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Executive Summary

Attention for the aviation industry’s impact on climate change has increased significantly in recent years,
as it is one of the fastest growing industries worldwide. Aviation contributes around 2.4% to the global
emissions of CO2 and an average of 3.5% to climate change because of fossil fuel consumption. If
aviation continues its current trajectory of increasing traffic volumes, the sector will increasingly conflict
with global decarbonization targets. Although aviation’s emissions targets align with the overall goals
of the Paris Agreement, it is unlikely that the sector will meet these goals. While efficiency measures
are being implemented, concerns are growing over the short-term feasibility of current development
scenarios. Given that radical engine innovations and large-scale deployment of Sustainable Aviation
Fuels (SAF) are unlikely to become technically and commercially viable before 2040, improving fuel ef-
ficiency remains the most immediate and effective strategy for reducing emissions. The key short-term
measures available to airlines under the four-pillar strategy proposed by the International Air Transport
Association (IATA) can be summarized as follows:

• Invest in new generation, more fuel-efficient aircraft to increase average fuel efficiency;

• Implement strategies to increase passenger load factors;

• Optimize flight operations such as route planning to reduce flight distances.

As advancements in operational and aircraft fuel efficiency also enhance cost-effectiveness, airlines
have the potential to significantly reduce fuel costs and pass these savings on to consumers, leading to
lower ticket fares. This could further stimulate passenger demand, amplifying the existing upward trend
in air travel. This feedback might result in a fuel efficiency rebound effect, partially or fully offsetting the
intended emission reductions. Projections for future demand, fuel efficiency and the associated emis-
sion reduction in the literature often overlook the fuel efficiency rebound effect, leading to systematic
overestimation of actual emission reductions.

The research addresses this critical knowledge gap by conceptualizing and quantifying how future
fuel efficiency rebound effects may affect projected emission reductions in passenger aviation. Previ-
ous research identified rebound effects in aviation of 49%1 between 1986 and 1999, and 18.8% be-
tween 2000 and 2013, based on retrospective analysis of empirical data. A forward-looking analysis of
how fuel efficiency rebound effects may influence future emission projections is currently missing. The
research estimates the fuel efficiency rebound effect over a 15-year time horizon, up to 2040. Indirect
rebound effects2 fall outside the scope of this analysis. With the aim of contributing to the integration
of rebound dynamics into policy evaluation models and supporting robust policy design, the research
adopts an exploratory approach by combining quantitative System Dynamics (SD) modeling with Sce-
nario Analysis.

The research contributes to future predictive studies on rebound effects and broader emission re-
duction efforts in aviation. First, it conceptualizes the key drivers and feedback mechanisms of the
rebound effect using a systems thinking approach. Second, it captures these dynamics in a compact
System Dynamics model, that operates without relying on extensive empirical data. Third, it estimates
the rebound effect and its implications within a reference scenario, and explores a range of plausible
scenario outcomes. Fourth, it analyzes these outcomes to identify influential combinations of market-
specific uncertain parameters. Finally, the research highlights critical market-specific empirical data

1The rebound effect is typically expressed as the ratio of the lost savings to the expected savings, representing the share of
the emission reduction potential offset by the rebound of efficiency improvements.

2Indirect rebound effects occur when the intended reduction in activity, emission or resource usage from a specific measure
was achieved, but the same actor increases consumption of other goods, services or related operations, leading to an overall
increase in other activities, emissions, or resource usage.
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gaps that must be addressed to narrow the plausible range of model results.

The model results indicate an emission reduction potential of 14% compared to a scenario without
any efficiency improvements. Within a reference scenario, a rebound effect of 91.3% was estimated
over the 2025-2040 period, offsetting themajority of this potential and resulting in an actual net reduction
of only 1.3%. The magnitude of the rebound and its impact on emissions is influenced by market-
specific uncertainties, including airline pricing strategies, fare elasticity of demand, and the market
shares of different haul segments. To capture a range of plausible outcomes, 1000 rebound simulation
runs were conducted, incorporating varying combinations of these uncertainties. Figure 1 summarizes
the key simulation results of the reference scenario and the scenario analysis.

Figure 1: The red lines represent CO2 emissions in an ensemble of 1000 rebound simulation runs, without a constraint on the
cumulative growth in flight volume. The density plot in the right section of the figure visualizes the distribution of the final time
outcomes. The black line represents emissions in the rebound simulation for the reference scenario and the corresponding
offset of the emission reduction potential. The green line represents emissions in the baseline simulation, which implies a 0%

offset and full realization of the emission reduction potential, as rebound feedback was excluded.

Using the Patient Rule Induction Method (PRIM) algorithm3, outcomes of interest were evaluated
based on a rebound effect threshold, defined as any scenario in which a larger share of the emission
reduction potential is offset relative to the reference scenario. The extent to which fuel cost savings
are passed on to consumers appeared to be less influential, as the analysis revealed that even at its
minimum value, a substantial rebound effect can occur. However, a higher average pass-through rate
remains undesirable, as it is associated with an even greater magnitude of the rebound effect. The
main conclusions of this analysis are summarized below.

Themagnitude of the rebound effect exceeds the 91.3% observed in the reference scenario, under
the following conditions:

• Consumers exhibit a high sensitivity to fare price reductions per passenger-kilometer;

• Relatively high market shares of longer haul segments compared to that of short-haul
segments;

• Airlines can fully capitalize on demand growth, i.e. the potential amount of flights is unre-
stricted.

The rebound effect estimated in the research is significantly higher than the rebound effects of 49%
and 18.8% reported in previous research. This discrepancy can be attributed to key methodological
differences, including the use of a ceteris paribus approach that isolates behavioral feedback effects,
and the exclusive focus on passenger aviation, whereas previous research also included cargo opera-
tions. The results indicate that the rebound effect in passenger aviation can offset a substantial portion

3The PRIM algorithm identifies combinations of uncertain input parameters that are strongly associated with specific model
outcomes, helping to explore key drivers of system behavior.
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of the emission reduction potential in the reference scenario. In most other scenarios, the effect is even
more pronounced, with projected outcomes showing a complete offset or even an additional increase
in emissions. These findings highlight a significant risk that the sector’s contribution to global emission
reduction targets is being overestimated, as the effectiveness of the key short-term measures under
the four-pillar strategy proposed by the IATA is substantially diminished by the rebound effect. The
findings also inform key recommendations for policy makers and for future research.

Policy Recommendations
• Integrate rebound feedback into policy evaluationmodels to systematically consider rebound-
implications that may offset anticipated efficiency gains when evaluating the effectiveness of pro-
posed policy measures.

• Stimulate the adoption of SAF to decouple emissions from air traffic growth, limit the sector’s
reliance on fuel efficiency improvements, and constrain its capacity to meet growing passenger
demand.

• Strengthen carbon pricing mechanisms and implement fiscal measures to impose con-
straints on the sector’s economic expansion and counteract mechanisms that drive the rebound
effect. Tax incomes can be used to commercialize Sustainable Aviation Fuels.

Recommendations for Future Research
• Address knowledge gaps in data availability to narrow the range of plausible outcomes. Em-
pirical research should focus on collecting data on market share distributions, fare elasticities of
demand, fuel cost pass-through rates by carrier type and the maximum potential of flight volumes.

• Integrate rebound feedback into conventional emission projection models to account for
behavioral responses to efficiency gains and avoid overestimating their impact to global emission
reduction targets.

• Futuremodeling efforts can improve the proposed SystemDynamicsmodel by capturing supply-
demand dynamics, integrating multiple scale contexts, and embedding it in broader models.
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Nomenclature

Abbreviations
Below is a list of abbreviations and terms used in this thesis. They are listed alphabetically in separate
categories for convenience.

Category Abbreviation Definition

Aviation Metrics AKF Aircraft-Kilometers Flown
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PAX Number of Passengers
PLF Passenger Load Factor
RPK Revenue Passenger-Kilometers

Environmental Policy & Concepts CORSIA Carbon Offsetting and Reduction Scheme
for International Aviation

EU ETS EU Emission Trading Scheme
GHG Greenhouse Gas
SAF Sustainable Aviation Fuels

Modeling and Analysis Techniques CLD Causal Loop Diagram
EMA Exploratory Modeling and Analysis
KPI Key Performance Indicator
LHS Latin Hypercube Sampling
PRIM Patient Rule Induction Method
SD System Dynamics
SFD Stock Flow Diagram

Symbols
Below is a list of symbols used for variables in the formulas throughout this thesis, along with their
corresponding units. They are listed alphabetically for convenience.

Symbol Definition Unit

d Flight distance [km]
D Total annual passenger demand [RPK/year]
e CO2 emissions per liter of jet fuel [Mt/L]
E Total CO2 emissions [Mt]
F Fuel consumption [L]
N Annual number of flights
p Fare price [eur/RPK]

α Pricing strategy factor
β Baseline demand growth rate

xii
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ε Fare elasticity of demand
η Demand fulfillment rate
λ Fuel efficiency-induced demand growth rate
ρ Fuel efficiency induced fare price change ratio
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Introduction

Attention for the aviation industry’s impact on climate change has increased significantly in recent years,
as it is one of the fastest growing industries worldwide. The pre-pandemic traffic volumes recovered
almost completely in 2023 and the demand for air travel is expected to double by 2040 (IATA, 2023).
While this rapid growth presents significant opportunities for airlines, the aviation industry’s environ-
mental impact increasingly raises concerns for policymakers at both the European and global levels.
Aviation contributes around 2.4% to the global emissions of CO2 (Abrantes et al., 2021) and an average
of 3.5% to climate change because of fossil fuel consumption (Lee et al., 2021). If aviation continues
its current trajectory of increasing traffic volumes, the sector will increasingly conflict with global decar-
bonization targets.

Several international policies, including the Paris Agreement (UNFCCC, 2015), call for substantial
reductions in CO2 emissions from the aviation sector. To achieve these goals, the aviation sector
follows a strategy proposed by the International Air Transport Association (IATA), which is built around
four key pillars aimed at mitigating aviation’s climate impact (Eurocontrol, 2021). As shown in figure
1.1, these pillars focus on aircraft technology, improvements in fuel efficiency, more efficient air traffic
management and operational practices, and economic measures.

Figure 1.1: Overview Four-Pillar Strategy to mitigate aviation’s climate impact. Adapted from: Kettler and Walls (2022)

Technological advancements play a crucial role in increasing efficiency, both by improving efficiency
of kerosene-powered aircraft and by developing new engine technologies and alternative fuels (Kettler
& Walls, 2022). Research suggests that emerging technologies, such as electric and hybrid-electric
propulsion, hydrogen power, and sustainable aviation fuels (SAF), hold significant potential for making
aviation more energy-efficient and sustainable (Avogadro & Redondi, 2024; ATAG, 2021; ICAO, 2022;
IATA, 2021a). Operational measures complement these technological developments by optimizing
flight routes, improving load factors, and enhancing ground operations, all of which contribute to contin-
uous fuel efficiency improvements in daily operations (Kettler &Walls, 2022). Regulatory and economic
measures like carbon caps and pricing, including the Carbon Offsetting and Reduction Scheme for In-
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ternational Aviation (CORSIA) and the EU Emissions Trading Scheme (EU ETS), have helped slow
aviation emissions growth. However, they have not led to an absolute reduction, as EU ETS does not
fully cover global aviation and CORSIA lacks sufficient stringency (Proost, 2024).

Although aviation’s emissions targets align with the overall goals of the Paris Agreement, it is un-
likely that the sector will meet these goals (Grewe et al., 2021). While efficiency measures are being
implemented, concerns are growing over the short-term feasibility of current development scenarios.
Innovation in engine technology remains in an early stage and faces significant challenges, particularly
for long-haul flights (Kettler & Walls, 2022). Hydrogen-powered aircraft may become commercially vi-
able after 2040, but until then, liquid drop-in fuels will play a dominant role in aviation’s decarbonization
efforts (Davydenko & Hilbers, 2024). Among Sustainable Aviation Fuels (SAF), bio-fuels compete with
food production, making synthetic fuels the most viable option in the coming years. These fuels can
blend with conventional jet fuel and have the potential to fully replace petroleum-based fuels (IATA,
2021b; ICAO, 2016). However, their high cost - two to seven times that of kerosene - and limited
availability present significant barriers to scaling production (Hong et al., 2019). With fuel expenses
accounting for about a third of airline operating costs, widespread SAF adoption will require substantial
investment from all stakeholders (Kettler & Walls, 2022).

Given that radical engine innovations and large-scale SAF deployment are unlikely to become tech-
nically and commercially viable before 2040, improving fuel efficiency remains the most immediate and
effective strategy for reducing emissions. Indeed, advances in aircraft design and optimized operational
practices are essential to minimizing aviation’s carbon footprint while fossil fuels continue to dominate
the sector (ATAG, 2021). According to (IATA, 2021b), replacing the existing global fleet with more ad-
vanced next-generation aircraft is estimated to reduce aviation energy demand and CO2 emissions by
approximately 10–15% by 2050 (IATA, 2021b). However, IATA also notes that without further mitiga-
tion measures, overall emissions are projected to exceed pre-pandemic levels, as aviation growth is
expected to outpace these efficiency improvements. Conventional technological and operational effi-
ciency improvements alone are unlikely to keep pace with demand growth, making them insufficient to
prevent a continued rise in global CO2 emissions (Peeters & Melkert, 2024).

