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Abstract: The Persistent Scatterers Interferometry (PSI)

method enables displacement estimation with millimeter

accuracy. However, the uncertain positioning of Point Scat-

terers (PS) makes it difficult to associate them with real

objects in space and hampers the interpretation of the

results. This article proposes a methodology to enhance

the accuracy of PS positions. The methodology successfully

establishes links between PS and real objects by associating

them with the most likely candidate points extracted from

Airborne Laser Scanning (ALS) point clouds. The selection

process for suitable candidates is based on ALS analysis

of return number, classification, and geometric features

determined by neighborhood analysis. The linking process

involves determining global transformation parameters for

PSs using the Iterative Closest Point (ICP) algorithm. Then,

the nearest neighbor searchwithin the error ellipsoid of the

PS positions is performed. Tests conducted demonstrated

that this method allows for linking more than 80 % and

65 % of the PS derived from Sentinel-1 and TerraSAR-X mis-

sion data, respectively, in both ascending and descending

geometries. To validate the obtained results, in addition
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to the quantitative assessment, a qualitative analysis is

performed based on a developed 3D visualization module

showing all stages of the proposed methodology.
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1 Introduction

Persistent Scatterers Interferometry (PSI) is one of the

advanced multi-temporal Interferometric Synthetic

Aperture Radar (InSAR) methodologies based on the

analysis of time series of satellite radar images [1].

PSI estimates the surface displacement using phase

observations from selected coherent points called

Persistent Scatterers (PSs). Stack-based processing is

crucial for eliminating the residual topographic error

and atmospheric artifacts, resulting in highly precise

displacement estimates at the millimeter level [2], thereby

overcoming the limitations of traditional Differential InSAR

(DInSAR). For this reason, it is widely used to measure

surface displacement caused by various phenomena, such

as earthquakes [3], landslides [4, 5], volcanic eruptions

[6], city developments [7, 8], and mining activities [9,

10]. Another popular multi-temporal InSAR technique,

the Small Baseline Subset (SBAS), allows the analysis of

displacements for individual SAR pixels, which contain a

group of smaller reflectors named distributed scatterers.

PSI focuses on point targets representing objects with

high stability in reflected signals, characterized by high

coherence [11]. For this reason, PSs are typically found in

large numbers on buildings, monuments, and man-made

structures, such as bridges, telecommunication towers,

poles as well as conductors, and exposed rocks. Thus,

this technique is mainly used to estimate displacement

in urban areas [12] and for infrastructure monitoring

like roads [13], railways [14], and bridges [15] as well as

single buildings [16]. Thanks to the capability to monitor

vast regions with high temporal resolution and high

accuracy, the PSI processing results have recently been

presented on various regional and national services
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such as European Ground Motion Service (EGMS) [17],

German Ground Motion Service (BodenBewegungsdienst

Deutschland – BBD, https://bodenbewegungsdienst.bgr

.de) and the Dutch Ground Motion Service (https://

bodemdalingskaart.nl).

However, PSs suffer frompoor position accuracy,mean-

ing that it is challenging to associate them with real

objects [18]. The precise position of a point and its associ-

ation with objects in space is a crucial aspect that facili-

tates result interpretation. Firstly, knowing the object from

which the signal originates allows for interpreting displace-

ment mechanisms. When multiple forcing mechanisms are

involved, establishing a correlation between persistent scat-

terers and specific objects is particularly important. For

instance, observed displacements may result from a com-

bination of both structural instability and deep-layer com-

paction processes [19]. Secondly, the exact location of a point

on a specific object enables the identification of structures

behaving differently. Thirdly, more accurate PS position and

additional information about the source object of the scat-

terer can enhance the quality of the deep-learning models,

which are more and more often implemented in InSAR

data processing [20, 21] in recent years. Moreover, align-

ing with real-world objects in 3D can be leveraged when

preparing visualizations of the obtained results on differ-

ent platforms that showcase InSAR processing outcomes.

Currently, many of these services rely on two-dimensional

maps, such as an orthophoto, where the assumption is

that the PS originates from a visible object on the map

base.

The technique that allows the mapping of objects with

high accuracy and spatial resolution is Light Detection and

Ranging (LiDAR). Depending on the scanning technique,

such as Airborne Laser Scanning (ALS), UAV-borne Laser

Scanning (ULS), Mobile Laser Scanning (MLS), or Terrestrial

Laser Scanning (TLS), the point cloud density, area coverage,

and accuracywill vary. Nevertheless, ALS technologymakes

it possible to acquire accurate geometric data about the

terrain of a large area in a short period. Additionally, for

many countries, ALS is conducted nationwide, and in some

cases, the data is freely available. Therefore, this data can

provide away of reference for the position of the PS in three-

dimensional space. The integration of the PSI processing

with the LiDAR point cloud will be beneficial in improving

the accuracy of the position of the PS and, thus, a more pre-

cise interpretation of the obtained displacement results. The

concept of a high-resolution ALS point cloud to improve the

accuracy of PS positions has been addressed in the literature

[22], but in our opinion, there is still a possibility to improve

the accuracy. Therefore, in this paper, we propose a new

approach for improving the localization of PSs in reference

to ALS point cloud and, consequently, more links of PSs to

real objects represented by ALS points. The novelties of our

contribution are:

– A multi-step ALS point pre-selection algorithm, which

takes the nature of the radar signal reflection into

account;

– Treating the PS points as a point cloud to determine

the global transformation parameters (both translation

and rotation in 3D space) using the Iterative Closest

Point (ICP) algorithm.

This paper is structured as follows. Section 2 reviews, in

general, other works that addressed the problem of improv-

ing the position of the PS. Section 3 describes the proposed

methods and experiment setup. In Section 4 used data

are presented. The results obtained are given in Section 5

and discussed concerning the results of other studies in

Section 6. Finally, conclusions are drawn in Section 7.

2 Related work

PS position accuracy is affected by many factors, which can

be divided into four main groups [23]: (1) radar satellite

instrument effects, (2) signal propagation effects, (3) geo-

dynamic effects, and (4) coordinate transformation effects.

Improving PS positioning accuracy is a widely studied topic

in the scientific community because the precise location

of the estimated PS significantly impacts the interpretation

of the obtained displacements for a specific object. There-

fore, many different approaches to PS localization accuracy

have been developed in the last few years. The first group

includes corrections to PS position in the radar coordinate

system, i.e., range and azimuth. These corrections reduce

the impact of errors such as azimuth shift, atmospheric path

delay, plate motion, and solid earth tides [24–26]. However,

these methods do not consider the cross-range position,

which affects the PS position in the 3D terrain coordinate

system. Usually, these approaches compare results obtained

for corner reflectors (CRs), easily identified in the radar

image and forwhich awell-defined scattering center ismea-

sured accurately using Global Navigation Satellite Systems

(GNSS) techniques or a total station.

A second group of approaches attempted to use a kind

of ground control point (GCP), widely used in photogram-

metry, to determine offsets between the position of a poten-

tial scattering source and estimated PS. For example, stud-

ies [16, 27] aimed to use identical objects for which PS

was obtained in different imaging geometries (orbits) to

obtain accurate 3D terrestrial coordinates of the scatterers.

https://bodenbewegungsdienst.bgr.de/
https://bodenbewegungsdienst.bgr.de/
https://bodemdalingskaart.nl
https://bodemdalingskaart.nl
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Typically, these are narrow objects such as poles. How-

ever, the primary drawback of this method, especially for

medium- and low-resolution (C-band and L-band) SAR prod-

ucts, is the small number of detected GCPs. Therefore, this

method is most suitable for urban areas where there are a

lot of PS and appropriate objects. Additionally, for lower-

resolution SAR products, GCP identification could be more

challenging, especially when the study area has a high den-

sity of such structures.

