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I

Living is no laughing matter:
you must live with great seriousness
like a squirrel, for example—
I mean without looking for something beyond and above living,
I mean living must be your whole occupation.
Living is no laughing matter:
you must take it seriously,
so much so and to such a degree
that, for example, your hands tied behind your back,
your back to the wall,
or else in a laboratory
in your white coat and safety glasses,
you can die for people—
even for people whose faces you’ve never seen,
even though you know living
is the most real, the most beautiful thing.

I mean, you must take living so seriously
that even at seventy, for example, you’ll plant olive trees—
and not for your children, either,
but because although you fear death you don’t believe it,
because living, I mean, weighs heavier.

Nazim Hikmet, On Living
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There is an increasing attention towards link prediction in complex networks both in phys-
ical and computer science communities. Particularly Online Social Networks (OSNs) are
becoming the most popular platforms for information sharing, content creation and com-
munication between users on the Internet. However, most of the research was done con-
sidering only a static snapshot of the network and without using relevant information from
other types of activities.
In that direction, the present thesis proposes a novel method for link prediction using tem-
poral information in Stack Overflow with the assistance of interactions from Github. The
developed multilayer network enhanced with temporal interactions is aiming to improve
the performance of the prediction compared to the traditional methods while the design
choices intend to investigate the evolution of the network through time. In the end, the
generalized framework could be used not only to make accurate link prediction that trans-
late to human interactions over time, but also as a tool to characterize the behavior of the
users in the targeted network.
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Chapter 1

Introduction

1.1 Motivation

The well-received virtual environments increase the interactions among individuals provid-
ing more data to be used in social network analysis. In social networks, the members tend to
interact in a highly dynamic manner; interactions appear and disappear along time, turn-
ing those networks into highly complex systems. Social Network Analysis (SNA) is the
research domain that tries to deal with such complexity (Wasserman and Faust, 1994). The
specific aim of the thesis is to investigate the prediction of links in social networks, that is
the prediction of the most probable future interactions based on previous snapshots of the
networks. This is a prominent problem of the SNA field called link prediction.
Link prediction deals with the occurrence of connections in a network. It consists of us-
ing the network structure up to a specific time so as to predict the appearance of links in
the close future. The majority of previous work in link prediction is focused on proxim-
ity measures that assign scores to node pairs. For instance, new links can be predicted by
sorting the proximity scores in decreasing order and pick the top ones. Link prediction (Lü
and Zhou, 2011) appears in many applications, such as Recommender systems (Adomavi-
cius and Tuzhilin, 2005), Viral Marketing, and Online Social Network Analysis (Dhote,
Mishra, and Sharma, 2013). In more detail, Recommender Systems, such as applications
for recommending books, CDs and other products, still remains an active research area
because of the absence of practical applications that assist users to deal with the overload
of information and provide personalized recommendations, services, and content to them.
What is more, the highly dynamic nature of Social networks as they shrink and grow rather
fast, thus evolving relationships among individuals or entities, makes link prediction a chal-
lenging task. Complex networks refer to networks with non-trivial features and patterns
of connection that cannot be characterized regular or random. They can be considered as
highly dynamic and evolving and with the current big data trend the analysis of the afore-
mentioned network is a major challenge and active field of research for scientists (Lü et al.,
2015).
A significant number of real-world systems can be modeled as networks that evolve over
time. A network is a catalog the components of a system often called vertices or nodes
and the direct interactions between them, called edges or links. These systems can refer
to proteins, users and documents or social networks among others (Tabourier, Libert, and
Lambiotte, 2016). The actors of the corresponding system are the nodes and edges represent
any sort of interaction between them. In addition, another possible attribute of real-world
networks is the heterogeneity that can be revealed in the form of multilayer networks; these
networks consist of a layered structure with the same type of nodes but a different type of
interaction in each layer.
A highlighted limitation observed in previous work is that the problem is approached in
a static manner. Only the current state of the network is utilized and no temporal infor-
mation is taken into account (Oyama, Hayashi, and Kashima, 2011). Particularly in social
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networks, connections and actors tend to appear and disappear over time, justifying the
system as dynamic and complex therefore this possibly useful information source should
be exploited. Hence, in this thesis, a link prediction method is introduced that integrates
temporal and multilayer networks using Machine Learning (ML). By exploiting the tem-
porality that matches the evolution over time of social networks and the information from
the multiple layers the performance of link prediction is improved.

1.2 Thesis Goal & Outline

The main task of the present work is to build and evaluate a temporal link prediction frame-
work in multilayer networks. A novel method of link prediction is proposed that is applied
in the Stack Overflow network. The goal is to exploit temporal information and additional
information from Github network to further enhance the prediction. The approach is dic-
tated by the need to uncover and understand how and what type of temporal information is
critical and beneficial for the prediction task. The framework is compared to baseline static
methods to assess its performance while machine learning methods were implemented to
determine the finest outcome. The thesis is organized as it follows:

• Chapter 2 presents an overview of the basic network metrics and a short introduction
to multilayer networks.

• Chapter 3 presents the link prediction methods that are used. First the baseline
method and then the novel method introduced in the thesis. In the end, there is a
discussion about the chosen performance metric that evaluates the method.

• In Chapter 4, the two networks under investigation are discussed with measurements
and statistics that describe them. Then, the settings for link prediction in single and
multilayer network are demonstrated.

• Finally in Chapter 5, the results of the method are laid out. The improvement of
the performance is validated followed by a deeper investigation of the behavior of
the studied networks. To conclude, the last section includes the contributions of the
thesis to the link prediction domain.
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Chapter 2

Structural measures of networks

2.1 Definition and examples of networks

The chapter focuses on the characterization of the structural properties of networks and it
provides the formulation and definitions that will be used later. A network is a collection
of connected objects that are named vertices or nodes and we customarily draw them as
points. The connections between the nodes are called edges or links, and we usually draw
them as lines between points. In other words, a network is a set of items (vertices or nodes)
connected by edges or links.

There are many types of networks (Strogatz, 2001):

• Social and economic networks consist of a set of people or groups of people with some
pattern of contacts or interactions between them. Facebook, friendship networks,
labor markets, business relations between companies, are all examples of that type.

• Information networks refer to connections of "information objects". Some examples
are: a network of citations between academic papers, semantic ( how words or con-
cepts link to each other ), the World Wide Web ( a network of web pages containing
information with links from one page to other )

• Technological networks that are usually designed for distribution of a service. e.g.,
Internet (connections of administrative domains or routers), power grid, transporta-
tion networks (airline, road, rail, mail) as well as sensor networks and autonomous
vehicles.

• A number of biological systems can also be represented as networks such as protein
interaction network, food web, network of metabolic pathways.

2.2 Networks as graphs

It needs to be clarified that the terms networks and graphs are used with no distinction. In
our case, the term graph is reserved for the abstract mathematical concept which usually
refers to artificial formations of nodes and links. On the other hand, the term network is
reserved for the graphs that represent real-world objects where nodes represent entities of
the system and links represent the relationships among them. For that reason, it is clear
that we will refer to the system of individuals and their interactions as a "social network"
and not as a "social graph", nevertheless, they are identical. A graph G(N , L), consists of a
set of N nodes and L links that can be represented by an N ×N adjacency matrix A where
A= [au,v]. When there is an edge from node u to node v au,v = 1 and when there is no edge
au,v = 0 (Albert and Barabási, 2002). The edge weight auv > 0 may also take non-binary
values, describing the intensity of the interaction and the graph is called a weighted graph.
We refer to a graph as a directed graph (or digraph) if auv 6= av u and an undirected graph if
auv = av u for all u, v ∈N .
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2.2.1 Connectivity

Two nodes are adjacent when they are both incident to a common edge. A path in an
undirected graph is a sequence of nodes such that a node vi is adjacent to node vi+1 for
1≤ i < n. Such a path P is called a path of length n−1 from v1 to vn and if every two nodes
are connected by a path then the graph is connected. If this is not the case, the components
of a graph are the distinct maximally connected subgraphs.

2.2.2 Neighborhood and degree

The neighborhood of a node u is the set of nodes that u is connected to. What is more,
for undirected graphs the degree of a node u is the number of edges that involve u ( in
other words the cardinality of his neighborhood ). Regarding directed graphs degree is split
in two: Node u’s in-degree is

∑

v av u and Node u’s out-degree is
∑

v auv . While a small
network can be depicted directly by its graph, larger networks are usually more difficult to
describe. Thus, a set of quantitative performance measures and statistics is used to compare
and characterize networks with a focus on undirected graphs.

2.2.3 Diameter and average path length

Let H (u, v) denote the length of the shortest path between node u and v. The largest
distance between any two nodes in the network is called the diameter of a network:

Hmax =max
u,v
{H (u, v)} (2.1)

the average distance between any two nodes in the network is the average path length:

E[H ] =
∑

u≥v H (u, v)
n(n−1)

2

(2.2)

also:
Hmax = E[H ]

2.2.4 Clustering

Clustering is the tendency of nodes to cluster together and in order to measure the degree
of that behavior the clustering coefficient is introduced. Clustering can be represented by
the global clustering coefficient C (G), given by

C (G) = 3×
number of triangles in the network

number of connected triples of nodes
(2.3)

where a "connected triple" refers to a node with edges to pair of nodes. As it can be seen:

0≤C (G)≤ 1 (2.4)

C(G) measures the fraction of triples that have their third edge connected and complete the
triangle. It is also referred to as network transitivity while another measure of clustering is
defined on an individual node basis: The local clustering for a node u is:

Cu =
number of triangles connected to node u

number of triples centered at u
(2.5)
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The average clustering coefficient is

C =
1
n

∑

u
Cu (2.6)

2.2.5 Centrality

Centrality measures the importance of a node’s position in the network and consists one
of the fundamental groups of network metrics. There are different measures of centrality
and three are mentioned below:

• Degree centrality: It is the degree of the node u.