As advancements in fuel efficiency also enhance cost-effectiveness, airlines have the potential to
significantly reduce fuel costs as long as fossil fuels remain the dominant energy source. Profitability
in the airline industry is relatively low. Given the fierce competition among airlines, even small cost
differences can strongly influence pricing strategies (Grewe et al., 2021). For instance, U.S. airlines
could lower fuel costs by nearly 19% between 2025 and 2050 (Kharina et al., 2016). If these savings
are passed on to consumers, fare prices in the U.S. could decrease by up to $20 for short-haul flights
and $105 for long-haul flights (Kharina et al., 2016). While these estimates are specific to the U.S.,
similar dynamics apply to global passenger aviation. As the global trend of increasing fuel efficiency
reduces operating costs sector wide, airlines are likely to pass these savings on to consumers, leading
to lower ticket fares (Koopmans & Lieshout, 2016). This cost reduction could further stimulate passen-
ger demand, amplifying the existing upward trend in air travel. Due to the highly competitive nature of
the airline industry, cost savings are typically reflected in lower fares, prompting increased passenger
demand. This feedback might result in a fuel efficiency rebound effect (Evans & Schäfer, 2013), par-
tially or fully offsetting the intended emission reductions, as illustrated in Figure 1.2. Understanding this
effect is crucial for evaluating the true environmental benefits of fuel efficiency improvements in global
passenger aviation.
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Figure 1.2: Visualization of fuel efficiency rebound effects

Projections for future demand, fuel efficiency, and the associated emission reductions in the liter-
ature often overlook the fuel efficiency rebound effect, leading to systematic overestimation of actual
emission reductions. This limitation becomes evident when historical fuel efficiency improvements are
compared with observed emission reductions, revealing significant discrepancies attributable to the
rebound effect. Existing empirical and modeling studies have underscored the historical prevalence
of rebound effects in aviation. Miyoshi and Fukui (2018) identified that between 1986 and 1999, the
rebound effect in aviation reached approximately 49%, meaning that nearly half of the fuel efficiency
improvements achieved were offset by an increase in total fuel consumption. This high rebound effect
was largely driven by rapid traffic growth following industry liberalization and a decline in fuel prices. In
the subsequent period, from 2000 to 2013, the rebound effect declined significantly to 18.8% (Miyoshi
& Fukui, 2018). Previous work applying a systems thinking approach to rebound effects has enhanced
understanding of their causal and dynamic characteristics (Hilty et al., 2006; Stasinopoulos et al., 2012;
Guzzo et al., 2023). However, the aviation sector remains underexplored in this regard. The existing
literature lacks a comprehensive conceptual and quantitative analysis of how fuel efficiency rebound
effects may influence future emission projections. Moreover, to the best of current knowledge, such
rebound mechanisms are not yet integrated in existing policy evaluation models.

Fuel efficiency rebound effects can occur in both passenger and cargo aviation. This research
focuses specifically on global passenger aviation, as this sector is experiencing rapid growth and is
particularly sensitive to fare prices (Koopmans & Lieshout, 2016), making it susceptible to unintended
consequences of fuel efficiency improvements. While indirect rebound effects1 may also contribute to
offsetting fuel efficiency gains, they fall outside the scope of this research. Consequently, emissions
from ground operations and efficiency improvements in this area are not considered. CO2 is the pri-
mary GHG (greenhouse gas) emitted by aircraft due to fossil fuel consumption (Abrantes et al., 2021).
Given its significant contribution to climate change, this research focuses on analyzing the impact of a
fuel efficiency rebound effect in terms of CO2 emissions2. The analysis is conducted over a 15-year
time horizon (2025-2040), as beyond 2040, the increasing potential of a widespread adoption of radical
engine technologies and SAF is expected to play a more substantial role in decarbonizing global pas-
senger aviation. As these technologies are expected to reduce aviation’s reliance on fossil fuels, the
potential fuel efficiency rebound effect and its impact on decarbonization efforts is expected to become
less significant in the long-term.

The objective of this research is to assess the relevance and implications of a potential fuel efficiency
rebound effect and contribute to establishing a setup to integrate its dynamics into policy evaluation

1Indirect rebound effects occur when the intended reduction in activity, emission or resource usage from a specific measure
was achieved, but the same actor increases consumption of other goods, services or related operations, leading to an overall
increase in other activities, emissions, or resource usage (Malmaeus et al., 2023).

2Although significant uncertainty remains, the non-CO2 impacts of aviation are estimated to be comparable in magnitude to
those of CO2 emissions alone (Lee et al., 2009)
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models. Additionally, this research aims to support the development of stricter policies to achieve
substantial global emission reductions in passenger aviation; a hard-to-abate sector. By analyzing the
dynamics of the fuel efficiency rebound effect, it explores how this phenomenon could evolve unnoticed
if left unaddressed. To achieve this, the research examines the structure and underlying dynamics
of the passenger aviation system while estimating the potential magnitude of the rebound effect to
effectively assess its impact. Given market-specific uncertainties and the lack of transparent data, this
research combines a System Dynamics (SD) modeling approach with scenario analysis to examine
how these uncertainties influence the magnitude and potential impact of the rebound effect. Exploring
the rebound and its implications is essential for accurately evaluating the true environmental benefits of
fuel efficiency improvements in global passenger aviation. This is of specific relevance as long as we
continue to depend on fossil fuel consumption and conventional technologies for emission reduction.
The results presented in this research are not intended to serve as precise forecasts of future emissions.
Rather, the research aims to illustrate the fundamental challenges associated with translating efficiency
improvements into meaningful reductions in absolute emissions.

This research utilizes VensimDSS 10.2.2 to develop a quantitative SDmodel and simulate its behav-
ior over a 15-year time horizon (2025-2040). This approach aims to capture the feedback dynamics of
the rebound effect and to generate strategic insights, even with limited empirical data (Forrester, 1987;
Sterman, 2000). Existing SD literature has made several contributions to estimating rebound effects
in passenger transport. Achachlouei and Hilty (2016) demonstrate that feedback loops are a natural
and effective concept for modeling rebound effects in transport systems using SD. Yim (2019) devel-
oped a system dynamics model to present and simulate rebound mechanisms within the context of
the European automobile fuel efficiency sector. This research adopts an exploratory problem analysis
approach, focusing on passenger aviation as the sector within the aviation industry due to its suscep-
tibility to rebound effects and the unintended consequences arising from the industry’s efforts to meet
the targets of the Paris Agreement. Projected efficiency improvements, achieved through conventional
aircraft technologies and operational practices, are used as baseline inputs for the model. Additionally,
the model incorporates projected annual passenger demand growth as baseline input, which is linked
closely to economic growth and GDP in the existing literature.

Research Questions
The research addresses two primary knowledge gaps: (1) the lack of comprehensive conceptualization
and quantification of how potential future fuel efficiency rebound effects may affect projected emission
reductions, and (2) the dearth of analysis of how the quantification of this effect depends on market-
specific uncertainties. To address these knowledge gaps, the research answers the following main
research question:

What is the potential impact of a future fuel efficiency rebound effect on the environmental benefits
from efficiency improvements in passenger aviation?

The fuel efficiency rebound effect arises from efficiency improvements and the underlying systemic
dynamics. To build an initial understanding of these feedback mechanisms, this research first identifies
the key factors involved and conceptualizes their interactions, thereby addressing the first sub-question:

SQ1: What factors contribute to a fuel efficiency rebound effect and how do they interact?

To quantify the fuel efficiency rebound effect over time, themodel’s purpose and experimental design
are first established to guide its structure and ensure it meets the research objectives. Subsequently,
the conceptualized factors and interactions are translated into a quantitative model, addressing the
second sub-question:

SQ2: How can a System Dynamics model effectively capture and integrate the key factors and
interactions of a fuel efficiency rebound effect?

To evaluate the implications of the fuel efficiency rebound effect, this research proposes a reference
scenario, applying the model to simulate system behavior over time. This addresses the third sub-
question:
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SQ3: What is an initial projection of the magnitude of the fuel efficiency rebound effect and the
corresponding actual emission reduction through 2040 in the reference scenario?

Market-specific uncertainties affect both the magnitude and implications of the fuel efficiency re-
bound effect. To estimate the future rebound potential, it is essential to account for this uncertainty
space. This analysis addresses the fourth and final sub-question:

SQ4: How do market-specific uncertainties impact the potential magnitude of a fuel efficiency
rebound effect?

Addressing the research questions contributes to closing key knowledge gaps by conceptualizing
the hypothesized behavior, quantifying it through a System Dynamics model, and generating strategic
insights for policy design while explicitly accounting for uncertainty.

Thesis Structure
Chapter 2 outlines the methods used and specifies the model’s purpose and experimental design for
this research. Chapter 3 describes and conceptualizes key factors and interactions contributing to the
rebound effect, and presents a dynamic hypothesis regarding the effects on model behavior of incor-
porating the rebound effect into the system. Chapter 4 provides an overview of the System Dynamics
(SD) model, including its subsystems and interrelations, underlying assumptions, and the verification
and validation processes. Chapter 5 presents an initial projection of the fuel efficiency rebound ef-
fect using a reference scenario and interprets its implications, assuming this scenario closely aligns
with reality. Chapter 6 presents the results of a scenario analysis, interpreting the effects of various
combinations of market-specific uncertainties. Chapter 7 reflects on the modeling choices, highlights
limitations, and discusses the study’s broader implications. Finally, Chapter 8 concludes by address-
ing the research question and offers policy recommendations, along with recommendations for future
research.



2
Research Methodology

This chapter outlines the research methodology designed to answer the main research question. Sec-
tion 2.1 provides an overview of the sub-questions and corresponding approaches, with a research flow
diagram clarifying the coherence between the sub-questions and phases. Subsequently, Section 2.2
justifies the choice of System Dynamics (SD) as the modeling technique. Section 2.3 clearly defines
the model’s purpose, followed by a discussion of the experimental setup established to estimate the
rebound effect in Section 2.4. Thereafter, Section 2.5 presents the approach for model verification
and validation to ensure alignment with its intended purpose. Finally, Section 2.6 explains the role of
scenario analysis within this research methodology.

2.1. Overview
This research aims to answer the following main research question:

What is the potential impact of a future fuel efficiency rebound effect on the environmental
benefits from efficiency improvements in passenger aviation?

To address this question, this research combines System Dynamics modeling with Scenario Analy-
sis. The following sections discuss the methods and approach applied per sub-question.

SQ1: What factors contribute to a fuel efficiency rebound effect and how do they
interact?
The approach taken to address the first sub-question involves a review of relevant theory to concep-
tualize and build a dynamic hypothesis. A dynamic hypothesis represents an initial understanding of
the underlying causes of the problematic behavior, identifying the key variables and feedback mecha-
nisms believed to drive the hypothesized problematic behavior (Sterman, 2000). In this research, the
reference mode for the problematic behavior is the potential occurrence of a fuel efficiency rebound
effect. While not directly observable, this effect may explain why past efficiency improvements did not
yield their full emission reduction potential and offers insight into how future reductions might remain
limited if underlying dynamics are not addressed. The conceptualization and dynamic hypothesis are
established through the following three steps:

1. Identifying and describing the key factors contributing to a fuel efficiency rebound effect.
This step involves developing a system description based on a review of relevant literature and
theoretical foundations.

2. Conceptualizing the interactions between the key factors. In this step, the key factors are
synthesized into a Causal Loop Diagram (CLD) that illustrates the feedbackmechanisms believed
to drive the hypothesized problematic behavior.

6



2.1. Overview 7

3. Formulating a dynamic hypothesis of the problematic behavior. This step involves analyzing
the CLD to identify archetypical feedback structures and to develop an initial hypothesis of how
the system behaves over time.

The key factors and their interactions identified in this research phase provide the theoretical foun-
dation for both the experimental design and the model. The formulation of the SD model is addressed
in the subsequent sub-question.

SQ2: How can a System Dynamics model effectively capture and integrate the
key factors and interactions of a fuel efficiency rebound effect?
The key factors and interactions are translated into equations forming a quantitative SD model that is,
when simulated numerically, capable of establishing the occurrence and potential magnitude of a fuel
efficiency rebound effect. The approach to addressing the second sub-question builds on the theoret-
ical foundation established in response to SQ1, while ensuring compatibility with the model purpose
and experimental design defined for this research in Sections 2.3 and 2.4. The SD model undergoes
verification and validation to ensure its reliability and accuracy. Once validated, the model is applied to
simulate the system behavior over time, in alignment with the experimental design established for this
research.

SQ3: What is an initial projection of the magnitude of the fuel efficiency rebound
effect and the corresponding actual emission reduction through 2040 in the ref-
erence scenario?
To address the third sub-question, initial results are simulated and interpreted to validate and quantify
the fuel efficiency rebound effect. This is done using a single reference scenario approach, enabling a
clear calculation of the implications. This reference scenario is built using parameter values positioned
at the midpoint of the defined uncertainty range. The results from this reference scenario provide an
early indication of the potential magnitude of the future fuel efficiency rebound effect and its associated
impacts. These results provide a foundation for interpreting the outcomes in the scenario analysis.

While existing literature uses 2050 as the time horizon for aviation emission reduction projections,
this research adopts 2040 as its time frame. The rationale for selecting this time frame is that, beyond
2040, radical shifts in technological innovation are expected to become commercially viable, potentially
driving sharp decline in fossil fuel dependency. This transition may mitigate both the likelihood and the
impact of a fuel efficiency rebound effect.

SQ4: How do market-specific uncertainties impact the potential magnitude of a
fuel efficiency rebound effect?
To address the fourth sub-question, a Scenario Analysis approach is employed to examine how the
magnitude and implications of the fuel efficiency rebound effect are influenced by market-specific un-
certainties. The results addressing SQ3 provide a first indication of the potential magnitude of the
future rebound effect and its associated impacts. Building on this, a comprehensive scenario analysis
is conducted to explore how the rebound effect may evolve under a range of possible future conditions.
The interpretation of these scenarios, along with their broader implications, is informed and contextual-
ized by the reference scenario outcomes. Market-specific uncertainties are varied across experiments.
The results are analyzed using the Patient Rule Induction Method (PRIM) algorithm to identify the most
critical uncertainties in determining the magnitude and implications of the fuel efficiency rebound effect.

