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Abstract
In this paper the research behind the parallelization on the GPU of the time parallel
time integration method Parareal. Firstly, the theory behind Parareal and its conver-
gence theorems will be detailed. Then, two test models, the Lorenz system and Heat
diffusion equation, will be introduced. Additionally, the derivation of the Forward
Euler and Backward Euler methods for these problems will be discussed. Secondly,
an overview of development in parallel programming will be given, with a focus on
architecture, memory organization and GPU properties. Thirdly, the implementation
of Parareal in Python using the CuPy library will be shown, including the Parareal
convergence plots and the code profiling results. In the second half of the paper,
there will be an outline of the improvements that were made for a better speedup of
the Parareal implementation. A discussion on linear solvers and their efficiency in
regard to matrix properties will be presented. Moreover, the reason why a different
linear solver for the Heat diffusion equation was needed, than the one built into CuPy,
will be explained. Furthermore, the creation of a separate linear solver based on the
Thomas algoithm as a CUDA-kernel in Python will be shared. The construction of
CuPy elementwise kernels for the Lorenz system will be described as well. Lastly,
the speedup results for the CuPy built-in functions will be compared to the self-made
kernels utilizing a self-derived speedup formula. A reflection on the implementation
of Parareal in practice will conclude this paper.
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1 Introduction: What is Parareal?
When faced with large-scale physical problems, like the prediction of the weather and
ocean waves, or a very detailed small scale problem, like the simulation of a particle-
trajectory, science-based models can lack in accuracy and efficiency. A multitude
of solutions have been proposed. Sometimes, dividing a problem into smaller inde-
pendent sub problems and solving them separately, but simultaneously, is the best
approach to a big problem. This is usually achieved by parallel computing. The par-
titioning of problems into smaller ones to approximate the exact solution is not as
trivial as one might think. Often a picture comes to mind of placing a spatial grid
onto a large area. Unfortunately, not all problems are large in spatial sense. Some-
times one has to study a physical phenomenon for a long period of time. Splitting a
period of time into smaller intervals does not seem like a good idea, at first at least.
Time is perhaps the most sequential thing one can think of. Time moves into one
direction and one direction only, every second comes after the last. Still, there is a
mathematical algorithm that is able to parallelize a given problem in time sense. This
algorithm is called Parareal. The Parareal algorithm was introduced as ”un schéma
en temps < pararéel >” by Lions et al. in 2001 [7]. To actually comprehend the
Parareal algorithm in one go from a textual explanation might be a bit convoluted or
confusing. That is why Figure 1 is presented to summarize how exactly the algorithm
works in practice.

Figure 1: A visual representation of the Parareal Algorithm [2]

The baseline idea behind Parareal is the division of overall time into coarse and fine
time intervals. From the given initial condition u0, the initial solution, also called
the initial guess, is sequentially determined for the coarse intervals by using a coarse
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mathematical solver. This is shown by the red line in Figure (1) Then, inside the
subintervals, finer solutions are calculated by a fine mathematical solver (indicated
with blue in Figure 1), using initial conditions from the initial guess. These fine
solutions can be computed in parallel, as they are now independent from one another.
Results from both the coarse and fine solver are utilized to update the final solution.
This process is repeated in an iterative manner until satisfaction.
The concept of parallelizing time does probably not seem as foreign as before after
hearing this explanation. Although Parareal is quite a new algorithm and therefore
still has to be researched on its own, it has already been used on a couple of mathe-
matical and physical problems. For example, Schöps et al. have applied the Parareal
algorithm on the eddy current problem [14]. They did have to adapt Parareal to fit
their need to incorporate non-conducting regions. In 2019, Waghamare et al. im-
plemented Parareal to optimize the transport of nanoparticles in porous media [15].
Perhaps the most surprising development is the application of Parareal in machine
learning. Meng et al. constructed a physics-informed neural network for time depen-
dent PDEs, PPINN for short, in 2019 [9].

The applicability of the Parareal algorithm is very diverse, as can bee seen from the
three examples given above. In this paper, Parareal will be tested on two different
cases. These two science-based models will be thoroughly explored, one being the
model for the Lorenz system and the other for the Heat diffusion equation. They
are of particular interest as the Lorenz system consists of three Ordinary Differential
Equations, ODEs for short, while the Heat diffusion equation is a one dimensional
Partial Differential Equation (PDE). These models will later be used to show the work-
ings and the effectiveness of the Parareal algorithm for these types of mathematical
problems. Furthermore, we will explore if the theoretical success of Parareal can be
translated into practice. In particular, we will look at existing tools in the parallel
programming world, specifically for the GPU, and we will investigate what it takes to
build an efficient implementation of Parareal.

1.1 Lorenz system
Firstly we will take a look at the model for the Lorenz system. The system has been
developed by the American mathematician and meteorologist Edward N. Lorenz [4].
It consists of three ordinary differential equations. These three equations form a very
simplified approximation of the Navier-Stokes equations. E.N. Lorenz constructed his
model, while attempting to computationally simplify the Rayleigh-Bénard problem.
The Rayleigh-Bénard problem concerns a fluid inside a container, where the bottom
and top surfaces of said container have different temperatures. Processes such as at-
mospheric convection are modeled in this fashion.
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In the previously mentioned conditions, the fluid is able to transition into three types
of flow: stationary, steady or chaotic. The flow is called stationary, when the fluid
does not move at all, whereas a steady flow has a constant and non-zero velocity
in the entire fluid. However, for the construction of the mathematical model for the
Lorenz system, we are only interested in chaotic flow, also known as chaotic mixing.
A flow is deemed chaotic, if its behavior heavily depends on the initial conditions.
This sensitivity causes complex patterns in flow direction, magnitude, velocity and
circulation. A type of chaotic flow researched quite frequently is a turbulent flow1.
Nonetheless, there are more kinds of chaotic flows.

Returning to the formulation of the Lorenz system, E.N. Lorenz described it as fol-
lows [8]:

dx(t)

dt
= σ(y(t)− x(t)),

dy(t)

dt
= ρx(t)− y(t)− x(t)z(t),

dz(t)

dt
= x(t)y(t)− βz(t).

t > 0, x(t), y(t), z(t) ∈ R.
t = 0, x(0) = x0, y(0) = y0, z(0) = z0.

(1)

where the whole system can be interpreted as the rate of change for multiple quanti-
ties with respect to time, namely temperature, density and velocity. Due to the over-
simplified nature of this problem, some variables and parameters are difficult to con-
nect to actual physical phenomena. In several works of literature x(t) is considered
proportional to the rate of convection, y(t) to a horizontal temperature variation and
z(t) to a vertical one [4]. σ, ρ and β are parameters that determine temperature dif-
ferences across the fluid and other fluid properties. Sometimes, σ and ρ are seen as
synonymous to the Prandtl and Rayleigh number, respectively.
In our computational experiments, we choose σ = 10, β = 8/3 ≈ 2.7 and ρ = 28.
Furthermore x, y and z are from here on out to be considered as the coordinates of
one particle in R3 over time t, with t ∈ (0, 5]. We also set x0 = 20, y0 = 5 and
z0 = −5 as our main initial condition at t = 0. To illustrate the behaviour of the
particle over time for these initial conditions, Figure (2) has been plotted. A butter-
fly pattern can be seen. The trajectory of the particle will be vastly different if other
slightly modified initial conditions will be chosen, due to the chaotic nature of the

1Planes experience turbulence in air while travelling across the Atlantic Ocean.
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Figure 2: Lorenz System in action, initial conditions x0 = 20, y0 = 5, z0 = −5

model.

Now, as we have the basics behind the Lorenz model under our belt, we can now pro-
ceed to numerically solve the system of ordinary differential equations in (1). Before
we attempt this though, we will examine the second model, namely the heat diffusion
problem.

1.2 Heat diffusion equation
The Heat diffusion equation or just the Heat equation is a type of PDE that illustrates
the diffusion of temperature inside an object. This object can be one, two or three
dimensional. The temperature diffusion depends on space and time. We choose a
one-dimensional model to derive the Heat equation. This model can be seen as ei-
ther that of a nail between two ice cubes or of a pipe with both ends in some fire. It
does not really matter as long as the chosen rod is perfectly insulated, to ascertain the
one-dimensionality.2 To acquire an abstract formulation for the equation in question,
we follow the steps from Haberman 2014 [5]. Thereafter we will modify that version
by setting the proper initial and boundary conditions. On this final form the Parareal
algorithm will eventually be applied.

Assume we have a rod with length L and cross-sectional surface area A. The rod is
oriented in the x-direction, so the left and right boundary of the rod are chosen as

2The left and right bounds of the rod do have a cross-sectional area though, because designating them as points would
make the future calculations impossible.
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coordinates, x = a and x = b respectively. Two components are needed to construct
the one-dimensional Heat equation: the conservation of heat energy and Fourier’s
law. We will take a look at the conservation of energy first.

If it is said that if the heat energy inside a object is conserved, the following is implied:

The rate of change of heat energy in time equals the heat energy flowing across the
boundaries of the object per unit time plus the heat energy generated inside the object
per unit time.

To rewrite this statement into an equation, we introduce a couple of concepts, namely
heat energy, heat flux and heat sources. We define the thermal energy density e(x, t)
as the amount of thermal energy per unit volume.

∫ b
a e(x, t)Adx is then the total heat

energy, the thermal energy density times the surface area integrated over the length
of the rod. The heat flux φ(x, t) is the amount of thermal energy (per unit time) flow-
ing from a to b per unit surface area. The heat energy flowing on the left boundary
is therefore φ(a, t)A and −φ(b, t)A on the right. Internal sources of thermal energy
(per unit volume generated per unit time) are denoted asQ(x, t). Thus

∫ b
a Q(x, t)Adx

is the total heat energy generated inside (per unit time). We combine all these these
concepts into the statement above about the conservation of energy as follows:

d

dt

∫ b

a

e(x, t)Adx = φ(a, t)A− φ(b, t)A+

∫ b

a

QAdx, (2)

where d
dt

∫ b
a e(x, t)Adx is the rate of change of heat energy in time. We quickly notice

thatA can be cancelled, as it is a constant. Moreover, with a and b being constants and
e(x, t) continuous (the rod does not have any gaps), it is possible to take the ordinary
derivative d/dt inside the integral, turning it into a partial derivative. Recognize that
φ(a, t) − φ(b, t) = −

∫ b
a
∂φ
∂xdx. Expressing thermal density energy e(x, t) through

c(x), specific heat3, ρ(x), mass density and u(x, t), temparature, we get:

∫ b

a

(
c(x)ρ(x)

∂u(x, t)

∂t
+
∂φ(x, t)

∂x
−Q(x, t)

)
dx = 0, (3)

3c(x) is a material-dependant constant that fixes what amount of heat energy is required to raise the temperature of the
material by one unit
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where the integral is zero for arbitrary a and b, meaning that the area under the curve
must be zero no matter what limit is taken, hence the integrand must be zero, which
exactly concludes the (integral) conservation law of heat:

cρ
∂u

∂t
=
∂φ

∂x
+Q. (4)

The second component for the construction of the Heat equation is Fourier’s law of
heat conduction, namely:

φ(x, t) = −K0
∂u

∂x
, (5)

where four properties of heat flow are incorporated into one equation.4. When sub-
stituting Fourier’s law into (4), it results in the most abstract version of the one-
dimensional Heat equation:

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+Q (6)

To complete the derivation for our case, we assume the rod is uniform, so all the ther-
mal coefficients do not depend on x anymore. Then setting K0

cρ = 1 and adding the
initial and boundary conditions into the mix, we get:

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+Q(x, t).

t = 0, u(x, 0) = 0

t > 0, u(a, t) = 0, u(b, t) = 0,

(7)

where a = 0 and b = L. The boundary conditions are called Dirichlet boundary
conditions. The source function Q is defined as:

4K0 is a material-linked constant indicating thermal conductivity.

