
Haohua Gan

MSc thesis in Geomatics

Exploration of algorithms for
extracting wireframe models from
man-made urban linear object
point clouds

2025

MSc thesis in Geomatics

Exploration of algorithms for extracting
wireframe models from man-made
urban linear object point clouds

Haohua Gan

June 2025

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Haohua Gan: Exploration of algorithms for extracting wireframe models from man-made urban
linear object point clouds (2025)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Hugo Ledoux
Weixiao Gao

Co-reader: Shenglan Du

http://creativecommons.org/licenses/by/4.0/

Abstract

This thesis addresses the challenge of extracting wireframe models which consist of 3d line
segments from point clouds of man-made urban linear objects, with a specific focus on
power lines and pylons. Wireframe models are essential for various applications including
3D city modeling, infrastructure monitoring, and urban planning. However, the automatic
extraction of accurate wireframes from sparse airborne LiDAR point clouds remains chal-
lenging due to the complexity of these structures. Current wireframe extraction research ei-
ther require high-quality data for model fitting or depend on complex pre-processing steps,
lacking generality. To address these challenges, this thesis proposes a comprehensive evalu-
ation of multiple wireframe extraction approaches and introduces an energy minimization
framework which aims to address the limitations of the existing algorithms.

This thesis investigates four different algorithms for wireframe extraction: 3D RANSAC,
3D-2D RANSAC, Region Growing, and Hough Transform to address their limitations. Ad-
ditionally, an approach of energy minimization for Markov Random Field is proposed to
explore the potential of energy minimization methods in wireframe model extraction. Each
algorithm is evaluated using a dataset of power lines and pylons from the Netherlands, with
manually extracted wireframes serving as ground truth.

Experimental results demonstrate that each algorithm exhibits distinct advantages and limi-
tations. The 3D RANSAC algorithm struggles with cylinder radius estimation and overlooks
significant portions of input data. The 3D-2D RANSAC approach reduces dependency on
normal estimation but still faces challenges with fitting accuracy. Region Growing achieves
lower overlooking rates but suffers from scattered distribution of extracted elements. Hough
Transform performs well on simple structures without requiring normal information but
becomes computationally expensive for complex cases. The proposed energy minimization
method shows promising results in preserving structural integrity by processing dense input
graphs, particularly for complex structures with internal components.

Common limitations across all approaches include difficulties in normal estimation from
sparse point clouds, misalignment between extracted primitives and ground truth, and chal-
lenges in balancing completeness and accuracy. The research emphasizes the complexity of
wireframe extraction from point clouds and provides insights for developing more robust
methods that combine the strengths of different approaches while addressing their mutual
limitations.

Keywords: Point Cloud Processing, Wireframe Extraction, RANSAC, Region Growing, Hough
Transform, Energy Minimization, Markov Random Field

v

Acknowledgements

I would like to express my gratitude to my supervisors, Hugo Ledoux and Weixiao Gao,
for their guidance and support throughout the project. Their expertise and insights were
invaluable in shaping the research and the final results. Their patience and encouragement
were crucial in keeping me motivated and on track. Also, I would like to thank Shenglan
Du for her comments and suggestions on the report.

During my stuides, my family and friends have always been my biggest support. I would
like to thank my parents for their support and encouragement, even though they are far
away from me. I would also like to thank my friends for their help, support and company,
without them, my studies would have been much harder.

Finally, much thanks to whoever made this LaTeX template :P.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions and the scope of research . 4
1.3 Thesis overview . 5

2 Theoretical background & Related work 7
2.1 Theoretical background . 7

2.1.1 Primitive detection methods . 7
2.1.2 Energy minimization for Markov Random Field 10

2.2 Existing research on geometric model extraction from point clouds 11
2.2.1 Geometric model extraction using primitive detection methods 11
2.2.2 Geometric model extraction using energy minimization methods 13
2.2.3 Summary of existing research . 13

3 Methodology 15
3.1 Primitive detection for 3D line segments . 16

3.1.1 RANSAC . 16
3.1.2 Region Growing . 19
3.1.3 Hough Transform . 20

3.2 Energy Minimization for Markov Random Field 22

4 Experiments 25
4.1 Dataset creation and usage . 25
4.2 Implementation specifics . 26
4.3 Results and analysis . 28

4.3.1 Parameter settings . 28
4.3.2 Analysis method . 29
4.3.3 Results and statistics . 30

5 Conclusion, Discussion and Future work 49
5.1 Conclusion . 49
5.2 Discussion . 50

5.2.1 Potential of the cooperation of multiple algorithms 50
5.2.2 Contributions of this thesis . 51

5.3 Future work . 52
5.3.1 Integration of Primitive Detection Results with Energy Minimization . 52
5.3.2 Graph-based Region Growing with Energy Minimization 52

A Reproducibility self-assessment 55
A.1 Marks for each of the criteria . 55
A.2 Self-reflection . 56

ix

List of Figures

1.1 Applications of 3D city models [Biljecki et al., 2015] 1
1.2 Large-scale airborne lidar point cloud containing man-made urban linear ob-

jects (power lines and pylons) . 2
1.3 3D reconstruction process of a pylon base: (a) Point cloud, (b) Extraction re-

sult, a wireframe model consisting of 3D line segments, (c) Reconstruction
result, consisting of 3D shape models that are fitted to the line segments
[Kawasaki and Masuda, 2023] . 2

1.4 Examples of pylon models with different tower body styles 3
1.5 Examples of wireframe models of man-made urban linear objects extracted

from point clouds . 4

2.1 The four types of geometric shape primitives defined in Schnabel et al. [2007],
figure from [Li et al., 2011] . 8

2.2 Examples of region growing results for: (a) plane extraction [The CGAL
Project, 2024], (b) cylindrical shape extraction [Nurunnabi et al., 2012] 9

2.3 Examples of Hough Transform (HT) results for 3D line extraction [Dalitz et al.,
2017] . 10

3.1 Methodology . 15
3.2 Three types of primitives applied in Random Sample Consensus (RANSAC) al-

gorithm: (a) 3D cylinder primitive, (b) 3D plane primitive, (c) 2D line segment
primitive . 16

3.3 The planarity of man-made urban linear objects: (a) A 3D power line point
cloud, (b) A fitted plane to the power line; (c) A 3D pylon point cloud, (d)
Fitted planes to the pylon . 17

3.4 Roberts’ line representation with azimuth ϕ and elevation θ (left) and the
intersection point (x′, y′) between the direction vector b⃗ and the perpendicular
plane crossing the origin (right) [Dalitz et al., 2017] 21

3.5 Icosahedron after 0, 1, 2 tessellation steps, with 12, 21, 81 number of directions
respectively [Dalitz et al., 2017] . 21

3.6 The finite accumulator (voting array) of the parameter space 22
3.7 A cylinder constructed from an edge. d is the extended distance for both end

points of the edge . 23

4.1 Workflow in Rhino 7. (a) Move the point cloud to the origin; (b) Rotate the
point cloud to align with the axes; (c) Manually draw the wireframe models;
(d) Explode the polylines into individual line segments. 26

4.2 Dataset used in this project (blue: points, red: manually extracted wireframe
models) . 27

4.3 Example of inputs for analysis . 29
4.4 (a) k-Nearest Neighbors (kNN) normal estimation for point cloud 4.2a, k = 16;

(b) Internal structure (red) and External structure (blue) of point cloud 4.2d . . 33

xi

List of Figures

4.5 Comparison of 2D line fitting using original iterative process and the voting-
based process, performed on a Principal Components Analysis (PCA) 2D-projection
of point cloud 4.2d. 36

4.6 (a) Wrong fitting of extracted cylinders from region growing; (b) Points with
different normal estimation results. 37

4.7 Wrong fitting of extracted line segments from Hough Transform. 41
4.8 Edge matching result of 4.2a . 43
4.9 Edge matching result of 4.2c . 45
4.10 Edge matching result of 4.2d . 46
4.11 External edges of the pylon (covered in red box). 46
4.12 λ tuning for Energy minimization . 47

5.1 Example of the cooperation of the primitive detection algorithm and the en-
ergy minimization for Markov Random Field (MRF) algorithm. (a) Input point
cloud. (b) Primitive detection result. (c) Graph constructed from the primitive
detection result. 50

5.2 Example of performing the region growing algorithm on the graph constructed
from the input point cloud. (a) Input graph. (b) Segmentation result. (c) New
graph constructed from the segmentation result. 51

A.1 Reproducibility criteria to be assessed. 55

xii

List of Tables

4.1 Parameter ranges of 3D RANSAC . 28
4.2 Parameter ranges of 3D-2D RANSAC . 29
4.3 Parameter ranges of Region Growing . 29
4.4 Parameter settings of 3D RANSAC for each point cloud 30
4.5 Results of 3D RANSAC for each point cloud . 31
4.6 Leftover rate of 3D RANSAC for each point cloud 32
4.7 Unmatched rate of 3D RANSAC for each point cloud 32
4.8 Distance analysis of 3D RANSAC for each point cloud 32
4.9 Angle analysis of 3D RANSAC for each point cloud 33
4.10 Parameter settings of 3D-2D RANSAC for each point cloud 33
4.11 Results of 3D-2D RANSAC for each point cloud 34
4.12 Leftover rate of 3D-2D RANSAC for each point cloud 35
4.13 Unmatched rate of 3D-2D RANSAC for each point cloud 35
4.14 Distance analysis of 3D-2D RANSAC for each point cloud 35
4.15 Angle analysis of 3D-2D RANSAC for each point cloud 36
4.16 Parameter settings of region growing . 37
4.17 Results of region growing for each point cloud 38
4.18 Leftover rate of Region Growing for each point cloud 38
4.19 Unmatched rate of Region Growing for each point cloud 38
4.20 Distance analysis of Region Growing for each point cloud 39
4.21 Angle analysis of Region Growing for each point cloud 39
4.22 Parameter settings of Hought Transform for each point cloud 40
4.23 Leftover rate of Hough Transform for each point cloud 40
4.24 Unmatched rate of Hough Transform for each point cloud 40
4.25 Distance analysis of Hough Transform for each point cloud 41
4.26 Angle analysis of Hough Transform for each point cloud 41
4.27 Results of Hough Transform for each point cloud 42
4.28 Results of Energy minimization for each point cloud 44
4.29 Preserved rate of Energy Minimization for each point cloud 44
4.30 Unmatched rate of Energy Minimization for each point cloud 44
4.31 Distance analysis of Energy Minimization for each point cloud 45
4.32 Angle analysis of Energy Minimization for each point cloud 45

xiii

List of Algorithms

3.1 Extract 3D line segments from point cloud P . 18

3.2 Extract cylinders from point cloud P with Region growing 20

3.3 The edge length term computation process . 24

xv

Acronyms

DT Delaunay triangulation . 22
RANSAC Random Sample Consensus . xi
HT Hough Transform . xi
PCA Principal Components Analysis . xii
LS Least Squares . 11
TLS Terrestrial Laser Scanning . 12
ALS Airborne Laser Scanning . 12
kNN k-Nearest Neighbors . xi
DT Delaunay Triangulation . 22
LAS Lidar Aerial Survey . 25
LAZ LASzip . 25
PLY Polygon File Format . 25
CGAL Computer Geometry Algorithms Library . 26
GCoptimization Graph Cut Optimization . 26
MRF Markov Random Field . xii
RMSE Root Mean Square Error . 30

xvii

1 Introduction

1.1 Motivation

Three-dimensional (3D) city models play a crucial role in both academia and industry of
the built environment, they can be applied in a multitude of application domains for envi-
ronmental simulations and decision support [Biljecki et al., 2015] (Figure 1.1). Compared to
buildings and trees, which are the main targets for the current 3D city model reconstruction
field [Huang et al., 2022; Lafarge and Mallet, 2012; Du et al., 2019; Nan and Wonka, 2017],
man-made urban linear objects such as power lines and pylons still do not receive much
attention. However, these objects, as part of the urban infrastructures, are also important
to daily human life and industrial activities such as electricity supply for households and
industries [Guo et al., 2016b; Qiao et al., 2022].

Figure 1.1: Applications of 3D city models [Biljecki et al., 2015]

Conventional 3D modeling techniques primarily rely on manual processes and employ 3D
modeling tools like AutoCAD and 3DMAX [Conde et al., 2015]. These methods demand sig-
nificant labor and are not highly efficient. Over recent decades, advancements in airborne
lidar technology have facilitated rapid measurements of extensive urban environments, gen-
erating substantial amounts of 3D point cloud data to aid in the 3D reconstruction of urban
structures [Mirzaei et al., 2022; Huang et al., 2024] (Figure 1.2). As a result, there has been

1

1 Introduction

growing interest in automated 3D reconstruction from point clouds due to its decreased
labor requirements.