On the other hand, in ref. [28] the authors used CRs

as GCP to improve positioning accuracy through three

approaches: single-epoch, multi-epoch, and artificial GCP

derived from digital surface models. The first two methods

require access to CRs and field measurements, while the

thirdmethod allows for accuracy improvement based solely

on free-available data without additional field measure-

ments. However, the proposed methods are based on deter-

mining global transformation parameters. Thus, in practice,

they do not allow the linking of each PS to the real object

but only to improve the accuracy of the position relative

to it.

In the study conducted by Van Natijne et al. [22], an

innovative approach was introduced, allowing each PS to

be linked individually to the LiDAR point cloud. The linking

is carried out inside the PS position error ellipsoid, which

is a graphical representation of the variance-covariance

matrix of the PS position [23]. Reference [29] adopts a similar

method for monitoring displacements in railway areas and

PS classification. Searching for candidates to merge inside

the PS error ellipsoid seems to be a valid approach. Points

inside the ellipsoid are more likely to be the source of PS

than the nearest point in 3D space. On the other hand, this

approach relies solely on the geometric alignment of PS data

to LiDAR without incorporating the physical properties of

radar measurements. Study [30] used a different approach,

incorporating 3D city models in Level of Detail 1 and 2 stan-

dards (LOD1 andLOD2) and ray tracing to simulate radar sig-

nal propagation. They aimed to identify the true PS within

the error ellipsoid for each simulated point, achieving 10 %

and 37 % data matching with the TerraSAR-X PS dataset for

LOD1 and LOD2, respectively. The low matching percentage

is due to the significant shape generalization of individ-

ual buildings. This highlights the challenges of accurately

simulating PS data within the context of 3D city models

and ray tracing. However, in ref. [31], the authors did not

consider the PS position uncertainties and focused solely on

individual buildings. They performed clustering of PS points

based on the behavior of time series and connected them

with building segments derived from manually segmented

mesh.

The PSI processing also impacts the accuracy of the

PS position. In recent years, numerous AI (artificial intel-

ligence) based modifications to the PSI processing meth-

ods have been proposed. The shallow and deep learning-

based methods have been proposed to enhance traditional

PSI processing results through phase denoising [32], phase

unwrapping [33], and target detection for densification of

the generated PS [33]. While these methods enhance the

estimated displacements in both qualitative and quantita-

tive terms, they come with their own set of challenges.

One major limitation is that deep learning models require

substantial amounts of training data, which can be labor-

intensive and time-consuming to prepare. Additionally,

while these methods enhance displacement accuracy, they

do not address the positional accuracy of persistent scatter-

ers, making the problem of assigning PSs to real objects still

unsolved.

Thus, considering the ongoing need to improve the

PSs position accuracy and linking them to real objects, we

decided to use the ALS point cloud as a reference object

and search for the closest points in the error ellipsoid. Our

approach does not require CR or field measurements, and

the only condition is the availability of ALS data, which

may have been acquired for other purposes and are often

available in national resources. We aim to demonstrate that

by utilizing simple and widely known tools, without the

laborious process of preparing data for deep learning, we

can enhance the accuracy of PS position and their corre-

spondences to real objects. The most important aspect of

this work is to select suitable candidates in the LiDAR data

and link the PS that are nearby to them. To accomplish

this, we pre-selected the ALS cloud and pre-corrected the PS

position using ICP to determine the global transformation

parameters between the PS and LiDAR clouds.

3 Methods

Themethod of PS geolocalization correction consists of four

main steps (Figure 1), described in detail in the following

subsections. The first step is the estimation of PS position

uncertainties based on PSI processing results (Section 3.1).

The second step, which can be executed in parallel with

the first step, is LiDAR point cloud processing (Section 3.2).

The third step is the co-registration of PS points and LiDAR

point cloud using the ICP algorithm (Section 3.3). The final

linking of PSs with particular LiDAR points is described

in Section 3.4. In addition, the results were validated both

quantitatively as well as qualitatively where a 3D visual-

ization module was implemented to visualize and assess

linking results (Section 3.5).
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Figure 1: PS linking methodology flowchart.

All computations and the visualization module have

been implemented in Python, utilizing various libraries,

such as GDAL (https://gdal.org/), GeoPandas (https://

geopandas.org/), NumPy (https://numpy.org/) [34], Open3d

(http://www.open3d.org/), and PyVista (https://docs.pyvista

.org/).

3.1 Point scatterer position uncertainty

Persistent Scatterer Interferometry is a widely adopted

advanced InSAR technique for displacement monitoring

with millimeter-level accuracy [35, 36]. Numerous stud-

ies provide a comprehensive discussion of PSI processing

details [1, 11, 37, 38]. In this section, we will focus on the

methodology involved in estimating the position uncer-

tainty of PSs.

In the radar coordinate system, the position of a scat-

terer is defined in range (r), azimuth (a), and cross-range (c)

coordinates. Range refers to the direction of the radar signal,

azimuth to the direction of the satellite’s flight, whereas

cross-range is perpendicular to the range andazimuthdirec-

tion. Range and azimuth can be estimated from the mean of

the full stack of SAR images by detecting the effective phase

center of the radar scatterer. The units of the estimates

used are pixels. The variances (𝜎2) of point scatterer (P)

position in azimuth and range directions are dependent on

the signal-to-clutter ratio (SCR
P
), which describes the uncer-

tainty of the peak position caused by clutter or the presence

of more than one dominant scatterer, and oversampling

factorΔ
P
[23]:

𝜎
2
r,P

= 𝜎
2
a,P

= 3

2 ⋅ 𝜋2 ⋅ SCR
P

+ 1

12Δ2
P

. (1)

In this study, the SCR
P
was calculated in the same man-

ner as in ref. [29] using the normalized amplitude disper-

sion index. In addition, since no oversampling of the data

was applied, an oversampling factor equal to 1 was used to

calculate the scatterer variances for the range and azimuth

coordinates.

In order to estimate the cross-range variance, InSAR

observations are required. According to previous studies

[23, 29] the variance of P position along the cross-range

direction was calculated by transforming the height vari-

ance (𝜎2
h,P
) to the radar geometry (azimuth, range and cross-

range) by using the following equation:

𝜎
2
c,P

=
𝜎
2
h,P

sin2
(
𝜃

) , (2)

where 𝜃 is the incidence angle.

The uncertainty of the scatterer position in the radar

geometry can then be described using the following

variance-covariance matrix (Qrac):

Qrac =
⎡⎢⎢⎢⎣

𝜎
2
r,P

0 0

0 𝜎
2
a,P

0

0 0 𝜎
2
c,P

⎤⎥⎥⎥⎦
. (3)

The Qrac matrix is diagonal because it is assumed that

the range, azimuth and cross-range coordinates are uncor-

related. The PS position in the radar coordinate system is

transformed to a geodetic reference frame by a non-linear

transformation called geocoding [27]. Then, coordinates can

be transformed into a specific coordinate system, e.g., to the

system in which LiDAR data are provided. This means that

the position uncertainty in the reference coordinate system

depends on the range, azimuth, and cross-range uncertain-

ties, aswell as the local incidence angle and heading angle of

the radar signal that affects the transformation parameters.

Considering the variance propagation law and Equation (3),

using an S-transformation matrix (R) [23, 39], the variance-

covariance matrix in the geodetic reference frame is given

by [23]:

Q
enh

=
⎡⎢⎢⎢⎣

𝜎
2
e

𝜎
2
en

𝜎
2
eh

𝜎
2
en

𝜎
2
n

𝜎
2
nh

𝜎
2
eh

𝜎
2
nh

𝜎
2
h

⎤⎥⎥⎥⎦
= R ⋅ Qrac ⋅ R

T
, (4)

https://gdal.org/
https://geopandas.org/
https://geopandas.org/
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http://www.open3d.org/
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https://docs.pyvista.org/
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where the diagonal and nondiagonal represent the vari-

ances and covariances in east (e), north (n), and height (h)

directions, respectively. TheRmatrix is defined based on the

radar’s geometry, incorporating the local incidence angle (𝜃)

and heading angle (𝛼):

R =
⎡⎢⎢⎢⎣

sin
(
𝜃

)
cos(𝛼 ) sin(𝛼) cos

(
𝜃

)
cos(𝛼)

− sin
(
𝜃

)
sin(𝛼 ) cos(𝛼) − sin(𝛼) cos

(
𝜃

)
− cos

(
𝜃

)
0 sin

(
𝜃

)
⎤⎥⎥⎥⎦
. (5)

The geometric representation of the variance-

covariance matrix Q
enh

is an error ellipsoid with semi-axis

lengths equal to the eigenvalues of the Q
enh

matrix. These

values reflect the random errors in the positions of PSs.