8



Q(x, t) = x4 × (1− x)4 + 10× sin(8t). (8)

Figure 3: Heat equation for Dirichlet boundary conditions

Q acts as a pulsating source of heat on the entire rod. In Figure (3) the effect of the
source and the solution to the heat equation in space and time is presented. The yel-
low indicates warmth, the blue indicates cold. Only the inner points are shown. In
time the symmetric parabola goes up and down, due to the pulse.

To reduce the Heat equation PDE to a system of ODEs, the spatial discretization with
the Finite difference method needs to be performed. For this, we need to construct
a uniform spatial grid on the aforementioned rod. Let xj be the spatial nodes of this
grid. Then, the second order derivative can be approximated as follows:

∂2u(xj, t)

∂x2
=
u(xj−1, t)− 2u(xj, t) + u(xj+1, t)

h2
+O(h2), (9)

where h = xj+1 − xj. Introducing the vector u(t) with components u(xj, t) and the
finite-difference matrix A the PDE is reduced to the following system of ODEs:

du

dt
= Au + q, (10)
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where the source vector q has components Q(xj, t). The matrix A has the structure:

A =
1

h2


−2 1
1 −2 1

. . .
1 −2 1

1 −2

 (11)

1.3 Mathematical details
In the previous section the Lorenz System and the Heat Equation were introduced
and their origin and derivation summarized. The expected solution was also pre-
sented graphically, for the established initial and boundary conditions over a given
period of time. The plots shown were not created by using experimental data or by
determining an exact solution. On the contrary, they are approximations of the real so-
lution. The approximate solutions were made by applying a time integration method
on the problems, specifically the Forward-Euler and the Backward-Euler methods on
the Lorenz System and Heat equation, respectively. In this part, we will delve into
the mathematics behind time integration methods. Specifically, we will compare the
Forward-Euler and Backward-Euler method in terms of order, convergence and sta-
bility. Most importantly though, there will be an explanation on the inner workings
of the Parareal method and why mathematically speaking it converges to the desired
solution for both the Lorenz System and the Heat Equation

1.3.1 Sequential time integration methods

Both the Lorenz system and the Heat equation have been reduced to a general system
of M ODEs of the form:

du

dt
= f(u, t).

0 < t < T , u(t) ∈ RM .

t = 0, u(t0) given.

(12)

where f is a non-linear function in the case of the Lorenz system and linear for the
Heat equation. We want to obtain a numerical approximation of the solution of these
ODEs in a number of points tn for which 0 ≤ tn ≤ T holds. This process is called
time integration.
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The Forward-Euler method, which will be used with the non-linear Lorenz system,
is defined in the following fashion:

u(t0) given
u(tn+1) = u(tn)) + ∆t f(u(tn), tn) +O(∆t)

(13)

where ∆t = tn+1 − tn. The Forward-Euler is an explicit method. On the linear Heat
equation the Backward-Euler method will be applied:

u(t0) given
u(tn+1) = u(tn) + ∆t f(u(tn+1), tn+1) +O(∆t)

= u(tn) + ∆t Au(tn+1) + ∆tq(tn+1) +O(∆t),

(14)

which is an implicit method. To obtain the approximation at the next time step, one
needs to solve a linear system, namely:

u(tn+1) = [I −∆t A]−1 (u(tn) + ∆tq(tn+1)) (15)

Both methods are numerically of the order ∆t and convergent to the exact solution as
∆ ← 0. Furthermore, the Backward-Euler method is unconditionally stable, which
allows to take larger time steps ∆t. Both methods are by nature sequential, because to
know the next step, the previous step has to have been calculated. For a large interval
with a lot of time steps, this is very computationally intensive. Parareal tries to cir-
cumvent this problem by partitioning the total time interval into coarse subintervals
and repetitively computing solutions on these subintervals in parallel. We are now
ready to explore the Parareal algorithm in a more detailed mathemtical sense.

1.3.2 Parareal

There are a couple of different approaches to derive and construct the Parareal algo-
rithm. We will be focusing on one in particular, namely the step by step formulation
given by M.J Gander and S. Vandewalle in 2007 [3]. This approach is based on the
so-called multiple shooting method and takes an abstract system of non-linear ODEs
into account. The original paper on Parareal, Lions 2001 [7], describes a derivation
of Parareal on a system of linear scalar ODEs, which is not applicable on the Lorenz
system nor the Heat equation. Fortunately, the Lorenz system is exactly a non-linear
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system of ODEs like in Gander and Vandewalle’s article. So Parareal will be built in
this section following the steps of [3].

However, let’s first give a clear and abstract definition of Parareal for a general sce-
nario, combining the definitions given in [3] and Gander’s lecture notes from 2018
[2]. Let there be a system of M Ordinary Differential Equations, like in (12) where
the system’s solution needs to be determined over a period of time [0, T ].

To define Parareal on this case properly, we have to introduce two propagation opera-
tors, G and F . Roughly speaking, these operators compute a coarse and fine approx-
imation of a solution for a chosen point in time from a fixed initial condition. More
precisely, we set (t1, t2) ∈ [0, T ] a time interval with u(t1) being the M -dimensional
initial condition andu(t2) the solution to be approximated. ThenG(t2, t1,u(t1)) gives
a coarse approximation of u(t2), an approximation resulting from taking coarse time
steps inside the time interval (t1, t2) to arrive at the end result. F(t2, t1,u(t1)), on
the other hand, gives a fine approximation of u(t2), as the time interval (t1, t2) is di-
vided into finer time steps to produce the final solution. This idea can be put into an
algorithm.

Let n = 0, 1, . . . , N . We set the total time interval [t0, tN ] for this. We divide [t0, tN ]
into N + 1 points in time (or N intervals), creating (t0, t1, . . . tN) accordingly. We
start by defining an initial approximation at a given time tn, we call it U0(tn) ∈ RM .5
This initial approximation can be computed sequentially as follows:

U0(tn+1) = G(tn+1, tn,U0(tn)), (16)

where U0(t0) = u(t0). From there, the algorithm performs the correction iteration,
for k = 1, 2, . . . iterations, in the following way:

Uk+1(tn+1) = G(tn+1, tn,Uk+1(tn)) + F(tn+1, tn,Uk(tn))− G(tn+1, tn,Uk(tn)).
(17)

Observing (17) carefully, it becomes apparent that for k → ∞ G-propagators will
cancel each other out in (17). This leaves U(tn+1) = F(tn+1, tn,U). What this im-

5The notation U0(tn) is different from the standard U0
n used in literature about Parareal, such as [2], [3] or [7], but our

version is arguably more understandable.
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plies, is that a series of values U(tn) will be generated that satisfy this equality. In
other words, when k tends to∞, approximations of U(tn) will have the accuracy as
if the F-propagator has been applied.

According to Gander and Vandewalle 2007 [3], the Parareal algorithm is closely
comparable to a so-called classical deferred correction method. This means that the
method, when applied to a difficult problem A(u) = 0, by performing iterative com-
putations, produces the desired solution after solving easier problems B(u) = g.
Mathematically speaking, we have the following iteration:

B(uk+1) = B(uk)− A(uk), k = 0, 1, . . . , (18)

where u0 is a pre-determined approximation for u. To connect this abstract de-
ferred correction method to the correction iteration in (17), we have to set u =
(U(t1),U(t2), . . . ,U(tN))T ∈ RNM and set A(u) and B(u) to be vectors of length
N times M . Then we can define for n = 0, . . . , N − 1:

A(u(tn+1)) = U(tn+1)−F(tn+1, tn,U(tn))

B(u(tn+1)) = U(tn+1)− G(tn+1, tn,U(tn))
(19)

where A(u(tn+1)) and B(u(tn+1)) are vectors, both of length M , that are part of
A(u) and B(u) respectively. These vectors correspond to the coarse interval n+ 1.

Now, to return to the construction of Parareal, Gander and Vandewalle (2007) base
their unified derivation of the algorithm on the application of the multiple shooting
method to (12). Let the total interval [0, T ] and divide it into N subintervals, defined
by points in time, so 0 < t0 < t1 < · · · < tN−1 < tN = T is true. Then, the
following N initial value problems are posed in one system of equations:


du0

dt = f(u0), u0(t0) = U(t0),
du1

dt = f(u1), u1(t1) = U(t1),
...

duN−1

dt = f(uN−1), uN−1(tN−1) = U(tN−1),

(20)
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where the following extra conditions are added to enforce continuity between the sep-
arate initial value problems:

U(t0)− u(t0) = 0,

U(t1)− u0(t1,U(t0)) = 0,
...

U(tN)− uN−1(tN , tN) = 0.

(21)

The notation U(t1)−u0(t1,U(t0)) = 0 indicates that the solution of initial problem
u0 at time t1 with initial condition U(t0) is equal to the approximation U(t1), so at
the end of the subinterval corresponding problem u0, etc. These extra conditions,
often referred to as matching conditions, can together form another, although non-
linear, system of equations, shortly notated as:

F(U) = 0, U = (U(t0),U(t1), . . . ,U(tN))T (22)

This system can be solved using the Newton-Raphson method for non-lineaer sys-
tems. The Newton-Raphson is a common iterative root-finding method in numerical
analysis. Each iteration the inverse of the Jacobian of F at the previous approxima-
tion is calculated, i.e, if k = 0, . . . , K with K the number of iterations, then:

Uk+1 = Uk − J−1F (Uk)F(Uk) (23)

To express J−1F (Uk)F(Uk), the Newton-Raphson update, we utilize the structure
of the matching conditions in (21) to get:
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J−1F (Uk) =
I

− ∂u0

∂U(t0)
(t1,Uk(t0)) I

− ∂u1

∂U(t1)
(t2,Uk(t1)) I
. . . . . .
− ∂uN−1

∂U(tN−1)
(tN ,Uk(tN−1)) I



−1

F(Uk) =

 Uk(t0)− u0

U(t1)− u0(t1,U(t0))
U(tN)− uN−1(tN , tN)


(24)

After multiplying the the iteration step in (23) by the Jacobian on the left on both
sides, we see the following recurrence emerging:

{
Uk+1(t0) = u0,

Uk+1(tn+1) = un(tn+1,Uk(tn)) + ∂un

∂U(tn)
(tn+1, Uk(tn))(Uk+1(tn)−Uk(tn))

(25)

To translate this back to the formulation of the Parareal algorithm, we have to take
into account that this recurrence formulation is continuous. The differential equations
need to be discritized on every subinterval to be able to use the multiple shooting
method in practice. In particular, to calculate un(tn+1,Uk(tn)), a numerical method
has to be picked, like Forward or Backward Euler. To approximate the solution on
subintervals, we indeed can choose that:

un(tn+1, Uk(tn)) = F(tn+1, tn,Uk+1(tn)), (26)

with F being the F-propagator in the Parareal algorithm that was defined earlier. In
the same manner, we can approximate the second part of the right-hand side of (25)
by applying the finite difference method with the G-propagator incorporated. Saving
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the reader from some trivial derivations, we present the result immediately:

∂un
∂U(tn)

(tn+1, Uk(tn))(Uk+1(tn)−Uk(tn)) =

G(tn+1, tn,Uk+1(tn))−G(tn+1, tn,Uk(tn))

(27)

Thus, we conclude the entire construction of the Parareal method. The only thing
to consider now is: Does the Parareal method really work? To answer this question
mathematically, we have to look at the convergence of the method.

