promising results [89–91]; 
however, there are raising concerns about the 
interpretability and trustworthiness of opaque-
box algorithms [92–94]. Furthermore, previous 
research only employed single metrics (i.e., sin-
gle performance metrics, e.g., ongoing tracking 
error), which are, given the complexity of an 
individual’s recovery process, inherently a poor 
descriptor of the overall patient characterization.



These limitations might be mitigated by devel-
oping novel therapist-in-the-loop personalization 
approaches that combine machine learning to 
learn and identify meaningful features that define 
the current cognitive and motor status of the 
patient from large amounts of high-dimensional 
data—e.g., biomechanical and physiological 
metrics—with the possibility to explicitly model 
the therapists’ reasoning (e.g., using symbolic 
AI) to provide explainable, trustworthy, and 
interpretable therapy recommendations, such as 
the level of challenge for the learner, for example 
by adapting the task difficulty. 

254 N. Beckers and L. Marchal-Crespo

12.5.2 Appropriate Delivery 
of Task-Relevant 
Information Provided 
by Haptic Training 
Methods is Key 
to Enhance Motor 
Learning and Transfer 

As (re)training functional motor tasks involves 
physical interaction with tangible objects, haptic 
training methods might impede motor learning if 
the haptic feedback hinders the learner’s per-
ception of task-relevant information. Such task-
relevant information includes somatic (proprio-
ceptive and tactile) information from the inter-
action with the environment (e.g., tangible 
objects) which is crucial for fine motor control 
[95, 96] and motor (re)learning [97–99]. 

The corrupted perception of task-relevant 
information during robotic training might be 
behind the observed (poor) transfer of learning 
from the virtual training environment to real-life 
tasks [7]. Current rehabilitation robotics does not 
support patients in regaining the functional move-
ments needed to perform their activities of daily 
living and achieve their independence [100, 101]. 
Despite the crucial role that physiological sensory 
information plays in motor learning and neurore-
habilitation (see Chap. 3), current haptic strategies 
rely on rather abstract visual feedback while 
meaningful somatic information from the interac-
tion with virtual tangible objects/environments is 
neglected [98, 102]. Only a few studies have 

incorporated haptic rendering—i.e., the simulation 
of the interaction forces between humans and tan-
gible virtual objects/environments—into motor 
learning studies [21, 56, 76, 99]. This is probably 
due to the limitations of the used robots, especially 
the bulky and heavy exoskeletons employed in 
clinical settings, as they suffer from low trans-
parency, which limits their capability to haptically 
render these informative interaction forces. 

The learners’ perception of the haptic ren-
dering might also be hampered because the for-
ces from the haptic rendering and the 
assistive/resistive haptic forces are provided 
from the same actuators. Several efforts have 
been made to provide these different forces in a 
way that the interference is minimized. For 
example, Power and O’Malley evaluated the 
effect on motor learning of separating the 
assisting forces from the task rendered haptic 
forces (a spring-damper dynamic system) spa-
tially (i.e., using different robotic devices), or 
temporally (i.e., by the sequential provision of 
the assisting and haptic rendering forces [56]). 
None of these strategies was found to be effective 
in learning the dynamic task, which the authors 
attributed to the difficulty to interpret the feed-
back designs. More recent attempts to disentan-
gle the assistive from the haptic rendering forces 
include solutions that employ robots to provide 
the task-relevant kinesthetic haptic rendering, 
while assistive guidance is provided through 
cutaneous skin stretch devices [103]. 

It is also important to take into account whe-
ther the learner perceives the haptic training 
forces as intended. Several studies suggest that 
human force perception, both magnitude and 
direction, is impacted by uncertainty (random 
errors) and systematic errors (biases). Systematic 
errors in force magnitude perception often man-
ifest in incorrect force reproductions: humans 
typically reproduce higher forces than the pre-
sented force, indicating that we overestimate 
externally applied forces, such as an interaction 
force [104–106]. For low force levels (<10 N), 
humans seem to rely more on position sensory 
feedback than on force sensory feedback [107]. 
In addition, humans are inaccurate in estimating 
the direction of an applied force [108] and



reproducing the direction and magnitude of the 
applied force [109]. Hence, the question remains: 
how accurately the learner perceives and subse-
quently interprets the information provided by 
the haptic training forces, in particular when 
these forces can change in direction and magni-
tude quickly? Also, how should this knowledge 
be taken into account when designing haptic 
training methods? 
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Finally, the haptic training strategy may also 
alter the learners’ perception of the intended goal 
of the task to be learned. For example, in a virtual 
tracking task, researchers found that participants 
trained with error amplification—with repulsive 
forces that systematically pushed them to the 
opposite direction of the correct movement—got 
used to their low performance instead of trying to 
improve their tracking skills [36]. In addition, 
when the assistive forces do not align with the 
learner’s own goal or how to reach that goal, 
conflicts between the learner and robot controller 
can occur. Interaction conflicts can impact 
learning and can even lead to disuse of the haptic 
training [110]. Therefore, when designing haptic 
methods, the task goals should be clearly estab-
lished, communicated, and reachable. 