Effects of systematic errors causing misalignment of

PS positions with reference frame are reduced at the

transformation stage using the ICP algorithm (Section 3.3).

3.2 LiDAR point cloud processing

Among the LiDAR techniques mentioned earlier (Section 1),

ALS appears to be particularly suitable for the problem

discussed because it can cover large areas, and its acquisi-

tion geometry is similar to SAR. Compared to PSs, ALS data

has a denser point distribution and higher point position

accuracy. However, a drawback of ALS is the relatively low

number of points on building facades, especially in urban

canyons. This limitation poses a challenge when attempting

to capture intricate urban structures.

In this study, we assumed that ALS and PS can be the

same points, though LiDAR and SAR use different wave-

lengths and different principles of signal reflection and

point creation. C-band and X-band SAR signals can pene-

trate some objects (e.g., vegetation, snow) to some extent

depending on the wavelength (longer wavelengths enable

deeper penetration). However, such surfaces generally do

not generate PSs because they cannot be classified as sta-

ble scatterers. The penetration for more solid surfaces is

negligible, considering the accuracy of ALS points. ALS uses

typically infrared wavelength that, in general, does not pen-

etrate objects, causing points to be created on the object

surfaces with the single laser pulse. Because the laser beam

is divergent, parts of the pulse footprint may “fall” on differ-

ent objects (e.g., different parts of the tree, ground) produc-

ing multiple echoes of the single laser pulse. This multiple

return capability of the ALS causes an illusory effect of

vegetation penetration, but points are always created on the

top of the surfaces.

Most PSs are related to man-made structures because

of their strong scatterer mechanism [40], while ALS data

contains points that also belong to other objects. ALS points

are usually assigned to real objects thanks to classification

into typical point classes defined by ASPRS standard [41].

However, some ALS point classes may contain a mixture of

objects suitable and unsuitable for PS forming. Therefore,

appropriate ALS data filtering is crucial tominimize the risk

of linking PSs to LiDAR points that are not PSs. The selec-

tion of appropriate linking candidates from the ALS point

cloud is essential at two distinct processing stages: firstly,

during the position correction utilizing ICP, and secondly,

in the final linking stage (Figure 1). The proposed method

involves a few simple filters (Figure 2) that significantly limit

the number of wrong PSs candidates in the ALS dataset. In

this research, we propose a filtering workflow that, besides

the information about existing classification, considers echo

number and geometrical features of points that can distin-

guish some of man-made objects and considers side-looking

SAR geometry.

The first step of the proposed filtering workflow is

ALS point filtering based on the echo information, which

is a feature of pulsed scanners exclusively utilized in ALS

[42]. In our method, we keep only points being the first

echo since PSs cannot be created on the ground surface

or other objects under vegetation cover. The second stage

contains normal vector and point feature calculation using

Principal Component Analysis (PCA). The normal vector is

used during ICP registration and for point cloud filtering in

specific class similarly as linearity and planarity features.

The proposed method can be applied to any laser scan-

ning as well as photogrammetry point cloud that has at

least 3 classes: Ground (natural and man-made), Buildings

(containing roofs and walls), and Unclassified (all remain-

ing points). Classes Ground and Buildings contain objects

that create most of the PSs. The remaining points may be

included in the Unclassified class or may belong to other

classes. If any other class exists in the ALS dataset, it can be

one of three types: (I) completely removed from PS candi-

date search (e.g., classes: Vegetation, Water, Low points), (II)

completely accepted as PS candidates (e.g., Infrastructure

class), (III) additionally filtered to search for possible PS can-

didates similarly as Unclassified class. The class Buildings

follows additional filtering to remove points that stay in the

shadow due to the SAR satellite line of sight (LOS). Consid-

ering the necessity to filter only two classes: Unclassified

andBuildings, among the possible PCA-based features, three

parameters were used: planarity, linearity, and information

about surface orientation (normal vector). For the reliable

determination of these features, choosing an appropriate

point neighborhood for applying PCA and calculating these

features is crucial. As an optimal neighborhood, the authors

in ref. [43] defined the largest set of spatially close points
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Figure 2: Methodology LiDAR point cloud filtering for PS linking candidate selection.

that belong to the same object as the point of interest.

According to ref. [44], the optimal number of points in the

neighborhood that provides the best local description of the

point cloud for different classes of objects is 10 points. The

neighborhood size should be large enough to enable PCA

feature determination for all points of the tested objects

while being small enough to prevent the inclusion of points

fromneighboring objects in the defined local neighborhood.

Among themethods for finding neighboring points, a spher-

ical neighborhood was used, with the radius determined

experimentally. The tested radius range was 0.5–3.0 m and

resulted from the density of the ALS point cloud. The value

of the final radius was determined based on tests conducted

onALS points representing severalman-made linear objects

(such as poles and fences) and planar objects (such as sound

barriers and information boards) that can form PS.

The selection of potential PS candidates, being infras-

tructure objects but located in the Unclassified class, is

dependent on planarity or linearity values. Points exceed-

ing predefined S or L thresholds (Figure 2) are accepted

as potential PS candidates. For instance, utility poles and

cables would exhibit high linearity values, while sound

barriers or fences would display elevated planarity values.

Natural objects are less likely to meet the specified criteria.

Thresholds for S and Lwere determined empirically by ana-

lyzing the abovementioned test objects. The maximum val-

ues that ensured all test objects were classified as potential

PS candidates were selected as the appropriate thresholds.

A set of S and L values from 0.5 to 0.9with a step of 0.05were

tested. The maximal value of 0.9 was taken based on the

literature [45]. The final stage of the proposed PS candidate

filteringmethodology is intended to remove points from the

Buildings class that are in the shadow with respect to the

SAR imaging geometry. Due to the significant differences

in geometry between SAR and ALS, this step addresses the

fact that SAR is a side-looking system, whereas LiDAR cap-

tures data from a top-down perspective. This difference can

addressed by the SAR signal incidence angle to the object

surface (e.g., building façade, roof, etc.). For this purpose,

the angle between each point’s normal vector and the vector

opposite the LOS of the radar signal is computed. Pointswith

an angle larger than 90◦ are identified as in shadow and

then removed. The LOS-opposite vector is calculated as a

unit vector based on angles describing the LOS geometry
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Figure 3: PS candidate selection methodology. (a) Shows the cross-section of original ALS data and the main classification of the point cloud. (b)

Presents the results of the proposed methodology.

– the azimuth and incidence angle. The final result of the

filtering method is illustrated in Figure 3.

3.3 Global transformation parameters
estimation using Iterative Closest Point
algorithm (ICP)

In radar geometry, the position of PS can be influenced by

various factors, which can be categorized into two main

groups: systematic factors applicable to the entire dataset

and factors specific to a particular PS point. Systematic

offsets are caused by, e.g., SAR image timing errors, orbit

errors, uncompensated atmospheric signal delays, and a PS

reference point height offset. The additional individual PS

point position errors are due to uncertainty in the scatterer

peak detection (SCR dependent) and the PS height estimate.