1.4 Convergence theorems for Parareal
There are two important results about the convergence that we need to mention before
we can take the Parareal method for granted. The first one is a theorem:

Theorem 1 The Parareal algorithm has the following property:

Uk(tn) = F(Tn, 0,u0) if k ≥ n,

in other words, Uk(tn) coincides with the fine approximation from iteration index
k = n onward.

The proof of this theorem is by induction and can be found in [2]. The implication of
this theorem is that if the number of iterations is equal to the number of coarse time
steps, then the Parareal algorithm will have definitely converged. The take-away is
though, that it is not very desirable to have a problem for which Parareal happens to
converge for k = n. That would be computationally equivalent to using F(Tn, 0,u0)
on the entire problem, if not worse because of the correction iteration steps. It is
therefore more interesting to know the rate of convergence. The rate of convergence
of Parareal is still an open research question, because the rate is heavily dependent
on the type of problem. For a simple linear ODE:

du

dt
= au, u(0) = 0, t ∈ [0, T ] with a ∈ R, (28)

a theorem about convergence rate can be formulated:

Theorem 2 Let ∆t = T/N , tn = n∆t for n = 0, 1, . . . , N . Let
F (tn+1, tn, Uk+1(tn)) be the exact solution at tn+1 of 28 with u(tn) = Uk(tn), and let
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G(tn+1, tn, Uk+1(tn)) be the corresponding Backward Euler approximation with time
step ∆t. Then:

max
1≤n≤N

|u(tn)− Uk(tn)| ≤ Ck∆T
k+1. (29)

We observe that the convergence rate is exponential in k. This is very fast and will
be confirmed in numerical experiments for the Heat equation later in this paper. See
[2] and the references therein for proof and the extension of this theorem for the Heat
equation by the Fourier transform.

2 Parallel programming
At this point, we have a grasp of the theory behind the Parareal algorithm and why it is
very compelling for grand-scale mathematical problems. It converges to the desired
solution and it promises to be more efficient in the process. Dividing problems into
lots of parts and computing them simultaneously seems like a great concept. Nothing
can go wrong, right? No, there is one big catch: the computer itself. Although the
computer is endless fun, it is not endless in capacity, memory and available tools.
In this section, an overview will be provided of things to consider while attempting
parallel programming. This section is greatly inspired by Rauber and Rünger 2012,
[11] and [12].

2.1 Architectures
One of the crucial internal parts of any computer is the processor chip. This chip, on
a base level, consists of transistors. Two properties of this processor chip determine
the quality of the overall performance: the clock frequency and the number of transis-
tors. The clock frequency is, roughly speaking, the amount of time it takes to execute
one simple instruction or task. The number of transistors improves the complexity of
the chip, and thus the performance as well.6 As the reduction in clock frequency has
stagnated in recent years, the increase in number of transistors plays the biggest part
in the advancement of computer architecture and causes the most shrinkage in total
execution time of instructions. To make the best of the improvements in the complex-
ity of computer architecture, parallelism comes into play.

6Moore’s law, an observation that the number of transistors on an average processor chip doubles every 18 to 24 months,
has been true for at least 40 years. That is why the performance of computers still keeps improving so much in our lifetime.
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Parallelism has been applied to four different aspects of processor design, namely at
bit level, by pipelining, by multiple functional units and at process or thread level. We
will focus on the last one, which is the most relevant to this paper. The other three
techniques all have in common that they only require one sequential control flow.7.
They specifically have more to do with the change of execution order depending on
interconnectedness between different instructions and tasks. This results in a more
artificial type of parallelism that can be achieved by simple compilation in sequen-
tial programming languages. These techniques have reached their limits some time
ago though, but transistor numbers keep increasing, just like Gordon Moore has pre-
dicted in 1965. This is a great feature (not a bug), since there are enough transistors
that can be grouped into multiple processor cores and placed on one single processor
chip. These multicore processors, or multiprocessors for short, are a standard part of
everybody’s average computer for the last 15 years. This means that most comput-
ers support some form of parallelism, although in different ways. Flynn’s taxonomy
[11] is a classification list of four main types of parallel computers, namely: SISD,
MISD, SIMD and MIMD. The first two letters stand for either Single or Multiple In-
struction(s), while the last two letters indicate if there is access to Single or Multiple
Data. The definitions speak for themselves mostly, so we will briefly mention MIMD
architecture, because that is commonly part of parallel computers.

When the architecture is Multiple Instruction, Multiple Data it means that there are
multiple processing units that have access to (shared or distributed8) memory. The
multiple processing elements are asynchronous. Hence, they can separately load an
instruction and retrieve data, manipulate said data by the instruction and store it again,
without getting in each others way. A big piece missing in this explanation though, is
how the memory is actually physically stored. In Section 2.2, the two main versions
of memory organization will be outlined.

2.2 Memory Organization
There are two sub classes of MIMD computers based on their memory organization.
On one hand there are multicomputer systems, these are computers with distributed
memory. On the other hand, multiprocessor systems are computers with shared mem-
ory. What is the difference exactly and how does it affect the way you program on
such a machine?

7Control flow is a term from computer science that describes the order in which individual instructions or tasks are
executed

8More on this in (2.2)
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2.2.1 Distributed memory

Computers with distributed memory have a certain amount of processing elements or
otherwise called nodes. These nodes are connected by an interconnection network.
This network makes it possible for data transfer between nodes to happen. One node
has its own processor P and local memory M, see Figure (4). Usually, in the local
memory of one or a couple processors the program data is stored. Local memory can
only be accessed by a corresponding local processor. Nodes need to request mem-
ory data of other nodes by passing messages through the interconnection network.
When programming a machine with distributed memory, the parallel programming
language makes use of processes. A process has an executable program and all the
information necessary for execution. For every process there is an exclusive address
space, so only the process can asses its own data. Data exchange has to be done
through explicit communication. MPI is a parallel programming language that sup-
ports this type of process programming.

Figure 4: Illustration of an abstract computer with distributed memory

2.2.2 Shared memory

If the computer has a shared or global memory on physical level, then it contains
multiple processors or cores that are all connected to one shared memory through an
interconnection network, see Figure (5). The shared memory can be partitioned in
memory modules with common address space that are accessible to all the processors.
Exchange of data and communication between processors happens by reading and
modifying shared variables in the memory. This has a catch though: If multiple
processors try to access the same shared variable simultaneously, race conditions
start to arise. Programming for a shared memory type of machine will utilise threads.
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Figure 5: Illustration of an abstract computer with shared memory

Threads are multiple independent control flows that are part of one process. Threads
thus share the same address space as their process. Threads can store data in their
shared address space and all threads then can access it. Programming with threads is
more common due to its flexibility. Example of a programming language that uses
threads are OpenMP.

2.3 CPU versus GPU
The previous sections discussed the architecture and memory organization of the CPU
(Central Processing Unit) inside the computer and how to create parallelism on there.
However, another part of the computer can be utilized for parallel programming, the
Graphics Processing Unit, the GPU for short [12]. The main purpose of the GPU
was previously to process enormous data behind graphics applications. The partic-
ular design of the GPU hardware makes it also a desirable tool for general parallel
programming and can be more powerful, as it has the capacity for a large amount
of cores that can run many threads. For the research in this paper, we will partake
in GPU programming, as it has a lot of computing potential and promises of being
significantly faster than the CPU for certain types of problems. We have to look at
the GPU architecture to understand this.

2.4 GPU architecture
In Figure (6) we see a simplified logical architecture of a GPU. The blue area is a grid
containing two blocks. Each block can at maximum have 1024 threads for the type
of GPU we are working with (See Section 2.5). Inside a block 48 kilobytes of block
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Figure 6: Illustration of a standard GPU architecture

shared memory can be stored, that is accessible by the threads and registers, of which
there are around 64 kilobytes. Registers are connected to one thread and contain all
the local variables and specific information the thread requires. Each thread has a
separate local memory or cache with its own address space for data that does not fit
into registers. A cache is a small memory space with data readily available for the
thread. Outside the blocks there are three types of shared memory: global, constant
and texture. The global memory is the slowest and not cached, all the threads have
access to it. The constant memory is cashed, connected to all threads, but is read
only. Lastly the texture memory is a cashed memory also connected to all threads. It
is optimized for 2-dimensional access, read only. and shared by all processors.
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The problems that have the most benefit from being programmed on GPU are those
that can be implemented as a large number of lightweight threads without too much
communication between them. The calculation of the fine solution in the Parareal
algorithm is such a problem.

2.5 Tools and laptop specifics
For the research in this paper, one laptop with POP OS (19.04) operating system was
utilized. Some specifics of this laptop for the CPU and GPU are listed in Figure (7)
and (8).

Figure 7: CPU specifics

For Nvidia graphics cards, CUDA was developed. According to the Nvidia web-
site: ”CUDA is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical processing units (GPUs). With CUDA,
developers are able to dramatically speed up computing applications by harnessing
the power of GPUs.In GPU-accelerated applications, the sequential part of the work-
load runs on the CPU - which is optimized for single-threaded performance - while
the compute intensive portion of the application runs on thousands of GPU cores in
parallel. When using CUDA, developers program in popular languages such as C,
C++, Fortran, Python and MATLAB and express parallelism through extensions in
the form of a few basic keywords.”

Specifically, we will be using CUDA with Python, because there has been an interest-
ing module developed for Python, called CuPy. On the CuPy website this is said about
it: ”CuPy is an open-source array library accelerated with NVIDIA CUDA. CuPy
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Figure 8: GPU specifics

provides GPU accelerated computing with Python. CuPy uses CUDA-related li-
braries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL
to make full use of the GPU architecture.”

Apart from ease of installation and the compatibility with NumPy, Cupy allows writ-
ing custom made CUDA-kernels in the C-language as well. This possibility will be
exploited later to optimize the Parareal code.