• Closeness centrality: Measures how close a given node is to any other: for a node u, it
is expressed as:

n− 1
∑

u 6=v H (u, v)
(2.7)

where H (u, v) is the path length between u and v.

• Betweenness centrality: It measures the extent to which a node lies on paths between
other nodes. Nodes with high betweenness could have substantial influence within a
network as they they control the information passing between others. The formula
of betweenness is given as follows:

B(u) =
∑

s 6=u 6=t

σs t (u)
σs t

(2.8)

in the equation above σs t is the total number of shortest paths from node s to node
t and σs t (v) is the number of those paths that pass through v.

2.3 Weighted and Multilayer Networks

A lot of work has been done in investigating the dynamics and structure of complex systems.
A large number of these could be represented as a network whose nodes serve as the different
fundamental units of the system, and whose links represent the relationships/interactions
among the units (Albert and Barabási, 2002). A common approach to network descrip-
tion consists of the aggregation of all the links observed between a certain set of basic units.
Nevertheless, that aggregation could discard significant information about the function and
structure of the original system; since elementary constituents of a system might be con-
nected through many kinds of relationships that differ in meaning and relevance (Kurant
and Thiran, 2006). For example, the same set of entities in a social system could be con-
nected through collaboration, commercial kinship, friendship or communication relation-
ships, while in complex transportation systems - a typical situation in large metropolitan
areas - locations might be reached in different ways; namely suburban rail, bus, underground
networks just to name some of them. For these systems, each type of interaction has been
assigned a given importance, distance, relevance, cost or meaning, thus treating all the links
as being equivalent, results into losing an important amount of information. A finer de-
scription of such systems is in terms of multilayer networks. Multilayer networks refer to
networks where each node appears in a set of different layers and each layer describes a dif-
ferent type of edges.
For example, a set of nodes represents individuals that interact with each other. However,
there are many ways of interactions between the same group of people: a single person has
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social, professional, personal circles, but could also have multiple accounts in online social
systems ( Twitter, Facebook, etc. ). In many cases, we deal with that diversity by projecting
all those layers into a single layer but not all processes can be transformed successfully on
that simplified aggregated network.
Another relevant example could be the evolution of disease on a particular network. In
many situations, a large number of pathogens coexist within the same host population and
interact with each other. For example, there are systems of competing pathogens ( e.g., sea-
sonal influenza or HIV and Tuberculosis ), i.e., two pathogens each of which impedes or
enhances the spreading of the other. For these scenarios, the use of multilayer networks is
paramount. In single layer networks that are unweighted and undirected, the degree of a
node gives the number of nodes that are adjacent to it (that is the number of its immediate
neighbors). The notion of degree can be generalized for directed networks - networks that
their edges have a certain direction - to obtain in-degree and out-degree (Kivela et al., 2014).
In weighted networks where each edge can be assigned a weight, thus not all edges bear
equal importance, weighted degree or strength is introduced. The weighted degree is given
by the sum of the weights of all edges that are incident to a node.
There is a number of ways to generalize the notions of degree and neighborhood for mul-
tilayer networks, however, one obtains the usual and aforementioned definitions if he con-
siders only a single intra-layer network at each time.
The fundamental way to generalize degree and neighborhood for multilayer networks is to
use network aggregation. Then, the degree is defined as the number of edges ( any type )
that are incident to a node and by following the same logic, the neighborhood is the set of
nodes that can be reached from a specific node by following any of those edges. Another
way is to place a threshold in an aggregated network such that two nodes are considered to
be adjacent if and only if the number of edges that connect them in a multilayer network is
larger than some value (Lytras et al., 2010). In the end, the traditional way to examine sys-
tems that are multilayer is to construct a single-layered network by aggregating data from
the different layers of the multilayer networks. Then the resulting single layer network is
studied (De Domenico et al., 2013). Hence, standard network techniques can be applied
and it is sometimes a desirable way to help alleviate issues with data that are noisy.

2.4 Temporal Networks

A great variety of systems can be modeled as graphs of nodes coupled by links. The struc-
ture of the network that describes how the graph is wired, helps us understand the behavior
of those systems. However, in many cases, the links are not continuously active. For ex-
ample, in communication networks such as email or phone calls, links represent sequences
of practically instantaneous contacts while there are also cases where links are active for
non-negligible time periods. The temporal structure of link activations can affect the dy-
namics of systems such as information diffusion over the aforementioned e-mail network.
The temporal networks can be roughly divided into two classes. In one case, the system can
be represented by a contact sequence which is a set of C contacts, namely triples (u, v, t )
where u, v ∈V and t denotes time. Some systems suitable to be represented as a contact se-
quence include physical proximity data where the duration of the contact is less important
and communication data (sets of phone calls, e-mails). With this representation, it is tempt-
ing to think of the temporal network structure as a static network structure that evolves
over time.
The second class refers to links that are active over a set of intervals Te = (t1, t ′1), ..., (tn , t ′n),
where the parentheses mark the activity periods the unprimed times indicate the beginning
of the interval and the primed quantities mark the end. The static graph with a link be-
tween i and j if and only if there is a contact between i and j is called the time-aggregated
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graph. Some examples of systems that can be modeled in that way include infrastructural
systems like the Internet, proximity networks ( where a contact represents that two entities
have been close to each other for some time ) and seasonal food webs where a time interval
can represent that one species is the main food source of another at some time of the year
(Holme and Saramäki, 2012). It is useful to define an index function of whether a pair of
nodes is connected at a given time:

a(u, v, t ) =
�

1, if u and v are connected at time t
0, ot he r wi s e

(2.9)

It will be shown in Chapter 3 that the created temporal networks belong to the latter class
since links are considered active for specific time windows (weeks).

2.5 Social Networks

Since the networks that are analyzed in the thesis are social, it seems appropriate to proceed
to a further discussion about them.
Social networks are defined by structures where nodes represent people or other entities
embedded in a social context and edges could represent collaboration, interaction or influ-
ence between the nodes (Liben-Nowell and Kleinberg, 2007). These networks have several
notable characteristics, such as the small world property (Watts and Strogatz, 1998), power
law degree distribution (Barabási and Albert, 1999), and the community structure (cluster-
ing effect) (Girvan and Newman, 2002).
The small world effect indicates that the average distance in the network is significantly small
with respect to the size of the network. That means that every pair of nodes can be con-
nected through a relatively short path in the network. Apart from the famous experiments
of Stanley Milgramm (Travers and Milgram, 1967), in 2014, Facebook using the entire net-
work of active users (721 million users, 69 billion friendship links) performed their first
world scale social network graph-distance computation, It was found that the average dis-
tance was 4.74, corresponding to 3.74 "degrees of separation" (Backstrom et al., 2012).
The scale-free effect refers to the phenomenon only a few nodes have a large number of links.
Nodes with high degree are called hubs and dominate the network operation. Scale-free
effect illustrates that degree distribution is strongly uneven in large-scale networks. As a
matter of fact, world-wide web follows the aforementioned distribution.
Clustering effect introduces the appearance of small groups in social networks. There is a
circle of friends, acquaintances and each member knows each other. It can be further de-
scribed by the concept of triadic closure: there are many fully connected subgraphs in a
social network.

2.6 Data and Settings

In this section, the data used on this thesis are shortly discussed. Firstly, Stack Overflow
network is used, a popular online community, that has clearly a social nature with users
interacting with timestamped actions. Then, for the realization of the multilayer network,
matched users from Github network are integrated into the aforementioned setting.

2.6.1 Stack Overflow

Stack Overflow is a website created in 2008 by Joel Spolsky and Jeff Atwood. It was devel-
oped to be an efficient and friendlier alternative to earlier question and answer sites such as
Experts-Exchange. The website serves as a platform for users to ask and answer questions
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on a wide range of topics in computer programming and through membership and active
participation, to edit or vote questions and answers up or down.
A study in 2013 (Asaduzzaman et al., 2013) found that 77% of users ask only one question,
65% answer only once, and only 8% of users answer more than 5 questions. From 2011 as a
starting year, 92% of the questions were answered, in a median time of 11 minutes. Nowa-
days, the software deletes questions that meet certain criteria automatically, e.g. having no
answers in a specific amount of time.
In 2016, 1.5 million posts were deleted, of which about 8% were deleted by moderators.

2.6.2 GitHub

GitHub is a web-based Git repository and Internet hosting service mainly used for code. It
provides all of Git’s source code management functionality and distributed version control
and more than 28 million people use GitHub to discover, fork, and contribute to over 85
million projects.
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Chapter 3

Link Prediction Methods

3.1 Introduction

This chapter presents the methods used to perform link prediction in the studied networks.
After the problem definition, a method from the literature that provides the basic frame-
work is discussed (Soares and Prudencio, 2013). Then, the novel method is introduced fol-
lowed by a discussion about the selected performance metric (Area Under Curve - AUC).