Using a LiDAR point cloud as well as other datasets such

as surface models, it is possible to reduce the effect of

errors. In ref. [29] authors proposed an iterative procedure

to eliminate systematic height shifts using a gridded sur-

face model obtained by LiDAR data. This method is more

precise than single-point correction but does not estimate

all shifts independently. In this work, we suggest estimating

not only shifts between PSs and LiDAR point clouds but also
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rotations.We propose to treat the PSs as a sparse point cloud

and execute point cloud-to-point cloud registration using

the well-known ICP algorithm, which allows the transfor-

mation that optimally aligns two or more sets of points. The

ICP algorithmhasmany implementations andmodifications

aimed at improving its accuracy. During the optimization

process in the ICP algorithm, the goal is to minimize the dis-

tance between a point in the transformed cloud and a point

in the target cloud. This distance minimization can involve

point-to-point, point-to-line, or point-to-plane relationships,

depending on the specific problem configuration. In this

research, we used the point-to-plane distance minimization

criteria in the ICP algorithm implementation included in the

Open3D Library for Python [46]. Our study focuses on ALS

point clouds,where, due to the scanning geometry, lowpoint

density on a vertical wall is often a challenge. Therefore,

using a point-to-plane approach seems to be an appropri-

ate choice. The point-to-plane distance between two cor-

responding points is defined as the orthogonal distance of

one point to the fitted plane of the other point [47]. The

plane for a point from the reference cloud is usually deter-

mined based on its neighboring points. In this work, we

determined these planes in the previous step (Section 3.2) by

calculating the normal vector for each point.Minimizing the

distance determined in this strategy proves to be a helpful

approach, particularly in situations characterized by areas

of low point density. In such cases, the distance to the plane

formed by the selected points is expected to be less than the

slant distance to the actual point. In this research, as a target

point cloud the ALS dataset after the PS candidate selection

stepwas chosen. This is a crucial assumption because, in the

ICP algorithm, the closest points are treated as correspond-

ing points. Thus, ALS points that cannot correspond to PSs

should be removed.

The ICP algorithm implementation used in this work

has a fewparameters that need to be provided: initial coarse

transformation parameters, distance threshold, and con-

vergence criteria. Initial coarse transformation parameters

include rotation and translation parameters that describe

the initial alignment of point clouds. Because PSs are trans-

formed earlier from radar geometry to the geodetic frame

of the LiDAR point cloud, both point clouds are in the same

coordinate system. Thus, coarse transformation parameters

are equal to 0. The distance threshold is themaximumpoint-

to-planedistance accepted. The computations donot include

points for which the distance threshold is exceeded. In this

work, the distance threshold is set to equal the maximum

pixel size in the radar geometry of the SAR image, i.e., 14 m

and 2 m for Sentinel-1 and TerraSAR-X data, respectively.

The convergence criteria decide when the iteration process

ends. In this work, two parameters of convergence criteria

were used: a maximum number of iterations of 100 itera-

tions and a change in RMSE values between the two last

iterations of smaller than 0.001 m. The RMSE is calculated

from point-to-plane distances for inlier points that met the

ICP threshold criteria. The iteration process ends when any

of these criteria are met. The results of the executed ICP

algorithm are the transformation parameters from PS to

LiDAR point cloud and ICP quality assessment values. Esti-

mated transformation parameters were applied to PS the

point cloud, and thus, the corrected PS point cloud was

prepared for final linking.

3.4 Final linking

Using the ICP method, it is possible to improve the accuracy

of the position of PSs, but they are still not linked to real

objects because the same translation and rotation value is

applied to all points. Therefore, an individual approach to

each point is required. For the final PS linking, we adopted

the methodology proposed in ref. [22] involving a nearest

neighbor search process concerning the radar geometry

that links the scatterers to their most likely point in the

LiDAR point cloud. Searching is performed inside the error

ellipsoid defined by the variance-covariance matrix which

was described in detail in Section 3.1. An error ellipsoid at

the 2-sigma confidence level was used, meaning that the

true reflection point is expected to be within the ellipsoid

in approximately 95 % of the cases.

Since the original error ellipsoids based onQrac are typi-

cally non-spherical due to differences in the variances in the

azimuth, range and cross-range directions, this also applies

to the error ellipsoids after transformation. Consequently,

finding the closest LiDAR point and, thereby, the most likely

PS scatterer location is not straightforward. Therefore, a

whitening transformation [48] is adapted to decorrelate the

original data, providing a set of uncorrelated data with unit

variances. The transformation matrix (W) is formed using

the eigenvalues (E) and eigenvectors (D) of the covariance

matrix of PS in the geodetic reference frame (Q
enh
):

W = E
−1
D
− 1

2 E
T . (6)

A transformation was performed on the ALS and PS

point clouds. After this transformation, searching the near-

est neighbor in the LiDAR point cloud to each PS can be

performed in the Euclidian space. The PS pointwas assigned

with the selected LiDAR point coordinates (corrected posi-

tion) and within the confidence ellipsoid. Otherwise, its

PS position was not corrected. If the confidence ellipsoid

contained more than one point, the selection of the single
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linking point was based on the point class and the distance

to the ellipsoid center. The priority of links was put on the

class Buildings, then Ground and Infrastructure (if it exists),

and in the last order, the newly created Other class. The

prioritization of classeswas applied according to object type

suitable to form PS and to prevent links to noise points that

were not completely removed from the Unclassified class

during filtering but are closer to the ellipsoid center than

points fromother classes. Ifmore than one point of the same

class was included in the confidence ellipsoid, the nearest

neighbor to the ellipsoid center was selected as the PS link.

The final output of the entire linking procedure is

the original PS dataset enriched with corrected PSs coordi-

nates obtained during final linking, the LiDAR-based class

assigned to the PSs, and information regarding the deter-

mined variances in the radar geometry. PS points not linked

to LiDAR points did not get corrected coordinates and class.

3.5 Validation

3.5.1 Quantitative evaluation

The validation of the 3D linking accuracy should be based on

an assessment of the accuracy of associations with objects

that actually reflect the signal. In particular, for targets with

known effective phase centers such as CRs, the true reflec-

tion center is well known, and it can be measured on-site

using e.g., GNSS [49]. Unfortunately, these objects are rarely

or never available in certain scenarios, such as for our test

sites. Following the approach proposed in ref. [23], valida-

tion in scenarios without CR targets involves establishing

connections with real-world objects as non-CR targets. This

validation approach quantifies the number of links with

these non-CR targets. The percentage of points at which a

linking procedure discovers a new position on a real object

has been used several times in the literature to evaluate the

quality of linking [22, 29, 30, 50]. In some cases, depending

on the particular application in which linking was used,

the authors focused only on the classes of interest to them

[51]. In this contribution, we also consider the percentage of

successfully linked PSs as a metric to assess the quality of

the proposed approach. The performance of the proposed

method was also validated by analyzing the percentage of

linked PSs and their assignment to a particular class for

the method that excludes one of the proposed key steps:

(1) removing systematic errors using the ICP algorithm and

(2) filtering of ALS points. The lower number of linked

PSs, their assignment to classes that cannot create PSs (e.g.,

vegetation), or significant differences in percentage for the

PS obtained from different orbits will indicate lower per-

formance. Note that the percentage ratio of PSs assigned

to a particular class should be similar for descending and

ascending orbit datasets within the same satellite system for

the same area. Different acquisition geometry for different

orbits should not cause significantly different proportions

of objects that create PSs in a particular class. This metric

will allow us to compare results obtained with our method

with those proposed in other studies.

3.5.2 Qualitative evaluation – 3D visualization

Typically, PSI processing results are visualized in 2D maps

as a point with information about the displacement. This

type of visualization does not give information about the

PS location in 3D space. For instance, PS visualized on a

bridge may belong to the bridge deck, bridge support, or

another element. By performing 3D visualization, we can

more precisely determine from which object or its specific

part the PS originates. Regardless of the dimensionality of

the visualization, linking PSs to the LiDAR point cloud, as

described in the workflow above, leads to new coordinates

for numerous PSs. This can pose a challenge in visually ver-

ifying the accuracy of the proposedmethod. Visualizing PS’s

location before and after linking data, even in 3D, may not

give adequate insights if the number of points is very large.