2.5.1 Unified memory

Before we move on to the implementation of Parareal in CuPy, we have to mention
unified memory, which is a great fairly recent approach to GPU programming. Usu-
ally communication between Host (CPU) and Device (GPU) is the biggest bottleneck
in programs, as data transfer is very slow between the two. Unified memory is a sin-
gle memory address space where programs can allocate data and where both codes
running on CPU and GPU codes can access it [1]. This implies that no special desig-
nation for memory transfer between Host (CPU) and Device (GPU) is required inside
the code, making programming a breeze. For codes running on CPU or GPU that
access data allocated in this fashion, the parallel-programming language manages to
migrate memory pages to the memory of the respective processor.
However, old-fashioned explicit data transfers and memory allocations in CUDA, for
example cudaMemcpyAsync, often make code more efficient due to carefully tuned
asynchronous execution and data transfers.
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3 Implementation of Parareal in Python
In this section the first intuitive implementation of Parareal in Python will be illus-
trated. The lecture notes of Gander (2018) contain multiple descriptions of sequen-
tial MATLAB programs that simulate the Parareal algorithm on a couple of problems
[2]. These programs are not a true parallel implementations. Instead, they are used
to show the rate of convergence of Parareal. We will reproduce the convergence re-
sults in Python for the Lorenz system and Heat equation. This will also be done se-
quentially utilizing the Numpy library in Python. Afterwards, by applying the Cupy
library, the sequential programs will be altered into parallel programs. At this stage
excerpts of the code will not be showcased, as the focus will be on the (convergence)
results. The reader should take for granted (for now) that the change from Numpy
to Cupy arrays and functions went smoothly. The actual performance of the parallel
version compared to the sequential one is another story that will be discussed shortly.
The entire Python code can be found in Appendices A and B.

3.1 Lorenz system

Figure 9: Parareal-convergence for the Lorenz system, iterations k = 1 and k = 2

To simulate the Lorenz system, the same assumptions were made as in Section 1.1,
so the initial conditions are x 0 = 20, y 0 = 5 and z 0 = -5 with the parameters
being σ = 10, ρ= 28 and β = 8/3. Some new information about the constants for
the Parareal algorithm is needed. We set the number of Parareal iterations to be K =

20. The total time interval is T = [0, 5]. The amount of coarse time steps is chosen
to be Mc = 500, while the number of fine steps for the total time interval are Mf =
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5000, meaning that there are Mfc = 10 fine time steps inside each subinterval. To
approximate the solution numerically, the Forward Euler method was implemented
that has already been described in Section 1.3.1. Looking at Figures (9), (10), (11),

Figure 10: Parareal-convergence for the Lorenz system, iterations k = 3 and
k = 4

Figure 11: Parareal-convergence for the Lorenz system, iterations k = 5 and
k = 6

(12) and (13), it can be see how after ten iterations, the Parareal approximation comes
closer and closer to the Forward-Euler approximation taken over the entire time in-
terval with fine steps (called the test or exact solution from now on). Observe how
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the initial solution or initial guess of Parareal is way off to the exact solution in Figure
(9). From the third until eighth iteration, Figure (10), (11), (12), the Parereal approxi-
mation swerves from one side to the other, until it settles down at the nineth and tenth
iteration in Figure (13). The Parareal solution seems to have visually converged two
times faster than the set number of iterations, that is the reason the rest of the plots
are not shown.9

Figure 12: Parareal-convergence for the Lorenz system, iterations k = 7 and
k = 8

A rigorous method to check if the approximation comes close to the test solution is
to calculate the error. This can be done by determining the l2-norm for each Parareal
iteration k. The (normalized) l2-error is formulated as follows:

||utest − uparareal||2 =

√∑n
i |utest − uparareal|2√∑n

i |utest|2
, (30)

where utest and uparareal both contain vectors of size Mc = 500 three times, because
there are three coordinates in total. In Figure (14) there are two error-plots. The x-
axis is connected to the twenty Parareal iterations, while the y-axis shows the value
of the error. In the linear scale plot, the error seems to jump up and down between
the first nine iterations and then exponentially drop. However, in the logarithmic
scale graph we notice a super exponential trend, because the error-curve is not linear
downwards. Another phenomenon, that is not pictured in Figure (14), is that plotting

9It would be the plot of the same picture for another ten times.
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Figure 13: Parareal-convergence for the Lorenz system, iterations k = 9 and
k = 10

the logarithmic scale graph for more Parareal iterations, for K = 50 for example, the
curve starts to jump up and down around 10−12, close to machine precision. The first
assumption is perhaps that the error decrease is not monotone, but closely examining
at what values the jumps happen, it is more likely to just be floating point errors.

Figure 14: Super exponential error-decrease for the Lorenz System
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3.2 Heat equation

Figure 15: Parareal-convergence for the Heat equation, time t = 0, t = 1, t = 2

To numerically solve the Heat Equation, the Backward-Euler method is utilized, see
Section 1.3.1. From Section 1.2, we already know the zero boundary and initial con-
ditions. We have a pulsating source directed towards a rod of L = 1. We discretize the
rod into ten uniform intervals. The spatial grid contains 9 inner points. For Parareal,
we go through K = 8 iterations and partition the time interval T = [0, 8] into Mc = 8

coarse time intervals and Mf = 160 fine time time intervals, resulting into Mfc = 20

fine time steps per subinterval. In Figures (15), (16) and (17) the temperature is set on

Figure 16: Parareal-convergence for the Heat equation, time t = 3, t = 4, t = 5

the y-axis and the inner points of the rod are set on the x-axis. Figure (15) shows the
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first three snapshots in time. In the first picture the temperature is zero over the whole
rod. When the source starts to work, the rod warms up and cools down periodically
and the heat diffuses symmetrically. With blue the exact solution is plotted, just like
for the Lorenz system (3.1). The green dots are the placement of the initial guess of

Figure 17: Parareal-convergence for the Heat equation, time t = 6, t = 7, t = 8

the Parareal algorithm, the orange ones indicate the final Parareal solution. The final
iteration completely coincides with the exact solution, but we have to look at the error
plots before we can make this type of conclusion, of course. In Figure (19) we see a

Figure 18: Exponential error-decrease for the Heat equation per coarse time step

similar graph as in Figure (14), again plotted by computing the l2-error as in (30). Ex-
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cept, we have a perfect exponential decrease in error. This corresponds to predictions
of Theorem 2 of Section 1.4. Figure (18) shows a non-normalized computation of the
l2-error, plus for each coarse time step the decrease in error is determined. The stair-
case pattern can be interpreted as a depiction of how after each iteration one of the
coarse time intervals has converged to the exact solution. Remembering the analysis
about Theorem 1 in Section 1.4 it is not impressive that the Parareal algorithm con-
verges when K = Mc, as is exactly in this experimental case. Fortunately, choosing
K = 10 and Mc = 80 and Mf = 1600, we still get an exponential convergence and a
linear decrease in error up till machine precision after ten iterations (Not pictured).

Figure 19: Exponential error-decrease for the Heat equation)

3.3 Code profiling
Both the NumPy and CuPy version of the Python script produced the same results.
The difference in the CuPy implementation as opposed to its NumPy version is in
the fine solver stage. There, the F-propogators are run in parallel on each coarse
subinterval on the GPU. The main question remains: Did the the parallel version
outperform the sequential one?
The answer is: not quite. Overall, when first attempts at measuring the time for the
Parareal implementation were made (compared to the time for a sequential Foward
or Backward-Euler implementation with fine time steps) were made, the sequential
version appeared to be faster. To understand where it went ”wrong”, two profilers
for Nvidia were applied to the Python programs: NvidiaVisual Profiler (Extention:
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.nvvp) and the nvprof command inside the Pop OS terminal.10

3.4 Profiler output: Lorenz system

Figure 20: nvprof profiler results for the Lorenz system)

In Figure (20) the output of nvprof for the Lorenz system solver is shown. Calling
nvprof for Python is as simple as writing sudo nvprof python3 program.py.
There are two categories displayed: GPU activities and API calls. The API (Appli-
cation Programming Interface) calls in this instance are internal Cupy calls to CUDA.
They are not of relevance. The first five lines of GPU activitities should peak our in-
terest. Multiplication (31.87%), copying (30.76%), subtraction (16.69%), addition
(16.37%) and division (4.25%) take up most of the time. Indeed, it seems like the
operations inside the Lorenz system, the actual solving of the ODE system (1.1) are
the main reason for tardiness of the program. Copying is just one unfortunate part of
the for-loop structure of the code. Furthermore, taking a look at visual profiler out-
put in Figure (21), it becomes immediately clear that Host to Device, Device to Host
and Device to Device communication can be neglected. So really the computations
themselves take the most time.

10Profilers are tools to measure and display CPU and GPU activity.
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Figure 21: .nvvp profiler results for the Lorenz system)

3.5 Profiler output: Heat equation
Analyzing Figure (22) where API calls were not included, the arithmetical opera-
tions seem to be scattered between the smaller percentages, although taking the power
(6.65%) takes the cake, probably the computation of the source function (1.2) is at
fault there. The main reason for slowness is something called geqr2 smem (45.7%).

Figure 22: nvprof profiler results for the Heat equation)

Although we have no clue why it is called that way, from its input arguments one can

32



deduce it is the function cp.linalg.solve(), which is a Cupy solver responsible
for finding a solution for a system of linear equations. In this case, the system is a
result of discretization in space for the Heat equation by the finite difference method
(1.3.1). As what happens inside the function, it is in a black box so to speak, so we
cannot figure out why the solver would calculate inefficiently in parallel. Or can we?

It is abundantly clear that for both problems the mathematical computations are the
number one cause for the inefficiency of the parallel programs. Another important
reason is the low usage of the GPU’s capacity. As we looked at relatively small size
problems, the GPU could not realize its full potential (See Figure (23)). Lastly, the
comparison might have not been fair as well, because we are comparing codes run on
CPU versus GPU, which have different clock frequency and computing power. This
will later be addressed and a more fair comparisson will be presented (Section (6))

Figure 23: Low usage of GPU, .nvvp profiler result

To salvage these bottlenecks we have to, on one hand, discover a more efficient way
to computationally approach the Lorenz system. On the other hand, we have to find
a mathematically sound approach to the Heat equation, by analyzing algorithms that
work better on this type of problem.
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4 Optimization of linear solvers on the GPU
Thankfully, the research on algorithms for systems of linear equations is vast. There
are plenty algorithms to choose from, so we have to categorize them properly to de-
cide which one suits our problem the best. The best place to start is the algorithm
behind np.linalg.solve() and cp.linalg.solve(), which is based on the LU
decomposition. The LU decomposition is part of the direct solution methods for lin-
ear systems. Direct solvers are characterized by being able to determine the exact
solution, not counting the rounding errors, in a fixed number of steps. The number
of steps hinge on the system size. The algorithms that are part of direct solvers often
involve the factorization of the coefficient matrix A, which is part of the considered
linear system, abstractly denoted:

Ax = b. (31)

Which direct solution method is more appropriate and henceforth more efficient dur-
ing the parallelization of the problem, is dependant on the structure of the matrix A.
This is the moment where linear algebra shows her head. We have to look at matrix
properties. Matrices are very diverse. It is a general rule that for linear systems with
sparse matrices, the class of so-called iterative solution methods is actually a better
fit [13], as factorization of large matrices leads to an increase in computational work
[10]. This does not mean there are no direct solvers for sparse linear systems. On
the contrary, there are a plethora of direct solvers for matrices with a banded struc-
ture, for example tri-diagonal matrices. That is excellent news, because applying the
Backward-Euler method on the Heat equation indeed forms a linear tri-diagonal sys-
tem. We will now dive into the world of direct solvers, by examining a couple of them,
and seeing why a generic LU decomposition might not have been the best suited for
the Heat equation problem.