Answering the research sub-questions contributes to addressing the main research question by
identifying key factors and mechanisms driving the rebound effect, and the critical uncertainties that
influence its potential magnitude. These insights provide policy makers with a strategic understand-
ing of the conditions under which a rebound effect may emerge, helping to inform policies aimed at
preventing or mitigating its occurrence in passenger aviation.
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Research Flow Diagram
The research process broadly follows the standard SD modeling cycle, a structured and widely recog-
nized approach in SD research (Auping et al., 2024). The modeling cycle, as applied for this research,
comprises the following steps: problem articulation, conceptualization, formulation, evaluation, initial
results and scenario analysis. The modeling cycle is inherently iterative, meaning that its steps are
not strictly sequential and may be revised multiple times throughout the research process. Figure 2.1
illustrates how the steps of the modeling cycle and the sub-questions are iteratively integrated in the
phases of this research.

Figure 2.1: Research flow diagram

2.2. Modeling Technique: System Dynamics Modeling
Quantitative System Dynamics modeling serves as the primary modeling technique and the main re-
search method in this research. SD modeling is particularly well-suited for examining the relationship
between system behavior over time and its underlying structure (Forrester, 1987). Typical system struc-
tures modeled using SD include accumulations, delays and feedback loops. Feedback, in this context,
refers to causal relationships that form closed loops, influencing system behavior over time (Auping
et al., 2024). This feature is a fundamental characteristic of SD models, enabling a more dynamic
and nonlinear approach beyond traditional linear thinking (Forrester, 1987). Quantitative SD is also
valued for its ability to convey strategic insights without requiring extensive empirical data (Sterman,
2000). This is especially relevant to this research, where the fuel efficiency rebound effect in passen-
ger aviation is the primary focus. Theory suggests that its occurrence is driven by the presence of
a feedback loop within the system structure (Hilty et al., 2006; Stasinopoulos et al., 2012; Guzzo et
al., 2023). Moreover, the aviation industry lacks comprehensive and easily accessible empirical data,
underscoring the suitability of SD as a modeling technique for capturing underlying mechanisms of the
fuel efficiency rebound effect. In addition, SD models almost always rely on aggregated variables to
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capture system-wide dynamics rather than individual variations (Rahn, 1985).

SD models are, in essence, sets of integral equations that define system behavior based on the
specified model structure (Auping et al., 2024). The most essential elements in SD models are stock-
variables, which accumulate over time and are influenced by inflows and outflows. Stocks can be
interconnected through these flows, shaping the dynamics of the system. Additionally, the model struc-
ture includes constants and auxiliary variables that contribute to system behavior. The accumulation
of a stock over time is mathematically defined by the following integral equation (Auping et al., 2024):

St = S0 +

∫ t

0

(ft − gt) dt (2.1)

Where:

St = value of stock S at time t

S0 = initial value of stock S at time t = 0

ft = inflow at time t

gt = outflow at time t

Inflows and outflows can, in turn, be influenced by constants and auxiliary variables, as illustrated in
Figure 2.2. This figure provides a visual representation of a simple stock-flow structure, corresponding
to the integral equation. However, the constants and auxiliary variables influencing the flows in this
figure, are not explicitly included in the integral equation.

Figure 2.2: Stock-flow structure in diagrammatic conventions. Source: Auping et al. (2024)

Once initial values and constants are assigned, numerical integration techniques are used to sim-
ulate the behavior of the endogenous variables and visualize their changes over time. This involves
solving the system of equations that define the dynamic interactions within the model at each time step,
based on the specified initial conditions. In this research, the model is developed and simulated over
the time horizon of 2025 to 2040 using Vensim DSS version 10.2.2. The model employs Euler integra-
tion with a time step of 0.0078125. Details of the initial parameter settings are provided in Chapter 4
and in the Excel file on Github1.

1GitHub Repository

https://github.com/Saskia-XCVI/rebound-passenger-aviation
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2.3. Model Purpose
The purpose of the model is to estimate the fuel efficiency rebound effect to assess its implications and
generate strategic insights to inform policy development. This is achieved by integrating the dynamics
of the fuel efficiency rebound effect to analyze the system’s structure and behavior, and to estimate
its magnitude and impact. To meet this objective, the model must capture the extent to which fuel
cost savings stimulate increased demand, thereby partially or fully offsetting the expected emission
reductions. This involves estimating the demand increase directly attributable to fuel efficiency and
comparing resulting emissions. Additionally, the model estimates the emission reduction potential in
the absence of rebound, enabling an estimation of actual emission reductions after accounting for the
rebound effect.

The model operates under a ceteris paribus assumption. This approach allows for a clear analysis
of the rebound effect - where lower fares stimulates higher demand. While, in reality, fluctuations in
other variables may counteract some of the factors driving the rebound effect, this does not mean the
rebound effect is absent. Rather, it may be covered by other dynamics.

2.4. Experimental Design
To ensure the results are valid and align with the purpose of this research, an experimental design
is developed. This design for simulation experiments is derived from the model’s purpose and the
hypothesized behavior outlined in the dynamic hypothesis in Chapter 3. The experimental design is
specifically developed to estimate the emission reduction potential and the fuel efficiency rebound effect,
enabling an effective assessment of its impact ensuring alignment with the research objectives.

The hypothesis in Chapter 2 identified critical feedback mechanisms that were integrated into the
experimental design to measure the rebound effect emerging from these interactions. The design de-
termines which variables and interactions are included in each simulation experiment to generate the
required information for meeting the research objectives. The experimental design primarily structures
the execution of simulation experiments to ensure the accurate capture of the rebound’s magnitude
and implications, while also guiding the development of the model to align with this approach. The ex-
perimental design was refined iteratively based on insights from conceptualization and initial simulation
results, enhancing its ability to capture and quantify the rebound effect with greater accuracy.

The experimental design consists of three simulations. The first is a null simulation, in which both
efficiency improvements and associated feedback mechanisms are excluded. This simulation serves
as a benchmark for estimating the theoretical emission reduction potential. The baseline simulation
excludes the rebound feedback mechanisms but includes efficiency improvements, providing a refer-
ence point to isolate and quantify the rebound effect. Finally, the rebound simulation incorporates the
feedback mechanisms associated with the rebound effect. It is first implemented as a single run to
provide an initial estimation of the rebound effect and its implications. The rebound simulation is then
conducted as a set of 1000 scenario runs, varying uncertain parameters to explore their impact on
the magnitude of the rebound effect. Comparing the results of the baseline and rebound simulations
provides an estimate of the potential scale of the fuel efficiency rebound effect. Input data, including
baseline demand projections and anticipated efficiency improvements, are applied annually over the
simulation time.

The model distinguishes between two components of demand growth: baseline demand growth
and efficiency-induced demand growth. Baseline demand growth occurs independently of efficiency
improvements, reflecting external factors such as population or economic growth. Efficiency-induced
demand growth is driven by rebound feedback and reflects the additional demand as a response to hy-
pothesized fuel savings resulting from operational and aircraft efficiency improvements. This distinction
allows for a clear comparison between results of the baseline simulation and the rebound simulation.
Figure 2.3 visually represents the experiment design, which serves as the foundation for both the initial
results and the scenario analysis.
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Figure 2.3: Experiment Design

2.5. Verification & Validation
In the evaluation step (Figure 2.1), the quality of the model is determined through various tests, focused
on whether the model has been constructed and simulated correctly (verification), and whether it is fit
for purpose (validation) (Barlas, 1996). Model validation refers to the process of building confidence
in the model’s usefulness (Forrester & Senge, 1980) rather than as a strict measure of its predictive
accuracy. Amodel that is fit for purpose offers valuable insights into the system’s structure and behavior,
supporting policymaking processes (Forrester, 1961). Consequently, a model’s validity is evaluated in
relation to the specific purpose for which is was developed (Forrester & Senge, 1980).

Model verification in this research involves evaluating the suitability of the chosen numerical integra-
tion method and step size, verifying all equations and inputs for errors, testing individual subsystems
and ensuring dimensional consistency (Pruyt, 2013). These tests are applied iteratively throughout the
modeling process.

Validation tests were applied to establish confidence in a model’s usefulness (Sterman, 2000; Pruyt,
2013). These tests fall into three main categories: (i) direct structure tests, which assess whether the
model’s relations and assumptions align with accepted theories and include all relevant variables; (ii)
structure-oriented behavior tests, which examine whether the model’s behavior and underlying mecha-
nisms align with expectations, to identify key influences and further refine the model; and (iii) behavior
reproduction tests, which evaluate how well the model’s output matches known or historical data. To
evaluate the model’s validity, a selection of tests proposed by Forrester and Senge (1980) was con-
ducted in this research. This selection of validation tests is presented in Table 2.1. The methodology
and results are documented in the model chapter (Chapter 4) and Appendix B.

Table 2.1: Selection of validation tests per category

Category Selected Validation Tests
Direct structure tests Boundary adequacy test

Structure-oriented behavior tests Sensitivity analysis
Extreme conditions test

Behavior reproduction tests Historical and future emis-
sions data check
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Boundary adequacy testing was conducted during the modeling process as a direct structure test to
ensure that the model includes all essential feedback mechanisms and variables required to reproduce
the fuel efficiency rebound effect, while excluding unnecessary complexity. This approach supports
model validity by confirming that the model boundaries are appropriately defined in relation to the re-
search objective. To complement this, a sensitivity analysis and extreme conditions tests were applied
as structure-oriented behavior tests on the final model. Sensitivity analysis was selected to examine
whether the model’s conclusions are robust to uncertainties in parameter values, while the extreme
conditions test was used to verify that the model generates plausible and consistent behavior under
hypothetical extreme inputs. Together, these tests strengthen confidence in the behavioral reliability of
the model. In addition, a historical and future emissions data check was performed to assess whether
the model behavior aligns not only with observed historical patterns but also with established future
emission projections reported in the literature. This test was selected to increase confidence in the
model’s ability to reflect real-world dynamics.

2.6. Scenario Analysis
The research combines SD modeling with Scenario Analysis to explore the future scenarios of the fuel
efficiency rebound effect, which is essential due to its inherent uncertainty. This uncertainty arises
from the complex and volatile dynamics of the aviation sector, influenced in part by the behavior of
various stakeholders (Samunderu, 2024). To better understand the uncertainties surrounding the re-
bound effect, it is critical to explore plausible future developments through a comprehensive scenario
analysis (Enserink et al., 2022). In this research, parametric uncertainties stem from two main sources:
the limited availability of accessible data in the aviation sector and the lack of agreement about the
behavioral responses of actors within the system. Scenario Analysis maps system behavior under un-
certainty, when there is no knowledge or agreement on the plausible scenarios (Lempert et al., 2006).
The experimental outcomes are analyzed to generate policy-relevant insights by evaluating the extent
to which they align with the hypothesized rebound effect.

The research utilizes the EMA-workbench in Python for scenario analysis. Exploratory Modeling
and Analysis (EMA) is particularly useful when sufficient information exists to build a model, but this
information is inadequate to specify a single model that fully captures system behavior (Kwakkel &
Pruyt, 2013). In traditional predictive modeling, a model is constructed by synthesizing known facts
into a single representation to forecast system behavior (Bankes, 1993). This approach is employed
during the initial results phase of this research (Figure 2.1), under the assumption of a reference sce-
nario to validate and quantify the hypothesized rebound and interpret its implications. This reference
scenario is selected from the set of plausible models, based on specific parameter values, assuming
their correctness. However, as acknowledged in SD literature, for many complex systems, construct-
ing a model that can serve as a valid surrogate for the real-world system is often infeasible due to
the inherent difficulties of obtaining accurate measurements under uncertainty (Sterman, 2000). EMA
addresses this uncertainty by generating a set of plausible models through numerous computational
experiments (Bankes, 1993), enabling the systematic analysis of insights derived from an otherwise
infinite range of plausible models.

A set of plausible scenarios is generated by selecting key parameters and defining their correspond-
ing uncertainty ranges, within which their values can vary. These parameters are chosen for their
expected significant impact on the magnitude of the rebound effect. The uncertainty range for each
parameter is determined based on the minimum and maximum values it could realistically assume ac-
cording to the literature. Each scenario represents a unique combination of values for these uncertain
parameters. These values, along with their assignment for each scenario, are determined using Latin
Hypercube Sampling (LHS). LHS divides the uncertainty space into a specified number of scenarios
and randomly combines the values within each, ensuring both uniqueness and a uniform distribution
(Huntington & Lyrintzis, 1998), as illustrated in Figure 2.4. Moreover, provided that the input and the
number of scenarios remain constant, LHS will consistently generate the same set of scenarios, en-
hancing the reproducibility and reliability of this research.
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Figure 2.4: Random sampling versus Latin Hypercube Sampling for two dimensions. From: Preece and Milanović (2016)

In this analysis, the baseline scenario will remain constant, while 1000 runs will be performed for
the rebound simulation to allow for a valid comparison of the potential rebound effects emerging from
the same baseline. The resulting outputs are documented systematically and subjected to analysis.
Figure 2.5 presents the conceptual framework for scenario analysis (Enserink et al., 2022), adapted to
align with the objectives of this research.

Once a set of plausible scenario outcomes is generated, the PRIM algorithm is applied to identify
the most influential combinations of market-specific uncertainties. PRIM is used to detect regions within
the model input space that are strongly associated with outcomes of interest (Bryant & Lempert, 2010;
Kwakkel et al., 2013). In this research, the outcomes of interest are twofold: (1) a rebound threshold
at which a larger share of the emission reduction potential is offset relative to the reference scenario,
and (2) the corresponding level of accumulated emissions resulting from such a rebound. To explore
and identify the critical model input regions for the outcomes of interest, the model employs a lenient
hill-climbing optimization procedure (Kwakkel & Jaxa-Rozen, 2016). This procedure iteratively refines
the selection of input space by incrementally increasing the density of cases exhibiting the outcome
of interest, while allowing trade-offs between coverage and precision (Bryant & Lempert, 2010). The
research uses a Python implementation of PRIM as part of the EMA-workbench.