Figure 1.2: Large-scale airborne lidar point cloud containing man-made urban linear objects
(power lines and pylons)

A 3D reconstruction process can be divided into two stages: extraction and reconstruction.
The purpose of extraction is to extract primitives (e.g., planes, spheres, cylinders, line seg-
ments) from the input point cloud. Reconstruction aims at postprocessing the extracted
primitives, such as reconstructing a watertight mesh model from planes or regularizing line
segments. Since the extraction process can be considered a preliminary result for further
postprocessing, the accuracy of the extraction result is important. Therefore, it has been the
main focus of 3D reconstruction research. For man-made urban linear objects, the extraction
process often focuses on extracting wireframe models consisting of 3D line segments, which
can then be used for further reconstruction (Figure 1.3).

Figure 1.3: 3D reconstruction process of a pylon base: (a) Point cloud, (b) Extraction result,
a wireframe model consisting of 3D line segments, (c) Reconstruction result, consisting of
3D shape models that are fitted to the line segments [Kawasaki and Masuda, 2023]

2

1.1 Motivation

As further elaborated in Chapter 2, some studies related to the 3D reconstruction of urban
linear objects [Guo et al., 2016b; Zhou et al., 2017; Jin and Lee, 2019; Qiao et al., 2024, 2022;
Wu et al., 2025; Chen et al., 2019] focus on extracting wireframe models from point clouds
(Figure 1.5). Although these studies apply various extraction approaches to achieve accurate
reconstruction results, one main issue needs to be emphasized: Generality. Some of the
aforementioned studies focus solely on one specific style or type of one category of man-
made urban linear objects, such as pylons with one single tower body (see Figure 1.4). This
allows them to make prior assumptions, construct pre-defined parametric models, or design
specialized pipelines for certain parts of the objects. While these approaches usually giving
more accurate results, they lack generality, making the overall method unable to apply to
other man-made urban linear objects. Consequently, acquiring extraction results of urban
linear objects using more general methods remains an open problem.

(a) Pylon with one single tower body (b) Pylon with multiple tower bodies

Figure 1.4: Examples of pylon models with different tower body styles

With respect to the above, the goal of this project is to explore potential algorithms with
generalization ability to extract wireframe models from man-made urban linear object point
clouds.

3

1 Introduction

(a) Industrial pipeline wireframe models [Jin
and Lee, 2019]

(b) Pylon wireframe models [Jin and Lee,
2019]

(c) Powerline wireframe models [Guo et al., 2016b]

Figure 1.5: Examples of wireframe models of man-made urban linear objects extracted from
point clouds

1.2 Research questions and the scope of research

As mention in Section 1.1, the algorithms being explored should be general, which can be
defined as follows:

• Type-agnostic: No prior assumptions about one specific type of man-made urban linear
object. For example, one can assume the input object will always be a line if the targets
are all power lines.

• Data-driven: No pre-defined model libraries, such as pre-defined parametric models
for different types of pylons.

• Holistic-pipeline: Objects should not be processed in separate parts. For example, a py-
lon can be split into separate parts, and different pipelines can be designed to process
each part.

Based on the motivation behind this project and the aforementioned definition of a general
algorithm, the main research question can be defined as follows:

Is it possible to extract wireframe models from point clouds of man-made urban linear
objects with an algorithm that has generalization ability?

In terms of the quality of the possible extraction results from different algorithms, a further
research question can be addressed:

Is there any algorithm that gives or has the potential to give promising extraction results
of the wireframe models of man-made urban linear objects?

4

1.3 Thesis overview

In contrast to other approaches, which might include preprocessing of the input point cloud
(classification, denoising, etc.), this project demands the input to be an isolated point cloud
of a man-made urban linear object (i.e., no ground or other objects in the point cloud).
Furthermore, this project does not involve any machine learning or deep learning algorithms
due to the lack of available ground truth datasets.

1.3 Thesis overview

The main content of this thesis is divided into five chapters. Chapter 2 contains an explana-
tion of relevant algorithms, followed by an introduction to the scientific research related to
this project. In particular, the chapter consists of two sections: theoretical background and
existing research.

In Chapter 3, the methodology proposed to address the research questions of this project is
overviewed, and the pipeline of each algorithm is elaborated.

In Chapter 4, further details of the experiment and the methodology in practice are provided.
The results of all algorithms are presented and used to reflect on the performance of the
corresponding algorithms.

The thesis concludes in Chapter 5. The research questions are first answered, followed by
a discussion of the performance of each algorithm. Then, potential directions or ideas that
might be promising are proposed.

5

2 Theoretical background & Related
work

In this chapter, relevant algorithms are explained in Section 2.1, followed by an introduction
to existing research related to this project in Section 2.2.

2.1 Theoretical background

This section introduces commonly used general algorithms for geometric primitive or model
extraction from point clouds, including two different types of methods: primitive detection
methods and energy optimization for MRF.

2.1.1 Primitive detection methods

Primitive detection methods aim to identify predefined geometric shapes (e.g., planes, cylin-
ders, line segments) within unorganized input data by leveraging parametric modeling and
hypothesis validation. Three widely used methods are reviewed in this section: RANSAC,
normal-based Region Growing, and HT. This section discusses each of these three methods
of their general idea and how they are applied to wireframe model extraction from point
clouds.

RANSAC

The RANSAC paradigm was first introduced by Fischler and Bolles [1981]. It was initially
used for image analysis. Schnabel et al. [2007] extends the algorithm for 3D point cloud
shape detection, where the RANSAC paradigm extracts shapes by randomly drawing minimal
sets (i.e., the smallest number of points required to uniquely define a given type of geometric
primitive [Schnabel et al., 2007]) from the point data and constructing corresponding shape
primitives.

Schnabel et al. [2007]’s algorithm starts by defining the parametric models of geometric
shape primitives, four types of primitives are designed: planes, spheres, cylinders, and cones
(see Figure 2.1). In the 3D point cloud scenario, defining geometric primitives generally
needs points and maybe additional information, such as the normals of the points. Different
types of primitives determine the size of the minimal set and the model-fitting process.
After defining parametric models, the algorithm starts extracting the best-fitting primitive
from the point cloud. If there is more than one potential primitive in the point cloud, the
algorithm can be executed for multiple iterations until certain stop criteria have been met.

7

2 Theoretical background & Related work

Figure 2.1: The four types of geometric shape primitives defined in Schnabel et al. [2007],
figure from [Li et al., 2011]

Although Schnabel et al. [2007] does not define the parametric models of 3D line segments,
the algorithm can still be applied to extract line segments from point clouds by using the
cylinder model, which can be considered as a 3D line segment with a radius. Therefore, the
algorithm can first extract cylinders from point clouds, and then convert the cylinders to 3D
line segments by extracting the axes of the cylinders.

In general, RANSAC has several desirable properties: it is easily extensible and straightfor-
ward to implement; it is very general, allowing its application in a wide range of settings;
it can robustly deal with data containing more than 50% of outliers [Schnabel et al., 2007].
These properties have made RANSAC widely used in the 3D reconstruction field. However,
RANSAC also has limitations: it is time consuming for paramter tuning; it contains random-
ness which leads to different results for the same input data; for 3D primitives that requires
normals, RANSAC is sensitive to the quality of the normal estimation.

Normal-based Region Growing

The region growing algorithm was first proposed by Besl and Jain [1988]. It uses local
features extracted from a neighborhood around each point to aggregate nearby points with
similar properties and segment a region of a point cloud [Khaloo and Lattanzi, 2017]. This
algorithm was then adopted by others for 3D point cloud segmentation [Vo et al., 2015].

For 3D point cloud segmentation, region growing-based methods follow a similar two-step
pipeline as the original algorithm: (1) select an initial seed node as the starting point; (2)
perform a region growing process, which iteratively adds neighboring nodes into the region
if they fulfill certain growth criteria. Comparing to RANSAC, region growing can avoid
randomness by selecting seed points based on certain criteria. For example, Nurunnabi et al.
[2012] uses curvature to perform sorting and choose the points with the least curvature as
the start. A widely used region growing method in 3D point clouds is normal-based region
growing, which uses the normal of the points to perform sorting and select the starting
point.

Initially, region growing gives segmentation results, i.e., segments the input data into dif-
ferent groups (see Figure 2.2). After that, a geometric primitive can be estimated from its
corresponding inliers using methods like PCA or iterative non-linear minimization [Marshall

8

2.1 Theoretical background

et al., 2001]. Therefore, geometric primitives such as planes, cylinders, and spheres can be
extracted from point clouds using region growing methods. For wireframe model extraction,
the implementation of region growing method is similar to the RANSAC algorithm, where the
cylinders are extracted from the point cloud, and then the axes of the cylinders are extracted
as the wireframe model. Since the geometric primitives are computed from the regions, if
the input point cloud has complex shapes, the region growing method may not be able to
extract the wireframe models correctly.

(a) (b)

Figure 2.2: Examples of region growing results for: (a) plane extraction [The CGAL Project,
2024], (b) cylindrical shape extraction [Nurunnabi et al., 2012]

Therefore, the limitations of normal-based region growing mainly include: (1) heavily de-
pends good normal estimation; (2) cannot deal with occlusion of the input point cloud; (3)
cannot handle complex shapes.

Hough Transform

Hough [1962] first developed a method to detect 2D lines from images. The underlying idea
HT was then generalized by others for the detection of a wide range of parametric primitives,
similar to RANSAC.

For primitive extraction in 3D point clouds, the idea of HT is to make the infinite space of
all possible primitives finite by a discretization of the parameter space [Yan et al., 2019a]
(i.e., Hough space), and to let each point "vote" for all primitives to which it belongs in this
parameter space [Yan et al., 2019b]. Parameter cells with many votes then correspond to
primitives with many points [Dalitz et al., 2017]. The algorithm can thus be illustrated as a
three-step pipeline: (1) define a parametric model; (2) construct the parameter space based
on the defined parametric model; (3) perform the voting process. For wireframe model
extraction, Dalitz et al. [2017] ’s algorithm designs a parametric model for 3D line segments,
therefore, unlike RANSAC and region growing discussed above, HT can be applied to extract
wireframe models from point clouds directly (see Figure 2.3).

One of the salient features of HT is its ability to recognize one or more instances of a shape
[Romanengo et al., 2024]. Compared to RANSAC, the HT algorithm does not require an
iterative process to generate multiple primitive outputs; instead, it seeks the peaks in the
parameter space based on a specified voting threshold. These peaks are then output as valid
primitives simultaneously, which makes HT an efficient algorithm and therefore is widely

9

2 Theoretical background & Related work

Figure 2.3: Examples of HT results for 3D line extraction [Dalitz et al., 2017]

used. However, due to the discretization of the parameter space, HT algorithms are sensitive
to the density of the input point cloud, and it requires a significantly higher memory usage
than RANSAC and region growing.

2.1.2 Energy minimization for Markov Random Field

Energy minimization is widely used for pixel labeling problems, such as image segmenta-
tion, where the goal is to assign a label to each pixel in the image. The energy function has
two terms: one term penalizes solutions that are inconsistent with the observed data, while
the other term enforces spatial coherence [Szeliski et al., 2006]. This framework can be justi-
fied in terms of maximum a posteriori estimation of a MRF [Szeliski et al., 2006]. A widely
used minimization method is graph cuts [Boykov et al., 2001; Kolmogorov and Zabin, 2004],
where the input of energy minimization for MRF is a graph structure G = ⟨V, E⟩. The nodes
V are the pixels, and the edges E are the spatial relationships between the pixels.

Although energy minimization is originally used for pixel labeling problems, it can be ap-
plied to 3D point cloud data for wireframe model extraction. In 3D senario, a pixel is
replaced by a geometric primitive, and the goal is to recover a model û from these primi-
tives, which is an estimation of the ground truth model uo. A common way to define such
an estimate by energy minimization is

Find û such that E(x) = min E(x), (2.1)
E(x) = D(x) + λV(x), (2.2)

where x ∈ (x1, x2, . . . , xn) is a configuration of perturbations applied on the n primitives
[Bauchet and Lafarge, 2018]. D(x) is a data term which measures the residual errors between
the solutions and the observed data [Wang et al., 2020] (e.g., the distances between inlier
points and their corresponding primitives). This term accumulates the data cost of each
primitive

D(x) =
n

∑
i=1

D(xi). (2.3)

10

2.2 Existing research on geometric model extraction from point clouds

The V(x) is a pairwise term that enforces structural coherence (e.g., spatial relationships
between primitives) based on certain structural smoothness constraints, where it measures
the smoothness costs of all neighbor pairs

V(x) =
n−1

∑
i=1

n

∑
j>i

V(xi, xj). (2.4)

The λ is a weight parameter that controls the trade-off between the two terms above; the
higher λ, the smoother the solution.