4.1 Dense and sparse direct solvers
LU-based solvers have been thoroughly discussed in books such as Arieh Iserles 1997
[6]. The most important part about these solver is their computational cost. An
LU solver performs an LU-decomposition of the system matrix A, which gives us
A = LU , where L is a lower-triangular and U is an upper triangular matrix. The
matrix L has the additional property that all diagonal elements equal one. To find
the solution for the original system, two sub systems Ly = b and Ux = y must
be solved. Both, by substitution, can be solved in O(M 2) floating point operations
(FLOPs). The LU-decomposition itself takes O(M 3) FLOPs in total. Additionally,
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the storage of elements is M 2. This is the case for a matrix A that is dense. This
means most elements of the matrix are non-zero.

For sparse matrices, which have mostly zero elements, the LU-decomposition can
be optimized, in particular for sparse banded matrices. Roughly speaking, banded
matrices have a bandwidth s, which is defined as the utmost distance between non-
zero elements. For a tri-diagonal system, like the one we have in the Heat eqaution,
the bandwidth is s = 1. The storage of elements for a banded matrix is in general
(2s+ 1)M . Solving the sub systems Ly = b and Ux = y takes O(sM) FLOPs and
the total LU-decomposition is O(s2M).

4.1.1 Sparse storage formats: COO, CSR and CSC

Sparse solvers, like sp.linalg.spsolve()11, use COO, CSR and CSC format to
store sparse matrices [13] (pp. 84-85). While a dense matrix is usually stored as a
2-dimensional array with M 2 non-zero elements, sparse formats store only the non-
zero elements and their coordinates. The COO (Coordinate) format consists of three
arrays. Array 1 contains all the non-zero (real or complex) elements in any order.
Then Array 2 stores the row indices and Array 3 the column indices (all integer). The
three arrays are only so long as the number of non-zero elements. In COO format, the
number of elements stored for a tri-diagonal matrix would be 3(3M − 2) = 9M − 6.

The CSR (Compressed Sparse Row) format and the CSC (Compressed Sparse Col-
umn) format, the order of the elements is set to be from row to row and from column
to column, respectively. Again three arrays are made. Per element only two numbers
need to be stored: in Array 1 the number itself and in Array 2 its position inside the
row or column. Array 3 then contains how many non-zero elements there are inside
each row or column. A tri-diagonal matrix in these formats would take up a storage
of M + 2(3M − 2) = 7M − 4, a bit less than for COO.

For a general tri-diagonal matrix, using these formats would be redundant, because
one only needs to know the position of the diagonals and their elements, which re-
quires 3M−2+3 = 3M+1 storage. A symmetric tri-diagonal matrix with constant
diagonals like in the Heat equation is completely defined by 4 values, two diagonal
positions and two numbers.

4.2 Tri-diagonal solvers: Thomas Algorithm
We know now that the tri-diagonal matrix for the Heat equation matrix is very easily
stored. It is therefore a good approach to find a solver designed for this specific type

11This function is part of the SciPy module
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of problem. That is how we stumble upon the Thomas algorithm. It is first and fore-
most a simplified version of Gaussian elimination, according to Zhang et al. 2012
[16]. They describe two phases, the forward elimination and backward substitution.
Let matrix A be (M,M) and the system of equations Ax = b of the following form:



b1 c1
a2 b2 c2 0

a3 b3 c3
. . . . . . . . .

0 . . . . . . cM−1
aM−1 bM





x1
x2
...
...
...
xM


=



d1
d2
...
...
...
dM


(32)

Then, the first phase, where the lower diagonal is eliminated, is formulated as follows:

c′1 =
c1
b1
, c′i =

ci
bi − c′i−1ai

, i = 2, 3, . . . ,M.

d′1 =
d1
b1
, d′i =

di − d′i−1ai
bi − c′i−1ai

, i = 2, 3, . . . ,M.

(33)

The second phase, the backward substitution, calculates the unknowns of x with
length M from last, xM , to first, x1. This process can be summarized like this:

xM = d′M , xi = d′i − c′ixi+1, i = M − 1, . . . , 2, 1. (34)

Counting the FLOPs, we get counting 1 + 3(M − 1) + 1 + 5(M − 1) + 2(M − 1) =
2 + 3M − 3 + 5M − 5 + 2M − 2 = 10M − 8. The algorithm takes 2M sequential
computational steps, due to the fact that computing c′i, d′i and xi are based on the
previous values, c′i−1 , d′i−1 and xi−1. However, there are still ways to still parallelize
these sequential steps.

4.3 Parallel solvers: Cyclic reduction
Zhang et al. 2012 also give a discription of Cyclic reduction. This method consists of
two phases as well, but the first phase is replaced by forward reduction. The advan-
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tage of forward reduction as opposed to forward elimination is that with each iteration
of the algorithm the system of equations is reduced to half it’s size. This process is
repeated up till two unknowns are left. The second phase, the backward substitution,
is the same as in the Thomas algorithm, but it is utilized to consecutively calculate
the other half of the unknowns. This is achieved by substituting the values that were
previously determined by forward reduction.

To formulate the forward reduction mathematically, we consider the system in ?? we
have to take into account that for each step all equations with an even index are up-
dated in parallel. This is done by taking equation i of the system at hand and rewriting
it as a linear combination of equation i, i− 1 and i+ 1 from the same system. Equa-
tion i can be then defined as:

aixi−1 + bixi + cixi+1 = di. (35)

The values of ai, bi, ci and di are updated, so to speak, by the next set of equations:

a′i = −ai−1k1,
b′i = bi − ci−1k1 − ai+1k2,

c′i = −ci+1k2,

d′i = di − di−1k1 − di+1k2,

(36)

where k1 and k2 are k1 = ai
bi−1

and k2 = ci
bi+1

. For the backward substitution, all the
xi unknowns with odd index are solved in parallel by taking the xi−1 and xi+1 that
were determined by forward reduction and putting them inside (35), which results in
equation:

xi =
d′i − a′ixi−1 − c′ixi+1

b′i
. (37)

Although the flop count is higher, the Cyclic reduction algorithm performs 2 log2(M)
sequential steps due to its parallel nature, while the Thomas algorithm requires 2M
steps.
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5 Implementation of CUDA-based kernels for Parareal
In the previous Section we have discussed a mathematical algorithm that can poten-
tially improve the performance of the Parareal algorithm on the Heat equation. There
is still another possibility, namely improvements on software level.

5.1 Elementwise kernel in Cupy: Lorenz system
For the Lorenz system, we can construct a CUDA-kernel in C, instead of using the
built-in CuPy array operations. For this purpose, a CuPy elementwise kernel is suffi-
cient. This kernel has a standard input-output structure. The threads are automatically
distributed between blocks. In Figure (24) the elementwise kernels are shown. There
are three kernels, because we have three coordinates. For the fine solver, each kernel
performs one step of the Forward-Euler on an entire array of length Mc, with Mc being
the number of coarse time intervals. In that case, each kernel launches Mc number of
threads. They are extremely lightweight, as there are no extra local variables created.
Furthermore, they only use the input data and the threads do not even communicate
with each other.

Figure 24: Elementwise kernel in Cupy

5.2 Raw kernel in Cupy: Heat equation
For the Heat equation, an elementwise kernel does not suffice. This is due to the fact
that the Thomas algorithm is a recurrence relation and cannot be rewritten as point-
wise operations. Instead, we have to create a raw kernel in CuPy, which is C-code
imported into Python. The input and output arrays are allocated on the GPU, before
the kernel executes. There is no Host to Device or Device to Host data transmission.
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Three variables are created inside the kernel and at most thirteen variables are ac-
cessed by the kernel during the execution per thread. If Mc is larger than 1024 more
than one block needs to be used.

Figure 25: Raw kernel for multiple right hand sides in Cupy
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6 Speedup analysis

6.1 Theoretical speedup
Let tcpu be the time for one step of Forward or Backward-Euler on the CPU, and tgpu
for the GPU likewise. Let the time to calculate the exact solution while traversing
with fine steps through the total time interval be texact = tcpuMfcMc, where Mfc are
the number of fine steps inside a subinterval and Mc are the number of coarse steps
and thus the number of subintervals.

The time to go through the Parareal algorithm is tpara = K(tfine + tcoarse), where K
is the number of Parareal iterations, tfine = tgpuMfc is the time it takes for the fine
solver to run and tcoarse = tgpu2Mc is similarly corresponding to the coarse solver.12

Then the ratio between texact and tpara is the following:

S =
texact
tpara

=
tcpuMfcMc

K(tgpuMfc + tgpu2Mc)

=
tcpu
tgpu

Mc

K
(

1 + 2Mc

Mfc

) . (38)

We call this ratio S. This is exactly the speedup. Here we assumed that tfine is Mc

times faster than texact due to parallelization, but this is a highly ideal situation. So
we introduce another ratio, we call it p, the apparent speedup of the fine parallel solver:

p =
texact
tfine

, (39)

where 0 ≤ p ≤Mc
tcpu
tgpu

. The upper bound is found by dividing texact by the ideal tfine.
Substituting the realistic tfine by texact

p in (38), we get:

S =
tcpu
tgpu

Mc

K
(
tcpu
tgpu

Mc

p + 2Mc

Mfc

) (40)

12The time is multiplied by 2 due to the update step having a correction iteration step and another coarse solver run
called inside.
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From this formula it follows that the speedup of Parareal depends on the number of
iterations K, which is to be expected, the apparent speedup of the fine solver p, as
well as the ratio between Mc and Mfc. Keeping this in mind, we now can perform a
speedup analysis for the Lorenz system and Heat equation. For fairness of compari-
son, everything is run on GPU, making tcpu = tgpu

6.2 Numerical experiments
After performing a number of experiments on the Lorenz system for different values
of the parameters from equation 40, Table 1 has been constructed. Sp is the speedup
that was achieved in practice, while St is the theoretical speedup. The number of K
was specifically decided by observing the iteration for which the Parareal algorithm
converged to machine precision (10−12 for simplicity). For small Mfc = 10, both the
speedup of the fine solver p and Sp (and St) approximately coincided. p is quite close
to Mc, its upperbound. The values for Sp and St fluctuate simply due to the GPU
being busy sometimes and not fully dedicated to the numerical computations. The
lower value for Sp compared St for Mfc = 1000 might be still somewhat acceptable
(around 80%). texact is definitely two times faster for the kernel version though. This
is true for bothMfc values. This implies that the elementwise kernel outperforms the
native CuPy array operations consistently.