Figure 2.5: Framework for Scenario Analysis. Adapted from: Enserink et al. (2022)

Within the framework, the term Modeled System refers to the entity that exhibits the problematic
behavior to be analyzed (Balci, 1994). This entity corresponds to the model configuration used for the
full rebound simulation, as it captures the problematic dynamics relevant to the fuel efficiency rebound
effect. This focus is appropriate given that only rebound simulation runs are conducted in the scenario
analysis, while the parameter values of the baseline simulation are held constant to allow for a mean-
ingful comparison. The rebound simulation incorporates all modeled variables, whereas the null and
baseline simulations exclude certain variables, as discussed in Section 2.4.



3
Conceptualization & Hypothesis

This research applies quantitative System Dynamics (SD) modeling to examine the effects of the fuel
efficiency rebound on potential emission reductions in passenger aviation. Prior to the formulation of
the quantitative SD model, it is essential to conceptualize the underlying theory of the fuel efficiency
rebound effect. This involves formulating a dynamic hypothesis that explains how key factors influence
the problem behavior over time, addressing the following sub-question:

What factors contribute to a fuel efficiency rebound effect and how do they interact?

This chapter establishes the dynamic hypothesis through three steps. First, Section 3.1 identifies
and describes the key factors of a fuel efficiency rebound in the passenger aviation system, based on
existing literature. Second, Section 3.2 synthesizes these components and their interrelations into a
Causal Loop Diagram (CLD) to conceptualize the underlying behavioral feedback mechanisms. Third,
Section 3.3 identifies a corresponding system archetype and formulates a dynamic hypothesis based on
this structure. The dynamic hypothesis serves as a foundation for the formulation of the quantitative SD
model, which is presented in Chapter 4. Furthermore, it informs the interpretation of initial experiment
results in Chapter 5 and the evaluation of scenario outcomes in 6

3.1. System Description
Several studies have investigated short-term strategies to reduce fuel consumption in global passenger
aviation. These approaches show considerable alignment with the four-pillar strategy proposed by the
International Air Transport Association (IATA). The key short-term measures available to airlines for
lowering fuel consumption per passenger-kilometer can be summarized as follows:

• Invest in new generation, more fuel-efficient aircraft to increase average fuel efficiency;

• Implement strategies to increase passenger load factors;

• Optimize flight operations such as route planning to reduce flight distances.

This section describes the key factors influenced by these measures, which contribute to a fuel
efficiency rebound effect as conceptualized in the existing literature.

Aircraft Fuel Efficiency
Abrantes et al. (2021) state that increasing aircraft efficiency plays a critical role in meeting carbon
reduction targets by 2050. Since the beginning of the jet age, technological innovations - including the
use of lighter materials, improved engine performance, and aerodynamic improvements have resulted
in a 70% reduction in fuel consumption per passenger-kilometer of aircraft (Abrantes et al., 2021).
Given this historical trend, further reductions are anticipated as new technological innovations continue

14
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to be introduced into the aviation sector.

Improving technological efficiency, particularly in aircraft design and engine fuel consumption, rep-
resents a viable short-term strategy, especially for airlines operating older fleets (Kettler & Walls, 2022).
Owen et al. (2010); Randt et al. (2015) and Terekhov et al. (2018) have analyzed the impact of emerg-
ing conventional aircraft technologies and aircraft configurations on future CO2 emissions in the global
aviation sector. Their findings indicate that while advancements in aircraft technology contribute to fuel
savings, the adoption of new aircraft generations occurs gradually due to market dynamics and industry
constraints. After a new aircraft enters service, it takes several years before its widespread adoption
significantly impacts the overall fleet efficiency (IATA, 2021a). On average, each new generation of
aircraft achieves a 15-20% improvement in fuel efficiency over its predecessor. However, the slow
pace of aircraft replacement, due to the high costs and logistical constraints of frequent fleet upgrades,
results in a modest annual efficiency improvement of only 1-1.5% (Peeters & Melkert, 2024). Conse-
quently, further fuel consumption reductions will need to be complemented by the implementation of
operational efficiency improvements.

Operational Efficiency
In addition to the impact of aircraft fuel efficiency, Ploetner et al. (2017) and Hassan and Mavris (2020)
estimate that fleet-level fuel burn could be further reduced by 7-8% by 2050 as a result of increasing
passenger load factors. Ploetner et al. (2017) highlight that achieving climate targets cannot rely solely
on short-term advancements in aircraft technology, as the slow integration of new technologies at the
fleet level limits their impact. While substantial improvements in operational efficiency may enable
immediate benefits in the short term (Hassan & Mavris, 2020), emissions are projected to remain ap-
proximately 10% higher than the IATA targets set for 2035 (Ploetner et al., 2017). Increasing passenger
load factors and reducing flight distances enhance fuel usage efficiency on a per passenger-kilometer
basis (Wadud, 2015), which is a critical metric for evaluating the environmental performance of individ-
ual flights. Passenger load factor is a measure of how efficiently the maximum seating capacity of an
aircraft is utilized:

Passenger Load Factor = (RPK / ASK ) * 100%

Where RPK refers to revenue passenger-kilometers and ASK refers to available seat-kilometers.
Reducing flight distances can further improve efficiency since shorter distances typically result in less
fuel consumption due to reduced time in the air and lower total distance traveled per passenger.

Fuel Costs and Fare Prices
To achieve financial success, airlines must perform well in both productive efficiency and fare pricing
(Oum et al., 2005). The highly competitive nature of the passenger aviation market compels airlines to
continuously enhance efficiency and reduce operational costs. A key indicator of cost competitiveness
is an airline’s ability to maintain lower unit costs than its competitors on a sustainable basis (Oum & Yu,
1998). Given that fuel constitutes a substantial share of airline operating expenses (Zou et al., 2014), jet
fuel efficiency is frequently analyzed as a critical input factor in assessing productive efficiency (Adler et
al., 2013; Arjomandi & Seufert, 2014). Fuel efficiency is typically expressed as a ratio metric, indicating
the amount of fuel consumed per unit of output. In the literature, this output is commonly measured in
terms of fuel consumption per seat-kilometer or passenger-kilometer. An improvement in fuel efficiency,
defined as a reduction in fuel consumption per passenger-kilometer, implies that less fuel and therefore
lower costs are required to produce the same level of output and revenue. Since passenger-kilometers
are the core output of airlines in passenger aviation, improvements in fuel efficiency per passenger-
kilometer are inherently linked to operational cost savings (Miyoshi & Fukui, 2018).

The benefits allow airlines to reduce unit operating costs and enabling them to offer lower and more
competitive airfares to passengers (Zou et al., 2014). However, a key concern for regulators is the
extent to which airlines are able to pass through cost changes to fare prices. Empirical evidence on
this pass-through effect remains limited. A pass-through rate of 100% is often assumed, based on the
premise that the aviation sector is highly competitive. However, Koopmans and Lieshout (2016) found
that sector-wide cost changes are passed through at a rate of more than 50 %. In this research, a
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default pass-through rate of 45% is assumed as the average value for the entire passenger aviation
industry, serving as the baseline input for the reference scenario in the initial experiments presented
in 5. This rate is chosen because it is considered reasonable to expect that the average pass-through
rate lies between a minimum of 10% and a maximum of 100%, with 45% representing the midpoint
of this range. For the scenario analysis in Chapter 6, the pass-through rate is varied across different
scenarios to assess the impact of potential actual values on the magnitude of the rebound effect.

Global Passenger Demand
Aviation’s contribution to climate change would be immediately halted by either a sustained annual 2.5%
decrease in air traffic under the existing fuel mix (Klöwer et al., 2021). However, the likelihood of air
traffic in 2050 being reduced depends strongly on the stringency of climate policies, changes in passen-
ger behavior, and economic developments within the aviation sector. Improvements in fuel efficiency
alone are unlikely to significantly reduce aviation’s climate impact, as past gains have been outpaced
by continued traffic growth, and the potential for further improvements is becoming increasingly limited.

Airbus forecasts a continued annual growth rate of 4.4% in revenue passenger-kilometers (RPK)
over the next two decades, as outlined in its Global Market Forecast (Airbus, 2018). Similarly, Boe-
ing’s Commercial Market Outlook anticipates an annual growth rate of 4.6% (Boeing, 2019). However,
both projections are primarily driven by expected increases in GDP per capita and largely rely on a
single baseline scenario that estimates future passenger demand based on income elasticities and
the corresponding number of required aircraft. While useful for planning fleet size and capacity, such
single-scenario models are insufficient for assessing the robustness of emerging technologies (Kölker,
Bießlich, & Lütjens, 2016). Projected aviation emissions are frequently estimated using aggregated ap-
proaches, as seen in previous studies (Miyoshi & Fukui, 2018), which typically model multiple scenarios
by varying the assumed rates of fuel efficiency improvements.

While GDP is a key predictor in air transport forecasts (Martins et al., 2017), with established models
typically projecting RPK growth at 20% - 40% faster than GDP (Smyth & Pearce, 2008), this research
contributes to these projections by conceptualizing fuel efficiency improvements as additional drivers
of passenger demand - an element typically excluded from traditional aviation forecasts.

Fare Elasticity of Demand
Demand elasticities quantify the change in passenger-kilometers demanded in response to variations
in airfare, with elasticity values dependent on the specific focus of the analysis. The sensitivity of
aggregated demand varies across different route levels, as well as national or even supra-national
scales (Smyth & Pearce, 2008). Elasticities have been estimated in various contexts, with a general
consensus that they are influenced by traveler motives and haul segments (Brons et al., 2002). Studies
have reported fare elasticities of ranging from -0.27 to -1.52, with a mean fare elasticity of -1.146 ,
indicating that fare price changes can result in a proportional change in demand (Gillen, 2020). For
this research, three1 representative fare elasticities (-0.82; -1.06; -1.28) are used as baseline inputs2
for the reference scenario of initial experiments in Chapter 5. Due to the lack of consensus on elasticity
values by haul segment and the aggregate nature of the model, the scenario analysis in Chapter 6
explores the implications of applying different average fare elasticity assumptions per haul segment.

3.2. Problematic System Behavior
Efficiency gains from the introduction of newer, more fuel-efficient aircraft are expected to average
±1.5% per year, reflecting long-term historical trends (Peeters et al., 2016; IATA, 2023). In addition, im-
provements in operational efficiency enhance overall fuel use per revenue passenger-kilometer (RPK)
(Grewe et al., 2021). While these developments reduce fuel use per unit of output, they also risk trig-
gering a rebound effect: lower per-RPK fuel costs can stimulate increased demand, which may lead to
a net rise in total aircraft activity and, ultimately, fuel consumption and emissions.

1The modeling approach distinguishes five haul segments, but applies only three distinct elasticity values across them, while
excluding traveler motives from the scope of analysis

2The estimations of the three high-level elasticities based on existing literature, can be found in the Excel file on GitHub

https://github.com/Saskia-XCVI/rebound-passenger-aviation
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The contrasting effects on passenger-kilometers traveled create a challenge for regulating overall
aviation fuel consumption and emissions (Wadud, 2015). Across the industry, airlines are expected
to collectively respond to demand growth by fully accommodating increased passenger volumes, re-
gardless of the market structure. Fleet management flexibility enables airlines to meet rising demand,
indicating that, sector-wide future demand growth is likely to be fully met (Pitfield et al., 2010). More-
over, empirical studies suggest that for all market structures, supply-side decisions (e.g., frequency and
aircraft size) are primarily driven by demand across the broader network rather than by local market
characteristics (Abrahams, 1983; Wei & Hansen, 2005).

While improved load factors, flight distances and aircraft technology can enhance fuel efficiency on
a per-passenger basis, they must be evaluated in the context of broader system dynamics and their
impact on total emissions and operational efficiency. Therefore, the model incorporates the feedback-
loop complexities that cause additional demand growth and fuel consumption resulting from reductions
in fuel consumption per revenue passenger-kilometer (RPK). Figure 3.1 presents a synthesis of the key
factors driving the feedback mechanisms underlying the problematic behavior associated with a fuel
efficiency rebound effect in a Causal Loop Diagram (CLD). For clarity, the diagram presents a simplified
structure in which certain detailed variables - though included in the SD model - have been omitted.
The conceptualization of the underlying behavioral feedback mechanisms highlights two dynamics that
deserve attention:

• R1: Efficiency-induced revenue passenger-kilometers (RPK)

• B1: Efficiency-induced fuel consumption

It is assumed that total RPK demand ultimately determines the number of aircraft-kilometers flown
(AKF) required to meet this demand, as indicated in the literature. Operational efficiency can play a
mitigating role in this relationship, for example through flight distance, while the passenger load factor
(PLF) influences the number of passengers (PAX) per flight. Together, these factors determine how
many aircraft-kilometers are needed on average to achieve a given RPK output.
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Figure 3.1: Causal Loop Diagram illustrating the hypothesized feedback mechanisms driving the problematic behavior.
Positive causal relationships are indicated with a ”+” sign at the arrowhead, denoting that an increase in one variable leads to
an increase the connected variable, ceteris paribus. Negative causal relationships are marked with a ”-”sign, indicating that an
increase in one variable leads to a decrease in the other, ceteris paribus. Delay between variables is presented by a ”||” symbol.

The reinforcing feedback loop is labeled ”R1”, and the balancing feedback loop is labeled ”B1”.