In general, energy minimization methods are not widely applied in primitive extraction in
3D point clouds [Xia et al., 2020], especially for linear objects. But some studies that extend
the framework to extract planes and spheres from 3D point cloud show that energy mini-
mization methods generally outperform the primitive detection methods [Wang et al., 2020].
Furthermore, since the formulation of the energy function represents the cost of certain per-
turbations applied to primitives, energy minimization methods can also be applied to other
manipulations of primitives, such as regularization. Despite of the merits, a main problem
of energy minimization methods is that it can be difficult to design a good energy function
for certain tasks.

2.2 Existing research on geometric model extraction from
point clouds

This section reviews studies that leverages the methods described in the previous Section
2.1 for geometric model extraction from point clouds. This section is divided into two
parts: (1) studies that focus on primitive detection methods; (2) studies that focus on energy
minimization methods; (3) a short summary of the limitations of existing research and the
aim of this project.

2.2.1 Geometric model extraction using primitive detection methods

For primitive detection methods, some studies focus on the primitive extraction from natural
objects, of which a common category is vegetation, such as trees and plants. Du et al. [2019]
focuses on developing an accurate and automated method for 3D tree model reconstruction
from laser scans. Their primitive extraction process primarily relies on a cylinder-fitting
approach. For the main trunk, an optimization-based non-linear Least Squares (LS) method
is applied to capture its shape and curvature accurately. Small branches, on the other hand,
utilize an allometric rule for geometric generation. After the tree skeleton is simplified
by assigning vertex and edge importances based on subtree lengths, leaves are added at
branch ends, and textures are applied, finalizing the 3D model to enhance its realism and
accuracy. This integrated process enables automatic and precise primitive reconstruction for
tree models.

Ghahremani et al. [2021] proposes a method for processing 3D point cloud data of plants,
directly extracting geometric features such as diameters and angles of plant organs. The

11

2 Theoretical background & Related work

proposed method is centered around the RANSAC algorithm. First, plant organs are modeled
using basic geometric shapes: cylinders for branches, stems, and petioles, and cuboids for
leaves. Then, RANSAC is employed to estimate the parameters of these geometric models.
Finally, angle measurement and diameter measurement are performed on cylinders and
cuboids, respectively, to estimate the features of plant organs. The entire process is repeated,
and the median of the results is taken as the final estimate.

There are also many studies that focus on man-made objects such as buildings and pylon.
For example, Jin and Lee [2019] develops a method that can quickly recognize cylinder-
shaped objects in large-scale point clouds for plant industrial facilities. The proposed
method combines RANSAC and PCA to estimate cylinder-shaped objects in point clouds with-
out normal estimation and segmentation. First, RANSAC is used to estimate cylindrical axes
by fitting spheres (via mathematical models) and lines (using PCA). Sphere parameters
(center and radius) are derived through RANSAC, while PCA determines axis direction via
eigen-decomposition of covariance matrices. Eigenvalue-based criteria differentiate linear or
curved regions. Then, matching and filtering are carried out. The center axis candidates
obtained from sphere fitting are matched with straight lines, and outliers are removed by
local averaging. The appropriate matching ratio is selected to balance execution time and
accuracy.

Guo et al. [2016b] develops an algorithm for reconstructing power lines from Airborne Laser
Scanning (ALS) data. It first uses a segmentation method to segment a group of power lines.
Then, in the reconstruction process, a RANSAC-based method is applied, which implements a
parametric curve model. For setting the initial parameters of the curve model, if possible, the
parameters of properly fitted power lines are used as initial values for the others. Otherwise,
seed sections are selected, and their initial parameters are determined. Longer seed sections
are preferred as they lead to a higher reconstruction success rate. In candidate sample
detection, neighbor profile center points with high corresponding probabilities are added to
the model. The added samples are checked using numerical methods to see if they meet
a convergence rule. The RANSAC process iteratively adds samples, determines inliers and
outliers, and recalculates the power line parameters until convergence.

Qiao et al. [2024] develops an automatic 3D reconstruction framework for communication
towers based on Terrestrial Laser Scanning (TLS) point clouds. It uses a region growing
method for the tower body reconstruction. The process starts with the fine extraction of the
tower body points, and then the region growing method is applied. Seed points are selected,
and voxelization is performed. Neighboring voxels are searched based on the Kd-Tree, and
the normal direction of each voxel is calculated. Points are grown layer-by-layer upward
until the top of the tower body. After that, the center coordinates and radius of each layer
are fitted using the LS method. The center set and radius set are corrected, and the tower
body is divided into segments. Piecewise models are established based on the corrected
centers and radii to form the entire tower body model.

Dalitz et al. [2017] proposes an HT-based line detection method for 3D point clouds. For
the parametric model, the algorithm uses Roberts’ optimal line representation to describe
lines in 3D space, where a line is represented by a direction vector b⃗ and two parameters x′

and y′, which are the coordinates of the intersection of the line and a plane perpendicular
to it passing through the origin. For parameter space discretization, the direction vector is
discretized based on the tessellation of Platonic solids, specifically the icosahedron. For the
(x′, y′) plane, the point cloud is centered first, and then the range of x′ and y′ is determined
based on the diagonal of the point cloud’s bounding box. For the voting process, instead

12

2.2 Existing research on geometric model extraction from point clouds

of using non-maximum suppression as usual HT algorithms, this method looks for the line
corresponding to the highest-voted cell in the accumulator array in each iteration [Yan et al.,
2019b]. Points close to this line are identified and removed from the point cloud and the
accumulator array. To improve accuracy, an orthogonal least squares fit is performed on the
points belonging to the detected line.

2.2.2 Geometric model extraction using energy minimization methods

Apart from studies that leverage primitive detection methods, there are also many studies
that use energy minimization methods for geometric model extraction. Wang et al. [2020]
develops an algorithm for extracting multi-class and multi-instance geometric primitives
from 3D point clouds. First, the algorithm defines parametric models for multiple geometric
primitives (planes, cylinders, and spheres) and uses RANSAC to detect initial hypotheses of
these primitives. Then, an energy minimization process is applied to segment each point to
a corresponding primitive. The energy function of this method contains three terms: data
term, smooth term, and label term. The data term of the energy function measures the
residual errors between points and their corresponding models. It is calculated as the sum
of the distances from each point to its assigned model, and the distance function is chosen
according to the type of geometric primitive. The smooth term is designed to measure the
cost of neighbouring points having different labels, where the smoothness energy between
two neighbour points is described by the Potts model [Wang et al., 2020]. This term penalises
the discontinuity of neighbouring points. The label term is designed to measure the number
of labels, to avoid over-fitting, so that few outliers are fitted to mistaken models [Wang et al.,
2020].

Guo et al. [2016a] develops a model-driven method for reconstructing pylons from airborne
lidar data. It first create a parametric model library for pylons. These models are con-
structed using polyhedral representations, where each model is characterized by a set of
geometric attributes including vertical dimensions, cross-arm spans, junction locations, and
other distinctive features, along with global parameters such as spatial position and ori-
entation. Subsequently, when processing a new pylon point cloud, the system computes
relevant geometric features and identifies the most suitable model through pattern match-
ing. Finally, the energy minimization process is applied to reconstruct the pylon model. The
energy function contains two key components: a fidelity term that ensures alignment be-
tween the reconstructed model and input measurements, and a structural term that enforces
geometric constraints based on domain knowledge and spatial relationships among adjacent
pylons.

2.2.3 Summary of existing research

Some of the aforementioned studies that leverage primitive detection methods may depend
on high-quality data to perform fine model-fitting processes. Some of them require multiple
pre-processing steps that are specifically designed for one type of objects, and others are
not applied to man-made urban linear objects. For research that use energy minimization
methods, different energy functions are designed for different tasks and therefore cannot
be adopted directly. In this project, we aim to explore the performance of the primitive
detection methods (see Chapter 3) when they are applied to man-made urban linear objects
in a general pipeline and address their limitations. Furthermore, we aim to propose our

13

2 Theoretical background & Related work

own energy minimization method to explore the potential of energy minimization methods
for wireframe model extraction from point clouds.

14

3 Methodology

This chapter analyzes the methodology (see Figure 3.1) developed to address the research
questions of this graduation project. The methodology is divided into two main sections: (1)
primitive detection for 3D line segments; (2) energy minimization for MRF. The first section
is the implementation and modification of the existing primitive detection algorithms; the
second section is the implementation of our proposed energy minimization algorithm. In
each section, the pipelines of corresponding algorithms that are described in Section 2.1 are
explained in detail.

Figure 3.1: Methodology

15

3 Methodology

3.1 Primitive detection for 3D line segments

This section analyzes three primitive detection algorithms introduced in Section 2.1. Each
primitive detection algorithm is explained in its own section.

3.1.1 RANSAC

In this project, two RANSAC algorithms are tested: (1) the original 3D RANSAC algorithm
from [Schnabel et al., 2007]; (2) a 3D-2D RANSAC algorithm developed by ourselves, which
is similar to Lu et al. [2019]’s method. The 3D-2D algorithm is developed to address the
problem of high dependency of point normals, since the test data in this project are airborne
lidar point clouds, which are significantly sparser than the point cloud used in the original
3D RANSAC algorithm.

For Schnabel et al. [2007]’s 3D RANSAC algorithm, the input is a point cloud, and the out-
put is a set of 3D line segments. The parametric model used for model fitting process is
cylinder, which is defined with a minimal set {p1, p2} and their normals {n⃗1, n⃗2} with four
parameters: radius r, center point c, direction vector d⃗, and cylinder length L (Figure 3.2a).
The value of r, c, and d⃗ can be directly computed, while L needs to be estimated from the
inlier points of the cylinder after the model-fitting process using techniques like PCA. For
the model-fitting process, two parameters are used for determining inlier points: ϵ specifies
the maximum perpendicular distance of an inlier point; and α restricts the deviation of a
point’s normal from that of the primitive [Schnabel et al., 2007].

(a) (b) (c)

Figure 3.2: Three types of primitives applied in RANSAC algorithm: (a) 3D cylinder primitive,
(b) 3D plane primitive, (c) 2D line segment primitive

Overall, the pipeline of Schnabel et al. [2007]’s 3D RANSAC algorithm is: (1) Estimate normals
for the input point cloud; (2) set primitive type to cylinder; (3) perform model-fitting process.
In order to get 3D line segments, one extra step is added to the pipeline: (4) extract axis from
each cylinder as the final 3D line segment. There are five parameters used in the algorithm:

• Min support: the minimum number of inlier points required to fit a primitive.

16

3.1 Primitive detection for 3D line segments

• Max distance: the maximum distance between a point and the fitted primitive to be
considered an inlier.

• Max normal deviation: the maximum angle between a point’s normal and the fitted
primitive’s normal to be considered an inlier.

• sampling resolution: the threshold for sampling points into two different neighboring
clusters.

• overlooking probability: the probability for the algorithm to fail to find a valid primitive.

Besides, we modified the algorithm, allowing it to set two extra parameters Min Radius and
Max Radius for the cylinder primitive, which can be used to avoid generating unrealistic
cylinders (e.g., a cylinder with a huge radius).

(a) (b)

(c) (d)

Figure 3.3: The planarity of man-made urban linear objects: (a) A 3D power line point cloud,
(b) A fitted plane to the power line; (c) A 3D pylon point cloud, (d) Fitted planes to the
pylon

For the 3D-2D RANSAC algorithm developed by ourselves, the input and output is the same
as the 3D RANSAC algorithm. The algorithm takes into account the planarity of many man-
made urban linear objects. As Figure 3.3 shows, a power line can be fitted to a plane due
to its simplicity; a pylon can also be fitted into multiple planes, even though it consists of
a series of linear structures. In comparison with cylinders, which require point normals
to represent curved surfaces, 3D plane primitives are less strict in terms of point normals

17

3 Methodology

because they are planar. This results in improved performance on sparse point clouds,
making it possible to extract planes from man-made urban linear objects with planarity
features. Therefore, the algorithm first performs a 3D RANSAC plane detection to segment
the input point cloud into corresponding planes. Then, for each plane, the inlier points
are projected into 2D, and a 2D RANSAC line detection process is applied. The detected 2D
line segments can then be reprojected back into the 3D space as the final 3D line segments
output.

The parametric model of the 3D plane and the 2D line is shown in Figure 3.2b and 3.2c. The
3D plane is defined by a minimal set {p1, p2, p3} and their normals {n⃗1, n⃗2, n⃗3}. The plane
is using Schnabel et al. [2007]’s method. The 2D line is defined by two end-points, and the
distance parameter ϵ is used to determine inlier points of a line primitive, similar to the 3D
cylinder primitive process.

The 3D-2D RANSAC algorithm is outlined in pseudocode in algorithm 3.1. The input is a
point cloud P = {p1 . . . , pN} with a set of point normals {n1 . . . , nN}, and the output is a set
of 3D line segments L = {L1 . . . , LN} with respective sets of inlier points PL1 ⊂ P . . . , PLN ⊂
P.