Table 1: Lorenz system performance
Mc Mfc K texact p Sp St

cupy arrays 500 10 22 0.70 473 0.26 0.22
cupy arrays 500 1000 24 75.96 419 8.9 9.5

elementwise kernel 500 10 22 0.39 423 0.25 0.22
elementwise kernel 500 1000 24 35.5 389 7.06 9.5

For the Heat equation the performance is detailed in Table 2, where we compare
the standard CuPy function cp.linalg.solve() for dense linear systems and our
Thomas fine solver for tri-diagonal systems. J is the number of spatial intervals. The
results are arguably more in favor for the custom Thomas (raw) kernel. The values
for Sp are better than St for every version. Numerical experiments indicate a p that is
up to two times bigger than Mc. A possible reason could be the avoidance of Python
for-loops in both implementations for the fine solver, as they are significantly slower
than C-loops. The most impressive result is the difference between texact of the CuPy
solver and Thomas kernel for a large spatial grid (J = 100). There, we can finally
see the true power of the GPU for large problems!
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Table 2: Heat equation performance
J Mc Mfc K texact p Sp St

cp.linalg.solve() 10 8 20 8 0.05 18.3 1.02 0.81
cp.linalg.solve() 10 80 200 18 4.11 137 3.58 3.21
cp.linalg.solve() 100 80 200 18 27.67 63 2.63 2.16

thomas kernel 10 8 20 8 0.05 19.1 1.04 0.82
thomas kernel 10 80 200 18 3.79 160 4.14 3.43
thomas kernel 100 80 200 18 4.82 165 4.12 3.47

What is very remarkable, is that for both problems the theoretical and actual speedup
are very close. This means that (40) can actually be used to deduce the speedup for
much larger problem, without performing the computations.
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7 A discussion on Parareal in practice
To conclude, we have shown that the performance of Parareal on the GPU corre-
sponds to the theoretical expectations. We demonstrated that for the Heat equation
there was an exponential convergence rate, as predicted. The Lorenz system even
had a super exponential convergence. It turned out that the available tools allow for a
parallel implementation of Parareal on the GPU. However, it is recommended to use
custom-made CUDA-kernels in combination with CuPy, as the built-in solvers and
array operations leave a lot to be desired.

We have observed that for systems of linear equations that are integrated with im-
plicit methods, it is essential to investigate the matrix properties to find an optimal
algorithm. This reduces the computational cost immensely. In particular, we have
constructed a CUDA-kernel implementing a batched Thomas algorithm for the tri-
diagonal system. It is imperative that sparse direct solvers in CuPy are developed,
since the sparse solver in the SciPy library still outperforms in most cases the current
CuPy solvers.

The derived speedup formula showed close agreement with actual speedup results.
The number of Parareal iterations appeared to of great significance for the speedup.
Thus, more needs to be known about convergence rates of the Parareal algorithm with
different types of problems.
Lastly, preliminary investigations show that speedup increases for high spatial dimen-
sions. There needs to be more research done theoretically and experimentally on a
larger dedicated GPU. The results are promising.
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Appendix A
#!/usr/bin/env python3

import numpy as np

import cupy as cp

import time

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import axes3d

################################################################################

#

# CUDA KERNELS :D

#

################################################################################

# Lorenz elementwise kernels for fine solver

element_x = cp.ElementwiseKernel(

’float64 x_o , float64 y_o , float64 sigma , float64 ht’,

’float64 x_n’,

’x_n = x_o + sigma*ht*(y_o -x_o)’,

’element_x ’

)

element_y = cp.ElementwiseKernel(

’float64 x_o , float64 y_o , float64 z_o , float64 rho , float64 ht’,

’float64 y_n’,

’y_n = y_o + ht*(rho*x_o - x_o*z_o)’,

’element_y ’

)

element_z = cp.ElementwiseKernel(

’float64 x_o , float64 y_o , float64 z_o , float64 beta , float64 ht’,

’float64 z_n’,

’z_n = z_o + ht*(x_o*y_o - beta*z_o)’,

’element_z ’

)

################################################################################

#

# PARAMETERS AND CONSTANTS

#

################################################################################

K = 24 # number of parareal iterations , 20

T = 5.0 # end time

J = 4 # no space intervals , only one point (with three coordinates)

time_iterations = 5

Mc = 500 # course , 500, 2**5

Mf = 500000# fine , 5000, 2**5 * 2**10

dT = T/Mc # coarse time step

dt = T/Mf # fine time step

Mfc = int(Mf/Mc) # number of fine time steps on coarse interval dT

Mcc = 1 # number of coarse time steps on coarse interval dT

M_tjes = cp.array ([Mc,Mf,Mfc ,Mcc])

# Lorenz parameters
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sigma = 10.

rho = 28.

beta = 8./3.

para = cp.array ([sigma ,rho ,beta])

u0 = np.array ([20,5,-5])

u0_GPU = cp.array ([20,5,-5])

################################################################################

#

# LORENZ SYSTEM: CONSTRUCTION

#

################################################################################

def lorenz_solver(ht ,u_0 ,M):

x_t_old = u_0 [0]

y_t_old = u_0 [1]

z_t_old = u_0 [2]

for i in range(M):

x_t_new = x_t_old + para [0] * (y_t_old - x_t_old )*ht

y_t_new = y_t_old + (x_t_old * (para [1] - z_t_old ))*ht

z_t_new = z_t_old + (x_t_old*y_t_old - para [2]* z_t_old )*ht

#x_t_new = element_x(x_t_old ,y_t_old , para[0], ht)

#y_t_new = element_y(x_t_old ,y_t_old ,z_t_old , para[1], ht)

#z_t_new = element_z(x_t_old ,y_t_old ,z_t_old , para[2], ht)

x_t_old = cp.copy(x_t_new)

y_t_old = cp.copy(y_t_new)

z_t_old = cp.copy(z_t_new)

return cp.array ([x_t_new , y_t_new , z_t_new ])

def lorenz_GPU(ht_all ,U_matrix ,M,Mfine):

x_GPU_old = U_matrix [0,:]

y_GPU_old = U_matrix [1,:]

z_GPU_old = U_matrix [2,:]

for i in range(Mfine):

x_GPU_new = x_GPU_old + para [0] * ht_all * (y_GPU_old - x_GPU_old)

y_GPU_new = y_GPU_old + ht_all *(para [1]* x_GPU_old - x_GPU_old*z_GPU_old)

z_GPU_new = z_GPU_old + ht_all *( x_GPU_old*y_GPU_old - para [2]* z_GPU_old)

#x_GPU_new = element_x(x_GPU_old ,y_GPU_old , para[0], ht_all)

#y_GPU_new = element_y(x_GPU_old ,y_GPU_old ,z_GPU_old , para[1], ht_all)

#z_GPU_new = element_z(x_GPU_old ,y_GPU_old ,z_GPU_old , para[2], ht_all)

x_GPU_old = cp.copy(x_GPU_new)

y_GPU_old = cp.copy(y_GPU_new)

z_GPU_old = cp.copy(z_GPU_new)

U_matrix [0 ,1:] = x_GPU_new [0:-1]

U_matrix [1 ,1:] = y_GPU_new [0:-1]

U_matrix [2 ,1:] = z_GPU_new [0:-1]

return U_matrix

################################################################################

#

# LORENZ SYSTEM: TEST AND EXACT SOLUTIONS
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#

################################################################################

u_test = cp.zeros ((J-1, Mc+1))

u_test [:,0] = cp.copy(u0_GPU)

begin_test = time.time()

for n in range(Mc):

t0 = n*dT

t1 = t0 + dT

hh = (t1-t0)/ M_tjes [2] # M_tjes = cp.array ([Mc,Mf,Mfc ,Mcc])

u_test[:,n+1] = lorenz_solver(hh, u_test[:,n], Mfc)

# change from cupy to element -kernel inside solver

end_test = time.time()

print("Time for test solution: ", end_test - begin_test)

u_test = cp.asnumpy(u_test)

’’’

u_exact = cp.zeros((J-1, Mc*Mfc + 1))

u_exact [:,0] = cp.copy(u0_GPU)

begin_exact = time.time()

for n in range(Mc*Mfc):

t0 = n*dT

t1 = t0 + dT

hh = (t1-t0)/ M_tjes [2] # M_tjes = cp.array ([Mc,Mf,Mfc ,Mcc])

u_exact[:,n+1] = lorenz_solver(hh ,u_exact[:,n],Mcc)

end_exact = time.time()

print("Time for exact solution: ", end_exact - begin_exact)

u_exact = cp.asnumpy(u_exact)

’’’

################################################################################

#

# PARAREAL ALGORITHM

#

################################################################################

U_big_GPU = cp.zeros((K+1,J-1,Mc+1))

U_big_GPU [0,:,0] = cp.copy(u0_GPU)

Go_array_GPU = cp.zeros((J-1,Mc+1))

Go_array_GPU [:,0] = cp.copy(u0_GPU)

Fn_array_GPU = cp.zeros((J-1,Mc+1))

Fn_array_GPU [:,0] = cp.copy(u0_GPU)

Gn_array_GPU = cp.zeros((J-1,Mc+1))

Gn_array_GPU [:,0] = cp.copy(u0_GPU)

begin_coarse = time.time()

for n in range(Mc):

t0 = n*dT

t1 = t0 + dT

hh = (t1-t0)/ M_tjes [3] # M_tjes = cp.array ([Mc,Mf,Mfc ,Mcc])

Go_array_GPU [:,n+1] = lorenz_solver(hh,Go_array_GPU [:,n],Mcc)

U_big_GPU [0,:,n+1] = cp.copy(Go_array_GPU [:,n+1])

end_coarse = time.time()

print("Time for coarse solution: ", end_coarse - begin_coarse)
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time_array = cp.array([0,dT])

ht_lol = (time_array [1] - time_array [0])/ M_tjes [2]

fine_time = []

update_time = []

begin_total = time.time()

for k in range(K):

begin_fine = time.time()

Fn_array_GPU = lorenz_GPU(ht_lol ,U_big_GPU[k,:,:],Mc,Mfc)

end_fine = time.time()

print("Time for fine solution: ", end_fine - begin_fine)

fine_time.append(end_fine - begin_fine)

U_big_GPU[k+1,:,0] = cp.copy(u0_GPU)

begin_update = time.time()

for n in range(Mc):

t0 = n*dT

t1 = t0 + dT

hh = (t1-t0)/ M_tjes [3] # M_tjes = cp.array ([Mc,Mf,Mfc ,Mcc])

Gn_array_GPU [:,n+1] = lorenz_solver(hh ,U_big_GPU[k+1,:,n],Mcc)

