
Quality of Just-in-Time Requirements:
Just-Enough and Just-in-Time

Quality of Just-in-Time Requirements:
Just-Enough and Just-in-Time

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
vrijdag 11 maart 2016 om 10:00 uur

Door

Petra Marianne HECK

Master of Computer Science
Eindhoven University of Technology

geboren te Sittard.

This dissertation has been approved by the

promotor: Prof. dr. A. van Deursen and

copromotor: Dr. A.E. Zaidman

Composition of the doctoral committee:

Rector Magnificus chairman
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. A.E. Zaidman Delft University of Technology, copromotor

Independent members:
Prof. dr. ir. R. van Solingen Delft University of Technology
Prof. dr. F.M. Brazier Delft University of Technology
Prof. dr. R.J. Wieringa University of Twente, The Netherlands
Prof. dr. T. Gorschek Blekinge Institute of Technology, Sweden
Dr. N.A. Ernst Software Engineering Institute, USA

This work has been supported by the Netherlands Organization for Scientific Re-
search (NWO) through the RAAK-PRO program under grants of the EQuA-project.
It has has been carried out under the auspices of the research school IPA (Institute
for Programming research and Algorithmics).

SERG

Published and distributed by: Petra Heck
E-mail: petraheck@outlook.com
ISBN: 978-94-6186-600-4

Copyright c© 2016 by Petra Heck
Cover: ‘Sticky notes on the wall of the Wikimedia Foundation office’ by Sage Ross.
Printed and bound in The Netherlands by CPI – KONINKLIJKE WÖHRMANN B.V.

Dedicated to my beloved father

Acknowledgments

Before diving into the details of Just-in-time Requirements I would like to take the
time to thank a number of people for their contribution to this thesis and even
more important their contribution to my life and the process which has led to me
defending my PhD thesis.

This is the third time in my life that I had the opportunity to start a PhD. I was
always more drawn by other challenges, but this time Fontys Applied University
gave me the opportunity to work on a topic of my own choosing within an area
that had my interest since a long time (Early Quality of Software). Furthermore,
they allowed me to do so while keeping my job as a lecturer in software engineering,
working three days a week as a researcher. I immediately knew this was a unique
opportunity for me. That is why I would like to thank the director of Fontys ICT, Ad
Vissers, and my team lead, Sander van Laar, for allowing me to take this opportunity
even though I only had been employed by Fontys 6 months before. I would also
like to thank Jacob Brunekreef who was the project manager of the EQuA-project
that I was part of during the first two years of my PhD. Jacob was always there for
me with support and good advice.

The next group of people that I would like to thank is of course the team from
the Software Engineering Research Group in Delft. First of all Arie van Deursen
who gave me the opportunity to work with his group on a topic (Requirements)
that is not so much in their core business. But most of all Andy Zaidman. Without
your guidance I do not know if I would have made it in such a short period of time.
You helped me to set my topic, to frame each of my papers and to work towards
this thesis in a structured way. Your experience on setting up experiments/studies,
writing papers and rebuttals has been invaluable to me. Next to that I greatly
appreciate the time you took for working with me and answering all my questions.
I am really going to miss our weekly virtual coffees. A final word of thanks to the
rest of the group with whom I occasionally had the pleasure of sharing lunch and
more specifically to Cuiting Chen who provided me with the template of her thesis
and (her friends) cover design.

I did my day-to-day research behind my desk at Fontys Eindhoven. The long
writing sessions were definitely more enjoyable through the continuous interrup-
tions of my roommates (all the three different offices I was in :-) and the relaxing
lunch and coffee breaks I spent with my colleagues. A special thanks to my col-

vii

league Gerard Schouten who accepted to be the photographer during my defense
ceremony.

Last but not least I would like to thank my family and friends. Their involvement
in my PhD research might not have been very direct, but they have made me to the
person that I am today. They have supported me in everything I have done and
gave me the confidence to take up this challenge. Next to that, they offered me the
invaluable moments of joy and laughter that inspired me to work even harder in the
rest of the time. Thanks especially to my friends Judith and Kaate for agreeing to
be my paranymphs; you are my dear friends, each symbolizing a different period of
education (high-school and university) in my life. A special mention for my parents
that have always supported me (both mentally and financially :-). It is sad that my
dad is not able to see the end result of all of this but I know he would have been
proud of me.

Thank you is not enough for my husband, Mark, who has always inspired me
to take on new adventures and who is my best friend in life. You always listen to
my stories, give me advice and support me in so many ways. I love you and I am
really happy that we got the opportunity to start a family together with our lovely
daughter Tessa.

Petra van den Broek - Heck
Eindhoven, March 2016

viii

Contents

Acknowledgements vii

1 Introduction 1

1.1 Background on Just-in-Time Requirements Engineering 3

1.2 Current State of the Research Field . 6

1.3 Problem Statement . 7

1.4 Research Methodology . 9

1.5 Contributions . 13

1.6 Thesis Outline . 14

1.7 Origin of Chapters . 14

2 Just-in-Time Requirements in Open Source Projects: Feature Requests 17

2.1 Open Source Requirements . 19

2.2 Duplicate Feature Requests . 23

2.3 Assisting Users to Avoid Duplicate Requests 30

2.4 Related Work . 34

2.5 Discussion and Future Work . 36

2.6 Conclusion . 38

3 Horizontal Traceability of Open Source Feature Requests 41

3.1 Background . 44

3.2 Experimental Setup . 49

3.3 Results . 53

3.4 Extending a Feature Request Network 58

ix

3.5 Discussion . 60

3.6 Conclusion . 61

4 Quality Criteria for Just-in-Time Requirements: Open Source Feature
Requests 63

4.1 A Quality Framework . 65

4.2 Specific Quality Criteria for Feature Requests 67

4.3 Instantiating the Framework for Other Types of Just-in-Time Require-
ments . 73

4.4 Empirical Evaluation of the Framework for Feature Requests: Setup . 75

4.5 Interview Results . 79

4.6 Case Study Results: Findings on Quality of Feature Requests 82

4.7 Discussion . 85

4.8 Related Work . 92

4.9 Conclusion . 93

5 A Systematic Literature Review on Quality Criteria for Agile Require-
ments Specifications 97

5.1 Background and Related Work . 99

5.2 Method . 101

5.3 Results: Meta-Data Classification . 110

5.4 Results: Quality Criteria Used in Literature 113

5.5 Results: Recommendations for Practitioners 116

5.6 Results: Research Agenda . 117

5.7 Discussion . 119

5.8 Conclusion . 123

6 Conclusion 133

6.1 Summary of Contributions . 133

6.2 The Research Questions Revisited . 134

6.3 Requirements Engineering Research Evaluation Criteria 137

6.4 Recommendations for Future Work . 140

Tables for Chapter 2 143

Bibliography 147

Summary 161

x

Samenvatting 163

Curriculum Vitae 165

xi

List of Tables

1.1 Overview of sources used for Chapters 2 till 4 (FR=Feature Request),
for links to projects see Table 2.1 . 13

2.1 Projects and platforms analyzed . 19

2.2 Requirements elements in open source project websites 21

2.3 Duplicate feature requests in open source projects Jan 2012 23

2.4 Analysis of duplicate feature requests . 25

2.5 Comparison with other issue trackers . 38

3.1 Number of submitters for feature requests and defects 47

3.2 Recall rates for the three projects . 53

3.3 Categories of undetected duplicates. Categories taken from Chapter 2. . 55

3.4 Related pairs from top-50 most similar. 56

4.1 Specific criteria for user stories . 75

4.2 Quality score calculation . 79

4.3 Scorings from open source projects (NB = Netbeans, AU = ArgoUML,
MT = Mylyn Tasks) . 84

4.4 Subjectivity scores per question . 86

4.5 Mapping between Davis et al. (1993) and our framework 88

4.6 JIT quality framework for feature requests - [QC1] and [QC2] 95

4.7 JIT quality framework for feature requests - [QC3] 96

5.1 Filtering publications on quality criteria for agile requirements 105

5.2 Interrater agreement for candidate inclusion 106

xiii

5.3 Interrater agreement for final inclusion . 107

5.4 Venues . 111

5.5 Classification of selected papers . 112

6.1 Paper evaluation criteria, taken from Wieringa et al. (2005) 138

A1 Analysis of Apache HTTPD duplicate feature requests (part 1 of 2) 144

A2 Analysis of Apache HTTPD duplicate feature requests (part 2 of 2) 145

xiv

List of Figures

2.1 Open source requirements items . 20

2.2 Feature request in Bugzilla . 22

2.3 Warning on the bug report page of Subversion 27

2.4 Network of ‘duplicate’ relations in Subversion 29

2.5 Search options in Apache HTTPD Bugzilla 33

3.1 Feature request network in Subversion (feature request ID and creation
date). 42

3.2 Feature request network for the Mylyn Tasks project 59

4.1 JIT Requirements quality framework, see also Tables 4.6 and 4.7 67

4.2 Feature Request in Bugzilla (Mylyn Tasks project) 68

4.3 Checklist rating by interview participants 81

5.1 Meta-data of selected papers (W=workshop, C=conference, B=book chapter,

J=journal, O=Other) . 110

5.2 Quality criteria for agile requirements (next to each quality criterion the
papers that mention it). 114

6.1 Just-in-time requirements quality framework (instantiated for feature
requests in open source projects and user stories) 137

xv

List of Acronyms

*C Creation time

*J Just-in-time

BRN Bug report network

FRequAT Feature request analysis tool

INVEST Independent, negotiable, valuable, estimable, small, testable

IQ Inherent quality

JIT Just-in-time

LSA Latent semantic analysis

OSS Open source software

QC Quality criterion

RE Requirements engineering

RQ Research question

SLR Systematic literature review

SMART 1) Specific, measurable, acceptable, realistic, time-bounded; 2) System
for the mechanical analysis and retrieval of text

SPCM Software product certification model

SVD Singular value decomposition

TF-IDF Term frequency - Inverse document frequency

VSM Vector space model

xvii

1.
Introduction

Quality of requirements is considered important since the early days of software
development. Already in the early eighties Boehm (1981) showed that finding and
fixing errors in the requirements phase can be up to a thousand times cheaper than
fixing them after delivery of the software. Since then, several guides (e.g. IIBA
(2009)), standards (e.g. IEEE-830 (1998)) and even certifications (e.g. www.ireb.
org) have been created that describe how good requirements engineering should
be performed and what constitutes quality of requirements. For example, the IEEE
830 standard (for Software Requirements Specifications), states that requirements
should be complete, unambiguous, specific, time-bounded, consistent, etc. Accord-
ing to Denger and Olsson (2005) it is important that each project or company de-
fines their own minimal and optimal set of quality criteria for the requirements.

Since the beginning of this century a new way of developing software has be-
come more and more popular. The principles of this so-called ‘agile development’
have been captured in the Agile Manifesto (Beck et al. 2001). The main impli-
cations for requirements engineering are: 1) software is being developed in short
iterations with the requirements being detailed only just before the start of each
iteration - Ernst and Murphy (2012) call this ‘Just-in-Time Requirements’; 2) early
feedback through heavy involvement of the customer and the use of prototyping
leads to less written requirements details - we would call this ‘Just-Enough Require-
ments’. The latter not being a widely used term, in this thesis we will use the more
common term ‘Just-in-Time (JIT) Requirements’.

1

www.ireb.org
www.ireb.org

2 Chapter 1. Introduction

Just-in-Time Requirements Analysis
Just-in-Time Requirements Analysis is a lightweight, adaptable approach to requirements

analysis. It is an analysis process that expects and embraces change and is distinguished

from other analysis methodologies in several ways (Lee 2002):

• Requirements aren’t analyzed or defined until they are needed.

• Only a small initial investment is required at the start.

• Development is allowed to begin with incomplete requirements.

• Analysis and requirements definition is continuous throughout the project.

• Requirements are continuously refined as the project moves forward.

• Change is expected and easy to incorporate into requirements.

In this thesis we use the term Just-in-Time (JIT) Requirement to refer to any requirement

created and managed through such an approach.

Not all quality criteria from the IEEE 830 standard (which has been designed
for up-front requirements documents) are applicable to JIT requirements. JIT re-
quirements are allowed to be incomplete or vague for at least a certain period of
time. However, there is a limit to this vagueness. The requirement should be clear
enough for the stakeholders to remember what this requirement was about at the
start of the designated iteration. Otherwise the development team would need to
spend extra time or effort in detailing it. In the same way it is good to have a
high-level overview of the scope of the application before the first iteration starts.
E.g. knowing that there is a reporting module will guide the development of other
features and the basic architecture, but it might not be necessary to know from the
start the contents of all reports in the module.

The goal of this thesis is to obtain a deeper understanding of the notion of qual-
ity for just-in-time requirements. In this thesis we focus on quality in the sense of
informal verification: “ensuring that requirements specifications and models can
be used effectively to guide further work” (IIBA 2009) without the use of formal
methods. Verification activities as in this definition ensure that the requirements
are specified in a correct way. This is opposed to requirements validation that “en-
sures that all requirements support the delivery of value to the business, fulfill its
goals and objectives, and meet a stakeholder need.”’ (IIBA 2009). According to IIBA
(2009) verified requirements is a pre-requisite for validated requirements. That is
why we will focus on this first step in this thesis. We will focus on informal verifica-
tion as opposed to formal verification because the use of formal methods to prove
requirements correctness is not common in agile development.

In this thesis we use open source feature requests as our main study object. They
are a form of just-in-time requirements, with the advantage of having their whole
history available on-line. Where applicable we generalize our results to other types
of just-in-time requirements.

1.1. Background on Just-in-Time Requirements Engineering 3

1.1 Background on Just-in-Time Requirements En-
gineering

According to Cockburn (2000), “the better the internal communications between
usage experts and developers, the lower the cost of omitting parts of the use case
template” (the type of requirements Cockburn discusses). This is exactly what JIT
requirements engineering is about. The initial JIT requirements are “a promise for
a conversation between a requirements expert and a developer” (Cockburn 2000).
The conversation about the details of the requirements is postponed until as late as
possible. This means that the full specification of a JIT requirement is only done
just-in-time. What just-in-time specification means (i.e. how much is written down
and when things are written down) depends on the way of working for the devel-
opment team or project.

This section provides a brief background on both agile and open source require-
ments as they are the type of JIT requirements mostly discussed in this thesis.

Agile Requirements Engineering
Four of the 12 principles behind the Agile Manifesto (Beck et al. 2001) directly
relate to requirements:

• Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.

• Business people and developers must work together daily throughout the project.

• The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

• The best architectures, requirements, and designs emerge from self-organizing
teams.

Although working together and face-to-face conversation are valued highly in
the Agile Manifesto, many situations exist (e.g. distributed development, large
development teams, complex projects) that do require documented agile require-
ments (Inayat et al. 2014). In the remainder of this thesis we will focus on the
written requirements. Similarly we focus on the end product (the written require-
ment) and not so much on the process with which this end product was created
(e.g. self-organizing teams).

Two popular methods of agile development (Matharu et al. 2015) are eXtreme
Programming, or XP (Beck et al. 2001), and Scrum (Schwaber and Beedle (2001)
and www.scrumguides.org). Of those two methods, Scrum is currently most widespread
(see e.g. stateofagile.versionone.com. According to Leffingwell (2011) Scrum
is “achieving widespread use because it is a lightweight framework, and–more

www.scrumguides.org
stateofagile.versionone.com

4 Chapter 1. Introduction

importantly–it works. It also has the added benefit of a training certification pro-
cess...”. Leffingwell then goes on to describe what he calls the “Scaled Agile Delivery
Model”: a model he uses to describe the big picture of agile requirements through-
out the enterprise. This model is loosely based on the main principles of Scrum,
but then generalized to the entire enterprise, not just the development team. In
this thesis we will sometimes encounter XP as many older publications about ag-
ile investigate this method. To explain some basic concepts of agile requirements
engineering we will use the model of Leffingwell (based on Scrum).

User Stories
According to Leffingwell, agile development teams work with ‘User Stories’ (Cohn
2004) to capture the needs of the user. A user story specifies an intent, not a de-
tailed requirement. In its simplest form a user story consists of one sentence: ‘As
a <role>, I can <activity> so that <business value>’. However, in practice there
are many situations where this one sentence needs more detailing. This can be
done by adding comments or attachments to the user story. The detailing of user
stories is done by continuous discussion with the (representative of) the customer
(called ‘product owner’). Each user story has a priority (determined by the prod-
uct owner) and preferably also some acceptance criteria, specifying when the story
will be satisfied. Some use more extensive formats, such as Dan North’s approach
(North 2006) which also provides acceptance scenarios by specifying them follow-
ing a strict template: ‘GIVEN ... WHEN ... THEN ...’.

Iteration and Backlog
An agile development process consists of iterations (called ‘sprints’ in Scrum), typ-
ically short - about two weeks. All user stories are placed in a so-called ‘backlog’:
a task list with yet-to-be-implemented user stories. At the start of each iteration
the product owner decides (with the advice of the development team) which user
stories go into the next iteration by re-prioritizing them. The product owner is also
allowed to come up with new stories or change existing stories. This is why detail-
ing of a story is usually postponed until the iteration the story has been assigned
to. Detailing of the user story right before the start of the designated iteration is
necessary to estimate the effort needed to implement the story. These effort esti-
mations are then again used to determine how many stories can be included in the
iteration that is about to start.

Definition of Done and Definition of Ready
Most Scrum teams use a so-called ‘Scrum board’ to manage user stories. A scrum
board is a physical task board where each story is written on a card. The cards
can then be moved around between columns specifying the progress of the story
(e.g. ‘To Do’, ‘In progress’, ‘Testing’, ‘Done’). There are usually strict rules about
when a story is allowed to move to the ‘Done’-column. This set of rules is called
the ‘Definition of Done’ (DoD). In many cases the DoD requires that all regression

1.1. Background on Just-in-Time Requirements Engineering 5

tests have been successful. In the light of requirements engineering some teams
also define a ‘Definition of Ready’ (DoR). This is a set of rules specifying when a
user story is ready to be included in the iteration (Power 2014).

Tools
The Scrum board mentioned in the previous paragraph is one of the important
tools for Scrum teams. However, this only works when the whole team is work-
ing in the same physical location and the product owner can also come in to dis-
cuss with the team. Therefore, most teams (also) use some kind of electronic
tool to manage stories. There are electronic implementations of the Scrum board
like Trello (trello.com) and VersionOne (versionone.com), but also e.g. Mi-
crosoft Excel is used to manage basic lists of stories. Traditional requirements engi-
neering tools like IBM Rational Doors (ibm.com/software/products/ratidoor)
or Jama (jamasoftware.com) and issue trackers like Jira (jira.com) and Mantis
(mantisbt.org) often have plug-ins to enter stories directly in the tool or integra-
tions with other tools to manage agile requirements.

Open Source Requirements Engineering
We described in the previous paragraphs how agile development copes with changes
in the environment: new or changed requirements are allowed to enter the devel-
opment process at any time; those requirements will be prioritized and assigned to
one of the coming development iterations. As long as a requirement is not being
developed in the current iteration, not much time is spent on detailing it, because
there is a risk that the requirement will be changed or become obsolete in the mean
time.

A similar way of developing software and dealing with requirements can be seen
in open source projects (Scacchi 2009). Chapter 2 of this thesis shows that most
open source projects (e.g. Netbeans, Eclipse, ArgoUML, Mono, and Android) use
some sort of issue tracker to let users request new or changed features. Others can
then comment on the feature request in that same issue tracker. The development
team will prioritize those so-called ‘feature requests’ and decide which ones will
be included in the next release of the software. Only when the feature request is
being considered for development, more details will be asked from the author of the
request to allow for proper implementation. Because open source projects usually
have users and developers all over the world, the complete discussion between
author, users and developers can be read on-line in the issue tracker.

Feature Request
In this thesis we will use the term ‘Feature Request’ (FR) to refer to a structured re-
quest “documenting an adaptive maintenance task whose resolving patch(es) im-
plement(s) new functionality” (Herzig et al. 2012). Structured request means a
request with a title, a description and a number of attributes. Some projects might

trello.com
versionone.com
ibm.com/software/products/ratidoor
jamasoftware.com
jira.com
mantisbt.org

6 Chapter 1. Introduction

call FRs differently, e.g. ‘change request’, ‘enhancement’ or ‘task’. Feature requests
can be encountered in both open source and closed source environments (Alspaugh
and Scacchi 2013).

1.2 Current State of the Research Field
IEEE has not published any update of their quality criteria since the rise of agile
development. There are new publications about agile from practitioner organiza-
tions e.g. BABOK (Stapleton 2013) and IREB (Grau et al. 2014) but they are more
focused on the process of agile requirements engineering and do not mention the
specific quality criteria for JIT requirements. In the remainder of this section we
will overview the research field.

For just-in-time (mostly from the area of agile development processes) and open
source projects there is a body of work both on Requirements Engineering (Grau
et al. 2014; Noll and Liu 2010; Paetsch et al. 2003) and Quality Assurance (Aber-
dour 2007; Huo et al. 2004). However, as Chapter 5 (a systematic literature review)
will show, there is not much literature on the combination of both. In this section
we will mention a few papers that do address quality of JIT requirements specifi-
cally. This mainly serves to illustrate that the current state of the research field is
(was) quite immature and incoherent.

Size of Agile Requirements
Desharnais et al. (2011) and Dumas-Monette and Trudel (2014) focus on size mea-
surement of agile requirements (using COSMIC). They claim that quality of those
requirements is a necessary condition for accurate estimation. Quality for them
mainly means completeness: descriptions of functional processes and data mod-
eling artifacts are needed to base the COSMIC size measurements on. Dumas-
Monette and Trudel (2014) describe a case study that also highlights other quality
issues related to size measurement.

Quality Attributes of Stories in XP
Duncan (2001) analyses the quality attributes for requirements in Extreme Pro-
gramming (XP, one of the agile methods). He does this by comparing stories (the
main requirements artefact in XP) to the quality attributes presented by Davis et al.
(1993). In this thesis we consider JIT requirements in general (not only XP) and
construct our own list of quality attributes from different sources. In Chapter 4 we
use the list of Davis et al. to validate our list of quality attributes.

Patel and Ramachandran (2009) focus on story cards (used for denoting stories)
and promote a standard structure for such a card. Next to that standard structure
they describe a list of guidelines for stories. This product-related guidelines of that
list are also covered by our framework in Chapter 4.

1.3. Problem Statement 7

Quality Attributes of User Stories
Lucassen et al. (2015) describe quality criteria for user stories. They have used our
framework in Chapter 4 as a basis for their own framework. The difference is that
they only consider the user story title (no comments or attachments), where we con-
sider the complete JIT requirement specification with the full history in comments
and attachments. They use Natural Language Processing techniques to identify the
different parts of the user story title. This is a type of analysis that we did not apply
in our feature requests dataset, but which might be interesting for future work.

Conclusion
All in all none of the above papers are wide-spread (cited by at most 25 other papers
according to Google Scholar). This might have to do with the fact that two of them
focus on XP, which nowadays less companies are applying (see e.g. stateofagile.
versionone.com). The papers about COSMIC are very specific, focusing more on
size measurement. The last paper is very recent and we do not know yet how this
will evolve. However, it is based on our own framework and appeared only after
our own work in Chapter 2 till Chapter 4. So this last paper was not part of the
research field at the time that we started our own research.

1.3 Problem Statement
The limited body of related work (see previous Section) is what inspired us to this
thesis.

To address our main goal (to obtain a deeper understanding of the notion of qual-
ity for just-in-time requirements), we started out with an initial exploration of open
source projects to analyze the feature requests and the difficulties we could see in
working with those feature requests (Chapter 2: [RQ2] 1 how can we assist the users
as the main actors in the requirements evolution process in open source projects?). This
led us to three subsidiary questions:

RQ2.1: In what form do feature requests evolve in the open software com-
munity web sites?

RQ2.2: Which difficulties can we observe for a user that wants to request
some new functionality and needs to analyze if that functionality already
exists or has been requested by somebody else before? Can we explain those
difficulties?

RQ2.3: Do we see improvements to overcome those difficulties?

1Note that we number our RQs according to the chapter numbers of this thesis, hence numbering
starts at 2

stateofagile.versionone.com
stateofagile.versionone.com

8 Chapter 1. Introduction

The analysis of feature requests in open source projects pointed us to the large
amount of duplicates in those feature requests, which we investigated further. We
argued that in order to avoid duplicate feature requests it might help if users have
a way to visualize related feature requests when submitting new ones. For the
visualization of such a feature request network it is necessary to first determine
links between feature requests. Some links are included in the feature requests
themselves, but our next research question was if we could use text-based similarity
to detect additional horizontal traceability links for feature requests (Chapter 3:
[RQ3] Can TF-IDF help to detect horizontal traceability links for feature requests?).
We set out with a simple Vector Space Model (VSM) with TF-IDF as a weighting
factor, to answer two subsidiary questions:

RQ3.1: Is TF-IDF able to detect functionally related feature requests that
are not already explicitly linked?

RQ3.2: What is the optimal pre-processing to apply TF-IDF focusing on
feature requests?

After that we checked if we could improve the results for [RQ3.1] when apply-
ing Latent Semantic Analysis (LSA), which led us to our final subsidiary research
question:

RQ3.3: Does a more advanced technique like LSA improve the detection
of non-explicit links?

After this analysis we moved away from the feature request networks to answer
the more general question of what would be applicable quality criteria for feature
requests specifically and JIT requirements in general (Chapter 4: [RQ4]Which cri-
teria should be used for the quality assessment of just-in-time requirements?). We
developed a framework for informal verification of JIT requirements, based on the
case of open source feature requests, following along the two subsidiary questions:

RQ4.1: Which quality criteria for informal verification apply to feature
requests?

RQ4.2: How do practitioners value our list of quality criteria with re-
spect to usability, completeness and relevance for the quality assessment of
feature requests?

After that we applied our framework to existing open source projects to answer a
third subsidiary question:

RQ4.3: What is the level of quality for feature requests in existing open
source projects as measured by our framework?

1.4. Research Methodology 9

One way to confirm that our framework is not missing any important categories
or quality criteria is by comparing our framework to literature on quality criteria for
agile requirements. For this purpose we conducted a Systematic Literature Review
(SLR) on quality criteria for agile requirements specifications (Chapter 5). This SLR
answers the following research question:

RQ5: Which are the known quality criteria for agile requirements specifi-
cations?

Note that this question is similar to RQ4.1. For RQ5 we did not focus on feature
requests but on agile requirements.

1.4 Research Methodology
The main goal for this thesis is quite general: to obtain a deeper understanding of
the notion of quality for just-in-time requirements. Such a broad goal calls for the
use of different research methods: a so-called mixed methods design. The idea of
mixed methods design is that by combining methods, the weakness of one method
may be compensated by the strength of another method (Creswell 2013).

This thesis presents two different lines of research: 1) duplication and horizon-
tal traceability of feature requests; 2) a quality framework for JIT requirements.
Creswell mentions three broad strategies of which, for both lines of research, we
followed the “exploratory sequential mixed methods”: we started with a qualitative
study to explore the area (Chapter 2 and the first half of Chapter 4 respectively) and
then used the information to define a qualitative study (Chapter 3 and the second
half of Chapter 4 respectively). For each of the chapters we applied methodologi-
cal triangulation to have multiple sources to answer our research questions from.
Chapter 5, the SLR, was an extension we added later in the process to strengthen
our qualitative findings in Chapter 4. For each of our studies we followed the guide-
lines of Wohlin et al. (2000).

Throughout the chapters of this thesis different research methods have been
used to answer the research questions. Each chapter extensively describes the
research setup. We summarize our research approach in this section to give an
overview of methods used in one single place and to show that we have used dif-
ferent types of methods. See also Table 1.1 for an overview of sources used. For
each chapter we will discuss the limitations of the chosen methods below.

Chapter 2
To answer RQ2.1 till 2.3 we performed an exploratory case study with 20 open
source projects (see Table 2.1 for the list) to discover what ‘open source require-
ments’ are (RQ2.1). We use the term Feature Request (FR) as a common denomi-
nator for the different terms that are used in the different open source projects for
the ‘requirements’. We encountered many duplicate requests in those 20 projects

10 Chapter 1. Introduction

(RQ2.2). We performed a small quantitative analysis to plot the percentage of du-
plicate requests in a table. We subsequently performed a qualitative analysis on
the duplicate requests of one single project to get a feeling for the reasons behind
those duplicates. The categorization of duplications that we found, was double-
checked and improved on a sample of duplicate requests of 5 other projects (30
duplicates from each project). Our work in this case study allowed us to come up
with recommendations for users and developers of issue tracking tools (RQ2.3).

Limitations
We selected the sample of 20 open source projects based on our knowledge of active
projects or platforms with widely-used software products. We deem this selection
sufficiently heterogeneous to base our conclusions on. We can however not exclude
that a different or larger selection of projects leads to different findings.

For the quantitative analysis on the percentage of duplicates we rely on the fea-
ture requests that have been marked as ‘DUPLICATE’ by the project members. Our
qualitative analysis of 6 projects shows that on average 15% are not real dupli-
cates. However, we can also assume that project members oversee some duplicates
that remain unmarked. Nonetheless we must take the numbers in our quantitative
analysis as indications, not as truth values.

The manual analysis of duplicates in 6 projects was done by the first author and
thus is subject to researcher bias. Although part of the categorization is based on
objective observations (e.g. “the duplicate is by the same author as the original
request”), we cannot exclude that different researchers come up with a different
categorization of duplicates.

Furthermore, all recommendations have been derived from the findings by the
first author. This being an exploratory case study, we did not check our recommen-
dations with members of the open source community. We could for instance have
set up a survey or focus group to collect opinions on our recommendations. Such
a survey might have led to a better view on the feasibility of implementing each of
those recommendations.

Another option to collect feedback on the recommendations would be to imple-
ment some recommendations in (a prototype of) an issue tracker and have users
experiment with it. This was our initial idea for future work, but after the experi-
ment with horizontal traceability (RQ3) we decided to turn our attention towards
quality criteria for feature requests (RQ4 and RQ5).

Chapter 3
To answer RQ3.1 till 3.3 we needed a dataset with feature requests. We decided
to use three of the projects from our previous exploratory case study for this experi-
ment, see Table 1.1. We designed a tool to exactly measure the so-called ‘recall rate’
of different preprocessing steps of the feature requests (RQ3.2). Having found the
best preprocessing configuration we applied it to the dataset for each of the three

1.4. Research Methodology 11

projects to detect related feature requests with textual analysis (RQ3.1). We tri-
angulated our findings by the presence of links in the feature request itself or by
relatedness as indicated by the lead developers of two of the three projects. Next
to that we applied our results to an existing feature request network to validate
the outcome of our algorithm. We repeated this analysis with a more advanced
algorithm and saw that the results of the advanced algorithm did not outweigh its
longer processing time (RQ3.3).

Limitations
Our goal in this experiment was to show that it is possible to detect links between
feature requests by textual analysis. We conducted an experiment with 3 projects
which in our opinion provides an indication that this approach could work. A
follow-up experiment would need a golden set of feature requests for which we
know each of the links on beforehand. Which such a golden set we can better sup-
port our claim that we are able to retrieve traceability links with textual analysis.
We mitigated the absence of such a golden set by using the information in the issue
tracker and by verifying results with open source developers.

By choosing textual analysis as the technique, we aim to identify related feature
requests by the overlap in their word bags. This implies that similar documents
that have very few words in common are not retrieved. In our current experiment
we only verify if the links we find are valid, we do not validate if we retrieved all
links. To investigate techniques that do not rely on overlap in word bags we would
need to set up an experiment with the aforementioned golden set of related feature
requests and find ways to retrieve all links.

We tried to find closed source feature requests in industry that we could use for
subsequent analysis to see if our results also hold in other cases, but the companies
we contacted all had reservations to hand over their (confidential) feature requests.
This absence of industrial cases, which also makes it difficult to validate graphical
tools for visualizing feature request networks (which we initially thought to be our
research goal), made us turn our attention towards the more general question of
quality of feature requests (RQ4 and RQ5).

Chapter 4
To answer RQ4.1 we used existing literature and our experience from previous
work. This resulted in a framework for quality criteria for feature requests. To get
a feeling for the applicability of the framework (RQ4.2) we conducted interviews
with eight practitioners from the Dutch Agile Community. Finally we performed a
case study where we applied the framework to 620 feature requests (RQ4.3) from
the same three open source projects used in Chapter 3. The case study was done
by letting 85 final-year software engineering students (Fontys Applied University)
each score 20 feature requests, randomly selected out of the total set of 620 fea-

12 Chapter 1. Introduction

ture requests. We purposely let each feature request be scored by 2 or 3 students
to also have a view on the subjectivity of the scorings (and to detect ‘unwilling’
participants). This resulted in 1699 scorings of the 620 feature requests, which we
summarized in a table to show the general level of quality for the feature requests
of those 3 projects according to our framework. The students also provided us with
some qualitative feedback on the case study and the framework.

Limitations
We qualified the interview and the case study with the students as an evaluation,
because they give us an initial feeling for the feasibility of the framework. The
interview was limited in setup to not take too much time from the 8 participants
(maximum 2 hours). The case study was executed by students on open source
projects. To further validate the framework we would need to also apply it in an
industry setting and formulate proper (quantitative) hypotheses about the value of
using our framework.

With 2 or 3 students scoring each feature request we do not have the quantitative
data to calculate a true inter-rater agreement. Instead, for each criterion, we use
the percentage of feature requests for which 2 or more students give the same score,
to indicate the subjectivity of each of the 16 criteria they had to score. It would be
good to confirm these “subjectivity scores” in a more detailed experiment where
each feature request is rated by more than 2 persons.

We also did not go back to the open source projects to verify if the scorings
indeed give a good impression of the feature request quality. The goal of the scoring
done by the students was an initial evaluation of the application of our framework.
As such we must consider the exact scorings of the three open source projects more
as anecdotal evidence than as absolute truth.

Chapter 5
To answer RQ5 we conducted a systematic literature review (SLR). For this we fol-
lowed the guidelines of Kitchenham and Charters (2007). We use our framework
from RQ4.1 to present an overview of quality criteria found in literature. This
is a second way of confirming the viability of our framework. At the same time
we include the list of quality criteria from RQ4.1 in the answer to RQ5 (as we in-
cluded our own publication in the SLR). This is a second way of confirming that our
framework instantiation for feature requests (from RQ4.1) is not missing important
quality criteria.

Limitations
The main limitation of this SLR is that we might have missed relevant literature
because of the choices we made in each of the steps of the process we followed. This
is a risk inherent to each literature review which we carefully describe in Chapter
5.

1.5. Contributions 13

Table 1.1: Overview of sources used for Chapters 2 till 4 (FR=Feature Request),
for links to projects see Table 2.1

Chapter 2 Chapter 3 Chapter 4

ArgoUML 1273 FR + 210 FR
Check with 2 devs.

Mylyn Tasks 425 FR + 100 FR
Check with 1 dev.

Netbeans 30 duplicate FR 4200 FR 310 FR
Apache HTTPD 28 duplicate FR
Subversion 30 duplicate FR
Firefox 30 duplicate FR
Eclipse JDT 30 duplicate FR
Novell Mono 30 duplicate FR

Dutch agile community Interview 8 practitioners

Last-year students soft-
ware engineering

1699 scorings of 620 FR
(from 85 students)

1.5 Contributions
The contributions of this thesis are as follows:

A categorization of duplicate feature requests in issue trackers in open
source projects (Chapter 2). We perform an analysis of duplicate feature requests
in six open source projects that use an issue tracker to manage the feature requests.
This has led to a categorization of duplicate feature requests and related to that
a set of recommendations for better use of issue trackers and for improvement of
future issue tracking systems.

A method to identify horizontal traceability links for feature requests (Chap-
ter 3). We have shown that a Vector Space Model with TF-IDF can be used to de-
tect horizontal traceability links for feature requests. We have analyzed the best
pre-processing options for the feature requests. We have also shown that Latent
Semantic Analysis does not provide better results in our case study.

A framework for quality criteria for just-in-time requirements (Chapter 4).
We have designed a framework to present quality criteria for different types of just-
in-time requirements. We have instantiated this framework for feature requests in
open source systems and we have evaluated the framework with practitioners.

A quality score for requirements in open source projects (Chapter 4). We
have applied the aforementioned framework to three open source projects to score
the quality of feature requests. We have translated low quality scores into concrete
recommendations for practitioners to improve the quality of feature requests.

An overview of literature on quality of agile requirements specifications
(Chapter 5). We have conducted a systematic literature review and classified the
resulting papers along different axes. The main result is a list of quality criteria for
agile requirements specifications.

Recommendations for practitioners working on quality of agile require-

14 Chapter 1. Introduction

ments (Chapter 5). The aforementioned systematic literature review also allowed
us to collect a list of recommendations from the different publications and our own
analysis of those publications for practitioners that need to perform a quality as-
sessment of agile requirements specifications.

A research agenda on quality of agile requirements (Chapter 5). The afore-
mentioned systematic literature review also allowed us to collect a research agenda
from the different publications and our own analysis of those publications.

1.6 Thesis Outline
The outline of this thesis is as follows. Chapter 2 describes open source feature
requests and the problem of duplication. Chapter 3 investigates text-based similary
as a possible solution for detecting horizontal traceability links between feature re-
quests. Chapter 4 introduces a framework for quality criteria for JIT requirements
and a case study applying it to open source feature requests. Chapter 5 presents
a systematic literature review on the quality criteria for agile requirements speci-
fications. Chapter 6 concludes this thesis by revisiting the research questions and
outlining future work.

1.7 Origin of Chapters
Each of the chapters in this thesis has been published as or is submitted for a peer-
reviewed publication. Note that we have included each publication as is. This
results in some duplications in the texts of the different chapters.

The following list gives an overview of the publications, all of which have been
co-authored with Andy Zaidman. In each of the chapters, “first author” refers to
Petra Heck and “second author” refers to Andy Zaidman.

Chapter 2 has been published in the proceedings of the 13th International Work-
shop on Principles of Software Evolution (IWPSE’13) under the title: An Anal-
ysis of Requirements Evolution in Open Source Projects: Recommendations for
Issue Trackers (Heck and Zaidman 2013).

Chapter 3 has been published as Horizontal Traceability for Just-in-Time Require-
ments: The Case for Open Source Feature Requests in the Journal of Software:
Evolution and Process (Heck and Zaidman 2014b).

Chapter 4 contains our work entitled A Framework for Quality Assessment of Just-
in-Time Requirements. The Case of Open Source Feature Requests as it has
been submitted to the Requirements Engineering Journal (Heck and Zaidman
2015a).

1.7. Origin of Chapters 15

Chapter 5 comprises our findings submitted to the Software Quality Journal as A
Systematic Literature Review on Quality Criteria for Agile Requirements Specifi-
cations (Heck and Zaidman 2016).

Additional Publications
The author of this thesis has also been first author of the following publications
which are not directly included in this thesis:

• The LaQuSo Software Product Certification Model, which has been published in
the Software Quality Journal. This paper is referenced as (Heck et al. 2010).

• Quality Criteria for Just-in-Time Requirements. Just Enough, Just-in-Time?, which
has been published in the proceedings of the 1s t International Workshop on
Just-in-Time Requirements Engineering (JITRE’15). This paper is referenced
as (Heck and Zaidman 2015b).

2.
Just-in-Time Requirements in Open
Source Projects: Feature Requests

While requirements for open source projects originate from a variety of sources like
e.g. mailing lists or blogs, typically, they eventually end up as feature requests in
an issue tracking system. When analyzing how these issue trackers are used for re-
quirements evolution, we witnessed a high percentage of duplicates in a number of
high-profile projects. Further investigation of six open source projects and their users
led us to a number of important observations and a categorization of the root causes
of these duplicates. Based on this, we propose a set of improvements for future issue
tracking systems.1

2.1 Open Source Requirements . 19

2.2 Duplicate Feature Requests . 23

2.3 Assisting Users to Avoid Duplicate Requests 30

2.4 Related Work . 34

2.5 Discussion and Future Work . 36

2.6 Conclusion . 38

Software evolution is an inevitable activity, as useful and successful software stim-
ulates users to request new and improved features (Zaidman et al. 2010). This
process of continuous change of requirements is termed requirements evolution (Li
et al. 2012). Requirements evolution management has become an important topic
in both requirements engineering (Li et al. 2012) and software evolution research
(Ernst et al. 2009).

Both industrial experience reports (Scacchi 2001) and academic research have
identified a significant set of software projects for which traditional notions of re-
quirements engineering (RE) are neither appropriate nor useful (Ernst and Murphy
2012). In these settings, requirements still exist, but in forms different to what re-
quirements textbooks typically characterize as best practice. These requirement

1This chapter has been published at the 13th International Workshop on Principles of Software
Evolution (IWPSE13) (Heck and Zaidman 2013)

17

18 Chapter 2. JIT Requirements in Open Source: Feature Requests

approaches are characterized by the use of lightweight representations such as
user stories, and a focus on evolutionary refinement. This is known as just-in-time
RE (Ernst and Murphy 2012).

This just-in-time RE is also found in open source projects (Ernst and Murphy
2012; Scacchi 2001; Mockus et al. 2002). Requirements in open source projects
are managed through a variety of Web-based descriptions, that can be treated
collectively as ‘software informalisms’ (Scacchi 2001) . Traditional requirements
engineering activities do not have first-class status as an assigned or recognized
task within open software development communities. Despite the very substantial
weakening of traditional ways of coordinating work, the results from open source
software (OSS) development are often claimed to be equivalent, or even superior
to software developed more traditionally (Mockus et al. 2002).

Open source development has proven to be very successful in many instances
and this has instigated us to explore how requirements are managed in open source
projects. We expect to find a number of useful concepts that can be directly trans-
lated to more traditional software engineering trajectories as well, as these are
slowly moving from the more traditional up-front requirements engineering to more
agile RE (Cao and Ramesh 2008).

In successful and mature open source projects, many users get involved and
start to request new features. The developers of the system receive all those feature
requests and need to evaluate, analyze and reject or implement them. To minimize
their workload it is important to make sure only valid feature requests are being
entered. But the developers in open source projects have no control over what the
remote users enter, so we need to analyze what happens at the side of the user that
is entering the feature requests:

1. Is it easy for those users to see if the feature is already present in the system?
2. Is it easy to see if the same feature has already been requested by some other

user?

Our idea is that by aiding the users in entering only new and unique requests,
we can minimize the workload for developers that are maintaining the open source
system. Our main research question is RQ2: how can we assist the users as the
main actors in the requirements evolution process, with the purpose of simplifying the
maintenance of the system.