Efficiency-induced revenue passenger-kilometers
The first feedback mechanism, efficiency-induced revenue passenger-kilometers (R1), is a reinforcing
feedback loop that emerges when fuel consumption per RPK decreases as a result of improvements
in operational and aircraft fuel efficiency. Lower total fuel consumption leads to reduced fuel costs per
unit of output (RPK), enabling fare reductions depending on the cost pass-through rate. The extent to
which these lower fares stimulate additional RPK demand, depends on the fare elasticity of demand.
This additional rise in demand, amplified by baseline growth trends, contributes to a higher volume of
RPKs being generated relative to fuel consumption. This feedback loop represents the coremechanism
behind the fuel efficiency rebound effect: the improved efficiency lowers costs, which in turn simulates
increased demand and flight operations in terms of passenger-kilometers.

Efficiency-induced fuel consumption
The second feedback mechanism, efficiency-induced fuel consumption (B1), captures the dynamic
where fuel efficiency improvements initially lead to a reduction in total fuel consumption. Both through
decreased aircraft-kilometers flown (AKF), enabled by operational efficiencies, and through lower fuel
use per AKF, achieved via aircraft fuel efficiency. However, the resulting decline in fuel consumption
per RPK stimulates additional RPK demand, ultimately leading to an absolute increase in the number
of aircraft-kilometers required. This, in turn, can offset the initial fuel savings and lead to an overall rise
in fuel consumption. These dynamics, in which the market responses counteract initial benefits, are
conceptualized as a balancing feedback-loop.
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3.3. Dynamic Hypothesis
The dynamic hypothesis of the problematic system behavior simulated in this research is supported by
the identification of archetypical feedback structures, as conceptualized in the CLD shown in Figure 3.1.
This system behavior is hypothesized based on the structure used in the rebound simulation, as pre-
sented in the experimental design for this research outlined in Chapter 2. Since the behavior observed
in this extended structure builds upon the dynamics of the baseline simulation, the behavioral hypoth-
esis is first presented for the baseline system structure. Subsequently, the emergence of problematic
behavior in the rebound configuration is hypothesized, supported by the theory of system archetypes
as proposed by (Senge, 1990).

When considering only the baseline system structure, there are no feedback mechanisms present
from efficiency improvements that reduce fuel consumption per RPK to additional RPKs or aircraft-
kilometers. Existing projections in the literature suggest that baseline RPK demand is expected to
grow at an almost exponential rate, along with a corresponding increase of aircraft-kilometers flown.
Despite efficiency improvements, this accelerated growth pattern outpaces3 the gains in fuel efficiency,
leading to an increase in emissions up to 20404.

System archetypes, as proposed by Senge (1990), represent common underlying structures that
give rise to recurring patterns of problem behavior. Such archetypical behaviors typically emerge from
specific configurations of reinforcing and/or balancing feedback loops within a highly aggregated sys-
tem structure. The feedback dynamics driving the fuel efficiency rebound effect closely align with the
system archetype referred to as Fixes that Fail. This archetype describes situations in which a seem-
ingly effective solution generates significant unintended consequences over time. This may cause
the system to revert to its original problematic state leading to even greater challenges, rather than
resolving the issue. In the problem behavior examined in this research, fuel efficiency improvements
intended to achieve a potential emission reduction, trigger a rebound effect resulting in unintended
consequences that lead to even higher fossil fuel consumption and a similar trend in overall emissions.

The hypothesized problematic behavior of the rebound structure is linked to the behavior of the base-
line structure. The baseline RPK demand growth and corresponding aircraft-kilometers are amplified
by the feedback mechanisms triggered by efficiency improvements, which accelerates fuel consump-
tion and result in higher CO2 emissions compared to the baseline simulation. The difference in total
accumulated emissions between the baseline simulation and the rebound simulation is expected to be
small initially, as both simulations start with the same initial values. However, this difference will pro-
gressively expand over time due to the cumulative effects of the rebound feedback. The hypothesized
dynamic behavior of both system structures is illustrated in Figure 3.2.

Figure 3.2: Hypothesized system behavior expressed in terms of total accumulated emissions for both the baseline and
rebound simulations. The hypothesis illustrates the expected relative behavior of the system in a rebound scenario compared
to the baseline over time. Emissions are set to zero at initial time, as they are tracked cumulatively from 2025 onward. The

baseline simulation incorporates projected demand growth and efficiency improvements, while the rebound simulation includes
the same conditions with the addition of rebound feedback mechanisms and resulting additional demand growth and emissions.

3Efficiency improvements lead to lower emissions compared to a scenario with no efficiency gains. However, despite these
improvements emissions are expected to continue to rise

4The literature covers a range of scenarios, with more recent studies increasingly assuming that the introduction of disruptive
aircraft technologies and alternative fuels will not occur until after 2040. This timeline assumption is also adopted in this research



4
Model

After establishing the key concepts and interactions related to the fuel efficiency rebound effect in Chap-
ter 3, this chapter presents the System Dynamics (SD) model developed in this research to address
the following sub-question:

How can a System Dynamics model effectively capture and integrate the key factors and
interactions of the fuel efficiency rebound effect?

Section 4.1 defines themodel boundaries, followed by a high-level overview of themodel structure in
Section 4.2. Section 4.3 discusses the subsystems and main assumptions of the model, while Section
4.4 introduces the Key Performance Indicators (KPIs). Baseline input values, used consistently across
all experiments in the subsequent chapters, are detailed in Section 4.5. The chapter concludes with a
discussion on model validation in Section 4.6.

4.1. Model Boundaries
The selection of model boundaries is guided by the research scope, the purpose of the model and
the key factors identified in Chapter 3. Given the global scope of this research, the model operates
at a high level of aggregation. Consequently, variables representing detailed operational phases of
passenger aviation are excluded, and only those directly relevant to the fuel efficiency rebound effect
are considered.

The model is designed to specifically capture the demand increase directly resulting from lower fare
prices, driven by improvements in both operational fuel efficiency and aircraft fuel efficiency. Conse-
quently, the model operates under a ceteris paribus assumption, meaning that all other factors influ-
encing operating costs, fare prices and passenger demand remain constant and are excluded from the
model boundaries.

To account for expected future growth, themodel incorporates projected baseline demand, reflecting
the anticipated doubling of total passenger demand. Establishing this baseline is essential for assessing
the rebound effect, as it enables a comparison between passenger demand under baseline conditions
- where the rebound effect is not considered - and a scenario in which the rebound effect is accounted
for.

Figure 4.1 provides an overview of the included and excluded variables. Finally, Chapter 8 explores
significant potential model expansions for future research.

Main Assumptions
• The model operates under a ceteris paribus assumption, meaning that all other factors influencing
relevant variables and not driven by the fuel efficiency rebound effect are excluded.

20
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Figure 4.1: Bulls-eye diagram for the visualization of model boundaries
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4.2. Model Structure
Figure 4.2 provides a high-level overview of the model structure, illustrating how key variables and sub-
systems interact through the assumed causal relationships within the rebound loops. Given that the
fuel efficiency rebound effect is the primary focus of this research, these feedback loops form the core
of the model. Accordingly, the model is built on the key assumption that a causal relationship exists
between fuel efficiency, fuel consumption, fuel costs, fare price, and demand growth - specifically in
that sequence. Unlike the null simulation and baseline simulation, the rebound simulation of the experi-
mental design includes rebound feedback and incorporates the variables and relationships highlighted
in red, completing the rebound loops. The baseline simulation and rebound simulation include base-
line variables (blue) along with efficiency improvements (green). The null simulation only includes the
baseline variables (blue).

Figure 4.2: High-level overview of the System Dynamics model showing subsystems, key variables, and their connections.
Blue subsystems are common to all simulations, green subsystems represent efficiency improvements included in the baseline
and rebound simulations, and red subsystems complete the feedback loops driving the hypothesized problematic behavior,

included only in the rebound simulation.

Given the model’s high level of aggregation and in line with the common approach in SD modeling,
most variables represent industry-wide averages. However, the industry-average variables flight dis-
tance and maximum seating capacity of aircraft vary significantly across haul segments (see Chapter
3). Since these variables are crucial for determining flight operations, the model is subscripted across
five haul segments. In SD modeling, subscripts are used to represent and simulate multiple similar en-
tities within a single model structure (Vensim documentation, 2025). This approach enables the model
to generate distinct outputs for each subscripted entity. The subscripted model enables more precise
estimations of flight operations, thereby improving the accuracy of other key variables dependent on
flight operations. As a result, most variables are calculated separately for each of the five haul seg-
ments. Industry-wide KPI values are obtained by summing the values across all haul segments. Table
4.1 presents the adopted haul segment classification and the corresponding industry-wide averages
used as input data for the model. A detailed explanation of how these industry-wide averages were
estimated can be found in Appendix A.
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Table 4.1: Estimations of industry-wide averages per haul segment

Haul segment Flight distance Maximum seating
capacity of aircraft

Short haul 600 km 108.75
Short-medium haul 1000 km 126.25
Medium haul 1600 km 146.43
Long haul 3250 km 183.33
Ultra-long haul 12000 km 308.33

Main Assumptions
• An indirect causal relationship between fuel efficiency and demand growth forms a feedback loop
that captures the dynamics of a potential fuel efficiency rebound effect;

• The model operates under a business as usual scenario, meaning that unforeseen events are
not considered and are assumed not to significantly disrupt the dynamics within the rebound
feedback.

4.3. Subsystems & Assumptions
The model comprises the following subsystems: Passenger demand, Flight operations, Fuel consump-
tion, Operational & Aircraft fuel efficiency, and Fare pricing. The following subsections outline the
structure, the most important equations and the main assumptions of each subsystem. The subsys-
tems presented in this section reflect the model configuration used in the full rebound simulation. The
rebound simulation includes all modeled variables, while in the null simulation and baseline simula-
tion certain variables were excluded. The underlying equations are disaggregated and modified where
necessary to account for the inclusion or exclusion of variables in simulations. Several variables are
formalized using an integral approach to accurately represent the common stock-flow relationship in
SD modeling. The complete file of the model developed for this research can be accessed via Github1.

4.3.1. Passenger Demand
The dynamics of consumer behavior contributing to the fuel efficiency rebound effect are reflected in
the way total annual passenger demand accumulates over time. Given that a business as usual sce-
nario is assumed, and projections in the literature consistently indicate an increasing trend in demand,
passenger demand is modeled as a stock-flow system with two inflows and no outflows, as visualized
in Figure 4.3. The two inflows distinguish between baseline demand growth and fuel efficiency-induced
demand growth, enabling comparison of null and baseline scenarios to the rebound scenario. Conse-
quently, in the null simulation and the baseline simulation, where the rebound is not accounted for,
total annual passenger demand is determined solely by the inflow of baseline demand growth. In the
rebound simulation, where the rebound feedback mechanisms are included, total annual passenger
demand is modeled as the sum of both contributing inflows:

Dt = D0 +

∫ t

0

{
[Dt ∗ βt] dt Null simulation & Baseline simulation
[Dt ∗ (βt + λt)] dt Rebound simulation

(4.1)

Where:

Dt = Total annual passenger demand at time t [RPK/year]

D0 = Initial total annual passenger demand at time t = 0 [RPK/year]

βt = Baseline prediction demand growth rate at time t

1GitHub Repository

https://github.com/Saskia-XCVI/rebound-passenger-aviation
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λt = Fuel efficiency-induced demand growth rate at time t

The baseline growth rate operates independently of the rebound feedback and depends on the
baseline prediction of the yearly demand growth rate. The fuel efficiency-induced growth rate is driven
by rebound feedback and therefore depends on the fare price change and the fare elasticity of demand.
Fare elasticity of demand in general represents the degree to which consumers respond to changes in
fare prices (Belobaba, 2009):

εp =
∆D

∆p
→ ∆D = εp ∗∆p (4.2)

Where:

εp = Fare elasticity of demand

∆D = Percentage change of demand

∆p = Percentage change of fare price

Applying this formula to the specific fare price change due to fuel efficiency in this model, gives the
following equation for the fuel efficiency-induced demand growth rate:

λt = ρt ∗ εp (4.3)

Where:

ρt = Fare price change ratio at time t

εp = Fare elasticity of demand

Figure 4.3: Simplified visualization stock-flow structure of subsystem for passenger demand

Main Assumptions
• The predicted passenger demand growth values found in the literature serve as the baseline for
passenger demand growth, which is assumed to increase over the years in line with existing
projections;
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• Higher passenger load factors do not result in a decrease of passenger demand;

• The values for fare elasticity of demand remain constant over the entire simulation time.

4.3.2. Flight Operations
Passenger demand is met through flight operations performed by airlines. An increase in demand,
whether from baseline growth alone or from a combination of baseline growth and the rebound feedback,
leads to a higher number of flights. This, in turn, results in an increase in revenue passenger-kilometers
(RPK) and total aircraft-kilometers flown (AKF) on average. Figure 4.4 illustrates how annual revenue
passenger-kilometers and aircraft-kilometers depend on other variables within the subsystem.

Themodel assumes that the airline industry will capitalize on growth opportunities (Abrahams, 1983;
Wei & Hansen, 2005; Pitfield et al., 2010), and therefore will adjust its supply to match increasing
passenger demand in the long term. Consequently, the model initially assumes that airlines collectively
fulfill 100% of the demand. However, to enable scenario testing under a flight restriction, the model
incorporates an upper limit on the annual number of flights:

ηt =

{
1 IF Nd,t ≤ Nmax

Nmax/Nd,t ELSE
(4.4)

Where:

ηt = Demand fulfillment rate at time t

Nd,t = Demand for annual number of flights at time t

Nmax = Maximum annual number of flights

The annual number of flights is determined by total annual passenger demand (measured in RPK),
average flight distance, number of passengers (PAX) per flight and the demand fulfillment rate:

Nt =
Dt

pt ∗ PAXt
∗ ηt (4.5)

Where:

Nt = Annual number of flights at time t

Dt = Total annual passenger demand at time t [RPK/year]

PAXt = Average number of passengers per flight at time t [passengers]

dt = Average flight distance at time t [km]

The number of annual aircraft-kilometers flown (AKF) is then calculated as follows:

AKFt = Nt ∗ dt (4.6)

In principle, the total annual revenue passenger-kilometers performed by airlines matches the total
annual passenger demand. If the maximum allowable number of annual flights is reached, only a
portion of the demanded revenue passenger-kilometers will be fulfilled (see equation 4.4).
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Figure 4.4: Simplified visualization stock-flow structure of subsystem for flight operations

Main Assumptions
• Passenger demand dictates the volume of flight operations, meaning the supply of airline services
is adjusted to meet the level of demand, rather than demand being influenced by the available
supply of flights;

• The degree of demand fulfillment is only limited by an industry-wide maximum annual number of
flights.