# COMBINATION STEP

U_big_GPU[k+1,:,n+1] = Fn_array_GPU [:,n+1] + Gn_array_GPU [:,n+1] - Go_array_GPU [:,n+1]

end_update = time.time()

print("Time for update solution: ", end_update - begin_update)

update_time.append(end_update - begin_update)

Go_array_GPU = cp.copy(Gn_array_GPU)

end_total = time.time()

print("Time for total solution: ", end_total - begin_total)

average_fine = sum(fine_time )/len(fine_time)

average_update = sum(update_time )/len(update_time)

print("average_fine = ", average_fine)

print("average_update = ", average_update)

U_big_CPU = cp.asnumpy(U_big_GPU)

################################################################################

#

# ERRORS

#

################################################################################

# normalized errors for x,y,z-dimension

errors = np.zeros(K)

for k in range(K):

errors[k] = np.sqrt(np.sum(( u_test - U_big_CPU[k ,: ,:])**2))/ np.sqrt(np.sum(u_test **2))

################################################################################

#

# PLOTS

#

################################################################################

plt.ion()

plt.clf()
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k_array = np.linspace(1,K,K)

subcount = 1

fig = plt.figure (1)

for k in range(int (10)):

x_array = U_big_CPU[k,0,:]

y_array = U_big_CPU[k,1,:]

z_array = U_big_CPU[k,2,:]

x_first = u_test [0]

y_first = u_test [1]

z_first = u_test [2]

ax = fig.add_subplot (2,5,subcount , projection=’3d’)

ax.plot3D(x_first ,y_first ,z_first , ’steelblue ’, label = ’Exact ’)

ax.plot3D(x_array ,y_array ,z_array , ’--’, color=’orange ’, label = ’Parareal ’)

ax.set_title("U["+str(k)+"]")

ax.set_xlabel("x")

ax.set_ylabel("y")

ax.set_zlabel("z")

ax.legend(loc=’upper center ’, bbox_to_anchor =(0.5, -0.05), ncol =2)

subcount = subcount + 1

fig2 , (ax1 ,ax2) = plt.subplots (1,2)

ax1.plot(k_array , errors , ’-o’, color=’red’)

ax2.semilogy(k_array , errors , ’-o’, color=’red’)

plt.setp((ax1 ,ax2), xticks=k_array)

ax1.set_xlabel(’K’)

ax2.set_xlabel(’K’)

ax1.set_ylabel(’Normalized error’)

ax2.set_ylabel(’Normalized error’)

ax1.set_title(’Linear scale’)

ax2.set_title(’Logarithmic scale’)

fig3 = plt.figure (3)

x_test = u_test [0]

y_test = u_test [1]

z_test = u_test [2]

ax3 = fig3.gca(projection = "3d")

ax3.plot3D(x_test ,y_test ,z_test , color = ’green’)

ax3.set_title("Lorenz system: Butterfly")

ax3.set_xlabel("x")

ax3.set_ylabel("y")

ax3.set_zlabel("z")

plt.show()
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Appendix B
import math

import numpy as np

import cupy as cp

import time

import scipy.sparse as sp

import os

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import axes3d

########################################################################

#

# CUDA KERNELS :D

#

########################################################################

# Thomas algorithm for one rhs

thomas_single = cp.RawKernel(

r’’’

extern "C" __global__

void thomas_single(double *c, double *b, double *f, double *x,

double *d, long long n) {

for (int i=1; i<n-1; i++)

{

c[i] = d[1]/(d[0]-d[1]*c[i -1]);

}

for (int i=1; i<n; i++)

{

b[i] = (f[i]-d[1]*b[i -1])/(d[0]-d[1]*c[i -1]);

}

x[n-1] = b[n-1];

for (long long i=1; i<=n; i++)

{

x[n-i-1] = b[n-i-1]-c[n-i-1]*x[n-i];

}

}

’’’,

’thomas_single ’

)

# Thomas algorithm for multiple rhs

thomas_multi = cp.RawKernel(

r’’’

extern "C" __global__

void thomas_multi(double *c, double *b, double *f, double *x,

double *d, long long n, long long m) {

long long index = blockDim.x * blockIdx.x + threadIdx.x;

for (int i=1; i<n-1; i++)

{

c[i] = d[1]/(d[0]-d[1]*c[i -1]);

}

if (index <m)

{

for (long long i=1; i<n; i++)

{

b[i*m+index] = (f[i*m+index]-d[1]*b[(i-1)*m+index ])/(d[0]-d[1]*c[i -1]);

}

x[(n-1)*m+index] = b[(n-1)*m+index];

for (long long i=1; i<=n; i++)
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{

x[(n-i-1)*m+index] = b[(n-i-1)*m+index]-c[n-i-1]*x[(n-i)*m+index];

}

}

}

’’’,

’thomas_multi ’

)

########################################################################

#

# PARAMETERS AND CONSTANTS

#

########################################################################

K = 18 # parareal iterations

T = 8.0 # end time

uleft = 0.0 # left BC

uright = 0.0 # right BC

# mesh parameters

J = 100 # space intervals , need to be a lot! :)

Jin = J-1

x_grid = np.linspace (0,1,J+1)

x_inner = x_grid [1: -1] # without boundaries

x_grid_GPU = cp.linspace (0,1,J+1)

x_inner_GPU = x_grid_GPU [1:-1]

dx = 1./J # grid size

u0 = np.zeros(len(x_grid [1: -1])) # initial condition

u0_GPU = cp.zeros(len(x_grid_GPU [1: -1]))

Mc = 80 # coarse

Mf = 80*200 # fine

dT = T/Mc # coarse time step

dt = T/Mf # fine time step

# number of fine time steps on coarse interval dT

Mfc = int(Mf/Mc)

# number of coarse time steps on coarse interval dT

Mcc = 1

########################################################################

#

# HEAT EQUATION: CONSTRUCTIONS

#

########################################################################

# source function

def source(x,t):

return x**4 * (1.-x)**4 + 10*cp.sin (8*t)

def source_CPU(x,t):

return x**4 * (1.-x)**4 + 10*np.sin (8*t)

# construction of matrix A for Thomas Algorithm

Ad = -2.0

Au = 1

# I - dT*A/dx**2

dd_c = 1 - dT*Ad/dx**2
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du_c = -dT*Au/dx**2

d_array_c = cp.array([dd_c ,du_c])

# I - dt*A/dx**2

dd_f = 1 - dt*Ad/dx**2

du_f = -dt*Au/dx**2

d_array_f = cp.array([dd_f ,du_f])

# construction of matrix A for heat equation solver (GPU)

A0_GPU = -2*cp.ones(len(x_inner_GPU ))

A1min_GPU = cp.ones(len(x_inner_GPU )-1)

A1plus_GPU = cp.ones(len(x_inner_GPU )-1)

A_matrix_GPU = (cp.diag(A1min_GPU ,-1) + cp.diag(A0_GPU ,0) + cp.diag(A1plus_GPU ,1))/ dx**2

I_GPU = cp.eye(len(u0_GPU ))

#################################

########### MULTI -DIM RIGHT -HAND SIDE

#################################

U_source = cp.zeros ((J-1,Mc,Mfc +1))

time_array = cp.array([0,dT])

step_array = cp.array([dt ,dT])

# awkward time -array extraction

t_c = time_array [0]

t_f = time_array [0]

inter_time = cp.array([t_c ,t_f])

for ii in range(Mfc +1): ###

inter_time [0] = cp.copy(inter_time [1])

for jj in range(Mc):

U_source[:,jj,ii] = source(x_inner_GPU , inter_time [0])

inter_time [0] = inter_time [0] + step_array [1]

inter_time [1] = inter_time [1] + step_array [0]

SysMat_course = I_GPU -step_array [1]* A_matrix_GPU

SysMat_fine = I_GPU -step_array [0]* A_matrix_GPU

########################################################################

#

# HEAT EQUATION: TEST AND EXACT SOLUTIONS

#

########################################################################

# Test solution with course step on [0,T]

u_test = cp.zeros ((J-1,Mc+1))

u_test [:,0] = cp.copy(u0_GPU)

inter_time = cp.array([t_c ,t_f])

time_array = cp.array([0,dT])

step_array = cp.array([dt ,dT])

begin_test = time.time()

for n in range(Mc):

inter_time [0] = n*step_array [1]

inter_time [1] = inter_time [0] + step_array [1]

u_old = u_test[:,n]

# Backward Euler

for ii in range(Mfc):

u_array = cp.linalg.solve(SysMat_fine ,u_old + step_array [0]*
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source(x_inner_GPU ,inter_time [0] + step_array [0]))

u_old = cp.copy(u_array)

inter_time [0] = inter_time [0] + step_array [0] ### fine step

u_test[:,n+1] = u_array

end_test = time.time()

print("Time for test solution: ", end_test - begin_test)

t_test = end_test - begin_test

u_test = cp.asnumpy(u_test)

’’’

# Exact solution with fine step on [0,T] with cp.linalg.solve()

u_exact = cp.zeros((J-1,Mc*Mfc +1))

u_exact [:,0] = cp.copy(u0_GPU)

inter_time = cp.array([t_c ,t_f])

begin_exact = time.time()

for n in range(Mc*Mfc):

inter_time [0] = n*step_array [0]

inter_time [1] = inter_time [0] + step_array [0]

u_old = u_exact[:,n]

u_array = cp.linalg.solve(SysMat_fine ,u_old + step_array [0]*

source_CPU(x_inner_GPU ,inter_time [0] + step_array [0]))

u_exact[:,n+1] = u_array

end_exact = time.time()

print("Time for exact solution: ", end_exact - begin_exact)

u_exact = cp.asnumpy(u_exact)

# Exact solution with fine step on [0,T] with thomas_single ()

u_thomas = cp.zeros ((J-1,Mc*Mfc +1))

u_thomas [:,0] = cp.copy(u0_GPU)

cp.cuda.runtime.deviceSynchronize ()

cgpu = cp.zeros(J-2)

bgpu = cp.zeros(J-1)

u_array = cp.zeros(J-1)

cp.cuda.runtime.deviceSynchronize ()

inter_time = cp.array([t_c ,t_f])

begin_thomas = time.time()

for n in range(Mc): #*Mfc

#inter_time [0] = n*step_array [0]

#inter_time [1] = inter_time [0] + step_array [0]

inter_time [0] = n*step_array [1]

inter_time [1] = inter_time [0] + step_array [1]

u_old = u_thomas[:,n]

#step_array [1]* source(x_inner_GPU ,inter_time [0] + step_array [1]

for i in range(Mfc): #

fgpu = cp.copy(u_old + step_array [0]* source(x_inner_GPU ,inter_time [0] + step_array [0]))

cgpu [0] = d_array_c [1]/ d_array_c [0]
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bgpu [0] = fgpu [0]/ d_array_c [0]

thomas_single ((1,),(1,),(cgpu ,bgpu ,fgpu ,u_array ,d_array_c ,Jin))

u_old = cp.copy(u_array)

inter_time [0] = inter_time [0] + step_array [0] ### fine step

u_thomas[:,n+1] = u_array

end_thomas = time.time()

print("Time for thomas solution: ", end_thomas - begin_thomas)

u_thomas = cp.asnumpy(u_thomas)

t_thomas = end_thomas - begin_thomas

’’’