This leads us to our three subsidiary research questions:

RQ2.1 In what form do feature requests evolve in the open software community
Web sites?

RQ2.2 Which difficulties can we observe for a user that wants to request some new
functionality and needs to analyze if that functionality already exists or has
been requested by somebody else before? Can we explain those difficulties?

RQ2.3 Do we see improvements to overcome those difficulties?

This chapter describes an exploratory investigation into how requirements are

2.1. Open Source Requirements 19

managed in open source software projects. In the projects we analyzed we wit-
nessed difficulties that users have with entering only valid feature requests. We
present recommendations to overcome these difficulties.

The structure of this chapter is as follows: Section 2.1 describes the common
structure of open source requirements. In Section 2.2 we introduce and analyze the
problem of duplicate feature requests. In Section 2.3 we provide recommendations
for avoiding duplicate requests. In Section 2.4 we present related work. In Section
2.5 we discuss our results before concluding in Section 2.6.

2.1 Open Source Requirements
Our first step is to investigate the different layouts of the open software commu-
nity web sites in more detail. These websites are termed ‘informalisms’ by Scacchi
(2001) as they are socially lightweight mechanisms for managing, communicating,
and coordinating globally dispersed knowledge about who did what, why, and how.

The open software community web sites that we have analyzed are listed in
Table 2.1. These web sites were chosen based on three criteria: 1) they have a
publicly available requirements database; 2) they have an active community (i.e.
the requirements database is still growing); 3) The software they are developing is
widely-used or the web site is a widely-used platform for code-hosting. We chose
a large enough set (i.e. 20 web sites) amongst the projects and platforms that we
were familiar with ourselves, such that we would be able to manually analyze them.

Table 2.1: Projects and platforms analyzed

Apache Subversion subversion.apache.org
Apache HTTPD httpd.apache.org
Mozilla Firefox mozilla.org/firefox
Mozilla Bugzilla bugzilla.org
Android source.android.com
Drupal drupal.org
Tigris ArgoUML argouml.tigris.org
Tigris TortoiseSVN tortoisesvn.tigris.org
Netbeans netbeans.org
Eclipse BIRT projects.eclipse.org/projects/birt
Eclipse JDT .../projects/eclipse.jdt.core
Eclipse MyLyn Tasks .../projects/mylyn.tasks
Eclipse GMF .../projects/modeling.gmp.gmf-tooling
KDE kde.org
Gnome gnome.org
Mono mono-project.com
SourceForge sourceforge.net
Google Code code.google.com
GitHub github.com
CodePlex codeplex.com

subversion.apache.org
httpd.apache.org
mozilla.org/firefox
bugzilla.org
source.android.com
drupal.org
argouml.tigris.org
tortoisesvn.tigris.org
netbeans.org
projects.eclipse.org/projects/birt
.../projects/eclipse.jdt.core
.../projects/mylyn.tasks
.../projects/modeling.gmp.gmf-tooling
kde.org
gnome.org
mono-project.com
sourceforge.net
code.google.com
github.com
codeplex.com

20 Chapter 2. JIT Requirements in Open Source: Feature Requests

We have analyzed those 20 open source community web sites by browsing
through their on-line repositories. For each of the web sites we have collected the
requirements related elements, see Table 2.2. If a certain element (like pull requests
for Github) only appears in one web site we have marked that in the table. If the
element (like a list of involved persons) appears in more web sites with different
names we have also marked that in the table. For each of the elements in the table
we indicate how we think it is related to requirements engineering concepts.

From that analysis we found a common structure in the requirements part. See
Figure 2.1 for a generic overview of requirements related elements in open source
project web sites.

In the web sites we have seen there is always some sort of ‘ticket management
system’ for users to request new features for the system. Github has a very simple
system (comments that can be tagged) while Google Code’s system is a bit more
elaborate with type and status. Both sites include a voting system where users
can vote for feature requests to emphasize their priority. The other sites use stand-
alone issue tracker systems where the description in text is just one of the fields that
need to be filled when requesting a new feature. Out of the sites we investigated,
most of them use Bugzilla (a Mozilla open source project) as a ticket management
system, see Figure 2.2. Note that Bugzilla is designed for managing defects (‘bugs’)
so the way to indicate that this is a feature request is by setting the Importance to
‘enhancement’, although some projects (e.g. Apache Subversion) have a field called
Issue type where ‘enhancement’ and/or ‘feature’ are values.

Well-organized open source projects require new requirements to be entered as
a specific feature request, see for example http://argouml.tigris.org/project_

bugs.html . The issue tracker is used to discuss the feature request, to assign the
work to a developer and to keep track of the status of the request. Only in some
smaller projects new features are implemented directly in (a branch of) the source

Figure 2.1: Open source requirements items

http://argouml.tigris.org/project_bugs.html
http://argouml.tigris.org/project_bugs.html

2.1. Open Source Requirements 21
Ta

bl
e

2.
2:

R
eq

ui
re

m
en

ts
el

em
en

ts
in

op
en

so
ur

ce
pr

oj
ec

t
w

eb
si

te
s

It
em

Sy
n

on
ym

s
D

es
cr

ip
ti

on
R

eq
u

ir
em

en
ts

?

Pr
oj

ec
t

pa
ge

M
ai

n
pa

ge
fo

r
th

e
pr

oj
ec

t
w

it
h

ex
pl

an
at

io
n

ab
ou

t
th

e
so

ft
w

ar
e

an
d

lin
ks

to
ot

he
r

pa
ge

s
H

ig
h-

le
ve

l
m

is
si

on
of

th
e

so
ft

w
ar

e
or

re
le

as
es

of
th

e
so

ft
w

ar
e;

C
on

te
xt

de
sc

ri
pt

io
n

Pe
op

le
Pe

op
le

(C
od

ep
le

x)
N

et
w

or
k

(G
it

hu
b)

M
em

be
rs

(G
oo

gl
eC

od
e)

Li
st

of
in

vo
lv

ed
pe

rs
on

s
w

it
h

ro
le

s
St

ak
eh

ol
de

rs
(i

nc
lu

di
ng

de
ve

lo
pe

rs
)

G
ra

ph
s

(G
it

hu
b)

St
at

is
ti

cs
ab

ou
t

th
e

pr
oj

ec
t

-

D
ow

nl
oa

ds
Fi

le
s

(S
ou

rc
ef

or
ge

)
D

ow
nl

oa
d

of
th

e
la

te
st

ex
ec

ut
ab

le
s/

re
le

as
es

-

W
ik

i/
D

oc
um

en
ta

ti
on

D
oc

um
en

ta
ti

on
fo

r
th

e
pr

oj
ec

t;
ca

n
be

on
ex

-
te

rn
al

w
eb

si
te

;f
re

e
fo

rm
at

Sy
st

em
re

qu
ir

em
en

ts
fr

om
hi

gh
-l

ev
el

de
sc

ri
pt

io
n

to
de

ta
ile

d
sp

ec
ifi

ca
ti

on
;

de
gr

ee
of

m
ai

nt
en

an
ce

va
ri

es
gr

ea
tl

y
w

it
h

th
e

pr
oj

ec
ts

So
ur

ce
Fi

le
s

C
od

e
(G

it
hu

b,
So

ur
ce

fo
rg

e)
So

ur
ce

C
od

e
(C

od
ep

le
x)

So
ur

ce
co

de
fo

r
th

e
pr

oj
ec

t
Te

ch
ni

ca
l

de
si

gn
or

Sy
st

em
re

qu
ir

em
en

ts
in

co
de

co
m

m
en

ts
;c

om
m

en
ts

ar
e

pr
er

eq
ui

si
te

fo
r

su
cc

es
s

B
ra

nc
he

s
(G

it
hu

b)
D

if
fe

re
nt

br
an

ch
es

in
th

e
so

ur
ce

co
de

re
po

s-
it

or
y;

ea
ch

br
an

ch
ca

n
re

su
lt

in
m

ax
im

um
1

pu
ll

re
qu

es
t

Ea
ch

br
an

ch
im

pl
em

en
ts

di
ff

er
en

t
sy

st
em

re
qu

ir
e-

m
en

ts

C
om

m
it

s
A

ct
io

n
of

up
lo

ad
in

g
ne

w
so

ur
ce

co
de

in
to

th
e

re
po

si
to

ry
Te

ch
ni

ca
l

de
si

gn
or

Sy
st

em
re

qu
ir

em
en

ts
in

co
m

m
it

co
m

m
en

ts

Pu
ll

R
eq

ue
st

s
(G

it
hu

b)
Fo

rk
cr

ea
te

d
by

de
ve

lo
pe

r
to

so
lv

e
is

su
e;

th
e

de
ve

lo
pe

r
re

qu
es

ts
fo

r
th

e
fo

rk
to

be
m

er
ge

d
w

it
h

th
e

tr
un

k
(m

ai
n

pr
oj

ec
t)

R
eq

ui
re

m
en

ts
ar

e
as

se
rt

ed
by

th
e

de
ve

lo
pe

r
an

d
di

-
re

ct
ly

im
pl

em
en

te
d

an
d

do
cu

m
en

te
d

in
th

e
fo

rk

Ti
ck

et
s

Is
su

e
Tr

ac
ke

r
(C

od
eP

le
x)

Is
su

es
(G

it
hu

b,
G

oo
gl

eC
od

e)
Tr

ac
ke

r
(S

ou
rc

ef
or

ge
)

R
eq

ue
st

s
to

th
e

pr
oj

ec
t

to
cr

ea
te

,
im

pl
em

en
t

or
co

rr
ec

t
so

m
et

hi
ng

Fe
at

ur
e

re
qu

es
ts

ar
e

re
qu

ir
em

en
ts

(s
yn

on
ym

s:
En

-
ha

nc
em

en
t,

Fe
at

ur
e)

;
G

it
hu

b
us

es
cu

st
om

la
be

ls
pe

r
pr

oj
ec

t
to

se
pa

ra
te

bu
gs

fr
om

fe
at

ur
es

D
is

cu
ss

io
n
/

M
ai

lin
g

lis
t

A
rc

hi
ve

s
of

qu
es

ti
on

s
an

d
an

sw
er

s
po

st
ed

by
th

e
pr

oj
ec

t
co

m
m

un
it

y;
ca

n
be

on
-l

in
e

fo
ru

m
or

of
f-

lin
e

m
ai

lin
g

lis
t

w
it

h
on

-l
in

e
ar

ch
iv

es

U
su

al
ly

th
e

st
ar

to
fa

ny
re

qu
ir

em
en

t;
pe

op
le

po
st

m
es

-
sa

ge
to

se
e

if
a

fe
at

ur
e

is
ne

ed
ed

or
al

re
ad

y
be

in
g

w
or

ke
d

on
;b

ra
in

st
or

m
ab

ou
t

re
qu

ir
em

en
t

IR
C
/

C
ha

t
Li

ve
co

m
m

un
ic

at
io

n
ch

an
ne

l
se

pa
ra

te
fr

om
th

e
pr

oj
ec

t
pa

ge
Sa

m
e

as
di

sc
us

si
on
/

m
ai

lin
g

lis
t

bu
t

no
ar

ch
iv

es
ar

e
ke

pt
!

22 Chapter 2. JIT Requirements in Open Source: Feature Requests

code. Github uses pull requests to let users offer newly implemented features to the
project (see Table 2.2) and automatically generates an issue in the tracker for each
pull request to keep track of them.

To summarize we found that in most projects the requirements evolve in an
issue tracker system.

Figure 2.2: Feature request in Bugzilla

2.2. Duplicate Feature Requests 23

2.2 Duplicate Feature Requests
While analyzing the Eclipse JDT Core project we noticed the huge amount of du-
plicate feature requests (see Table 2.3). Our first step was to see if the same is true
for the other 13 projects that use Bugzilla as an issue tracker 2. We could easily
track the duplicate requests by filtering on ‘severity = enhancement’ and ‘resolu-
tion = DUPLICATE’. It turned out that many projects, including very mature and
well-organized ones, have a high percentage of duplicate feature requests, see Ta-
ble 2.3. The ones where the number of duplicates is lower, either have a strict policy
(Apache HTTPD and Subversion warn the user explicitly to search/discuss before
entering new issues), are smaller (Eclipse MyLyn and GMF) or have a company
behind the project (Mono and Android). One can easily argue that with the large
number of issues in the database not even all duplicates have been marked.

Table 2.3: Duplicate feature requests in open source projects Jan 2012

Project # Duplicate # Request %

Apache HTTPD 28 809 3
Apache Subversion 66 881 7
Mozilla Firefox 2920 8023 36
Mozilla Bugzilla 1166 5664 21
Android 283 5963 5
Drupal 1351 7855 17
Tigris ArgoUML 133 562 24
Netbeans 2896 10711 27
Eclipse MyLyn Tasks 16 403 4
Eclipse GMF 17 370 5
Eclipse JDT 1551 8314 19
GNOME Evolution 1843 6895 27
Mono Xamarin 11 477 2
Mono Novell 81 5277 2

So apparently users cannot or do not find out if the feature they request is really
new or has already been implemented or requested before. Our next question was:
what is the reason for those duplicates?

Research Strategy
The strategy we chose is to look at one of the projects with a strict policy (Apache
HTTPD) and to see why still those 28 duplicates were reported. Out of the 28
duplicates one turned out to be a defect, not an enhancement. For each of the 27
remaining duplicates we analyzed the history of comments and tried to identify
what the root cause for duplication was. We did this by answering the following
questions:

2Mono has a split Bugzilla repository since the project went from Novell to Xamarin

24 Chapter 2. JIT Requirements in Open Source: Feature Requests

• Is it a real duplicate? In other words: is the request of the author indeed the
same as the original request?

• Could the author of the request have found the duplicate by searching in the
issue tracker? With what search terms?

• Did the author submit some source code directly with the request?
• Was the duplicate submitted long after the original request?
• Who marked the duplicate? Was there an overlap in people involved in orig-

inal request and duplicate?
• Do we see any way in which the author could have avoided the duplicate

entry?

The analysis was done manually by the first author by reading the title and com-
ments for each duplicate and analyzing what caused the reporter of the feature
request to send in the duplicate; could the reporter have avoided that? After con-
cluding this analysis for the Apache HTTPD project we had an initial categorization
of duplicates by root cause.

Subsequently, we repeated the analysis for 5 other projects to validate the find-
ings. These projects are Subversion, Firefox, Netbeans, Eclipse JDT and Novell
Mono. Again this manual analysis was done by the first author. While we analyzed
all duplicates for Apache HTTPD, the other projects had many more duplicates (see
Table 2.3), so we had to select samples. For each of the projects we selected the
30 most recently reported duplicates between 01 Jan 2011 and 31 Dec 2012. For
Mono Novell we just selected the 30 most recently reported duplicates without a
time window (because of the smaller number of total duplicates).

This second round of manual analysis led us to do a slight adjustment to the
initial categorization. The author category is now not only used for authors that
enter the same request twice within a few minutes (we only saw this in the HTTPD
project) but also for other situations where the author seems to be aware of the du-
plicate he/she created. We initially had a specific category for feature requests be-
ing duplicates of defects, but in other projects we saw situations where the product
attribute did not match. We decided to group those two situations into 1 category
for ‘mismatch of attributes’.

Next to the detection of distinct categories of duplicates we did a number of
other interesting observations which we discuss below.

Categorization
Grouping the duplicates with similar root causes resulted in the following cate-
gories:

Duplicate Solution [DS] This is not a real duplicate request. The request of the
author is new but happens to have the same solution as a request that was
posted before.

2.2. Duplicate Feature Requests 25

Table 2.4: Analysis of duplicate feature requests

H
T

T
PD

Su
bv

er
si

on

Fi
re

fo
x

N
et

B
ea

n
s

Ec
li

ps
e

JD
T

M
on

o
N

ov
el

l

%

Explicit warning Y Y N N N N

Solution [DS] 3 5 3 2 0 4 17 10
Partial [PM] 1 2 2 0 2 2 9 5
Patch [PA] 10 1 0 0 0 0 11 6
Author [AU] 4 5 0 2 2 7 20 11
Mismatch [MA] 1 0 20 3 7 4 35 20
Wording [WO] 7 6 2 5 5 3 28 16
No Check [NC] 1 11 3 16 14 10 55 31
(No duplicate) 0 0 0 2 0 0 2 1

27 30 30 30 30 30 177 100

Partial Match [PM] Only part of the request has been posted before; the main
questions for original and duplicate are completely different.

Patch [PA] The author has submitted a patch directly with the request. Our as-
sumption is that the fact that the author is proud of his own code makes
him/her lazy in checking if the same has already been done before.

Author [AU] The same author enters his/her request twice or indicates in title or
comments that he/she is aware of the duplicate entry.

Mismatch Attributes [MA] The original request has different values for important
attributes (in our observations: defect type/importance or product) so the au-
thor might not have searched with the correct search values. An author that
is entering an ‘enhancement’ might not think to include ‘defects’ in the search
for existing duplicates. An author that is entering a feature request for the
product ‘Firefox’ might not have included the ‘Core’ product in the search for
existing duplicates.

Wording [WO] Different wording for the same problem is used in both original re-
quest and duplicate. Possibly the author did not detect the duplicate because
he/she was not searching with the right terms.

No Check Done [NC] It is not clear why the author did not detect the duplicate
while the duplication is easy to spot with a simple search.

For a complete analysis of the Apache HTTPD project see Table A1 and A2 in
the appendix. Table 2.4 indicates for each of the analyzed projects the number of
duplicates in each category.

Note that for the NetBeans projects two duplicates out of 30 ([216335] and
[217150]) turned out to be no real duplicates and thus do not fall into any of the
categories. In [216335] the ‘DUPLICATE’ link is misused to indicate some other
type of relation (see O8 below). In [217150] one person marks it as a duplicate
(“looks like another manifestation of a problem introduced in JavaFX SDK 2.2 by, as

26 Chapter 2. JIT Requirements in Open Source: Feature Requests

described in issue #216452”) but two other persons later decide it is not.

As can be seen in Table 2.4 each category was present in at least two projects.
Not each project shows the same division over the categories. A project like HTTPD
has many duplicates because of patches added to the feature request, where as in
other projects we did not find any patches. The FireFox project shows many prob-
lems with mismatching attributes because Mozilla uses one big Bugzilla database
for all its Mozilla projects. FireFox is just one of the products in the database and
thus it is easy to select the wrong product when entering a new request or to search
for the wrong product when checking for duplicates. A bigger project with a wide
user base like NetBeans shows more duplicates in the category NC. We can as-
sume that reporters of new feature requests get easily discouraged searching for
duplicates by the huge volume of existing requests. Furthermore NetBeans does
not explicitly warn users to check first before entering new requests, as opposed to
HTTPD.

The two Apache projects include an explicit warning at the beginning of the
process, see Figure 2.3. The projects that are marked in Table 2.4 as ‘N’ under
‘Explicit warning’ do not have such an explicit warning at the beginning of the
process. All of them however include a small notice or an optional step to search
for previously entered issues or to ask on the discussion list first, but this is less
compelling for the user than an explicit warning.

To summarize we can state that users do have difficulties in submitting unique
feature requests, for different reasons. For each of these root causes we would like
to offer support to the user to avoid duplicate requests.

Further Observations
While analyzing the six projects for duplicate feature request we did not only cate-
gorize the duplicates but also made some interesting observations:

[O1] Many of the 14 projects in Table 2.3 have a high percentage of duplicate fea-
ture requests. It seems to be the case that a project such as Apache HTTPD
that explicitly warns the user to search and discuss before entering new re-
quests can greatly reduce the number of duplicates. The Subversion project
goes even further and explicitly asks users to file a bug report at a separate
email address to get it validated before posting in Bugzilla, see Figure 2.3.

[O2] Given the high number of feature requests a manual search for certain terms
can easily yield a high number of results. In our experiments it sometimes
took a sophisticated search query with enough discriminating attributes set
to obtain a set of search results that is small enough to manually traverse them
looking for a duplicate. Even for us (who knew the duplicate we were looking
for beforehand) it often took more than one step to come to the correct search
query. This involved stemming of the search terms (e.g. “brows” instead of
“browsing”) and searching in comments of the issue instead of the summary.
From our own experience we can say that the simple search screen (shown

2.2. Duplicate Feature Requests 27

Figure 2.3: Warning on the bug report page of Subversion

by default by Bugzilla) is not enough; for most issues we needed to open the
advanced search screen to find the duplicates.

[O3] Some feature requests were marked as a duplicate of a defect. Often there
was discussion in the comments of an issue about whether the issues should
be classified as a defect or an enhancement. Apparently this difference is not
always easy to make for a user entering a new request (Herzig et al. 2012).
Projects like Subversion make it even more complex by adding ‘enhancement’
and ‘feature’ both as separate types. Is it a completely new feature or an en-
hancement to an existing one? With a broad existing product like Subversion
this question is extremely difficult to answer. One could argue that everything
is an extension to the version control system and thus an enhancement. The
risk is that users entering new requests will not search for duplicates of the
type ‘defect’ and thus not find potential duplicates.

[O4] Marking of the duplicates within one project is done by a wide variety of
project members: e.g. in Apache HTTPD the 27 duplicates were marked by
18 different user names. The users that marked the duplicates in this case
were also not all of them part of the HTTPD core team. When we check the
activity of those users in Bugzilla, we see that they are involved in 5 to 1338
issues (as Commenter or Reporter), with about half of the ‘markers’ involved
in more than 400 issues and the other half involved in less than 75. This
observation tells us that we can not assume that duplicates are easily filtered

28 Chapter 2. JIT Requirements in Open Source: Feature Requests

out by a select group of developers that scans all new requests.
[O5] The time gap between the duplicate and the original request is arbitrary. In

the Apache HTTPD project this ranged from 0 to 88 months. We expected to
see short time gaps because we expected the user needs to be influenced by
time-bounded external factors (e.g. the emergence of a new standard that
needs to be applied), but this turned out to not be the case.
Note that the time gap between creation of the request and marking it as a
duplicate is also arbitrary. In the Apache HTTPD project about half of the
requests were marked within 2 months but the longest time gap for marking
the duplicate reached up to 56 months. This indicates that some duplicates
stay undetected for a long time.

[O6] During the manual analysis of the duplicates we were often hindered by the
fact that many issues include a lot of off-topic comments: comments that
do not pertain to the issue itself but, e.g. to project management topics or
for social interaction. The same problem was detected by Bettenburg et al.
(2008a) for bug reports in general. Examples for feature requests in Apache
Subversion:

[Issue 3415] This would be a very useful addition to the product IMO.

[Issue 3030] I see. Good to know that the issue has will be resolved in
the next release. I understand you suggestion about the mailing list -
however joining a mailing list for one issue in 3 years seem an overkill.
(Be proud: I use Subversion ever day and had only one problem which
nagged me enough to raise a report) Personally I think Google-groups
got it right here: they have a read/write web interface for casual users
and mail distribution for heavy users.

[Issue 2718] Except that that bug report has undergone the usual
open source ’me too’/’let’s add some irrelevant technical detail’ treat-
ment, which made me create a clear and concise bug report that some-
one could actually fix in the next 12 months.

Having such useless comments in the issues makes it more difficult for a user
or developer to quickly grasp the content of the issue and thus more difficult
for the user to see if the issue is a duplicate of the one he/she is about to
enter.

[O7] We saw cases of larger structures of master-duplicate relationships such as the
example from Subversion in Figure 3.1. In this example many issues around
‘improved error messages’ are linked together. Currently the user exploring
such structures only has the possibility to click on each of the links one by
one and build such a graph in his/her head. The risk is that the user will get
lost while doing this for larger structures.
Note also that in this entire list, only issue 434 is typed as an ‘enhancement’,
the others are typed as ‘defect’, ‘task’ or ‘patch’. This is related to observation

2.2. Duplicate Feature Requests 29

Figure 2.4: Network of ‘duplicate’ relations in Subversion

O3.
[O8] For the moment Bugzilla has only two explicit linking mechanisms: ‘request

A blocks request B’ and ‘request A is a duplicate of request B’. Only the first
type can be visualized in a dependency tree. Another option is to implic-
itly link requests by entering comments with the ID of the other request in-
cluded (Sandusky et al. 2004). This limitation of Bugzilla leads to misuse of
the ‘DUPLICATE’ link as we saw already for the categories DS and PM. This
misuse makes it difficult for users and developers to see the real link between
two requests, which hinders comprehension of the work done or to be done.
An example of this misuse is in NetBeans issue [216335]:

Although it is not exactly the same idea I am marking this as dupli-
cate of issue #208358 as it addresses the same problem. Having the
two enhancements logged in one place makes sense due to their close
relation.

[O9] Most users that request new features are developers themselves, as Noll states
that the majority of requirements are asserted by developers (Noll and Liu
2010; Noll 2008). Developers implement what they need themselves: this
will lead to on average the mostly needed features. In practice this means that
part of the ‘feature requests’ in the issue tracker are already accompanied by
a piece of source code in which the user that requests the feature implements
the feature (see also PA before). The feature requests with patches included
are often not well-described (the documentation is the source code). This
makes it difficult to analyze the feature request when looking for duplicates.

All of these observations lead us to believe that things could be improved for
the projects we have investigated and that those improvements could also benefit
other projects. That is the topic of the next section.

30 Chapter 2. JIT Requirements in Open Source: Feature Requests

2.3 Assisting Users to Avoid Duplicate Requests
In the projects we analyzed we observed some shortcomings of using a tool like
Bugzilla for both defect and requirements management. Some fields for require-
ments (e.g. rationale, source) are missing (Robertson and Robertson 2000; IIBA
2009) leading to information loss already at the entry of a new request. To see
how many users need a new feature a voting mechanism is one of the few online
instruments (Dalle and den Besten 2010), but this is not always present. The main
problem however is that it is difficult to indicate hierarchy or relations between
requirements and to get an overview of relations that have been defined (Sandusky
et al. 2004). This leads again to information loss (links that were known at request
creation time are lost) and makes it difficult to get an overview of existing feature
requests later on. Another problem is that the commenting mechanism is difficult
for maintaining requirements while a comment is a free-text field. The user can
enter anything he/she wants and Bugzilla enters some auto-comments for certain
actions (e.g. marking as a duplicate). For the reader it will be difficult to get a quick
overview of feature requests with many comments (What is the type of each of the
comments? What is the final decision on the request?). Despite these disadvantages
the usage of such issue trackers remains high because of the advantage of manag-
ing all development tasks (fixing bugs, writing documentation, implementing new
features, ...) in one single tool.

With those drawbacks in mind we investigate the observations done before and
come up with some recommendations to improve the system for the user. We start
with recommendations for manual search and issue creation and end with implica-
tions for extended tool support by the issue tracker. For each of the items we refer
to the category of duplicates (DS, PM, ... , NC, see Section 2.2) or the observation
(O1 till O8, see Section 2.2) that has lead us to the recommendation.

Recommendations for Manual Search and Creation
[R1] Users that search for duplicates should include both defects and enhancement

types in their queries (O3, MA).
[R2] Users that search for duplicates should not exclude issues before a certain date

(O5). They could only do that if they know their request (e.g. implement a
new standard) has an explicit date limit (nobody could have asked for the
standard 1 year ago because it only exists for half a year).

[R3] Projects should include warnings to search first and to ask on mailing or dis-
cussion lists before entering a new request (O1, NC). Research has shown that
most duplicates are reported by infrequent users (Cavalcanti et al. 2013a) so
giving them a reminder of the procedure or explicit instructions could help
filter out some of the duplicates. Furthermore, when the user submits a re-
quest that includes a patch an explicit warning should be repeated to remind
the user that he/she should search for similar solutions first (PA).

[R4] Projects should include a link to clear guidelines on how to enter issues (e.g.

2.3. Assisting Users to Avoid Duplicate Requests 31

when is it a defect or an enhancement) to ensure that all fields are filled
correctly and to avoid users entering new requests for new versions of the
software (AU, MA)

[R5] Users entering new feature requests should only include issue-related com-
ments; the same holds for the users commenting on existing feature requests
(O6). For other types of comments the mailing/discussion list should be used
(from where the user can easily hyper-link to the request). Projects could even
go as far as removing unrelated comments from the request, to keep a ‘clean’
database.

[R6] Users should be told to split feature requests into atomic parts: one request
per issue ID (PM). This makes it easier later on to follow up on the request
and link other requests to it. When developers looking at the issue see that
it is not atomic, they should close it and open two or more new ones that
are atomic. The partial match example of Apache HTTPD shows that certain
wordings can hint at non-atomic requests:

[29260 - Author] The base functionality of mod_vhost_alias for dy-
namic mass virtual hosting seems to work great, but there are a cou-
ple things that need to be changed to work with it.
...
[29260 - Marker] Most of this is WONTFIX, but the stripping www
thing is reported elsewhere.
*** This bug has been marked as a duplicate of 40441 ***

[R7] Projects should not accept patches or other source code as feature requests
(PA). A patch is not a feature request, it is a request from the author that
asks the project to look at something already implemented by the author. A
mechanism like the pull request that GitHub (https://github.com/) uses
is much more appropriate for submitting patches. In that way the patch is
immediately available to all users (it sits waiting as a branch of the trunk
repository until the owner of the trunk accepts and merges it) and this avoids
users to enter the same patch twice. At the least a project could create a
separate issue type for patches, making it easier to search for similar patches
submitted earlier.

[R8] Projects should make clear what the hierarchy of products or components is
within their issue database (MA). A user searching for duplicates should also
include parent, children or siblings of the product he/she intended to search
for, because a duplicate feature request might have been added for one of
those. Especially for novice users the structure of the (group of) products
might not be clear. This means they will not find some duplicate requests and
unnecessarily enter a new request.

https://github.com/

32 Chapter 2. JIT Requirements in Open Source: Feature Requests

Implications for the Issue Tracker
The fact that in the investigated Apache HTTPD project many different developers
are involved in marking the duplicates (O4) and many different users are involved
in entering requests indicates that we need some kind of tool support in the issue
tracker. Within such open source projects we can simply not rely on one small group
of users or developers to keep an overview of the project and filter out inconsisten-
cies.

We would like to prevent problems as early as possible: at the moment the
user is entering new feature requests. Based on our observations we see different
opportunities for extended tool support by the issue tracker:

Synonyms
The search tool could automatically suggest alternative search terms based on a list
of synonyms or closely related words for the project, e.g. ‘.jpg’ and ‘image’ (WO).
This list could be compiled by language processing the existing feature requests
and clustering them or could be manually composed. Each time a new duplicate
request is found the developer marking the duplicate could verify if it was caused
by a wording problem. If so, the different wordings could be added to the synonym
list.

Duplicate Submission
The fact that a single author submits his/her request twice within a few minutes
(we saw examples of this in the HTTPD project) could easily be filtered out au-
tomatically (AU). After submission, it should first be checked if the same author
has already submitted a request with the same summary line, before the request is
saved in the database.

My Requests
In the Subversion project we saw an example of an author ‘forgetting’ an earlier
submitted request:

Wow. I *completely* forgot that I’d implemented this already (per issue
#3748). Suddenly, I feel old.

But there are more cases of the author being aware of some form of duplication
(AU). It would be good that when a user logs in to submit a new request, he/she is
first presented with a list of his/her previously submitted requests. This can serve
as a reminder and as a status check. Instead of entering a new request the user
can more easily go to one of the existing requests and extend it with additional
information.

Comments
The issue reporting tool should offer some advanced support for discerning the
different types of comments in a feature request (O6). In the examples we looked

2.3. Assisting Users to Avoid Duplicate Requests 33

Figure 2.5: Search options in Apache HTTPD Bugzilla

at, we found comments on test cases, procedures, questions, answers to questions
in other comments, automatic actions, special tags to search for a set of related
issues, complaints, discussions, etc. It is not clear what type of comment it is and
thus what the relevance is without reading the whole comment. And sometimes it is
difficult to see which comment is answering which other comment. If there would
be separate fields for some of the types (e.g. auto-generated comments could be
displayed separately in some sort of history section) or tags/colors related to the
type of comment this would greatly simplify the ability of a user to get a quick
overview of a feature request. This overview is needed to judge if the request is
a duplicate or not of the one the user is about to enter. Of course this would also
demand from the users entering the comments that they would use the correct
tag/color for their comment.

Linking
We need some more sophisticated linking mechanism between feature requests
than the current ones in Bugzilla (O8, DS, R6). We could imagine newly added
fields in a feature request where the user or developer can indicate links with a
type and link comment, e.g. a “solution" link with comment “both can use the
same library with mathematical functions mathlib". This would avoid misuse of the
‘DUPLICATE’ link and would keep users from entering comments that merely serve
to indicate an informal link between requests. The extended linkage information
can be useful for newcomers to get a grasp of the project.

Visualization
Currently Bugzilla only offers to visualize the so-called ‘dependency tree’. This is
a graph showing which issues ‘block’ each other. This ‘blocking’ must have been
indicated before by the user. For feature requests it would be more useful to be able
to visualize the duplicate relations, as we did in Figure 3.1 (O7). And also other
links if implemented (Linking) are a good candidate to visualize in such graph
structures. We can even think of implementing tools that automatically process
the feature requests to infer links between them from their texts and then visualize
them.

34 Chapter 2. JIT Requirements in Open Source: Feature Requests

Advanced Search
Last but not least we can think of more intelligent search engines for feature re-
quests (O2, R1). The Bugzilla implementation of the HTTPD project searches on
strings and regular expressions, see Figure 2.5. This is a good start but we sus-
pect that natural language based search can greatly improve the search results.
The search tool could be extended to automatically include the related products
or components in the search (R8). Also the presentation of the search results to
the user could be improved, e.g. with clustering or visualization techniques. A first
attempt for better presentation of search results was made by Cavalcanti et al. (Cav-
alcanti et al. 2009) by highlighting search terms in the result set.

To summarize we see many opportunities for advanced support by the issue tracker.
All of these functionalities will help in the process of understanding the current set
of feature requests in a project. This serves to avoid duplicates but also in other
situations where the user needs to get an overview of the existing feature set of a
system, e.g. when documentation of the system’s functionality is missing. What
remains is to actually build that support into the issue trackers and validate it in
open source and company-based projects.

2.4 Related Work
Requirements Evolution
There are many papers on the analysis of open source projects, but not so many
cover requirements engineering topics. One of the first overview papers has been
written by Scacchi (2001). The paper describes the open source requirements engi-
neering process and the form of requirements in open source projects. Our analysis
is based on the one of Scacchi, but proceeds to the next level of detail. For Scacchi
‘open software web sites’ is just one of the forms of requirements. In our analysis
we dive into this by subdividing it into many different parts of requirements, see
Figure 2.1.

Duplicate Detection
The fact that much duplication exists in the requirements of open source projects
has also been detected by Cleland-Huang et al. (2009). In their research they fo-
cus on open forums, not on issue trackers. For the requirements-related messages
on these open forums they propose an automatic clustering technique. In future
work we could investigate whether this automatic clustering also applies to feature
requests in the issue tracker.

Gu et al. (2011) use a similar clustering technique to automatically suggest
duplicate issue reports to the author of a new issue report. Their recall rate is
between 66 and 100%. Runeson et al. (2007) achieve a recall rate around 40%
when analyzing defect reports using Natural Language Processing (NLP) with a

2.4. Related Work 35

vector-space-model and the cosine measure. Sun et al. (2010) claim they obtain
significantly better results by using a discriminative model. Wang et al. (2008)
do not only use natural language processing but also use execution information to
detect duplicates.

In our analysis we found an explanation why Gu and Runeson do not detect
all duplicates: not all issues marked as ‘Duplicate’ are real duplicates in the sense
that they could have been detected with natural language processing. This leads
us to believe that next to experimenting with clustering as in (Cleland-Huang et al.
2009) and (Gu et al. 2011), we need some more sophisticated techniques like e.g.
visualization, to support the author in getting an overview of the feature requests
posted before.

Tian et al. (2012) extend the pioneer work of Jalbert and Weimer (2008) to im-
prove the method of bug classification: is the bug a unique one or a duplicate? This
classification could of course help in warning users that they might be submitting
a duplicate, but considers only one aspect of the problem.

A different approach is used by Vlas and Robinson (2011) who have developed
an automated Natural Language requirements classifier for open source projects.
The tool classifies the individual sentences of a feature request into types of re-
quirements according to an extended McCall model (McCall et al. 1977), e.g. ‘op-
erability’ or ‘modularity’, with a pattern-based approach. A similar classification
could also help in clustering complete feature requests, as we are looking for.

Cavalcanti et al. (2009) present a tool called BAST (Bug-reports Analysis and
Search Tool) that provides an extended keyword-based search screen for issues.
It shows issues with the same keywords, but additionally in the lower part of the
screen a quick overview of important issue attributes. Their study shows that it
worked better than the normal search tool for one company. The main drawback
of their tool is that it is still based on keyword search and thus depends on the
user entering the correct search terms. This contrasts our idea that synonym-based
search should also be implemented. In a further paper Cavalcanti et al. (2013a)
explore the duplication of bug reports in several projects and come up with rec-
ommendations. Most of those recommendations also match ours as they are also
valid for feature requests. However, this chapter adds some feature request specific
recommendations like the handling of patches, the improved linking mechanism
and a better separation of comment types.

Where Bettenburg et al. (2008b) claim that duplicate bug reports are not always
harmful, the same can be true for feature requests: two feature requests that are
similar can help the developer in understanding the requirements. However this
requires that the developer is aware of the duplicate before starting on the imple-
mentation. An unnoticed duplicate feature request can easily lead to two different
developers implementing the same feature in different places in the system. This
strengthens our claim that duplicate feature requests should be detected/prevented
early on.

36 Chapter 2. JIT Requirements in Open Source: Feature Requests

Our approach differs from the ones mentioned in this subsection because we
focus on feature requests only. Feature requests are different from defects. They
require different initial content (what the user needs and why vs. what is not work-
ing) and have different life-cycles. A defect stops living once resolved, but the de-
scription of a requirement is still valid documentation once implemented. We ex-
pect to extend or detail the approaches mentioned above with some requirements-
specific analysis. With that we are not so much interested in the automatic detection
of duplicates, but in supporting the user to get a better overview of the existing fea-
ture requests such that the user can more easily see which related (not necessarily
duplicate) feature requests have already been submitted.

Visualization
Sandusky et al. (2004) studied what they call ‘Bug Report Networks (BRN)’ in one
open source project. This BRN is similar to what we have drawn in Figure 3.1. In
the bug report repository they studied 65% of the bug reports sampled are part of a
BRN. They conclude that BRNs are a common and powerful means for structuring
information and activity that have not yet been the subject of concerted research by
the software engineering community. The continuation of this stream of research
will result in a more complete understanding of the contribution BRNs make to
effective software problem management. We support this from our own findings
and plan to investigate what would be the best way to visualize the BRN’s for our
specific application domain of feature requests.

2.5 Discussion and Future Work
This section discusses the results and describes opportunities for future work.

The Research Questions Revisited
RQ2.1 In what form do feature requests evolve in the open software community Web

sites? We analyzed the community web sites of a number of open source soft-
ware projects and we found that while requirements are sometimes discussed
on discussion fora or mailing lists, they are typically channeled towards the
issue tracker. In particular, we observed that many open source web sites use
Bugzilla as a requirement management tool to support requirements evolu-
tion.

RQ2.2 Which difficulties can we observe for a user that wants to request some new
functionality and needs to analyze if that functionality already exists or has
been requested by somebody else before? Can we explain those difficulties? We
found that many duplicate feature requests exist within the projects. This
indicates difficulties that user have to submit unique feature requests. We
have categorized the duplicates by root cause; we created seven categories of
duplicates which we have observed in six projects.

2.5. Discussion and Future Work 37

RQ2.3 Do we see improvements to overcome those difficulties? By analyzing the root
causes of the duplicates we have suggested improvements and tool support
to avoid duplicates, e.g. improved linking mechanisms, visualization of those
links, clustering or advanced search. We think that all of these functionalities
will help in understanding the current set of feature requests in a project.
This serves to avoid duplicates but also in other situations where the user
needs to get an overview of the existing feature set of a system, e.g. when
documentation of the system’s functionality is missing.

In future work we plan to investigate the tool support implications to see if in-
deed we can improve the requirements evolution of projects by providing extended
issue tracking tools.

Validity
We did not try to falsify our assumptions by contacting the original authors or in-
terviewing developers in other open source projects to see if they recognize the
problems with duplicate requests. Based on the anecdotal evidence that we gath-
ered from analyzing the issue tracker, we believe that projects would benefit from
extra tools to get an overview of all feature requests but this must be validated in
our future work. We could for example use a focus group of open source project
members (both users and developers) to discuss the feasibility and value of each of
the recommendations we do.

We are also aware of the fact that the issue tracker must stay a tool that users
still want to use to report new feature requests. This means that we can not include
to many obstacles for new users to enter requests. Practical experiments must be
done to validate what is ‘too many’.

Applicability
We have conducted our case study on an open source project. Also in companies
there will be situations where end users have direct access to the issue tracker tool to
enter new feature requests, so that the problem of duplicate entries is relevant. Fur-
thermore our tool support will also help newcomer developers to get an overview
of the project. In the above we have claimed that the results are also valid for
company-based projects. In our future work we plan to validate this claim by ap-
plying the methods we develop also on company-based projects.

Issue Trackers
We have done a small comparison with two other widely-used issue trackers, namely
Jira (www.atlassian.com/JIRA) and Trac (trac.edgewall.org), see Table 2.5.
This shows us that the things we found missing in Bugzilla are also missing in the
two other issue trackers. The only striking difference is the fact that Jira offers a
free linking mechanism (like we recommended in ‘Linking’ in Section 2.3). How-

www.atlassian.com/JIRA
trac.edgewall.org

38 Chapter 2. JIT Requirements in Open Source: Feature Requests

Table 2.5: Comparison with other issue trackers
Bugzilla Jira Trac

Launch 1998 2003 2006
Custom
Fields

In UI In UI In DB and
config file

Labeling With key-
words

With labels With key-
words

Link ‘Blocks’ and
‘Duplicate’

‘Blocks’,
‘Duplicate’
and ‘Relates
to’ with link
comment

‘Duplicate’

Voting Yes Yes No
Search Built-in

engine
searches for
keywords,
substrings;
simple and
advanced
search UI

Lucene en-
gine; whole
words only
but can be
told to stem
words or
do ‘fuzzy’
search;
simple and
advanced
search UI;

Built-in
engine
searches
for key-
words and
substrings;
advanced
search done
with queries

Extens-
ibility

Plugins &
Open Source

Plugins Plugins &
Open Source

Interfaces XML-RPC,
REST

REST, Java
API

XML-RPC

ever a newer tool like Trac does not offer this, so the recommendation in general is
still valid. Jira also does not offer any visualization of those advanced links.