Algorithm 3.1: Extract 3D line segments from point cloud P
Input : Point cloud P, point normals {n1 . . . , nN}
Output: Detected 3D line segments L

1 L← ∅{extracted 3D line segments};
2 3D plane extraction;
3 Φ← ∅{extracted 3D planes};
4 Φ← Φ∪extractPlanes(P){use Schnabel et al. [2007]’s algorithm};
5 3D line segment extraction;
6 for Φi ∈ Φ do
7 P2d ← ∅{2D projected points};
8 for pi ∈ PΦi do
9 P2d ← P2d ∪ 2dProjection(pi)

10 ;
11 L2d ← ∅{extracted 2D line segments};
12 C ← ∅{2D line segment candidates};
13 γ← 0.1 · sizeof(PΦi);
14 Min support← initialize;
15 repeat
16 C← C ∪ newCandidates(){iteratively generate random candidates};
17 M← validCandidates(C, γ){use γ for validation};
18 P2d ← P2d \ PM{remove inlier points of valid candidates};
19 L2d ← L2d ∪m;
20 C← ∅{remove invalid candidates};
21 γ← 0.9 · γ;
22 until γ < Min support;
23 for li ∈ L2d do
24 L← 3dReprojection(li)

25 return L;

For the parameters used in 3D-2D RANSAC algorithm, the 3D plane extraction parameters

18

3.1 Primitive detection for 3D line segments

are the same as the original 3D RANSAC algorithm. The 2D line segment extraction has four
main parameters:

• Min support: the minimum number of inlier points required for a valid 2D line segment.

• Max iterations: the maximum number of iterations for the newCandidates function.

• Max distance: the maximum distance between a point and the fitted 2D line segment to
be considered an inlier.

• Split line threshold: the threshold for splitting a line into two lines. This parameter is
used for refining the initial extracted 2D line segments.

3.1.2 Region Growing

The region growing algorithm applied in this project is from [Oesau et al., 2024]. The input
is a point cloud, and the output is a set of 3D line segments. The are two setups that need to
be determined before starting the region growing process, which are outlined as follows.

First, define the way to perform the neighbor query. For point-based neighbor queries, there
are two common ways. One is the range search, and the other is kNN. We use kNN here to
overcome the sparseness of the input airborne lidar point cloud.

Then, define the type of region, i.e., what type of geometric primitive should a region rep-
resent. Here, we choose the cylinder. As discussed in Section 2.1.1, the geometric primitive
can be estimated from the inliers of the corresponding region. There are three parameters
for a region to decide whether a point should be included in the region:

• Max distance: the maximum distance from a point to the primitive. For a cylinder, that
is, the maximum perpendicular distance from a point to the surface of the cylinder,
which can be calculated as d = D − r, where D is the perpendicular distance from a
point to the axis of the cylinder, and r is the radius of the cylinder.

• Max normal deviation: the maximum angle in degrees between a normal associated with
a point and the normal of the primitive. For a cylinder, the angle difference between
the normal of the point and the perpendicular direction vector from the point to the
axis of the cylinder is calculated.

• Min region size: the minimum region size, which is the minimum number of points
that a region must contain. For a cylinder, by default S = 2, because it needs at least
two points to calculate the axis of the cylinder.

The cylinder also has two extra parameters that determine its maximum and minimum
radius.

After setting up the neighbor query and the region type, the region growing process is then
applied to the input point cloud. The input points, along with their associated normals, are
first sorted by computing their curvatures. The region growing starts with the point with
the least curvature value. The algorithm is outlined in the pseudocode in algorithm 3.2.

After the region growing process, the algorithm returns a set of cylindrical regions. Each
region is a set of points that are close to each other and can be approximated by a cylinder
using the LS fitting method. The algorithm then extracts the axis of each cylinder as the final
3D line segments output, which is similar to the process of the 3D RANSAC algorithm.

19

3 Methodology

Algorithm 3.2: Extract cylinders from point cloud P with Region growing
Input : Sorted point cloud P, Cylinder parameters θ
Output: Detected cylindrical regions R

1 R ← ∅;
2 foreach unvisited s ∈ P do
3 Mark s as visited;
4 Initialize region r← {s};
5 repeat
6 Find unvisited neighbors N of r;
7 foreach n ∈ N do
8 if fits cylinder model then
9 r← r ∪ {n};

10 Mark n;
11 Update cylinder parameters;

12 until no new points added;
13 if |r| ≥ 6 and valid radius then
14 R ← R∪ {r};

15 return R;

3.1.3 Hough Transform

The iterative HT algorithm from [Dalitz et al., 2017] is applied in this project. The first step
of this algorithm is similar to RANSAC, which is to define a parametric model. Figure 3.4
describes a parametric line model where a line is described by a direction vector b⃗ and a
plane that passes through the origin and is perpendicular to the line [Jeltsch et al., 2016].
The x′ and y′ are the two parameters that are defined as the coordinates of the intersection
of the line and the plane in the plane’s own 2D coordinate frame [Yan et al., 2019b].

After defining the parametric model, the next step is to create the parameter space, which is
to discretize the parametric model into a finite space. This process sets up two parameters
of the algorithm:

• Tesselation step: the number of steps of tessellation, which is used for icosahedron
tessellation to discretize the direction vector b⃗ into a finite set B = {b⃗1, b⃗2, · · · , b⃗N1}
(Figure 3.5).

• Cell width: the cell width of discretized (x′, y′) plane. The discretization of the (x′, y′)
plane is done by first translating the point cloud so that the center of its bounding box
coincides with the origin [Dalitz et al., 2017]. Then the maximum range of x′ and y′

can be computed from the diagonal of the point cloud bounding box, and dx can be
used to discretize x′ and y′.

After discretization, each point in the input point cloud is then transformed into the parame-
ter space, which "votes" for one or many of the primitives. Figure 3.6 shows the accumulator
(voting array) of the parameter space constructed from the line representation described
above, where each cell represents a line primitive. The voting process contains another two
parameters of the algorithm:

20

3.1 Primitive detection for 3D line segments

(a) meaning of ϕ and θ (b) meaning of x′ and y′

Figure 3.4: Roberts’ line representation with azimuth ϕ and elevation θ (left) and the inter-
section point (x′, y′) between the direction vector b⃗ and the perpendicular plane crossing
the origin (right) [Dalitz et al., 2017]

Figure 3.5: Icosahedron after 0, 1, 2 tessellation steps, with 12, 21, 81 number of directions
respectively [Dalitz et al., 2017]

21

3 Methodology

• Number of lines: the maximum number of lines that the algorithm can return. If n = 0,
then all lines detected are returned.

• Min votes: the minimum votes that a valid line must have.

Figure 3.6: The finite accumulator (voting array) of the parameter space

3.2 Energy Minimization for Markov Random Field

The aforementioned primitive detection methods have a common problem that the extracted
primitives are spatially discontinuous. Furthermore, most of them also facing the overlook-
ing problem, which is the inability to detect all the expected primitives in the input point
cloud (see Chapter 4). Therefore, in this project, we propose our own energy minimization
method for the wireframe model extraction from man-made urban linear object point clouds
aiming to address the aforementioned problems. As shown in Figure 3.1, the input of this
energy minimization methods is a graph structure, where each node represents a 3D line
segment. The output is a set of 3D line segments. For the optimization process, we use
the graph cut method proposed by [Boykov et al., 2001; Kolmogorov and Zabin, 2004]. As
described in Section 2.1.2, in our case, the wireframe model extraction task is treated as a
labelling problem, where the goal is to label the nodes of the input graph as either preserve
or remove.

The first step of the process is to construct an undirected graph structure for the man-made
urban linear object point cloud P. We use kNN to construct the initial graph, and then use
Delaunay Triangulation (DT) to construct a second graph to fill the gaps that the kNN graph
fails to connect. The result is G = ⟨V, E⟩, where V = {v1 . . . , vm} is the vertices (the input
point cloud) and E = {e1 . . . , en} is a collection of the edges of all neighbor vertex pairs. The
dual Graph G∗ = ⟨V∗, E∗⟩ is then derived from G, where V∗ = E, and E∗ is the collection
of the neighboring relationships of all neighbor edge pairs. As described in Section 2.1.2, in
our case, the edges (V∗) are the initial hypotheses, therefore, the dual graph G∗ is the input
for the graph cut process. The benefit of using graph as input is that we can ensure there are
enough amount of initial hypotheses to avoid the overlooking problem mentioned above.

Next step is to define the data term and smoothness term for the energy function (equation
2.2). The data term is defined as

D(x) = I(x) · L(x), (3.1)

22

3.2 Energy Minimization for Markov Random Field

where x = {x1 . . . , xn} is the edges, I(x) is the inlier probability term, and L(x) is the edge
length term.

I(x) measures how well an edge can approximate the true structure of the man-made urban
linear object. Intuitively, if an edge is close to the real structure, it should be surrounded by
more nearby points, and vice versa. Therefore, the I(x) is defined as

I(x) =
xi

∑
i=1

p(xi), (3.2)

p(x) = 1−
∑ ρ(pj)

2

∑ ρ(pj)
, (3.3)

ρ(p) = exp(− d2

2 · σ2). (3.4)

For an edge xi, it first searches all points Pxi = {p1 . . . , pn} that fall within the r = 1 cylinder
constructed from the edge (Figure 3.7). ρ(p) ∈ [0, 1] is a Gaussian function used to calculate
the probability of an inlier point p, the closer p is to its corresponding edge, the higher the
probability it will contribute. The p(xi) then calculates 1 minus the sum of its inlier point
probabilities. Therefore, for an edge e, the higher the inlier probabilities given by its inlier
points, the lower the inlier probability term p(xi).

Figure 3.7: A cylinder constructed from an edge. d is the extended distance for both end
points of the edge

The edge length term L(x) is defined as

L(x) =
Le

Ltol
, (3.5)

where Le is the edge length, and Ltol represents an accumulated length computed through a
propagation process, which is outlined in the pseudocode in algorithm 3.3. The process first
initializes an angle-difference threshold θmin, and the Ltol = Le. For e, it has adjacent edges
of both endpoints v ∈ {v1, v2}, which are the neighbors of e. Then the process finds the best
neighbor ebest with the smallest angle difference of e, denoted as θb, adds its length to Ltol ,
update θmin = θb and set it as the next propagation target. For an edge e, the larger the Ltol ,
the lower the edge length term L(xi).

23

3 Methodology

The smoothness term is defined as

V(x) =
n−1

∑
i=1

n

∑
j>i

w(xi, xj) ·V(xi, xj), (3.6)

w(xi, xj) =

xi , xj

∑
i ̸=j

(cos10(αxi , xj)), (3.7)

V(xi, xj) =

{
0 lxi = lxj

1 lxi ̸= lxj

, (3.8)

where w(xi, xj) is a weight function that calculates the weight of each neighbor edge pair
based on their angle difference αxi ,xj . For two neighboring edges, the smaller the angle
difference between them, the higher the weight is. V(xi, xj) is a label penalty function that
is 0 if xi and xj have the same label, otherwise 1. Therefore, the smoothness term considers
the situation where two neighboring edges have different labels. If they have a small angle
difference, the weight between them is high, and therefore the smoothness term for them is
high, and vice versa.

Algorithm 3.3: The edge length term computation process
Input : Graph G
Output: Edge length term L

1 C ← initialize array;
2 foreach edge e ∈ G do
3 Le ← length of e;
4 Ltol ← Le;
5 processed← {e};
6 repeat
7 foreach endpoint v of e do
8 Initialize θmin;
9 ebest ← null;

10 foreach adjacent edge eadj of v do
11 if angle(e, eadj) = θb < θmin then
12 θmin ← θb;
13 ebest ← eadj;

14 if ebest exists then
15 Ltol ← Ltol + length(ebest);
16 add ebest to processed;

17 until no new edges found;
18 L[e]← Le/Ltol;

19 return L;

After defining the data term and smoothness term, the energy minimization process is con-
ducted, the input edges are assigned with corresponding labels and divided into two groups:
preserved edges and removed edges.

24

4 Experiments

In this chapter, the experiments are described. It is divided into three sections: (1) the dataset
creation and usage, (2) the implementation specifics, (3) the results and the analysis. The
dataset creation and usage section describes the process of creating the dataset. The imple-
mentation specifics section describes necessary engineering decisions of the implementation
in this project. The results and analysis section describes the results of the experiments and
the analysis of the results.