In our contribution, we propose another way to visualize

the linking results that enable showing PS’s original location

(P) as well as its corrected location after ICP registration (P′)

and the location of the linked LiDARpoint (P′′) togetherwith

the linking vector (Figure 4). In addition, error ellipsoids are

visualized to show the uncertainty of PS locations (Figure 4).

Figure 4: Scheme of 3D visualization of PS-LiDAR linking results for one

point. PS point location: original – P (orange), after ICP registration P′

(red), linked LiDAR point P′′ (violet) and the error ellipsoid (black). The

shape of the ellipsoid is described by the semi-axes (green, blue, orange)

and oriented according to the radar geometry. P′ is the center of the

ellipsoid. The linking vector (yellow) to the LiDAR point is within the

ellipsoid.
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This approach enables visual verification of the linking pro-

cess and facilitates the interpretation of the PSI results.

The visualization module was also implemented in

Python, using packages such as PyVista (https://docs.pyvista

.org/) and LasPy (https://laspy.readthedocs.io/). Depending

on the analysis, certain visualization elements, such as

ellipsoid shapes, vectors, or PSs, may be excluded from

the selected stage to improve the interpretation of the

results.

4 Data

The presented methodology was applied in two different

test sites (Figure 5) – located in Amsterdam, Netherlands

(two test fields) and in Ruda Śląska, Poland (one test field).

The PSI results were obtained by processing SAR data

collected with two satellite systems: C-band Sentinel-1 (S1)

and X-band TerraSAR-X (TSX). The PSI processing for each

system, depending on available data and to evaluate the

efficiency of the proposed algorithm in different scenarios,

was executed using data collected from ascending (ASC) and

descending (DSC) orbits. The ALS data was obtained from

the Polish (geoportal.gov.pl) and Dutch (ahn.nl) national

databases. In this study, we used the classification provided

by the respective data suppliers. The classification was sub-

jected to a quality check that guaranteed its high accuracy,

e.g., total accuracy over 95 % for the Polish dataset. A more

detailed description of used datasets is given in Tables 1 and

2 for SAR and ALS data, respectively. By employing multiple

ALS and PSI datasets, processed in distinct ways and with

varying calculation parameters, we aim to demonstrate the

Figure 5: Selected study areas: (a) Amsterdam in the Netherlands and (b) Ruda Śląska in Poland. Pink and cyan rectangles in the Amsterdam study

area show the coverage of TerraSAR-X and Sentinel-1 data, respectively. In contrast, the orange rectangle presents the coverage of both TerraSAR-X

and Sentinel-1 data in the Ruda Śląska study area. Zoomed views show displacement results obtained through PSI at selected locations marked in red

in (a) and (b).

https://docs.pyvista.org/
https://docs.pyvista.org/
https://laspy.readthedocs.io/
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Table 1: Characteristics of the PSI test data.

Test site Data type Acquisition period Number of images Incidence angle Azimuth Point density

Amsterdam

S1 ASC 2015–2019 152 36.04◦ 349.96◦ 0.1 pts/m

TSX ASC 2016–2022 197 30.62◦ 348.66◦ 0.2 pts/m

TSX DSC 2016–2022 196 34.98◦ 190.72◦ 0.2 pts/m

Ruda Śląska

S1 ASC 2019–2020 51 40.05◦ 351.81◦ 0.01 pts/m

S1 DSC 2019–2020 51 33.98◦ 192.57◦ 0.01 pts/m

TSX ASC 2019–2020 25 37.96◦ 307.96◦ 0.06 pts/m

Table 2: Characteristics of the ALS test data. Numbers of classes according to ASPRS standard [41]. Type of the class according to proposed

methodology: I – class completely removed from PS candidate search, II – class completely accepted as PS candidates, III – class requiring additional

filtering to search for possible PS candidates, IV – building class requiring filtering to remove points staying in shadow due to SAR acquisition

geometry.

Test site ALS source Point density
Existing classes:

Acquisition year

Number and name Percentage share Type

Amsterdam AHN4 [52] 26 pts/m

1 – Unclassified 29 % III

2019

2 – Ground 46 % II

6 – Buildings 21 % IV

9 – Water 3 % I

26 – Infrastructure 1 % II

Ruda Śląska GUGiK [53] 19 pts/m

0 – Unclassified 3 % III

2020

2 – Ground 51 % II

3 – low vegetation 2 % I

4 – medium vegetation 2 % I

5 – high vegetation 13 % I

6 – Buildings 6 % IV

7 – low point <1 % I

9 – Water <1 % I

12 – overlap points 23 % I

robustness of our method and ensure that the proposed

methodology can be applied independently of the input data

source.

The first test site is located in the city center of Amster-

dam (Figure 5a) and is used to develop and refine the linking

method. The SAR data from ascending and both ascending

and descending orbits of Sentinel-1 and TerraSAR-X satel-

lites, respectively, were processed using DePSI [11], the PS-

InSAR package developed at Delft University of Technology

(TU Delft). The density of PS points in the analyzed area

varies depending on the satellite mission from which the

data originates. For S1 data, this density is about 0.1 pts/m2,

whereas for the same area, the TSX PS density increased to

0.2 pts/m2, which the spatial resolution of the raw SAR data

of these satellite systems can explain. Obviously, PS density

is not uniform in thewhole area andmay differ significantly

betweendifferent areas due to different land cover. ALSdata

was obtained free of charge from the fourth AHN (Actueel

Hoogtebestand Nederland) campaign, executed in 2020 and

named AHN4. This means that objects visible in the LiDAR

point cloud are the same as objects visible in TSX data, with

a time span of 2016–2022. In the case of S1 data (timespan

2015–2019), the ALS data is slightly younger. Thus, some

objects could change. However, it should not impact the

linking results asmost buildings or infrastructure should be

identical in both datasets. The AHN4 point cloud is classified

into four classes (numbers and names according to ASPRS

standard [41]): Unclassified (class 1), Ground (class 2), Build-

ings (class 6), Water (class 9), and additional class Infras-

tructure (class 26). Classes Ground, Building, and Water are

homogenous and do not contain other types of objects. How-

ever, the Unclassified class contains a mixture of various

types of objects such as vegetation, cars, man-made struc-

tures, and bridge elements (excluding bridge decks), etc. The

AHN4 data also has a special class, number 26, that contains

objects such as bridge decks and large road infrastructure,

e.g., overhead sign structures. The average AHN4 ALS point

cloud density is about 26 pts/m2.
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The second test site was selected to test the method in

an area with large ground subsidence. The Polish city Ruda

Śląska, located in the Upper Silesia Coal Basin (Figure 5b),

was selected for this purpose. This region is known for

extensive underground hard coal extraction, resulting in

significant terrain surface deformations. PSI products pro-

cessed with SarScape [54] exhibit lower PS densities than

the Amsterdam test site, five and ten times less for S1 and

TSX data, respectively. Several reasons can explain it: (1) the

occurrence of less compact development and larger areas

covered by vegetation, (2) the occurrence of large, fast, and

irregularly behaving deformations related to underground

mining activities, making it difficult to detect PSs and esti-

mate their displacement time series, (3) different software

used for PSI processing, that may impact the number of

detected PS points. Both TSX and S1 data were acquired for

the same period, i.e., 2019–2020. The Polish ALS point cloud

is classified into 9 classes (numbers and names according to

ASPRS standard [41]): Unclassified (class 0), Ground (class 2),

Low vegetation (class 3), Medium vegetation (class 4), High

vegetation (class 5), Buildings (class 6), Low points (class 7),

Water (class 9), andOverlap points (class 12). Similarly to the

previous test site, not all classes contain homogeneous ele-

ments. Class 0 (Unclassified) includes all points that do not

belong to other classes and contain elements such as poles,

cars, fences, power lines, structural elements of bridges,

and elements of small road infrastructure. Classes related

to vegetation (class 3–5) were distinguished based on vege-

tation height above ground level. Class 12 contains all points

collected from cross-strips in the dataset but did not cover

the test site. In the case of ALS data, the point cloud density

for the Ruda Śląska test site equals 19 pts/m2, slightly lower

than for the Amsterdam test site.