Other Questions
High quality feature requests could simplify the evolution of the system. But how do
we define the quality of those feature requests? For regular requirements there are
many characteristics that qualify a good requirement (e.g. atomic, no ambiguity,
prioritized) (Heck and Parviainen 2008) but do they all hold for feature requests in
an issue tracker such as Bugzilla? Can we observe interesting facts on the quality
of feature requests? Do we see ways to improve the quality of feature requests?
Bettenburg et al. (2008a) did similar work (including a tool) for bug reports in
general, but not all their results are valid for feature requests.

2.6 Conclusion
In this chapter we have investigated requirements evolution in open source project
web sites and saw that in most projects an issue tracker is used to evolve require-

2.6. Conclusion 39

ments. Within those web sites that use Bugzilla as a requirements management
tool we have observed a high number of duplicate feature requests. We have made
a classification of the causes for these duplicate feature requests. Using this classi-
fication we have given recommendations and implications for tool support to avoid
duplicate feature requests.

Our main goal for future work is to improve tool support for dealing with fea-
ture requests in issue trackers. An important step in this direction is to give the
users of these issue trackers an overview of the project, including relationships be-
tween already existing feature requests. Better search facilities and a hierarchical
exploration of requirements are subsequent steps towards mechanisms to prevent
duplicate feature requests from being entered. Our proposed tools will also benefit
company-based projects, since a lot of them use Bugzilla-like tools for managing
requirements evolution.

3..
Horizontal Traceability of Open

Source Feature Requests
Agile projects typically employ just-in-time requirements engineering and record their
requirements (so-called feature requests) in an issue tracker. In open source projects
we observed large networks of feature requests that are linked to each other. Both
when trying to understand the current state of the system and to understand how a
new feature request should be implemented, it is important to know and understand
all these (tightly) related feature requests. However, we still lack tool support to
visualize and navigate these networks of feature requests. A first step in this direction
is to see whether we can identify additional links that are not made explicit in the
feature requests, by measuring the text-based similarity with a Vector Space Model
(VSM) using Term Frequency - Inverse Document Frequency (TF-IDF) as a weighting
factor. We show that a high text-based similarity score is a good indication for related
feature requests. This means that with a TF-IDF VSM we can establish horizontal
traceability links, thereby providing new insights for users or developers exploring
the feature request space. 1

3.1 Background . 44

3.2 Experimental Setup . 49

3.3 Results . 53

3.4 Extending a Feature Request Network . 58

3.5 Discussion . 60

3.6 Conclusion . 61

Software evolution is an inevitable activity, as useful and successful software stim-
ulates users to request new and improved features (Lehman 1984; Zaidman et al.
2010). A first step towards implementing these new features is to specify them.
In projects developed using an Agile methodology this specification is typically in-
formal, for example in the form of brief user stories which serve as conversation

1This chapter has been published in the Journal of Software: Evolution and Process (JSEP) (Heck
and Zaidman 2014b).

41

42 Chapter 3. Horizontal Traceability of Open Source Feature Requests

Figure 3.1: Feature request network in Subversion (feature request ID and creation
date).

starters with stakeholders (Ernst et al. 2014a), or in the form of other ‘software
informalisms’ (Scacchi 2001).

This use of more lightweight representations for requirements contrasts the
more traditional notion of requirements engineering (RE) and is also known as
just-in-time requirements engineering (Ernst and Murphy 2012). Ernst and Mur-
phy (2012), Scacchi (2001) and Mockus et al. (2002) have previously observed
just-in-time RE both in industrial projects and in open source projects. Mockus et
al. even claimed that despite the very substantial weakening of traditional ways
of coordinating work, the results from open source software (OSS) development
are often claimed to be equivalent, or even superior to software developed more
traditionally (Mockus et al. 2002).

Our analysis in Chapter 2 has shown that just-in-time requirements engineering
typically employs an issue tracker to record feature requests. On the one hand we
have observed that this potentially leads to a large number of requests, which are
sometimes difficult to search and navigate. On the other hand, we observed that
large structures of relations exist between individual feature requests, see Figure 3.1
for an example of a so-called feature request network from the Subversion project
2.

Both when developers are trying to understand the current state of the system
and trying to understand how a new feature request should be implemented, it is
important to know and understand all these (tightly) related feature requests, to
avoid duplicate or inconsistent development efforts (Martakis and Daneva 2013).
For users reporting feature requests having knowledge of existing feature requests
can also be important to know what is already being requested. In Chapter 2 we

2http://subversion.apache.org

http://subversion.apache.org

43

observed that some of these relations are explicitly mentioned (textually) in fea-
ture requests. In this chapter we focus on automatically constructing horizontal
traceability links (Gotel et al. 2012) between feature requests, including the iden-
tification of additional links that are not made explicit in the feature requests, e.g.,
because people are not aware of the related feature request. The more structure
is provided, the easier it becomes for users or developers to follow these links and
explore the related requests for the task at hand.

We focus on feature requests because as Cavalcanti et al. put it feature requests
hold facts on the evolution of software, and thus can serve as documentation of
the history of the project (Cavalcanti et al. 2013b). Discussions in some feature
requests even show why the system has not evolved in a certain direction. Once
a defect is closed (“fixed”), the information inside is not relevant for the current
system anymore, because the defect does not exist anymore. However, once a fea-
ture request is closed (“fixed”), the information inside is relevant for the current
system, because the feature still exists in its original or evolved form. This means
traceability between feature requests remains interesting, even for closed feature
requests.

In order to establish traceability links we use a Vector Space Model (VSM) with a
Term Frequency - Inverse Document Frequency (TF-IDF) weighting factor to calculate
the text-based similarity of feature requests. In the remainder of this chapter we
will refer to the combination VSM - [TF-IDF] as “TF-IDF”. TF-IDF has previously
been applied to detect duplicate issue reports (Cleland-Huang et al. 2009; Gu et al.
2011; Runeson et al. 2007; Sun et al. 2010). Issue reports include both defects and
enhancements (feature requests). In our research in this chapter we focus only on
feature requests and are not only interested in duplicates, but more generally in
requests that are functionally related.

We think that feature requests merit a separate text-based investigation with TF-
IDF because we assume that the content of feature requests and defects is different,
thus requiring a separate investigation. This assumption is supported by earlier
work from Antoniol et al. (2008) who devised a classifier for separating feature
request and defects, and by Ko et al. (2006) who used a decision tree algorithm to
split feature requests from defects. An additional observation comes from Moreno
et al. who claim that the terms used in bug reports are closely related to source code
entities (Moreno et al. 2013), which might not always be true for feature requests
as they can be described more abstractly.

This leads us to the main research question RQ3 for this chapter: Can TF-IDF
help to detect horizontal traceability links for feature requests?

Subsidiary research questions that steer our research are:

RQ3.1 Is TF-IDF able to detect functionally related feature requests that are not
already explicitly linked?

RQ3.2 What is the optimal pre-processing to apply TF-IDF focusing on feature re-

44 Chapter 3. Horizontal Traceability of Open Source Feature Requests

quests?

Whereas TF-IDF only matches words that are literally the same, Latent Semantic
Analysis (LSA) (Deerwester et al. 1990) takes into account words that are close
in meaning by assuming that they will occur in similar pieces of text. However,
LSA requires more calculation time because it adds additional calculation steps
compared to TF-IDF. This situation intrigued us to see if the results for [RQ3.1]
improve significantly enough when applying LSA to our application domain to merit
this extra calculation time, which leads us to our final subsidiary research question:

RQ3.3 Does a more advanced technique like LSA (Latent Semantic Analysis) im-
prove the detection of non-explicit links?

The remainder of this chapter is structured as follows: Section 3.1 contains
background with some major concepts and the related work. Section 3.2 explains
our experimental setup. In Section 3.3 we describe the results of our experiment.
In Section 3.4 we explore an example of a feature request network to illustrate our
results. We discuss our results in Section 3.5. Section 3.6 concludes this chapter.

3.1 Background
In this section we discuss the background of our study. We start with a general
background on traceability and then focus on horizontal requirements traceability.
We further explain why we think the focus on feature requests (as opposed to issue
reports also including defects) is necessary. We then discuss the use of TF-IDF/VSM
for duplicate detection. We end by explaining both TF-IDF and LSA in a nutshell.

Traceability
“Traceability is the potential to relate data that is stored within artifacts of some
kind, along with the ability to examine this relationship” (Gotel et al. 2012). Over
the last 20 years or so, the software engineering research community has inves-
tigated numerous approaches to establish, detect and visualize traceability links
(Cleland-Huang et al. 2012).

An important branch of research has busied itself with so-called requirements
traceability or “the ability to describe and follow the life of a requirement in both
a forwards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through periods of
ongoing refinement and iteration in any of these phases)(Gotel and Finkelstein
1994; Gotel et al. 2012)”. Requirements traceability can typically be described as
a case of vertical traceability, where artifacts at different levels of abstraction are
traced (Gotel et al. 2012).

The investigation described in this chapter however, can be catalogued as hori-
zontal traceability as we are seeking to relate artifacts at the same level of abstrac-
tion.

3.1. Background 45

De Lucia et al. have proposed to classify the traceability recovery methods
according to the method adopted to derive links (De Lucia et al. 2008): heuris-
tic based, IR based, and data mining based. Recently, machine-learning methods
have also been proposed to recover links between code and product-level require-
ments (Cleland-Huang et al. 2010).

Many authors have successfully applied IR techniques including TF-IDF, e.g. (An-
toniol et al. 2002; Marcus and Maletic 2003; De Lucia et al. 2006). Typical applica-
tions of IR include: concept location (Maarek et al. 1991; Poshyvanyk et al. 2007),
impact analysis (Antoniol et al. 2000), clone detection (Marcus and Maletic 2001),
software re-modularization (Maletic and Marcus 2001) and establishing traceabil-
ity links (Qusef et al. 2014; Antoniol et al. 2002; Lucia et al. 2007; Marcus et al.
2005; Lormans et al. 2008). See Binkley and Lawrie (2011) for an overview.

The investigation in this chapter concerns recovering horizontal traceability
links between artifacts of the same type, i.e. requirements.

Tracing Requirements to Requirements
We specifically discuss three works on tracing requirements to other requirements.

Hayes et al. (2003) use IR techniques for tracing high-level requirements to
low-level requirements. Candidate links generated by IR algorithms were to be con-
firmed by requirements analysts to measure performance of the algorithms. They
extend TF-IDF with a simple thesaurus (manually made) to improve recall and pre-
cision of generated traceability links.

Natt och Dag et al. (2004) use IR techniques for linking customer wishes to
product requirements. They use a VSM with a different weighting factor [1 + 2 log
(term frequency)].

Cleland-Huang (2012) identifies three types of traceability that might be use-
ful in agile projects. The third type is “requirements to requirements”: to track
dependencies between user stories. This can be useful during the planning pro-
cess. She claims that there is no need to retain such traces once stories have been
implemented. We argue that this is different for feature requests in open source
projects: the traces should be retained as they form an important part of project
documentation.

We are not only interested in “traceability links” between feature requests, but
also in related feature requests in general (e.g. about the same functionality). From
our experience in open source projects there is not a habit of splitting high-level
feature requests into low-level feature requests and we do not see any distinction
in types of requirements, so with our TF-IDF analysis we can not make use of such
an existing structure to find related requests.

46 Chapter 3. Horizontal Traceability of Open Source Feature Requests

Clustering
Cleland-Huang et al. (Cleland-Huang et al. 2009) propose an automatic clustering
technique based on TF-IDF for the requirements-related messages on open forums.
Their goal was to create threads of related messages. We focus on feature requests
in issue trackers.

Networks
Kulshreshtha et al. (2012) studied literature about dependencies between system
requirements and abstracted this into four dependency types: Contractual, Contin-
uance, Compliance, Cooperation and Consequential. They modeled a dependency
network from a set of 50 requirements pertaining to a Hotel Front Office Reser-
vation system. Their study is on relationships between traditional requirements,
where we focus on agile requirements (feature requests).

Sandusky et al. (2004) studied what they call “Bug Report Networks (BRN)”
in one open source project. This BRN is similar to what we have drawn in Fig-
ure 3.1. In the bug report repository they studied, 65% of the bug reports sampled
are part of a BRN. They conclude that BRNs are a common and powerful means for
structuring information and activity that have not yet been the subject of concerted
research. The continuation of this stream of research will result in a more com-
plete understanding of the contribution BRNs make to effective software problem
management.

Feature Requests vs. Defects
As claimed in the introduction feature requests and defects have different charac-
teristics. In this section we provide further support for that assumption from our
own dataset and from existing literature.

The datasets we use are the feature requests as listed in the issue trackers of
Mylyn Tasks, ArgoUML and Netbeans; more details on these projects can be found
in Section 3.2. However, we start of with an investigation into who submits defects
on the one hand and feature requests on the other hand. Our data is depicted in
Table 3.1. This table shows the total number of feature requests and defects, the
number of submitters for feature requests and defects, and the total number of sub-
mitters. What we see is that the intersection of submitters of feature requests and
submitters of defects is relatively small (between 13.5 and 21% of the total num-
ber of submitters)3. This shows that the group of submitters for feature requests
and the group of submitters for defects contain different persons. Those different
persons might also be using different vocabulary.

Herzig et al. (2013) investigated the relationship between issue reports and
source code change sets. They found that this relationship is different for defects

3It is known that sometimes the same person might submit under different user names, but we
assume this holds only for a small number (possibly zero) of usernames in our large dataset.

3.1. Background 47

Table 3.1: Number of submitters for feature requests and defects

Project Feature requests Defects Submitters Submitters
Submitters # # Submitters total feature req.

⋂

defects

Mylyn Tasks 452 112 583 158 223 47
ArgoUML 1323 399 4847 1226 1426 199
Netbeans 29023 5017 204827 23071 24737 3351

and features. Defect fixing change sets seem to change older code while feature
implementations are based on newer code fragments. They also find that feature
implementing change sets have more structural dependency parents in the change
genealogy graph than defect fixing ones. Above all defect fixing change sets show
smaller impact on code complexity than feature implementations.

Herzig et al. (2012) investigated the classification of existing bug reports (as
indicated by the project members) in five open-source Java projects. They find
that 34% of reports classified as “bug” is actually not a bug and only 3% of reports
classified as feature requests is actually a “bug”.

TF-IDF and Duplicate Detection
Several authors use Vector Space Models and/or TF-IDF similar weighting functions
in the area of duplicate detection of bug reports (Jalbert and Weimer 2008; Tian
et al. 2012; Runeson et al. 2007; Sun et al. 2010, 2011; Gu et al. 2011). Runeson
et al. (2007) achieve a recall rate around 40% when analyzing defect reports us-
ing Natural Language Processing (NLP) with a vector-space-model and the cosine
measure. Wang et al. (2008) do not only use natural language processing but also
use execution information to detect duplicates. Sun et al. (2010) claim they obtain
significantly better results (a relative improvement of the recall rates of 17-43%
compared to the techniques used in (Jalbert and Weimer 2008), (Runeson et al.
2007) and (Wang et al. 2008) by using a discriminative model.

We only use duplicate detection to tune our pre-processing step. Our main re-
search question is not focused on the best duplicate detection, but on the identifi-
cation of horizontal traceability links for feature requests.

TF-IDF in a Nutshell
We use TF-IDF to convert a collection of documents into a collection of vectors (our
Vector Space Model, VSM) by calculating the relative importance of each word
in each document. The TF-IDF value increases with the number of times a word
appears in a document, but decreases with the number of documents in which the
word appears. This helps in filtering out words that are common in the entire
collection of documents.

The formula that we have used for TF-IDF is as follows:

T F I DF(w,d, D) = T F(w,d)× I DF(w, D) (3.1)

48 Chapter 3. Horizontal Traceability of Open Source Feature Requests

with w a word in a document d that belongs to the collection of documents D. The
Term Frequency T F(w,d) can be computed in several ways. We choose to correct
for longer documents, to prevent a bias towards longer documents:

T F(w,d) =
f (w,d)

max{ f (w,d) : w∈ d}
(3.2)

with f (w,d) the number of times that word w appears in document d.

I DF(w, D) = loge
|D|

|{d ∈ D : w∈ d}|
(3.3)

with |D| the total number of documents in the collection and |{d ∈ D : w ∈ d} the
number of documents where word w appears.

For a collection of documents D we first determine the complete set of unique
words W . This set can be taken as is or can be normalized in many different ways
(see section 3.2). Then we transform each document d that belongs to the collection
D into a vector vd . The dimension of this vector is equal to the size of the set of
unique words W . The ith element of the vector vd corresponds to ith word in the
set W (wi). For each d and i we calculate:

vd,i = T F I DF(wi,d, D) (3.4)

Once we have each document vector we can calculate the so-called cosine sim-
ilarity between two documents n and m.

cos(vn, vm) =
vn · vm

‖ vn ‖‖ vm ‖
(3.5)

This yields a value between 0 and 1 indicating how similar the text of the two
documents is: closer to 1 meaning more similar, 0 meaning no words in common
at all.

Latent Semantic Analysis (LSA) in a Nutshell
Latent Semantic Analysis (LSA) (Deerwester et al. 1990) takes into account words
that are close in meaning by assuming that they will occur in similar pieces of text.
The input for LSA is a matrix. As described in (Dumais 2004) this is a weighted
term-document matrix: the output matrix of the TF-IDF weighting algorithm as de-
fined above (by combining all vectors vd). This results in a matrix M of documents
D against unique words W :

M[i, j] = T F I DF(wi,d j, D) (3.6)

LSA uses a mathematical technique called singular value decomposition (SVD) to
transform the so-called ‘hyperspace’ M into a more compact latent semantic space.

3.2. Experimental Setup 49

This is done by maintaining the k largest singular values (also called rank-lowering
of M). The optimal value of k is unique for each application domain. If the value
of k is too low, the decomposition may end up under-representing the hyperspace
M . Alternately, if the choice of k is too high, the decomposed sub-space may
over-represent the hyperspace by adding in noise components (Santhiappan and
Gopalan 2010).

After rank-lowering we have a new matrix M ′. In this matrix M ′ each column
represents a document vector. We calculate the so-called cosine similarity between
two documents n and m in the same way as we do for TF-IDF above.

To summarize, the LSA technique adds reduced-rank SVD as an extra step com-
pared to TF-IDF. It is believed that in the vector space of reduced dimensionality,
the words referring to related concepts, i.e., words that co-occur, are collapsed into
the same dimension. Latent semantic space is thus able to capture similarities that
go beyond term similarity (e.g. synonymy) (Santhiappan and Gopalan 2010).

3.2 Experimental Setup
In order to answer [RQ3.2] What is the optimal pre-processing to apply TF-IDF fo-
cusing on feature requests, we decide to make all pre-processing steps (see section
3.2) optional to find out which of these configurations yields the best results on
our datasets. We define ‘the best results’ as the configuration that succeeds best at
finding the known set of duplicates. Known duplicates are feature requests marked
as ‘DUPLICATE’ for the field Resolution. We use known duplicate feature requests
from three mature open source projects. All three projects use Bugzilla4 as an issue
tracker to manage feature requests. We download these feature request as XML-files
from the following three open source projects5:

• Eclipse MyLyn Tasks projects.eclipse.org/projects/mylyn.tasks, 425
feature requests, 10 ‘Duplicate’;

• Tigris ArgoUML argouml.tigris.org, 1273 feature requests, 101 ‘Dupli-
cate’;

• Netbeans netbeans.org, 4200 feature requests, 342 ‘Duplicate’.

We select these specific projects based on four criteria: 1) they are mature and
still actively developed; 2) they differ in order of magnitude in terms of number of
feature requests; 3) they have a (substantial) number of known duplicate feature
requests; 4) they use Java as a programming language (important because some
feature requests contain source code fragments).

We implement the TF-IDF calculation with possible preprocessing configurations
in a C# tool, called FRequAT (Feature Request Analysis Tool)6. FRequAT automat-

4www.bugzilla.org
5Datasets can be downloaded from http://dx.doi.org/10.6084/m9.figshare.

1030568
6Available from first author through email.

projects.eclipse.org/projects/mylyn.tasks
argouml.tigris.org
netbeans.org
www.bugzilla.org
http://dx.doi.org/10.6084/m9.figshare.1030568
http://dx.doi.org/10.6084/m9.figshare.1030568

50 Chapter 3. Horizontal Traceability of Open Source Feature Requests

ically verifies the similarity score against known duplicates (see Section 3.2). We
use Mylyn Tasks and ArgoUML for the tuning of our algorithms and then attempt
to confirm our findings with the Netbeans project.

Our FRequAT tool produces an Excel file that contains the pair-wise cosine sim-
ilarity score for the complete set of feature requests. We do not have a golden set
of all horizontal traceability links in the set of feature requests, thus we cannot use
standard performance measures as recall and precision to evaluate TF-IDF for find-
ing links. We therefor devise two different ways to answer [RQ3.1] Is TF-IDF able
to detect functionally related feature requests that are not already explicitly linked:

1. The top 50 most similar pairs of feature requests (i.e., the pairs with the high-
est cosine similarity score) are manually analyzed by the first author. For the
pairs that do not have a physical link in the Bugzilla repository confirmation
of our findings is requested from one main developer from the Mylyn Tasks
project and two main developers from the ArgoUML project.

2. We investigate an existing feature request network (one large example found
during manual exploration of the repository of the Mylyn Tasks project) to
validate that the existing links are supported by a high cosine similarity score
and to see whether we can extend the existing network with additional links
based on high cosine similarity scores.

To answer [RQ3.3]Does a more advanced technique like LSA improve the detection
of non-explicit links we repeat the step of manually analyzing the top 50 most similar
pairs of feature requests (see [RQ3.1] above) to see if we find more related requests
with LSA than with TF-IDF only. We only do this for the Netbeans project because
we deem the other two projects too small in terms of number of documents.

We explain some more details of the experimental setup in the following sec-
tions.

Preprocessing Feature Requests
The main step of the tokenization (i.e., parsing the feature request text into separate
words) is done through regular expressions. After that a number of configuration
options are available to arrive at the final set of words to be considered for each
document:

• Include All Comments [AC]. The main parts of a feature request are: title,
description and comments. This option configures if only the title and de-
scription or the complete feature request are used to build the VSM.

• Set to Lowercase [LO]. This option sets all words to lower case.
• Remove Source Code [SC]. This option uses extra regular expressions to re-

move different types of source code. The source code is completely removed,
including comments, names of variables and identifiers.

3.2. Experimental Setup 51

• Remove Spelling Errors [SP]. For this step we use a list of project-specific abbre-
viations and spelling mistakes that the first author manually compiled from
the Mylyn Tasks project (we do not repeat this for the other projects because of
their much larger vocabulary). If the option [SP] is on, each word is checked
based on the Mylyn Tasks list and replaced by the alternative word before
further processing.

• Remove Stop Words [SR]. This option excludes known stop words from the
VSM. We construct a list of stop words starting from the SMART list7. We
manually add 66 stop words from the Mylyn Tasks project to this list (like
‘afaik’, ‘p1’, ‘clr’)8

• Stem Words [SM]. This option reduces words to a common base: e.g., ‘brows-
ing’ and ‘browse’ become ‘brows’ and ‘files’ becomes ‘file’. We use Porter’s
Stemming Algorithm (Porter 1980).

• Create Bi-Grams [BG]. This option builds the VSM based on sequences of two
consecutive words, instead of based on single words.

• Set Title to Double Weight [DW]. This option sets a double weight for the title
as opposed to the description and comments (Gu et al. 2011; Runeson et al.
2007) .

Our FRequAT tool allows to switch the above options on or off. We define the
best configuration as the one that yields the highest ranking for the known dupli-
cates in our 3 projects. When we calculate the pair-wise similarity between a known
duplicate and all other feature requests, then rank by similarity in descending order,
the master of the known duplicate should be in the top of this ranking. A similar
duplicate detection recall rate is used by Runeson et al. (2007), who state that the
standard information retrieval definitions of recall and precision do not really work
for duplicate detection. The Recall rate is defined as the percentage of duplicates for
which the master is found for a given top list size. We are interested in the TF-IDF
configuration with the highest recall rate. In our evaluation we use top list sizes of
10 and 20.

We try several combinations of options on the Mylyn Tasks project and the Ar-
goUML project. We calculate the top-10 (T10) and top-20 (T20) recall rates for
those combinations. Then we repeat the best combinations on the larger Netbeans
project to get a confirmation of the highest recall rate found.

Most Similar Requests
We use the TF-IDF configuration with the highest recall rate for duplicate detection
to see, for a given set of feature requests, whether we can get new information
about related feature requests by ranking them by pair-wise similarity. Our idea is
that two feature requests with a high pair-wise similarity should be about the same
topic and thus related.

7SMART list: ftp://ftp.cs.cornell.edu/pub/smart/english.stop
8Extra stop words http://dx.doi.org/10.6084/m9.figshare.1030568

ftp://ftp.cs.cornell.edu/pub/smart/english.stop
http://dx.doi.org/10.6084/m9.figshare.1030568

52 Chapter 3. Horizontal Traceability of Open Source Feature Requests

The relatedness of two feature requests is determined in several ways:

1. The feature requests are related because they have one of the three existing
link types in Bugzilla:
• The ‘blocks/depends’ link. This is a manual link that is indicated by one

of the project members, indicating that one should be resolved before
the other.

• The‘duplicate’ link. This is a manual link that is indicated by one of the
project members.

• The feature requests are related because one refers to the other in com-
ments. This is manually done by one of the project members.

2. The feature requests are related because we as authors find them to be about
the same topic.

3. The feature requests are related because one of the main project members
considers them as related.

We calculate the pair-wise similarity for all feature requests from each project. Then
we rank them and extract the top-50 most similar pairs of feature requests for each
project. We choose 50 as a cut-off because 50 (times three for three projects) seems
a reasonable amount to base conclusions on, and because we want to limit the effort
for manual investigation. The top-50 is manually verified for the first three options
above (existing links in Bugzilla) by the first author by looking at feature requests
in Bugzilla. For the last two options we need a more extensive manual verification.
The authors validate the remaining feature request pairs as being about the same
topic or not. Lastly we send the remaining feature request pairs (meaning the
ones in the top-50 not already linked in Bugzilla) to a prominent project member
asking for his/her opinion about the relatedness. For this purpose we do not define
‘relatedness’, thus leaving it to the interpretation of the project member what he/she
considers as ‘related’.

LSA
We use the TF-IDF configuration with the highest recall rate for duplicate detection
to further apply SVD (see Section 3.1). For application of the LSA algorithm we
determine the k-value to use empirically by scanning the range (0 to 4200, i.e. the
number of feature requests for Netbeans) in steps of 50. We use the k-value with
the highest top-10 and top-20 recall rates for retrieving known duplicates. This is
the same logic as described before to determine the optimal pre-processing steps
for TF-IDF.

With this optimal k-value we calculate LSA-based cosine similarities and repeat
the step of manually analyzing the top-50 most similar pairs of feature requests
(see Section 3.2 above) to see if we find more related requests with LSA than with
TF-IDF only.

3.3. Results 53

3.3 Results
This section describes the results of our experiments9. We start off by describing the
results of our investigation into the best pre-processing configuration for applying
TF-IDF by using the known duplicate feature requests (Section 3.3). Subsequently,
in Section 3.3 we analyze whether we can identify related feature requests, looking
both for relationships that are already known and relationships that have previously
not been documented explicitly. In Section 3.3 then, we compare the results that
we have obtained with TF-IDF to the results obtained with LSA.

Best Pre-Processing Configuration
In order to establish the best pre-processing configuration(s), we present an overview
of the different configurations and their recall rates in Table 3.2. We observe that
for the smaller Mylyn Tasks project several configurations score 90/100 recall rates,
but when also taking the ArgoUML and Netbeans project into consideration, we ob-
serve that a single configuration scores best among all three projects.

In what follows, we discuss the influence of the pre-processing configurations.

Table 3.2: Recall rates for the three projects

Mylyn Tasks ArgoUML Netbeans
Options T10 T20 T10 T20 T10 T20

BG 30 40 - - - -
SR 50 50 58 71 40 49
None 50 70 55 73 42 51
LO 50 60 63 78 51 59
SP 50 70 55 73 42 51
SC 50 70 55 73 42 51
SM 40 70 57 74 42 53
DW 50 70 67 73 45 51
AC 80 90 60 72 57 65
AC_SC_SP 90 100 61 71 61 69
AC_DW_SC_SP 90 100 72 78 61 70
AC_DW_SC_SP_SM 90 100 73 79 60 71
AC_DW_SC_SP_LO 90 100 75 80 67 75
AC_DW_SC_SP_SM_LO 90 100 79 85 67 77
DW_SC_SP_SM_LO 50 80 75 83 55 63

As Stop Word Removal (SR) is often performed as a standard step in research
using TF-IDF (Gu et al. 2011; Jalbert and Weimer 2008; Sun et al. 2011), it is
surprising to see that it yields worse results when applied. Apparently the built-in

9Raw cosine similarity files as produced by our FReQuAT tool can be found on http://dx.
doi.org/10.6084/m9.figshare.1030568

http://dx.doi.org/10.6084/m9.figshare.1030568
http://dx.doi.org/10.6084/m9.figshare.1030568

54 Chapter 3. Horizontal Traceability of Open Source Feature Requests

correction for common words (Inverse Document Frequency) in TF-IDF performs
better than automatically removing all stop words from our manually compiled
list. An option for future work would be to investigate the alternative technique
presented by De Lucia et al. (2013) to use a smoothing filter to remove “noise”
from the textual corpus.

The Bi-gram option (BG) produced very low recall rates. The options DW, SC,
SM, SP improve the recall rates.

Regarding the All Comments (AC) option, from our first experiments with My-
lyn Tasks, improved recall rates are achieved by including all comments. With the
ArgoUML project the improvement is not clear. However, when adding Source Code
Removal (SC) and Stemming (SM), the results for AC improve to the highest recall
rates. This makes sense because when adding all comments we get a lot of diversity
in the text of feature requests. Replies often include source code to provide a solu-
tion or hint for a solution. By removing the source code and stemming the words,
the long feature requests get more similar. To be sure about this setting we repeat
the experiment with AC off (last line in Table 3.2). From this it is clear that overall
we get better recall rates with All Comments.

To summarize, the best configuration (last bold line in Table 3.2) is to activate
all options except SR (stop word removal) and BG (bi-grams).

A Note on Categories of Duplicates
In Chapter 2 we defined different duplicate types or categories: duplicate solution
[DS], partial match [PM], different wording [WO], author knows [AU], no check
done [NC], patch [PA], mismatch of attributes [MA]. In Table 3.2 it can be seen that
with the best configuration 15% (ArgoUML) to 23% (Netbeans) of the duplicates
is not detected within the top-20. We now analyze the duplicates that remain un-
detected within the top-20 of Table 3.2 to determine in which duplicate category
they can be situated. It turns out that most non-detected duplicates are from three
categories, see Table 3.3:

• Duplicate Solution [DS]. The two requests are not duplicate, but their solu-
tions are. Developers tend to link feature requests as ‘DUPLICATE’ because
they could be solved in a similar way. However the requests and their word-
ings are sometimes (completely) different. As such, text-based similarity
sometimes does not detect this type of duplicates.

• Partial Match [PM]. The master and the duplicate are not exactly the same
because one contains more requests than the other. Only one of these requests
is a duplicate of the other feature request. We then do not easily find this type
of duplicates with text-based similarity analysis, because one of them contains
extra text about an entirely different topic. An option for future work would
be to investigate a different similarity measure such as the asymmetric Jaccard
index to see if it better takes into account documents of different lengths.

• Wording [WO]. The master and duplicate describe the same feature using

3.3. Results 55

Table 3.3: Categories of undetected duplicates. Categories taken from Chapter 2.

ArgoUML Netbeans Netbeans LSA

Not detected in top-20 15 78 74

Partial Match [PM] 7 28 25
Wording [WO] 5 23 24
Duplicate Solution [DS] - 17 15
No Check Done [NC] 3 8 8
Author [AU] - 2 2

entirely different terminology for the most important concepts. Examples we
saw are ‘nested class’ vs. ‘innerclass’ or ‘move’ vs. ‘drag/reposition’. Using
TF-IDF we cannot detect such similarities without manual intervention. This
motivated us to also investigate LSA as an alternative technique.

Two duplicates are of the category ‘Author’ [AU], meaning the author was aware
of the duplicate. Normally we would hope to find duplicates from this category with
TF-IDF because of use of similar words by the same author. In these 2 cases this does
not work because of a long comment that is present in only one of the two requests,
in one case, and because of the spelling of ‘outline view’ versus ‘outlineview’, in the
other case.

The rest of the feature requests were of the category ‘No check done’ [NC],
meaning it is not clear why the author did not detect the duplicate: searching for
the main word in the title of the duplicate already results in finding the master.
It is not immediately clear why using TF-IDF does not work well for these feature
requests. It could be due to the fact that by using All Comments [AC] some of the
feature requests become very long, increasing the chance that many other feature
requests achieve a high similarity score. In that case, the real duplicate would not
stand out any more.

Our analysis shows that out of the non-detected duplicates a number of them
could not have been detected by (TF-IDF) text-based similarity and we can clarify
that by the category they belong to. This means that a recall rate of 100% is not
achievable for most projects (like ArgoUML and Netbeans in our study). Previous
work on duplicate detection, e.g. (Jalbert and Weimer 2008; Tian et al. 2012;
Runeson et al. 2007; Sun et al. 2010, 2011; Gu et al. 2011), did not investigate
the duplicates that have been manually marked by the project. Our analysis shows
that the data itself can be polluted (e.g., the PM category are not real duplicates,
although they have been marked as such), yielding lower recall rates than expected.
This pollution of data could be solved by providing the project members with better
linking mechanisms for feature requests, because now often the ‘DUPLICATE’ link
is misused for other purposes (see also Chapter 2).

56 Chapter 3. Horizontal Traceability of Open Source Feature Requests

Related Feature Requests
As explained in Section 3.2 we extract and rank the top-50 most similar pairs of
feature requests per project.

Table 3.4 summarizes the results of the top-50 analysis. The table shows, for
each of the three projects, how many feature request pairs are physically linked
(block/depend, duplicate, in comment) in the Bugzilla repository. This category
of pairs is clearly related (we have evidence in Bugzilla) and does not need to be
verified by the developers. As can be seen from the table, around 50 percent of
the pairs is ‘linked’. The rest of the pairs needs to be considered manually. For the
Mylyn Tasks project we contact the project leader and for the ArgoUML project we
get feedback from two lead developers. We do not contact any developers for the
Netbeans project. The 50th most similar pair for the Netbeans project still has a
similarity score just under 0.70, which is higher than for the first 2 projects (0.46
and 0.48). The higher the similarity score, the ‘closer’ the text is, the easier it is to
determine relatedness. In Table 3.4 we mark a pair as ‘Related, confirmed’ when
both we and the project developers have indicated them as being related. As can
be seen from the table a low percentage of pairs is not linked at all, around 10%.

Table 3.4: Related pairs from top-50 most similar.

Mylyn Tasks ArgoUML Netbeans Netbeans LSA

Linked 20 (40%) 28 (56%) 29 (58%) 25 (50%)
Related, confirmed 15 (30%) 19 (38%) - -
Related, not confirmed 8 (16%) 1 (2%) 15 (30%) 17 (34%)
Not related 7 (14%) 2 (4%) 6 (12%) 8 (16%)
Unmarked duplicates - - 5 4

We analyze why some of the feature requests are considered as related by the
authors, but not by the developers. This mainly happens because of the difference
in interpretation of ‘related’. For the authors ‘related’ means ‘on the same topic’
and for the Mylyn developer it means ‘in the same module of the software’. The
developer definition should be investigated differently, e.g., by analyzing commit
logs. We stick to our definition of related because we think it is useful to have a
link between feature requests that are about the same topic or feature. This can
help, e.g., new users that would like to ask for an extension to an existing feature
but first want to see what is already there, or it could help developers that are new
to the project and would like to get an overview of which functionality is there from
a user point of view. With our topic-based definition of relatedness we have around
90% related feature request pairs in the top-50.

For the Netbeans project we detect in the top-50 five pairs of feature requests
that are indeed duplicates of each other. Their title and description indicate that the
two are real duplicate requests asking for the same feature. But those pairs have

3.3. Results 57

not been marked as such in the Bugzilla repository. These feature request pairs are
called ‘Unmarked duplicates’ in Table 3.4. It shows that our method can also find
new duplicate requests, i.e. not having a ‘duplicate’ link in Bugzilla yet.

An interesting side-effect of analyzing the top-50 most similar feature request
pairs is that we see that the same feature request appears in several pairs in the top-
50. This means that we can start to see small groups of related feature requests.
Intuitively, these small groups should contain feature requests about the same topic.
This is an example of such a group from the Mylyn project:
[102854] add bug editor support for voting
[156742] Add search criteria for tasks/bugs having votes
[256530] [upstream] voting for a bug capability missing from editor when no

votes present
[316881] provide voting API in BugzillaClient

The Mylyn group about “Voting” can only be found completely when searching for
“vot”. This search for the stem of a verb is not natural to an end-user and he/she
risks not to find the complete set. That is why our TF-IDF approach can add value,
even if it is just text-based on literal strings.

We also see examples of feature requests that are related according to TF-IDF
scores (0.64) and according to the developer, but that do not have related titles,
e.g.
[Mylyn 283200] [Bugzilla] Support querying over custom fields
[Mylyn 339791] Bugzilla search page did not store chart settings
A simple search for ‘Bugzilla’ in the Mylyn Tasks feature database yields 40 results
among which the two related ones are hard to find based on the rest of the title.
This example shows that the VSM with TF-IDF can find related feature requests that
are hard or impossible to find with simple search in the issue tracker.

What we can conclude from this experiment is that high values of cosine sim-
ilarity can be a good indication of relatedness between two feature requests. We
will explore this further in Section 3.4 when looking at a feature request network.

LSA
With the same pre-processing as for the TF-IDF application (AC_DW_SC_SP_SM_LO)
we determine the optimal k-value to be 1700. The top-10/top-20 recall rates for
k=1700 are only slightly higher than for TF-IDF: 69/78 instead of 67/77. This could
be due to the fact that our dataset is relatively small (only 4200 ‘documents’); when
considering applications of LSA, most applications use 10,000 documents or more
(e.g., see (Deerwester et al. 1990)). Nevertheless, we consider Netbeans with its
4200 documents as a large project. Another possible explanation of why LSA does
not outperform TF-IDF is that the community of users of issue trackers use the same
kind of terms to refer to concepts, whereas LSA would be better at linking different
terms that have a similar meaning. This assumption needs to be checked in future
work.

58 Chapter 3. Horizontal Traceability of Open Source Feature Requests

If we look at the categories of non-detected duplicates, we even find one more
non-detected duplicate of the category ‘Wording’ [WO], see Table 3.3. Furthermore
we still do not detect any extra duplicates of the ‘No check done’ [NC] or ‘Author’
[AU] categories. This means LSA in our case does not perform better than TF-IDF
for detecting those categories of duplicates, contrary to the expectation that we
expressed in Section 3.3.

In the analysis of the top-50 most similar feature request pairs, we find many
of the feature request pairs that were also there with TF-IDF (36 out of 50 are the
same, although their position within the top-50 differs for some of them). Note-
worthy is that the 50th most similar pair has a significantly higher cosine similarity
than with TF-IDF: 0.79 instead of 0.69. When we analyze the top-50 most simi-
lar feature request pairs (see Table 3.4) we see that for TF-IDF 88% of the top-50
feature request pairs are related (coming from the categories Linked and Related),
compared to 84% in the case of LSA. Additionally, the TF-IDF result-set contains 6
unrelated feature requests, while for LSA this is 8. This indicates that TF-IDF results
are slightly better for our dataset.

We do not invest time in optimizing the performance for both TF-IDF and LSA.
Currently the processing time for calculating the output term/document matrix
for the Netbeans project is approximately 3 minutes with TF-IDF and 900 minutes
with LSA. Even with optimization the processing time for LSA would likely still be
considerably higher than that for TF-IDF, because LSA requires large matrix multi-
plications.

3.4 Extending a Feature Request Network
Knowing that VSM with TF-IDF can find new related feature requests, we want
to look into what this means for the feature request networks as presented in the
introduction. One would assume that the feature requests within such a network
have a high pair-wise similarity.

Figure 3.2 shows a feature request network from the Mylyn Tasks project. Each
node is a feature request identified by a six-digit unique ID. There are three types
of links between the feature requests: 1) ‘blocks/depends’, 2) ‘duplicate’ and 3)
comments. These three types are also explained in Section 3.2. For each link in the
figure the pair-wise cosine similarity is indicated. If the feature request is linked
to a defect, the cosine similarity is not calculated, indicated with a ‘D’. Indeed we
can see that this similarity ranges from 0.33 to 0.69 with a few low outliers. Our
explanation for those low numbers:

• 0.04/0.06/0.09: this is due to a partial match (see also Chapter 2). Feature
request [354023] is about the implementation of a web service between My-
lyn Tasks and Bugzilla. The other 3 feature requests linked to [354023] need
this web service to be implemented (hence the links), but are not really about
the same topic.

3.4. Extending a Feature Request Network 59

Figure 3.2: Feature request network for the Mylyn Tasks project

• 0.15: feature request [224119] describes a new functionality in Bugzilla that
needs to be available in Mylyn Tasks from the Bugzilla viewpoint. Feature
request [349771] describes the same, but from a Mylyn viewpoint with much
more detailed discussion. That is why the two feature requests are not so
similar. However, they are known duplicates. In our duplicate analysis the
duplicate is still found within the top-20 because other feature requests are
even less similar to [224119].

• 0.18: again a partial match. Feature request [280564] is about creating scal-
able icons in general. Feature request [349771] is about the lock icon, that
needs to be scalable as well, but the scalability is just one of the many com-
ments in this feature request. However, if we rank the most similar feature
requests for [280564] then [349771] is on the 7th place, thus within the top-
10 most similar.

This analysis teaches us that we should not only look at absolute similarity num-
bers to find related requests, but more specifically include the relative similarity.
This could be done by, e.g., taking into account the mean m and standard-deviation
s of the pair-wise similarity of feature request A with all other feature requests,
when calculating the relative similarity between feature requests A and B.