################################################################################

#

# PARAREAL ALGORITHM

#

################################################################################

U_big_GPU = cp.zeros((K+1,J-1,Mc+1))

U_big_GPU [0,:,0] = cp.copy(u0_GPU)

Go_array_GPU = cp.zeros((J-1,Mc+1))

Go_array_GPU [:,0] = cp.copy(u0_GPU)

Fn_array_GPU = cp.zeros((J-1,Mc+1))

Fn_array_GPU [:,0] = cp.copy(u0_GPU)

Gn_array_GPU = cp.zeros((J-1,Mc+1))

Gn_array_GPU [:,0] = cp.copy(u0_GPU)

#################################

########### COARSE PARAREAL ITERATION

#################################

### Thomas algorithm , initialize coefficients and solution for one rhs

cp.cuda.runtime.deviceSynchronize ()

cgpu = cp.zeros(J-2)

bgpu = cp.zeros(J-1)

u_array = cp.zeros(J-1)

cp.cuda.runtime.deviceSynchronize ()

### Initial guess

inter_time = cp.array([t_c ,t_f])

begin_coarse = time.time()

for n in range(Mc):

inter_time [0] = n*time_array [1]

inter_time [1] = inter_time [0] + step_array [0]

#u_old = cp.copy(Go_array_GPU [:,n])

u_oldcupy = cp.copy(Go_array_GPU [:,n])

# Backward Euler

u_cupy = cp.linalg.solve(SysMat_course ,u_oldcupy + step_array [1]*

source(x_inner_GPU ,inter_time [0] + step_array [1]))

#fgpu = cp.copy(u_old + step_array [1]* source(x_inner_GPU ,inter_time [0] + step_array [1]))

#cgpu [0] = d_array_c [1]/ d_array_c [0]

#bgpu [0] = fgpu [0]/ d_array_c [0]
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#thomas_single ((1,),(1,),(cgpu ,bgpu ,fgpu ,u_array ,d_array_c ,Jin))

#errs = cp.sqrt(cp.sum((u_cupy -u_array )**2))

#print("errs = ", errs)

#u_old = cp.copy(u_array)

u_oldcupy = cp.copy(u_cupy)

Go_array_GPU [:,n+1] = u_cupy # u_array

U_big_GPU [0,:,n+1] = cp.copy(Go_array_GPU [:,n+1])

end_coarse = time.time()

print("Time for coarse solution: ", end_coarse - begin_coarse)

#################################

########### FINE PARAREAL ITERATION

#################################

### Thomas algorithm , initialize coefficients and solution for multiple rhs

cp.cuda.runtime.deviceSynchronize ()

cgpu_f = cp.zeros(J-2)

bgpu_f = cp.zeros ((J-1,Mc))

U_matrix = cp.zeros ((J-1,Mc))

cp.cuda.runtime.deviceSynchronize ()

inter_time = cp.array([t_c ,t_f])

### beginning of the Parareal -loop

fine_time = []

update_time = []

begin_total = time.time()

for k in range(K):

U_m = U_big_GPU[k,:,:]

U_mcupy_old = U_m[:,0:-1] # cupy.linalg.solve loop on GPU

#U_matrix_old = U_m[:,0:-1]

# Backward Euler

begin_fine = time.time()

for ii in range(Mfc):

U_mcupy = cp.linalg.solve(SysMat_fine , U_mcupy_old + step_array [0]* U_source [:,:,ii+1])

# cupy.linalg.solve loop on GPU

#fgpu = cp.copy(U_matrix_old + step_array [0]* U_source [:,:,ii+1])

#cgpu_f [0] = d_array_f [1]/ d_array_f [0]

#bgpu_f [0,:] = fgpu [0,:]/ d_array_f [0]

#thomas_multi ((1,),(Mc ,),(cgpu_f ,bgpu_f ,fgpu ,U_matrix ,d_array_f ,Jin ,Mc))

U_mcupy_old = cp.copy(U_mcupy) # cupy.linalg.solve loop on GPU

#U_matrix_old = cp.copy(U_matrix)

#errs = cp.sqrt(cp.sum((U_mcupy -U_matrix )**2))

#print("errs matrix = ", errs)

Fn_array_GPU [:,0] = U_m[:,0]

Fn_array_GPU [:,1:] = U_mcupy #U_matrix

end_fine = time.time()

print("Time for fine solution: ", end_fine - begin_fine)

fine_time.append(end_fine -begin_fine)

U_big_GPU[k+1,:,0] = cp.copy(u0_GPU)
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### Thomas algorithm , initialize coefficients and solution for one rhs

cp.cuda.runtime.deviceSynchronize ()

cgpu = cp.zeros(J-2)

bgpu = cp.zeros(J-1)

u_array = cp.zeros(J-1)

cp.cuda.runtime.deviceSynchronize ()

begin_update = time.time()

for n in range(Mc):

# Backward Euler Method

u_oldcupy = cp.copy(U_big_GPU[k+1,:,n])

#u_old = cp.copy(U_big_GPU[k+1,:,n])

inter_time [1] = n*time_array [1]

u_cupy = cp.linalg.solve(SysMat_course ,u_oldcupy + step_array [1]*

source(x_inner_GPU ,inter_time [1] + step_array [1]))

#fgpu = cp.copy(u_old + step_array [1]* source(x_inner_GPU ,inter_time [1] + step_array [1]))

#cgpu [0] = d_array_c [1]/ d_array_c [0]

#bgpu [0] = fgpu [0]/ d_array_c [0]

#thomas_single ((1,),(1,),(cgpu ,bgpu ,fgpu ,u_array ,d_array_c ,Jin))

u_oldcupy = cp.copy(u_cupy)

#u_old = cp.copy(u_array)

Gn_array_GPU [:,n+1] = u_cupy # u_array

# COMBINATION STEP

U_big_GPU[k+1,:,n+1] = Fn_array_GPU [:,n+1] + Gn_array_GPU [:,n+1] - Go_array_GPU [:,n+1]

Go_array_GPU = cp.copy(Gn_array_GPU)

end_update = time.time()

print("Time for update solution: ", end_update - begin_update)

update_time.append(end_update - begin_update)

end_total = time.time()

print("Time for total solution: ", end_total - begin_total)

t_total = end_total - begin_total

U_big_CPU = cp.asnumpy(U_big_GPU)

average_fine = sum(fine_time )/len(fine_time)

average_update = sum(update_time )/len(update_time)

print("t_exact = ",t_test)

print("Mc = ", Mc)

print("Mfc = ", Mfc)

print("K = ", K)

print(" p = ", t_test/average_fine)

print("Sp = ", t_test/t_total)

print("St = ", Mc/(K*(Mc/( t_test/average_fine) + 2*Mc/Mfc)))

print("average_fine = ", average_fine)

print("average_update = ", average_update)

################################################################################

#

# ERRORS

#

################################################################################

U_big_CPU = cp.asnumpy(U_big_GPU)

errors = np.zeros ((Mc,K+1))

for n in range(Mc):
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errors[n,0] = np.linalg.norm(U_big_CPU [0,:,n+1]- u_test[:,n+1])

for k in range(K):

for n in range(Mc):

errors[n,k+1] = np.linalg.norm(U_big_CPU[k,:,n+1]- u_test[:,n+1])

################################################################################

#

# PLOTS

#

################################################################################

t_span = np.linspace(0,T,Mf+1)

T_span = np.linspace(0,T,Mc+1)

xx ,tt = np.meshgrid(x_inner ,t_span)

XX ,TT=np.meshgrid(x_inner ,T_span)

subsub = [331 ,332 ,333 ,334 ,335 ,336 ,337 ,338 ,339]

subcount = 0

’’’

plt.figure (0)

for m in range(Mc+1):

plt.subplot(subsub[subcount ])

plt.plot(x_inner ,u_test[:,m],’-xb’, label = ’u_test ’)

plt.plot(x_inner ,U_big_CPU[K,:,m], ’or’, label = ’U[8]’)

plt.plot(x_inner ,U_big_CPU [0,:,m], ’og’ , label = ’U[0]’)

if m == 6 or m == 7 or m == 8:

plt.xlabel (" space")

if m == 0 or m == 3 or m == 6:

plt.ylabel (" temperature ")

if m == 0:

plt.legend ()

plt.title(’t = ’+str(dT*m))

subcount = subcount + 1

# Plotting u_test

norm2 = plt.Normalize(u_test.min(), u_test.max())

colors1 = cm.viridis(norm2(u_test.transpose ()))

rcount , ccount , _ = colors1.shape

fig2 = plt.figure (2)

ax2 = fig2.gca(projection =’3d’)

surf = ax2.plot_surface(XX, TT, u_test.transpose (),

rcount=rcount , ccount=ccount , facecolors=colors1 , shade=False)

surf.set_facecolor ((0,0,0,0))

ax2.set_title ("Test solution ")

ax2.set_xlabel (" space")

ax2.set_ylabel ("time")

ax2.set_zlabel (" temperature ")

’’’

# Plotting the errors

plt.figure (3)

for n in range(Mc):

plt.semilogy(errors[n,:], label="t = "+str(n*dT+1))

plt.xlabel("Parareal iterations")

plt.ylabel("Logarithmic scale")

plt.legend ()

# Plotting parareal

’’’

fig4 = plt.figure (4)
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norm4 = plt.Normalize(U_big_CPU [0,:,:].min(), U_big_CPU [0,:,:].max())

colors = cm.inferno(norm4(U_big_CPU [0,:,:]. transpose ()))

rcount , ccount , _ = colors.shape

ax4 = fig4.add_subplot (1,2,1, projection =’3d’)

surf = ax4.plot_surface(XX, TT, U_big_CPU[k,: ,:]. transpose (),

rcount=rcount , ccount=ccount , facecolors=colors , shade=False)

surf.set_facecolor ((0,0,0,0))

ax4.set_title ("U["+ str (0)+"]")

ax4.set_xlabel (" space")

ax4.set_ylabel ("time")

ax4.set_zlabel (" temperature ")

norm5 = plt.Normalize(U_big_CPU[K,:,:].min(), U_big_CPU[K,:,:].max())

colors = cm.inferno(norm5(U_big_CPU[K,: ,:]. transpose ()))

rcount , ccount , _ = colors.shape

ax5 = fig4.add_subplot (1,2,2, projection =’3d’)

surf = ax5.plot_surface(XX, TT, U_big_CPU[K,: ,:]. transpose (),

rcount=rcount , ccount=ccount , facecolors=colors , shade=False)

surf.set_facecolor ((0,0,0,0))

ax5.set_title ("U["+ str(K)+"]")

ax5.set_xlabel (" space")

ax5.set_ylabel ("time")

ax5.set_zlabel (" temperature ")

’’’

plt.show()
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