4.3.3. Fuel Consumption
Fuel consumption is calculated based on total aircraft-kilometers flown (AKF) multiplied by fuel con-
sumption per aircraft-kilometer, instead of using revenue passenger-kilometers (RPK) multiplied by
fuel consumption per passenger-kilometer. This approach allows aircraft-kilometers flown to adjust in
response to operational efficiency via the number of passengers (PAX) per flight and optimizing flight
distances. These changes, which affect the number of flights required to meet the same RPK-demand,
enable fuel consumption to decrease as a result of operational efficiency. Consequently, fuel consump-
tion per revenue passenger-kilometer is treated as an endogenous variable in the model, rather than as
an external fixed value. This approach aligns with how fuel efficiency metrics are commonly presented
in aviation literature, reflecting the dynamics between operational fuel efficiency, aircraft fuel efficiency
and fuel consumption.

The fuel consumption rate is assumed to be constant across all kilometers flown, meaning that fuel
consumption is expressed on a per-distance basis. Consequently, fuel consumption during different
phases of flight (such as taxi, takeoff, cruising, and landing), is not separately accounted for in this
model. Instead, total fuel consumption is a stock that accumulates over time, considering the level of
aircraft fuel efficiency (measured as fuel consumption per AKF) and the total aircraft-kilometers flown
(4.5). The annual fuel consumption is then calculated as follows:

Fannual,t =

∫ t

t−1

[FAKF,t ∗AKFt] dt (4.7)

Where:

Fannual,t = Annual fuel consumption at time t [L]
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FAKF,t = Fuel consumption per AKF at time t [L/km]

AKFt = Aircraft-kilometers flown at time t [km]

Annual fuel consumption per revenue passenger-kilometer is calculated as follows:

FRPK,t =
Fannual,t

RPKt
(4.8)

Where:

FRPK,t = Annual fuel consumption at time t [(L/RPK)/year)]

RPKt = Annual RPK at time t (RPK/year)

Figure 4.5: Simplified visualization stock-flow structure of subsystem for fuel consumption

Main Assumptions
• The fuel consumption rate is consistent across all kilometers flown;

• There is no significant relationship between the increase in aircraft operational weight due to
higher passenger loads and fuel consumption.

4.3.4. Operational & Aircraft Fuel Efficiency
Fuel efficiency is assumed to improve continuously through advancements in operations and aircraft
technology. The adoption of these improvements across the whole aviation sector is inherently slow
and gradual (Abrantes et al., 2021). In the model, this behavior is captured in a stock-flow structure,
where changes occur continuously each year (Figure 4.6). Enhancing operational efficiency reduces
the total number of aircraft-kilometers required to meet passenger demand. This is achieved by in-
creasing passenger load factors (PLF) and optimizing flight routes to shorten travel distances. These
continuous improvements are reflected in small annual percentage changes, ultimately contributing to
long-term reductions in fuel consumption. Improving aircraft fuel efficiency directly decreases the fuel
consumption per aircraft-kilometer flown. The initial value of fuel consumption per aircraft-kilometer,
used as input for the model, is determined by current fuel consumption per available seat kilometer
(ASK), which accounts for differences in aircraft sizes across the haul segments.
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Figure 4.6: Simplified visualization stock-flow structure of subsystem for operational and aircraft fuel efficiency

Main Assumptions
• The fuel efficiency improvement rate is consistent over all types of aircraft, and therefore the same
for each haul segment;

• Jet fuel price does not affect passenger load factor;

• On average, efficiency improvements gradually and continuously spread across the entire sector,
causing the stock-flow structures to accurately reflect this development.

4.3.5. Fare Pricing
Fuel costs represent a significant portion of airlines’ overall expenses (Kettler & Walls, 2022). As fuel
efficiency improves, fuel costs per revenue passenger-kilometer are expected to decline. In the model,
fuel costs are captured by multiplying fuel costs per revenue passenger-kilometer by a fixed jet fuel
price. The jet fuel price remains constant throughout the simulation time to isolate and capture the
direct effect of improved fuel efficiency on passenger demand through fare price changes. The change
in fuel cost per revenue passenger-kilometer is calculated based on the fuel cost one year previous,
resulting in a year-over-year change ratio. The structure of this subsystem is visualized in Figure 4.7.

A reduction in fuel cost per revenue passenger-kilometer directly influences fare prices through the
pricing strategy factor. This factor, which ranges between zero and one, determines the extent to which
airlines pass fuel cost savings on to consumers. The change in fare prices is calculated as follows:

ρt = α ∗ γCfuel,t (4.9)

Where:

ρt = Fare price change ratio at time t

α = Pricing strategy factor

γC.t = Change ratio fuel cost per RPK at time t

The fare price change ratio, combined with fare elasticity, is used to determine the fuel efficiency-
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induced demand growth rate in Equation 4.3. This relationship completes the rebound loop by linking
fare reductions driven by fuel savings to subsequent increases in passenger demand in Equation 4.1.

Figure 4.7: Simplified visualization stock-flow structure of subsystem for fare pricing

Main Assumptions
• Fare price change is only driven by fuel savings;

• Price fluctuations in both jet fuel prices and ticket fares can be approximated by a linear trend, as
they average out over the long term.

4.4. Key Performance Indicators
The model calculates total CO2 emissions, based on scenario’s where the rebound loop was included
or excluded. CO2 emissions accumulate over time as a stock, depending on the total fuel consumed
throughout the simulation time and the emissions produced per unit of jet fuel. Since the model is struc-
tured in subcategories, the total emissions are obtained by summing the accumulated fuel consumption
- multiplied by emissions per unit of jet fuel - across all market haul categories:

Etotal,t =
∑
c

∫ t

0

[Fc,t ∗ e] dt (4.10)

Where:

Etotal,t = Total accumulated CO2 emissions at time t [Mt]

Fc,τ = Fuel consumed for haul segment c at time t [L/year]

e = CO2 emissions per unit of jet fuel [Mt/L]

When rebound feedback is included in simulation (rebound simulation), the model calculates total
CO2 emissions in a scenario where both baseline demand growth and additional demand growth are
considered, accounting for a rebound effect. Conversely, When rebound feedback is excluded from
simulation (null simulation & baseline simulation), the model estimates total CO2 emissions expected
based solely on baseline demand growth, without factoring in a potential rebound effect:
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KPI =


Etotal,t(no efficiency) Null simulation
Etotal,t(baseline) Baseline simulation
Etotal,t(baseline+rebound) Rebound simulation

Main Assumptions
• Emissions are constant per liter of fuel consumed across all flight phases;

• Jet fuel consists solely of fossil fuels for the entire simulation time.

4.5. Baseline Parameter Values
Operational and aircraft fuel efficiency improvements serve as the primary drivers of the rebound feed-
back. The parameter values representing these variables are derived from projections in existing litera-
ture (see Table 4.2). These efficiency parameters serve as baseline inputs for the model, alongside the
projected demand growth rate, which is treated separately from the additional demand growth induced
by efficiency improvements. This approach allows for data-driven estimations of CO2 emissions in the
baseline simulation and null simulation, which include no rebound. The same standard parameter val-
ues are then used for the rebound simulation, enabling a clear comparison between the no-rebound
and with-rebound simulations. The baseline demand growth rate is set at 4.4 % per year, while the
annual efficiency improvement of the global fleet due to new generations of aircraft is set at 1.5%, both
derived from projections in the literature. Improvements in operational efficiency, via average flight
distance and passenger load factors, are based on literature-supported estimations.2

Table 4.2: Baseline parameter values for passenger demand, operational efficiency improvements, and aircraft fuel efficiency
improvements.

Parameter Category Variable Annual Change Rate
Passenger demand Baseline demand growth +4.4%

Operational efficiency Passenger load factor +0.317%
Average flight distance -0.349%

Aircraft fuel efficiency Fuel consumption per AKF -1.5%

4.6. Model Verification & Validation
Model verification is conducted by assessing the model’s behavior across various numerical integra-
tion methods and step sizes, as well as performing error checks on all equations and units. Given the
presence of multiple fixed delays in the model, Euler’s method is identified as most robust and suitable
numerical integration technique. A relatively small timestep of 0.0078125 year is selected for the sim-
ulations to ensure accuracy. Additionally, the alignment between the CLD and SFD representations
was verified to ensure consistency in the model’s structure and logic. The correctness of the equations
and dimensional consistency are thoroughly verified, as no unit- or equation errors were found.

The model’s purpose, as specified in Chapter 2 is to generate strategic insights for policy develop-
ment by:

• Integrating the dynamics of the key factors related to the fuel efficiency rebound effect

• Reflecting the difference in the rate of increase in passenger demand and resulting emissions
between the baseline scenario and the rebound scenario

• Estimating the emission reduction potential and the magnitude of the rebound effect by simulating
the model in alignment with the experimental design.

2A detailed justification and the references supporting the chosen parameter values can be found in the Excel file on GitHub.

https://github.com/Saskia-XCVI/rebound-passenger-aviation
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The validation and verification process established confidence in the model’s suitability for its in-
tended purpose and its correct implementation. While several improvements are reserved for future
research, these limitations do not detract from the model’s current utility for informing strategic policy
design. The literature on SD model validation outlines a range of tests to evaluate the validity of the
model. A selection of validation tests from each of the three main categories discussed in Chapter 2
are executed. The results of the tests can be found in Table 4.3.

Table 4.3: Validation tests and results

Category Validation test Results and comments
Direct structure tests Boundary adequacy test Requirements are satisfied, subject to

certain assumptions

Structure-oriented behavior Sensitivity analysis Model behavior is slightly numerically
tests sensitive, but not behaviorally sensitive

Extreme conditions test to parameter values

Behavior reproduction tests Historical and future Model behavior and order of magnitude
emissions data check of estimations align with historical and

future emissions data

Boundary adequacy testing ensures that the model’s structure endogenously represents the most
critical elements of the system required to achieve its purpose (Sterman, 2000). Key elements of the
system relevant to the model’s purpose are explicitly modeled within the system’s boundaries, which
have been carefully and deliberately defined during the modeling process.

Model behavior is validated through behavioral sensitivity and extreme condition testing. The results
of these tests can be found in Appendix B. The model is found to exhibit slight numerical sensitivity to
rebound-related parameters and keeps functioning within the boundaries of plausible parameter ranges,
while simulating logical model behavior. The model behavior and underlying mechanisms align with
expectations, which implies that the structural validity of the model is sufficient.

The behavior reproduction evaluation confirmed that the model’s output aligns closely with historical
data and is consistent with other future projections of passenger demand and emissions reported in
the literature. In both simulations, passenger demand exhibits a strong upward trend, while annual
emissions increase at a slower rate. When accumulated over the entire simulation time, emissions still
follow a similarly steep upward trend. This aligns with other projections in the literature and reflects
patterns observed in historical data. Furthermore, the order of magnitude of the model’s estimations
corresponds with both historical data and future projections, further supporting the validity of the results.
A historical and future emissions data check, based on a comprehensive study by the Air Transportation
Association Group (ATAG), is provided in the box on the following page.
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Historical and Future Emissions Data Check
Figure 4.8 presents both the historical emissions trend and projected emissions under several
future scenarios, based on a comprehensive study by the Air Transport Association Group (ATAG).

Figure 4.8: Historical CO2 emission trends and projected emissions in various future scenarios for passenger aviation.
Scenario T1 illustrates a baseline with no further improvements in fuel efficiency or adoption of new technologies. T2
assumes a gradual introduction of more fuel-efficient aircraft generations (note: without considering the rebound).

Scenarios T3-T5 depict more transformative shifts, including revolutionary aircraft designs and transitions to electric and
hydrogen propulsion. From: ATAG (2021).

The alignment between themodel’s behavior depicted below (Figure 4.9) and the pre-pandemic
historical dataa in Figure 4.8 supports the model’s ability to reasonably replicate past dynamics.
Additionally, the projected emissions in the model remain within the same range and order of
magnitude when compared with scenario-based estimates in T1 and T2b. This consistency builds
confidence in the model’s reliability for subsequent problem exploration.

Figure 4.9: Model-projected future CO2 emissions, for comparison with historical and projected future emissions data
for validation purposes.

aOnly pre-pandemic historical data was used for comparison, as the sharp decline in emissions in 2019 and the sub-
sequent recovery through 2024 were driven by exceptional, disruptive events. These deviations do not align with the
business-as-usual assumption underpinning the research.

bScenarios T3-T5 fall outside the scope of this research, as it is assumed that disruptive technologies will not become
commercially viable before 2040, which marks the end of the research time horizon.
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Initial Experiment Results

This chapter aims to present an initial projection of the fuel efficiency rebound effect, using a refer-
ence scenario. The focus is on validating and quantifying the rebound, before proceeding to scenario
analysis. The simulation and the interpretation of its results in this chapter address the following sub-
question:

What is an initial projection of the magnitude of the fuel efficiency rebound effect and the
corresponding actual emission reduction through 2040 in the reference scenario?