In Figure 3.2 we also add feature request [352255] with dotted lines. This
feature request is in the top-50 of highest pair-wise similarity for the Mylyn Tasks
project. In this top-50 it is linked to two other feature requests, [371158] and
[347718], with a high cosine similarity. Interesting to see is that [347718] and
[371158] also have a high pair-wise similarity while they have no direct link in
the issue tracker. We are thus able to extend the physical feature request network
in the issue tracker with a new feature request and new links through our TF-IDF
calculations.

60 Chapter 3. Horizontal Traceability of Open Source Feature Requests

3.5 Discussion
Revisiting the Research Questions
In the introduction we set out to investigate whether TF-IDF can help to detect
horizontal traceability links for feature requests. Answering this step is part of our
bigger research ambition to visualize related feature requests that are stored in issue
trackers. Before answering this high-level research question, let us first consider the
subsidiary research questions.

RQ3.1 Is TF-IDF able to detect functionally related feature requests that are not
already explicitly linked? We show that a VSM with TF-IDF can be beneficial to detect
new related feature requests. We cross-check our results with feature requests that
are already marked as related in the issue tracker, with our own opinion while
reading the feature requests, and for two out of the three projects (Mylyn Tasks
and ArgoUML) also with the help of experienced project members. We confirm this
by means of an existing feature request network from the Mylyn Tasks project. This
analysis teaches us that we should not only look at absolute similarity numbers to
find related requests, but more specifically include the relative similarity.

RQ3.2 What is the optimal pre-processing to apply TF-IDF focusing on feature re-
quests? Through case studies with the Mylyn Tasks, ArgoUML and Netbeans projects
we determined the optimal pre-processing does not include stop word removal,
while removal of source code is beneficial. Additionally, we determined that all
comments of the feature request should be included. We attribute this to the fact
that important words concerning the feature are repeated in the comments.

RQ3.3 Does a more advanced technique like LSA (Latent Semantic Analysis) im-
prove the detection of non-explicit links? The results of our experiment with LSA
show us that our initial assumption (that LSA would improve results as it takes into
account e.g. synonyms) does not hold for the Netbeans case. We are not interested
in achieving higher recall rates, but in finding related requests. LSA scores lower
on finding related request based on the top-50 analysis. This makes us even more
satisfied with the results achieved with TF-IDF (also because the LSA calculations
take much more time).

Main research question RQ3 Can TF-IDF help to detect horizontal traceability
links for feature requests? We can confirm TF-IDF finds related entries in an issue
tracker. In our experiment, on the one hand we retrieved already known relations
between feature requests, while on the other hand we retrieved feature requests
pairs that were previously not marked as related, but that are confirmed to be re-
lated by project members after we confront them with our results. We explain our
results for one example of a feature request network.

Threats to Validity
We now identify factors that may jeopardize the validity of our results and the
actions we took to reduce or alleviate the risk. Consistent with the guidelines for

3.6. Conclusion 61

case studies research (see (Runeson and Höst 2009; Yin 2013)) we organize them
into categories:

Construct validity We evaluate the best configuration of our text-based simi-
larity approach via the recall rate of previously known duplicate feature requests.
These duplicates were marked by the project team. Similarly, for evaluating the
related feature requests, we rely on information in the issue tracker entered by
the project team, on our own opinion and on extra insights obtained from project
members. What must be noted in this case is that for the ArgoUML project the
two different developers do not always agree on related or not related (discussing
between ‘yes’ and ‘somewhat’), although they only completely disagree on 1 item
(out of 14). As one of the developers says this difference is because “it is subjective
whether two feature request are related” (e.g., related in terms of implementation
or in terms of topic). This could mean that if we would ask different developers we
would get different answers.

External validity In this study we investigate feature requests of three software
projects: Mylyn Tasks, ArgoUML and Netbeans. We choose them to be sufficiently
different, in terms of domain and size. Yet, with only three data points, we cannot
claim that our results generalize to other systems.

Reliability In this chapter we rely on our FRequAT tool, which we have thor-
oughly tested and which we consider reliable.

3.6 Conclusion
This chapter describes three case studies with feature requests from open source
projects. Our main contributions are:

1. TF-IDF can be used to detect horizontal traceability links for feature requests,
something which we validated for 2 out of the 3 projects with the help of
developers.

2. Configuration of the pre-processing step is analyzed separately, because we
focus on feature requests. For our three projects stop word removal is not
beneficial, whereas including ‘All Comments’ and removing source code is
yielding better recall rates.

3. LSA does not provide better results than TF-IDF in detecting horizontal trace-
ability links for feature requests in our case studies.

4. When using ‘Duplicate’ links in issue trackers to base recall rates on, one
should be aware of data pollution caused by misuse of the ‘Duplicate’ link,
yielding lower recall rates.

Our results will help others to properly set up pre-processing for information re-
trieval techniques with feature requests, and to get insight in feature request net-
works. Especially those feature request networks play an important role in under-
standing the evolution of the specification of the system (recorded in the form of
feature requests).

62 Chapter 3. Horizontal Traceability of Open Source Feature Requests

The results in this chapter show that TF-IDF can help to detect horizontal trace-
ability links for feature requests. A next step is to get measures on thresholds, recall
and precision for the retrieval of those links, by using (industrial) case studies where
we are able to identify all those links on before hand.

A subsequent step is to create tool support for automatically creating feature re-
quest networks so that users can maximally benefit from the horizontal traceability
links.

Another avenue for future research is to compare additional information re-
trieval approaches for our particular problem domain, in similar vein to Oliveto
et al. (2010). Part of that investigation should also determine why LSA is currently
unable to outperform TF-IDF.

4.
Quality Criteria for Just-in-Time

Requirements: Open Source
Feature Requests

Until now quality assessment of requirements has focused on traditional up-front re-
quirements. Contrasting these traditional requirements are just-in-time (JIT) require-
ments, which are by definition incomplete, not specific and might be ambiguous when
initially specified, indicating a different notion of ‘correctness’. We analyze how the
assessment of JIT requirements quality should be performed based on literature of
traditional and JIT requirements. Based on that analysis, we have designed a quality
framework for JIT requirements and instantiated it for feature requests in open source
projects. We also indicate how the framework can be instantiated for other types of
JIT requirements.

We have performed an initial evaluation of our framework for feature requests
with eight practitioners from the Dutch agile community, receiving overall positive
feedback. Subsequently, we have used our framework to assess 550 feature requests
originating from three open source software systems (Netbeans, ArgoUML and Mylyn
Tasks). In doing so, we obtain a view on the feature request quality for the three open
source projects.

The value of our framework is three-fold: 1) it gives an overview of quality criteria
that are applicable to feature requests (at creation-time or just-in-time); 2) it serves
as a structured basis for teams or projects that need to assess the quality of their JIT
requirements; 3) it provides a way to get an insight into the quality of JIT requirements
in existing projects. 1

4.1 A Quality Framework . 65
4.2 Specific Quality Criteria for Feature Requests 67
4.3 Instantiating the Framework for Other Types of Just-in-Time Requirements 73
4.4 Empirical Evaluation of the Framework for Feature Requests: Setup 75
4.5 Interview Results . 79
4.6 Case Study Results: Findings on Quality of Feature Requests 82
4.7 Discussion . 85
1This chapter is submitted to the Requirements Engineering Journal (REJ) (Heck and Zaidman

2015a).

63

64 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

4.8 Related Work . 92

4.9 Conclusion . 93

It is increasingly uncommon for software systems to be fully specified before im-
plementation begins. As stated by Ernst et al. (2014b), “The ‘big design up front’
approach is no longer defensible, particularly in a business environment that em-
phasizes speed and resilience to change”. They observe that an increasing number
of industry projects treat requirements as tasks, managed with task management
tools like Jira or Bugzilla. A similar task-based approach is seen in the agile move-
ment and in open source projects (Koch 2004; Warsta and Abrahamsson 2003). In
an earlier paper Ernst and Murphy (2012) use the term ‘just-in-time requirements’
(JIT requirements) for this. They observed that requirements are “initially sketched
out with simple natural language statements”, only to be fully elaborated (not nec-
essarily in written form) when being developed. This indicates that the notion of
quality for JIT requirements is different from the notion of quality for traditional
up-front requirements.

Requirements verification “ensures that requirements specifications and mod-
els meet the necessary standard of quality to allow them to be used effectively to
guide further work” (IIBA 2009). Verification activities as in this definition ensure
that the requirements are specified in a correct way. In this chapter we focus on
the informal verification of JIT requirements, which we will call quality assessment.
Standards such as IEEE-830 (1998) define criteria for ‘informal correctness’: re-
quirements should be complete, unambiguous, specific, time-bounded, consistent,
etc. However, this standard focuses on traditional up-front requirements. These are
requirements sets that are completely specified (and used as a contract) before the
start of design and development. We have not found a practical implementation of
quality assessment for JIT requirements.

There is some evidence that correctly specified requirements contribute to a
higher software product quality (Génova et al. 2013; Kamata and Tamai 2007;
Knauss and El Boustani 2008). The question is: does the same hold for JIT require-
ments? After all incorrect JIT requirements will be spotted early on because of short
iterations and can be more easily corrected because of high customer involvement.
Our hypothesis is that, at the least, early verification helps to save time and effort
in implementing the requirements. After all, even if the work can be redone in a
next iteration to correct wrong implementations, it still pays off to do it right the
first time. We would like to investigate which quality criteria define ‘doing it right’
for JIT requirements. This leads us to our main research question RQ4: Which
criteria should be used for the quality assessment of just-in-time requirements?

We use a quality framework from previous work (Heck et al. 2010) to present
the JIT requirements quality criteria in a structured way. Ernst and Murphy (2012)

4.1. A Quality Framework 65

describe two types of JIT requirements: features and user stories. User stories are
the requirements format typically used in agile projects (Leffingwell 2011). A fea-
ture or feature request is a structured request (issue report with title, description
and a number of attributes) “documenting an adaptive maintenance task whose re-
solving patch(es) implement(s) new functionality” (Herzig et al. 2012). Most open
source projects use this type of structured requests (also called ‘enhancements’)
for collecting requirements (see Chapter 2). For an example, see Figure 4.2. For
the purpose of this chapter, we focus on open source feature requests documented
in on-line issue trackers because of their public availability and their structured
(i.e. the fields of the issue tracker) nature. This leads us to the detailed research
question: [RQ4.1] Which quality criteria for informal verification apply to feature
requests?

As the first version of our quality framework for feature requests is based on
literature and our own experience we deem it necessary to evaluate the resulting
criteria with practitioners. This leads to the following research question: [RQ4.2]
How do practitioners value our list of quality criteria with respect to usability, com-
pleteness and relevance for the quality assessment of feature requests?

Once practitioners deem our framework valuable, we apply it to existing open
source projects. In that way we get both a) experiences in applying the framework
in practice and b) insight into the quality criteria of feature requests in open source
projects. This constitutes our last research question: [RQ4.3] What is the level
of quality for feature requests in existing open source projects as measured by our
framework?

The remainder of this chapter is structured as follows. Section 4.1 explains
the quality framework used. Section 4.2 instantiates the framework for feature
requests. Section 4.3 indicates how to customize the framework for other situations
and types of JIT requirements, with an example for user stories. Sections 4.4 and
4.5 describe our evaluation of the framework. Section 4.6 highlights the findings
from the application of the framework to the existing projects. Section 4.7 discusses
the research questions, including recommendations for practitioners working with
feature requests, while Section 4.8 contains related work. Section 4.9 concludes
this chapter.

4.1 A Quality Framework
In previous work we have performed an in-depth study on quality criteria for tradi-
tional up-front requirements, which we collected from an extensive list of standards
(ISO/IEC/ IEEE/ESA) and a literature review (see (Heck et al. 2010) for more de-
tails). The resulting quality criteria are included in the Software Product Certifi-
cation Model (SPCM), a quality framework for software products with traditional
up-front requirements.

The SPCM divides a software product (including all design, documentation and

66 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

tests) into so-called ‘elements’. For traditional up-front requirements the elements
according to SPCM are: use cases or functional requirements, behavioral properties
(e.g. business rules), objects (in e.g. an entity-relationship diagram or a glossary)
and non-functional requirements.

The SPCM furthermore structures the quality criteria for all parts of a software
product in three groups, called Certification Criteria (CC):

[CC1] Completeness. All required elements are present. Group CC1 contains qual-
ity criteria for three different levels of detail (or formality) in those elements:
required, semiformal or formal.

[CC2] Uniformity. The style of the elements is standardized. Group CC2 con-
tains quality criteria for three different levels of standardization of those ele-
ments: within the project, following company standards, following industry
standards.

[CC3] Conformance. All elements conform to the property to be certified. For re-
quirements this property typically is “Correctness and consistency": each ele-
ment in the requirements description is described in a correct and consistent
way. Furthermore, the relations between the elements in the requirements
description are correct and consistent. The quality criteria in group CC3 for
correctness and consistency of traditional up-front requirements from SPCM
are (see Heck et al. (2010) for more details):

1. No two requirements contradict each other
2. No requirement is ambiguous
3. Functional requirements specify what, not how
4. Each requirement is testable
5. Each requirement is uniquely identified
6. Each use-case has a unique name
7. Each requirement is atomic
8. Ambiguity is explained in the glossary

A Quality Framework for Just-in-Time Requirements
Through an analysis of JIT requirements we evaluate which of the quality criteria
from the SPCM are also applicable to feature requests (see section 4.2). Based on
the SPCM we define the same three overall criteria for JIT requirements. We just
rename them to Quality Criteria (QC):

[QC1] Completeness. All required elements should be present. We consider three
levels: basic, required, and optional. In that way we differentiate between
requirement elements that are mandatory or nice to have.

[QC2] Uniformity. The style and format should be standardized. A standard format
leads to less time for understanding and managing the requirements, because
all stakeholders know where to look for what information or how to read e.g.
models attached to the requirement.

[QC3] Conformance. The JIT requirements should be consistent and correct.

4.2. Specific Quality Criteria for Feature Requests 67

JIT Requirements
Quality Framework

1.1 Basic Elements

1.2 Required Elements

1.3 Optional Elements

3.1 No contradiction *J

3.2 No contrad. comments *J

3.3 Correct Language *C

3.4 Specify problem *C

3.5 SMART *J

3.6 Correct summary *C

3.7 Atomic *C

3.8 Glossary *C

3.9 No duplicates *C

3.10 Navigable links *C

2.1 Use of tool *C

2.2 Necessity of comments *C

(2.3 Follow template *C)

(2.4 Uniform models *C)

[QC2] Uniformity[QC1] Completeness [QC3] Consistency &
Correctness

Note1: for [QC2] and [QC3] criteria marked with *C
should hold from the moment the requirement is
created, criteria marked with *J should hold later, just-
in-time for a certain step in the development process
Note2: criteria 2.3 and 2.4 are not applicable to feature
requests in open source projects

Summary & description *C
Product Version *C

Keywords/tags *J
Rationale *J

Use case or scenario *J
Screens *J

Relative importance *J

Link to code *J

Possible solution *J

Figure 4.1: JIT Requirements quality framework, see also Tables 4.6 and 4.7

The overall QCs are detailed into specific criteria [QCx.x] for each type of JIT re-
quirements. Figure 4.1 shows the instantiation of the framework with the specific
quality criteria for feature requests. These specific criteria will be explained in the
next section.

There is however another dimension to JIT requirements that clearly differenti-
ates them from traditional requirements, namely the observation that JIT require-
ments are “initially sketched out with simple natural language statements” (Ernst
and Murphy 2012), only to be fully elaborated when being developed. This differ-
ence points to the need for a notion of time in our quality framework. For each of
the quality criteria we indicate when it should hold:

*C At creation-time. This criterion should hold as soon as the requirement or the
requirement part is created.

*J Just-in-time. This criterion does not necessarily have to hold when the require-
ment (part) is created. However, it should hold at a later moment, just-in-time
for a certain step in the development process. This could be further detailed
by specifying which step is the latest moment for the criterion to hold.

In that way the framework can be used to give a structured overview of requirement
qualities that should be there from the beginning and requirement qualities that
should be there just-in-time, see also Figure 4.1.

4.2 Specific Quality Criteria for Feature Requests
To answer [RQ4.1] Which quality criteria for informal verification apply to feature
requests? we evaluate which of the quality criteria from SPCM (see Section 4.1)
are applicable to feature requests (in open source projects). Next to that we try to

68 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

Figure 4.2: Feature Request in Bugzilla (Mylyn Tasks project)

come up with new specific criteria based on existing literature about just-in-time
requirements and based on our own experience with feature requests in open source
projects. Section 4.3 indicates how the framework could be instantiated for other
types of JIT requirements.

Feature Requests in Open Source Projects
A feature request typically corresponds to one requirement (“a documented repre-
sentation of a condition or capability needed by a user to solve a problem or achieve
an objective” (IEEE 1990)). In open source projects they are used as JIT require-
ments: a feature request is specified by users or developers at any moment and the
development lead(ers) decide(s) if and at what moment it is implemented. They
select the feature requests to be implemented based on priorities set by the devel-
opers and/or the users. The initial specification of the feature request might be
‘incomplete’ or ‘incorrect’. With JIT requirements this is acceptable, as long as the
specification is corrected once the feature request is selected for implementation.
This ‘correction’ of an open source feature request is done by adding comments
to the original request. In this way a discussion is created that continues until all
parties are satisfied with the implementation of the request. This is different from
traditional up-front requirements that are specified as a complete, prioritized, cor-
rect and consistent set. This set of requirements is usually collected in one big ‘re-

4.2. Specific Quality Criteria for Feature Requests 69

quirements document’ before the implementation starts. Correction of traditional
up-front requirements is usually done by producing a new requirements document.

The below sections analyze what the just-in-time specification of feature re-
quests in open source projects means for the quality assessment of those feature
requests. The complete list of specific criteria for feature requests can be found in
Figure 4.1 and is explained in more detail in Table 4.6 and Table 4.7. In the below
analysis each of the specific criteria is clarified and indicated with “(QC xx *J/*C)”.
This is the identifier of the specific criterion and an indication if the criterion should
hold at creation time (*C) or just-in-time (*J). This indication is also repeated in
Table 4.6 and Table 4.7.

Completeness for Feature Requests
Completeness (QC1) in our framework means that all elements of the specification
are present. This should not be confused with the completeness of the content of
the specification (‘did we specify the complete user need?’).

The SPCM (see section 4.1) considers a requirement specification complete if it
includes use cases or functional requirements, behavioral properties (e.g. business
rules), objects (entity model or glossary) and non-functional requirements.

Alspaugh and Scacchi (2013) find that the overwhelming majority of requirements-
like artifacts in open source projects may be characterized as what they term pro-
visionments. Provisionments “state features in terms of the attributes provided by
an existing software version, a competing product, or a prototype produced by a
developer advocating the change it embodies. Most provisionments only suggest
or hint at the behavior in question; the expectation seems to be that the audience
for the provisionment is either already familiar with what is intended, or will play
with the cited system and see the behavior in question firsthand.”

This form of specification lacks most of the elements that are considered in
the SPCM for traditional up-front requirements, so we cannot judge completeness
by these elements. Instead we look at the attributes of a feature request. Which
fields need to be filled for a feature request to be complete? The basic elements
(QC1.1) are the ones that define a feature request, such as title (= unique name)
and description. The required elements (QC1.2) are the ones that are necessary
for management of the feature request: keywords to organize them, a rationale to
determine importance and a link to the source code once implemented for trace-
ability. The optional elements (QC1.3) are the ones that add value to the developer
when specified by the author, but can also be clarified later on in the process (e.g.
by prototyping or asking questions): scenarios, screen mock-ups or hints for a so-
lution.

Based on what we observed while analyzing a large number of open source
feature request we determine that at creation time (*C) of the feature request, the
author only needs to fill the summary (= title) and description (QC1.1a *C) of what

70 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

he/she requires and the product (also which version of the product, QC1.1b *C) for
which they require it. As can be seen in Table 4.6, all other fields/attributes can
be filled in at a later moment during the development cycle (*J). Relative impor-
tance (QC1.1c *J), rationale (QC1.2b *J), scenarios (QC1.3a *J), screen mockups
(QC1.3b *J) and hints for a solution (QC1.3c *J) need to be present just before
coding starts because they determine when and how things get implemented. Al-
though keywords (QC1.2a *J) should be added by the author of the feature request
at creation time, they can be updated during the entire lifecycle of the requirement
(just-in-time), because new topics can emerge in the discussion of the feature re-
quest. For the link to the source code (QC1.2c *J) it is obvious that it can only be
added once the feature request is implemented.

Uniformity for Feature Requests
Uniformity (QC2) means all requirements have the same format. For traditional
up-front requirements, the SPCM (Heck et al. 2010) defines three levels of unifor-
mity: all elements have the same format, all elements follow company standards,
all elements follow industry standards. For feature requests in open source projects,
company or industry standards usually do not apply. For example, feature requests
are text-only, so no modeling language is used that can be compared to industry
use. Most format choices for feature requests are determined by the issue tracker
being used (QC2.1 *C). Issue trackers have a number of pre-defined fields that must
be filled in and that are always shown in the same way. We recommend to use the
issue tracker from creation-time of the feature request (*C) such that all informa-
tion on the complete life-cycle of the feature request is logged in one place. Note
that although company standards do not apply, open source projects might have
specific uniformity criteria on top of the use of an issue tracker. These uniformity
criteria (like “All titles start with a code for the module of the software that the
request is for”) should also be included as specific criterion under QC2, in addition
to the general specific criteria as mentioned in this chapter.

The other thing to look at is the ‘uniformity of comments’ (QC2.2 *C). A feature
request is entered with summary and description by the author. Then other per-
sons (users or developers) can add comments to the feature request. This is done
for discussion of the request or for tracking the implementation of the request. The
comments in the different feature requests should be uniform, meaning they should
be ‘necessary to understand the evolution of the feature request’. This is a subjective
criterion but it definitely rules out comments like “I am sorry for losing the votes.”
(Netbeans FR #4619) or “Wooo! Party :) thanks!” (Netbeans FR #186731). Uni-
formity of comments is needed from creation-time of the comment (*C), because
no unnecessary comments should be created at all.

All uniformity criteria should hold from creation-time (*C) because at any given
moment in the development cycle the team or project profits from things being spec-
ified in a uniform manner. For example, if a team or project uses a specific template

4.2. Specific Quality Criteria for Feature Requests 71

for specifying JIT requirements, then it makes no sense to create the requirement
in any other format than with this template.

Consistency and Correctness for Feature Requests
Consistency and correctness (QC3) indicate those criteria that state something on
the quality of an individual feature request (correctness), or on the quality of the
link between two or more feature requests (consistency).

For each of the eight SPCM quality criteria from Section 4.1 we discuss if, and
how, they apply to feature requests. The resulting quality criteria for feature re-
quests are mentioned between round brackets (QCx.y *J/C), see Figure 4.1 for an
overview and Table 4.7 for the description of those criteria.

SPCM CC3.1 No two requirements contradict each other.
Does this hold for feature requests? For a complete set of up-front requirements
contradictions can more easily be established then for the ever-growing set of fea-
ture requests in an open source project. As feature requests are typically submitted
by many different authors, they often do not have a good picture of the feature
requests that have been submitted before, resulting among others in many dupli-
cate requests (see Chapter 2). The identification of related and possibly conflicting
feature requests (QC3.1 *J) is important for developers to determine the correct
implementation. Another check that can be done is to see that the comments of a
single feature request are not contradicting each other (QC3.2 *J). Ideally the cre-
ation of conflicting requests and conflicting comments is avoided all-together, but
since this is very hard with an open source on-line community where every user
can submit feature requests and comments, we require that at least just before de-
velopment starts (*J) all conflicts should be resolved.

SPCM CC3.2 No requirement is ambiguous.
Does this hold for feature requests? As stated by Philippo et al. (2013) there are
many factors that can decrease the effect of ambiguity and most of them are ac-
counted for in JIT environments. For feature requests it is not such a problem if
the description is ambiguous because there is a habit of on-line discussion before
implementation (Scacchi 2009). Another method that is frequently used in open
source projects is prototyping (Alspaugh and Scacchi 2013). We however require
a basic level of clarity from the author of a feature request at creation-time (*C):
write in full sentences without spelling/grammar mistakes (QC3.3 *C).

SPCM CC3.3 Functional requirements specify what, not how.
Does this hold for feature requests? As indicated above the author of a feature re-
quest may include hints for implementation of the feature request. As mentioned in
Noll and Liu (2010) the majority of features is asserted by developers. This makes
it more natural that some feature requests are stated in terms of the solution do-

72 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

main (Alspaugh and Scacchi 2013). They should however at creation-time (*C)
also specify the problem that needs to be solved (QC3.4 *C), for developers to be
able to come up with alternative solutions.

SPCM CC3.4 Each requirement is testable.
Does this hold for feature requests? As Alspaugh and Scacchi (2013) state, an open
source product that is evolving at a sufficiently rapid pace may be obtaining many
of the benefits of problem-space requirements processes through solution-space de-
velopment processes. This means that the fact that some feature requests may not
be specified in a testable way can be compensated by follow-up discussions in com-
ments, extensive prototyping and involving the author of the feature request as a
tester later in the process (*J). However, the author is required to submit verifiable
feature requests and make the statement as precise as possible (QC3.5 *J): e.g. “I
cannot read blue text on an orange background” instead of “I need more readable
pages”.

SPCM CC3.5 Each requirement is uniquely identified.
Does this hold for feature requests? A unique identifier is added automatically for
each new feature request that is entered in an issue tracker (IQ1, see Section 4.2).

SPCM CC3.6 Each use-case has a unique name.
Does this hold for feature requests? Each feature request should have a unique name
(‘Summary’ or ‘Title’, QC1.1a *C). The summary should be in the same wording as
the description and give a concise picture of the description (QC3.6 *C) from the
moment the feature request is created (*C).

SPCM CC3.7 Each requirement is atomic.
Does this hold for feature requests? For feature requests in an issue tracker it is very
important that they are atomic, i.e. describe one need per feature request (QC3.7
*C). If a feature request is not atomic from creation-time (*C) the team or project
runs into problems managing and implementing it (a feature request cannot be
marked as ‘half done’). There is a risk with non-atomic feature requests that only
part of the feature request gets implemented because the comments only discuss
that specific part and the other part gets forgotten.

SPCM CC3.8 Ambiguity is explained in the glossary.
Does this hold for feature requests? An open source project (like any project) is likely
to use some specific terminology (like ‘DnD’ means ‘Drag and Drop’) but the big-
ger and older the project gets, the more likely that new persons arrive, unfamiliar
with that terminology. It is a good practice to maintain a glossary (e.g. wiki-pages)
for such project-specific terms and abbreviations (QC3.8 *C) and add any unclear
terms in the feature request from the moment it is created (*C). The advantage of
on-line tools is that one can easily link terms used to such a glossary.

4.3. Instantiating the Framework for Other Types of Just-in-Time Requirements 73

Issue trackers offer functionality to mark feature requests as ‘DUPLICATE’ such
that users and developers are always referred to the master discussion. There are
open source projects with many duplicate entries in their issue trackers (see Chapter
2). This is a risk because discussions on both duplicate feature requests might
deviate if the duplication-relationship goes unnoticed (QC3.9 *C). Worst case this
leads to two different implementations of the same feature. From the very first
moment that a duplicate is detected (*C) it should be marked as such, to avoid
duplicate work being done.

A last item is about the linking of feature requests. Each link to another feature
request should be clearly typed and navigable (QC3.10 *C) from the moment it
has been created (*C). To refer to another feature request the author of a comment
should insert a URL (some tools do this automatically when using a short-code) and
give an explanation why he/she is linking the two requests.

Inherent Qualities of Feature Requests in Issue Trackers
As indicated above, this chapter only considers open source projects that use issue
trackers to store requirements. Those issue trackers by design fulfill the following
quality criteria. These inherent qualities [IQx] are not explicitly included in our
quality framework.

[IQ1] Unique ID: as stated above an electronic tool will automatically assign a
unique ID to each added requirement.

[IQ2] History: electronic tools automatically track all changes to a requirement.
This can be viewed directly from the tool’s GUI or in the database.

[IQ3] Source: electronic tools automatically log the author of a requirement and
the author of each comment.

[IQ4] Status: electronic tools have a separate ‘Status’ field where the status of the
requirement can easily be seen. Most tools support a work-flow in which the
status field is updated (manually or automatically) based on the work-flow
step the requirement is in.

[IQ5] Modifiable (see Davis et al. (1993)): electronically stored requirements are
by definition modifiable because the tool provides a structure and style such
that individual requirements can easily be changed.

[IQ6] Organized (see Davis et al. (1993)): electronic tools offer an easy way to
add attributes to requirements. With built-in search options this allows the
tool user to locate individual requirements or groups of requirements.

4.3 Instantiating the Framework for Other Types
of Just-in-Time Requirements

The previous sections describe the specific criteria for feature requests in open
source projects as presented in Table 4.6 and Table 4.7. This chapter explores the
applicability of the framework for other types of JIT requirements.

74 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

The framework consists of the following elements: 1) the three overall quality
criteria (QC1, QC2 and QC3), 2) a time dimension (*C/*J), 3) a list of application
specific criteria (QC1.x till QC3.y). For the application of the framework to a new
type of JIT requirements the three overall quality criteria and the time dimension
remain the same and just the list of application specific criteria should be adjusted
to the specific situation for the team or project.

An example of this is to customize the specific criteria for the tool that the team
or project is using. Teams or projects that use the quality framework for their JIT
requirements should check if their tool also defaults the six quality criteria in Sec-
tion 4.2. If not, it makes sense for them to include the not supported criteria as
extra check in [QC1] or [QC3]. An example of customization is demonstrated in
the next paragraph where we analyze which specific criteria would apply for an-
other important type of JIT requirements as discussed in Ernst and Murphy (2012):
User Stories.

For a team or project to customize the specific criteria for their specific JIT en-
vironment is simple in theory (the team or project decides on the specific checks
and metrics) but at the same time difficult in practice (on what grounds would they
decide this?). Our advice is to start with the criteria list in Tables 4.6 and 4.7 and
first decide which criteria are (not) relevant. Then missing criteria can be found
by interviewing members, by re-evaluating old requirements (why do we think this
requirement is good/bad?), or by just applying the framework in practice and im-
proving it on-the-fly.

Then the team or project should decide if they need to get an absolute scoring
for the JIT requirement, or need to obtain a professional opinion. In most cases
it is more important to find violations (e.g. “Do I see not-SMART statements” or
“Do I see irrelevant comments?”) and improve the requirement based on that,
than to get absolute scorings for the requirement. As such exact metrics might not
be needed; a simple Yes/No answer for each criterion with the goal to answer all
criteria positively could be enough.

Specific Quality Criteria for User Stories
As a feature request can also be described with one or more user stories (Leffin-
gwell 2011), we investigate whether the same quality criteria apply. A user story
is the agile replacement for what has been traditionally expressed as a functional
requirement statement (or use case). A user story is a brief statement of intent
that describes something the system needs to do for the user. User stories usually
take a standard (user voice) form: ‘As a <role>, I can <activity> so that <business
value>’ (Leffingwell 2011).

In Table 4.1 we detail the differences for user stories with the specific quality
criteria we defined for feature requests (see Figure 4.1) .

[QC1.x′] indicates that the criterion has the same title as for feature requests,

4.4. Empirical Evaluation of the Framework for Feature Requests: Setup 75

Table 4.1: Specific criteria for user stories

[QC1.1′ *C] Basic Elements: Role, activity, business value (‘Who needs
what why?’) instead of summary and description

[QC1.2′ *J] Required Elements: acceptance criteria or acceptance
tests to verify the story instead of rationale (already as
business value in QC1.1′)

[QC1.3′ *J] Optional Elements: the team could agree to more de-
tailed attachments to certain user stories (e.g. UML mod-
els) for higher quality

[QC2.3 *C] Stories Uniform: each user story follows the standard
user voice form

[QC2.4 *C] Attachments Uniform: any modeling language used in
the attachments is uniform and standardized

[QC3.5′ *J] INVEST: User stories should be Independent, Negotiable,
Valuable, Estimable, Small, Testable (Wake 2003)

but with different elements that should be part of the user story. [QC2.3] is added
for user stories because the user voice form as mentioned before is specific for user
stories. [QC2.4] is added for user stories because we did not see any feature re-
quests in open source projects that have attachments with detailed specification
models, but we have spoken to many companies that use this mechanism to provide
more detail for their user stories; this form of specifying user stories is also men-
tioned by Leffingwell (2011). Leffingwell introduces INVEST(see (Wake 2003)) as
the agile translation of SMART, hence [QC3.5′]. The other [QCx.x] are valid for
user stories without changes.

A team working with user stories should decide which specific quality criteria
apply to their practice. If e.g. the product owner is in a remote location, then the
quality criteria for documented user stories should be applied. If e.g. user sto-
ries are only documented as a ‘user voice statement’ and comments are discussed
off-line, then [QC2.2] and [QC3.2] do not apply. The quality criteria could be in-
corporated into the team’s ‘Definition of Ready’ (see (Power 2014)) that determines
when a user story is ready to be included in the planning for the next development
iteration.

4.4 Empirical Evaluation of the Framework for Fea-
ture Requests: Setup

The result of our analysis on [RQ4.1]Which quality criteria for informal verification
apply to feature requests? is the framework as presented in Section 4.2, see also
Figure 4.1.

76 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

To answer [RQ4.2] How do practitioners value our list of quality criteria with
respect to usability, completeness and relevance for the quality assessment of feature
requests? and [RQ4.3] What is the level of quality for feature requests in existing
open source projects as measured by our framework? we followed two different ap-
proaches.

Section “Interview Setup” describes the setup of an initial evaluation of our
framework that consisted of interviewing eight practitioners. Section “Case Study
Design” describes the setup of a case study in which we applied the framework to
620 feature requests from three open source projects.

Interview Setup
To explore the applicability (usability, completeness and relevance) of our frame-
work for the quality assessment of feature requests the first author interviewed eight
practitioners from the Dutch agile community. They were sourced through our per-
sonal network. We chose the agile community to get a first idea of whether the
framework would also be useful for companies using JIT requirements. The par-
ticipants are not necessarily experienced in open source projects, but are familiar
with both the traditional up-front requirements engineering and the JIT require-
ments engineering. This makes them well-suited to comment on the underlying
principles of our framework. The interview consisted of two parts:

1. General questions on JIT requirements quality, including an exercise to eval-
uate feature requests from the Firefox (www.mozilla.org/firefox) project;

2. An exercise to use our quality framework on feature requests from the Bugzilla
project (www.bugzilla.org), followed by questions to rate the quality frame-
work.

The first part of the interview was done with minimal introduction from our side
and above all without showing the participants our framework. For the second
part, the first author has turned the quality model into a checklist (in MS Excel)
for the participants to fill in. For each check the answer set was limited. When
each check is filled in, the spreadsheet automatically calculates a score for each of
the quality criteria and an overall score for the quality of a single feature request
(LOW/MEDIUM/HIGH), see Section “Scoring Setup” for the inner-workings.

The feature requests used for the exercise were manually selected by the first
author using the following selection criteria: a substantial but not too big amount
of comments (between 7 and 10) in the feature request, feature request has been
implemented, contents of the feature request are not too technical (understandable
for project outsiders). This last criterion is also why we selected the two projects:
both Firefox and Bugzilla are well-known (types of) tools such that project outsiders
should be able to understand or recognize the features. The feature requests were
accessed on-line.

The data sets (five feature requests from Firefox, ten from Bugzilla), Excel

www.mozilla.org/firefox
www.bugzilla.org

4.4. Empirical Evaluation of the Framework for Feature Requests: Setup 77

checklist and interview questions can be found on-line (Heck 2014).

Case Study Design
Our framework also allows us to get an insight into the quality of feature requests
of existing open source projects. As such, we asked a group of 93 software engi-
neering students to apply the checklist (as described in the previous section) to a
large number of feature requests. As a side-effect we also get additional qualitative
feedback on the practicality of the checklist.

The three open source projects that we used in this case study are:

• Eclipse MyLyn Tasks projects.eclipse.org/projects/mylyn.tasks: 100
feature requests selected out of around 400 total

• Tigris ArgoUML argouml.tigris.org: 210 feature requests selected out of
around 1275 total

• Netbeans netbeans.org: 310 feature requests selected out of around 4450
total

The projects (see also Chapter 3) were selected because: 1) they are mature and
still actively developed; 2) they differ in order of magnitude in terms of number of
feature requests; 3) they use Java as a programming language (important because
some feature requests contain source code fragments); 4) they use Bugzilla as an
on-line tool to manage feature requests. The feature requests were selected ran-
domly from among those with status “CLOSED” (since then we have the complete
feature request history) and between 7 and 12 comments (because this yields a
proper text size to analyze manually). For Mylyn Tasks, being a smaller project,
we had to extend the criteria to status not equal to “NEW” and between 3 and 12
comments. All feature requests were accessed on-line in Bugzilla.

The application of the checklist was assigned to a group of 93 final-year com-
puter science students majoring in software engineering at the Fontys Applied Uni-
versity in the Netherlands as part of one of their courses. During their studies they
have gathered a proficiency in Java programming and worked with Eclipse, UML
tools and Netbeans. Therefore we assume that they possess sufficient background
knowledge to have a high-level understanding of the feature requests presented to
them. Each student was assigned 20 specific feature requests. Furthermore, each
feature request was assigned to 3 different students to be able to compare answers
from different raters.

For the purpose of easy on-line data collection we have transformed our frame-
work for feature requests into a Google Forms questionnaire. Some specific criteria
were not enclosed in the questionnaire because the answer would always be the
same for all feature requests (e.g. “does the feature request have a title?"), re-
sulting from the fact that all analyzed feature requests are entered in the Bugzilla
issue tracker that has mandatory fields. The criterion “Contradicting requirements”
[QC3.1] was excluded from the questionnaire because it would be too hard for the

projects.eclipse.org/projects/mylyn.tasks
argouml.tigris.org
netbeans.org

78 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

participants to check this (for that they would have to check all other feature re-
quests). The remaining criteria were transformed into multiple choice questions
with a short explanation for each question. We have included an additional com-
ment box (“Opmerkingen” in Dutch) for the students to fill in any free-format re-
marks. So each student had to fill in 20 questionnaires, one questionnaire for each
feature request assigned to them.

We received 1699 filled in questionnaires from the students through Google
Forms: 83 students completed the assignment for 20 feature requests, 2 students
did only 19 feature requests and 1 student did only 1 feature request. We corrected
wrongly entered student numbers and feature request numbers (typos and use of
network ID instead of student number). We also corrected small mistakes that four
students reported by email (because students were not able to resubmit already
sent questionnaires). We transformed this Excel file back into our original criteria
list from the framework for feature requests by adding the criteria previously not
enclosed (because of standard Bugzilla as explained in previous paragraph) and
we added the scoring algorithm explained below. In that way we obtained 1699
‘scorings’ of the 620 feature requests. On average each feature request was scored
2.7 times; 10 feature requests were scored only once.

The list of feature requests used, the Google Form questionnaire and the result-
ing feature request scorings can be found on-line (Heck 2014).

Scoring Setup
In this section we explain the scoring model that was used.

In Table 4.6 and Table 4.7 it is indicated for each criterion what the outcome
can be (column ‘Metric’). For each specific criterion the answers are translated
into percentage scorings. For a criterion with two possible answers the score is
either 0% (low quality) or 100% (high quality). For a criterion with three possible
answers there is also a 50% score (medium quality). As indicated in Table 4.6,
QC2.2 directly results in a percentage (of relevant comments).

Higher-level scorings are calculated as indicated in Table 4.2. In particular, the
overall score for [QC3] is calculated by taking the simple average of all percentage
scores, because in our opinion no single criterion is more important for correctness
than the other criteria. The final score first depends on the [QC1] score. If QC1.1 or
QC1.2 score below 100% (meaning that basic or required elements are missing),
the final score is always 0%. Otherwise, the final score is a weighted average of
[QC1.3], [QC2.2] and [QC3]. QC3 has a weight of 3 in this average as we feel
that the ‘Correctness’ is the most contributing factor to the overall quality of the
feature request. [QC1.3] are ‘optional elements’, comments (QC2.2) are just a small
factor for uniformity and [QC3] really looks at if everything that has been written is
written in a correct way. The overall quality score is considered ‘HIGH’ when equal
to or above 75%, ‘LOW’ when below 55% and ‘MEDIUM’ otherwise.

4.5. Interview Results 79

Table 4.2: Quality score calculation

Individual Scores

Yes, Very much, N/A 100%

A little bit 50%

No, Not at all 0%

Overall Scores

QC1.1, QC2.1 always 100% for open source feature requests

QC1.2, QC1.3 Average([QC1.x a] till [QC1.x c])
QC2.2 percentage of relevant comments

QC3 Average(QC3.1 till QC3.10)

TOTAL IF ((QC1.1< 100%) OR (QC1.2< 100%)) THEN 0%

ELSE [QC1.3]+[QC2.2]+3∗[QC3]
5

This scoring algorithm is based on our professional opinion on what is appro-
priate for feature requests in open source projects. For other situations different
rules or a (different) weighted average might be more appropriate.

4.5 Interview Results
As mentioned in Section 4.4 we first wanted to explore the applicability (usability,
completeness and relevance) of our framework to the quality assessment of feature
requests. We interviewed eight practitioners from the Dutch agile community. We
summarize these interviews in what follows. 2.

Part One: Background and JIT Requirements Quality
All participants are experienced IT specialists with good knowledge of JIT require-
ments engineering. They work for five different Dutch companies in the area of
software development and quality consulting; their roles in agile projects vary from
coach, to trainer or consultant. Most of them also have experience as analyst or
tester in agile projects. All participants mention user stories as a format for JIT
requirements, but also use cases, features, and wireframes (i.e. screen blueprints).
Some participants mentioned that they also consider informal communication as
being part of ‘the requirement’. We made clear that for the purpose of our frame-
work we only consider the written part.

All participants agree that JIT requirements should fulfill certain quality crite-
ria. This helps the understanding within the team or project and is important for
traceability or accountability towards the rest of the organization. When asked for

2Complete interview transcripts in Dutch are available from the first author

80 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

a list of quality criteria the participants do not only mention quality criteria like the
ones in our framework (SMART, not ambiguous, sufficiently small, atomic, follow-
ing company standards/template), but also include process-oriented criteria like
“approved by the product owner”, “estimated in hours”.

When asked to score 2 feature requests from the Firefox project (175232 and
407117) as HIGH/MEDIUM/LOW quality (without prior knowledge of our frame-
work, just based on professional opinion), the participants do not always agree on
the exact score, but they consistently score 175232 lower than 407117.