In short, the provision of more naturalistic 
congruent visuo-haptic feedback might grant a 
more optimal training environment that might 
promote motor learning, and importantly, the 
transfer of skills gained during robotic training to 
real-life activities [7, 111]. Besides providing 
more realistic interactions with tangible virtual 
objects [99], providing a more naturalistic 
visualization of the learners’ movements within 
the virtual environment might enhance motor 
learning and transfer [7]. To this date, most 
motor learning studies have provided a rather 
abstract visualization of the performed move-
ments on computer screens, televisions, or pro-
jection systems. The reduced depth cues 
provided by these displays and the visuospatial 
transformation from the movements performed in 
the three-dimensional space to their two-
dimensional visualization on conventional 
screen are far from being natural, realistic, and 
might enhance the trainees’ cognitive load, and 
thus, negatively impact learning [112]. New 

off-the-shelf virtual or augmented reality head-
mounted displays offer the possibility to provide 
a more naturalistic virtual representation of the 
trainers’ movements, for example by employing 
an avatar from a first-person perspective, that 
might reduce the cognitive load, enhance the 
sense of agency, and importantly, result in higher 
motivation [113]. 

12.5.3 Long-Term Effects 
and Generalization 
of Learning of Haptic 
Training Need More 
Attention 

The primary goal of haptic training is to facilitate 
long-term learning and generalization of motor 
skills. However, most haptic training paradigms 
are only assessed on short-term learning with 
retention tests right after the training is finished, 
possibly under- or overestimating their benefits. 
Therefore, in future studies, researchers are 
encouraged to conduct long-term transfer tests, 
along with the delayed retention tests (at least 
24 h after training is finished), for a more thor-
ough investigation of the effectiveness of haptic 
training methods. 

12.5.4 More Research is Needed 
to Understand How 
Haptic Trainings Could 
Modulate Motor 
Variability to Stimulate 
Motor Learning 

Research on unassisted human motor learning 
found evidence that motor learning rate is posi-
tively correlated with the learner’s motor vari-
ability [40], specifically the planning noise 
originating from the brain [42]. Some studies 
attempted to increase task-related motor vari-
ability through haptic forces (e.g., haptic noise or 
force disturbances) in order to modulate a lear-
ner’s motor variability to subsequently stimulate 
learning [36, 114, 115]. However, it is unclear 
whether and how externally provided haptic



forces can indeed modulate the learner’s internal 
motor variability to facilitate learning through 
exploration, e.g., specifically their planning noise 
as hypothesized by researchers [41, 42]. Hence, 
despite the accumulating evidence of the impact 
of motor variability on motor learning in funda-
mental motor learning research, more research is 
needed before it can be used to inform the design 
of haptic training paradigms. 
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12.6 Conclusion 

Current evidence from robot-aided motor (re) 
learning studies indicates that the effectiveness of 
the haptic training strategies on motor learning 
and neurorehabilitation could mainly be 
explained by the challenge point framework [68]. 
The functional task difficulty, nominal task dif-
ficulty, and conditional task difficulty play cen-
tral roles in the effectiveness of robot-aided 
training. Performance-enhancing haptic training 
methods seem to be especially effective for 
novice learners and to train the temporal aspects 
of the task, while performance-degrading haptic 
methods might be more effective when training 
more skilled participants, especially in learning 
the spatial aspects of the tasks. 

The findings from studies with brain-injured 
patients are in line with those from motor 
learning studies with healthy participants. This is 
an important observation, as the gained insights 
from past and future studies with healthy par-
ticipants could be leveraged to improve current 
robotic-aided neurorehabilitation paradigms. 
Although haptic training was found to be as 
effective as training with other feedback modal-
ities in healthy participants, brain-injured patients 
might still benefit from the robotic assistance 
when facing too difficult or frustrating tasks. 

Based on the current evidence, we suggest 
that future research should focus on designing 
adaptive algorithms that can accommodate the 
learner’s skill, progress level, and learning 
strategy by identifying and reducing hindrances 
that could impede learning, or by challenging 
more skilled learners. Finally, to enhance motor 
learning and the transfer of the gained skill 

during robot-aided training to real life, future 
research should focus on: (1) providing more 
naturalistic multisensory feedback that resembles 
out-of-the-lab training and (2) conducting long-
term studies including transfer tests. 
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