5 Results

5.1 PS position uncertainties

The standard PSI approach was used with two software

programs to obtain PS displacements in the presented areas

of interest: DePSI and SarScape were employed for the

Amsterdam and Ruda Śląska test sites, respectively. Based

on accuracy metrics provided during PSI processing, we

estimated each PS’s position uncertainty in range, azimuth,

and cross-range directions. Figure 6 presents boxplots of

the obtained uncertainty in each dimension for both case

studies and the different SAR datasets.

The major uncertainty was encountered in both sites

for S1 PSI products. The larger is directly related to the

pixel spacing of the SAR data, which is 2.3 m × 14.1 m and

1.5 m× 1.8 m for the S1 and TSXmissions, respectively, in the

range and azimuth directions. The mean uncertainties for

S1 in Amsterdam, where DePSI software for PSI calculations

was used are 0.9 m, 5.4 m, and 4.4 m for range, azimuth,

and cross-range, respectively, and correspond to the results

presented in ref. [50]. If we compare solutions from two

different software, it is clearly visible that the uncertainty

values, as well as their variations, are lower for the DePSI

solution (Figure 6a–c) than for SarScape (Figure 6d–f).

It should be highlighted that DePSI calculates the coordi-

nates of points in the radar coordinate system as sub-pixel

positions, while SarScape lacks this capability, which will

significantly impact the obtained results. The results con-

firmed the need to improve the accuracy of PS localization

with other methods apart from the standard PSI technique

processing, as described in the following sections of this

paper.

5.2 LiDAR point cloud processing results

During the initial PS candidate selection stage, any LiDAR

points with return numbers greater than 1 were removed.

Then geometric parameters such as planarity, linearity, and

normal vectors were estimated based on PCA (see Figure 2).

Classes with suitable candidates for linking were found for

the Dutch ALS dataset from the Ground (class 2), Building

(class 6), Infrastructure (class 26), and Unclassified (class 1)

classes. For the Polish ALS dataset, the infrastructure class

was not specifically identified, resulting in the selection of

solely the Ground (class 2), Building (class 6), and Unclassi-

fied (class 0) classes. It is important to note that the Dutch

point cloud lacks the vegetation class, unlike the Polish ALS

point cloud, causing more challenges in searching for man-

made structures in the Unclassified class. Geometrical filter-

ing in class 1 (Dutch dataset) or 0 (Polish dataset) is based on

the planarity or linearity values. The test that was executed

on optimal hyperparameter selection resulted in the radius

of the local neighborhood being equal to 2 m, planarity

threshold S = 0.7, and linearity threshold L = 0.6 for both

ALS datasets. Datasets with similar characteristics, espe-

cially point cloud densities, are expected to result in similar

values of the above hyperparameters. However, for point

clouds with notably higher or lower densities and accu-

racies (e.g., those obtained through different techniques),

experimental verification of radius, planarity, and linearity

values should be executed. Figure 7 presents the quantita-

tive results of ALS point cloud filtering for ICP registration

and further linking with the Sentinel-1 ascending dataset

(removed points aremarkedwith hatches). According to the

proposedworkflow, the filtering applied for selecting poten-

tial PS candidates reduced the ALS point clouds to 51 % and
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Figure 6: Uncertainties of the PS point positions in r – range, a – azimuth and c – cross–range for the Amsterdam (a–c) and Ruda Śląska (d–f) test

sites.

46 % (Figure 7, sum of green values) of their original sizes

for the Amsterdam and Ruda Śląska datasets, respectively.

Depending on the geometry of the SAR data with which the

ALS point cloud is linked, this value changes because the

number of points rejected from the Buildings class due to

SAR geometry varies. These differences range between 1 and

2 %.

The results of filtering the Unclassified class were

added to a new class – Other (marked in solid gray in

Figure 7). Depending on the area of interest, it contained

0.03 % and 1 % of all ALS points for Amsterdam and Ruda

Śląska datasets, respectively. Thanks to filtering based on

geometrical features, it was possible to find suitable PS link-

ing candidates in the Unclassified class and belonging to lin-

ear objects (Figure 8a), road barriers, or structural elements

of bridges (Figure 8b). Additionally, it incorporated points

from flat surfaces, specifically some misclassified building

points, enabling them for further analysis and linking.

Considering the selection of possible candidates based

on their position in relation to the acquisition geometry, we

determined the angles between the LiDAR normal vectors

and the PS LOS vector Figure 9 presents the results for selec-

tion based on the TSX ascending (Figure 9b) and descending

(Figure 9c) geometry for the same building. This approach

makes it possible to reject LiDAR points obscured by other

points (Figure 9b) from further analysis.

5.3 PS global transformation results

The next step is the estimation of global transformation

parameters for the PSs. The ICP algorithm was adopted to

calculate global transformation parameters between PS and

LiDAR point clouds. The LiDAR point cloud, which contains

only points after PS linking candidate selection (Section 3.2),

was chosen as the reference cloud. Utilizing the transfor-

mation obtained from the ICP method with the Open3D

library, the effectiveness of this process is assessedusing two
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Figure 7: Filtering results of ALS point clouds for linking with ascending Sentinel-1 mission data: (a) Amsterdam, (b) Ruda Śląska. The pie charts

illustrate point classes and the filtering process applied to ALS point clouds: (1) colors represent individual classes existing in ALS data. (2) Hatches

indicate points removed at each filtering stage based on specific criteria, including class-based filtering, return number filtering, LOS geometry

filtering, and geometric feature filtering. (3) Labels show the point percentages of each part of pie chart relative to the total number of points in the

dataset; green labels indicate percentages of points used for the final PS-ALS linking, while black labels indicate percentage of points removed during

filtering.

metrics, including point fitness, describing the percentage of

PSs that are inliers, and RMSE, determining the accuracy of

alignment through the root mean square error for correctly

matched points. RMSE is calculated based on point-to-plane

distances for inlier points. Global transformation parame-

ters and ICP registration performance measures are listed

in Table 3.

Despite the significant difference in density between

the ALS and PS point clouds, the ICP algorithm found cor-

respondences to 78.1 %–98.3 % PSs in the LiDAR point cloud

that met the point-to-plane maximal distance criteria. Obvi-

ously, these correspondences are not necessarily linking

points (P′′) (Figure 4) since theymay be outside the ellipsoid

error. The S1 data showed over 90 % matching for both

case studies, potentially due to the higher acceptable search

radius. Considering the obtained RMSE values presented

in Table 3, it can be observed that for the TSX data sets

the value is much lower and is about 0.9 m, while for S1

it is between 3.4 and 4.1 m, which is also coincident with

the spatial resolution of S1 and TSX data. The process of

determining global parameters using ICP was successful.

The transformation parameters were determined based on

over 75 %of all PSs, and the average distances between them

(based on RMSE) are smaller than the resolution of SAR

images.

For all analyzed datasets, the transformation primarily

involves translation, with the rotation angles being close to

0. The determined translation parameter values are higher

for Sentinel-1 data, that can be attributed to the lower PS

position accuracy estimated during processing (Figure 6).

Additionally, the highest values are observed in the ver-

tical component (Tz). For the TSX datasets, the difference

between the translations for the horizontal (Tx, Ty) and ver-

tical components is much lower. When the transformation

parameters were calculated, the point cloud of the PSs was

transformed, resulting in their corrected localization (P′)

(Figure 4).