3.2 Problem definition

A common definition of the link prediction problem is the following: "Given a snapshot
of a network at time t we attempt to correctly predict the links that will appear in a given
future time". To extend the problem we can rephrase: "Given link data for times 1 through
T, can we predict the links at time T+1? If our data has an underlying periodic structure,
or can we predict out even further? i.e., links at time T+2, T+3, etc.
More formally, in a network G = (N ; L), where L is the set of links N is the set of nodes,
the link prediction task is to predict whether there is or there will be a link e(u; v) between
a pair of nodes u and v. Usually, the link prediction problem falls into two groups:

1. Link prediction is utilized to predict future collaboration or friendship thus it is tar-
geted to predict links that will be added to an observed network in a future time.
That setting can be useful for exploring underlying mechanisms that govern network
evolution (Sharma and Singh, 2015).

2. Link prediction is used to discover lost or hidden links of a network (Yang and Zhang,
2016). As an example, it can be deployed to infer unobserved protein-protein inter-
actions.

However, predicting links is a particularly hard problem especially in social networks where
sparsity is common property.
An illustrative example is the DBLP dataset (Al Hasan et al., 2006), where in the year 2000,
the ratio of actual to possible link was around as 2 ∗ 10−5. Thus, only a small group of
nodes interacted with each other, whereas the majority was inactive. Hence, in a uniformly
sampled dataset with one million node pairs, we can expect only 20 actual links. Even
worse, the aforesaid ratio is slowly decreasing.
From 1995 to 2004 the number of authors in DBLP increased from 22 thousand to 286
thousand, meaning that the actual collaborations increased only by a factor of 21 while the
possible collaborations increased by a factor of 169.
In the present case, for the Stack Overflow network, the ratio is even smaller. Its value is
about 9 ∗ 10−6, highlighting the class imbalance problem that will be discussed later. An
attempt to summarize in a systematic way how the link prediction scheme works in the
majority of the cases is shown below:
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1. Input is the current state of the network, usually static.

2. Proximity measures - that are presented in Section 3.3 - are deployed and assign a score
to each node pair under test.

3. An unsupervised or supervised algorithm is deployed to classify the nodes pairs as it
is explained below.

Regarding the last step, an unsupervised method could be sorting the proximity scores in
a decreasing order and pick the highest ranked ones as the predicted future links, while a
supervised method could have a set of different proximity measures as features (e.g. Com-
mon Neighbors, Preferential Attachment, Jaccard Coefficient) to train a predictor for binary
classification. The binary result of the latter will decide if the node pair will be present or
not in the future.
As stated, for link prediction, the chosen features should represent some form of proximity
between the pair of vertices and in the majority of the cases, features are extracted from the
graph topology. It should be mentioned that the attributes of vertices and edges can also be
features for some application domains (Millen and Feinberg, 2006). Features that are based
on graph topology are the most natural for link prediction and typically, they compute the
similarity based on the ensembles of paths between node pairs or based on the neighbor-
hood of the nodes. The main advantage of them is that they are applicable for graphs in any
domain meaning that no domain knowledge is necessary to compute their values. Never-
theless, for large networks, some of these could be computationally expensive. In any case,
the most popular topological measures that all under two categories: Node neighborhood
based and Path based.

3.3 Baseline Methods

Roughly all topological measures are categorized into neighborhood-based or path-based
measures (Al Hasan and Zaki, 2011). The neighborhood-based measures take into account
the immediate neighbors of the nodes and generally consider that if the sets of neighbors
of two nodes have a large overlap, then they are more likely to form a link. On the other
hand, path-based measures define proximity considering the paths between the nodes under
test (Xiang, 2008).
The basic concept is that two nodes are more likely to form a link if there are short paths
between them. These measures range from the elementary path-distance measure to more
complex definitions that take into account ensembles of different paths, such as the Katz
measure (Katz, 1953). Nevertheless, the neighborhood-based methods are more common,
due to both their great performance and computational efficiency observed in experiments
(Chen, Huan, and Ma, 2006) (Murata and Moriyasu, 2008).
Some basic neighborhood-based measures are Preferential Attachment, Common Neigh-
bors, Adamic and Adar, and Jaccard’s coefficient (Salton and McGill, 1986). PA measure
speculates that the probability of an upcoming link between two nodes is proportional to
their degree. It is justified by the notion that in some social networks, namely finance,
“rich” nodes get “richer”. It is defined as:

PA(u, v) = |Γ (u)| × |Γ (v)| (3.1)

where Γ (u) refers to the neighbors of node u and |Γ (u)| is the total number of them. PA
does not require neighborhood information, therefore, has low computational complexity.
CN measure assumes that the bigger the number of neighbors two nodes share, the higher
is the probability to form a link in the future ((Newman, 2001)). The measure is defined as:
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C N (u, v) = |Γ (u)∩ Γ (v)| (3.2)

The AA measure refines the CN by favoring the node pairs that the neighbors in common
possess fewer connections. More formally:

AA(u, v) =
∑

z∈Γ (u)∩Γ (v)

1
l o g |Γ (z)|

(3.3)

Lastly, JC assigns higher proximity scores for pairs of nodes which share a higher proportion
of common neighbors relative to their total number of neighbors.

J C (u, v) =
|Γ (u)∩ Γ (v)|
|Γ (u)∪ Γ (v)|

(3.4)

All of the measures above were applied to the network under investigation in order to com-
pare their performance with the method introduced on the thesis. The reason for the partic-
ular selection of the topological measure above is their massive adaptation. They consist the
baseline, the point of reference in the majority of link prediction problem and are treated
as such in the present thesis. The proposed method yielded better results meaning that it
assigns scores to node pairs in a better manner. The way these scores are assigned and the
performance metric that is used will be presented in the following chapter.

3.4 Event-based link prediction

3.4.1 Introduction

Event-based link prediction will be introduced by an example; we can make the assumption
that researchers make collaborations when they meet (in a conference, forum etc.) or when
they collaborated with the same people, a predictor can be established based on the network
structure consisting of nodes-researchers and links-collaborations. Hence, in this case, the
problem of link prediction refers to predicting future partnerships. However, rather fre-
quently, the graph structure is very sparse and does not allow the usage of classical graph
metrics. In that case, an event-based approach can be beneficial. If one was aware to what
extent each researcher is an expert in each field, he could possibly use this knowledge to
find researchers with similar expertise provide suggestions. As an event-based approach,
we can consider the common journal where researchers published their works or common
conferences where they presented. Those could contribute to identify the potential future
collaborations with more precision.
Social networks are highly dynamic as interactions appear and disappear over time. The
evolution of these networks provides valuable information about how connections tend
to be formed. Based on that and previous work on that domain, a proximity measure is
proposed that takes into account the temporal structure of the network. Specifically, it in-
troduces temporal events between every two nodes of the network. The goal is to integrate
the notion that the strength of a connection between two users is straightforwardly associ-
ated with the frequency they interact with each other (Homans, 1958) with Newman’s idea
that the larger the number of common neighbors between two users, the higher is their
probability to be connected in a future time (Newman, 2001).
The methodology of exploiting the temporality of a network is based on previous research
and is presented in the next subsection.
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3.4.2 Temporal Events

A temporal event is defined as a distinct activity between two nodes from a frame to its
subsequent (Soares and Prudencio, 2013). It can be seen as an action that shifts the pair
of nodes from a state to another (connected or non-connected). Events can be grouped
into one of three mutually exclusive types that are represented with the help of contact
sequences: In order to uncover the temporal information, a temporal structure is formed
from the timestamped network under investigation. In general, the network is split into
consecutive time-frames whose size can change and in the present case is equal to one week.

• Conservative

A conservative event occurs when an interaction between two nodes is maintained
when the network evolves, that is, when a(i , j ,T ) = a(i , j ,T+1). Moreover, a reward
is defined in order to take into account a conservative event during the correspond-
ing transition. The reward quantifies the effect of a conservative event in the link
prediction scheme. Formally:

C (u, v, k) =
�

c , i f a(u, v, k) = 1, a(u, v, k−1) = 1
0, ot he r wi s e

(3.5)

Where E are the frames and k the index of the frame

• Innovative event refers to the creation of a link. In a formulated way:

I (u, v, k) =
�

i , i f a(u, v, k) = 0, a(u, v, k−1) = 1
0, ot he r wi s e

(3.6)

Again, i represents the reward for each Innovative event.

• Regressive event is the exact opposite of an Innovative event. It signifies the removal
of an existing link in the next time step. Conceptually, that behavior reveals a weaken-
ing in the relationship of the node pairs, thus, it should be assigned a negative-valued
reward r.

R(u, v, k) =
�

r, i f a(u, v, k) = 1, a(u, v, k−1) = 0
0, ot he r wi s e

(3.7)

The values of the rewards would be thoroughly discussed in the next chapter as they bear
great significance for the performance of link prediction.