Part Two: Our JIT Quality Framework
Each participant filled in the checklist for at least two different feature requests from
the Bugzilla project to get some hands-on experience with the checklist. The goal
of this exercise was not to collect quantitative data, but to get qualitative feedback
from the participants on the checklist.

Four participants mention “# of relevant comments” (QC2.2) and 2 participants
mention “SMART” (QC3.5) as checks that are unclear or difficult to fill in. For
[QC2.2] they find it difficult to determine if a comment is ‘relevant’ or not and for
[QC3.5] they have difficulties determining the overall score on 5 criteria (Specific,
Measurable, Acceptable, Realistic, Time-bound) in one check. We agree that these
two checks are quite subjective, but we chose not to objectivize them in further
detail. As one participant remarks: “I am in favor of checklists but quantifying in
too much detail triggers discussions on scores and weighing. The discussion should
be on the content of the requirement.”. This is what we also conclude in our section
4.3 about Customization of the framework.

When asked to rate the score calculated by the Excel sheet for each feature
request (LOW/MEDIUM/HIGH) the opinions vary. On a scale from 1 (no match
at all with my personal opinion) to 5 (great match) all ratings have been given,
although 6 out of 8 participants rate 3 or higher. This shows that most participants
consider the final score of the model to be relevant. Yet, we also accept that our
initial weighting scheme for the checklist requires fine-tuning for future use.

For example, in the checklist used in this interview a feature request always
scores LOW if one of the basic (QC1.1) or required (QC1.2) elements is missing and
not all participants agree with this choice. They for example argue that a feature
request with a missing ‘Rationale’ (QC1.2b) can still be a correct feature request
if it is self-explanatory enough. We agree. We added a scoring algorithm to help
the participants in judging feature request quality, but the scoring algorithm should
not be taken as an absolute judgement (one participant: “A practical checklist like
this always helps, but I am not sure how useful it is to calculate a final score from
the individual checks.”). As stated before the checklist is very useful as a reminder
of what to check when looking for good feature request quality. It is the reviewer
or author of the requirement that can still decide how serious a violation is in the
given situation, e.g. by marking it as ‘N/A’.

4.5. Interview Results 81

0

1

2

3

4

5

6

1: Not at all 2 3 4 5: Very Much

Pa

rt
ic

ip
an

ts

Does the checklist help to judge quality?

Figure 4.3: Checklist rating by interview participants

Some participants answered that they would like to add topics such as: non-
functional impact (e.g. usability, performance), business value, domain models.
We see this as valuable suggestions for practitioners customizing the checklist for
their JIT projects. We feel that these topics are not applicable for feature requests in
open source projects. As one participant mentions “It is refreshing that this checklist
is tailored for this specific situation. The ultimate result would be to know how to
construct such a tailored checklist.”. Section 4.3 shows how this customization
could be done.

But why would teams or projects do the effort of including such a checklist in
their development process? All participants rated the checklist as helpful when
judging the quality of a feature request (compared to using ‘gut-feeling’), see Fig-
ure 4.3. They valued the help of the checklist to not forget criteria, to base their
opinion on facts, to use it as an education for new team or project members, to
standardize the review process. One participant (that rated the checklist as ‘Very
Much’ helpful) nuances this by stating “It is not always the case that high-quality
requirements lead to high-quality products. The checklist is helpful but just a small
part of all factors that influence final product quality.”. This is a valid point. Our
study shows that also in JIT environments requirements quality is considered im-
portant, but that there is no one-size-fits-all solution. All participants confirmed
that our framework is a good starting point to get to a tailored process for quality
assessment of JIT requirements.

82 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

4.6 Case Study Results: Findings on Quality of
Feature Requests

To collect experiences from the use of our framework in practice we applied it to
620 feature requests from the Netbeans, ArgoUML and Mylyn Tasks open source
projects. For details on this setup see Section 4.4. In this section we highlight the
aggregated findings. First we explain how we cleaned the data. Then we present
some aggregated findings on feature request quality. Lastly we describe what we
learned about our framework for feature requests.

Data Cleaning
When collecting data through surveys, data quality can be a concern. In particular
under conditions of obligatory participation, so-called careless responses can be
a worry (Meade and Craig 2012). To this end, we performed two checks on the
response to identify suspect participants. These suspect participants could either
not have taken their participation in the survey seriously, or they might lack a basic
understanding. The two checks are:

1. We used criterion [QC3.9] (No duplicate requests) as a ‘control question’. The
answer to this question is not subjective (each feature request in Bugzilla is
clearly marked as “CLOSED DUPLICATE”). We remove all 17 participants that
have answered this question wrongly in 1 or more cases.

2. For each participant we calculated the absolute distance of his questionnaires
to the average questionnaires for the same feature requests. The resulted in
absolute distances between 73 and 308 (where maximum distance is 340 if a
participant always answers completely the opposite of the other participants
that have scored the same feature request) with an average distance of 136.
We remove the 5 outlier participants (that have a distance of more than twice
the standard deviation from the average, i.e. more than 214) and note that
3 out of these 5 participants are also included in the 17 removed participants
from the previous check.

In the aggregated analysis in the next paragraph we present the results after remov-
ing all of the suspect participants (19 in total). This might be more than needed
for the purpose of our analysis, but makes us more confident that we are working
with valid data. This leaves 67 participants filling in 1319 questionnaires for 570
feature requests (200 ArgoUML, 80 Mylyn Tasks, 290 Netbeans). Out of these 90
feature requests have been scored by only 1 participant. On average each feature
request is scored by 2.3 participants.

Aggregated Results
The aggregated answers and resulting scorings (see Section 4.4) can be found in Ta-
ble 4.3. A lot of interesting observations can be made from this table. We highlight

4.6. Case Study Results: Findings on Quality of Feature Requests 83

a few observations in this section:

Overall Score The overall score (= the average score of all feature requests in the
project) for the three projects is quite low (5% for Netbeans and ArgoUML,
15% for Mylyn Tasks). This is mainly due to the fact that a lot of feature
requests score 0% because of missing keywords, missing rationale or missing
link to source code. Note that the QC3 “correctness” score is quite high for
each of the three projects. This led us to conclude that the way we calculate
the overall score (scoring 0% if basic or required elements are missing) does
not provide particular insight into overall feature request quality.

Completeness As indicated in the previous observation not all required elements
are present: on average 54% (QC1.2). For optional elements on average 36%
is present (QC1.3). For the individual elements we see that for example the
use of mockups and keywords is not so common in the three projects. Mylyn
Tasks does clearly better then the other two projects here. This explains the
higher overall quality score of 15% for Mylyn Tasks.

Uniformity The percentage of relevant comments (QC2.2) is similar for all three
projects: around 60%. This means that out of every three comments (in total
more than 4500 comments were read by the participants) one is irrelevant.
We assume this has implications for the understandability of the feature re-
quest.

Creation-time The feature requests that have been selected are all in status “Closed”.
This means that the QC3 overall scorings in Table 4.3 are based on both the
creation-time (*C) and the just-in-time (*J) criteria. When we only average
the seven creation-time criteria for QC3 we see a clear difference in scoring:

Mylyn Tasks ArgoUML Netbeans TOTAL
QC3 *C 83% 80% 84% 82%
QC3 *C + *J 80% 75% 78% 77%

This shows that the quality of the feature requests slightly deteriorates for all
three projects from the moment it is created until it is closed. In the projects
we analyzed this is mainly due to the fact that according to our framework a
feature request does not need to be SMART (QC3.5 *J) when initially created.
However, a lot of feature requests (on average 46%) have been scored ‘not
SMART at all’, leading to a lower just-in-time quality score.

Our overall conclusion from the data gathered is that although sometimes impor-
tant elements are missing (QC1) and comments are not always relevant (QC2) in
fact the overall correctness/consistency of the feature request is quite high (based
on [QC3] scorings).

Feedback on the Use of the Framework for Feature Requests
The participants provided us additional insights as well: they submitted remarks
by email or in the comment field of the questionnaire. The most important things
we learned about our framework from these remarks are:

84 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

Table 4.3: Scorings from open source projects (NB = Netbeans, AU = ArgoUML,
MT = Mylyn Tasks)

Specific Criterion Answer MT AU NB Total
QC1.1 Basic elements Average score 100% 100% 100% 100%
QC1.2a Keywords Not at all 53% 87% 88% 82%

A little bit 44% 11% 11% 18%
Very much 3% 1% 0% 1%

QC1.2b Rationale No 32% 33% 30% 31%
Yes 68% 67% 70% 69%

QC1.2c Link to source code N/A 19% 17% 19% 18%
No 41% 13% 13% 18%
Yes 39% 70% 68% 64%

QC1.2 Required elements Average score 51% 54% 54% 54%
QC1.3a Scenario No 59% 61% 47% 54%

Yes 41% 39% 53% 46%
QC1.3b Mockup No 77% 90% 94% 90%

Yes 23% 10% 6% 10%
QC1.3c Solution No 46% 48% 47% 47%

Yes 54% 52% 53% 53%
QC1.3 Optional elements Average score 39% 34% 37% 36%
QC2.1 Use of tool Average score 100% 100% 100% 100%
QC2.2 Relevant comments % relevant 66% 61% 60% 61%
QC3.1 Contradicting requirements (Not scored) N/A N/A N/A N/A
QC3.2 No Contradicting comments Not at all 0% 2% 4% 3%

A little bit 17% 22% 26% 23%
Very much 82% 76% 70% 74%

QC3.3 Correct language Not at all 5% 6% 6% 6%
A little bit 27% 24% 29% 27%
Very much 68% 70% 65% 67%

QC3.4 Problem stated No 24% 23% 18% 21%
Yes 76% 77% 82% 79%

QC3.5 SMART Not at all 33% 55% 45% 46%
A little bit 52% 37% 46% 44%
Very much 15% 8% 9% 9%

QC3.6 Title correct No 16% 30% 16% 21%
Yes 84% 70% 84% 79%

QC3.7 Atomic No 14% 10% 8% 10%
Yes 86% 90% 92% 90%

QC3.8 Clear terms Not at all 3% 6% 5% 5%
A little bit 31% 30% 30% 30%
Very much 66% 64% 65% 65%

QC3.9 No duplicate No 12% 28% 20% 22%
Yes 88% 72% 80% 78%

QC3.10 Links clear No 13% 11% 9% 10%
Yes 87% 89% 91% 90%

QC3 Consistency and correctness Average score 80% 75% 78% 77%
TOTAL Average score 15% 5% 5% 7%

4.7. Discussion 85

• Five participants are confused about the term “Title" we used in the ques-
tionnaire for [QC3.6]. This is not a problem of our framework itself, but we
should have better explained in the questionnaire that by “Title" we meant the
statement in bold just after the identifier of the feature request (see Figure
4.2) or for the ArgoUML project the field called “Summary”.

• Five participants comment that they consider the feature request they evalu-
ated to be a bug report. This misclassification is a well-known phenomenon.
According to Herzig et al. (2012) only 3% of feature requests is misclassified.
This means that our results are not greatly influenced by this.

• Three participants were confused about the question about keywords (QC1.2a)
because the ArgoUML project does not have this field in the feature request.
We could have mentioned this to the participants beforehand. This is again
not a problem of our framework.

• We learned that some questions are more subjective than others, see Table 4.4.
For example on the question about mockups (QC1.3b) all students agree in
90% of the cases. On the question if the feature request is SMART all students
agree in only 49% of the cases. As explained in Section 4.3 this subjectiveness
is not a problem, because we are usually not interested in absolute scorings
but in finding shortcomings in the JIT requirements. Even if only one person
thinks there is a shortcoming, it might be worth to look into the details of it.

The remarks could all be avoided by a more detailed explanation of the structure of
the different feature requests in Bugzilla and by a more detailed explanation of the
questions in the questionnaire. We did organize a general meeting for this explana-
tion, but participants that were not present during that meeting had to rely on the
explanation in the questionnaire itself. Overall the remarks from the participants
did not make us change our underlying framework or quality criteria.

4.7 Discussion
In this section we highlight some recommendations for practitioners, based on our
findings. Subsequently we revisit the research questions and discuss limitations of
our research approach.

Practical Consequences for Practitioners
Looking at the data we collected from the three open source projects, we come to
a number of recommendations for practitioners authoring feature requests. When
we look at the lowest scoring quality criteria in Table 4.3, these are the top-5 to
focus on for improving feature request quality:

1. Enter keywords/tags for each feature request, making them more easily re-
trievable for future reference. This will likely at the same time help to reduce
the number of duplicate feature requests.

86 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

Table 4.4: Subjectivity scores per question

XXXXXXXXXXXXQuestion
Unanimity

2 students agree All students agree

[QC1.2a] Keywords 94% 84%
[QC1.2b] Rationale 85% 67%
[QC1.2c] Codelink 81% 62%
[QC1.3a] Scenario 83% 59%
[QC1.3b] Mockup 95% 90%
[QC1.3c] Solution 82% 58%
[QC2.2] Relev. comm. 20% 20%
[QC3.2] Contr. comm. 79% 58%
[QC3.3] Corr. lang. 72% 52%
[QC3.4] Problem 88% 72%
[QC3.5] SMART 73% 49%
[QC3.6] Summary 85% 68%
[QC3.7] Atomic 93% 85%
[QC3.8] Terms 73% 50%
[QC3.9] Duplicate 97% 95%
[QC3.10] Corr. Links 90% 81%

Total 81% 65%

2. Indicate the problem that needs to be solved and/or include a rationale for
the feature request (why is this feature needed?). This will help developers
to better understand the feature request and thus will increase the chance of
the solution matching the actual need of the feature request author.

3. Further increase the understandability of the feature request by adding one or
more of additional items: screen mockups, descriptions of use case scenarios,
or possible solutions.

4. Be as precise as possible. There is no need to fully specify all aspects at cre-
ation time of the feature request, but what is written should not be unnec-
essarily vague or ambiguous (e.g. avoid the use of abbreviations or terms
that are not quantified). Being precise from the start avoids wasting time on
discussions to clarify statements during development.

5. Avoid irrelevant comments. This clutters the discussion on the feature request
and thus hinders its correct implementation. Even better would be if the issue
tracker used has a way to ‘categorize’ or ‘hide’ comments, for easy retrieval of
the relevant ones for the task at hand. We did not see such an option in the
projects we considered.

4.7. Discussion 87

Research Questions
In this section we revisit the research questions one by one.

[RQ4.1] We started by asking: which quality criteria for informal verification ap-
ply to feature requests? We have developed a framework for quality criteria for JIT
requirements based on earlier work on traditional upfront requirements, our ex-
perience with feature requests in open source projects and analysis of literature on
just-in-time requirements. We have instantiated this framework for feature requests
in open source projects.

How does our framework compare to quality criteria for traditional require-
ments? To highlight the differences with traditional requirements, we compare
it to the list of Davis et al. (1993). Davis et al. performed a thorough analysis
of qualities of a software requirements specification (SRS, an up-front document).
Table 4.5 shows that four quality criteria apply to traditional requirements, but not
to just-in-time requirements (we have marked them as ‘N/A’ in Table 4.5):

1. Externally consistent = no requirement conflicts with already baselined project
documentation. The provisionments (see Section 4.2) are not specified with
respect to external documents (Davis et al. define this as ‘already baselined
project documentation’), but with respect to existing systems. If in specific
situations external documents are relevant, the team or project should add
one or more criteria to [QC3] to check the consistency.

2. Executable= there exists a software tool capable of inputting the SRS and provid-
ing a dynamic behavioral model. In open source (JIT) projects this is not done
by up-front extensive specification, but by prototyping or frequent releases.

3. Annotated by relative stability = a reader can easily determine which require-
ments are most likely to change. Open source (JIT) projects have embodied
change as a known fact. They solve this with short iterations and reprioriti-
zation of requirements for each iteration. That is why in open source projects
we do not need a special attribute to specify change-proneness up-front.

4. Reusable = sentence, paragraphs and sections can easily be adopted or adapted
for use in a subsequent SRS. Since open source feature requests are necessarily
incomplete (‘provisionments’), it makes no sense to reuse them.

All criteria from our resulting framework, see Tables 4.6 and 4.7, are in one
way or another present in the work of Davis et al. (1993), see Table 4.5. However,
we have adjusted the description of each criterion to JIT feature requests, e.g. for
the criterion ‘Design-independent’ Davis et al. explain that a maximum number
of designs should exist to satisfy user needs. This means that according to the
definition of Davis et al. the requirement should just describe the problem and
not already present a design solution because that would decrease the number of
possible designs. We have included ‘[QC3.4] - Specify Problem’ but we specifically

88 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

Table 4.5: Mapping between Davis et al. (1993) and our framework

Davis et al. (1993) JIT Requirements Quality Frame-
work

Unambiguous [QC2.4], [QC3.3], [QC3.8]
Complete [QC1]
Correct (contributes to satisfaction of some
need)

[QC3.4], [QC1.2] - Rationale

Understandable [QC1.3], [QC3.3]
Verifiable [QC3.5]
Internally consistent [QC3.1], [QC3.2], [QC3.6]
Externally consistent N/A
Achievable [QC3.5]
Concise [QC2.2]
Design independent [QC3.4] (Solution might be in-

cluded)
Traceable (facilitates referencing of individ-
ual req.)

[QC3.7], [IQ1]

Modifiable (table of contents and index) [IQ5]
Electronically stored [QC2.1]
Executable (dynamic behavioral model can
be made)

N/A

Annotated by relative importance [QC1.1] - Relative importance
Annotated by relative stability N/A
Annotated by version [QC1.1] - Version
Not redundant [QC3.9]
At right level of detail [QC1]
Precise [QC3.5]
Reusable N/A
Traced (clear origin) [QC1.2] - Link to code, [IQ2], [IQ3],

[IQ4]
Organized [QC1.2] - Keywords, [QC3.10],

[IQ6]
Cross-referenced [QC3.1], [QC3.9], [QC3.10]

allow the user to also specify design solutions (QC1.3c), as this is common practice
in open source projects where users are also developers.

Did we introduce any new criteria for just-in-time requirements? If we do the
comparison with the list of Davis et al. (1993) the other way around we also see a
few differences:

1. Complete Davis et al. refer to the completeness of the set of requirements (be-
fore development starts). Since this is not a goal for just-in-time requirements
engineering, we use completeness in the sense of “are all basic/required/op-
tional elements of one single requirement present” (QC1.x).

2. Concise For open source feature requests comments are added to the original
requirements. We have translated the conciseness of a requirement as de-

4.7. Discussion 89

scribed by Davis et al. to the demand that the comments that are added are
concise (QC2.2).

3. Internally Consistent In a similar manner we have added a demand for inter-
nal consistency of the comments that are added to one single requirement
(QC3.2). And we also added a demand for consistency between the feature
request and its summary title (QC3.6).

4. Unambiguous Instead of this one single criterion from Davis et al. we have
three related criteria: use of correct language (QC3.3), use of a glossary
(QC3.8) and use of uniform attachments (QC2.4).

5. SMART/INVEST (QC3.5) Some of the separate components of SMART and
INVEST have been mentioned by Davis et al. (Verifiable = Testable, Achiev-
able = Realistic, Precise = Specific), but most of them are new in our model.
INVEST is specific for user stories, but in our opinion it can also be used for
other types of just-in-time requirements.

6. Atomic (QC3.7) The demand that a single requirement should be atomic is
not mentioned explicitly by Davis et al., but of course it helps to make re-
quirements traceable.

7. Cross-referenced We have translated the cross-referenced criterion of Davis et
al. into two separate criteria about ‘linked duplicates’ (QC3.9) and ‘navigable
links’ (QC3.10)

For our user stories customization (see Section 4.3) we added the aforementioned
‘[QC2.4] - uniform attachments’ and one more criterion:

8. ‘[QC2.3] - Follow template’ (“As a <role>, I can <activity>so that <business
value>” (Leffingwell 2011)). This is unique for user stories since traditional
requirements and feature request do not follow standard templates (methods
that advocate this are not widely used).

Overall, our analysis of literature in just-in-time requirements and our expe-
rience with just-in-time requirements led to 8 instances of ‘additional criteria’ or
‘new’ interpretations of existing criteria. And of course we have added the time
dimension to each of the criteria by specifying creation-time (*C) or just-in-time
(*J).

[RQ4.2] Our second question was How do practitioners value our list of quality
criteria with respect to usability, completeness and relevance for the quality assessment
of feature requests?

The overall evaluation of the framework for open source feature requests was
positive. The interviews with practitioners have made it clear to us that specific
situations need some fine-tuning of the specific criteria and the scoring. Our frame-
work caters for that kind of specific tailoring and we have given some hints om how
to approach this. The questionnaires filled in by the practitioners only resulted in
some minor remarks. We concluded that all of them could be solved by better ex-

90 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

plaining the questions. The feedback from practitioners did not make us change
our basic framework.

Although we have used open source feature requests to evaluate the framework,
we see the value of our framework not so much for open source projects to apply
it, because in open source projects it is hard to make the whole community comply
to quality standards. The interviews with the practitioners indicated to us that a
translation of the quality criteria to specific JIT industry settings is both feasible and
useful. The practitioners valued our framework as a structured approach for doing
this.

[RQ4.3] Finally, we answered What is the level of quality for feature requests in
existing open source projects as measured by our framework?. We presented a table
with average scorings for each of the quality criteria. These scorings were collected
from over 550 feature requests that were rated using our framework. The overall
impression is that the score for [QC3] is quite high (77%) , but there is more room
for improvement in the scorings for [QC1.2] (54%), [QC1.3] (36%) and [QC2.2]
(61%). We also concluded that the quality at creation-time (*C, 82%) was slightly
better than at the time of scoring (*J, 77%). From our results we have distilled a
set of recommendations that makes this research actionable for practitioners.

Limitations
In this section, we discuss the threats that can affect the validity of our study and
show how we mitigated them.

Internal validity regards threats inherent to our study. We assume that the results
gathered in our case study with the 86 final-year software students are reliable be-
cause any negative effects from participants not understanding or not cooperating
would average out over such a large number of entries (randomly selected and
randomly divided over the software engineers). In order to minimize the risk of
data pollution we cleaned the data (see Section 4.6) and we have investigated how
unanimous the answers from the students are (see Table 4.4).

With regard to the interview setup that we have detailed in Section 4.5 it might
be that the participants were influenced by how we approached them or how we
explained our framework to them, the so-called observer-expectancy effect. We tried
to be as neutral as possible towards the interviewees and clearly explained them
that we were expecting them to provide honest feedback, which would be most
beneficial for our investigation.

Also note that for the scorings of the feature requests in open source projects
we assume that all communication around the feature request is logged in the issue
tracker. We might have missed some data related to the feature requests that was
documented e.g. on mailing lists or discussion forums. However, if we missed the
data, every reader of the feature requests would have missed it, since there is no

4.7. Discussion 91

link to it in the feature request. So from a quality assessment perspective it makes
sense to only look at the data in the issue tracker and judge the feature request
quality solely based on that.

Construct validity concerns errors caused by the way we collect data. A possi-
ble issue is that the criteria list that we deduced for open source feature requests
does not give a good representation of the quality of those feature requests. This
would influence the observed quality of open source feature requests in Table 4.3.
While we acknowledge that we still need to further investigate our criteria list, we
also want to stress that the industry participants acknowledge that the criteria are
relevant.

Although all industry participants acknowledge that the criteria are relevant we
did ask them to judge the criteria for open source feature requests. These open
source feature requests might be different from what they are used to in their in-
dustry projects. As such an important step in future work would be to repeat the
analysis with open source developers or with industry requirements.

External validity threats concern the generalizability of our results. In the inter-
view that we describe in Section 4.5 we only have 8 participants from Dutch in-
dustry. As such, a possible threat to validity is that other participants might have a
different opinion on the usefulness of our framework. However, the participants are
from sufficiently different companies and backgrounds to get a first overall impres-
sion of community feedback. Although all participants come from the Netherlands
we have based our framework on international literature and experiences with in-
ternational (open source) projects. All participants in the interviews were well
aware of international literature and international best practices in agile develop-
ment and using Scrum (Schwaber and Beedle 2001) as a development approach.
With all participants originating from a single country we cannot exclude cultural
bias. Case studies with participants from different countries are called for in future
work.

Similarly, for the cases study that we describe in Section 4.6, we have 86 final-
year software engineering students participating. A possible threat here is that all
students have a similar background (they all study at Fontys University of Applied
Sciences) and that another group of students with another background might react
differently. However, we plan for replication studies in future work.

We can also not be sure that we would have had the same results if we would
have involved practitioners from industry or open source. To mitigate this we used
final-year students, who are close to becoming practitioners themselves. We also
found several papers indicating that students can be good proxies for practitioners,
see e.g. (Salman et al. 2015).

We have investigated three open source projects in the case study. We cannot
be sure that the results presented in Section 4.6 can be generalized to more open
source projects. In order to try to mitigate this threat, we have selected the three

92 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

projects to be sufficiently different in size and domain.

In this chapter we focus on open source feature requests because of their public
availability. This means we cannot be sure that feature requests that are created as
part of a closed source project adhere to the same standards. However, according
to Alspaugh and Scacchi (2013) “closed source software bug reports and feature
requests and the process for managing them look much like those for open source
software”, so we expect our results to hold in both cases.

4.8 Related Work
For JIT (mostly from the area of agile development processes) and open source
projects there is a body of work both on Requirements Engineering (Grau et al.
2014; Noll and Liu 2010; Paetsch et al. 2003) and Quality Assurance (Aberdour
2007; Huo et al. 2004). In this section we discuss the few papers that specifically
mention quality criteria for JIT or open source requirements.

Duncan (2001) analyses the quality attributes for requirements in Extreme Pro-
gramming (XP, one of the agile methods). He does this by comparing stories (the
main requirements artefact in XP) to the quality attributes presented by Davis et al.
(1993). This is the same approach that we followed in our Discussion, see section
4.7.

Dietze (2005) describes the agile requirements definition processes performed
in open source software (OSS) development. Quality aspects are not part of his
analysis. However he does mention meta-data of a change request corresponding
to our [QC1].

Scacchi (2009) argues that requirements artifacts in open source software de-
velopment might be assessed in terms of virtues like 1) encouragement of commu-
nity building; 2) freedom of expression; 3) readability and ease of navigation; 4)
and implicit versus explicit structures for organizing, storing and sharing. Virtue
3) and 4) above are covered in our framework, whereas virtue 1) and 2) should be
achieved by a correct setup and management of the open source project.

Bettenburg et al. (2008a) conducted a survey in open source projects on what
makes a good bug report, revealing a mismatch between what developers need and
what users supply. Most developers consider steps to reproduce, stack traces, and
test cases as helpful, which are at the same time difficult to provide for users. These
three items are somewhat similar to the scenario’s and screens we have included in
[QC1.3].

Génova et al. (2013) describe a framework to measure the quality of textual
requirements. They have defined metrics and implemented those metrics in a tool
to automatically verify the quality. A requirement is scored as bad, medium or good.
The tool is commercially available and users report benefiting from using it. They
use formal requirements documents as input data, making some of their quality
criteria (such as completeness - covering all user needs - and traceability - explicit

4.9. Conclusion 93

relationship with e.g. design documents) less relevant for JIT requirements. See
also our analysis of the earlier work of Davis et al. (1993) in Section 4.7. We do
however value the idea of automating certain quality checks as was also requested
by one of the participants. This is something we plan to do in the future.

4.9 Conclusion
Summary In this chapter we have developed a framework for the quality assess-
ment of JIT requirements that caters for tailoring to different situations. We have
instantiated this framework for feature requests (in open source projects) and in-
dicated how to do this for other situations. The framework is based on literature
on the quality of traditional requirements as well as literature on JIT requirements
and open source projects. The framework structures quality criteria and includes a
time dimension: some quality criteria should hold at Creation-Time (*C) and others
should hold Just-in-Time (*J) for implementation of the JIT requirement.

We have performed an evaluation with practitioners. The framework was pos-
itively evaluated by all of them. They also confirm our assumption that quality
assessment of JIT requirements is important, the same as for traditional up-front
requirements. We have also quantitatively evaluated the framework with 86 soft-
ware engineering students. This resulted in even more confidence in the usability,
completeness and relevance of the framework.

Next to that we were able to present quantitative results for the feature request
quality in three open source projects:

• A lot of feature requests score “LOW” on overall quality because of missing
keywords, missing rationale or missing link to source code.

• The percentage of relevant comments is surprisingly low: around 60%.
• The average “correctness” score is quite high: 77%
• The correctness of the feature requests slightly deteriorates for all three projects

from the moment it is created until it is closed (from 82 to 77 % correctness).

Our analysis of these quantitative results led to a top-5 of recommendations for
practitioners to improve feature request quality.

Key Contributions This work makes the following key contributions:

1. a framework for quality criteria for JIT requirements;

2. instructions for practitioners how to customize the quality criteria to their
specific JIT environment;

3. an instantiation of the framework for feature requests in open source projects;

4. findings on feature request quality from three open source projects;

5. recommendations for practitioners on improving feature request quality.

94 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

In this chapter we have demonstrated the value of our framework in the follow-
ing three ways: 1) we have used it to give an overview of quality criteria that are
applicable to feature requests (at creation-time or just-in-time); 2) we have indi-
cated how it can serve as a basis for teams or projects that need to assess the quality
of their JIT requirements; 3) we have used it to get an insight into the quality of
feature requests in open source projects.

Future Work In future work we will extend our analysis of open source feature
requests to confirm the findings from the case study with the student participants
and to get a more detailed view on feature request quality. Another useful addition
for future work is the automation of some of the checks to increase the usability
of the checklist. We also plan to validate our framework in case studies in closed
source and/or agile JIT environments.

In this chapter we have conducted interviews and a case study. To answer fu-
ture research questions we would like to gather more data suitable for statistical
analysis by using controlled experiments. Our idea is to investigate related topics
that require more quantitative evidence such as the relationship between feature re-
quest quality and software product quality (design, tests, code, defects) or between
feature request quality and productivity.

4.9. Conclusion 95

Table 4.6: JIT quality framework for feature requests - [QC1] and [QC2]

ID CRITERION DESCRIPTION METRIC *C/*J

[QC1] Completeness

QC1.1 Basic Elements
a Summary and

Description
The ‘Description’ contains the provisionment and the
‘Summary’ (or ‘Title’) gives a clear short version of the
provisionment

yes/no *C

b Product Ver-
sion

Indicates for which software product and version the
provisionment holds

yes/no *C

c Relative im-
portance

The relative importance of the feature request should
be clear. Examples of this are a ‘Priority’ or ‘Sever-
ity’ field or a voting mechanism (feature requests with
more votes are more important)

yes/no *J

QC1.2 Required Elements
a Keywords /

tags
For organization purposes (easily finding related re-
quests) a feature request should be tagged with key-
words

yes/no *J

b Rationale Each feature request has a justification. The author
should specify why this feature request is important
for him/her. This helps the developers in deciding on
the priority of the feature request

yes/no *J

c Link to source
code for fixed
requirement

For solved feature requests indicates in which version
of the source code it has been solved. This can be
done through a manual comment, or through an au-
tomated one generated from the source code manage-
ment system. Ideally the feature request has a sepa-
rate field to track this.

yes/no *J

QC1.3 Optional Elements
a Use case or

Scenario
The author specifies the exact steps that he/she is
missing in the current version of the software. What is
the trigger for the missing functionality and what are
scenario’s in which the functionality would be useful?

yes/no *J

b Screens The author could clarify the screens in the existing
system that he/she wants to be changed by adding
screen shots of the current situation and/or screen
mock-ups of the desired situation.

yes/no *J

c Possible solu-
tion

The author could add a complete solution as ‘Attach-
ment’ (patch), but could also specify hints for a pos-
sible solution in comments

yes/no *J

[QC2] Uniformity

QC
2.1

Issue tracker
or other tool
should be used

An issue tracker ensures that feature requests are
stored in an uniform way, at least with respect to the
attributes that are present for the feature request. Of
course it remains up to the author to correctly fill
those fields

yes/no *C

2.2 All comments
are necessary

All comments are necessary to understand the evolu-
tion of the feature request. The addition of irrelevant
comments (e.g. thank you notes or instructions how
to behave in the project) makes it more difficult for
people to understand the totality of it

The
percent-
age of
relevant
com-
ments

*C

96 Chapter 4. Quality Criteria for JIT Requirements: Open Source Feature Requests

Table 4.7: JIT quality framework for feature requests - [QC3]

ID CRITERION DESCRIPTION METRIC *C/*J

[QC3] Consistency and Correctness

QC
3.1

No con-
tradicting
feature re-
quests

It is difficult to completely avoid conflicting re-
quests, but they should not go unnoticed. A link
can be made through comments and one of the
feature requests should be ‘Closed’ to avoid im-
plementation of the wrong request

yes/no *J

3.2 No con-
tradicting
comments

Each contradicting comment is clarified in later
comments. It should be clear what the correct
interpretation of contradicting comments is

Very much, a
little bit, not
at all

*J

3.3 Correct
language

Feature requests should be written in full sen-
tences without hindering spelling or typing er-
rors

Very much, a
little bit, not
at all

*C

3.4 Specify prob-
lem

Feature requests may include (hints for) a so-
lution, but should always describe the problem
that needs to be solved. This helps developers
to think about alternative solutions

yes/no *C

3.5 SMART A feature request can be more quickly and eas-
ily resolved if it is Specific, Measurable, Accept-
able, Realistic and Time-bounded (SMART, see
(Doran 1981))

Very much, a
little bit, not
at all

*J

3.6 Correct sum-
mary

The summary should be a brief statement of the
needed feature. It should be clear from the sum-
mary what the feature request is about. The de-
scription should give added value to the sum-
mary.

yes/no *C

3.7 Atomic Each feature request should contain only one re-
quirement

yes/no *C

3.8 Glossary Each unclear term or abbreviation should be ex-
plained in the feature request or in a separate
‘glossary’

Very much, a
little bit, not
at all

*C

3.9 No duplicate
requests

Due to the nature of open source projects there
will always be some duplicates (also users not so
familiar with the project get the rights to enter
requests). At least the duplicates should be iden-
tified, properly linked, and the master should be
indicated.

yes/no *C

3.10 Navigable
links

Links to other feature requests should be navi-
gable (by clicking on the link) and it should be
explained what the type of the link is

yes/no *C

5..
A Systematic Literature Review on

Quality Criteria for Agile
Requirements Specifications

The quality of requirements is typically considered as an important factor for the qual-
ity of the end product. For traditional up-front requirements specifications a number
of standards have been defined on what constitutes good quality: requirements should
be complete, unambiguous, specific, time-bounded, consistent, etc. For agile require-
ments specifications no new standards have been defined yet and it is not clear yet
whether traditional quality criteria still apply. To investigate what quality criteria for
assessing the correctness of written agile requirements exist, we have conducted a
systematic literature review. The review resulted in a list of 16 selected papers on this
topic. These selected papers describe 28 different quality criteria for agile require-
ments specifications. We categorize and analyze these criteria and compare them
with those from traditional requirements engineering. We discuss findings from the
16 papers in the form of recommendations for practitioners on quality assessment of
agile requirements. At the same time we indicate the open points in the form of a
research agenda for researchers working on this topic. 1

5.1 Background and Related Work . 99

5.2 Method . 101

5.3 Results: Meta-Data Classification . 110

5.4 Results: Quality Criteria Used in Literature . 113

5.5 Results: Recommendations for Practitioners 116

5.6 Results: Research Agenda . 117

5.7 Discussion . 119

5.8 Conclusion . 123

Requirements engineering has been perceived as one of the key steps in success-
ful software development since the early days of software engineering (Sillitti and

1This chapter is submitted to the Software Quality Journal (SQJ) (Heck and Zaidman 2016).

97

98 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Succi 2005). Sillitti and Succi mention several standards for requirements elicita-
tion and management, such as IEEE-830 Recommended Practice for Software Re-
quirements Specification (IEEE-830 1998), that have been developed for traditional
requirements engineering. They claim that agile methods do not rely on standards.
Inayat et al. (2014) observe that agile requirements engineering solves the initial
‘vagueness’ of agile requirements not by documenting according to standards, but
by e.g., face-to-face communication or prototyping. On the other hand they remark
that the practice of less documentation poses a challenge in many situations (e.g.,
distributed teams, large teams, complex projects) that require documented agile re-
quirements that are fully elaborated in writing. As soon as agile teams cannot rely
on face-to-face communication the ‘correctness’ of written documentation becomes
more and more important.

Standards such as IEEE-830 (IEEE-830 1998) define criteria for this correct-
ness: requirement specifications should be complete, unambiguous, specific, time-
bounded, consistent, etc. However, this standard focuses on traditional up-front
requirements specifications. These are requirements sets that are completely spec-
ified (and used as a contract) before the start of design and development. As said,
agile methods do not tend to follow such standards. However both research (Eber-
lein and Leite 2002; Inayat et al. 2014) and findings in practice (see e.g., Heck
and Zaidman (2014c) and the empirical study of Kassab (2014)) suggest that qual-
ity of requirements specifications is also an important topic for agile requirements
engineering.

In previous work we have developed a framework for quality criteria for agile
requirements specifications (Heck and Zaidman 2014c). This resulted in a list of
possible quality criteria for e.g. agile user stories. Working on this list we realized
that we could not find any updated standards or best practices for agile require-
ments specifications, nor an extensive overview of quality criteria for agile require-
ments specifications. At the same time we felt the need to validate our list of quality
criteria with what others have published on this topic. In our previous work (Heck
and Zaidman 2014c) we focus on open source feature requests and thus only in-
cluded related work in the area of open source development. This is what made
us see the necessity of conducting a systematic literature review (Kitchenham and
Charters 2007) to make an inventory of quality criteria for agile requirements spec-
ifications that have been mentioned in literature. The result of such a literature
review would be that we have a more thorough analysis of which of the traditional
criteria are still applicable and which new quality criteria have been presented for
agile requirements specifications. Furthermore, we take this opportunity to discuss
the found literature from the viewpoint of both practitioners and researchers.

This leads us to the driving research question for our systematic literature re-
view:

[RQ5] Which are the known quality criteria for agile requirements specifications?

5.1. Background and Related Work 99

Note that we focus on verification (have the requirements been written in a cor-
rect way) and not on validation (do the requirements correctly reflect the need of
the user). Moreover we consider formal verification methods (that use mathemati-
cal models to derive specification correctness) out of our scope, as we assume that
not all agile teams would have the skills to apply such formal methods.

The remainder of this chapter is structured as follows. Section 5.1 introduces
some background and related work. Section 5.2 details the selection process that
we followed, while Section 5.3 presents the classification of the resulting papers ac-
cording to different dimensions. Section 5.4 summarizes the quality criteria for ag-
ile requirements specifications that are mentioned in the selected papers. Sections
5.5 and 5.6 include recommendations for respectively practitioners and researchers
in the area of quality of agile requirements specifications. Section 5.7 discusses our
findings and Section 5.8 concludes the chapter.

5.1 Background and Related Work
This section sketches a short background on the role of requirements in agile devel-
opment and introduces some related work. The absence of papers with quality of
agile requirements as their main topic is what motivated us to conduct our research
in the first place.

Background on Agile Requirements Agile development is a collective name for
a family of software development processes that follow the so-called ‘Agile Man-
ifesto’: “Individuals and interactions over processes and tools; working software
over comprehensive documentation; customer collaboration over contract negotia-
tion; responding to change over following a plan” (Beck et al. 2001). The main im-
plications of this manifesto for agile requirements engineering are (Sillitti and Succi
2005; Inayat et al. 2014): software is developed incrementally with requirements
being detailed and prioritized just before every iteration, requirements documenta-
tion is reduced in favor of face-to-face communication and prototyping. Grau et al.
(2014) characterize agile requirements engineering as “collaborative, just enough,
just in time, sustainable”. Ernst and Murphy (2012) use the term ‘just-in-time re-
quirements’ (JIT requirements) for this. They observed that requirements are “ini-
tially sketched out with simple natural language statements”, only to be fully elab-
orated (not necessarily in written form) when being developed. In this chapter we
use the term ‘agile requirements’, because this is the most widely used.

Related Work on Agile, Requirements and Quality For the area of agile develop-
ment processes there is a body of work on either Requirements Engineering (Grau
et al. 2014; Paetsch et al. 2003; Ramesh et al. 2010) or Quality Assurance (Bhasin
2012; Huo et al. 2004), but not specifically on the combination of the two. In this
section we discuss some relevant papers.

100 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Ramesh et al. (2010) present the results of a qualitative study of 16 organiza-
tions, to answer two questions: What Requirements Engineering (RE) practices do
agile developers follow? What benefits and challenges do these practices present?
Their study also included subjects in quality assurance roles. Their study presents
a good overview of agile requirements engineering practices and challenges. One
challenge they specifically mention is the absence of adequate requirements verifi-
cation. This supports the main motivation for our research.

Inayat et al. (2014) conducted a systematic literature review on agile require-
ments engineering practices and challenges. They mention a few examples of other
reviews on agile methods. None of them focus on requirements engineering. Inayat
et al. (2014) focus on practices (process) instead of on the requirements (product)
themselves. However, they mention minimal documentation and neglecting non-
functional requirements as a challenge for agile requirements engineering.

Sfetsos and Stamelos (2010) conducted a review on quality in agile practices.
However, they focus on quality aspects of the end product (maintainability, usability,
etc.), not on quality of the requirements.

Grau et al. (2014) see that documentation formats in agile are a “continuous
evolution of well-known requirements engineering concepts” (such as scenarios).
They see this same continuous evolution in the definition of quality attributes for
agile requirements. To illustrate this continuous evolution they mention SMART
(Specific, Measurable, Achievable, Relevant, Time-Boxed) and INVEST (Indepen-
dent, Negotiable, Valuable, Estimable, Small, Testable) (Wake 2003) as examples of
quality attributes that have been defined in practice for agile requirements. How-
ever, they do not explain these acronyms and do not go into the subject to thor-
oughly investigate the applicable quality attributes for agile requirements.

Related Work on Test- and Behaviour-Driven Development There is a recent
stream of agile development called ‘Behavior-Driven Devevelopment’, or BDD (North
2006). North suggested a template that takes the agile requirements one step fur-
ther by specifying them following a strict template: ‘GIVEN ... WHEN ... THEN
...’. Nowadays a number of tools, like Cucumber and JBehave, exist that help to
translate this format into executable test cases. Using test cases as requirements is
also done in the related area called Test-Driven Development, or TDD (Beck 2002).