5.4 Final linking – results validation

The final linking procedure for PS within the 2-sigma con-

fidence level ellipsoid was conducted in two study areas
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Figure 8: Examples of the Dutch LiDAR point cloud before (top) and after (bottom) PS candidate filtering. Colors mean point classes: grey – class 1

(unclassified), brown – class 2 (ground), orange – class 6 (building), blue – class 8 (water), yellow – class 26 infrastructure), pink – class 27 (other). (a)

Power line mast and surroundings. (b) Bridge and surroundings.

for points with corrected localization (P′, Figure 4): Amster-

dam and Ruda Śląska, using three datasets for each loca-

tion. The obtained linking results, categorized into indi-

vidual point classes according to the ALS data classifica-

tion, as a percentage distribution is depicted in Figure 10a.

In addition, the results obtained for processing, excluding

one of two key steps of the proposed method, are also

included. Figure 10b shows linking percentages for process-

ing without systematic error removal by applying global

transformation using parameters determined with the ICP

algorithm (Section 3.3), and Figure 10c shows linking per-

centages for processing without ALS point cloud filtering

(Section 3.2).

Thanks to the proposed approach, 80 % of the PS points

from the Sentinel-1 ascending orbit and 72 % and 71 % of

the PS from TerraSAR-X ascending and descending orbits,

respectively, were linked to real objects in the Amsterdam

case study (Figure 10a). The results were comparable for the

Ruda Śląska case study, with 88 %, 90 %, and 65 % linked

PSs determined from the Sentinel-1 descending, Sentinel-1

Figure 9: Example of building in Dutch LiDAR point cloud before (a) and after PS candidate filtering depending on the LOS direction for ascending (b)

and descending (c) orbit. Colors mean point classes: grey – class 1 (unclassified), brown – class 2 (ground), orange – class 6 (building), blue – class 8

(water), yellow – class 26 (infrastructure), pink – class 27 (other).



16 — N. Wielgocka et al.: Linking PS to ALS for identifying real objects reflecting SAR

Table 3: Transformation parameters obtained using ICP for Amsterdam and Ruda Śląska. Tx, Ty, and Tz represent translation, while 𝜑, 𝜃, 𝜓 denote

Euler rotation angles. Point fitness and RMSE indicate ICP registration performance.

Test site Dataset
Translation [m] Rotation [deg]

Point fitness [%] RMSE [m]

Tx Ty Tz 𝝋 𝜽 𝝍

Amsterdam

S1 ASC 0.561 3.150 6.783 −0.006 0.042 −0.007 98.3 4.089

TSX DSC −1.264 −1.354 0.121 0.002 −0.005 0.005 88.5 0.856

TSX ASC 0.458 −1.319 −0.161 0.013 −0.023 0.001 82.2 0.837

Ruda Śląska

S1 DSC 5.142 −3.196 7.202 0.463 0.218 −0.361 93.2 3.403

S1 ASC −7.981 −0.025 −8.005 0.194 −0.025 0.379 94.5 3.587

TSX DSC −4.919 0.343 3.753 −0.071 0.032 −0.071 78.1 0.927

ascending, and TerraSAR-X ascending orbits, respectively

(Figure 10a).

The percentage distribution between different classes

varied depending on the analyzed study area. For Ams-

terdam, the area analyzed is located in the city’s center,

where high-density housing occurs. For the Ruda Śląska

area, single-family housing dominates. In addition, there is

a highway crossing the Ruda Śląska test site, and points are

classified as Ground,making this class themajority of linked

PS (50 %). Additionally, the Other class (Figure 10a) was

extracted from the Unclassified class utilizing PCA planarity

and linearity features. It contains linking points for infras-

tructure objects, such as high-voltage poles (Figure 11a), thus

increasing the percentage of linked PSs. This is particularly

true for Sentinel-1 data, where the percentages of the Other

class for Amsterdam are 19 % (S1 ASC), 8 % (S1 DSC), and 9 %

(S1 ASC) for Ruda Ślaska.

The results of processing that excludes one of the pro-

cessing steps (Figure 10b and c) demonstrate that system-

atic bias removal by utilizing ICP for the estimation of

global transformation parameters is a crucial step. Omit-

ting the global transformation executed with ICP leads to a

decrease in the percentage of linked points in all case stud-

ies, except for the Sentinel-1 dataset in Amsterdam, where

a slight increase of 1 % is observed. However, in this case,

the proportion of points linked to the building and ground

classes changes (Figure 10b). Moreover, the execution of

global transformation also ensures that the percentages of

PSs assigned to each class are similar for both DSC and

ASCdatasets of the same SAR system. For example, without

the global transformation step, in the S1 ASC and S1 DSC

datasets for Ruda Śląska, a notable discrepancy existed in

the number of PSs classified for each class, e.g., 34 % and

61 % for Ground class for ASC and DSC datasets, respec-

tively (Figure 10b). Applying global transformation using

parameters estimated with ICP allowed for balancing these

proportions, e.g., 51 % and 56 % for the Ground class for

ASC andDSC datasets, respectively (Figure 10a). This reflects

better the fact that both datasets represent the same area

and product, while small differences occur due to differ-

ences in LOS geometry. Moreover, for the S1 DSC dataset

for Ruda Śląska, the positive value of vertical translation

(Table 3) corrected misclassifications of PSs (initially below

the terrain), linking them correctly to buildings instead of

incorrectly to the ground (compare percentages for Build-

ings and Ground classes in Figure 10a and b, Ruda Śląska

S1 DSC). In contrast, for the ASC dataset, where PSs were

initially above the terrain, causing that most of them to be

linked to buildings (Figure 10b, Ruda Śląska S1 ASC), the

global transformation allowed to improve their linkage to

ground points (Figure 10a, Ruda Śląska S1 ASC). The global

transformation utilizing ICP effectively mitigated system-

atic errors, enhancing the reliability and accuracy of the

linking process.

ALS data filtering stepwas similarly vital for improving

linking accuracy. Filtering reduces the likelihood of linking

PSs to classes unlikely to generate persistent scatterers, such

as vegetation, water, or unclassified objects, e.g., vehicles

or temporary structures (Figure 10c, green and grey bars).

While skipping this step increases the overall percentage of

linked points, it results in decreased linking quality, with PSs

more frequently misclassified.

The quality of the lining process may be asses also by

the distribution of the linking vector lengths between the

corrected PS (P′, Figure 4) and the linked PS (P′′, Figure 4).

Histograms of linking vector lengths (Figure 12) demon-

strate that the magnitude of the vectors corresponds well

to the data resolution. The 3D vector lengths mostly do not

exceed 2 m for TSX and 10 m for S1 in both case studies.

Despite the higher initial accuracy in positioning PS

for TerraSAR-X data (Figure 6), finally, fewer percentage of

points were linked to real objects compared to Sentinel-1

data (Figure 10a). This is particularly evident in the case

of the Upper Silesia region. Visual analysis of the obtained
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Figure 10: Percentage of linked PSs categorized into point classes according to the ALS data classification and PSs that could not be linked: (a)

according to the proposed method, (b) excluding global transformation utilizing ICP, (c) excluding ALS data filtering. The infrastructure class is limited

to the ALS dataset from Amsterdam, where it is labeled.
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Figure 11: Linking results for selected objects: (a) high-voltage pole and S1 ASC PSs with error ellipsoids (green) for each point – Amsterdam test site,

(b) TSX PS linking results with error ellipsoids for each point from both ASC (green ellipsoids) and DSC (orange ellipsoids) orbits – Amsterdam test site.

PSs colors: original – red, after ICP registration – green, linked with LiDAR – yellow. The arrows connect the points after the ICP with the linked

position, and their color describes the distance between the points.

results reveals that the positioning of PS from TerraSAR-X

often occurs near the vertical walls of buildings (Figure 13,

green dots). One of the key factors contributing to the

observed difference in linking percentages between S1 and

TSX is the limitation of ALS data, particularly its scan geom-

etry. Gaps in the ALS data frequently occur on building
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Figure 12: Histograms of the linking vectors (P′P′′) for both TSX and S1 datasets in Amsterdam (top row) and Ruda Ślaska (bottom row), respectively.