3.4.3 Event-based Score

Since temporal events were introduced, the next step is to combine and integrate them in
a way that determines the similarity of the node pair accurately. Most approaches for link
prediction assign scores to pairs of nodes by deploying a chosen proximity measure, trying
to determine the similarity of those nodes and consequently, how likely is for a connection
between them to happen in a close future. The proposed measure takes into account events
that pertain to the neighborhood of each examined node pair by breaking down an event
to two categories: Primary and Secondary events. That means that for each node pair un-
der investigation a possible event belongs to one of the two aforementioned categories. In
order to do that, it should be mentioned that the neighborhood of a node in the tempo-
ral network consists of the accumulated interactions of it over time. More specifically, the
neighborhood of a node at time T is the set of nodes that the node interacted in the past
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until time T. This information is used to perform link prediction for time T+1.
For a node pair, the temporal events that appear over time strictly between those two nodes
are named Primary events while temporal events that occur in the common neighborhood
of the node pair are considered Secondary events. These are the essential parts of the prox-
imity score that is assigned to a given pair of nodes(u, v) and is neatly summarized as:

Sco r e(u, v) =
n
∑

k=2

P (u, v, k)+αS(u, v, k) (3.8)

P (u, v, k) =C (u, v, k)+ I (u, v, k)+R(u, v, k) (3.9)

S(u, v, k) =
∑

y∈Γ (u)∩Γ (v)
P (u, y, k)+ P (y, v, k) (3.10)

Equation (3.8) states that the proximity score is the linear summation of all Primary and
Secondary events over time. However, Secondary events are multiplied by an amortization
factor that indicates how powerful is the effect of Secondary events on a possible tie between
the nodes of the node pair. Equation (3.9) clarifies that the value of the Primary events is
again a linear summation of all the temporal events that took place during the evolution
of the network. Equation (3.10) is expanding the notion of (3.9) to the Secondary events;
the value of such events is the summation of all Primary events between the node pair’s
common neighborhood and each node of the node pair. The upcoming figure offers an
example of the proximity measure above.

FIGURE 3.1: Temporal Decomposition of a Network (Soares and Pruden-
cio, 2013)

To calculate the score of node pair (1,3), we look into the events that were created in the
3 time-frames.

Primary Events
From F1 to F2 that are shown in the figure, there are no events and from F2 to F3 there is
an Innovative event with the corresponding reward.
Secondary Events
These events correspond to node pairs (1,2) and (2,3):
Node pair (1,2): From F1 to F2 a conservative event c takes place and for F2-F3 transition
a Regressive event with reward r.
Node pair (2,3): From F1 to F2 a Regressive event r takes place and for F2-F3 transition an
Innovative event with reward i. Therefore:

Sco r e(1,3) = i +α ∗ (c + 2 ∗ r + i) (3.11)
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Subsequently, these scores were used by an unsupervised algorithm in the previous work;
every node pair is ranked based on its proximity score and the top-ranked ones are selected as
the predicted new links. The novel method presented in the thesis introduced a supervised
algorithm as it will be shown in Section 3.5.
Eventually, proximity score becomes a function of the 3 rewards that are described above
and the amortization factor α, hence the performance of the algorithm is dependent on
them. That being said, the goal is to find the optimal rewards for each temporal event
to achieve the best performance. In the previous work, rewards were calculated by using
a brute force method. The present thesis integrated a Machine Learning approach that
attempted to find the global best rewards of each event.

3.4.4 Brute Force

As stated above, (Soares and Prudencio, 2013) used a brute force scheme. The reward of the
innovative event was normalized to 1 and regressive and conservative events varied between
2 fixed values (0 - 4 with 0.5 step). The same approach was followed for the acquisition of
the best α.
Those facts introduce certain considerations that need to be addressed. A brute force ap-
proach apart from its time inefficiency (e.g. it usually requires large parametric sweeps) is
also not optimal. Since only a pre-defined set of values is tested there is no proof that the
best reward derived from that set is in fact, the best.
Moreover, a more general remark would be the constraint of the reward’s value regarding
Primary and Secondary events. Both events have the same reward value for the correspond-
ing temporal event and the only thing that differentiates them is the amortization factor.
Thus, tweaking the basic functions and detaching the rewards of Primary and Secondary
events could provide better insight into the network mechanisms.

3.5 Event Based Link Prediction with Machine Learning

For the reasons above, a Machine Learning (ML) scheme is proposed here to derive the best
rewards for the temporal events (Pedregosa et al., 2011). This is the novel method proposed
by the thesis and is also extended to multilayer networks. ML will provide a systematic
way of picking the best rewards for each occasion but reformatting of the basic equations is
required.

6 rewards: 2 groups of (c,r,i) one for Primary and one for Secondary events.

Remove amortization factor: By adding separate rewards for Secondary events amortiza-
tion factor is useless and apart from that its removal causes the scoring equation to become
linear.

Select a suitable ML algorithm: Since link prediction can be characterized as a binary clas-
sification problem Support Vector Machines (SVM) was chosen as a supervised learning
method for classification. The modification of the equations is shown below:

Sco r e(u, v) =
n
∑

k=2

P (u, v, k)+ S(u, v, k) (3.12)

Pp r i ma r y (u, v, k) =Cp (u, v, k)+ Ip (u, v, k)+Rp (u, v, k) (3.13)

Ps e conda r y (u, v, k) =Cs (u, v, k)+ Is (u, v, k)+Rs (u, v, k) (3.14)
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S(u, v, k) =
∑

y∈Γ (u)∩Γ (v)
Pp r i ma r y (u, y, k)+ Ps e conda r y (y, v, k) (3.15)

Support Vector Machines

Although the scope of the present thesis was not meant to include a detailed explanation
of the SVM algorithm, it is crucial to understand how is linked with the calculation of the
reward’s value.

FIGURE 3.2: SVM Classification (Sayad, 2017)

The goal of an SVM method is to find the hyperplane that gives the largest minimum
distance to the training examples (Hackeling, 2014). The instances that are closer to the
decision boundary are called support vectors and if removed, they would alter the position
of the boundary. Hence, they can be considered the critical elements of the data set. Figure
5 shows a number of instances that belong to two classes and SVM attempts to separate
them by maximizing the margin. Due to its two-dimensional character, two features are
assigned to each instance and their values correspond to the position they reside in the two-
dimensional plane. The mathematical representation of the optimization that takes place
in SVM is:

mi n‖w‖2wRd +C
n
∑

i

max(0,1− yi f (xi )) (3.16)

f (xi ) =wTxi + b (3.17)

In (3.16) the first part maximizes the margin as shown in the figure while the second part
is a misclassification penalty. The margin above can be considered as a soft margin; yi is
the class of each instance (1 or -1) and if the classification is correct the product yi f (xi ) is
positive thus zero penalty. Otherwise, a penalty is introduced proportional to the product.
In the present case, a six-dimensional space is constructed where the six different kinds of
temporal events are the features of the algorithm. Once more, that is a binary classification
problem but the position of each instance in the six-dimensional plane is yet to be found by
optimizing the equations above. The result of the algorithm will provide the 6 coefficients
of the decision boundary that separate the two classes optimally. Those six values are the
values of the rewards. In general, the advantages of support vector machines are:
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• Memory efficiency due to the use of a subset of training points in the decision func-
tion

• Versatility as different kernel functions can be specified for the decision function;
decision function can be linear, polynomial, sigmoid etc. However, only the linear
kernel was used to derive the weights of the features that in our case are the rewards
of the temporal events.

• Effective in high dimensional spaces

For that purpose, the Linear Support Vector Classifier from Scikit-learn machine learning
library was selected. Its ability to tackle class imbalance and simple extraction of the desir-
able coefficients were the reasons for that choice. It should be noted that more classification
algorithms were used such as Logistic Regression and Stochastic Gradient Descent. They
both performed worse and a possible explanation could be that Logistic Regression calcu-
lates different loss (logistic loss) from SVC (hinge loss). Logistic loss diverges faster than
hinge loss and it will be more sensitive to outliers and additionally, does not go to zero even
if the point is classified sufficiently and confidently. This could lead to minor degradation
in accuracy.

3.5.1 Tackling Class Imbalance in Classification

Although class imbalance was discussed in the introduction it is essential to observe the im-
plications risen in classification. Most ML algorithms give optimal results when the number
of instances of each class is roughly equal. When the number of instances of one class far ex-
ceeds the other, problems arise. The evaluation criteria are a key factor in determining the
classification performance and perform the classifier modeling. In binary classification, the
confusion matrix (shown in Table 3.1) records the results of correctly and falsely recognized
examples of each class.

TABLE 3.1: Confusion Matrix

Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Customarily, accuracy (3.18), has been the most popular empirical measure. Neverthe-
less, in an imbalanced framework, accuracy is no longer suitable, since it does not distin-
guish between the number of correctly classified instances of different classes. Thus, it can
draw false conclusions, i.e., in a dataset with class imbalance ratio equal to 9, a classifier
that places all instances in the majority class and misclassifying all items that belong to the
minority will have an accuracy of 90%.

Acc =
T P +T N

T P + F N + F P +T N
(3.18)

In imbalanced domains, specific metrics should be deployed to evaluate the performance of
the classifiers by taking account the class distribution. Those stem from Table 3.1 and are
presented below:

• True positive rate:T Prat e =
T P

T P+T N , percentage of positive instances correctly clas-
sified

• True negative rate: T Nrat e =
T N

F P+T N , percentage of negative instances correctly
classified
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• False positive rate: F Prat e =
F P

F P+T N , percentage of negative misclassified instances

• False negative rate: F Nrat e =
F N

T P+F N , percentage of positive misclassified instances

ROC - AUC & PR - AUC

A well-known approach that combines those measures to provide good results and legiti-
mate evaluation is the use of the Receiver Operating Characteristic (ROC) (Fawcett, 2004).
The ROC curve is constructed by plotting the T Prat e against the F Prat e at various thresh-
old settings. This graphic allows the visualization of the trade-off between the benefits
(T Prat e ) and costs (F Prat e ), as it demonstrates that classifiers cannot increase the number
of true positives without increasing the false positives at the same time. The Area Under
the ROC Curve (ROC-AUC) depicts the probability of correctly identifying which obser-
vation is signal plus noise and which one is just noise. Moreover, it yields a single value for
evaluating a classifier’s performance; it provides the opportunity to decide which model is
better on average.