First, the experiment design input values for uncertain sector-based parameters located in the mid-
dle of the uncertainty range are established in Section 5.1. Next, the experiment results based on these
values are presented in Section 5.2, followed by final calculations in Section 5.3 to provide a clearer
interpretation of the results and their implications. Section 5.5 then analyzes the extent to which the
model behavior aligns with the hypothesized behavior formulated in the dynamic hypothesis (Chapter
3). The chapter concludes with additional remarks on the findings.

5.1. Experimental Setup
The variables and subsystems driving the key dynamics of the rebound model structure (highlighted
in red in Figure 4.2) depend on market-specific parameters for which no clear consensus exists in
the literature, as discussed in Chapter 3. To gain an initial understanding of the potential magnitude
and implications of the fuel efficiency rebound effect and its underlying dynamics, simulations will be
conducted under a reference scenario before proceeding to the full scenario analysis. The reference
scenario is built using the standard parameter values for efficiency and baseline demand growth, along
with market-specific parameter values positioned at the midpoint of the defined uncertainty range (see
Table 5.1). An explanation of how these uncertainty ranges were estimated or chosen based on the
literature, can be found on Github1.

Table 5.1: Midpoint values for uncertain parameters

Parameter Midpoint value
Fare elasticity of demand -0.83, -1.06, -1.28
Pricing strategy factor 0.45
Market share per haul segment 20%

Fare elasticity of demand varies by haul segment, ranging from -0.83 for long- and ultra-long-haul
flights to -1.28 for short- and short-medium-haul flights. The fare elasticity for medium-haul flights

1GitHub Repository.

33

https://github.com/Saskia-XCVI/rebound-passenger-aviation


5.2. Experiment Results 34

is assumed to be -1.06; the average of these minimum and maximum values. The pricing strategy
factor ranges from 0.1 (minimal pass-through of fuel savings) to 1 (full pass-through of fuel savings to
consumers), with 0.45 as the midpoint within the uncertainty range. Additionally, due to a lack of data
on actual market shares, the market share per haul segment is set to an equal distribution (e.g. 20%
per segment) in the reference scenario.

5.2. Experiment Results
With the midpoint parameter values established, the three simulations are executed in accordance
with the experimental design outlined in Chapter 2, using these values and baseline parameter values
presented in Chapter 4 as input. Figure 5.1 demonstrates that in this reference scenario, passenger
demand increases more rapidly in the rebound simulation compared to the baseline. This significant
difference indicates that passenger demand is responsive to fuel savings, as shown in Figure 5.2. In
the initial years, fuel efficiency-induced demand growth rises sharply. However, the model behavior
stabilizes relatively quickly into a linear trend. Evidently, fuel efficiency-induced demand growth remains
zero in the baseline simulation, as the rebound feedback is not included.

Figure 5.1: Total annual passenger demand in the baseline
simulation and rebound simulation, showing the difference in
demand growth resulting from rebound feedback between

2025-2040.

Figure 5.2: Annual fuel efficiency-induced demand growth in
the baseline and rebound simulation, representing the

additional demand growth resulting from rebound feedback
between 2025-2040.

As expected, a similar problematic pattern can be observed in the total accumulated emissions over
the entire simulation time (see Figure 5.4). Initially, the difference in total emissions is too small to be
noticeable in this graph’s scale. However, as emissions accumulate over time, the difference becomes
increasingly apparent, amounting to several billion metric tons of CO2.

Figure 5.3: Total accumulated emissions in the null
simulation and baseline simulation, representing the
emission reduction potential between 2025-2040.

Figure 5.4: Total accumulated CO2 emissions in the
baseline simulation and rebound simulation, representing the

magnitude of the rebound between 2025-2040.

The additional increase in passenger demand in the rebound simulation can be attributed to the
decline in fare prices. Consequently, the rise in CO2 emissions results from the increase in aircraft-
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kilometers driven by higher passenger demand, which offsets the benefits of improved operational
efficiency and reduced fuel consumption per aircraft-kilometer (see Appendix C).

5.3. Final Calculations
To quantify the overall magnitude of the fuel efficiency rebound effect through 2040 and to interpret the
implications of observed behaviors in the reference scenario, final calculations are required. Table 5.2
presents the total accumulated emissions by 2040 for each simulation within the experimental design
described in Section 2.4.

Table 5.2: Emission results per simulation in the reference scenario by 2040 (all values reported in billion metric tons of CO2.

Simulation KPI KPI Value
Null simulation Etotal,T (no efficiency) 22.06
Baseline simulation Etotal,T (baseline) 18.96
Rebound simulation Etotal,T (baseline+rebound) 21.78

Based on these results, the emission reduction potential in the reference scenario is calculated as
follows:

Emission reduction potential = Etotal,T (no efficiency) - Etotal,T (baseline) = 3.09e+09 MtCO2

Where:

Etotal,T (no efficiency) = Total accumulated emissions at the end of the null simulation

Etotal,T (baseline) = Total accumulated emissions at the end of the baseline simulation

The rebound observed in the reference scenario is calculated relative to the baseline as the differ-
ence between total accumulated emissions in the baseline simulation and total accumulated emissions
in the rebound simulation:

Rebound = Etotal,T (baseline+rebound) - Etotal,T (baseline) = 2.82e+09 MtCO2

Where:

Etotal,T (baseline+rebound) = Total accumulated emissions at the end of the rebound simulation

The actual emission reduction that can be attributed to operational and aircraft fuel efficiency im-
provements when the rebound is accounted for, is:

Actual emission reduction = Emission reduction potential - Rebound = 2.8e+08 MtCO2

Based on the accumulated KPI values shown in Table 5.3, and the final calculations performed using
these results, the total CO2 emissions rebound relative to the baseline is estimated at 2.82 billion metric
tons, despite operational and aircraft fuel efficiency improvements. Table 5.3 provides an overview of
the KPI values obtained from the final calculations based on the simulation results of the reference
scenario.
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Table 5.3: Emission reduction potential, rebound and resulting actual emission reduction in the reference scenario by 2040 (all
values reported in billion metric tons of CO2).

Derived KPI KPI Value
Emission reduction potential 3.09
Rebound 2.82

Actual emission reduction 0.28

5.4. Implications
This section evaluates two key rebound implications: (1) the rebound effect itself, defined as the share
of the emission reduction potential that is offset due to rebound dynamics, and (2) the actual emission
reduction, representing the remaining percentage reduction in emissions, relative to a scenario without
any efficiency improvements. The actual emission reduction is derived by applying the rebound effect
to the estimated emission reduction potential.

The final calculations reveal that emissions in the rebound simulation exceed emission levels in the
baseline simulation by 14.9%:

Baseline-relative rebound =
Rebound

Etotal,T (baseline)
∗ 100% =

2.82e+09
18.96e+09

∗ 100% = 14.9%

Where:

Etotal,T (baseline) = Total accumulated emissions at the end of the baseline simulation

The rebound effect quantifies the extent to which expected emission reductions from efficiency
improvements are offset by increased consumption of air travel and it expresses the percentage of
emission reductions actually realized (Sorrell & Dimitropoulos, 2008; Berkhout et al., 2000). According
to this theory, the rebound effect, expressed as the percentage offset of the emission reduction potential
is calculated as follows:

Rebound effect = Rebound
Emission reduction potential

∗ 100% =
2.82e+09
3.09e+09

∗ 100% = 91.3%

This indicates that, within the central range of uncertainty, the increase in passenger demand driven
by fuel savings offsets ±91.3% of the potential emission reductions. Table 5.4 provides an overview
of these implications. The findings highlight the significant potential mitigating impact of the rebound
effect on intended emission reductions.

In the baseline simulation, efficiency improvements lead to a 14% reduction in emissions compared
to a scenario without efficiency improvements:

Emission reduction potential
Etotal,T (no efficiency)

∗ 100% =
3.09e+09
22.06e+09

∗ 100% = 14%

Where:

Etotal,T (no efficiency) = Total accumulated emissions at the end of the null simulation

However, when accounting for the rebound effect, the actual emission reduction achieved is only:
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Actual emission reduction
Etotal,T (no efficiency)

∗ 100% =
2.8e+08
22.06e+09

∗ 100% = 1.3%

Table 5.4 presents the implications derived from the outcomes of the three simulations in the refer-
ence scenario. Although the scenario shows an emission reduction potential of 14%, this potential is
largely offset by a baseline-relative rebound of 14.9%, which negates 91.3% of the potential reduction.
As a result, only a modest actual emission reduction of 1.3% remains.

Table 5.4: Rebound implications in the reference scenario by 2040.

Implications Percentage
Emission reduction potential 14%
Rebound effect 91.3%
Actual emission reduction 1.3%

5.5. Comparison to Dynamic Hypothesis
The behavioral patterns of both the baseline and rebound simulations for the reference scenario align
with the hypothesized dynamics outlined in Chapter 3. As anticipated, both simulations exhibit accel-
erated growth of both passenger demand and emissions, while the rebound simulation demonstrates
a steeper trajectory. A key dynamic is the linear decline of fuel consumption per RPK, which activates
the efficiency-induced RPK loop and continuously generates additional demand. Over time, this rein-
forcing loop becomes dominant over the efficiency-induced fuel consumption loop, as the additional
demand drives up total fuel consumption. While the rebound simulation mirrors the behavioral patterns
of the baseline trajectory, a divergence in cumulative emissions emerges and progressively widens
over time.

5.6. Concluding Remarks
The initial experiment results confirm the occurrence of a fuel efficiency rebound effect and, moreover,
highlight its significant magnitude and implications in the reference scenario. The findings indicate
that fuel consumption per RPK plays a critical role in shaping overall emissions when accounting for
the rebound effect. A decrease in fuel consumption per RPK, driven by higher fuel efficiency induces
additional demand growth via resulting fare price changes. This phenomenon can occur alongside
an overall increase of total fuel consumption, driven by the associated rise in RPK demand and flight
operations, where both RPKs and aircraft-kilometers exhibit an upward trend. Despite the industry
appearing more efficient when evaluated solely based on fuel consumption per RPK, a commonly used
efficiency metric in aviation, this system behavior highlights a paradox: efficiency gains at the unit level
contribute to greater aggregate environmental impact. However, for this reference scenario, a demand
fulfillment rate of 100% was reached as there was no annual flight limit in this experiment.



6
Scenario Analysis

It remains uncertain whether the fuel efficiency rebound effect estimations and implications presented in
Chapter 5 are accurate. To gain a deeper understanding of the system’s behavior, this scenario analysis
will explore the plausible range of potential fuel efficiency rebound effects within the identified range of
uncertainty. It also analyzes how the market-specific uncertainties may influence the magnitude of the
rebound effect. This chapter addresses the following sub-question:

How do market-specific uncertainties influence the potential magnitude of a fuel efficiency
rebound effect?

First, Section 6.1 outlines the experimental setup, detailing the uncertainty ranges of market-specific
parameters. Section 6.2 then presents the results of the scenario runs and PRIM analysis. Finally,
Section 6.3 concludes with additional remarks on the findings. The file with the code that was used for
the scenario runs in this chapter can be found at Github1.

6.1. Experimental Setup
The parameter values used in the simulations in Chapter 5 represent the midpoints of the selected
minimum and maximum values. The minimum and maximum parameter values defining the parameter
uncertainty range for input combinations in this scenario analysis are presented in Table 6.1. The
experimental scenarios were generated using the LHS-Sampler tool in the EMA Workbench, with the
exception of the market shares per haul segment, which were sampled using the Dirichlet-sampling
method2 to ensure the sum constraint of 100% was satisfied.

To gain an initial understanding of the progression of the rebound effect and resulting emissions
under conditions where airlines’ tendency to capitalize on demand growth is constrained, the same
experiments are also conducted in a scenario that imposes a cap on the annual number of flights.
This constraint ensures that the demand fulfillment rate remains within a certain threshold, rather than
reaching 100% over the entire simulation time. The maximum is set at 125% of the annual number of
flights at initial time, allowing for a maximum total annual number of flights increase of 25% over the
simulation time.

1GitHub Repository
2Dirichlet sampling in Python is a method used to sample from a Dirichlet distribution, which is commonly used to model the

distribution of probabilities across multiple categories. In Python, this can be done using the ‘numpy.random.dirichlet‘ function,
where a vector of parameters (called concentration parameters) is passed to generate random samples that sum to 1.
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Table 6.1: Minimum and maximum values for uncertain parameters and categorical parameters

Uncertain parameters Minimum Maximum
Fare elasticity of demand -1.5 -0.6
Pricing strategy factor 0.1 1.0
Market share per haul segment 10% 30%

Categorical parameters
Maximum annual number of flights 125% of initial value No restriction

The experiments are conducted according to the experimental design described in Chapter 2. The
first baseline simulation consists of a single run to serve as a reference point from which the rebound
will emerge to varying extents. The rebound simulation consists of 1000 runs. These runs will explore
various parameter combinations within the specified uncertainty ranges. The baseline input values
remain constant in both simulations to prevent changes in variables not directly related to the rebound
effect from influencing its magnitude. The focus remains on independently examining the dynamics of
the rebound effect itself, rather than its dependency on baseline inputs.

6.2. Experiment Results
The temporal model behavior for key outcomes, as illustrated in the following figures, demonstrates
that in the worst-case scenarios, the rebound effect can manifest in quite extreme forms. Figure 6.1
shows that, in terms of emissions - the main KPI in this research - the rebound can lead to more than a
100% offset of the potential emission reductions. The initial results of the reference scenario are also
presented in the plots to provide context against which the implications of scenario outcomes can be
assessed. The density plot on the right illustrates the distribution of the final time outcomes for the
generated scenarios over 1000 runs.

Figure 6.1: The red lines represent CO2 emissions in an ensemble of 1000 rebound simulation runs, without a constraint on
the cumulative growth in flight volume. The density plot in the right section of the figure visualizes the distribution of the final

time outcomes. The black line represents emissions in the rebound simulation for the reference scenario and the
corresponding rebound effect. The green line represents emissions in the baseline simulation, which implies a 0% offset and

full realization of the emission reduction potential, as rebound feedback was excluded.