4.1 Dataset creation and usage

The dataset used in this project is a collection of point clouds and manually extracted wire-
frame models of power lines and pylons in the Netherlands (Figure 4.2). The source of the
point clouds is the AHN5 dataset [AHN, 2020], which is a publicly available dataset of the
Netherlands. The downloaded LASzip (LAZ) files, which are compressed Lidar Aerial Sur-
vey (LAS) files, are first extracted using the laspy and plyfile libraries in Python. Points with
classification value of 14 are extracted, which represents high tension objects, e.g., pylons
and powerlines [Alkemade, 2023]. The extracted point clouds are then processed in Mapple,
an application which is part of the Easy3D library [Nan, 2021]. The isolated point clouds
fo pylons and powerlines are manually extracted using the Mapple application and then
imported into Rhino 7 for manually extraction of wireframe models, the workflow in Rhino
7 is described as follows (see Figure 4.1):

1. Import the point cloud into Rhino 7.

2. Use Move command to move the point cloud to the origin.

3. Use Rotate command to rotate the point cloud to align with the axes.

4. Use Polyline command to manually draw the wireframe models.

5. Use Explode command to explode polylines into individual line segments.

6. Export the wireframe models and the point cloud as Polygon File Format (PLY) files.

The manually extracted wireframe models can be considered as the ground truth of the ex-
periments, which are used to evaluate the performance of the energy minimization method
described in Section 3.2. The primitive detection methods are evaluated by comparing the
extracted primitives to the input isolated point clouds.

25

4 Experiments

(a) (b)

(c) (d)

Figure 4.1: Workflow in Rhino 7. (a) Move the point cloud to the origin; (b) Rotate the point
cloud to align with the axes; (c) Manually draw the wireframe models; (d) Explode the
polylines into individual line segments.

4.2 Implementation specifics

This section briefly discusses the necessary engineering decisions for the implementation of
the methodology.

The methodology is mostly implemented in C++, along with the use of Eigen library [Guen-
nebaud et al., 2010], Computer Geometry Algorithms Library (CGAL) [The CGAL Project,
2024], Easy3D [Nan, 2021], Rerun [Rerun Development Team, 2024], and Graph Cut Opti-
mization (GCoptimization) library1.

The CGAL library is used for the implementation of Schnabel et al. [2007]’s 3D RANSAC
algorithm and the normal-based Region Growing algorithm.

The Eigne library is used for PCA computation in the 3D-2D RANSAC algorithm.

The Easy3D library is used for file I/O, data structures handling, and visualization.

The Rerun library is used for visualized logging, which is not included in the final version
of the code.

The GCoptimization library is used for the implementation of the graph-cut optimization ap-
proach for the energy minimization for MRF algorithm.

The Hough transform is implemented using the Dalitz et al. [2017]’s software, the code is
modified to support ouput line segments instead of infinite lines.

The code of this project is available at https://github.com/Ganbusier/final_thesis.

The experiment is conducted on a machine with the following specifications:

1The code can be accessed in the following link: https://github.com/nsubtil/gco-v3.0

26

https://github.com/Ganbusier/final_thesis
https://github.com/nsubtil/gco-v3.0

4.2 Implementation specifics

(a) 1 powerline (b) 2 powerlines (c) 4 powerlines (d) pylon 1

(e) pylon 2 (f) pylon 3 (g) pylon 4 (h) pylon 5

(i) pylon 6 (j) pylon 7 (k) pylon 8 (l) pylon 9

Figure 4.2: Dataset used in this project (blue: points, red: manually extracted wireframe
models)

27

4 Experiments

• CPU: 13th Gen Intel(R) Core(TM) i9-13900HX, 2.20 GHz; RAM: 32GB

• GPU: NVIDIA GeForce RTX 4060 Laptop GPU; OS: Windows 11 Home

4.3 Results and analysis

In this section, the results of the experiment are presented and the analysis of the results are
discussed. Point cloud 4.2a, 4.2c, and 4.2d are used as simple, medium, and difficult test
cases respectively for the experiment. This section first discusses the parameter settings of
the algorithms. Then, the analysis method is discussed. Finally, the results and statistics of
each algorithm are presented in their respective sections.

4.3.1 Parameter settings

The parameters used for each algorithm are the settings that can generate the best results.
For RANSAC and Region Growing, the parameters are determined by both experience and
grid search. For grid search, the best parameters are selected based on the number of
extracted primitives N and the leftover points L. The score is calculated as follows:

score = α× L− β× N (4.1)

where α and β are the weights of the two metrics, which are set to 1.0 and 0.1 respectively
in our experiments. This score favours low leftover points and high number of extracted
primitives, with the leftover points having a higher weight. The score is calculated for each
parameter combination and the combination with the lowest score is selected as the best
parameters.

The parameter ranges of Schnabel et al. [2007]’s 3D RANSAC is shown in Table 4.1. The
parameter ranges of 3D-2D RANSAC is shown in Table 4.2. The parameter ranges of Region
Growing is shown in Table 4.3.

Parameter Value list

Min points 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Normal thres. 0.9

Epsilon 0.01, 0.02, 0.03, 0.04, 0.05
Cluster epsilon 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 2.0

Table 4.1: Parameter ranges of 3D RANSAC

The names of the parameters of 3D RANSAC and Region Growing are CGAL library’s default
names. For 3D RANSAC, the Min points is Min support, the Epsilon is Max distance, the Normal
thres. is Max normal deviation, the Cluster epsilon is sampling resolution. For Region Growing,
the Max angle is the Max normal deviation.

The parameters of the HT algorithm and the energy minimization for MRF algorithm are set
based on the experience of manually tuning for the best qualitative results. All the best
parameter settings are shown in the following sections.

28

4.3 Results and analysis

Parameter Value list

Min points 5, 10, 20
Epsilon 0.05, 0.1

Normal thres. 0.0
Cluster epsilon 0.5, 1.0, 2.0
Max iterations 100, 300

Min support 4, 10
Max distance 0.05, 0.1

Split line threshold 1.0, 1.5, 2.0

Table 4.2: Parameter ranges of 3D-2D RANSAC

Parameter Value list

K 12, 16, 20, 24, 28
Max distance 0.01, 0.02, 0.03, 0.04, 0.05

Max angle (deg) 15, 20, 25, 30, 35
Min region size 4, 10, 16, 20

Table 4.3: Parameter ranges of Region Growing

4.3.2 Analysis method

In this project, we employs an 3D line segment matching quantitative analysis method to
evaluate the performance of the algorithms. The method consists of the following steps:

1. Inputs: The ground truth wireframe model and the extracted wireframe model of a
point cloud (Figure 4.3).

(a) Extracted wireframe model (b) Ground truth wireframe model

Figure 4.3: Example of inputs for analysis

2. 3D line segment matching: For each ground truth line segment, match it to all the neigh-
boring line segments in the extracted wireframe model within a distance threshold of
0.1 meters. An unmatched rate is calculated to reflect how many estimated line segments
are not matched to any ground truth line segment. The unmatched rate is calculated
as follows:

Unmatched rate =
Munmatched

Mtotal
(4.2)

29

4 Experiments

where Munmatched is the number of estimated line segments that are not matched to any
ground truth line segments, and Mtotal is the total number of estimated line segments.

3. Distance analysis: For each matched group, calculate the average euclidean distance
deviation between the ground truth line segment and its matched extracted line seg-
ments.

4. Angle analysis: For each matched group, calculate the average angle deviation between
the ground truth line segment and its matched extracted line segments.

5. Statistics: For basic statistics, calculate the mean, median, standard deviation, and
maximum/minimum values of the average distances and average angle deviations.
For error analysis, the Root Mean Square Error (RMSE) is calculated for the average
distances and average angle deviations, the RMSE is calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi)2 (4.3)

where xi is the average distance or angle deviation of the i-th matched group, and N
is the number of matched groups.

4.3.3 Results and statistics

3D RANSAC

The parameter settings (see Section 3.1.1) of 3D RANSAC for each point cloud is shown in
Table 4.4. The two extra parameters Min Radius and Max Radius are set to 0.01 and 1.0
respectively for all the test cases.

Point cloud Min points Epsilon Normal thres. Cluster epsilon Overlook prob.

4.2a 5 0.05 0.9 1.5 0.01
4.2c 10 0.05 0.9 2.0 0.01
4.2d 10 0.05 0.9 2.0 0.01

Table 4.4: Parameter settings of 3D RANSAC for each point cloud

The results of the 3D RANSAC algorithm are shown in Table 4.5. Table 4.6 shows the leftover
rate of the 3D RANSAC algorithm for each point cloud. Table 4.7 shows the unmatched rate
of the 3D RANSAC algorithm for each point cloud. Table 4.8 shows the distance analysis of
the 3D RANSAC algorithm for each point cloud. Table 4.9 shows the angle analysis of the 3D
RANSAC algorithm for each point cloud.

As the statistics show, the 3D RANSAC algorithm gives acceptable results for the simple and
medium test cases, where the RMSE of the distance and angle deviations are small. However,
for the difficult test case, the results are unsatisfactory. There are two main problems in
terms of the results. First is the overlooking problem. The leftover rates in Table 4.6 show that
there are up to 42.2% of the input points are left out for wireframe model extraction, which
results in a severe loss of information. The extracted wireframes cannot cover the whole
realistic structure. As a result, if further reconstruction process is applied to the results,

30

4.3 Results and analysis

Input Ground truth model Extrated model Leftover points

Table 4.5: Results of 3D RANSAC for each point cloud

31

4 Experiments

such as regularization, surface reconstruction, etc., the final results will be poor. The second
problem is the wrong fitting problem. As Table 4.7 shows, the unmatched rate of the 3D
RANSAC algorithm is up to 36.1%, which is a relatively high rate. This indicates that many of
the extracted line segments are not closely aligned with the ground truth wireframe model.
Besides, the angle analysis in Table 4.9 shows that the RMSE of the angle deviations of the
difficult test case is 62.551 degrees, which is a very large error.

Point cloud Input points Leftover points Leftover rate (%)

4.2a 538 79 14.7
4.2c 6439 624 9.7
4.2d 8947 3774 42.2

Table 4.6: Leftover rate of 3D RANSAC for each point cloud

Point cloud Mtotal Munmatched Unmatched rate (%)

4.2a 22 4 18.2
4.2c 62 16 25.8
4.2d 97 35 36.1

Table 4.7: Unmatched rate of 3D RANSAC for each point cloud

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.010 0.100 0.052 0.039 0.031 0.060
4.2c 0.004 0.097 0.046 0.043 0.026 0.053
4.2d 0.000 0.093 0.034 0.031 0.024 0.042

Table 4.8: Distance analysis of 3D RANSAC for each point cloud

The reason for the wrong fitting problem is that the cylinder primitive used for the 3D
RANSAC algorithm requires normal information. Since the input point clouds do not have
ground truth normals, a normal estimation has to be applied to the input point clouds. In
this project, the normal estimation is performed by kNN method. However, the input point
clouds used in this project is airborne lidar point clouds, which are not uniformly distributed
and the normal estimation results are relatively noisy. Figure 4.4a shows an normal estima-
tion result of point cloud 4.2a. As the Figure shows, the normals of the points can be very
similar in some areas and very different in other areas, depending on the local point density.
For simple cases, the normal problem can be reduced by using a larger k value. However, for
complex cases, the normal problem cannot be easily solved. Therefore, the noisy normals
make the cylinder fitting results very unstable and the extracted wireframes are not aligned
with the ground truth direction.

The reason for the overlooking problem is that the RANSAC algorithm naturally favours prim-
itives with high score, which in most cases the score is dorminated by the number of inliers.
However, for realistic point clouds, the number of inliers cannot always reflect the validity
of a fitted primitive. For example, as Figure 4.4b shows, the internal structure of the pylon
does not have many points comparing to the external structures. Therefore, when RANSAC
fitting is applied, the fitted cylinders on external structures will have higher scores than that

32

4.3 Results and analysis

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.325 2.238 1.106 0.991 0.707 1.313
4.2c 0.091 3.496 1.000 0.914 0.605 1.169
4.2d 1.443 89.679 55.368 55.072 29.105 62.551

Table 4.9: Angle analysis of 3D RANSAC for each point cloud

(a) (b)

Figure 4.4: (a) kNN normal estimation for point cloud 4.2a, k = 16; (b) Internal structure (red)
and External structure (blue) of point cloud 4.2d

of the internal structures and thus have a higher chance to be output as valid primitives,
which results in the overlooking problem.

3D-2D RANSAC

As described in Section 3.1.1, the 3D-2D RANSAC algorithm we developed aims to reduce the
dependency on the normal estimation. The parameter setting (see Section 3.1.1) of 3D-2D
RANSAC is shown in Table 4.10. The results are shown in Table 4.11.