FIGURE 3.3: ROC curves (Nyman-Carlsson et al., 2014)

Figure 3.3 shows different ROC curves with diverse performances (Sing et al., 2005).
Sensitivity is identical to TP rate and 1-Specificity is equal to FP rate. Black line refers to
a random classifier and the best performance belongs to the blue classifier with the largest
AUC. On the other hand, the precision-recall plot (PR) is based on two evaluation measures
namely recall and precision as its name suggests. Precision relates to the positive predictions
(how many selected instances are relevant) whereas recall refers to the whole positive part
of a dataset (how many relevant instances are selected). A neat way to summarize the two
aforementioned measures with respect to the confusion matrix metrics follows:
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FIGURE 3.4: ROC and PR (Saito and Rehmsmeier, 2016)

There is a one-to-one relationship between ROC and precision-recall points proved by
Davis and Goadrich (Davis and Goadrich, 2006). That is, one point in the precision-recall
space always has a corresponding point in the ROC space, and vice versa. Hence,precision-
recall and ROC curve should indicate the same performance level for a classifier. Nonethe-
less, they can appear different even in interpretation. The fundamental reason that PR is
also partly presented in the results is its different perspective; PR and PR - AUC is affected
from class imbalance and provide extra information considering the performance and the
influence of the imbalanced data. The key characteristic is that ROC takes into account the
negative instances too (specificity), while PR focuses only on the positive ones. It should
be noted that the baseline performance metric is ROC - AUC value which will be discussed
next.

ROC - AUC value

ROC - AUC is equal to the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one (with the assumption that "positive"
ranks higher than "negative") It is derived from the previous metrics as follows:

AU CROC =
1+T Prat e − F Prat e

2
(3.19)

More specifically, the area measures discrimination, that is, the ability of the test to correctly
classify links that are going to exist in the future and links that will not and in the present
thesis is approximated in the following manner in our dataset.

1. Execution of the link prediction algorithm - scores are assigned to every node pair

2. Split instances to positive/negative class from dataset information

3. AUC value is derived from a trapezoid approximation to the data in step 2

Apart from the approximation in step 3, a variation could be the comparison of a large
number of pairs of instances (one from each class). The final value would be:

AU CROC =
β+ 0.5γ

α
(3.20)

Where α is the number of independent comparisons, β is the number of time a positive
class node pair has a larger value of a negative pair and γ refers to identical values in the
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comparison.
In that way, the increased robustness that ROC - AUC provides, can provide more insight-
ful conclusions since the links that appear in a future time are severely less than the ones
that belong to the negative class.
In the majority of previous work ROC - AUC statistic is very commonly used. However,
it should be noted that due to the fact that ROC - AUC reduces the ROC Curve to a single
number and considers the performance of an individual system, it ignores that the curve
is strongly connected to the tradeoffs between the different systems or the plotted perfor-
mance points.

Scenarios for Class Imbalance

A number of classification algorithms were used on the data however SVM yielded the best
results and it will be the only one discussed in the next sections. For the novel task of
determining the best rewards, class imbalance needs to be taken into account (Japkowicz
and Stephen, 2002). That was achieved with 2 methods:

1. Define a special parameter in the SVM algorithm that adjusts weights inversely pro-
portional to class frequencies in the input data. More specifically, it sets the parameter
C from (3.16) of class i to class weight[i] ∗C . In order to balance the 2 classes, the
algorithm uses the values of y to automatically adjust weights that are inversely pro-
portional to class frequencies. That is:

class weight[i]=
Total Number of Samples

Number of classes ∗Number of Samples for class i
(3.21)

2. By using clustering we divide the majority class into K distinct clusters no overlap
of observations is allowed among these clusters. Next step is to train each of these
clusters with all observations from the minority class and then we average the results
for the final prediction.

The diagram below is an example:

FIGURE 3.5: Clustering technique for Class Imbalance

After a thorough comparison of those 2 methods, it can be concluded that method 1
yielded the best rewards with respect to the suggested performance measure (AUC value).
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Chapter 4

Link Prediction in Stack Overflow

Stack Overflow is the first network that is being explored and a piece of initial information
is shown below:

• Contains 5 years of interactions

• ≈ 1.5 million User ids

• ≈ 10 million interactions

• ≈ 500000 questions/threads

User ids are the nodes and interactions are the edges of the graph and the sparsity can be
proved by the fact that the number of Interactions is close to the number of the nodes and
far less than the maximum one.
The network is reduced to contain only 1 year of interactions which will be the largest
window of temporal information that can be exploited. Users that have to interact for
more than 1 year are not considered relevant as their relationship cannot be characterized
as substantial. The analysis that follows refers to the aforementioned subgraph.

4.1 Basic Network Metrics

The subgraph contains 728621 users and 2909010 interactions and some metrics in compar-
ison with a random graph of the same size.

TABLE 4.1: Basic Network Metrics

Stack Overflow (1 year) Random Graph (Erdos-Renyi)
Average Degree 7.98 7.4
Global Clustering Coefficient 2.73 ∗ 10−3 1.13 ∗ 10−5

Table 4.1 illustrates the significant clustering effect of the studied network compared to
a random graph. Diameter is also indicative of the small world property that was discussed
before. For a sharper description of the network, the following figures are introduced. The
scale-free effect can be shown in the figure below.
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FIGURE 4.1: Degree Distribution of user interactions in Log-Log axes

FIGURE 4.2: Histogram of temporal events

The figure 4.1 depicts the power law behavior of the degree distribution of user interac-
tions since the decrease is almost linear. Hence, there are only a few very active users that
participate in discussion s while the majority has low activity. Degree distribution is the
frequency count of the occurrence of each degree.
Thus, Stack Overflow validates the 3 common characteristics observed in social networks
and can be characterized as a typical example of that category. Figure 4.2 reveals the distri-
bution of link appearances during one year. The vast majority of the links, approximately
2/3, appear only once while less than 5% appear more than 3 times in 1 year. As a result,
the network cannot be characterized as particularly active and due to that inactivity, the
number of temporal events will also be low.
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4.1.1 Survival and Waiting time

FIGURE 4.3: Survival time of the links

FIGURE 4.4: Waiting time of the links

By using waiting and survival time we would like to investigate the behavior of the links;
how long does a link stay active and how long does it take for a link to reappear are two
questions to be answered. The survival time of a link is the number of consecutive frames
that the link is active. It is important to note that from almost 3 million links only around 30
thousand maintain their appearance for 2 consecutive frames. What is more, the maximum
survival time is 9 out of a possible maximum of 51. It would be interesting to see how that
weekly temporal activity can assist in possible performance improvement. Waiting time, in
that case, refers to the number of consecutive inactive slots between two appearances of a
link. More or less, all intermediate possible values are expressed while the extreme case of
the right side highlights how rare it is to have two appearances so distant with each other.
Left side is more populous, showing that link appearances are more probable to happen
close to each other.
It was attempted to fit a distribution in the previous figure and the best results were obtained
by an exponential fit and some acknowledged quality metrics are presented below:
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TABLE 4.2: Evaluation Metrics for distribution fit

P-value 2.20E-16
Residual Standard Error 0.4222
R-squared 0.9408
F-statistic 763.3

• Small p-value indicates that it is unlikely we will observe a relationship between the
predictor and response variables due to chance

• The Residual Standard Error is the average amount that the response will deviate from
the true regression line

• The R-squared statistic provides a measure of how well the model is fitting the actual
data. It takes the form of a proportion of variance

• F-statistic is a good indicator of whether there is a relationship between our predictor
and the response variables. The further the F-statistic is from 1 the better it is.

4.2 Temporal Link Prediction in Stack Overflow

Next step is to perform link prediction deploying the tools discussed in the previous chapter.
However, the exact settings for every stage should be clear in order to derive concrete results.

4.2.1 Temporal Structure-Settings

One year of interactions is broken down to 52 consecutive weekly frames. Subsequently, the
depth of the temporal information needs to be specified and its behavior needs to be studied.
It is crucial to observe how the increase of temporal events can affect the performance of
the prediction as well as to highlight the trade-off and find the suitable threshold. Too
much information might pose time-efficiency issues not to mention the rational assumption
that an old interaction could not bear the same weight as a recent one regarding a future
connection.

4.2.2 Link Prediction Scenarios

The following figure illustrates the setup behind the framework.

FIGURE 4.5: Setup for 2 weeks of temporal information

The example is reduced in 2 weeks of temporal information but one can assume that all
other variations follow the same pattern:

• 2 weeks of interactions form the list of node pairs to be evaluated in a future time
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• The suggested proximity measure is deployed to assign scores to the nodes pairs under
consideration

• The frame just after the 2 weeks acts as the “future” and is the ground truth of the sce-
nario; the links that appear there are the links that should have the highest proximity
score

• Then, as the green box suggests, there is a window shift where the previous steps are
repeated. In such a way, the algorithm is evaluated over time by showing how the
predefined temporal depth performs over a year of interactions

• Thus, in the specific case, 51 AUC values are derived that summarize the performance
of the algorithm

Then, those 5 steps are extended to an arbitrary depth of temporal information that uncov-
ers the network’s evolution and quantifies the prediction performance.