Figure 13: Example of buildings with missing LiDAR points on the walls in Ruda Śląska test site. The green color indicates PSs obtained from TSX ASC

orbit before linking (P′), and the yellow color indicates linked LiDAR point (P′′). Arrows connect the new positions of the points, and their color

describes the distance between them.
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walls or in shadows, especially in densely built-up areas, as

clearly shown in Figure 13. When PSs form near buildings,

a double-bounce reflection often occurs, i.e., wall-ground

reflections, where the actual PS position lies at the intersec-

tion of these two surfaces. Since these vertical surfaces are

typically absent from ALS data, the correct links cannot be

created. For individual buildings, TSX, due to its higher data

resolution compared to Sentinel-1, often generates more

points corresponding to building facades. As a result, fewer

percentage of points are linked in these areas, making

it more challenging to establish reliable correspondences.

The smaller positional uncertainty of TSX PSs, represented

by their error ellipsoids, restricts the spatial area within

which a match can be identified. Conversely, the larger

positional uncertainty of Sentinel-1 PSs facilitates linkage,

as the broader error ellipsoid increases the likelihood of

finding a match within the available ALS data. The absence

of links to PSs located on walls supports the validity of the

proposed method. It was designed to identify only reliable

links rather than to maximize their number, which would

lead to numerous erroneous links.

6 Discussion

Our research presented a method for linking PS to real

objects mapped with the ALS point cloud. The study utilized

various forms of data, including radar (both ascending and

descending geometries, as well as radar missions utilizing

X-band and C-band wavelengths) and point clouds (varied

density and classification schemes), acquired for different

landuses (Amsterdamcity center, a segment of highway, and

single-family houses in Ruda Śląska), to fully investigate the

flexibility of the proposed approach. Based on a chosen PS

confidence threshold of 2-sigma, the percentage of linked

PSs was equal to 80 %, 72 %, and 71 % for the Sentinel-1

ascending, TerraSAR-X ascending, and descending orbits,

respectively, in the Amsterdam area. Similarly, in Ruda

Śląska, 88 %, 90 %, and 65 % PSs were linked for Sentinel-1

ascending, descending, and TerraSAR-X ascending data. The

achieved results demonstrate consistency in the links found

within a single dataset (S1, TSX), regardless of the orbit.

The results comparedwith other case studies presented

previously show a similar level of correlation. However, it is

difficult to compare the results directly because each work

analyzed data for a different area, forwhich the distribution

of both PS and ALS data will be different. In ref. [22] authors

achieved 80 % linked PS obtained from TerraSAR-X data. In

contrast [50], reported that 98 % of the PSs from Sentinel-1

were associatedwith the real object. The significant number

of observed connections is mainly due to the specific and

limited size of the area of interest, which is the railway

line. Our considerations focused on areas that are differ-

ent in terms of land use. In addition to linking points to

real objects, in our method, PSs have gained an additional

attribute based on the linked LiDAR point classification,

which is very valuable, especially in further analysis, as it

allows filtering the data on the determined displacements

and better evaluating them.

Previous research focused solely on the selection of

assigned classes, like Ground or Buildings [29, 31], or anal-

ysis of the entire dataset, which is assumed to result in

erroneous geo-located PS due to linking to LiDARpointswith

classes such as vegetation or water bodies [50]. In contrast,

our method considers additional objects extracted from

unclassified points, mainly road and urban infrastructure

elements,which provide a stable radar signal reflection. The

methodology applied enabled the identification of links for

between 3 % and 19 % of the additional PSs in this point

group, depending on the area analyzed, thereby confirm-

ing the validity of the selected filtering. In the candidate

selection, their positioning relative to the satellite view-

ing geometry was considered, minimizing the likelihood of

linking PSs to LiDAR points in shadow with respect to the

SAR sensor. Considering the radar viewing geometry is a

crucial step that particularly benefits in estimating global

transformation parameters. The ICP algorithm was utilized

for this purpose (Section 3.3). The results obtained show that

using the ICP algorithm, the PS cloud can be preliminar-

ily aligned with the ALS point cloud. Transformations are

mainly translation, rotation parameters (𝜑, 𝜃, 𝜓 ) are very

small (Table 3). Depending on the type of satellite mission,

the size of the shift varies and is directly related to the initial

position accuracy, which ismuch better for the X-band (TSX)

than the C-band (S1).

Performing a 3D visualization concept, which includes

LiDAR data and PS position from each step of processing,

together with error ellipsoids, enables result interpretation

in relation to radar signal direction as well as scene geom-

etry. Visualization of the linking vector helps further to

interpret the direction of movement of the new position.

The standard nearest neighbor approach does not take the

scattering mechanism into account, which means that the

result of the linking is not always the real center of the

dominant scattering object. Including information about the

direction of linking vectors enables the verification of the

validity of the PS link to a specific object in space. More-

over, the 3D visualization made it possible to identify some

limitations of the approach used. Primarily, the ALS point

cloud sometimes contains gaps that result in the PSs not

being linked to LiDAR points or being linked to points in the
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error ellipsoids that correspond to a different part of the

building or even a completely different object. The lack of

links is particularly noticeable for TSX data, which usually

results in more PSs due to the better spatial resolution of

X-band data. Connections to the wrong part of the object or

another structure aremuchmore common for S1 data. Here,

the error ellipsoid is larger than for TSX, which increases

the probability of connecting to more distant points. It can

be reduced by integrating ALS with additional point clouds

from other techniques: MLS, TLS, ULS, or point clouds cre-

ated from images using dense image matching.

Nonetheless, this method enables the correlation of the

precise displacement data with probable source locations.

Although exact identification of the PS source is not achiev-

able, linking information is sufficient to perform detailed

displacement analyses, even in the context of changes

within a single object. In addition, assigning a class based

on the point cloud will allow analyses to consider types of

displacement specific to a class of objects, e.g., the thermal

signal for bridges caused by temperature changes.

7 Conclusions

The proposed approach improved the localization of PSs,

which was shown by the large number of PSs whose con-

fidence ellipsoids contained potential scattering points rep-

resented in the ALS dataset. Using this method, more than

80 % and 65 % of the PSs derived from PSI processing of

Sentinel-1 and TerraSAR-X mission data, respectively, were

linked to real-world objects regardless of the orbit geometry.

The proposed method is able to achieve this by introducing

two novel elements: treating the PSs as point clouds, which

allowed their global transformation using ICP, and pre-

selecting the LiDAR points that could be PSs using simple

filters. To the best of the authors’ knowledge, this approach

has not been utilized before. Although the tools used are

well-known, they have not been utilized in this manner.

We introduce a method for preliminary filtering of

LiDAR point clouds to enhance ICP registration reliability

and select candidates for linking with PSs. This method

analyzes available classes in the point cloud, return num-

ber, and geometric features such as planarity, linearity, and

normal vectors calculated using PCA. This filtering process

enables the extraction of points associated with objects that

efficiently reflect radar waves, thus forming stable scatter-

ers. The tests have demonstrated the universality of the

method, indicating its applicability to a variety of PSI prod-

ucts: different imaging geometries, satellite missions, soft-

ware; and ALS data: different sensors, point cloud densities,

classification methods, as well as areas with diverse land

use. However, it is essential to possess prior knowledge

regarding the content of objects within individual classes.

This information is crucial for determining the classes for

which the proposed selection step should be implemented.

Applying the ICP algorithm on selected points is crucial to

minimize systematic shifts between data sets, which helps

with the final linking. Using a 3D visualization module is

essential for verifying the methodology, helping to under-

stand the results, and effectively controlling the entire pro-

cess. The limitation of this method is the appropriate ALS

dataset. ALS data on a nationwide scale aremainly collected

for topographic purposes (i.e., for the construction of Digital

Surface Models – DSMs or Digital Terrain Models – DTMs).

Due to the nature of these data, vertical surfaces such as

building walls are often missing points. To get a more com-

plete mapping, the best solution would be to use a scanner

with a different scanning mechanism (e.g. Palmer scanner),

or to use point clouds from other sources (e.g. point cloud

from dense image matching).
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