Detection type Parameter 4.2a 4.2c 4.2d

3D plane detection

Normal thres. 0.0 0.0 0.0
Overlook prob. 0.01 0.01 0.01

Min points 20 20 10
Epsilon 0.1 0.1 0.1

Cluster epsilon 1.0 2.0 2.0

2D line detection

Max iterations 300 300 100
Min inliers 4 4 4

Tolerance 0.1 0.05 0.1
Split distance thres. 1.0 1.0 1.5

Table 4.10: Parameter settings of 3D-2D RANSAC for each point cloud

As can be seen from Table 4.12, for simple and median test cases, the overall leftover rate
do not change much comparing to the 3D RANSAC algorithm. However, for the difficult

33

4 Experiments

Input Ground truth model Extrated model Leftover points

Table 4.11: Results of 3D-2D RANSAC for each point cloud

34

4.3 Results and analysis

case (4.2d), the leftover rate of the 3D-2D RANSAC algorithm is much lower than the 3D
RANSAC algorithm. Besides, the leftover points for plane detection are much less than the
3D RANSAC algorithm. This is because when the 3D-2D RANSAC algorithm performs the 3D
plane detection, the normal threshold is set to 0, which means the normal information is
not used for the 3D plane detection. This results in the 3D-2D RANSAC algorithm can better
handle the overlooking problem in 3D senarios.

Leftover statistics 4.2a 4.2c 4.2d

Input points 538 6439 8947
Leftover points for plane detection 9 18 27

Leftover points for line detection 125 1297 1172
Overall leftover points 134 1315 1199

Overall leftover rate (%) 24.9 20.4 13.4

Table 4.12: Leftover rate of 3D-2D RANSAC for each point cloud

For error analysis, as can be seen from Table 4.13, the unmatched rate of the 3D-2D RANSAC
algorithm shows significant variation compared to the 3D RANSAC algorithm, ranging from
2.1% to 47.5%. For difficult case, the 3D-2D RANSAC algorithm can reduce the unmatched
rate from 36.1% to 22.5%. Based on the distance and angle analysis, the RMSE of the 3D-2D
RANSAC algorithm shows mixed results compared to the 3D RANSAC algorithm. For the
difficult case (4.2d), the RMSE of distance is reduced from 0.042 to 0.044, while the RMSE of
angle deviation is reduced from 62.551 to 55.628.

Point cloud Mtotal Munmatched Unmatched rate (%)

4.2a 30714 643 2.1
4.2c 60947 28933 47.5
4.2d 31228 7030 22.5

Table 4.13: Unmatched rate of 3D-2D RANSAC for each point cloud

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.005 0.071 0.033 0.024 0.022 0.040
4.2c 0.019 0.099 0.062 0.064 0.019 0.065
4.2d 0.000 0.100 0.037 0.035 0.023 0.044

Table 4.14: Distance analysis of 3D-2D RANSAC for each point cloud

The statistics indicate that the 3D-2D RANSAC algorithm generally performs better than the
3D RANSAC algorithm. However, it still suffers from the two aforementioned problems.

For wrong fitting problem, as shown in the extractions of point cloud 4.2d, some of the
extracted line segments are not aligned with the ground truth wireframe model, as the
unmatched rate of all cases are still relatively high, and the angle deviation is still relatively
large. The reason for this is actually similar to the overlooking problem: when performing the
2D line fitting, the line segments with more inliers are preferred to be selected as the final
line segments. However, having more inliers does not necessarily mean the line segments
are aligned with the ground truth direction.

35

4 Experiments

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.167 1.874 0.777 0.547 0.494 0.921
4.2c 0.113 4.808 1.383 1.253 0.747 1.571
4.2d 0.346 89.987 51.514 51.668 20.994 55.628

Table 4.15: Angle analysis of 3D-2D RANSAC for each point cloud

As for overlooking problem, although the 3D-2D RANSAC algorithm can reduce the leftover
rate of 3D plane detection, the overall leftover rate is still relatively high due to the overlooking
problem of 2D line detection. The reason is similar to the 3D RANSAC algorithm.

There are two conclusions of the 3D-2D RANSAC algorithm. First, the 2D RANSAC algo-
rithm is different, it performs the voting-based process, similar to the HT algorithm. Fig-
ure 4.5 shows the comparison of the 2D line fitting using original iterative process and the
voting-based process. As the Figure shows, the voting-based process can better fit the internal
structure of the pylon than the original iterative process.

(a) Original iterative process (b) Improved voting-based process

Figure 4.5: Comparison of 2D line fitting using original iterative process and the voting-based
process, performed on a PCA 2D-projection of point cloud 4.2d.

The second conclusion is also revealed in Figure 4.5. Notice that in the 2D-projection of point

36

4.3 Results and analysis

cloud 4.2d, the points representing the internal structure of the pylon are more dense when
comparing to Figure 4.4b. This is due to the symmetry of the pylon, as many other man-
made urban linear objects also have. This results in, when the 2D-projection of the point
cloud is performed, points on one plane can "borrow" more points from the symmetry plane
(e.g., front and back of the pylon) to give a denser distribution of points. Unfortunately, the
symmetry feature is not flexible when dealing with complex senarios, where an object has
no symmetry or has multiple symmetries other than just XYZ directions. Furthermore, it is
difficult to reproject the extracted 2D line segments back to 3D, as the inliers are not always
on the same plane (e.g., some inliers are on the front side of the pylon while some are on
the back side).

Region Growing

The parameters settings (see Section 3.1.2) of region growing is shown in Table 4.16. The
results are shown in Table 4.17.

Input K Max dist. Max angle Min radius Max radius Min region size

4.2a 16 0.05 20 0.01 1.0 4
4.2c 28 0.04 30 0.01 1.0 4
4.2d 28 0.04 25 0.01 1.0 4

Table 4.16: Parameter settings of region growing

As can be seen from the results, the region growing algorithm also not perform well on the
test cases. Comparing to the 3D RANSAC algorithm, the region growing algorithm suffers
less from the overlooking problem. However, the extracted wireframe models from region
growing still have a wrong fitting problem.

(a) (b)

Figure 4.6: (a) Wrong fitting of extracted cylinders from region growing; (b) Points with
different normal estimation results.

For the overlooking problem, the region growing algorithm suffers less from it. Table 4.18
shows that the number of leftover points is relatively small. As discussed in Section 3.1.2,
the region growing algorithm uses the kNN to find the nearest neighbors of the points and
grows the region, which results in most of the points are assigned to a region and therefore
successfully extract a 3D line segment. Also, the Min region size parameter is set to 4, which

37

4 Experiments

Point cloud Input Extrated cylinders Leftover points

Table 4.17: Results of region growing for each point cloud

Point cloud Input points Leftover points Leftover rate (%)

4.2a 538 6 1.1
4.2c 6439 205 3.2
4.2d 8947 179 2.0

Table 4.18: Leftover rate of Region Growing for each point cloud

Point cloud Mtotal Munmatched Unmatched rate (%)

4.2a 81 28 34.6
4.2c 1040 520 50.0
4.2d 1443 1018 70.5

Table 4.19: Unmatched rate of Region Growing for each point cloud

38

4.3 Results and analysis

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.016 0.090 0.051 0.054 0.021 0.055
4.2c 0.010 0.099 0.058 0.057 0.016 0.060
4.2d 0.000 0.100 0.048 0.048 0.026 0.055

Table 4.20: Distance analysis of Region Growing for each point cloud

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.876 3.955 2.645 2.956 0.983 2.822
4.2c 0.310 31.696 7.132 6.250 5.216 8.835
4.2d 0.984 89.969 52.282 51.756 23.459 57.304

Table 4.21: Angle analysis of Region Growing for each point cloud

means a region with 4 points is considered as a valid region. This is also one of the reasons
that the region growing algorithm suffers less from the overlooking problem.

However, the downside of this is the wrong fitting problem. As shown in Figure 4.6a, there
are many extracted cylinders along one principal direction, and their directions are not
always aligned with the ground truth. This results in the extracted 3D line segments from
the cylinders also not aligned with the ground truth direction, leading to an unmatched rate
of up to 70.5% (see Table 4.19) and a RMSE of angle deviation of up to 57.304 (see Table 4.21).
The wrong fitting problem is also due to the normal information of the points, as the region
growing algorithm uses the normal information as a support to grow the region and use the
LS fitting method to estimate the cylinder parameters (see Section 3.1.2). As shown in Figure
4.6b, the points with different normal estimation results are assigned to different regions,
which results in the scattered distribution of the extracted cylinders. And considering the
opposite case, if two sets of points that represent different principal directions are assigned to
the same region due to the similar normal estimation results, the extracted cylinder will have
a wrong direction as the LS fitting method will take two principal directions into account.
This is also the reason why the RMSE of distance is comparable to other algorithms (see Table
4.20).

Therefore, for region growing, there is a trade-off between the overlooking probability and
the quality of the extracted wireframe model. If one wants to reduce the overlooking prob-
ability, the constraints of the validity of the region should be relaxed, which results in the
scattered distribution problem. On the other hand, if one wants to reduce the scattered distri-
bution, the constraints should be tightened (e.g., larger Min region size and lower Max angle),
which results in the overlooking problem.

Hough Transform

The parameter settings (see Section 3.1.3) of Hough Transform is shown in Table 4.22. The
results are shown in Table 4.27.

As can be seen from the results, the HT algorithm performs well on the simple case (4.2a),
where the extracted line segments are close to the ground truth principal direction, with a

39

4 Experiments

Point cloud Tessel. step Cell width Num. of lines Min votes

4.2a 4 0.1 0 4
4.2c 4 0.2 0 4
4.2d 4 0.1 0 4

Table 4.22: Parameter settings of Hought Transform for each point cloud

leftover rate of 3.0%, an unmatched rate of 7.7%, and a RMSE of angle deviation of 2.055
degrees. However, for medium (4.2c) and difficult (4.2d) cases, it does not perform well.

Point cloud Input points Leftover points Leftover rate (%)

4.2a 538 16 3.0
4.2c 6439 63 1.0
4.2d 8947 2077 23.2

Table 4.23: Leftover rate of Hough Transform for each point cloud

Point cloud Mtotal Munmatched Unmatched rate (%)

4.2a 52 4 7.7
4.2c 68 27 39.7
4.2d 649 64 9.9

Table 4.24: Unmatched rate of Hough Transform for each point cloud

For the overlooking problem, as shown in Table 4.23, the leftover rates range from 1.0% to
23.2%, which is a relatively wide range. For difficult case, there are 23.2% of the points
that do not get assigned to any valid line segments, while for the simple and medium
cases, only 3.0% and 1.0% of the points fail to do so respectively. This indicates that the
overlooking problem for the HT algorithm varies with different cases. A reason for this is
the discretization of the Hough space. As discussed in Section 3.1.3, the direction vector is
discretized into a finite set, which results in the loss of precision. For some cases, such as
the medium case, the ground truth principal directions might just happen to be close to the
discretized direction vectors, which results in a small number of leftover points. For other
cases, the situation might be the opposite, leading to larger leftover rates.

Another problem can be seen from the results is the wrong fitting problem discussed in
Section 4.3.3. As shown in Figure 4.7, the extracted line segments are not always aligned
with the ground truth direction.

The reason is the same as the wrong fitting problem of the 3D-2D RANSAC algorithm, where
the validity of the extracted line segments is determined by the number of inliers. For HT,
it is the number of votes. As shown in Table 4.26, the angle deviations is very large for the
difficult case where the RMSE of angle deviation reaches 61.223 degrees. This results in some
extracted line segments being unreasonable and not aligned with the ground truth direction,
as shown in Figure 4.7.

A third problem of the HT algorithm is the efficiency problem. As shown in Table 4.22,
the tessellation step is set to 4, which means the direction is discretized into 321 direction

40

4.3 Results and analysis

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.007 0.087 0.051 0.047 0.024 0.056
4.2c 0.000 0.096 0.051 0.052 0.026 0.057
4.2d 0.000 0.100 0.028 0.023 0.023 0.036

Table 4.25: Distance analysis of Hough Transform for each point cloud

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.454 5.586 1.218 0.587 1.655 2.055
4.2c 0.156 2.295 1.005 0.953 0.462 1.106
4.2d 0.634 89.991 56.236 58.041 24.203 61.223

Table 4.26: Angle analysis of Hough Transform for each point cloud

(a) 4.2c (b) 4.2d

Figure 4.7: Wrong fitting of extracted line segments from Hough Transform.

41

4 Experiments

Input Ground truth model Extrated model Leftover points

Table 4.27: Results of Hough Transform for each point cloud

42

4.3 Results and analysis

vectors. Also, the cell width is set to 0.1 to 0.2 meters. For the difficult case, this combination
not only requires significantly more time for computation comparing to the aforementioned
algorithms, but also exceeds the limit of the RAM of the machine used in this project.

The merit of the HT algorithm is that it does not require the normal information of the input
point clouds, which is a great advantage when the input point clouds do not have ground
truth normals. As the result of 4.2d shows, despite the wrong-fitting line segments, most
of the external structures are still correctly detected, having a higher accuracy comparing to
the three aforementioned algorithms.