Melnik et al. (2006) report on an experiment where customers used executable
acceptance test (storytest)-based specifications to communicate and validate func-
tional business requirements. To evaluate the quality of the acceptance test speci-
fications they use the following criteria: credible (contain realistic and reasonable
set of operations to be likely performed by the customer), appropriate complexity
(involve many features, attributes, workflows, etc.), coverage of the major func-
tionality, easy to read and informative, easy to manage (packaged in meaningfully
structured suites, subsuites etc.).

5.2. Method 101

This is an example that shows that using test cases as requirements results in
quality criteria primarily related to the test cases themselves. Furthermore, in TDD
verification of requirements is often done by implementing automated regression
tests (Bjarnason et al. 2015), thus removing the need for further informal verifica-
tion based on quality criteria. In fact, the creation of test cases is in itself a way
of verifying the requirements, because if the requirements are not clear, we would
not be able to specify them as test cases (Bjarnason et al. 2015). For this work we
focus on quality criteria for agile requirements that are not in the form of test cases
and consider BDD and TDD as out of scope.

Related Work on Requirements Quality Criteria Wake (2003) introduces SMART
and INVEST in the context of Extreme Programming (XP). According to him tasks
should be Specific, Measurable, Achievable, Relevant, Time-boxed and stories should
be Independent, Negotiable, Valuable, Estimable, Small and Testable. Both acronyms
have been taken over by several other papers and are being used in agile practice
(see e.g. (Leffingwell 2011; Grau et al. 2014)). Our work takes these acronyms
and places them in a larger framework of quality criteria.

5.2 Method
To answer our research question (Which are the known quality criteria for agile re-
quirements specifications?) we need to select articles that are relevant for the topic
of quality criteria for agile requirements specifications. For the selection of the
relevant articles we followed a structured process, according to the guidelines of
Kitchenham and Charters (2007). The structured process they propose contains
the following steps:

1. Define inclusion and exclusion criteria

2. Identify query string

3. Identify databases and other sources to search

4. Select candidates based on title and abstract

5. Refine candidate list based on full paper

6. Extend result set based on citations

7. Classify resulting papers

Candidate selection and refinement was executed by the first author and repeated
by the second author with a random sample of the articles. Where differences
were found the outcome was adjusted according to the discussion between the two
authors. The below paragraphs describe each of the steps in detail.

102 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Step 1: Inclusion and Exclusion Criteria
Inclusion Criteria The inclusion criteria were defined at the start of the review
process based on the research question (Which are the known quality criteria for agile
requirements specifications?) and on the type of literature we wanted to include:

• The paper is about software products. This is to make the distinction with agile/just-
in-time in the areas of just-in-time manufacturing and systems engineering (more
focused on hardware).

• Agile or similar just-in-time requirements specifications are the central topic of the
paper. The paper can be focused on specific formats for requirements such as
user stories.

• Product quality aspects of requirements specifications are an important part of
the paper (we consider traceability also as a quality aspect in this sense); case
studies can be included if they might deliver anecdotal evidence of requirements
quality judging from the abstract.

• The quality aspects are discussed in a setting of informal verification. As described
in the introduction we consider papers focused on validation and papers about
formal methods for verification out of scope.

• The paper is a self-contained article published in a journal or in the proceedings
of a workshop/conference or as a book chapter.

• The paper went through an external peer review process.

• The paper is written in English.

• The paper is published between 2001 (Agile Manifesto) and 2014 (search was
conducted in January 2015).

Exclusion Criteria During the selection process we sometimes ran into papers
on the topic of requirements quality and agile, but with not exactly the right fo-
cus. Since it is difficult to define the exact focus with inclusion criteria only, we
enhanced them with the following exclusion criteria to indicate which topic areas
we considered out of scope for our review:

• does not meet inclusion criteria

• only contains a tool description

• focus on test driven development (TDD), where tests are used instead of require-
ments

• focus on User Experience (UX) requirements

5.2. Method 103

• focus on architecture requirements

• focus on requirements prioritization

• focus on requirements (size or effort) estimation

Step 2: Query String
Based on the research question (Which are the known quality criteria for agile soft-
ware requirements specifications?) we also defined a search string that includes
the keywords and their most important synonyms. We took care of not making the
search string too restrictive. We did not want to miss relevant papers on beforehand
based on a difference in terminology. This makes the key words for the search string
“agile”, “requirement” and “quality”.

We included “just-in-time” as it has been coined by Ernst and Murphy (2012) as
a term for requirements approaches that are characterized by the use of lightweight
representations such as user stories, and a focus on evolutionary refinement. They
note that the notion of “agile requirements” is in many ways analogous to “just-in-
time requirements”.

Some papers might not be discussing the general “quality” concept. Although
we focus on informal verification, we explicitly extended the query string with both
“verification” and “validation” to ensure that we do not miss any candidate papers
based on the confusion between verification and validation.

We did not explicitly include specific requirements formats such as “user story”,
“feature” or “epic” because we assume that any paper with the quality of those items
as central topic would also mention “requirement”.

((agile OR “just-in-time” OR “just in time”) AND requirement AND
(quality OR verification OR validation))

Step 3: Source Selection
Based on Kitchenham and Charters (2007) we selected five digital databases which
index the most important venues in the software engineering research field. For the
digital databases we executed the query string on title and abstract and noted the
number of returned search results. We also determined for each digital database
the number of unique search results (January 2015), resulting in 630 unique items
in total:

• IEEE Xplore (http://ieeexplore.ieee.org) 271 items

• ACM Digital Library (http://dl.acm.org) 268 items, 120 unique items

• Scopus (http://www.scopus.com) 365 items, 219 unique items

• DBLP (http://www.dblp.org) 0 unique items

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.scopus.com
http://www.dblp.org

104 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

• ScienceDirect (http://www.sciencedirect.com) 38 items, 20 unique items

In this initial result set of 630 unique items we saw a number of venues that
related to requirements or agile specifically. We cross-checked this list of venues
with the list from the review of Davis and Hickey (2009). This resulted in a list
of journals and conferences which have requirements engineering or agile as their
main topic and which have digital publications:

• Agile Alliance Agile Conference (AGILE), 2003-2014

• International Conference on Agile Software Development (XP), 2003-2014

• IEEE Requirements Engineering Conference (RE), 2001-2014

• International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), 2007-2014

• Requirements Engineering journal (REJ), 2001-2014

• First Agile Requirements Engineering Workshop (AREW’11), 2011

We decided to include all papers published in those venues (instead of executing
the search string) for our manual search step described in the next paragraph, too
reduce the chance of missing relevant papers based on the search string only. The
starting year is the first year of digital proceedings for the conference or 2001 for
other sources (see inclusion criteria).

And of course we include our previous work itself. This consists of a technical
report (Heck and Zaidman 2014c) which is being extended into a journal paper
(i.e. Chapter 4 of this thesis).

Step 4: Candidate Selection
We conducted a manual search through the sources mentioned in the previous para-
graph.

A first step was to exclude items from the 630 unique items returned from the
digital database that, based on their abstract and title, fulfilled the exclusion crite-
ria. In case of doubt we included the paper in our candidate list. With this step we
narrowed down the digital database items from 630 to 113, see Table 5.1.

A second step was to test the candidates for the inclusion criteria, based on title
and abstract. We did this for the 113 candidates of the digital databases but also for
the other sources mentioned in the previous paragraph (the agile and requirements
engineering forums and our previous work). In case of doubt we included the paper
in our candidate list. Based on the inclusion criteria we decided to include 55
candidates from the digital databases and added 10 new ones from other sources,
see Table 5.1.

http://www.sciencedirect.com

5.2. Method 105

Both steps were executed by the first author and a sample was validated by the
second author (without knowing the results of the first author in advance). For the
first step 20 papers from IEEE Xplore, 20 papers from Scopus and 10 from ACM
(the first 10 percent of the query results in the order they were returned by each
digital database) were handed to the second author. For the second step also all
2014 (i.e. the most recent year) publications of the RE conference (67 papers) and
XP conference (27 papers) were handed to the second author. Table 5.2 shows the
different ratings that were given. This shows that in 93% of the cases both authors
agreed on the in- or exclusion of the papers. In the cases where the rating was
different a discussion lead to the judgment of the first author being kept. This was
due to the fact that:

• The second author was more strict than the first author;

• The second author was not aware of the meaning of the term ‘Definition of
Ready’;

• Upon reading the abstract a second time, the second author recalled his decision
in the one case in which he included a paper that the first author excluded.

We found many papers on agile and (requirements) quality, that were related to
our research question but did not contribute in the area of quality criteria for agile
requirements specifications. Some of these out of scope topics have been mentioned
in the exclusion criteria. For reference purposes we would like to note that we also

Table 5.1: Filtering publications on quality criteria for agile requirements

Step 3 Step 4a Step 4b Step 5 Step 6
Query Exclusion Inclusion Inclusion References

Source (Abstract) (Abstract) (Abstract) (Full Paper) (Full Paper)

ScienceDirect 20 1 0
IEEE Xplore 271 57 26 4 5
ACM DL 120 18 9 0
Scopus 219 38 21 4 6
Subtotal 630 113 55 8 11
REJ 0
RE 4 0
REFSQ 1 0
XP 4 2 4
AGILE 0
AREW 0
Heck and Zaidman (2014c) 1 1 1
Subtotal 10 3 5

TOTAL 630 113 65 11 16

106 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

observed that a number of papers that were not included can be grouped around
the following topics:

• The process of introducing agile methods in company or project XYZ

• Comparison of agile methods and CMM(I) or ISO

• Validation of the software product against user needs (by prototyping or active
customer involvement)

• Quality assurance in agile methods (not product-oriented, but process-oriented)

This shows other topics within the area of quality and agile that have received
attention in literature. This could be a starting point for other specialized systematic
literature reviews.

Step 5 and 6: Candidate Refinement and Citation Snowballing
Step 5 and 6 were executed simultaneously as we decided that the list we obtained
by selecting candidates based on title and abstract was not too long (65 papers) to
manually review all of them. By performing step 6 with 65 papers we increase the
chance of finding relevant papers during this step.

We took the remaining 65 papers and applied so-called ‘snowballing’ (according
to the guidelines described in Wohlin (2014)). This means we checked all refer-
ences from the 65 papers, but also checked all citations of these 65 papers. For the
backward checking (‘this paper cites...’) we used the full version of each paper and
for the forward checking (‘this paper is cited by...’) we used digital databases (IEEE
and ACM include this info in their digital database and we used Google Scholar for
the other papers). We repeated this snowballing process until no new papers are
added.

In order to find the references in the 68 papers, we had to obtain the full paper.
In doing so we at the same time reviewed the full papers for the inclusion criteria
(would the paper help to answer our research question about quality criteria for
agile requirements?). Based on this final review we decided to include only 11 out
of 65 papers in the final result set. In cases where we had multiple papers on the
same research from the same authors, we decided to include only the most relevant
one (i.e., the most recent one).

Table 5.2: Interrater agreement for candidate inclusion

Second Author
Include Exclude

First Author
Include 2 9
Exclude 1 132

5.2. Method 107

Table 5.3: Interrater agreement for final inclusion

Second Author
Include Exclude Possible Include

First Author
Include 2 1 1
Exclude 1 4 1

The snowballing process added another 5 new papers to this final set, resulting
in 16 papers in total (see Table 5.1).

To be more confident of our decision to only include 11 out of 65 papers in
the final set, we also handed the top-10 most recent papers to the second author.
Table 5.3 shows the results. In four cases the judgment of first and second au-
thor were different. After discussion the judgment of the first author was taken as
the final judgment for each of the ten papers. In two cases (first author exclude,
second author include) it turned out that the paper mentions quality of agile re-
quirements, but does not elaborate on quality criteria. Therefore the decision to
exclude them was kept. In one case (first author include, second author exclude)
the paper ([P14]) mentions some elements that should be present in user stories.
The first author considers this as part of ‘quality’, while the second author thought
no quality aspects of agile requirements were mentioned. The decision was made
to keep the paper. In the last case (first author include, second author probably
exclude) the paper ([B14]) was indeed judged as low relevancy by both authors,
as it only briefly mentions priority as a quality criterion. We decided that this brief
mention was enough reason for us to keep it in the final set.

Step 7a: Classification on Meta-Data
To provide the reader with more background on the selected papers we classify
them on several meta-data:

1. Author name, author affiliation, author country;

2. Year and venue of publication;

3. Publication type: Journal (J), Workshop (W), Book chapter (B), Conference
(C), Other (O);

4. Number of pages;

5. Agile method: XP, Scrum or general;

6. Requirements format: user story or general;

7. Research type: see below;

8. Evaluation method: see below.

108 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Research Type One aspect to know about the selected papers is the type of re-
search that is included in each of them. This answers a number of questions we
can ask about the selected papers: is it a new solution that is proposed? does it
contain a full-blown validation? is it personal experience? is it just the author’s
opinion? This helps readers to understand the value of the paper for their own
practice. For each paper we classify those aspects that touch on our topic (quality
of requirements).

For the classification of the research type we follow the framework of Wieringa
et al. (2005):

• Evaluation Research: investigates a problem in Requirements Engineering (RE)
practice or an implementation of an RE technique in practice.

• Proposal of Solution: proposes a solution technique and argues for its relevance,
without a full-blown validation.

• Validation Research: investigates the properties of a solution proposal that has
not yet been implemented in RE practice.

• Philosophical Paper: sketches a new way of looking at things, a new conceptual
framework, etc.

• Opinion Paper: contains the author’s opinion about what is wrong or good about
something, how we should do something, etc.

• Personal Experience Paper: the emphasis is on what and not on why. The
experience may concern one project or more, but it must be the author’s personal
experience.

Evaluation Method For each paper we also classify the type of evaluation that
was done for the quality-related aspects. To give an impression of the depth of eval-
uation we present a number of dimensions on the evaluation method used (adapted
from Cornelissen et al. (2009)):

• Preliminary: Evaluation of proposed solution is of preliminary nature, e.g. toy
example or informal discussion

• Regular: Evaluation is not of preliminary nature

• Human Subjects: Evaluation involved human subjects, e.g. questionnaires, in-
terviews, observations

• Industry: Evaluation was performed in an industry setting

• Quantitative: Evaluation resulted in some quantitative data on the proposed
solution

• None: No evaluation

5.2. Method 109

Step 7b: Classification on Quality Criteria
To classify the papers based on quality criteria we build upon our previous work
(Heck and Zaidman 2014c). We structure the inventory according to the three over-
all quality criteria (QC) explained in (Heck and Zaidman 2014c). We think that this
is a general classification that holds for written requirements (in fact, for all written
documentation): it is firstly important that we have all documentation that needs to
be checked (completeness), secondly that the writing follows certain templates or
standards (uniformity, to aid the reviewer in understanding documentation), lastly,
that we know which criteria to check against (consistency and correctness).

Overall we divide the quality criteria from the selected papers into three cate-
gories:

[QC1] Completeness. In this category we place criteria that specify elements that
should be present in (the description of) the agile requirements. An exam-
ple would be the rule that each requirement should have a unique identifier.
Note that our definition of completeness (all structure elements of a single
requirement should be there) is different from the notion of completeness as
in ‘specifying all user needs’.

[QC2] Uniformity. In this category we assign criteria that pertain to a standardized
style or format of the agile requirements specification.

[QC3] Consistency and correctness. This category contains all other criteria that
state something about the correctness of individual requirements or the con-
sistency with other requirements.

We identify any mentions of quality criteria for agile requirements specifications.
We include each of the mentioned quality criteria in our classification, regardless of
the length of the discussion in the paper or the strength of the evidence presented
in the paper. In the same way we also include all elements of agile requirements
that are mentioned in the papers (QC1). We take the decision to include everything
regardless because we want to provide a broad overview which points to specific
papers for detailed information.

Step 7c: Classification on Recommendations for Practitioners and
Researchers
As a final step we classify recommendations for practitioners or researchers found
in the papers.

For practitioners we look at recommendations found anywhere in the 16 result-
ing papers about how to apply the quality criteria in practice. Then we summarized
these recommendations in a few paragraphs, to structure them and to connect sim-
ilar recommendations.

110 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

We present the recommendations for researchers in the form of a research agenda.
To construct this research agenda we use the future work as indicated in the selected
papers and our own analysis of what we see missing in the selected papers.

5.3 Results: Meta-Data Classification
In this section we characterize the 16 selected papers based on meta-data such
as author, venue, agile requirements format, research- and evaluation type. This
sets the ground for a detailed analysis of the quality criteria in Section 5.4. Each
paper is identified with a unique identifier [XXnn] based on the author and year of
publication. For an overview of the unique identifiers see Table 5.8 in the appendix
of this chapter, that presents each of the 16 papers in more detail.

Author, Affiliation, Country
The 16 selected papers have been written by 34 authors. Two of those authors
have co-authored 2 papers. These papers are similar but have both been included
because their contributions slightly differ. Authors of eight papers originate from
Europe, 7 from North-America, 1 is written by authors from both continents. Two
papers are written by authors with an industrial affiliation, 14 are from researchers.
This shows that the topic attracts interest from both researchers and practitioners.

Year, Venue, Type, Pages
The publication date of the selected papers is spread over different years between
2001 and 2014 (see Figure 5.1). However, the bulk of the publications come after
2009. It looks like the topic is gaining in popularity, but we can only be sure of this
in the years to come. It is also worth noticing that the types (workshop, conference,
journal, book chapter, other) of publication are very heterogeneous.

B C C
C

J J
J

J

J
O

O

W W

W

0

1

2

3

4

5

6

7

2001 2003 2004 2005 2009 2010 2011 2013 2014

Papers / Publication Year

Figure 5.1: Meta-data of selected papers (W=workshop, C=conference, B=book chapter,
J=journal, O=Other)

5.3. Results: Meta-Data Classification 111

Table 5.4: Venues

Venue Type Paper

Requirements Engineering Journal Journal (J) [B14]
Journal of Emerging Technologies in Web Intelligence Journal (J) [DQ10]
Workshop on Software Measurement (IWSM-
MENSURA)

Workshop (W) [D11] + [DT14]

Journal of Defence Software Engineering Journal (J) [D01]
IEEE Southeastcon Conference (C) [FM13]
Journal of Object Technology Journal (J) [F04]
Better Software Magazine Other (O) [GG10]
Workshop on Traceability in Emerging Forms of Soft-
ware Engineering

Workshop (W) [L03]

Conference on Extreme Programming and Agile Pro-
cesses in Software Engineering (XP)

Conference (C) [L14a] + [P14]

Workshop on Cooperative and Human Aspects of Soft-
ware Engineering

Workshop (W) [L14b]

Journal of Software Journal (J) [PR09]
Engineering and Managing Software Requirements Book Chapter

(B)
[SS05]

Conference on Information Technology: New Genera-
tions (ITNG)

Conference (C) [SL09]

Table 5.4 shows the different venues the selected papers have been published in.
This is important to know for persons that are new to the field and want to know
where to start reading or publishing themselves. Unfortunately we cannot give
them a definite answer. The number of different venues is almost as large as the
number of papers. The Workshop on Software Measurement (IWSM-MENSURA)
has 2 publications, but these come from the same research group. Only the Re-
quirements Engineering Journal and the Agile Conference (XP) have two distinct
publications. This at least shows that not only the traditional requirements engi-
neering community is working on this topic, but also the agile community. This
indicates that the topic is also considered important within agile environments. For
the rest the communities are quite diverse, ranging from ‘Human Aspects’ to ‘Web
Intelligence’. Note that in Table 5.4 we have not included [HZ14] (technical re-
port).

Table 5.8 in the appendix of this chapter shows the number of pages for each
paper. Most of them are longer papers of 8 pages or more. Half of the papers even
have more than 10 pages.

Agile Method and Requirements Format
As described by De Lucia and Qusef (2010) many different agile methods exist and
they all have slight differences from a requirements engineering perspective. That
is why it is important to know for each of the selected papers which agile method
they discuss, as this might influence their perspective on quality criteria. The same

112 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Table 5.5: Classification of selected papers

Agile Method Research Type Evaluation

G
en

er
al

Sc
ru

m

X
P

(U
se

r)
St

or
y

Ev
al

ua
ti

on
R

es
ea

rc
h

Pr
op

os
al

of
So

lu
ti

on

Va
lid

at
io

n
R

es
ea

rc
h

Pr
el

im
in

ar
y

R
eg

ul
ar

H
um

an
Su

bj
ec

ts

In
du

st
ry

Q
ua

nt
it

at
iv

e

N
on

e

[B14] x x x
[DQ10] x x x x
[D11] x x x x x
[DT14] x x x x x x

[D01] x x x x
[FM13] x x x x x
[F04] x x x x
[GG10] x x x x

[HZ14] x x x x x x
[L03] x x x
[L14a] x x x x x x
[L14b] x x x x x

[PR09] x x x x x x
[P14] x x x x x x
[SS05] x x x x
[SL09] x x x x x x

goes for the requirements format discussed, since not all quality criteria apply to
all formats (e.g. there exist specific templates for some formats).

Most papers do not describe one specific agile methodology (see Table 5.5). Two
papers specifically address eXtreme Programming (XP) and three papers specifically
address Scrum.

According to Ernst and Murphy (2012) “just-in-time requirements refer to higher-
order organizational constructs, including features to be added to the project, agile
epic and user stories, improvements to software quality, and major initiatives such
as paying down technical debt”. In our selected papers, those papers that men-
tion a specific type of requirements, all mention (user) stories. User stories (US)
are short sentences that represent the customer requirements at a high level, and
the documentation for these stories includes the explanations of the requirements
[D11]. Table 5.5 shows which other papers treat user stories. Note that some of
them, such as [SS05], only mention user stories briefly.

Table 5.5 indicates that User Stories are not the only requirements format being
discussed. Researchers investigating quality of agile requirements specifications

5.4. Results: Quality Criteria Used in Literature 113

should thus not only investigate user stories and practitioners working with agile
requirements should bear in mind that there is no “obligation” to use user stories
as their format.

Research Type
Out of the 16 selected papers, 9 of them have been classified as ‘Proposal of So-
lution’, 6 of them as ‘Evaluation Research’ and only 1 as ‘Validation Research’ (see
Table 5.5). This shows that most papers report on a new solution that they pro-
pose, which makes it harder for practitioners to evaluate how to apply the solution
in practice (i.e. validation research is missing).

Evaluation Method
Table 5.5 presents the evaluation method used in each of the 16 papers. Six pa-
pers miss an evaluation and four papers only contain a preliminary evaluation. We
double-checked to see if newer papers of the same authors have been published,
but this was not the case. There were not many (only 3) quantitative evaluations.
In combination with our analysis in the previous section this shows that most pa-
pers report on an existing practice or new solution, without a full-blown validation.
Note that for our own work [HZ14]we have executed a more extensive quantitative
evaluation which is under submission (i.e. Chapter 4 of this thesis). A good thing is
that 70% of the evaluations (7 out of 10) involved industry projects or companies.
This confirms our earlier remark that both industry and academia are working on
this subject.

5.4 Results: Quality Criteria Used in Literature
We made an inventory of quality criteria for agile requirements specifications that
are mentioned in each of the 16 selected papers. The method we used to create
this inventory is described in Section 5.2.

In Figure 5.2 we present the classification of quality criteria and mention be-
tween brackets for each quality criterion which paper(s) mention them. In Table 5.8
in the appendix of this chapter we briefly discuss the contribution of each of the pa-
pers to this inventory. Together, the 16 selected papers mention 28 different quality
criteria for agile requirements specifications, of which most criteria are confirmed
by more than one paper. Note that out of these 28 criteria, 11 criteria had not been
mentioned in our previous work [HZ14] and four of them are only mentioned in
[HZ14].

In what follows we will highlight criteria that are mentioned by three or more
papers.

Priority Five papers mention that requirements should have a priority defined.
[SS05] mentions ‘Requirements Prioritization’ as an important technique for agile

114 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

Quality Criteria for Agile
Requirements

 No contradiction/conflict (PR09, HZ14)

 Concise (D01, PR09)

 INVEST (PR09, HZ14)
 Independent (SS05)
 Small/simple (DQ10, DT14, L14a/b, SS05)

 Consistent/defined terminology (DT14, PR09, HZ14)
 Unambiguous (D01, FM13, F04, SL09, PR09)

 Forward traceable (DQ10, L03, HZ14)

 (Tool‐based) template (F04, HZ14)

 Functionality in story name (DT14)

UniformityCompleteness Consistency &
Correctness

 Priority (B14, D01, SS05, PR09, HZ14)

 Non‐funct. reqs. (DQ10, FM13, P14, SS05, PR09)

 Functional processes (D11, DT14)

 Data modeling artifacts (DT14)

 Product version (D01, HZ14)

 Unique ID (F04, PR09, HZ14)

 Six elements of user story (GG10)

 Acceptance criteria (P14, PR09, HZ14)

 Dependencies (P14)

 Size (P14)

 Story card structure (PR09)

 Rationale (HZ14)

 Only relevant comments (HZ14)

 Correct language (HZ14)

 No duplicates (HZ14)

 Navigable and explained links (HZ14)

 Verifiable (D01, P14)

 Customer language (DQ10, SS05)
 Understandability

Figure 5.2: Quality criteria for agile requirements (next to each quality criterion
the papers that mention it).

methods. [HZ14] mentions priority as an example of ‘relative importance’. [B14]
calls this ‘a grade for the importance of each requirement’ and describes a clustering
algorithm based on this. [D01] calls this ‘Annotated by Relative Importance’, based
on (Davis et al. 1993). [PR09] suggests to prioritize story cards ‘based on agile
software development values’.

In agile development the priority of a requirement is very important to know,
because the priority is used to plan iterations. In each iteration the open require-
ments with the highest priority are detailed and subsequently developed. Priority is
allowed to change as long as the requirement is open. In this way agile development
ensures that the customer receives what he needs most at any given moment. This
also allows for the customer to change his/her mind and upgrade or downgrade
requirements during the project by adjusting the priority attribute.

Unique Identifier Three papers mention that requirements need a unique iden-
tifier. [F04] recommends a template for agile requirements where ‘ID’ is one of the
columns. Since [PR09] is about story cards, they call this unique identifier a ‘story
card number’. [HZ14] assumes that requirements are stored in an electronic tool
and thus automatically assigned a unique ID.

Note that an unique identifier is also useful in oral communication of agile re-
quirements. In oral communication we need an easy and unambiguous way to refer
to requirements we are discussing, whereas in written communication we could use
other means such as hyper-links or paragraph numbers.

5.4. Results: Quality Criteria Used in Literature 115

Non-Functional Requirements Five papers ([DQ10], [FM13], [P14], [SS05],
[PR09]) indicate that non-functional requirements should not be overlooked in
agile development. [P14] states that ‘architecture criteria (performance, security,
etc.)’ should be identified for a User Story to be considered ‘Ready’.

Recommendations are to arrange meetings to discuss the non-functional re-
quirements as early as possible ([DQ10] and [SS05]), to include them as part of
the story card [PR09], use quality metrics and a risk-driven algorithm to plan them
[FM13].

Acceptance Criteria [P14], [PR09] and [HZ14] all mention acceptance criteria
or acceptance tests as an important part of user stories.

In traditional requirements engineering acceptance tests are often developed
together with the upfront requirements specification. Agile development does not
recommend writing such elaborate test documentation upfront since there is a
good chance that certain requirements do not get implemented or will change and
thus the test cases will be obsolete. To replace comprehensive upfront test doc-
umentation, agile requirements should be elaborated with acceptance criteria (in
Behaviour-Driven Development these acceptance criteria are even formalized ac-
cording to a template).

INVEST An acronym introduced specifically for agile requirements quality is IN-
VEST: user stories should be Independent, Negotiable, Valuable, Estimable, Small
and Testable (Wake 2003). For readability of Figure 5.2 we have included INVEST
as 1 sub-item, when in fact it is a collection of six criteria. INVEST is mentioned
as-is in [HZ14]. [PR09] does not mention the acronym, but does mention each of
the six criteria separately.

Seven other papers mention that agile requirements should be independent
[SS05], should be kept small or simple [DQ10, DT14, L14a/b, SS05] and that the
requirements should be verifiable (= testable) [D01, P14]. [DT14] states that user
stories should be kept small in the sense that “It is expected that each user story be
mapped to only one functional process.”, [L14a] and [L14b] state that the ‘Expected
Implementation Duration’ should be kept low. [DQ10] suggests to split require-
ments that are considered too complex by the team. [GG10] dedicated their whole
paper to how to perform what they call “story slicing”. [P14] phrases verifiability
as ‘team knows what it will mean to demo the User Story’.

Practitioners working with agile requirements should also keep in mind that
INVEST/SMART could also be applied to other types of agile requirements.

Understandability We have used the term ‘Understandability’ to group several
criteria related to the choice of wording for the requirements specification. Defining

116 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

clear requirements can save a lot of time in discussion and question answering
during the implementation.

Two papers [DQ10, SS05]mention that this can be achieved with requirements
written in the language of the customer. [PR09] states that story cards should “use
language simply, consistently and concisely”. Two more papers deem it important
to use a consistent and defined terminology throughout all requirements: [DT14]
and [HZ14]. [HZ14] advocates the use of a ‘glossary’ for this purpose and also
recommends the use of correct language (i.e. spelling- and grammar-wise). In total
five papers mention that it is important for the requirements to be unambiguous in
general [D01, FM13, F04, SL09, PR09].

Forward Traceable Three papers mention that agile requirements should be forward-
traceable [DQ10, L03, HZ14].

It is important to know to which source code and test cases the requirements
trace (forward traceability) to be aware where things must be changed when re-
quirements change, since agile development embraces change as a given factor
(Beck et al. 2001).

5.5 Results: Recommendations for Practitioners
In this section we discuss how practitioners should use the quality criteria in prac-
tice. We support our discussion with references to the relevant papers.

Use a list of quality criteria We have found 16 papers that contain quality cri-
teria for agile requirements specifications. We advise practitioners to consider the
full list of criteria summarized in Section 5.4 and establish a list of quality criteria
appropriate for their own project, team or environment.

[HZ14] describes how a given list of quality criteria can be customized by a
team: 1) decide which criteria are not relevant for the team; 2) add missing criteria
by interviewing team members, by re-evaluating old requirements or by applying
the criteria in practice and improve them on-the-fly.

The quality criteria should be applied to the agile requirements specifications,
but do not have to hold from the beginning. According to [DQ10] “any documents
produced in the early stages can quickly become irrelevant because the agile princi-
ples encourage requirements change”. This is confirmed by e.g. Ernst and Murphy
(2012) who coined the term “just-in-time requirements” for this. The recommenda-
tion is to only document what is relevant at a given moment, and postpone all other
requirements documentation to as late as possible. Analogue to this we can also say
that the quality criteria should hold just-in-time: for each criterion it should be de-
cided at which point in time it should hold (e.g. at creation time of the requirement
or just before development starts).

5.6. Results: Research Agenda 117

Checklist or Definition of Ready [HZ14] calls the resulting list of quality crite-
ria a checklist. [PR09] also promotes the use of a so-called ‘validation checklist’ to
assess correctness as part of a high maturity level for agile requirements engineer-
ing. [P14] advises to include such criteria in a so-called ‘Definition of Ready’. A
Definition of Ready (DoR) is a sort of checklist that an agile team uses to determine
when a user story is ready for the developers to start implementing it. According
to [P14] “not having a definition of ready can seriously impede the flow of work
through your system”. A DoR is something that can also be implemented for other
types of agile requirements.

Use of a tool To simplify the process of applying checks the requirements could
be stored in a tool. According to [B14] “tools that allow collaboration and provide
tracing of changes and allow recording of requirements in standardized formats,
along with a proper plan for team coordination, are considered as essential”. This
same finding is supported by [HZ14] that already assumes agile requirements are
stored in a tool, resulting in quality criteria that are inherent to the tool (e.g. unique
identifiers). [DQ10] recommends the use of tools not only for storing requirements
but also for storing traceability information between requirements, tests and code.

5.6 Results: Research Agenda
In this section we discuss the 16 papers with respect to open points for researchers
to work on in the area of quality of agile requirements:

1. More than user stories. Most selected papers investigate or mention user sto-
ries (see Table 5.5). However, we think that the characteristics of a good user
story also hold for other types of agile requirements. An example of this is
given in [HZ14] for feature requests in open source projects. We would like
to see more research papers on the topic of suitable requirements formats
for agile environments with of course a focus on the quality aspects of each
of those formats. This would help practitioners to select the proper require-
ments format for their environment and to be aware of the caveats for each
of the possible formats.

2. Validation research. There are few papers with a thorough validation of the
proposed solution (see Table 5.5). The selected papers are one-off publica-
tions, without a continuation in future work. Existing and new frameworks
or methodologies for creating good quality requirements should be validated
more extensively by the research community. This makes it easier for practi-
tioners to see if the method could work in their daily practice.

3. Case studies. The generalizability of results is a threat to validity for most
of the selected papers. Almost all of them mention that more case studies
should be done in future work to validate the results in other situations. For

118 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

practitioners it is extremely valuable to know to what extent the described
results can be applied in other situations. Therefore, as a research commu-
nity we need to publish more case studies in the area of agile requirements
engineering with real-life data sets or industrial setting. This need for more
case studies is also confirmed by other publications on research agendas for
agile development (Dingsoyr et al. 2008; Dybå and Dingsøyr 2008). In addi-
tion, we would also want to advocate the need for longitudinal studies (e.g.,
see Runeson et al. (2012)) in agile requirements engineering to study how
agile requirements engineering quality practices change or vary over time.

4. Tooling. [DQ10], [HZ14], [L03] and [PR09] mention that tools could be use-
ful to automate some of the checks for quality criteria. We think this is true.
Researchers could develop prototypes of such tools, test them and make them
available as e.g. plug-ins for requirements tools. In this way practitioners can
use the guidelines for good quality agile requirements without the extra bur-
den of checking things manually.

5. Cooperation. The types of venues that have published papers on the topic of
quality of agile requirements are very heteregenuous (see Table 5.4). Both
the agile community and the requirements engineering community have pub-
lished papers. Next to that, a whole scala of different smaller and bigger
venues welcome papers on the topic (from the measurement community to
the web intelligence community to the human aspects of software engineer-
ing community). A valuable contribution can be made if researchers work-
ing on the topic would collaborate more across communities. In 2015 we
see two good examples of this: the Just-in-Time Requirements Engineering
workshop (JITRE)2 in conjunction with the Requirements Engineering con-
ference (RE’15), and the Workshop on Requirements Engineering in Agile
Development (READ)3 in conjunction with the Conference on Agile Software
Development (XP2015). Also here it could be remarked that it would have
been even better if both communities would have joined in one single work-
shop. Although in this case at least Neil Ernst and Maya Daneva are involved
in both workshops (organizing the one and serving as a Program Committee
member for the other).

6. Also start from the problems. Next to investigating sources that mention qual-
ity criteria for agile requirements specifications, we should also start from
the other side. What are quality problems with software that has been de-
veloped in an agile way and which of those problems link back to quality
problems in the agile requirements specifications? When we investigate the
quality problems in practice, we can subsequently define quality criteria for

2https://jitre.wordpress.com/
3http://www.xp2015.org/1st-international-workshop-on-

requirements-engineering-in-agile-development/

https://jitre.wordpress.com/
http://www.xp2015.org/1st-international-workshop-on-requirements-engineering-in-agile-development/
http://www.xp2015.org/1st-international-workshop-on-requirements-engineering-in-agile-development/

5.7. Discussion 119

agile requirements specifications that will help us to avoid or prevent those
problems in practice. In that way we would let problems in agile practice
guide us towards the most important quality criteria for agile requirements
specifications. This could also lead to newly discovered quality criteria.

7. Investigate necessity and impact of agile requirements correctness. In our intro-
duction we have stated that correctness of agile requirements specifications is
important. We have gathered further support for this claim with the publica-
tions in this survey. However a lot of questions around this topic still remain
open. Do written requirements play an important role in agile? What is the
difference between distributed and non-distributed teams for the importance
of written requirements correctness? What is the impact of non-correct re-
quirements on final product quality? We would like to see more research in
this area to answer these important questions and further confirm our claims.

5.7 Discussion
In this discussion we will revisit our research question and we will discuss the
threats to validity.

[RQ5] Which are the known quality criteria for agile requirements
specifications?
Based on the selected papers of our literature survey, we identified 28 quality crite-
ria that have been mentioned for agile requirements specifications. These quality
criteria are listed in Figure 5.2. In this section we analyze which criteria come from
traditional requirements engineering and which new quality criteria have been pre-
sented.

Quality criteria for traditional requirements specifications When investigating
the 28 quality criteria, we find that most of them are also applicable to traditional
up-front requirements specifications. Criteria specific for agile requirements spec-
ifications are: six elements of a user story [GG10], story card structure [PR09],
functionality in story name [DT14] and INVEST [PR09, HZ14]. Of course the in-
terpretation of traditional criteria might be slightly different for agile requirements.
For example, acceptance criteria should not be full-blown test scenarios but short
statements indicating when the implementation of a requirement can be accepted;
priority is paramount for agile requirements as it is the basis for all planning activi-
ties and determines when to spend time on detailing the requirement; understand-
ability might be less important for agile requirements specifications in environments
where conversation with the customer can be used to clarify ambiguities.

The papers that we selected do not provide enough evidence to completely an-
swer the question which traditional criteria still apply to agile requirements speci-
fications. However, [D01] contains an analysis where it is shown which traditional

120 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

quality criteria are not or less applicable to eXtreme Programming. A similar anal-
ysis is made in [HZ14] for feature requests in open source systems.

New quality criteria for agile requirements specifications The INVEST model
seems to be the only ‘new’ quality criterion that is mentioned in the context of agile
requirements specifications, since the other three new ones (six elements of a user
story [GG10], story card structure [PR09], functionality in story name [DT14]) can
be seen as translations of existing criteria to the agile requirements format. The
goal of INVEST is to divide the system to be developed in small deliverables that
can be delivered independently, one of the key principles of agile development.
INVEST is currently tied to user stories, but we think it is also valuable for other
types of (agile) requirements.

Just-in-time quality In our own continued research we decided to add a timing
dimension to quality criteria for agile requirements specifications. Since the re-
quirements are specified or detailed just-in-time, some quality attributes also do not
have to hold from the creation of the requirement, but should hold just-in-time. For
example an initial specification might be ambiguous as long as any unclear terms
or wordings have been resolved just before development starts.

Threats to Validity
Threats to the validity of the systematic review are analyzed according to the follow-
ing taxonomy: construct validity, reliability, internal validity and external validity.

Construct Validity
Construct validity reflects to what extent the phenomenon under study really rep-
resents what the researchers have in mind and what is investigated according to
the research questions.

Requirements engineering in general and requirements engineering in an agile
context are broad subjects. We explicitly confined our survey to agile requirements
engineering research with a special focus on quality criteria for agile requirements
specifications. In order to be as objective as possible on which papers to include or
exclude in our survey, we followed the advice of Kitchenham (2004) and Brereton
et al. (2007) to use predefined selection criteria that clearly define the scope of the
survey.

Our process of collecting relevant articles was based on keyword searches in
well-established scientific digital libraries (IEEE Xplore, ACM Digital Library, Sco-
pus, DBLP and ScienceDirect). However, as Brereton et al. (2007) point out, “cur-
rent software engineering search engines are not designed to support systematic
literature reviews”. This observation is confirmed by Staples and Niazi (2007). In
order to mitigate this threat we also manually processed relevant venues in a certain

5.7. Discussion 121

period of time, in particular the Agile Alliance Agile Conference (AGILE), Interna-
tional Conference on Agile Software Development (XP), IEEE Requirements Engi-
neering Conference (RE), International Working Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ), the Requirements Engineering
journal (REJ) and the Agile Requirements Engineering Workshop (AREW’11). In
an additional step, we also involved Google Scholar4. Our query string returned
more than 98 000 results with Google Scholar. Of course it is not feasible to man-
ually check this amount of items, so we decided to include the top-100 of Google
Scholar as a double-check that we do not miss any important publications not in-
dexed by the main databases mentioned above. No new articles were found with
this double-check.

We used a single query string when querying the aforementioned digital li-
braries. It might be that we missed papers, because different terms are used by
different authors. We tried to mitigate this issue by performing the aforemen-
tioned manual search, but also through citation snowballing (Wohlin 2014). We
performed the snowballing recursively until we could no longer add relevant liter-
ature to the set of papers under consideration.

In Section 5.2 we have discussed and justified the inclusion and exclusion cri-
teria for the selection strategy of publications. However, it is still possible to miss
some relevant literature. One such instance is the existence of “grey literature”
(Auger 1994) such as technical reports and PhD theses (Kitchenham and Charters
2007). In this literature review, we did not include such information. On the other
hand, we did include book chapters for which we know that they underwent an
external review process ([SS05]).

This work is centred around agile requirements specifications, thus leaving out
face-to-face communication or prototyping, both elements which are very impor-
tant in an agile setting (Beck et al. 2001). While we acknowledge this importance,
Inayat et al. (2014) explicitly mention situations (e.g., distributed teams, large
teams, complex projects) that require documented agile requirements that are fully
elaborated in writing. As soon as agile teams cannot rely on face- to-face com-
munication the “correctness” of written documentation becomes more and more
important.

Inconsistent terminology or use of different terminology with respect to the ex-
ercised search string (see Section 5.2) may have biased the identification of pri-
mary studies. The manual search and recursive snowballing approach we followed
should mitigate the risk that we have missed important articles.

Agile requirements engineering in general and quality criteria for these agile
requirements are young research areas. This shows in the papers that we surveyed
as many are preliminary in nature and have the purpose to launch and discuss ideas.
These papers typically do not contain a full-blown evaluation. In fact, by looking

4http://scholar.google.com, last visited July 18th, 2015

http://scholar.google.com

122 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

at Table 5.5 we observe that 6 out of 16 papers contain no evaluation at all, while
another 3 have a preliminary evaluation. There is no immediate mitigation for this
risk, but it is our opinion that each of these papers has an important contribution.

Another threat to validity is the strength of evidence with regard to the quality
criteria as mentioned in the papers that we surveyed. We acknowledge that not all
papers have quality criteria for agile requirements as their primary goal of investi-
gation. While there is no immediate mitigation for this risk, it is our view that each
of the insights generated in these papers is an important piece of information for
the overall area.

Reliability Validity
Reliability Validity focuses on whether the data is collected and the analysis is con-
ducted in a way that it can be repeated by other researchers with the same results.

In this chapter we have presented a series of findings based on the papers that
we selected during our systematic literature review. Since conducting a survey is a
largely manual task, most threats to validity relate to the possibility of researcher
bias, and thus to the concern that other researchers might come to different results
and conclusions. One remedy we adopted is to follow, where possible, guidelines
on conducting systematic reviews as suggested by, e.g. Kitchenham (2004) and Br-
ereton et al. (2007). In particular, we documented and reviewed all steps we made
in advance (per pass), including selection criteria and attribute definitions.