4.3 Temporal Link Prediction in Multilayer Networks

In order to further improve the prediction in Stack Overflow the notion of a multilayer net-
work is introduced. In a multilayer network, each type of interaction between the nodes is
described by a single layer network and the different layers of networks describe the differ-
ent modes of interaction. In the present case, common users of Stack Overflow and Github
are matched to create the aforementioned network. A brief description of the data used and
the design choices are presented below.

4.3.1 Github database

Data were collected with GHTorrent that monitors the Github public event timeline. For
each event, it retrieves its contents and their dependencies, exhaustively. It then stores the
raw JSON responses to a MongoDB database, while also extracting their structure in a
MySQL database. After investigating the different datasets in Github the most meaningful
were found to be pull request history and project members that will be further discussed.

TABLE 4.3: Datasets used in multilayer network

pull request history project members
id repo_id
pull_request_id user_id
created_at created_at
action ext_ref_id
actor_id

The way these datasets were handled was:

• pull request history: Users (actor_id) that made a pull request action in the same week
(created_at) are grouped together and create a temporal network. In other words, if
Users "pull" at the same week it is considered to share some sort of similarity.

• project members: When a user (actor_id) enters a project (repo_id) a link is created
that connects him with the rest of the project members at time (created_at). Hence,
a temporal network is created.
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4.3.2 Pull Request

FIGURE 4.6: Pull Request action

min mean max
977 4899 13171

The figure above shows the activity of the pull request action in the common users in a
period of 2 years (104 weeks). The red vertical line corresponds to the first week of the
prediction in Stack Overflow that took place in the previous section. On average, around
5000 actions take place every week and for the year under investigation, it can be seen that
the evolution is pretty stable. The number of common users is 17802.

FIGURE 4.7: Links affected for different window depths
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TABLE 4.4: Number of links affected from pull request

window depth min mean max
2 373 848.7 1201
3 972 1653 2182

Figure 4.7 depicts how many of the Stack Overflow links are affected by a pull request
action every week for two different window depths, as defined previously. The behavior
of both subfigures is similar since windows are overlap but it is interesting to observe the
doubling in the average links affected by the increase of the window depth.

4.3.3 Project Members

FIGURE 4.8: Activity of project members

FIGURE 4.9: Links affected for different window depths
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Fig 4.8 illustrates the activity of the project members temporal network where users are
common between Stack Overflow and Github. The x-axis corresponds to the weekly slices
in Stack Overflow and it can be observed that after some weeks the activity becomes very
low. The number of common users is 3362 which is significantly lower than the pull request
dataset and no significant overlap could be found between links in the two layers. Moreover,
1st and 2nd order neighborhood of the network was investigated to increase the possible link
overlap but with no success. Thus, the network was used in a similar fashion as pull request;
users that entered a project in the same week are grouped together. Fig 4.9 validates that
there is no large difference in the affected links with respect to window depth due to the
low activity of the network.

4.3.4 Integration in Machine Learning Algorithm

Those two Github actions are added as features to the SVM algorithm used before to en-
hance its performance. However, a transformation is required to transform the nodal ac-
tions into link characteristics. The following example for pull request action will clarify
the above. Same is applied to project members dataset.

• For each node of the node pair under examination count how many pull request
actions happened in the designated window depth and combine.

• Combination can be a linear addition, multiplication etc.

To be consistent with the one layered algorithm, scoring as formulated in 3.15 is augmented
with the neighborhood actions of the aforementioned Github actions. Wistfully, 1st and
2nd neighborhood did not provide any further activities but since the method is scalable
in different design scenarios namely, temporal depth or more social-oriented network the
algorithm will succeed to incorporate the neighborhoods.

FIGURE 4.10: Representation of Multilayer Link prediction

A thorough investigation for each feature was performed in order to derive the optimal
performance. As Fig 4.10 suggests, the temporal depth in Github is not necessarily the same
as Stack Overflow. Perhaps a deeper dive in the precedent action yields better performance
a notion that is confirmed by the results in the following chapter.

4.3.5 Data split

A fact that is being highlighted in Fig. 4.6 and 4.8 is that very few node pairs possess pull
request or project members actions. Github actions (pull request and project members) are
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present in 1% of the node pairs that are used on the prediction algorithm and an attempt
to split the data based on that fact was carried out. Data is split into 2 sets:

• Node pairs with Github actions

• Node pairs with no Github actions

Possibly a test set that consists of active node pairs in the Github layer will yield better
results or might provide insight into how the "active" set behaves.

4.4 Statistical Significance Test

Hypothesis testing is a technique for evaluating a theory using data. The “hypothesis” refers
to an initial belief and it is known as the alternative hypothesis; the opposite is known as
the null hypothesis. More specifically, the prediction results presented in the next chapter
are compared by their mean values. Statistical Significance testing indicates whether the dif-
ference that is observed in the results corresponds to an actual one in the whole population.
If a significant difference between the means is concluded, a safe comparison can take place
to identify the superior method accurately.

4.4.1 Methodology

The null hypothesis is that there is no significant difference between specified populations,
any observed difference being due to sampling or experimental error. Thus, the alterna-
tive hypothesis refers to a substantial difference between the populations. The magnitude
of statistical significance is expressed as the p-value. Depending on the statistical test that
is chosen, the p-value is the probability of observing the sample results (or more extreme)
given that the null hypothesis is true. In other words, this is to consider the probability that
a difference in a mean score could have risen based on the assumption that there is actually
no difference. E.g, a p-value such as 0.03 means that there is a 3% chance of finding a differ-
ence as large as (or larger) given that the null hypothesis is true. Typically, p-values are 5%
or less, the null hypothesis is rejected the alternative hypothesis is accepted. The value that
is used to reject the null hypothesis is the significance level. Whilst there is relatively little
justification why a significance level of 0.05 is used rather than 0.01 or 0.10, for example, it
is widely used in academic research. However, since it is desired to be particularly confident
in the results, a more stringent level of 0.01 is used. Among the various tests, t-test was used
to derive the aforementioned indicators:

t − val ue =
d i f f e r ence b e t ween g r ou p means

va r iab i l i t y o f g r ou p s
=

X̄T − X̄C

SE(X̄T − X̄C )
(4.1)

SE(X̄T − X̄C ) =
√

√

√

va rT

nT
+

va rC

nC
(4.2)

Next, the computed t-value is looked up on a table of significance to test whether the ratio
is large enough to say that the difference between the groups is not likely to have been a
chance finding; t-value is mapped to a p-value that is compared to the significance level.The
assumptions of a Student’s t-test are:

• Bivariate independent variable (A, B groups)

• Continuous dependent variable



30 Chapter 4. Link Prediction in Stack Overflow

• Each observation of the dependent variable is independent of the other observations
of the dependent variable (its probability distribution is not affected by their values).
Exception: For the paired t-test, we only require the pair differences to be indepen-
dent

• Dependent variable has a normal distribution, with the same variance, in each group

However, the t-test used here is Welch’s t-test designed for unequal variances and the assump-
tion of normality is maintained. Welch’s t-test remains robust for skewed distributions and
large sample sizes. Reliability decreases for skewed distributions and smaller samples, where
Welch’s t-test can only be performed on ranked data. The reason that t-test is deployed and
not the also popular z-test is that the standard deviation of the population is unknown.
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Chapter 5

Results

5.1 Introduction

In this part, the results with respect to the model presented in Section 3.5 will be given
along with the relevant discussion. Section 5.2 will compare the baseline method (Soares and
Prudencio, 2013) to the presented ML algorithm and dive into the different temporal depths.
Section 5.3 will introduce the second layer (Github) and results of the integrated Multilayer
network will be shown. In the end, Section 5.4 provides a summary and suggestions for
future steps.

5.2 Link Prediction in Single Layer - Stack Overflow Network

FIGURE 5.1: Performance Curves over time

Fig. 5.1 discusses the improvement of the performance as the temporal depth becomes
larger. It shows that increased temporal information leads to better performance and that a
significant number of peaks refer to the same “time” for all depths. That signifies a robust
enhancement of performance over increasing depth. However, the rate of improvement is
not constant; as a matter of fact it decreases when more temporal information is included.
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FIGURE 5.2: Performance Curve – Averaged AUC values

In Fig. 5.2, AUC value for each depth is averaged and an error bar is added. That action
highlights the decrease of the improvement while depicts that deviation is limited. Thus,
the results are stable and the improvement is confirmed.