Energy minimization for Markov Random Field

For the energy minimization algorithm we proposed, the formula is discussed in Section 3.2.
The parameters are set as follows:

• For the σ2 to compute the inlier probability (equation 3.4), it is set as σ2 = −d2

2·log(ϵ) ,
where ϵ = 1e− 6. This means when d = 1, the inlier probability given by the Gaussian
function is 1e− 6, which is close to 0.

• For the angle-difference threshold θmin for the edge length term (equation 3.5), it is
initialized as 10◦.

• For the weight parameter λ, it is first set to 0.1 for the elaboration of the overall algo-
rithm. A further tuning is discussed later in this section.

The results of the energy minimization algorithm are shown in Table 4.28. The preserved
rate of the energy minimization algorithm is shown in Table 4.29. The distance and angle
analysis of the energy minimization algorithm is shown in Table 4.31 and Table 4.32.

Figure 4.8: Edge matching result of 4.2a

As can be seen from Table 4.29, the energy minimization algorithm achieves high preserved
rates, ranging from 74.3% to 97.0%. For simple cases, up to 97.0% of the input edges are
preserved, while for complex cases like the pylon, 74.3% of edges are retained. However, the

43

4 Experiments

Input Ground truth model Preserved edges Removed edges

Table 4.28: Results of Energy minimization for each point cloud

Point cloud Input edges Preserved edges Preserved rate (%)

4.2a 2842 2757 97.0
4.2c 38474 35497 92.3
4.2d 69172 51355 74.3

Table 4.29: Preserved rate of Energy Minimization for each point cloud

Point cloud Mtotal Munmatched Unmatched rate (%)

4.2a 2757 390 14.1
4.2c 35497 17921 50.5
4.2d 51355 21560 42.0

Table 4.30: Unmatched rate of Energy Minimization for each point cloud

44

4.3 Results and analysis

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 0.037 0.067 0.055 0.057 0.009 0.055
4.2c 0.037 0.086 0.062 0.063 0.010 0.063
4.2d 0.011 0.096 0.048 0.048 0.012 0.050

Table 4.31: Distance analysis of Energy Minimization for each point cloud

Point cloud Min Max Mean Median Std dev. RMSE

4.2a 7.252 11.405 9.214 9.347 1.044 9.273
4.2c 3.226 29.511 17.207 17.040 6.320 18.331
4.2d 25.025 81.435 49.413 48.836 9.472 50.313

Table 4.32: Angle analysis of Energy Minimization for each point cloud

unmatched rate of the energy minimization algorithm is still relatively high, ranging from
14.1% to 42.0%. As for error analysis, as shown in Table 4.31 and Table 4.32, the distance
RMSE ranges from 0.050 to 0.063 meters, and the angle RMSE ranges from 9.273 to 50.313
degrees. As Figure 4.8, 4.9, and 4.10 shows, the energy minimization algorithm can preserve
the main structure of the powerline and pylon from their input point clouds. However, the
high unmatched rate indicates that the algorithm also preserves a lot of edges that are not
close to the ground truth. The RMSE of angle deviation is still relatively large, ranging from
9.273 to 50.313 degrees. However, for the difficult case, the energy minimization algorithm
manages to achieve the lowest RMSE among all algorithms. This shows the potential of the
energy minimization algorithm to preserve the main structure with an acceptable accuracy,
even with many noisy edges.

Figure 4.9: Edge matching result of 4.2c

Furthermore, when looking at Figure 4.10, notice that some of the internal structures are
being preserved, which the aforementioned algorithms can hardly do. This is because, as
discussed in Section 3.2, the energy minimization algorithm uses a combined graph (from

45

4 Experiments

Figure 4.10: Edge matching result of 4.2d

kNN graph and DT graph) as input. For the difficult case, there are nearly 70000 edges in the
input graph. Therefore, the input can, to a certain degree, handle the overlooking problem,
since the optimal solution is included in the exhaustive search from the input graph.

As discussed in Section 3.2, the data term has two sub-terms: the inlier probability term and
the edge length term. For inlier probability term, as Figure 3.7 shows, to search inliers for an
edge, a cylinder is constructed. However, for the edges that lies on the corner of the pylon,
i.e., the external structures, the cylinder constructed from it might not be able to search any
inliers (see Figure 4.11a). For the edge length term, it uses the angle-difference threshold
θmin to determine the final length of the edge. However, for external edges in Figure 4.11b,
the angle-difference between the edge and its neighbor edges could be easily larger than the
threshold, which results in a small final length and a huge edge length term, leading to the
removal of the edge.

(a) (b)

Figure 4.11: External edges of the pylon (covered in red box).

The difficulty of designing a proper data term leads to an important problem: noise. The
goal of the data term is to distinguish different types of edges, i.e., the preserved edges and
the removed edges. Then the smooth term is used for a "denoising" process: to smooth
the edges that have different types from their neighbors. This means the data term has to

46

4.3 Results and analysis

Figure 4.12: λ tuning for Energy minimization

be able to correctly classify most of the edges. However, as mentioned before, current data
term is not able to do so. Therefore, the smooth term in this case also performs poorly. As
shown in Figure 4.12, when tuning the λ parameter, the smooth term exhibits three different
behaviors:

• Little effect: As can be seen from the third row of Figure 4.12, from λ = 0 to λ = 1, the
edges have no clear difference. This is because almost all edges there are identified as
preserved edges by the data term. Therefore, the smooth term cannot denoise when
there is no noise at all.

• Wrong smoothing: As can be seen from the second row of Figure 4.12, when λ goes from
0.0 to 0.1, an edge in the middle is being removed, while this edge actually represents
the external structure of the pylon. This is because most of its neighbors are identified
as removed edges by the data term. Therefore, the smooth term mistakenly removes
this edge.

• Different smoothing threshold: As the first and the second rows of Figure 4.12 shows,
when the λ parameter goes from 0.3 to 0.5, the second row of the figure exhibits a
smooth effect for many edges on the external part of the pylon, while the first row of
the figure have very little change. This is also due to the misclassification of the edges
by the data term.

Overall, the energy minimization has a primary advantage of handling complex structures
by processing a dense input graph, which helps overcome the overlooking problem to a cer-
tain degree. The error analysis confirms relatively low error rates in terms of both distance
and angle deviation for the difficulte test case. However, the method faces significant chal-
lenges in properly designing the data term for the graph structure, especially for external
structures where inlier detection is difficult due to geometric considerations. The smooth
term, which should ideally function as a denoising mechanism, exhibits inconsistent behav-
ior across different regions (different smoothing thresholds) and can even introduce errors
(wrong smoothing) when the data term fails to properly classify edges. These limitations

47

4 Experiments

highlight the difficulty of balancing local geometric features with global structure preserva-
tion in wireframe extraction. However, despite these challenges, the energy minimization
approach provides a relatively promising framework that can be improved with more so-
phisticated data terms for graph inputs, or to cooperate with other algorithms (e.g., use other
algorithm’s output as input) to achieve better performance on the wireframe extraction of
man-made urban linear objects.

48

5 Conclusion, Discussion and Future
work

In this final chapter, Section 5.1 reviews the research question raised in Section 1.2 to evaluate
the degree of which the question has been addressed. Section 5.2 discusses the potential of
the cooperation of multiple algorithms, and the contribution of this thesis. Section 5.3 further
discusses potential directions derived from the previous section for future work.

5.1 Conclusion

The conclusion is drawn by reviewing the research question we have defined in Section 1.2.
For each question, a short answer is provided, followed by a explanation of the answer.

QUESTION:

Is it possible to extract wireframe models from point clouds of man-made urban linear
objects with an algorithm that has generalization ability?

ANSWER: Partially yes.

In this thesis, we have explored five different general algorithms for wireframe model ex-
traction from point clouds of man-made urban linear objects. As presented in Section 4.3,
four of them (3D RANSAC, 3D-2D RANSAC, region growing, and HT) can extract 3D line
segments from the input point clouds, which theoretically can be used to further construct
wireframe models. However, these segments suffer from the overlooking and wrong fitting
problems, making them not eligible to construct wireframe models directly. For the energy
minimization for MRF algorithm we proposed, the optimal solution of which is included in
the exhaustive search from the input graph. However, current results contain much noise,
and a better formula for edge selection needs to be designed for a better edge selection.
Therefore, the answer to the question is partially yes.

QUESTION:

Is there any algorithm that gives or has the potential to give promising extraction results
of the wireframe models of man-made urban linear objects?

ANSWER: No promising results yet, but the potential exists.

Given the answer to the first question, currently we are not able to extract wireframe models
with a high accuracy from the input point clouds with a general algorithm, and therefore
there is no promising result in this thesis. However, the potential exists. The experiment
in Section 4.3.3 shows the potential to overcome the overlooking problem by improving
the validation process of the algorithm. Furthermore, the energy minimization can naturally

49

5 Conclusion, Discussion and Future work

cooperate with other algorithms to overcome the wrong fitting problem. Therefore, although
there is no promising result can be given by one single algorithm, with proper integration
of multiple algorithms, it is possible to develop a general pipeline for wireframe model
extraction from point clouds of man-made urban linear objects.

5.2 Discussion

5.2.1 Potential of the cooperation of multiple algorithms

As discussed in Section 4.3, the algorithms we have explored have their own problems. For
the primitive detection algorithms, the overlooking and wrong fitting problems are the two
addressed problems, with the overlooking problem being the main challenge. For the energy
minimization for MRF algorithm we proposed, the main problem is the difficulty to design a
proper data term for the graph structure in order to correctly classify the edges.

Although the experiments show that using a single algorithm is not able to extract wireframe
models with a high accuracy, it is possible to combine multiple algorithms to achieve better
results. Here, we discuss the potential of the cooperation of primitive detection algorithms
and the energy minimization for MRF algorithm.

As discussed in Section 3.2, the energy minimization for MRF accepts a graph as input, this
graph is an abstract structure that can represent different things that varing from 2D pixels
to 3D geometric shapes. Therefore, for wireframe model extraction, it is possible to use the
output of the primitive detection algorithms as the input of the energy minimization for MRF
algorithm.

For example, the extracted 3D line segments from the HT algorithm can be used to construct
a graph, and be used as the input of the energy minimization for MRF algorithm (see Figure
5.1). With this input, it is easier to design a proper data term for the graph structure and
therefore to achieve a better edge selection result. However this cooperation still needs to
solve the overlooking problem of the primitive detection algorithms.

(a) (b) (c)

Figure 5.1: Example of the cooperation of the primitive detection algorithm and the energy
minimization for MRF algorithm. (a) Input point cloud. (b) Primitive detection result. (c)
Graph constructed from the primitive detection result.

50

5.2 Discussion

Another possible way is perform the region growing algorithm on the graph constructed
from the input point cloud. As shown in the experiments, the region growing algorithm has
the lowest leftover rate among the primitive detection algorithms. Therefore, it can be used
to first segment the graph into multiple structures first, and then construct a new graph from
these structures (see Figure 5.2). With this new graph, it is also easier to design a proper
data term. Furthermore, this solution can also better handle the overlooking problem of the
primitive detection algorithms, since the input graph includes all the edges that are close to
the ground truth, and region growing algorithm is used to segment the graph into multiple
structures.

(a) (b) (c)

Figure 5.2: Example of performing the region growing algorithm on the graph constructed
from the input point cloud. (a) Input graph. (b) Segmentation result. (c) New graph
constructed from the segmentation result.

5.2.2 Contributions of this thesis

The main contributions of this thesis are three-fold. First, we create a dataset of man-made
urban linear objects (see Figure 4.2), which contains 12 objects, each of them has a point
cloud with a ground truth wireframe model. Currently, there is few available datasets
for wireframe model extraction, especially containing the ground truth wireframe mod-
els. Therefore, this dataset can be used to evaluate the performance of the wireframe model
extraction algorithms. Furthermore, if one wants to develop an algorithm based on machine
learning or deep learning techniques, this dataset can also be useful.

Second, we conducted an evaluation and comparison experiment for primitive detection al-
gorithms in wireframe model extraction. This contribution establishes the comparison of the
performance of different algorithms (3D RANSAC, 3D-2D RANSAC, region growing, and HT)
on the task of wireframe model extraction from point clouds of man-made urban linear ob-
jects. Our evaluation metrics can serve as a guidance for future algorithm assessment in this
domain. Additionally, we identify and categorize the fundamental limitations that prevent
existing algorithms from achieving satisfactory wireframe extraction, providing potential
directions for future algorithmic improvements and research focus areas.