The first author of this chapter did the actual paper selection and refinement.
The application of the inclusion and exclusion criteria might however be subjective.
Therefore, the second author was involved in a series of checks in which the second
author re-applied the inclusion and exclusion criteria. The results showed some
discrepancies, which were discussed among the authors and resulted in a common
understanding of why a paper should be included or excluded from the set.

We acknowledge that the classification of the articles in Table 5.5 is probably
the most subjective step in our approach. This step is also subject to researcher bias
as the interpretation may seek for results that the reviewers were looking for. Our
countermeasure has been a systematic approach towards the analysis, including the
use of an established framework for research types as proposed by Wieringa et al.
(2005).

Internal Validity
Internal validity is concerned with the analysis of the data. Since no statistical anal-
ysis was done considering the small sample size, the analysis is mostly qualitative
and thus subject to researcher bias (also see Section 5.7).

External Validity
External validity is about generalizations of the findings derived from the primary
studies.

5.8. Conclusion 123

As the field of quality criteria for agile requirements is flourishing, the observa-
tions we have made in this chapter are valid at the time of writing, but might not
generalize into the future. More specifically, it might be that future work extends
upon the 28 quality criteria that we have currently listed.

Similarly, while we have paid a lot of effort on finding all relevant literature (also
see Section 5.7), it might still be that the list of 28 quality criteria is incomplete.

We are aware of the fact that agile requirements engineering in general is a
very actively debated topic among practitioners through for example blog posts.
We excluded such non-reviewed material in our study. The insights that are thus
generated might not have been reported upon in an academic paper. Future work
might want to investigate this particular aspect, in a similar way to the structured
mapping study by Kabbedijk et al. (2015) who combined the academic and indus-
trial perspective in their particular area.

5.8 Conclusion
Context For traditional up-front requirements specifications quality is considered
important and standards define what quality of requirements specifications means.
Our main research question is which quality criteria apply to agile requirements
specifications, since no standards have been defined for them.

Summary In this chapter we report on a systematic literature review on quality
criteria for agile requirements specifications. Through a structured process we se-
lected 16 articles. From these articles we devised an overview of existing quality
attributes that can be used in informal verification. We also derived (1) recommen-
dations for practitioners that want to perform informal verification of requirements
specifications in an agile setting and (2) a research agenda for academics that high-
lights the need for further research in this area. In addition, the resulting systematic
overview is useful as a reference work for researchers in the field of informal veri-
fication and helps them identify both related work and new research opportunities
in this field.

Quality Criteria Figure 5.2 shows the list of 28 quality criteria that we collected.
Most of these criteria are not new for agile requirements specifications, although
the way to apply them to the specification might be slightly different from a tra-
ditional setting. The only new criterion we encountered is INVEST (Independent,
Negotiable, Valuable, Estimable, Small and Testable).

Practical recommendations Practitioners working with agile requirements can
take the recommendations in Section 5.5 as a starting point. Our main recommen-
dation is to follow the list of quality criteria in this chapter. When a team includes
the applicable criteria in the Definition of Ready for their agile requirements, the

124 Chapter 5. An SLR on Quality Criteria for Agile Requirements Specifications

assessment of quality criteria on those requirements will be an undeniable part of
the daily agile development process.

Research Agenda In Section 5.6 we present our research agenda for the area of
quality criteria for agile requirements. Our overall observation is that only few pa-
pers focus on quality criteria for agile requirements. However, the topic is deemed
important by both researchers (Inayat et al. 2014) and practitioners that we en-
countered during our own investigations. Our most important recommendation is
thus for academia to put more effort in this area in general.

Contributions In short, this chapter makes the following contributions:

• A classification of existing quality criteria that can be used for the assessment of
agile requirements specifications;

• Recommendations for practitioners for quality assessment of agile requirements
specifications;

• A research agenda in the area of quality of agile requirements containing 7 im-
portant avenues for future research.

Future Work This literature review shows that the number of publications on
informal verification of agile requirements specifications has increased over the last
few years. This indicates that there should be coming more in the next few years.
We plan to keep track of new publications in this area with the goal of updating
this literature review. Furthermore we plan to further evolve and validate our own
framework with quality criteria and we hope that others will also build on our
work. Additionally, another avenue of future work is to check which quality criteria
for agile requirements specifications are described in non-academic blogs, white
papers, etc.

125

A. Details of Selected Papers on Quality Criteria
for Agile Requirements
This appendix contains detailed information on each of the 16 selected papers.
We repeat author, title and venue and include number of pages. We provide a short
summary of the paper based on the paper abstract. We briefly explain the relevance
of the paper for quality criteria for agile requirements (in italic) and we sum up each
of the quality criteria mentioned in the paper. For an overview of all quality criteria
from all papers, see Figure 5.2.

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria

[B14] Belsis
et al. (2014)

PBURC: A
Patterns-Based,
Unsupervised Re-
quirements Clus-
tering Framework
for Distributed
Agile Software
Development

13 This paper presents a patterns-based,
unsupervised requirements cluster-
ing framework, which makes use of
machine-learning methods for require-
ments validation, being able to overcome
data inconsistencies and determine
appropriate requirements clusters for
the definition of software development
sprints.

(Requirements En-
gineering Journal)

[B14] is of low relevance for quality crite-
ria as it focuses on a clustering algorithm
for requirements.

Quality criteria: priority.
[D01] Duncan
(2001)

The Quality of
Requirements in
Extreme Program-
ming

4 This paper describes and evaluates the
quality of requirements generated by us-
ing XP and discusses how the XP process
can assist or hinder proper requirements
engineering.

(Journal of De-
fence Software
Engineering)

[D01] compares eXtreme Programming to
a list of quality criteria for traditional re-
quirements from Davis et al. (1993).

Quality criteria: priority, product version,
verifiable, concise, unambiguous.

[D11] Deshar-
nais et al. (2011)

Using the COSMIC
Method to Evalu-
ate the Quality of
the Documenta-
tion of Agile User
Stories (IWSM-
MENSURA)

4 In the research reported here, the COS-
MIC method is used to analyze and report
on the quality of the documentation of
user stories. The functional size of evolv-
ing requirements can be measured with
COSMIC measurement method. To sup-
port this measurement activity, the qual-
ity of the documentation is important to
be interpreted correctly.

See [DT14].

126 Appendix Chapter 5

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria

[DT14] Dumas-
Monette and
Trudel (2014)

Requirements En-
gineering Quality
Revealed through
Functional Size
Measurement:
An Empirical
Study in an Agile
Context (IWSM-
MENSURA)

11 This paper reports preliminary results re-
lated to a software development organi-
zation. The functional size of the soft-
ware was measured and compared with
development and measurement effort,
taking into account the quality rating of
requirements. The results led to recom-
mendations for the organization and rec-
ommendations for planning any software
measurement project.

Both [D11] and [DT14] focus on size
measurement of agile requirements (using
COSMIC). They claim that quality of those
requirements is a necessary condition for
accurate estimation. Quality in this sense
mainly means completeness: descriptions
of functional processes and data modeling
artifacts are needed to base the COSMIC
size measurements on. [DT14] contains a
case study that also highlights other qual-
ity issues related to size measurement: user
story names should at least contain the
name of the functional process it maps to
in order to be correctly measured; it is ex-
pected that each user story be mapped to
only one functional process; consistent ter-
minology should be used for data group-
s/objects.

Quality criteria: functional processes, data
modeling artifacts, functionality in story
name, small/simple, consistent/defined
terminology.

[DQ10] De Lu-
cia and Qusef
(2010)

Requirements En-
gineering in Agile
Software Devel-
opment (Journal
of Emerging Tech-
nologies in Web
Intelligence)

9 This paper discusses problems concerned
with requirements engineering in agile
software development processes and sug-
gests some improvements to solve some
challenges caused by large projects. The
paper also discusses the requirements
traceability problem in agile software de-
velopment.

127

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria
[DQ10] is a general overview paper on
requirements engineering for agile meth-
ods. The focus is not specifically on quality,
but [DQ10] mentions some criteria: non-
functional requirements should not be for-
gotten, requirements should be in the lan-
guage of the customer, requirements should
not be too complex, requirements should be
forward-traceable (i.e. to source code and
tests).

Quality criteria: non-functional require-
ments, small/simple, customer language,
forward traceable.

[F04] Firesmith
(2004)

Generating Com-
plete, Unambigu-
ous, and Verifiable
Requirements from
Stories, Scenarios,
and Use Cases

13 This paper shows how to transform in-
complete and vague stories, scenarios,
and use cases into a proper set of textual
requirements.

(Journal of Object
Technology)

[F04] promotes a template for writing tex-
tual requirements: ID, trigger, precondi-
tion, action, postcondition.

Quality criteria: unique ID, template, un-
ambiguous.

[FM13] Farid
and Mitropoulos
(2013)

NORPLAN: Non-
functional Require-
ments Planning
for Agile Processes
(IEEE Southeast-
con)

8 This research proposes project manage-
ment and requirements quality met-
rics. NORPLAN proposes two prioriti-
zation schemes, Riskiest-Requirements-
First and Riskiest-Requirements-Last, for
planning release and sprint cycles using
a risk-driven approach. The approach is
validated through visual simulation and
a case study.

[FM13] focuses on non-functional require-
ments planning for agile processes. It con-
tains a table with agile requirements qual-
ity metrics. However, these metrics are
mainly process-related, except for ambigu-
ity.

Quality criteria: non-functional require-
ments, unambiguous.

[GG10] Gottes-
diener and
Gorman (2010)

Slicing Require-
ments for Agile
Success

8 This paper presents different options for
slicing user stories.

128 Appendix Chapter 5

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria

(Better Software
Magazine)

[GG10] does not specifically focus on qual-
ity, but presents a way of slicing (splitting)
user stories. By explaining the ways of slic-
ing, they also mention six important ele-
ments of a user story: user roles, actions,
data objects, business rules, interfaces,
quality attributes (i.e. non-functional re-
quirements).

Quality criteria: six elements of a user
story.

[HZ14] Heck
and Zaidman
(2014c)

A Quality Frame-
work for Agile
Requirements: A
Practitioner’s Per-
spective (TU Delft
Computer Science
Report)

11 This paper presents a quality framework
for informal verification of agile require-
ments and instantiates it for feature re-
quests in open source projects. The
framework was derived based on an ex-
isting framework for traditional require-
ments specifications, literature about ag-
ile and open source requirements and the
authors’ experience with agile and open
source requirements.

[HZ14] presents a framework for agile re-
quirements quality criteria, which is in-
stantiated for feature requests in open
source projects and user stories. It presents
a large number of quality criteria. The use
of a template is indirectly also promoted
because they claim that a tool should be
used to store the requirements. This tool,
e.g. an issue tracker, would have prede-
fined fields for each requirement, thereby
functioning like a template.

Quality criteria: priority, unique ID, prod-
uct version, acceptance criteria, rationale,
template, only relevant comments, no con-
tradiction/conflict, INVEST, consistent/de-
fined terminology, correct language, for-
ward traceable, no duplicates, navigable
and explained links.

[L03] Lee et al.
(2003)

An Agile Approach
to Capturing Re-
quirements and
Traceability

7 This paper presents a tool-based ap-
proach that provides for the implicit
recording and management of relation-
ships between conversations about re-
quirements, specifications, and design
decisions.

129

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria

(Workshop on
Traceability in
Emerging Forms
of Software Engi-
neering)

[L03] is of low relevance for our research
question as it focuses on a tool for trace-
ability. However, it mentions forward
traceability (e.g., to tests and source code)
as an important quality aspects of agile re-
quirements.

Quality criteria: forward traceable.
[L14a] Liskin
et al. (2014a)

Why We Need
a Granularity
Concept for User
Stories (XP)

16 This paper investigates Expected Imple-
mentation Duration of a user story as a
characteristic of granularity by conduct-
ing a study with software engineering
practitioners. Many developers have ex-
perienced certain problems to occur more
often with coarse user stories. The find-
ings emphasize the importance to reflect
on granularity when working with user
stories.

[L14a] and [L14b] both focus on the use-
fulness of Expected Implementation Dura-
tion (EID) as a quality criterion for user
stories. They observe that user stories
should be kept small in terms of this EID.

Quality criteria: small/simple.
[L14b] Liskin
et al. (2014b)

Understanding the
Role of Require-
ments Artifacts in
Kanban (Workshop
on Cooperative
and Human As-
pects of Software
Engineering)

8 This paper explores how to utilize re-
quirements artifacts effectively, what
their benefits and challenges are, and
how their scope granularity affects their
utility. It studies a software project car-
ried out in the University of Helsinki.
The requirements artifacts were investi-
gated and then developers and the cus-
tomer were interviewed about their ex-
periences.

See [L14a].
[P14] Power
(2014)

Definition of
Ready: An Experi-
ence Report from
Teams at Cisco
(XP)

8 This paper presents an example of def-
inition of ready used by agile teams in
Cisco. These teams have developed three
levels of ready that apply for user sto-
ries, sprints and releases. The paper de-
scribes how definition of ready provides
a focus for backlog refinement, and some
consequences of not meeting definition of
ready. The paper finishes with perspec-
tives from different roles in the organiza-
tion.

130 Appendix Chapter 5

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria

[P14] gives an example of the definition
of ready (when are user stories ready
to start implementing them?) for Cisco
teams. This list of criteria mainly con-
tains process-related items, but also some
product-related: non-functional require-
ments should be identified, acceptance cri-
teria should be identified, dependencies
should be identified, size should have been
estimated, team knows what it will mean
to demo the user story (i.e. verifiable).

Quality criteria: non-functional require-
ments, acceptance criteria, dependencies,
size, verifiable.

[PR09] Patel and
Ramachandran
(2009)

Story Card Matu-
rity Model (SMM):
A Process Improve-
ment Framework
for Agile Require-
ments Engineering
Practices (Journal
of Software)

14 This paper describes an ongoing process
to define a suitable process improvement
model for story cards based requirement
engineering at agile software develop-
ment environments: the SMM (based on
CMM). It also presents how the identi-
fied areas of improvement from assess-
ment can be mapped with best knowl-
edge based story cards practices for agile
software development environments.

[PR09] focuses on story cards. The ap-
pendix contains a list of guidelines for story
cards, unfortunately without a detailed de-
scription of each guideline. The guidelines
are placed in a maturity framework.

Quality criteria: priority, unique ID, non-
functional requirements, acceptance crite-
ria, story card structure, no contradic-
tion/conflict, concise, INVEST, consisten-
t/defined terminology, unambiguous.

[SL09] Srini-
vasan and
Lundqvist
(2009)

Using Agile Meth-
ods in Software
Product Devel-
opment: A Case
Study (ITNG)

6 This paper presents an in-depth case
study of agile methods adoption in a
software product development firm. Us-
ing a mix of interviews, observation and
archival data, the evolution of agile adop-
tion within the firm is reconstructed.

131

[ID] Reference Title and Venue #pp. Summary and Relation to Quality Cri-
teria
[SL09] is a short case study of the use of
agile software development in a small com-
pany. They do not specifically mention re-
quirements quality criteria, but they ob-
serve some problems that occurred because
of the ambiguity of the requirements.

Quality criteria: unambiguous.
[SS05] Sillitti
and Succi (2005)

Requirements En-
gineering for Ag-
ile Methods (Engi-
neering and Man-
aging Software Re-
quirements)

18 This paper introduces Agile Methods as
the implementation of the principles of
the lean production in software devel-
opment. It discusses several agile prac-
tices that deal with requirements. These
practices focus on a continuous interac-
tion with the customer to address the re-
quirements evolution over time, priori-
tize them, and deliver the most valuable
functionalities first.

[SS05] is a general overview paper on re-
quirements engineering for agile methods.
The focus is not specifically on quality, but
[SS05] mentions some criteria.

Quality criteria: priority, non-functional
requirements, independent, small/simple,
customer language.

6..
Conclusion

In this thesis we have explored the quality of just-in-time (JIT) requirements. As
our main topic of interest we analyzed open source feature requests. We started
out by a case study in open source projects. This made us see that many duplicate
requests exist. Our assumption was that it must be difficult for users to get an
overview of all existing feature requests when they enter a new feature request. A
first step towards generating or visualizing such an overview would be to detect
related feature requests. We presented a possible solution for detecting these so-
called horizontal traceability links between feature requests by using a Vector Space
Model.

Our next step was to explore more generally which quality criteria (‘no dupli-
cates’ is one of them) apply to feature requests. We developed a framework for this
and instantiated the framework for open source feature requests. We also provided
guidelines for customizing the framework for other types of JIT requirements. we
concluded this thesis with a systematic literature review on quality criteria for agile
requirements as a way to confirm that our framework is not missing any important
quality criteria.

Below we present our contributions, answers to research questions and sugges-
tions for future work. We also discuss our research in light of the evaluation criteria
from Wieringa et al. (2005).

6.1 Summary of Contributions
The main contributions of this dissertation are:

• A categorization of duplicate feature requests in issue trackers in open source
projects (Chapter 2).

• A method to identify horizontal traceability links for feature requests (Chapter 3)

• A framework for quality criteria for just-in-time requirements (Chapter 4)

• A quality score for requirements in open source projects (Chapter 4)

• An overview of literature on quality of agile requirements specifications (Chap-
ter 5)

133

134 Chapter 6. Conclusion

• Recommendations for practitioners working on quality of agile requirements (Chap-
ter 5)

• A research agenda on quality of agile requirements (Chapter 5)

6.2 The Research Questions Revisited
The goal of this thesis was to obtain a deeper understanding of the notion of quality
for just-in-time requirements. In this section we will summarize the results obtained
in this thesis by re-discussing each of the main research questions and the main
threats to validity before we present our final conclusion.

RQ2: How can we assist the users as the main actors in the re-
quirements evolution process in open source projects?
In Chapter 2 we have investigated requirements evolution in 20 open source com-
munity web sites and saw that in most cases an issue tracker is used to evolve
requirements (which we call feature requests). Within those web sites that use
Bugzilla as a requirements management tool we have observed a high number of
duplicate feature requests (up to 36%) in the open source projects we analyzed.
To explain those duplicate requests we manually analyzed the duplicate requests of
six projects to determine why these duplicates were created. This resulted in seven
categories of duplicates. Using this classification we have suggested improvements
for manual search and creation of feature requests ([R1] till [R8]) and seven op-
portunities for tool support to avoid duplicates, e.g. improved linking mechanisms,
visualization of those links, clustering or advanced search.

The case study we did to answer this first question made us realize that there are
quality problems (e.g. too many duplicates) with feature requests and inspired us
to further investigate the possibility to visualize so-called feature request networks.
As said, having those networks helps users to avoid adding duplicate requests. For
visualizing the networks we need, amongst others, horizontal traceability links be-
tween feature requests. This is the subject of our next research question.

RQ3: Can TF-IDF help to detect horizontal traceability links for
feature requests?
In Chapter 3 we applied a Vector Space Model (VSM) with ‘Term Frequency - In-
verse Document Frequency’ (TF-IDF) to three open source projects (Mylyn Tasks,
ArgoUML and NetBeans). We showed that a VSM with TF-IDF can be beneficial to
detect related feature requests. In our experiment, on the one hand we retrieved
already known relations between feature requests, while on the other hand we re-
trieved feature requests pairs that were previously not marked as related, but that
are confirmed to be related by project members after we confront them with our
results. We explain our results for one example of a feature request network. We re-

6.2. The Research Questions Revisited 135

peated our analysis on the Netbeans project (the larger of the three projects) with
Latent Semantic Analysis (LSA) instead of TF-IDF. The results of our experiment
with LSA show us that our initial assumption (that LSA would improve results as it
takes into account e.g. synonyms) does not hold for the Netbeans case.

We see that TF-IDF can help to detect horizontal traceability links and thereby
serve as a first step in visualizing feature request networks. As said these networks
could help to reduce the number of duplicate feature requests, thereby improv-
ing feature request quality. After this analysis we decided to move away from the
feature request networks to answer the more general question of what would be
applicable quality criteria for feature requests specifically and JIT requirements in
general.

RQ4: Which criteria should be used for the quality assessment of
just-in-time requirements?
In Chapter 4 we have developed a framework for quality criteria for JIT require-
ments based on earlier work on traditional upfront requirements, our experience
with feature requests in open source projects and analysis of literature on just-in-
time requirements. The framework was positively evaluated by practitioners. We
have instantiated the framework for feature requests in open source projects and
indicated how it can be customized for other types of JIT requirements. When
comparing our framework to known quality criteria for traditional requirements
we conclude that we have defined 8 instances of ‘additional criteria’ or ‘new’ inter-
pretations of existing criteria. And of course we have added the time dimension to
each of the criteria by specifying if it should hold at creation-time (*C) or just-in-
time (*J).

We applied our framework to three open source projects (Mylyn Tasks, ArgoUML
and Netbeans). From this we have distilled a set of recommendations that makes
this research actionable for practitioners.

RQ5: Which are the known quality criteria for agile requirements
specifications?
In Chapter 5 we report on a systematic literature review on informal verification of
agile requirements specifications. Through a structured process we selected 16 pa-
pers. From these papers we devised an overview of existing quality attributes (using
the framework from Chapter 4) that can be used in informal verification. We also
derived (1) recommendations for practitioners that want to perform informal veri-
fication of requirements specifications in an agile setting and (2) a research agenda
for academics that highlights the need for further research in this area. In addition,
the resulting systematic overview is useful as a reference work for researchers in
the field of informal verification and helps them identify both related work and new
research opportunities in this field.

136 Chapter 6. Conclusion

The systematic literature review also serves to validate the framework (and its
instantiations) in Chapter 4. The results of the literature review did not make us
change anything on our framework.

Threats to Validity
This thesis investigates the quality of JIT requirements largely by investigating open
source feature requests. Feedback from industry practitioners and findings in liter-
ature indicate that other types of JIT requirements have a similar notion of quality.
That is why we present our findings in the form of a framework. The framework
itself consists of three categories and a timing notion, for which we assume that it is
usable for all types of JIT requirements. We present an instantiation of the frame-
work for open source feature requests and indicate how it could be customized for
e.g. user stories. However, future work remains to validate this in case studies in
agile or closed source environments.

Another threat to validity is related to the fact that we assume (as in traditional
requirements engineering) that the quality of JIT requirements is important for
the quality, cost or duration of the developed software product. This in general
is confirmed by practitioners we interviewed and literature (e.g. Fitzgerald et al.
(2012)). We can however only assume that the application of our framework has
the same positive effects on the developed software product. Future work remains
to apply the framework in practice to get quantitative feedback about the impact
of it.

A final point is that in this thesis we only consider quality of written JIT require-
ments. We feel that this is a valid choice to make, because in our experience we
encountered many cases in which oral communication of JIT requirements was not
possible. This is also confirmed by literature (e.g. Inayat et al. (2014)). The frame-
work (three categories and timing notion) we present in our opinion also holds for
oral JIT requirements but it remains yet to be investigated which specific quality
criteria would apply to these oral JIT requirements.

Conclusion
To summarize the quality of JIT requirements can be defined by our framework with
three main categories (Completeness, Uniformity and Correctness/Consistency),
for ease of reference repeated in Figure 6.1. The criteria in Figure 6.1 are the ones
we derived for feature requests and user stories. The framework consist of the
three categories and a timing dimension, but the criteria in each of the categories
should be selected and adjusted based on the specific JIT environment (i.e. “just-
enough”). Also for each selected criterion it should be specified at which point in
time the criterion should hold (e.g. at creation time or just before implementation
starts, i.e. “just-in-time”). In a few words we would summarize quality of JIT
requirements as “Just-Enough and Just-in-Time”.

6.3. Requirements Engineering Research Evaluation Criteria 137

JIT Requirements
Quality Framework

1.1 Basic Elements

1.2 Required Elements

1.3 Optional Elements

3.1 No contradiction *J

3.2 No contrad. comments *J

3.3 Correct Language *C

3.4 Specify problem *C

3.5 SMART *J

3.6 Correct summary *C

3.7 Atomic *C

3.8 Glossary *C

3.9 No duplicates *C

3.10 Navigable links *C

2.1 Use of tool *C

2.2 Necessity of comments *C

(2.3 Follow template *C)

(2.4 Uniform models *C)

[QC2] Uniformity[QC1] Completeness [QC3] Consistency &
Correctness

Note1: for [QC2] and [QC3] criteria marked with *C
should hold from the moment the requirement is
created, criteria marked with *J should hold later, just-
in-time for a certain step in the development process
Note2: criteria 2.3 and 2.4 are not applicable to feature
requests in open source projects

Summary & description *C
Product Version *C

Keywords/tags *J
Rationale *J

Use case or scenario *J
Screens *J

Relative importance *J

Link to code *J

Possible solution *J

Figure 6.1: Just-in-time requirements quality framework (instantiated for feature
requests in open source projects and user stories)

6.3 Requirements Engineering Research Evaluation
Criteria

In this section we will discuss our research in light of the criteria proposed by
Wieringa et al. (2005). In their paper Wieringa et al. present an engineering cycle
and a paper classification. The engineering cycle contains six steps: 1) Problem
investigation; 2) Solution design; 3) Solution validation; 4) Solution selection; 5)
Solution implementation; 6) Implementation evaluation. For both lines of research
we only conducted the first three steps. We did not evaluate or compare different
solutions for the same problem and unfortunately we did not go into implementing
our solutions in agile or JIT environments to be used in daily practice. However, we
have gone to great extent to validate our proposed solutions in a case study (open
source projects) setting and to get confirmation from practitioners. We have also
gathered recommendations for practitioners based on our experiences in the case
studies. As a result this thesis should be classified as a combination of “Proposal of
solution” and “Validation research” (Wieringa et al. 2005).

In their paper, Wieringa et al. mention a number of evaluation criteria for these
two paper classes, see Table 6.1. We now briefly discuss our thesis in light of each
of these evaluation criteria.

As we noted in the introduction we can distinguish two lines of research in our
thesis: 1) duplication and horizontal traceability of feature requests; 2) a quality
framework for JIT requirements (Chapter 4). For those two lines of research Chap-
ter 3 and 4 each describe both the “Proposal of solution” as well as the “Validation
research”. This is why we focus on those two chapters here. In what follows each

138 Chapter 6. Conclusion

Table 6.1: Paper evaluation criteria, taken from Wieringa et al. (2005)

“Proposal of Solution” Papers “Validation Research” Papers

P1. Is the problem to be solved clearly
explained?

V1. Is the technique to be validated
clearly described?

P2. Is the technique or its application
to this kind of problem novel?

V2. Are the causal or logical properties
of the technique clearly stated?

P3. Is the technique sufficiently well
described to be validated in later
research?

V3. Is the knowledge claim validated?

P4. Is the technique sound? V4. Is the research method sound?
P5. Is the broader relevance of the

technique argued?
V5. Is it clear under which circum-

stances the technique has the
stated properties?

P6. Is there sufficient discussion of re-
lated work?

V6. Is there sufficient discussion of re-
lated work?

V7. Is this a significant increase in
knowledge about this technique?

of the chapters is discussed and where applicable the criterion from Table 6.1 is
mentioned between square brackets.

General Points
Each chapter in this thesis starts with a description of the context of the problem
to be solved [P1], after which the problem itself is defined in one main research
question with (three) subsidiary questions. The same is true for the main thesis,
which sketches a context and defines the main goal for the thesis in the Introduction
chapter.

For each of the chapters and the main thesis we also build a clear path from
research questions to conclusion: 1) we introduce the questions; 2) we describe
the setup of our research; 3) we describe the detailed results per research question;
3) we discuss each of the research questions briefly; 4) we present limitations or
threats to validity of our research; 5) we conclude by summarizing results and
contributions; 6) we present future work. Through this uniform setup we ensure
that any claims we make in the conclusion are supported by the detailed results we
gathered while analyzing the research questions [V3].

We limited our scope to feature requests in open source projects. This is due to
circumstances (availability of material for analysis) and in our opinion is one of the
main limitations of this thesis [V5]. To mitigate this limitation, where applicable,
we indicate if and how our results could be translated to other types of JIT require-
ments. Furthermore we have included opportunities for future work related to this

6.3. Requirements Engineering Research Evaluation Criteria 139

limitation in Section 6.4.

For all chapters and the main thesis we included a section about ‘Related Work’
[P6, V6]. The last chapter with the SLR could be seen as one big ‘Related Work’
chapter for the entire thesis. The problem of this thesis is, however, that the body
of related work is quite small. We indicate this in each of the related work sections
and we cite some work from related areas like ‘Quality Assurance in Agile’ or ‘Agile
Requirements Engineering’.

Chapter Three: Horizontal Traceability of Feature Requests
The application of TF-IDF to horizontal traceability for feature requests is the ap-
plication of an existing technique, but the application to this kind of problem is
novel [P2, P4]. We specifically discuss the relevance of the technique for this ap-
plication [P5]. We have described the main algorithms in the tool and indicated
that source code is available [V1]. We summarized the main points from previous
work about the techniques we are using [V2]. The chapter has a section about
the setup of the experiment and we made our dataset available on-line on Figshare
(figshare.com): (Heck and Zaidman 2014a) [P3]. We discussed limitations of our
experiment at the end of the chapter [V4]. As we mention, a next step would be to
get measures on thresholds, recall and precision for the retrieval of the traceability
links, by using (industrial) case studies where we are able to identify all those links
beforehand. Chapter 3 teaches us that [V7]: 1) a simple technique like TF-IDF can
deliver good results for detecting horizontal traceability links; 2) the results for us-
ing TF-IDF on just feature requests differ from using it on bug reports in general.
As said before, we did not explore this path any further.

Chapter Four: Quality Framework for JIT Requirements
Our framework as described in Chapter 4 can be seen as a novel technique, but we
argue that this is the application of existing quality criteria to a new area (thus that
only the application to this kind of problem is novel) [P2,P4]. We have described
the complete framework and indicated how to customize it [V1]. We summarized
the main points from the previous work we are building upon [V2]. We describe the
setup of the case study and the survey and we made our dataset available on-line
on Figshare (figshare.com): (Heck 2014) [P3]. We used a three-step process to
get a feeling for the viability of our framework [V4]: 1) we studied literature on
agile and JIT requirements; 2) we interviewed practitioners to obtain their opinion;
3) we asked final-year students to apply the framework. This constitutes an initial
evaluation of our framework. We argued that the framework should be usable in all
JIT environments and we even included a special section on the customization of
the framework [P5]. We applied the framework in real open source projects and we
got positive feedback from practitioners about the framework and its relevance [P5,
V7]. Without this validation we would only have related work to base our analysis
on, which makes for much less of a strong argument. We would also like to point

figshare.com
figshare.com

140 Chapter 6. Conclusion

out that the SLR in Chapter 5 is a second way of validating our framework [V7]. At
the same time Chapter 5 presents gathered knowledge about recommendations for
practitioners and researchers working in the area of JIT requirements quality [V7].

6.4 Recommendations for Future Work
There are a number of interesting open issues for future work related to the topic
of this thesis. In the following we briefly discuss some aspects of our thesis and
suggest several recommendations:

1. Incorporate Visualization of Feature Request Networks into Issue Trackers
In Chapter 3 we designed a tool that can detect horizontal traceability links be-
tween feature requests. In this Chapter we also made use of links between feature
requests that are present in the issue tracker. The issue trackers we know can only
visualize parts of this so-called feature request networks (e.g. just the children of
the current feature request). This makes it infeasible for the user to explore the
network (as it would require clicking through children of children and then parents
of parents to get back to the starting point). We have indicated the development of
a complete graph-based visualization tool/component for feature request networks
as an important recommendation in both Chapter 2 and Chapter 3. However, in
this thesis we did not follow up on this recommendation, in favor of developing a
framework for quality criteria for JIT requirements. We would like to emphasize
this point here because we still think that such a visualization tool could be of great
use to people involved in projects with a large database of individual requirements.
This is also confirmed by Baysal et al. (2014) and by Fitzgerald et al. (2012) who
state that “the large number of feature requests and poor structuring of information
make the analysis and tracking of feature requests extremely difficult for project
managers; this affects the quality of communication between project managers and
stakeholders and makes it hard for project managers to identify stakeholders’ real
needs. Consequently, various problems may arise later in the features development
life-cycle”.

2. Replicate Case Studies in a Closed Source Environment
This thesis investigates quality of JIT requirements. Out of practical considerations
we have used open source feature requests as our main source of study. According
to Alspaugh and Scacchi (2013) “closed source software bug reports and feature
requests and the process for managing them look much like those for open source
software”, so we expect our results to hold in both cases. In Chapter 4 we have
interviewed 8 practitioners from a closed source environment. These interviews,
our own experience in industry projects and the other contacts we had with industry
indicate to us that in fact there is a practical use for the framework we developed in
industry or closed source projects. Our analysis in Chapter 5 also includes literature
describing case studies in closed source projects, showing that there is no specific

6.4. Recommendations for Future Work 141

difference between the two. However, we still deem it interesting to repeat our
case studies from Chapter 3 (text-based discovery of requirements networks) and
Chapter 4 (quality score for JIT requirements) in closed source environments to see
if similar results can be achieved.

3. Replicate Case Studies in an Agile Environment
Related to the previous recommendation is the fact that in this thesis we have mostly
considered feature requests. In agile environments a more common format for re-
quirements is the so-called ‘user story’, see also Chapter 5. Section 4.3 describes
the characteristics of user stories and indicates quality criteria that should hold
for them. In this section we argue that most criteria that we defined for feature
requests are also valid for user stories. This opinion was also shared by the 8 prac-
titioners from the Dutch agile community that we interviewed in Chapter 4. Also in
Chapter 5 no specific quality criteria for user stories stand out. According to Koch
(2004) open source projects and agile projects have many similarities. The main
difference he sees is the “team co-location and personal contact demanded by agile
development, which is not seen as a precondition in open source development”.
This actually is the main reason we studied open source projects as the absence of
co-location results in a large body of on-line requirements documentation. Corbucci
and Goldman (2010) conducted a survey amongst developers working in both ag-
ile and open source communities and found that “the communities themselves are
not that close to each other even if the mindset is quite similar”. These somewhat
contradicting conclusions would make it interesting to replicate especially the case
study from Chapter 4 (quality score for JIT requirements) in agile environments
with user stories to see if there are differences with open source feature requests.

4. Investigate Further the Impact of Good/Bad JIT Requirements Quality
In this thesis we have built upon the generally accepted idea that quality of require-
ments is an important factor for successful software development (see e.g. (Denger
and Olsson 2005)). In our introduction we quoted Cockburn (2000): “the better
the internal communications between usage experts and developers, the lower the
cost of omitting parts of the use case template”. One could indeed argue that for
agile projects the quality problems in the requirements are being compensated by
extensive face-to-face contact or prototyping (customers see what they will get and
developers can just ask the customer for clarifications), so quality of written JIT
requirements might be a less important aspect than in traditional environments.
However Cockburn (2000), Inayat et al. (2014) and Nawrocki et al. (2014) de-
scribe that also in agile environments a lot of situations exist where face-to-face
contact is not feasible, weakening this argument. Rubin and Rubin (2011) confirm
this view and explicitly state that “due to the general trend toward globalization,
documentation becomes increasingly important since in physically separated de-
velopment teams, communication becomes even more difficult, especially in agile
development processes”. The 8 practitioners that we interviewed in Chapter 4 also

142 Chapter 6. Conclusion

confirm that quality of JIT requirements (of what is written) is an important aspect
in their daily work.

Radliński (2012) conducted a preliminary investigation into the impact of re-
quirements engineering on software quality. One of his findings was that some
factors like having a requirement specification positively influence some quality
aspects like ‘Speed of Designing/Providing’. In our experience the same is true
for agile or JIT environments. Although these environments allow for easier cor-
rection of requirements mistakes, doing it right the first time can save time and
money. Eberlein and Leite (2002) confirm this by stating: “The agile community
claims that they do tackle requirements, but we think that this is poorly performed
requiring more validation cycles than necessary and relying too much on individu-
als. This, in the long run, may bring severe problems to the software organization
responsible for software built following an agile method”. For example, Fitzgerald
et al. (2012) conducted a study of feature requests failure in seven large projects.
They state that defects in the description of a feature request may cause faults in
the decision to either reject or accept a feature request. According to Fitzgerald
et al., these faults may, in turn, cause 5 different types of failures in the product or
development process: product failure, abandoned development, rejection reversal,
stalled development, removed feature.

We deem it necessary to conduct JIT-specific experiments to gather more data
on the impact of good/bad JIT requirements quality on the rest of the software
development process and the final product quality. In this way we would have
more quantitative data to back up our assumptions.

5. Tool Support for Checking JIT Requirements Quality
In Chapter 4 we have conducted a case study with 86 software engineers that each
manually inspected the quality of 20 open source feature requests. Our feeling is
that a number of the checks they had to do could be automated or at least sup-
ported with tools. E.g. the presence of words like ‘and, or, besides’ could indicate a
requirement that is not atomic. Some tools in this direction have already been de-
veloped for traditional requirements (e.g. (Gnesi et al. 2005), (Kiyavitskaya et al.
2008), (Verma and Kass 2008)) and can easily be adjusted to use in a JIT envi-
ronment. Some criteria in our framework are subjective (see Section 4.6), but it is
an interesting open question if we could develop automated support to reduce the
subjectivity of the check. Having a tool or automated support for checking JIT re-
quirements quality would make it even more feasible to include the quality checks
into the daily working practice of all agile/JIT development teams. As Eberlein and
Leite (2002) state “simple tools to check early requirements descriptions associated
with effective management practices for applying inspections, of course upon avail-
ability of check-lists, can improve the quality of agile processes, which usually only
rely on validation.”.

Appendix: Tables for Chapter 2

143

144 Tables for Chapter 2

Table A1: Analysis of Apache HTTPD duplicate feature requests (part 1 of 2)

Id ChildSummary Id ParentSummary Search D P F Type Comment
8516 ScriptAction to in-

voke a file instead of
a URL path?

7483 Add FileAction di-
rective to assign a
cgi interpreter other
than using registry
or shebang?

“script action
file"

N N Y Duplic.
solu-
tion

Marker wrowe
discusses child first
and spots duplicate
three months later
only

9792 Introduce DESTDIR
in Makefiles

7803 make install root=
from apache 1.3
doesn’t work in
2.0.35

“DESTDIR" Y Y Y Patch Parent is defect

10145 ShebangAlias config
directive - to keep
to make CGI scripts
more portable

7483 Add FileAction di-
rective to assign a
cgi interpreter other
than using registry
or shebang?

“shebang cgi" Y N Y Wording Last vote on parent
in 2003 but still AS-
SIGNED status

12241 adding svg and ico
mime-types

10993 Missing MIME type
image/x-icon

“svg ico mime" Y Y Y Patch N/A

13608 Catch-all vhost 13607 Catch-all en-
hancement for
vhost_alias?

N/A Y N Y Author Marked by two per-
sons at the same
time (but different
direction)

14335 AddOutputFilterBy
Type doesn’t work
with proxy requests

31226 AddOutputFilterBy
Type deflate not ac-
tive with mod_proxy

“AddOutput
FilterByType"

Y N N Defect Parent is a defect
that is reported
later than child

15965 make uninstall for
non default source
installations

11259 ‘make install’ should
provide a deinstaller

N/A Y N Y Wording Uninstall vs. Dein-
stall

16391 compressing logs us-
ing rotatelogs

28815 ErrorLog piped com-
mand doesn’t han-
dle redirections

N/A N N N Duplic.
solu-
tion

Same patch for two
different problems;
parent is a defect

17800 use of tags in index
generation makes
invalid HTML

9307 mod_autoindex gen-
erates bad HTML

“<pre>" Y N Y Wording Parent is defect
WONTFIX

21907 suggest that one can
set ExpiresByType
while other files
do not set expires
header

23748 “internal error: bad
expires code" if ex-
pires criteria aren’t
met

“ExpiresBy
Type"

Y Y N Patch Patch with parent;
parent was created
later

25444 ProxyPassReverse
always rewrites
redirects to same
scheme as request

21272 Support for full fixed
reverse mappings

“ProxyPassRe
verse"

Y N Y Wording N/A

28561 DOCUMENT_ROOT
is not using Virtual-
DocumentRoot

26052 DOCUMENT_ROOT
environment vari-
able set incorrectly
with VirtualDocu-
mentRoot

“DOCUMENT
_ROOT Vir
tualDocu
mentRoot"

Y N Y No
check
done

Parent has more
duplicates (de-
fects); much dis-
cussion on defect
or enhancement

29260 new v-hosting fea-
tures desired

40441 intelligently han-
dling dynamic
subdomains

N/A N N N Partial
match

Part of request is
answered in parent
3 years later which
has totally different
main question

29511 Adding virtualroot
for AuthUserFile
Directive

25469 create AuthRoot for
defining paths to
auth files

“AuthUserFile" Y N Y Wording N/A

30173 Extending FakeBasi-
cAuth

20957 New option SS-
LUserName

“FakeBasic
Auth"

Y Y Y Patch N/A

31383 OCSP support 41123 Support of OCSP in
mod_ssl (rewritten
patch from bug
#31383)

N/A Y Y N Version Created on purpose
with link to store
patch for new ver-
sion (see title)

D = Duplicate?; P = Patch included by author?; F = Parent created before child?

145

Table A2: Analysis of Apache HTTPD duplicate feature requests (part 2 of 2)

Id ChildSummary Id ParentSummary Search for D P F Type Comment
35805 New require

attribute for
mod_auth_ldap

31352 RFE, Bind to LDAP
server with browser
supplier user/pass

N/A N Y Y Duplic.
solu-
tion

May be found
when looking into
all enhancements
for component;
patch can be mod-
ified and applied;
author has marked
as duplicate

37287 Optionally make
mod_auth return
HTTP_FORBIDEEN
for failed login
attempts

40721 401 vs 403 in httpd “401 instead
of 403"

Y N N Wording Marking is 6 years
after creation

38153 Add Filename To
A Few Errors In
dav_method_put

38149 Add Filename To
A Few Errors In
dav_method_put

N/A Y N Y Author N/A

42341 chroot patch directly
after child creation

43596 Chroot patch “chroot" Y Y N Patch Both parent and
child have a patch
and authors com-
ment on each
other

42557 Missing parameter
to control LDAP
referral chasing

40268 Credentials are not
supplied when con-
necting to LDAP re-
ferrals

“LDAP refer-
ral"

Y Y Y Patch Component dif-
fers mod_ldap vs.
mod_authz_ldap;
parent is defect

47051 Subject Alternative
Name not used
while checking
certificate

32652 mod_ssl: match
hostnames against
subjectAltName
DNS names too

"X509" returns
long list, alter-
native: search
in mod_ssl
for previous
enhancements

Y Y Y Patch Subject Alternative
Name vs. subjec-
tAltName

48841 mod_proxy: Allow
loadfactor of 0.