TABLE 5.1: AUC results for Brute Force and ML

temporal depth method mean max
BF 0.6135 0.6489

2 SVM 0.6248 0.6594
Mean SVM 0.6234 0.6591
BF 0.6753 0.7046

4 SVM 0.6848 0.7117
Mean SVM 0.6846 0.6998
BF 0.7153 0.7329

8 SVM 0.7236 0.7453
Mean SVM 0.7218 0.738
BF 0.7446 0.7589

16 SVM 0.7517 0.7674
Mean SVM 0.749 0.7572

In Table 5.1, for each temporal depth, first row corresponds to brute force that is used
in the baseline paper, second is the ML scheme that is introduced here and described pre-
viously and third uses fixed rewards that are the mean value of each reward derived from
ML over time. Since our method consist essentially of a moving window of a defined tem-
poral length, there are link prediction results for a number of weeks. Thus, max refers to
the max AUC value for a specific week and mean refers to the mean value of all the weeks.
Evidently, it illustrates the superiority of the ML algorithm compared to the brute force ap-
proach used in (Soares and Prudencio, 2013) as in all the cases SVM yields better AUC value
that increases with larger temporal history. Another conclusion is that using the mean of
the rewards provides very satisfying results. Hence, even if the history of the network is
summarized in six fixed results the performance is still acceptable. Lastly, SVM’s variance
has smaller value although it is low in general. Since the finest results were drawn with
SVM, next Section will focus on that and all the upcoming figures refer to the ML method.
T-tests were carried out to compare every method and to validate the better performance
of the ML algorithm.
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TABLE 5.2: T - tests for Brute Force - ML results

temporal depth 2 4 8 16
p - value 6.655e-07 9.907e-06 7.318e-05 0.001

Even with the strictest significance level (0.001) all simulations confirm that SVM pro-
duces the finest results.

5.2.1 Performance comparison for different temporal depths

In order to visualize better the behavior of the performance in different temporal lengths
the following scatter plots are presented.

FIGURE 5.3: AUC Scatter plot – depth 2-3

FIGURE 5.4: AUC Scatter plot – depth 2-4
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FIGURE 5.5: AUC Scatter plot – depth 3-4

Here, the dots represent AUC values that correspond to the same prediction frame for
different depths of temporal information. It is apparent that using 3 weeks of information
yields better performance than 2 ( Fig. 5.3), and a weak linear trend with relatively heavy
variance can be observed; high AUC values on y-axis more or less also provide high relative
values on the x-axis. Finally, it can be stated that there is a certain level of stability as high
AUC for 2 weeks corresponds to a higher one for 3 weeks at all times. The same behavior
can be observed for temporal depths of 2 and 4 with the lone difference of increased perfor-
mance for four weeks of information. Once more, there is no strong linear correlation but a
vague relation can be verified. To conclude, there is definite dominance in the performance
by the larger depth of temporal information. Hence, the bigger temporal depth we use the
better the performance.

5.2.2 Evolution of the Temporal Events

Machine learning not only provides a better performance regarding AUC value but also al-
lows the observation of the evolution of the rewards over time. That can shed light on what
kind of events are considered crucial for the prediction and which of them characterize a
specific network.
The rewards are normalized with respect to the innovative reward of the primary events.
Thus, the value of the rewards shown below is relative to the creation of a link for the node
pair under consideration.
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FIGURE 5.6: Evolution of best rewards

The evolution of the rewards for four different cases is shown in Fig. 5.6. Conservative
events bear the most significance although the larger the depth the smallest the difference
from the rest of the rewards. Only in a) the ML algorithm weights the regressive event as
highest and with almost identical value as the innovative event that is not depicted due to
the normalization. The variance is notably large, however, it is reduced with depth increase.
An elegant validation of the logic behind events is the negative values for both regressive
rewards. As they describe the removal of links, thus cancellation of a relationship, they are
weighted negatively.
In general, Regressive and Innovative events of the Primary group comprise the majority of
the temporal events. The sparsity of the Conservative events could signify their importance;
the percentage of them is less than 0.1% for all cases.
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(A) 2 weeks

(B) 3 weeks

FIGURE 5.7: Evolution of the percentage of temporal events and the corre-
sponding AUC value - depth 4

Fig. 5.7 visualizes the previous statement regarding the dominance of Regressive and In-
novative events. In addition, it was attempted to correlate visually those percentages with
AUC values. Unfortunately, no clear correlation can be justified. However, at the subfigure
(A), a correlation over time can be observed between Regressive and Innovative events due
to the small number of Conservative events, more specifically; links either appear or dis-
appear and hardly remain connected over time. Since visual representations fail to describe
any trend that affects the performance, linear and rank correlations of possibly related pa-
rameters were derived and shown in a subsequent paragraph.

5.3 Link Prediction in Multilayer Network

5.3.1 Activity Distribution - Github

The way that Github actions are implemented in the algorithm is discussed before. For
pull request action the number of common users is 17802 while for project members the
number decreases to The number of common users is 3362 and for a finer understanding of
each action, it is essential to examine their distribution.
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TABLE 5.3: Percentage of node pairs with only one action

temporal depth 2 3
pull request 0.988 0.983

project members 0.998 0.997

FIGURE 5.8: Activity distribution - Top row (Pull Request), Bottom
row(Project Members)

In the Fig. 5.8, x-axis counts how many actions were performed by the node pair and
y-axis the percentage of node pairs that have the same number of actions (mean value). The
mean value was calculated in the same manner as the performance metric before; every
target week provides different feature distribution. Node pairs that had only one action
through the studied period consist the majority and are omitted for visualization purposes.
By including more temporal information the percentage is slightly falling yet it is apparent
that the vast majority of the node pairs perform only one action. It can be observed that
pull request is more active and the trend of the decay is more visible.

5.3.2 Performance measurements with the incorporated Github features

The results produced by the integration of the second layer (Github) in the target layer (Stack
Overflow) are exhibited below.

TABLE 5.4: AUC value for temporal depth = 2 in SO

AUC mean max
best

temp. depth
SO 0.624 0.659 -

lin.comb 0.63 0.668 3
pull request 0.627 0.664 2

project members 0.625 0.661 3
lin.comb-product 0.624 0.66 3
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TABLE 5.5: AUC value for temporal depth = 3 in SO

AUC mean max
best

temp. depth
SO 0.662 0.694

lin.comb 0.671 0.715 5
pull request 0.666 0.699 5

project members 0.665 0.695 5
lin.comb -product 0.664 0.684 5

TABLE 5.6: T test for Tables 5.4 - 5.5

temporal depth 2 3
p - value 0.011 0.013

In both cases information from Github improved the initial prediction. More specif-
ically, it is shown that the best setting is the linear combination of both actions. Never-
theless, most of the alternatives outperform the single-layer approach. Best temporal depth
refers to the fact that in the Github layer, we try to experiment with different temporal
depths for each fixed temporal depth in SO. In table 5.4, the best temporal depth ends up to
be 3, proving that incorporating more information is beneficial. In 5.5 the depth is increased
and equal with 5 for all the scenarios. Thus, it is reasonable to say that depending on the
network under consideration, a calibration of the above parameter should take place to take
the most of the multilayer scheme. In the end, the performance in both cases is improved
by 10%. Again, the consistency of the results is proven through the t-test. Although, they
are not lower than the stringiest threshold the improvements are considered legitimate.

Results for split data

The following tables correspond to the two sets; as described in Section 4.3.5. We split the
node pairs of SO into two sets; set 1 refers to the node pairs that also include Github actions
and Set 2 consists of node pairs that do not possess information from the Github layer.

TABLE 5.7: AUC value for temporal depth SO = 3

AUC mean max
pull request - Set 1 0.6279 0.8269
PR & PM - Set 1 0.6492 0.8343
PR & PM - Set 2 0.6258 0.6625

TABLE 5.8: AUC value for temporal depth SO = 3

AUC mean max
pull request - Set 1 0.6679 0.8638
PR & PM - Set 1 0.6844 0.8403
PR & PM - Set 2 0.6670 0.6995

TABLE 5.9: T - test for Tables 5.7 - 5.8 - Pull Request & Project Members

temporal depth 2 3
p - value 0.07 0.06
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Even though mean values for Set 1 have risen in both cases, there is significant noise and
no clear improvement can be stated judging by the p - values. PR & PM implies both pull
request actions and project members actions while possibly, an increased temporal depth
could be beneficial for tackling the noise in such a case, as more node pairs will be taken
into account.

Using Precision - Recall and ROC Curves to Measure Performance

To illustrate the severe imbalance of the dataset a table based on Precision - Recall follows.

TABLE 5.10: AUC value for Precision - Recall Curves

temporal depth stack overflow multilayer random
2 0.018 0.019

0.05
3 0.020 0.021

Table 5.10 depicts the average performance of the classifiers in a different way, namely
average precision. Class imbalance has a straightforward effect on precision and the random
classifier can be set as an example. In ROC - AUC value, a random classifier yielded 0.5 no
matter the imbalance as True Negatives dominate while PR - AUC focuses on the positive
data and prediction therefore random classifier yields 0.005 (stating that imbalance ratio is
around 1:200). Aside from the fact that the values of multilayer networks are again higher,
it is noteworthy to observe the overall 4-fold improvement compared to a random classifier.

FIGURE 5.9: ROC and Precision-Recall curves for temporal depth - 3
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FIGURE 5.10: Precision-Recall - green = single layer, red =multilayer net-
work

Fig. 5.9 displays the curves for all possible thresholds that are used to characterize a
positive or negative instance. In our case, a positive instance is a node pair that became a
link while a negative instance is a node pair that did not. The color of each point resembles
the threshold chosen to achieve that exact behavior and the dotted lines are the random
classifiers in each case. Firstly, the scoring range is between 0 - 0.3 and the thresholds are
clearer represented on the PR curve as expected. Focusing on the ROC curve, in the early
stages (high specificity) there is a promising start but as the threshold is getting lower to
include more of the positive instances False Positives are increasing. PR Curve has a noisy
start, however, bearing in mind the large imbalance it labels a lot more precise than the
random classifier (precision) until it covers the 20% of the positive instances. Fig. 5.10
illustrates the difficulty of retrieving the positive instances accurately and the main concern
is the vast number of negative instances are misclassified. Even though the differences are
not large, for equal recall (same percentage of selected relevant items) precision is better
for multilayer networks. In other words, for a specific number of node pairs belonging
to positive class (node pairs that became links), the multilayered approach will label them
better.