Third, we introduce an energy minimization for MRF algorithm for wireframe model ex-
traction from point clouds of man-made urban linear objects. This contribution explores the

51

5 Conclusion, Discussion and Future work

application of graph-based optimization techniques to the wireframe extraction problem, es-
tablishing a new research direction in this field. The algorithm provides a flexible framework
that can accept various graph representations as input, offering theoretical guarantees for
optimal solution inclusion within the search space. Furthermore, we demonstrate the poten-
tial of multi-algorithm cooperation by showing how the energy minimization framework can
be integrated with existing primitive detection algorithms. This cooperative paradigm can
also be a reference for developing more robust and accurate wireframe extraction pipelines
that leverage the complementary strengths of different algorithmic approaches.

5.3 Future work

Based on the findings and discussions presented in this thesis, we propose two main direc-
tions for future work that build upon the potential of multiple algorithm cooperation:

5.3.1 Integration of Primitive Detection Results with Energy
Minimization

The first recommended direction involves developing a hybrid approach that uses the out-
put of primitive detection algorithms as input for the energy minimization framework. As
demonstrated in Section 5.2.1, the 3D line segments extracted by algorithms such as HT can
be used to construct graphs that serve as input for the energy minimization for MRF algo-
rithm. This approach offers several advantages: it provides a more structured input graph
compared to directly constructing the graph from the point cloud, making it easier to de-
sign appropriate data terms for the energy function. Additionally, this integration could
potentially mitigate the wrong fitting problem observed in primitive detection algorithms by
allowing the energy minimization framework to select the most coherent subset of detected
line segments.

Future work in this direction should focus on: (1) developing robust methods for converting
primitive detection results into graph representations suitable for energy minimization; (2)
designing effective data terms that can properly evaluate the quality of detected line seg-
ments within the graph structure; (3) investigating different primitive detection algorithms
as preprocessors to determine which provides the most suitable input for the energy mini-
mization framework.

5.3.2 Graph-based Region Growing with Energy Minimization

The second direction involves applying region growing algorithms directly on graphs con-
structed from input point clouds, rather than on the point clouds themselves. This approach
addresses the overlooking problem by ensuring that the input graph contains all edges that
are close to the ground truth. The region growing algorithm would first segment the graph
into multiple structural components, and then a new graph would be constructed from these
segmented results for subsequent wireframe extraction. This new graph can be used as the
input of the energy minimization for MRF algorithm.

This direction presents several research opportunities: (1) adapting traditional region grow-
ing techniques to work effectively on graph structures rather than point clouds; (2) designing

52

5.3 Future work

criteria for graph segmentation that can identify meaningful structural components in man-
made urban linear objects; (3) designing effective data terms that can properly evaluate the
quality of the segmented results within the graph structure.

Both directions represent potential directions for advancing the field of wireframe model
extraction from point clouds of man-made urban linear objects, with the potential to achieve
more robust and accurate results through the strategic combination of multiple algorithmic
approaches.

53

A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

Criteria Rating Description

Input data 2 One self-created dataset in PLY format.
Preprocessing 1 Proprocessing steps described in the report.
Methods 3 All methods are reproducible and available

in the code.
Computational environment 2 Open source and repository publicly avail-

able.
Results 3 Results are available in the GitHub reposi-

tory and can be reproduced using the pro-
vided code and settings.

55

A Reproducibility self-assessment

A.2 Self-reflection

The input data of this project is created by ourselves and thus the dataset it publicly available
on Github.

All the preprocessing steps for dataset creation are descibed in the report (see Section 4.1),
and if one is familiar with Rhino, the preprocessing steps are easy to reproduce.

All the methods are available in the code and the code is open source and publicly available
on Github. The parameter setting for each method is described in the report.

The computational environment is open source and publicly available on Github. Some
of the necessary packages are not included, but they are open source and can be installed
through instructions in the Github repository.

The results generated in this project are also availabe in the Github repository, and they can
be reproduced with the code and same settings.

56

Bibliography

AHN (2020). Dataroom. https://www.ahn.nl/dataroom.

Alkemade (2023). AHN4 classifications same as AHN3? - Datasets / AHN.
https://geoforum.nl/t/ahn4-classifications-same-as-ahn3/8170.

Bauchet, J.-P. and Lafarge, F. (2018). KIPPI: KInetic Polygonal Partitioning of Images. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3146–3154, Salt Lake
City, UT. IEEE.

Besl, P. and Jain, R. (1988). Segmentation through variable-order surface fitting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 10(2):167–192.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications of
3D City Models: State of the Art Review. ISPRS International Journal of Geo-Information,
4(4):2842–2889.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239.

Chen, S., Wang, C., Dai, H., Zhang, H., Pan, F., Xi, X., Yan, Y., Wang, P., Yang, X., Zhu, X.,
and Aben, A. (2019). Power Pylon Reconstruction Based on Abstract Template Structures
Using Airborne LiDAR Data. Remote Sensing, 11(13):1579.

Conde, B., Villarino, A., Cabaleiro, M., and Gonzalez-Aguilera, D. (2015). Geometrical is-
sues on the structural analysis of transmission electricity towers thanks to laser scanning
technology and finite element method. Remote Sensing, 7(9):11551–11569.

Dalitz, C., Schramke, T., and Jeltsch, M. (2017). Iterative Hough Transform for Line Detection
in 3D Point Clouds. Image Processing On Line, 7:184–196.

Du, S., Lindenbergh, R., Ledoux, H., Stoter, J., and Nan, L. (2019). AdTree: Accurate,
Detailed, and Automatic Modelling of Laser-Scanned Trees. Remote Sensing, 11(18):2074.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395.

Ghahremani, M., Williams, K., Corke, F., Tiddeman, B., Liu, Y., Wang, X., and Doonan,
J. H. (2021). Direct and accurate feature extraction from 3D point clouds of plants using
RANSAC. Computers and Electronics in Agriculture, 187:106240.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Guo, B., Huang, X., Li, Q., Zhang, F., Zhu, J., and Wang, C. (2016a). A Stochastic Geometry
Method for Pylon Reconstruction from Airborne LiDAR Data. Remote Sensing, 8(3):243.

Guo, B., Li, Q., Huang, X., and Wang, C. (2016b). An Improved Method for Power-Line
Reconstruction from Point Cloud Data. Remote Sensing, 8(1):36.

57

Bibliography

Hough, P. V. (1962). Method and means for recognizing complex patterns. US Patent
3,069,654.

Huang, J., Stoter, J., Peters, R., and Nan, L. (2022). City3D: Large-Scale Building Reconstruc-
tion from Airborne LiDAR Point Clouds. Remote Sensing, 14(9):2254.

Huang, Z., Wen, Y., Wang, Z., Ren, J., and Jia, K. (2024). Surface reconstruction from point
clouds: A survey and a benchmark. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(12):9727–9748.

Jeltsch, M., Dalitz, C., and Pohle-Fröhlich, R. (2016). Hough Parameter Space Regularisation
for Line Detection in 3D:. In Proceedings of the 11th Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications, pages 345–352, Rome, Italy. SCITEPRESS
- Science and Technology Publications.

Jin, Y.-H. and Lee, W.-H. (2019). Fast Cylinder Shape Matching Using Random Sample
Consensus in Large Scale Point Cloud. Applied Sciences, 9(5):974.

Kawasaki, K. and Masuda, H. (2023). Shape Reconstruction of Structural Members of Steel
Tower Considering Symmetrical Relationships. Computer-Aided Design and Applications,
pages 814–825.

Khaloo, A. and Lattanzi, D. (2017). Robust normal estimation and region growing segmen-
tation of infrastructure 3D point cloud models. Advanced Engineering Informatics, 34:1–16.

Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159.

Lafarge, F. and Mallet, C. (2012). Creating Large-Scale City Models from 3D-Point Clouds:
A Robust Approach with Hybrid Representation. International Journal of Computer Vision,
99(1):69–85.

Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. (2011). GlobFit:
Consistently fitting primitives by discovering global relations. In ACM SIGGRAPH 2011
Papers, SIGGRAPH ’11, pages 1–12, New York, NY, USA. Association for Computing
Machinery.

Lu, X., Liu, Y., and Li, K. (2019). Fast 3D Line Segment Detection From Unorganized Point
Cloud.

Marshall, D., Lukacs, G., and Martin, R. (2001). Robust segmentation of primitives from
range data in the presence of geometric degeneracy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(3):304–314.

Mirzaei, K., Arashpour, M., Asadi, E., Masoumi, H., Bai, Y., and Behnood, A. (2022). 3D
point cloud data processing with machine learning for construction and infrastructure
applications: A comprehensive review. Advanced Engineering Informatics, 51:101501.

Nan, L. (2021). Easy3D: a lightweight, easy-to-use, and efficient C++ library for processing
and rendering 3D data. Journal of Open Source Software, 6(64):3255.

Nan, L. and Wonka, P. (2017). PolyFit: Polygonal Surface Reconstruction from Point Clouds.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2372–2380, Venice.
IEEE.

58

Bibliography

Nurunnabi, A., Belton, D., and West, G. (2012). Robust Segmentation in Laser Scanning 3D
Point Cloud Data. In 2012 International Conference on Digital Image Computing Techniques
and Applications (DICTA), pages 1–8.

Oesau, S., Verdie, Y., Jamin, C., Alliez, P., Lafarge, F., Giraudot, S., Hoang, T., and Anisimov,
D. (2024). Shape detection. In CGAL User and Reference Manual. CGAL Editorial Board,
6.0.1 edition.

Qiao, Y., Xi, X., Nie, S., Wang, P., Guo, H., and Wang, C. (2022). Power Pylon Reconstruction
from Airborne LiDAR Data Based on Component Segmentation and Model Matching.
Remote Sensing, 14(19):4905.

Qiao, Y., Xi, X., Wang, C., Du, M., Nie, S., Liu, W., and Fan, H. (2024). A framework for
automated reconstruction of communication towers from terrestrial laser scanning point
clouds. International Journal of Digital Earth, 17(1):2366431.

Rerun Development Team (2024). Rerun: A visualization sdk for multimodal data. Available
from https://www.rerun.io/ and https://github.com/rerun-io/rerun.

Romanengo, C., Falcidieno, B., and Biasotti, S. (2024). Extending the Hough transform to
recognize and approximate space curves in 3D models. Computer Aided Geometric Design,
113:102377.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for Point-Cloud Shape
Detection. Computer Graphics Forum, 26(2):214–226.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.,
and Rother, C. (2006). A Comparative Study of Energy Minimization Methods for Markov
Random Fields. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision –
ECCV 2006, pages 16–29, Berlin, Heidelberg. Springer.

The CGAL Project (2024). CGAL User and Reference Manual. CGAL Editorial Board, 6.0.1
edition.

Vo, A.-V., Truong-Hong, L., Laefer, D. F., and Bertolotto, M. (2015). Octree-based region
growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing,
104:88–100.

Wang, L., Yan, B., Duan, F., and Lu, K. (2020). Energy minimisation-based multi-class
multi-instance geometric primitives extraction from 3D point clouds. IET Image Processing,
14(12):2660–2667.

Wu, S., Chen, C., Yang, B., Yan, Z., Wang, Z., Sun, S., Zou, Q., and Fu, J. (2025). Pylon-
Modeler: A hybrid-driven 3D reconstruction method for power transmission pylons from
LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 220:100–124.

Xia, S., Chen, D., Wang, R., Li, J., and Zhang, X. (2020). Geometric Primitives in LiDAR Point
Clouds: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13:685–707.

Yan, B., Xu, N., Wang, G., Yang, S., and Xu, L. P. (2019a). Detection of multiple maneuvering
extended targets by three-dimensional hough transform and multiple hypothesis tracking.
IEEE Access, 7:80717–80732.

Yan, B., Xu, N., Zhao, W.-B., and Xu, L.-P. (2019b). A three-dimensional hough transform-
based track-before-detect technique for detecting extended targets in strong clutter back-
grounds. Sensors, 19(4).

59

Bibliography

Zhou, R., Jiang, W., Huang, W., Xu, B., and Jiang, S. (2017). A Heuristic Method for Power
Pylon Reconstruction from Airborne LiDAR Data. Remote Sensing, 9(11):1172.

60

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Motivation
	Research questions and the scope of research
	Thesis overview

	Theoretical background & Related work
	Theoretical background
	Primitive detection methods
	Energy minimization for Markov Random Field

	Existing research on geometric model extraction from point clouds
	Geometric model extraction using primitive detection methods
	Geometric model extraction using energy minimization methods
	Summary of existing research

	Methodology
	Primitive detection for 3D line segments
	RANSAC
	Region Growing
	Hough Transform

	Energy Minimization for Markov Random Field

	Experiments
	Dataset creation and usage
	Implementation specifics
	Results and analysis
	Parameter settings
	Analysis method
	Results and statistics

	Conclusion, Discussion and Future work
	Conclusion
	Discussion
	Potential of the cooperation of multiple algorithms
	Contributions of this thesis

	Future work
	Integration of Primitive Detection Results with Energy Minimization
	Graph-based Region Growing with Energy Minimization

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