51247 Enhance mod_proxy
and _balancer with
worker status flag
to only accept sticky
session routes

N/A N Y N Duplic.
solu-
tion /
Patch

Both describe a
patch with a differ-
ent solution for the
same problem (re-
move server from
load balancer);
duplicate was de-
tected by kmashint
(parentReporter)

49076 Skip document root
check during start
up (-T option)

41887 -T option unavail-
able for Apache
2.0.x/2.3.0 -
>available

N/A Y Y Y Patch /
Wrong

Wrong behavior to
create new request
for patch for new
version; author
refers to parent

50555 Allow mod_status
to show HTTP Host
header instead of
vhost name

45148 The actual host of
the request will
be more helpful in
mod_status, instead
of the server name

“Host header"
with com-
ponent
mod_status

Y Y Y Patch Search needed in
both summarry and
comments

50714 Enhance AllowCON-
NECT directive in
mod_proxy to allow
wildcard

23673 AllowCONNECT
cannot be con-
figured to allow
connections to all
ports

“AllowConnect" Y N Y Wording N/A

54002 [PATCH] Fallback-
Resource cannot be
disabled when it
was enabled in a
parent directory

54003 [PATCH] Fallback-
Resource cannot be
disabled when it
was enabled in a
parent directory

N/A Y N Y Author N/A

D = Duplicate?; P = Patch included by author?; F = Parent created before child?

Bibliography

Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE,
24(1):58–64.

Alspaugh, T. and Scacchi, W. (2013). Ongoing software development without clas-
sical requirements. In Int’l Req. Engineering Conference (RE), pages 165–174.

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., and Guéhéneuc, Y.-G. (2008). Is
it a bug or an enhancement?: A text-based approach to classify change requests.
In Proceedings of the 2008 Conference of the Center for Advanced Studies on Col-
laborative Research: Meeting of Minds, CASCON ’08, pages 23:304–23:318, New
York, NY, USA. ACM.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2002). Recov-
ering traceability links between code and documentation. Software Engineering,
IEEE Transactions on, 28(10):970–983.

Antoniol, G., Canfora, G., Casazza, G., and Lucia, A. D. (2000). Identifying the
starting impact set of a maintenance request: A case study. In Proceedings of the
European Conference on Software Maintenance and Reengineering (CSMR), pages
227–230. IEEE.

Auger, C. P. (1994). Information Sources in Grey Literature. Bowker-Saur.

Baysal, O., Holmes, R., and Godfrey, M. W. (2014). No issue left behind: Reduc-
ing information overload in issue tracking. In Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE 2014,
pages 666–677. ACM.

Beck (2002). Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

147

148 BIBLIOGRAPHY

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto
for agile software development. Available from http://agilemanifesto.org.
Last visited: April 16th, 2015.

Belsis, P., Koutoumanos, A., and Sgouropoulou, C. (2014). PBURC: a patterns-
based, unsupervised requirements clustering framework for distributed agile soft-
ware development. Requirements Engineering, 19(2):213–225.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann,
T. (2008a). What makes a good bug report? In Int’l Symp. on Foundations of
Software Engineering (FSE), pages 308–318. ACM.

Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S. (2008b). Duplicate bug
reports considered harmful ... really? In Proc. Int’l Conf. on Software Maintenance
(ICSM), pages 337–345. IEEE.

Bhasin, S. (2012). Quality assurance in agile: A study towards achieving excellence.
In AGILE India (AGILE INDIA), 2012, pages 64–67.

Binkley, D. and Lawrie, D. (2011). Maintenance and evolution: Information re-
trieval applications. In Encyclopedia of Software Engineering, chapter 49, pages
454–463. Taylor & Francis LLC.

Bjarnason, E., Unterkalmsteiner, M., Engström, E., and Borg, M. (2015). An indus-
trial case study on test cases as requirements. In Lassenius, C., Dingsøyr, T., and
Paasivaara, M., editors, Agile Processes, in Software Engineering, and Extreme Pro-
gramming, volume 212 of Lecture Notes in Business Information Processing, pages
27–39. Springer International Publishing.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from applying the systematic literature review process within the soft-
ware engineering domain. J. Syst. Software, 80(4):571–583.

Cao, L. and Ramesh, B. (2008). Agile requirements engineering practices: An em-
pirical study. IEEE Software, 25(1):60–67.

Cavalcanti, Y. C., da Cunha, C. E. A., de Almeida, E. S., and de Lemos Meira, S. R.
(2009). BAST - a tool for bug report analysis and search. In XXIII Simpósio
Brasileiro de Engenharia de Software (SBES), Fortaleza, Brazil.

Cavalcanti, Y. C., da Mota Silveira Neto, P. A., Lucrédio, D., Vale, T., de Almeida,
E. S., and de Lemos Meira, S. R. (2013a). The bug report duplication problem:
an exploratory study. Software Quality Journal, 21(1):39–66.

http://agilemanifesto.org

BIBLIOGRAPHY 149

Cavalcanti, Y. C., da Mota Silveira Neto, P. A., Machado, I. d. C., Vale, T. F.,
de Almeida, E. S., and de Lemos Meira, S. R. (2013b). Challenges and oppor-
tunities for software change request repositories: a systematic mapping study.
Journal of Software: Evolution and Process, 26(7):620–653.

Cleland-Huang, J. (2012). Traceability in agile projects. In Software and Systems
Traceability, pages 265–275. Springer London.

Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker, J. (2010). A machine
learning approach for tracing regulatory codes to product specific requirements.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering (ICSE), pages 155–164. ACM.

Cleland-Huang, J., Dumitru, H., Duan, C., and Castro-Herrera, C. (2009). Auto-
mated support for managing feature requests in open forums. Commun. ACM,
52(10):68–74.

Cleland-Huang, J., Gotel, O., and Zisman, A., editors (2012). Software and Systems
Traceability. Springer.

Cockburn, A. (2000). Writing Effective Use Cases. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1st edition.

Cohn, M. (2004). User Stories Applied: For Agile Software Development. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

Corbucci, H. and Goldman, A. (2010). Open source and agile methods: Two
worlds closer than it seems. In Sillitti, A., Martin, A., Wang, X., and Whitworth,
E., editors, Agile Processes in Software Engineering and Extreme Programming,
volume 48 of Lecture Notes in Business Information Processing, pages 383–384.
Springer Berlin Heidelberg.

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke, R. (2009).
A systematic survey of program comprehension through dynamic analysis. Soft-
ware Engineering, IEEE Transactions on, 35(5):684–702.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed meth-
ods approaches. Sage publications.

Dalle, J.-M. and den Besten, M. (2010). Voting for bugs in Firefox: A voice for mom
and dad? In OSS, volume 319 of IFIP Advances in Information and Communication
Technology, pages 73–84. Springer.

Davis, A. and Hickey, A. (2009). A quantitative assessment of requirements en-
gineering publications – 1963-2008. In Glinz, M. and Heymans, P., editors, Re-
quirements Engineering: Foundation for Software Quality, volume 5512 of Lecture
Notes in Computer Science, pages 175–189. Springer Berlin Heidelberg.

150 BIBLIOGRAPHY

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., and Theofanos, M. (1993).
Identifying and measuring quality in a software requirements specification. In
Int’l Software Metrics Symposium, pages 141–152.

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., and Panichella, S. (2013).
Applying a smoothing filter to improve IR-based traceability recovery processes:
An empirical investigation. Inf. Softw. Technol., 55(4):741–754.

De Lucia, A., Fasano, F., and Oliveto, R. (2008). Traceability management for impact
analysis. In Frontiers of Software Maintenance (FoSM), pages 21–30. IEEE.

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. (2006). Can information
retrieval techniques effectively support traceability link recovery? In Program
Comprehension, 2006. ICPC 2006. 14th IEEE International Conference on, pages
307–316.

De Lucia, A. and Qusef, A. (2010). Requirements engineering in agile software
development. Journal of Emerging Technologies in Web Intelligence, 2(3).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

Denger, C. and Olsson, T. (2005). Quality assurance in requirements engineer-
ing. In Aurum, A. and Wohlin, C., editors, Engineering and Managing Software
Requirements, pages 163–185. Springer Berlin Heidelberg.

Desharnais, J.-M., Kocaturk, B., and Abran, A. (2011). Using the COSMIC method to
evaluate the quality of the documentation of agile user stories. In Software Mea-
surement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l Con-
ference on Software Process and Product Measurement (IWSM-MENSURA), pages
269–272.

Dietze, S. (2005). Agile requirements definition for software improvement and
maintenance in open source software development. In Proc. Int’l Workshop on
Situational Requirements Engineering Processes, pages 176–187.

Dingsoyr, T., Dyba, T., and Abrahamsson, P. (2008). A preliminary roadmap for
empirical research on agile software development. In Agile, 2008. AGILE ’08.
Conference, pages 83–94.

Doran, G. T. (1981). There’s a SMART way to write management’s goals and ob-
jectives. Management Review, 70(11):35–36.

Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science
and Technology, 38(1):188–230.

BIBLIOGRAPHY 151

Dumas-Monette, J.-F. and Trudel, S. (2014). Requirements engineering quality
revealed through functional size measurement: An empirical study in an agile
context. In Software Measurement and the International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2014 Joint Conference of
the International Workshop on, pages 222–232.

Duncan, R. (2001). The quality of requirements in extreme programming.
CrossTalk, June, 19:22–31.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software development:
A systematic review. Inf. Softw. Technol., 50(9-10):833–859.

Eberlein, A. and Leite, J. (2002). Agile requirements definition: A view from re-
quirements engineering. In Proceedings of the International Workshop on Time-
Constrained Requirements Engineering (TCRE’02), pages 4–8.

Ernst, N. A., Borgida, A., Jureta, I. J., and Mylopoulos, J. (2014a). Agile require-
ments engineering via paraconsistent reasoning. Information Systems, 43:100–
116.

Ernst, N. A., Borgida, A., Jureta, I. J., and Mylopoulos, J. (2014b). An overview of
requirements evolution. In Evolving Software Systems, pages 3–32. Springer.

Ernst, N. A. and Murphy, G. (2012). Case studies in just-in-time requirements anal-
ysis. In Int’l Workshop on Empirical Requirements Engineering, pages 25–32. IEEE.

Ernst, N. A., Mylopoulos, J., and Wang, Y. (2009). Requirements evolution and
what (research) to do about it. In Design Requirements Engineering: A Ten-Year
Perspective, volume 14 of LNBIP, pages 186–214. Springer.

Farid, W. and Mitropoulos, F. (2013). NORPLAN: Non-functional requirements plan-
ning for agile processes. In Southeastcon, 2013 Proceedings of IEEE, pages 1–8.

Firesmith, D. (2004). Generating complete, unambiguous, and verifiable require-
ments from stories, scenarios, and use cases. Journal of Object Technology,
3(10):27–40.

Fitzgerald, C., Letier, E., and Finkelstein, A. (2012). Early failure prediction in fea-
ture request management systems: an extended study. Requirements Engineering,
17(2):117–132.

Génova, G., Fuentes, J., Llorens, J., Hurtado, O., and Moreno, V. (2013). A frame-
work to measure and improve the quality of textual requirements. Requirements
Engineering, 18(1):25–41.

Gnesi, S., Fabbrini, F., Fusani, M., and Trentanni, G. (2005). An automatic tool for
the analysis of natural language requirements. CRL Publishing: Leicester, 20:53–
62.

152 BIBLIOGRAPHY

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher, P.,
Dekhtyar, A., Antoniol, G., Maletic, J. I., and Mäder, P. (2012). Traceability fun-
damentals. In Cleland-Huang et al. (2012), pages 3–22.

Gotel, O. C. Z. and Finkelstein, A. (1994). An analysis of the requirements trace-
ability problem. In Proceedings of the First IEEE International Conference on Re-
quirements Engineering (ICRE), pages 94–101. IEEE.

Gottesdiener, E. and Gorman, M. (2010). Slicing requirements for agile success.
Better Software, 2010(04).

Grau, R., Lauenroth, K., Bereza, B., van Veenendaal, E., and van der Zee, S. (2014).
Requirements engineering and agile development-collaborative, just enough, just
in time, sustainable.

Gu, H., Zhao, L., and Shu, C. (2011). Analysis of duplicate issue reports for issue
tracking system. In Int’l Conf on Data Mining and Intelligent Information Technol-
ogy Applications (ICMiA), pages 86–91.

Hayes, J. H., Dekhtyar, A., and Osborne, J. (2003). Improving requirements tracing
via information retrieval. 2003 11th IEEE International Requirements Engineering
Conference (RE), 0:138.

Heck, P. (2014). JIT requirements quality framework (Figshare). http://dx.doi.
org/10.6084/m9.figshare.938214.

Heck, P., Klabbers, M., and van Eekelen, M. C. J. D. (2010). A software product
certification model. Software Quality Journal, 18(1):37–55.

Heck, P. and Parviainen, P. (2008). Experiences on analysis of requirements quality.
In Int’l Conf. on Softw. Eng. Advances (ICSEA), pages 367–372. IEEE.

Heck, P. and Zaidman, A. (2013). An analysis of requirements evolution in open
source projects: Recommendations for issue trackers. In Int’l Workshop on Prin-
ciples of Software Evolution (IWPSE), pages 43–52. ACM.

Heck, P. and Zaidman, A. (2014a). Horizontal traceability for JIT requirements
(Figshare). http://dx.doi.org/10.6084/m9.figshare.1030568.

Heck, P. and Zaidman, A. (2014b). Horizontal traceability for just-in-time require-
ments: the case for open source feature requests. Journal of Software: Evolution
and Process, 26(12):1280–1296.

Heck, P. and Zaidman, A. (2014c). A quality framework for agile requirements:
A practitioner’s perspective. Technical Report TUD-SERG-2014-006, Software
Engineering Research Group, Delft University of Technology.

http://dx.doi.org/10.6084/m9.figshare.938214
http://dx.doi.org/10.6084/m9.figshare.938214
http://dx.doi.org/10.6084/m9.figshare.1030568

BIBLIOGRAPHY 153

Heck, P. and Zaidman, A. (2015a). A framework for quality assessment of just-
in-time requirements. the case of open source feature requests. Requirements
Engineering Journal, Under submission.

Heck, P. and Zaidman, A. (2015b). Quality criteria for just-in-time requirements:
Just enough, just-in-time? In Proc. JITRE, pages 1–4. IEEE.

Heck, P. and Zaidman, A. (2016). A systematic literature review on quality criteria
for agile requirements specifications. Software Quality Journal, Under submission.

Herzig, K., Just, S., Rau, A., and Zeller, A. (2013). Classifying code changes and pre-
dicting defects using change genealogies. Technical report, Software Engineer-
ing Chair, Saarland University, Dept. of Informatics. https://www.st.cs.uni-

saarland.de/publications/details/herzig-genealogytechreport-2011/.

Herzig, K., Just, S., and Zeller, A. (2012). It’s not a bug, it’s a feature: How misclas-
sification impacts bug prediction. Technical report, Universitaet des Saarlandes,
Saarbruecken, Germany.

Huo, M., Verner, J., Zhu, L., and Babar, M. (2004). Software quality and agile
methods. In Int’l Computer Software and Applications Conference, pages 520–525,
vol.1.

IEEE (1990). IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84.

IEEE-830 (1998). IEEE recommended practice for software requirements specifi-
cations. IEEE Std 830-1998.

IIBA (2009). A guide to the business analysis body of knowledge (BABOK Guide).
International Institute of Business Analysis (IIBA).

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., and Shamshirband, S. (2014).
A systematic literature review on agile requirements engineering practices and
challenges. Computers in Human Behavior.

Jalbert, N. and Weimer, W. (2008). Automated duplicate detection for bug tracking
systems. In Proc. Int’l Conf. on Dependable Systems and Networks (DSN), pages
52–61.

Kabbedijk, J., Bezemer, C.-P., Jansen, S., and Zaidman, A. (2015). Defining multi-
tenancy: A systematic mapping study on the academic and the industrial per-
spective. Journal of Systems and Software, 100:139–148.

Kamata, M. and Tamai, T. (2007). How does requirements quality relate to project
success or failure? In Int’l Req. Engineering Conference (RE), pages 69–78.

https://www.st.cs.uni-saarland.de/publications/details/herzig-genealogytechreport-2011/
https://www.st.cs.uni-saarland.de/publications/details/herzig-genealogytechreport-2011/

154 BIBLIOGRAPHY

Kassab, M. (2014). An empirical study on the requirements engineering practices
for agile software development. In Software Engineering and Advanced Applica-
tions (SEAA), 2014 40th EUROMICRO Conference on, pages 254–261.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic liter-
ature reviews in software engineering. Technical report, Technical report, EBSE
Technical Report EBSE-2007-01.

Kitchenham, B. A. (2004). Procedures for performing systematic reviews. Techni-
cal report, Technical Report TR/SE-0401, Keele University, and Technical Report
0400011T.1, National ICT Australia.

Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, D. (2008). Requirements for tools
for ambiguity identification and measurement in natural language requirements
specifications. Requirements Engineering, 13(3):207–239.

Knauss, E. and El Boustani, C. (2008). Assessing the quality of software require-
ments specifications. In Int’l Req. Engineering Conference (RE), pages 341–342.

Ko, A. J., Myers, B. A., and Chau, D. H. (2006). A linguistic analysis of how people
describe software problems. In Proceedings of the Visual Languages and Human-
Centric Computing (VLHCC), pages 127–134. IEEE Computer Society.

Koch, S. (2004). Agile principles and open source software development: A theo-
retical and empirical discussion. In Extreme Programming and Agile Processes in
Software Engineering, pages 85–93. Springer.

Kulshreshtha, V., Boardman, J. T., and Verma, D. (2012). The emergence of require-
ments networks: the case for requirements inter-dependencies. IJCAT, 45(1):28–
41.

Lee, C., Guadagno, L., and Jia, X. (2003). An agile approach to capturing require-
ments and traceability. In Proceedings of the 2nd International Workshop on Trace-
ability in Emerging Forms of Software Engineering, pages 17–23.

Lee, M. (2002). Just-in-time requirements analysis—the engine that drives the
planning game. In Proceedings 3rd International Conference Extreme Programming
and Agile Processes in Software Engineering, pages 138–141.

Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, 1st edition.

Lehman, M. M. (1984). On understanding laws, evolution, and conservation in the
large-program life cycle. Journal of Systems and Software, 1:213–221.

Li, J., Zhang, H., Zhu, L., Jeffery, R., Wang, Q., and Li, M. (2012). Preliminary
results of a systematic review on requirements evolution. In Proc. Int’l Conf. on
Evaluation Assessment in Software Engineering (EASE), pages 12–21. IEEE.

BIBLIOGRAPHY 155

Liskin, O., Pham, R., Kiesling, S., and Schneider, K. (2014a). Why we need a granu-
larity concept for user stories. In Cantone, G. and Marchesi, M., editors, Agile Pro-
cesses in Software Engineering and Extreme Programming, volume 179 of Lecture
Notes in Business Information Processing, pages 110–125. Springer International
Publishing.

Liskin, O., Schneider, K., Fagerholm, F., and Münch, J. (2014b). Understanding
the role of requirements artifacts in kanban. In Proceedings of the 7th Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE 2014, pages 56–63, New York, NY, USA. ACM.

Lormans, M., van Deursen, A., and Groß, H.-G. (2008). An industrial case study in
reconstructing requirements views. Empirical Software Engineering, 13(6):727–
760.

Lucassen, G., Dalpiaz, F., Brinkkemper, S., and van der Werf, J. (2015). Forging
high-quality user stories: Towards a discipline for agile requirements. Proceedings
of the IEEE International Requirements Engineering Conference.

Lucia, A. D., Fasano, F., Oliveto, R., and Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval meth-
ods. ACM Trans. Softw. Eng. Methodol., 16(4).

Maarek, Y. S., Berry, D. M., and Kaiser, G. E. (1991). An information retrieval
approach for automatically constructing software libraries. IEEE Trans. Software
Eng., 17(8):800–813.

Maletic, J. I. and Marcus, A. (2001). Supporting program comprehension using
semantic and structural information. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE), pages 103–112. IEEE Computer Soci-
ety.

Marcus, A. and Maletic, J. (2003). Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Software Engineering, 2003. Pro-
ceedings. 25th International Conference on, pages 125–135.

Marcus, A. and Maletic, J. I. (2001). Identification of high-level concept clones in
source code. In Proceedings of the 16th IEEE International Conference on Auto-
mated Software Engineering (ASE), pages 107–114. IEEE Computer Society.

Marcus, A., Maletic, J. I., and Sergeyev, A. (2005). Recovery of traceability links
between software documentation and source code. International Journal of Soft-
ware Engineering and Knowledge Engineering, 15(5):811–836.

156 BIBLIOGRAPHY

Martakis, A. and Daneva, M. (2013). Handling requirements dependencies in agile
projects: A focus group with agile software development practitioners. In Re-
search Challenges in Information Science (RCIS), 2013 IEEE Seventh International
Conference on, pages 1–11.

Matharu, G. S., Mishra, A., Singh, H., and Upadhyay, P. (2015). Empirical study
of agile software development methodologies: A comparative analysis. SIGSOFT
Softw. Eng. Notes, 40(1):1–6.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in software quality.
In Nat’l Tech.Information Service, no. Vol. 1, 2 and 3. General Electric Company.

Meade, A. W. and Craig, S. B. (2012). Identifying careless responses in survey data.
Psychological Methods, 17(3):437–455.

Melnik, G., Maurer, F., and Chiasson, M. (2006). Executable acceptance tests for
communicating business requirements: customer perspective. In Agile Confer-
ence, 2006, pages 12 pp.–46.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309–346.

Moreno, L., Bandara, W., Haiduc, S., and Marcus, A. (2013). On the relationship
between the vocabulary of bug reports and source code. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 452–455. IEEE.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2004). Speeding
up requirements management in a product software company: Linking customer
wishes to product requirements through linguistic engineering. 2012 20th IEEE
International Requirements Engineering Conference (RE), 0:283–294.

Nawrocki, J., Ochodek, M., Jurkiewicz, J., Kopczyńska, S., and Alchimowicz, B.
(2014). Agile requirements engineering: A research perspective. In Geffert, V.,
Preneel, B., Rovan, B., Štuller, J., and Tjoa, A., editors, SOFSEM 2014: Theory and
Practice of Computer Science, volume 8327 of Lecture Notes in Computer Science,
pages 40–51. Springer International Publishing.

Noll, J. (2008). Requirements acquisition in open source development: Firefox 2.0.
In OSS, volume 275 of IFIP, pages 69–79. Springer.

Noll, J. and Liu, W.-M. (2010). Requirements elicitation in open source software
development: a case study. In Proc. Int’l Workshop on Emerging Trends in FLOSS
Software Research and Development, pages 35–40. ACM.

North, D. (2006). Behavior modification. Better Software, 2006.

BIBLIOGRAPHY 157

Oliveto, R., Gethers, M., Poshyvanyk, D., and Lucia, A. D. (2010). On the equiva-
lence of information retrieval methods for automated traceability link recovery.
In Proceedings of the IEEE International Conference on Program Comprehension
(ICPC), pages 68–71. IEEE Computer Society.

Paetsch, F., Eberlein, A., and Maurer, F. (2003). Requirements engineering and agile
software development. In Int’l Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 308–308. IEEE.

Patel, C. and Ramachandran, M. (2009). Story card maturity model (SMM): A
process improvement framework for agile requirements engineering practices.
JSW, 4(5):422–435.

Philippo, E. J., Heijstek, W., Kruiswijk, B., Chaudron, M. R., and Berry, D. M. (2013).
Requirement ambiguity not as important as expected –— results of an empirical
evaluation. In Requirements Engineering: Foundation for Software Quality, pages
65–79. Springer.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Poshyvanyk, D., Guéhéneuc, Y.-G., Marcus, A., Antoniol, G., and Rajlich, V. (2007).
Feature location using probabilistic ranking of methods based on execution sce-
narios and information retrieval. IEEE Trans. Software Eng., 33(6):420–432.

Power, K. (2014). Definition of ready: An experience report from teams at Cisco.
In Cantone, G. and Marchesi, M., editors, Agile Processes in Software Engineering
and Extreme Programming, volume 179 of Lecture Notes in Business Information
Processing, pages 312–319. Springer International Publishing.

Qusef, A., Bavota, G., Oliveto, R., Lucia, A. D., and Binkley, D. (2014). Recovering
test-to-code traceability using slicing and textual analysis. Journal of Systems and
Software, 88:147–168.

Radliński, L. (2012). Empirical analysis of the impact of requirements engineer-
ing on software quality. In Regnell, B. and Damian, D., editors, Requirements
Engineering: Foundation for Software Quality, volume 7195 of Lecture Notes in
Computer Science, pages 232–238. Springer Berlin Heidelberg.

Ramesh, B., Cao, L., and Baskerville, R. (2010). Agile requirements engineer-
ing practices and challenges: an empirical study. Information Systems Journal,
20(5):449–480.

Robertson, J. and Robertson, S. (2000). Volere: Requirements specification tem-
plate. Technical report, Technical Report Edition 6.1, Atlantic Systems Guild.

Rubin, E. and Rubin, H. (2011). Supporting agile software development through
active documentation. Requir. Eng., 16(2):117–132.

158 BIBLIOGRAPHY

Runeson, P., Alexandersson, M., and Nyholm, O. (2007). Detection of duplicate
defect reports using natural language processing. In Proc. Int’l Conf. on Software
Engineering (ICSE), pages 499–510. IEEE.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical Softw. Engineering, 14(2):131–
164.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case Study Research in
Software Engineering: Guidelines and Examples. Wiley.

Salman, I., Misirli, A. T., and Juristo, N. (2015). Are students representatives of
professionals in software engineering experiments? In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE ’15, pages 666–
676, Piscataway, NJ, USA. IEEE Press.

Sandusky, R. J., Gasser, L., and Ripoche, G. (2004). Bug report networks: Vari-
eties, strategies, and impacts in a F/OSS development community. In Proc. Int’l
Workshop on Mining Software Repositories (MSR), pages 80–84.

Santhiappan, S. and Gopalan, V. P. (2010). Finding optimal rank for LSI models. In
Proceedings of ICAET.

Scacchi, W. (2001). Understanding the requirements for developing open source
software systems. In IEE Proceedings - Software, pages 24–39.

Scacchi, W. (2009). Understanding requirements for open source software. Springer.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

Sfetsos, P. and Stamelos, I. (2010). Empirical studies on quality in agile practices:
A systematic literature review. In Quality of Information and Communications
Technology (QUATIC), 2010 Seventh International Conference on the, pages 44–
53.

Sillitti, A. and Succi, G. (2005). Requirements engineering for agile methods. In
Aurum, A. and Wohlin, C., editors, Engineering and Managing Software Require-
ments, pages 309–326. Springer Berlin Heidelberg.

Srinivasan, J. and Lundqvist, K. (2009). Using agile methods in software product
development: A case study. In Information Technology: New Generations, 2009.
ITNG ’09. Sixth International Conference on, pages 1415–1420.

Staples, M. and Niazi, M. (2007). Experiences using systematic review guidelines.
J. Syst. Software, 80(9):1425–1437.

BIBLIOGRAPHY 159

Stapleton, P. (2013). Agile Extension to the BABOK Guide. International Institute of
Business Analysis.

Sun, C., Lo, D., Khoo, S.-C., and Jiang, J. (2011). Towards more accurate retrieval
of duplicate bug reports. In Proc. Int’l Conf. on Automated Software Engineering
(ASE), pages 253–262. IEEE.

Sun, C., Lo, D., Wang, X., Jiang, J., and Khoo, S.-C. (2010). A discriminative model
approach for accurate duplicate bug report retrieval. In Proc. Int’l Conf. on Soft-
ware Engineering (ICSE), pages 45–54.

Tian, Y., Sun, C., and Lo, D. (2012). Improved duplicate bug report identification. In
Proc. European Conf. on Software Maintenance and Reengineering (CSMR), pages
385–390. IEEE.

Verma, K. and Kass, A. (2008). Requirements analysis tool: A tool for automatically
analyzing software requirements documents. In Sheth, A., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., and Thirunarayan, K., editors, The Semantic
Web - ISWC 2008, volume 5318 of Lecture Notes in Computer Science, pages 751–
763. Springer Berlin Heidelberg.

Vlas, R. and Robinson, W. (2011). A rule-based natural language technique for
requirements discovery and classification in open-source software development
projects. In 44th Hawaii International Conference on System Sciences (HICSS),
pages 1–10.

Wake, B. (2003). INVEST in good stories, and SMART tasks. http://xp123.

com/articles/invest-in-good-stories-and-smart-tasks/. [Accessed Nov-
2013].

Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. (2008). An approach to detecting
duplicate bug reports using natural language and execution information. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 461–470. ACM.

Warsta, J. and Abrahamsson, P. (2003). Is open source software development essen-
tially an agile method? In Workshop on Open Source Softw. Eng., pages 143–147.

Wieringa, R., Maiden, N., Mead, N., and Rolland, C. (2005). Requirements engi-
neering paper classification and evaluation criteria: A proposal and a discussion.
Requir. Eng., 11(1):102–107.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the International Conference
on Evaluation and Assessment in Software Engineering (EASE), pages 38:1–38:10.
ACM.

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

160 BIBLIOGRAPHY

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2000). Experimentation in Software Engineering: An Introduction. Kluwer Aca-
demic Publishers, Norwell, MA, USA.

Yin, R. K. (2013). Case Study Research: Design and Methods, 5th edition. Sage
Publications.

Zaidman, A., Pinzger, M., and van Deursen, A. (2010). Software evolution. In
Laplante, P. A., editor, Encyclopedia of Software Engineering, pages 1127–1137.
Taylor & Francis.

Summary

QUALITY OF JUST-IN-TIME REQUIREMENTS: JUST-ENOUGH AND
JUST-IN-TIME

– Petra Heck –

The goal of this thesis was to obtain a deeper understanding of the notion of
quality for Just-in-Time (JIT) Requirements. JIT requirements are the opposite of
up-front requirements. JIT requirements are not analyzed or defined until they are
needed meaning that development is allowed to begin with incomplete require-
ments.

We started our analysis by investigating one specific format of JIT requirements:
open source feature requests. We discovered that in open source projects there is the
problem of many duplicate feature requests. We found seven different categories
for those duplicates. Analyzing the duplicates has also led to recommendations for
manual search and creation of feature requests. Furthermore we have indicated
possible tool support to avoid duplicate feature requests.

One possibility for tool support is to visualize so-called feature request networks.
For this one needs to have the links between feature requests. We show that it is
possible to detect horizontal traceability links between feature requests by using a
Vector Space Model with TF-IDF as a weighing scheme. We have determined the
optimal preprocessing steps for the feature requests to be used for our text-based
analysis. Using a more advanced technique like Latent Semantic Analysis takes
significantly more processing time without yielding better results in the three open
source projects that we have included in our experiment.

Then we took a step back to look at quality criteria for JIT requirements in
general. We developed a framework for those quality criteria and constructed a
specific list of quality criteria for open source feature requests. We used agile user
stories to indicate how the framework could be customized for other types of JIT

161

162 Summary

requirements. We conducted interviews with agile practitioners to evaluate our
framework. After their positive feedback we conducted a case study in three open
source projects in which we used our framework to score the quality of feature
requests. This case study also led to recommendations for practitioners working
with feature requests.

We conclude this thesis with a broader perspective on JIT requirements qual-
ity by presenting the results of a systematic literature review on quality criteria for
agile requirements. This review resulted in a list of 28 quality criteria for JIT re-
quirements, recommendations for practitioners working on quality assessment of
agile requirements and a research agenda on quality of agile requirements.

To conclude we claim that the quality of Just-in-Time Requirements can be char-
acterized as ‘Just-Enough and Just-in-Time Quality’. Our framework can be used to
define what Just-Enough and Just-in-Time mean for the specific JIT environment.

Samenvatting

Kwaliteit van Just-in-Time Requirements: net voldoende en net op tijd

– Petra Heck –

Het doel van dit proefschrift was om een diepgaander begrip te krijgen van de
kwaliteitsdefinitie voor Just-in-Time Requirements. Just-in-time (JIT) Requirements
zijn eisen voor een softwaresysteem die gaandeweg (i.e. net op tijd, just-in-time) de
ontwikkeling van het systeem worden vastgesteld. Dit in tegenstelling tot eisen die
volledig worden vastgelegd voordat de ontwikkeling van het systeem begint. JIT-
eisen worden niet geanalyseerd of gedefinieerd totdat ze nodig zijn. Dit betekent
dat de softwareont-wikkeling mag starten met incomplete eisen.

We zijn onze analyse begonnen met het onderzoeken van één specifiek type
JIT-eisen: open source feature requests. We ontdekten dat in open source projec-
ten het probleem bestaat dat er veel dubbele feature requests zijn. We hebben ze-
ven verschillende categorieën gevonden voor die dubbelen. Het analyseren van
de dubbelen heeft ook aanbevelingen opgeleverd voor handmatig zoeken naar fea-
ture requests en voor het creëren van nieuwe feature requests. Bovendien hebben
we aangegeven welke tools ondersteuning kunnen bieden bij het voorkomen van
dubbele feature requests.

Een van de mogelijkheden voor ondersteuning door tools is om netwerken van
feature requests te visualiseren. Daarvoor is het nodig om de relaties tussen feature
requests te kennen. We laten zien dat het mogelijk is om horizontale traceerbaar-
heidsrelaties tussen feature requests te detecteren, gebruikmakend van een vector-
ruimtemodel met TF-IDF als weegfactor. We hebben de optimale voorbewerking
van de feature requests bepaald om deze tekstgebaseerde analyse toe te kunnen
passen. Het gebruik van een meer geavanceerde techniek zoals Latente Seman-
tische Analyse kost significant meer processortijd zonder tot betere resultaten te
leiden voor de drie open source projecten in ons experiment.

163

164 Samenvatting

Daarna hebben we een stap teruggezet om de kwaliteitscriteria voor JIT-eisen
in zijn algemeenheid te bekijken. We hebben een raamwerk ontwikkeld voor die
kwaliteitscriteria en een specifieke lijst met kwaliteitscriteria voor open source fea-
ture requests opgesteld. We hebben agile user stories gebruikt om aan te geven hoe
het raamwerk toegepast kan worden voor andere typen van JIT-eisen. We hebben
interviews gehouden met mensen uit de agile-praktijk om ons raamwerk te evalu-
eren. Na hun positieve feedback hebben we een studie uitgevoerd met drie open
source projecten waarin we ons raamwerk hebben gebruikt om de kwaliteit van
de feature requests te scoren. Deze studie heeft ook geleid tot aanbevelingen voor
beroepsbeoefenaars die met feature requests werken.

We eindigen dit proefschrift met een breder perspectief op kwaliteit van JIT-
eisen door de resultaten van een systematisch literatuuronderzoek op het gebied
van kwaliteitscriteria voor agile requirements te presenteren. Dit onderzoek resul-
teerde in een lijst van 28 kwaliteitscriteria voor JIT-eisen, aanbevelingen voor be-
roepsbeoefenaars die werken met kwaliteitsbeoordeling van agile requirements en
een onderzoeksagenda voor kwaliteit van agile requirements.

Tot slot kunnen we zeggen dat de kwaliteit van JIT-eisen kan worden gekarak-
teriseerd als ‘net-voldoende en net-op-tijd kwaliteit’. Ons raamwerk kan gebruikt
worden om te definiëren wat net-voldoende en net-op-tijd betekenen voor een spe-
cifieke JIT-omgeving.

Curriculum Vitae

Ir. Petra Marianne Heck
Born: June 1st , 1979
in Sittard, The Netherlands.

Education
2012 – 2016: Ph.D., Computer Science

Delft University of Technology, Delft, The Netherlands. Under the supervision
of Prof.dr. Arie van Deursen.

1996 – 2002: M.Sc., Computer Science, Cum Laude
Eindhoven University of Technology, Eindhoven, The Netherlands.

1996 – 1997: First-Year Diploma, Mathematics
Eindhoven University of Technology, Eindhoven, The Netherlands.

Work Experience
September 2012 – March 2016: Part-Time Assistant in Opleiding (AIO). Research

Trainee
Software Technology Department, Delft University of Technology. Mekelweg
4, 2628CD Delft, The Netherlands.

September 2012 – now: Lecturer Software Engineering
Fontys Hogeschool ICT, Fontys Applied University. Rachelsmolen 1, 5612MA
Eindhoven, The Netherlands.

2008 – 2011: Senior Consultant in the area of Quality Management, Testing
and Requirements
SQS Geneva, SQS Switzerland. Rue du Vieux-Collège 10, 1204 Genève, Switzer-
land.

165

166 Curriculum Vitae

2004 – 2008: Consultant and Researcher in the area of Software Verification
& Validation
Laboratory for Quality Software (LaQuSo), Eindhoven University of Technol-
ogy. Den Dolech 2, 5612AZ Eindhoven, The Netherlands.

2002 – 2004: Software Engineer
Web Development Group, Organon NV. Kloosterstraat 6, 5349AB Oss, The
Netherlands.

Review Experience
• Served as PC member for the First International Workshop on Just-in-Time Re-

quirements Engineering (JITRE’15)

• Served as PC member for the Industry track of the International Conference on
Software Maintenance (ICSM’13)

Publications
• P. Heck, A. Zaidman. A systematic literature review on quality criteria for agile

requirements. In Software Quality Journal, Under submission.

• P. Heck, A. Zaidman. A framework for quality assessment of just-in-time require-
ments. The case of open source feature requests. In Requirements Engineering
Journal, Under submission.

• P. Heck, A. Zaidman. Quality criteria for just-in-time requirements. Just enough,
just-in-time?. In International Workshop on Just-in-Time Requirements Engi-
neering (JITRE’15), 2015

• P. Heck, A. Zaidman. Horizontal traceability for just-in-time requirements: the
case for open source feature requests. In Journal of Software: Evolution and
Process, 2014

• P. Heck, A. Zaidman. An analysis of requirements evolution in open source projects:
Recommendations for issue trackers. In Proceedings of the Internationall Work-
shop on Principles of Software Evolution (IWPSE’13), 2013

• M. Arendsen, J. Cannegieter, A. Grund, P. Heck, S. de Klerk, J. Zandhuis. Succes
met de requirements!, Book in Dutch published by Academic Service, 1st print
2008, 2nd print 2010, 3rd print 2012

• P. Heck, M. Klabbers, M. van Eekelen. A software product certification model. In
Software Quality Journal, 2010

167

• P. Heck, P. Parviainen. Experiences on Analysis of Requirements Quality. In
Proceedings of the Third International Conference on Software Engineering Ad-
vances (ICSEA’08), 2008

• P. Heck. Quality Business Process Descriptions for Information System Develop-
ment. In Proceedings of the 10th International Conference on Quality Engineer-
ing in Software Technology (CONQUEST’07), 2007

• P. Heck. Constructing Consistent User Requirements. Lessons Learnt from Re-
quirements Verification. In Proceedings of the Ninth International Conference
on Enterprise Information Systems (ICEIS’07), 2007

• P. Heck. Verification of SOA Orchestration. In Proceedings of the 9th International
Conference on Quality Engineering in Software Technology (CONQUEST’06),
2006

• P. Heck. A Maturity Model for Software Product Certification. In Proceedings of
the International Workshop on Software Certification (CERTSOFT’06), 2006

• P. Heck, A. Serebrenik, M. van Eekelen. Tools en Technieken voor Kwaliteitsbepal-
ing van Productsoftware. In Ondernemen met Productsoftware (Proceedings
of the Nationaal Productsoftware Congres), 2006

• A. Serebrenik, P. Heck. Software verification and validation. In Handbook EDP,
2006

• S. Roubtsov, P. Heck. Use Case-Based Acceptance Testing of a Large Industrial Sys-
tem: Approach and Experience Report. In Proceedings of the Testing: Academia
and Industry Conference - Practice And Research Techniques (TAIC PART’06),
2006

Titles in the IPA Dissertation Series
since 2013

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Au-
tomata. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineering,

Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

169

170 IPA Dissertation Series since 2013

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for mov-
ing points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods in
Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and Formal
Mathematics — Web Technology meets
Proof Assistants. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-

tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Carto-
graphic Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communi-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-11

171

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Mod-
eling: Software Product Lines and Be-
yond. Faculty of Mathematics and Nat-
ural Sciences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natu-
ral Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic
Design of ABCs with the Real World. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibil-
ity and Trustworthiness. Faculty of

Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Ob-
taining and understanding fixpoints in
model checking. Faculty of Mathematics
and Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in
the analysis of the EMV and TLS se-
curity protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

172 IPA Dissertation Series since 2013

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Faculty
of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics
and Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Sci-
ence, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-

tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Re-
quirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2016-05

173

	Acknowledgements
	Introduction
	Background on Just-in-Time Requirements Engineering
	Current State of the Research Field
	Problem Statement
	Research Methodology
	Contributions
	Thesis Outline
	Origin of Chapters

	Just-in-Time Requirements in Open Source Projects: Feature Requests
	Open Source Requirements
	Duplicate Feature Requests
	Assisting Users to Avoid Duplicate Requests
	Related Work
	Discussion and Future Work
	Conclusion

	Horizontal Traceability of Open Source Feature Requests
	Background
	Experimental Setup
	Results
	Extending a Feature Request Network
	Discussion
	Conclusion

	Quality Criteria for Just-in-Time Requirements: Open Source Feature Requests
	A Quality Framework
	Specific Quality Criteria for Feature Requests
	Instantiating the Framework for Other Types of Just-in-Time Requirements
	Empirical Evaluation of the Framework for Feature Requests: Setup
	Interview Results
	Case Study Results: Findings on Quality of Feature Requests
	Discussion
	Related Work
	Conclusion

	A Systematic Literature Review on Quality Criteria for Agile Requirements Specifications
	Background and Related Work
	Method
	Results: Meta-Data Classification
	Results: Quality Criteria Used in Literature
	Results: Recommendations for Practitioners
	Results: Research Agenda
	Discussion
	Conclusion

	Conclusion
	Summary of Contributions
	The Research Questions Revisited
	Requirements Engineering Research Evaluation Criteria
	Recommendations for Future Work

	Tables for Chapter 2
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