5.3.3 Correlation between Temporal Events and AUC value

TABLE 5.11: Mean weights of the coefficients of ML algorithm

temporal depth Cons. - P Regr. - P Innov. - P Cons. - S Regr. - S Innov. - S
2 0.45 1.02 1 -0.17 -0.03 -0.06
3 61.1 -3.67 1 14.01 -0.94 6.36
4 31.3 -2.38 1 6.64 -0.45 3.55

Table 5.11 shows the weights that SVM assign to each temporal event for different depths.
The algorithm considers the Conservative events the most important for the prediction
while the larger the depth the smaller the differences between the weights. Bearing that in
mind, it is attempted to show some relation between Conservative events and the perfor-
mance of the algorithm. and the most straightforward way is to measure their correlation.
Here, two types of correlation are investigated Pearson product moment correlation and
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Spearman rank-order correlation. The Pearson correlation calculates how strong is the lin-
ear relationship between two continuous variables, that is when a change in one variable is
associated with a proportional change in the other variable.

Pearson correlation= r =
∑n

i=1(xi − x)(yi − y)
Æ

∑n
i=1(xi − x)2(yi − y)2

(5.1)

where xi and yi are the variables and x, y are the corresponding average values. The Spear-
man correlation calculates the monotonic relationship between two ordinal or continu-
ous variables.The Spearman correlation coefficient is not based on the raw data but on the
ranked values for each variable. In our case, we can use Spearman to investigate whether
the total amount of events has an impact on the AUC value.

Spearman correlation= ρ= 1−
6
∑

d 2
i

n(n2− 1)
(5.2)

n is the number of samples and d is the pairwise distances of the ranks of the variables xi
and yi .

Correlation of total number of temporal events

TABLE 5.12: Correlation between total number of temporal events and
AUC

temporal depth corr. type Cons - P Regr - P Inn - P Cons - S Regr - S Inn - S

2
linear 0.35 0.01 0.2 0.04 0.03 0.11
rank 0.41 0.1 0.01 0.05 0.06 0.1

3
linear 0.36 0.17 0.05 0.04 0.05 0.02
rank 0.55 0.24 0.21 0.13 0.05 0.01

4
linear 0.39 0.34 0.31 0.05 0.12 0.11
rank 0.66 0.38 0.38 0.05 0.12 0.12

TABLE 5.13: Mean weights of Github features

temporal depth pull request project members
2 0.6 0.9
3 0.24 1.5
4 0.26 1.9

TABLE 5.14: Correlation between total number of temporal events and
AUC - Github

temporal depth correlation type pull request project members

2
linear 0.05 0.2
rank 0.1 0.25

3
linear 0.07 0.26
rank 0.14 0.29

4
linear 0.08 0.27
rank 0.13 0.31
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The values represent the correlation coefficients between the total number of the corre-
sponding temporal event and AUC value. From table 5.12 a moderate correlation exists
between Conservative events and AUC value which grows larger with the temporal depth.
So it can be cautiously said that the more Conservative events there are, the better the pre-
diction justifying the bigger weight that ML assigned to the Conservative event. Further-
more, in larger temporal depths, other temporal events become more relevant but always
Conservative has a superior correlation. While the results above belong to the 1-layer, it
is interesting to observe how the Github features are weighted. Hence, they are compara-
ble with the 1-layer ones although they cannot be considered extra significant. The level
of their significance is also validated by the correlation coefficients. Project members seem
more important probably due to their rarity; there is fewer project members activity than
pull request as shown before. Once more, for the calculation of the correlation coefficients,
the total number of each activity is used.

FIGURE 5.11: Scatter plots of Primary temporal events and AUC value

FIGURE 5.12: Scatter plots of Github events and AUC value
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Fig. 5.11 focuses on the Primary events and attempts to graphically show potential
correlations that cannot be captured by the linear or rank coefficient. The linear trend
among them can be easily explained since the total number of events is plotted; In more
active weeks all of the events will be more on average. On the other hand, when events are
compared with AUC value they do not seem to follow any obvious non-linear trends. Fig.
5.12 focuses on the Github layer and unlike the Primary events, Github features are not
correlated by total number. As expected the scatter plots with AUC can be characterized
as almost random.

Correlation of the percentage of temporal events

In this subsection, the correlation is calculated between the AUC value and the percentages
of each event at the corresponding time. The main thought was to investigate whether the
composition of the events each week is correlated to the performance. E.g. In a week that
Conservative events are 5% of the total events, is the performance better than a week that
the value is 2% ?

TABLE 5.15: Correlations between AUC and percentage of temporal events

temporal depth corr. type Cons - P Regr - P Inn - P Cons - S Regr - S Inn - S

2
linear 0.22 0.19 0.2 0.009 0.02 0.05
rank 0.3 0.1 0.04 0.045 0.07 0.1

3
linear 0.27 0.22 0.21 0.17 0.21 0.14
rank 0.34 0.19 0.26 0.087 0.29 0.14

4
linear 0.37 0.31 0.24 0.21 0.29 0.28
rank 0.4 0.33 0.31 0.19 0.30 0.25

The table 5.15 indicates some similarity with the correlations of the total number of
events. Conservative events appear more correlated and once again a larger depth increases
the correlation of the other events.

FIGURE 5.13: Probability of Link Appearance for each Primary temporal
event
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Fig. 5.13 validates the importance of Conservative events. By taking into account the
activity of all node pairs, if there is a Conservative event there is around 9% probability
that there will be a link next week. Compared to the other Primary events its superiority
is apparent. What is more, the red dotted line represents the mean probability of a link
appearance if there is some activity (some event) in the weeks under investigation.

5.4 Limitations & Contributions

This last section sums up the contributions of the current thesis on the topic of temporal
link prediction and addresses the limitations of the method used in this project.

5.4.1 Limitations

A fundamental limitation was the datasets that were used. Perhaps with networks that are
more active and dynamic like Twitter we could exploit in a larger extend the temporal char-
acteristics. Additionally, the overlap between layers was small, thus the multilayer approach
can and should be further investigated with data from different sources. In some cases the
variation of the results was large and we could not derive concrete conclusions. In general,
the model accepts arbitrary networks and the realization of a multilayer network depends
strongly on the selected ones. It is always challenging to select the appropriate metrics to
measure the performance in imbalanced data. Furthermore, the link prediction was based
on a linear combination of temporal events, however, the problem could be formulated us-
ing non-linear ones. Linear combination was a choice based on simplicity and due to the
fact that it was a neat input for the ML algorithms that were used.

5.4.2 Contributions

While there is a lot of previous work done on link prediction, the temporal aspect and dy-
namics of the network under investigation are usually ignored. In addition, entities are
linked with diversified types of relations that are important factors of the dynamics of
the network. The integration of temporal information and different types of interactions,
namely the creation of a temporal multilayer network, is a novel tool for link prediction.
As the results illustrate, the method is beneficial and superior from the static and single layer
approaches. The thesis contributions can be summarized as follows:

• The creation of a temporal multilayer network improves link prediction as it can be
seen in Table 5.1 for one layer comparison and Table 5.7 and Table 5.8 for 2 layers.

• The larger the temporal window the better the performance. Fig. 5.2 shows the
decreasing improvement for larger temporal windows.

• The most important is the Conservative event. The preservation of a link is the most
crucial feature could signify a future link. The result of the algorithm matches the
behavior in Fig. 5.13 and supports the statement.

• The deployed ML algorithm is faster than brute force and provides the required weights
for separating the two classes. Brute force that is commonly used could fail to find
the global maximum for the determination of the weights.

• Using multilayer network in the prediction by linearly combining Github features
never provides worse results. In some cases, from Table 5.7 - 5.8 is at least identical
to single layer.
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5.4.3 Future Work

• Essentially, by introducing the evolution of temporal events the framework can be
used to also characterize the user’s behavior over time. Regardless of the networks
used and apart from link prediction task, the method sheds light on the type of in-
teractions between users through a weighting scheme. By observing the evolution
of the temporal events one could derive useful information from the values or a
peak/anomaly in the typical time flow. Hence, the framework can be used as an
anomaly detector in the future.

• On a higher level, the increasing amount of data that users generate and the diverse
networks that they participate will provide information to improve our predictions
and possibly highlight the underlying relationship between the different layers.

• The current work can also be used as recommendation system that can be generalized
in the future. For example, which people to follow, posts to read or products that
might be relevant to buy.

• Machine Learning offers many opportunities to improve the prediction. For exam-
ple, along with the temporal events, common static methods (e.g. Common Neigh-
bors, Jaccard Index) can be used as features of the algorithm.

• The method is very much aligned to the real world social phenomena. People become
more and more part of diverse social networks not to mention the inherently multiple
nature of user interactions. Therefore, it is intriguing to research on community
detection and the interdependence of the various layers. In that way we can reduce
the information needed to perform efficient and accurate link prediction.

• Aside from the social network, the method can be used in different domains like
bioinformatics and e-commerce. Relevant example could be a multilayer network of
gene interactions where each layer could represent different tissue.
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