However, it is questionable whether the number of flights can realistically increase sufficiently to
accommodate the growing passenger demand. For this reason, a trade-off analysis was conducted to
illustrate that if rebound dynamics are allowed to unfold without constraints, the system will respond
accordingly. Yet, when policy or infrastructural limitations impose constraints on the increase of the
annual number of flights, the plausible range of potential rebound effects remains limited. The results
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are visualized in Figure 6.2.

Figure 6.2: The red lines represent CO2 emissions in an ensemble of 1000 rebound simulation runs, under a flight restriction
of 125% of the initial annual number of flights in 2025. The density plot visualizes the distribution of the final time outcomes.

The black line represents emissions in the rebound simulation for the reference scenario and the corresponding rebound effect.
The green line represents emissions in the baseline simulation, which implies a 0% offset and full realization of the emission

reduction potential, as rebound feedback was excluded.

At the same time, as highlighted in Figure 6.3, airlines will increasingly fail to meet the rising demand
for revenue passenger-kilometers (RPKs) under this flight restriction. This highlights a critical trade-off:
while constraints on capacity can mitigate environmental rebound effects, they may also lead to unmet
demand.

Figure 6.3: Average demand fulfillment rate under a flight restriction of 125% of the initial annual number of flights in 2025,
across 1000 rebound scenario runs. The density plot visualizes the distribution of the final time outcomes.

The PRIM algorithm has been applied to analyze the results and identify the most critical uncertain
parameters driving variations in the final outcomes of the 1000 scenario runs. Appendix C presents a
visual representation of the PRIM results. As expected, the market shares of all haul segments were
included in the PRIM box, which indicates that the system is sensitive to the distribution of market
shares, rather than to any market share alone. Market shares of the longer-haul segments are con-
strained more tightly than that of the short-haul segment. This suggests a greater influence of these
segments on the magnitude of the rebound effect. The sensitivity analysis presented in Section 4.6
further supports this observation by demonstrating that the system is responsive to increases in market
shares of longer haul segments. Additionally, the PRIM analysis conducted on a subset of parameters
within the ultra-long-haul segment reveals a particularly narrow range for the market share parameter.
This indicates that specific values within this segment are strongly associated with a higher rebound
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magnitude compared to the reference scenario. Based on these findings, it can be concluded that
a higher market share of longer haul segments has a more significant impact on the system’s prob-
lematic behavior than the short-haul segment. The extent to which fuel cost savings are passed on
to consumers appeared to be less influential, as the pricing strategy factor was not included in the
PRIM boxes. This indicates that even at its lowest assumed value (0.1), a substantial rebound effect
of over 91.3% can occur. Nevertheless, higher pass-through rates remain undesirable, given their as-
sociation with a more pronounced rebound effect as revealed by the sensitivity analysis (appendix B).
Although pricing strategy factor is highly influential, it doesn’t help identify the conditions under which
the rebound effect exceeds the 91.3% in the reference scenario. On the other hand, fare elasticity
and market share distribution are less influential overall, but help define the boundary of scenarios that
exceed the rebound threshold.

Combining the findings of the scenario runs and the PRIM analysis, the main conclusions of the
scenario analysis are summarized below:

Themagnitude of the rebound effect exceeds the 91.3% observed in the reference scenario, under
the following conditions:

• Consumers exhibit a high sensitivity to fare price reductions per RPK;

• A relatively high market share of longer-haul segments compared to that of shorter-haul
segments;

• Airlines can fully capitalize on demand growth, i.e. the potential amount of flights is unre-
stricted.

6.3. Concluding Remarks
The scenario analysis results indicate that, compared to the reference scenario in Chapter 5, the re-
bound effect exhibits significant variability in its potential magnitude, depending on the scenarios used
to represent plausible sets of critical parameters. The density plots indicate that, assuming the bound-
aries of the selected scenario set are chosen correctly, the majority of the potential rebound magnitudes
slightly exceed those observed in the reference scenario. The reference scenario demonstrated a 14%
rebound relative to the baseline scenario, offsetting 91.3% of potential emission reductions. This im-
plies that a significant portion of the plausible scenario sets approaches a complete offset of ±100%
of the potential emission reductions. The influence of fare elasticity of demand on problematic system
behavior is found to be more pronounced for longer-haul flights than for shorter-haul flights. When the
annual number of flights is constrained, the plausible range of rebound effects and resulting emissions
narrows to fall between the baseline and the reference scenarios. This indicates that under a flight re-
striction, a larger share of the emission reduction potential is likely to be realized. However, the demand
fulfillment rate progressively declines, indicating that a portion of passenger demand remains unmet.
These findings highlight a trade-off between limiting emissions and maintaining economic accessibility
of transport services, offering valuable insights for policy recommendations and future research direc-
tions as discussed in Chapter 8.
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Discussion

This chapter discusses the results presented in Chapter 5 and Chapter 6 in relation to the method-
ological choices made throughout the research and explores their societal and scientific implications.
Section 7.1 discusses important modeling choices, their implications, and outlines the next steps in
model development to enhance the estimation of the fuel efficiency rebound effect, enabling a more
accurate evaluation of the true environmental benefits of fuel efficiency improvements in global pas-
senger aviation. Section 7.3 highlights the limitations of SD as a modeling approach, followed by a
discussion on the scope and applicability of the findings in Section 7.2. The chapter concludes with a
description of the broader societal and scientific implications of the results in Sections 7.4 and 7.5.

7.1. Reflection on Modeling Choices
While the developed SDmodel effectively captures the feedback dynamics of the fuel efficiency rebound
effect, it remains relatively compact with sharply defined boundaries. This approach follows Sterman
(2000), emphasizing the importance of focusing on the core problem rather than attempting to model
every detail of a complex system. By prioritizing the essential dynamics of the issue over unnecessary
complexity, this research establishes a solid foundation for future studies on the integration of fuel
efficiency rebound effects in policy evaluation models. This section outlines several potential model
extensions to better capture the system’s complexity.

One of the most important modeling choices in this research is the application of a ceteris paribus
assumption, which confines the model to include only the key factors and interactions directly related
to the rebound effect. It is important to acknowledge that estimating the exact trajectory of future fare
prices is inherently complex. Airline fare prices are influenced by a range of factors, and the price
charged to the passengers does not always reflect the underlying costs (ATAG, 2021). Furthermore,
while sustainable aviation fuel (SAF) is expected to be significantly expensive compared to fossil fuels,
the future evolution of fossil fuel prices remains uncertain, particularly when future international policies
mandate SAF blending with conventional fossil fuels. While it is also conceivable that energy costs for
aviation may rise and result in less consumption of air travel, this research suggests that such effects
could be counteracted by advances in fuel efficiency through technological innovations and improve-
ments in operational performance. Regardless of future developments, aviation is expected to continue
playing a crucial role in global efforts to address climate change, even if fare prices increase. Future
modeling steps should integrate additional dynamics influencing fare prices and passenger demand,
with particular attention to the fluctuations in jet fuel prices and their impact on fare price variations. In
the current model, fare price per RPK exhibits a slight downward trend, which may approximate long-
term averages. However, over shorter time periods, fare prices in passenger aviation are subject to
significant fluctuations, leading to corresponding variations in passenger demand (Hsu & Eie, 2013). In
contrast, this research assumes that passenger demand follows a consistent upward trend throughout
the entire simulation period.
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This assumption leads to another important modeling consideration: the model and its estimations
are based on a business-as-usual scenario. While it is likely that passenger demand will generally
follow a steep upward trend over the long term, as indicated by existing literature, it could be beneficial to
extend the model to account for scenarios involving disruptive events or economic downturns. Although
this research assumes that the feedback dynamics of the rebound effect persist continuously, without
disruption or counteraction, incorporating the likelihood of global events or changes in economic health,
as well as other market dynamics that may counteract the rebound effect at certain times, would provide
a more comprehensive and accurate evaluation of the impact of fuel efficiency improvements on actual
emission reductions.

The current model estimates future flight operations based on the assumption that the airline indus-
try will capitalize on growth opportunities (Abrahams, 1983; Wei & Hansen, 2005; Pitfield et al., 2010).
Consequently, projected passenger demand is used as a model input, while the supply of RPKs and
flights is treated as an endogenous variable, under the assumption that supply will align with passenger
demand in the long term. Although existing literature supports this approach for long-term projections,
future model expansions should integrate more comprehensive economic principles to capture the
dynamic interplay between supply and demand in the passenger aviation market. For instance, an
increase in the supply of RPKs distributed across multiple flights may stimulate additional passenger
demand through the mechanism of frequency elasticity of demand (Gillen, 2020). For this research,
this mechanism was excluded from the model.

While the model incorporates five haul segments to capture market diversity in passenger aviation,
it does not account for the distinct business strategies of different carrier types. The extent to which
fuel savings are reflected in fare prices is represented by the pricing strategy factor, acknowledging that
not all carriers pass on fuel cost reductions to consumers. However, in reality, each carrier type may
adopt a different pricing strategy. While this research initially aimed to differentiate pricing strategies
across carrier types, the lack of market-specific data limited this approach. Future modeling efforts
should therefore focus on airlines’ fuel management policies and strategies, with an emphasis on first
understanding their market share and role in each haul segment before assessing their influence on
pricing dynamics on the global passenger aviation market.

Additionally, it is important to distinguish between different traveler motives, such as leisure and
business travel, as these categories are typically associated with varying demand elasticities (Alderighi
et al., 2016). Market-specific characteristics also differ between domestic and international flights, fur-
ther influencing demand patterns and price sensitivities (Njegovan, 2006). While an attempt was made
to incorporate these distinctions into the model, the lack of market-specific data limited the implementa-
tion of a more detailed differentiation. Future modeling steps should prioritize obtaining empirical data
to refine these distinctions and improve the accuracy of demand elasticity estimations in the model.

7.2. Scope and Applicability Limitations
This research adopts a global scope, as the availability of input data and modeled interactions are
largely generalized at a global level. Moreover, given that climate change is a global challenge with far-
reaching implications, addressing the implications of a fuel efficiency rebound effect from a worldwide
perspective enhances the relevance of the findings. However, the generalizability of this research and
its findings to specific regional markets is subject to limitations. Context-specific variations may lead to
differences in parameters and interactions at the regional level (Wittmer & Bieger, 2021), diverging from
the aggregated global market dynamics of passenger aviation. These contextual factors include reg-
ulatory differences, geographical and infrastructural constraints, the pace of new technology adoption,
and varying sensitivities to fare prices due to the availability of alternative transportation options.

7.3. Limitations of System Dynamics Modeling
The discussion on modeling choices in Section 7.1 further highlights the potential of the SD model-
ing approach to generate strategic insights without requiring extensive empirical data. Despite these
strengths, its application in this research also posed limitations related to individual decision-making
processes of actors, dynamic price-demand relationships, capturing market shocks, diverse business
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models and multiple scale levels. Actor preferences and behaviors vary across market segments,
contributing to the heterogeneity of airline passengers (Huse & Evangelho, 2007). While SD models ef-
fectively capture system-level dynamics, they are constrained in their ability to integrate psychological
factors and economic interests that influence individual decision-making processes. This application
of an SD approach applied a static price-demand relationship, relying on constant elasticity values. SD
models typically assume smooth, long-term trends (Forrester, 1987), making them less effective at
modeling sudden market disruptions and their effects on demand, operations, and emissions. Passen-
ger aviation operates across multiple scales - local, regional and global. Beyond the challenge posed
by limited transparency in traffic data across these layers, SD models cannot effectively integrate the
complex interconnections across multiple scales (Pruyt, 2013). Agent-Based Modeling (ABM) enables
the integration of heterogeneous components at multiple levels, addressing the limitations related to
individual actor behavior and interests, diverse business models and multiple scale levels. Agents
are modeled as autonomous entities that perceive and act upon their environment, enabling ABM to
manage dependencies between multiple actors such as passengers, airlines, air traffic controllers and
airports (Bouarfa et al., 2013). Although ABM could complement SD in capturing the complexity of the
passenger aviation system, this research affirms that SD is particularly effective for analyzing industry-
wide structural relationships and long-term trends due to its aggregated approach. The findings of this
study offer significant potential to generate strategic insights for policy formulation.

7.4. Societal Implications
This research offers several important contributions to the development of robust and sufficiently strin-
gent policies aimed at achieving climate targets for global passenger aviation. First, this research
introduces a method for quantifying the fuel efficiency rebound effect in future emission projection mod-
els, which can also be applied in policy evaluation frameworks. Second, this research underscores the
political relevance of the fuel efficiency rebound effect by estimating the magnitude of the effect over
a 15-year time horizon in a reference scenario. It further identifies the implications of this effect and
provides a plausible range in which it may occur. Third, this research examines role of critical market-
specific factors for which there is no consensus in the literature about their actual values. This section
elaborates on these contributions by examining the specific results and their associated implications.

To the best of current knowledge, policy evaluation models do not incorporate feedback mecha-
nisms related to the fuel efficiency rebound effect in aviation. However, unintended consequences of
policy measures aimed at stimulating fuel efficiency in aviation must be considered in policy evaluation
frameworks (Kettler & Walls, 2022). A review of previous work on rebound effects in aviation shows
that such effects are primarily estimated retrospectively, based on empirical data. This research con-
ceptualizes key factors and feedback mechanisms underlying the fuel efficiency rebound effect and, in
combination with the experimental design outlined in Chapter 2, establishes an approach for estimating
the rebound effect in future scenarios. Furthermore, the model formulation offers insights into which
aviation metrics should be used to express key factors to capture their real impact in the system.

Total accumulated emissions is a Key Performance Indicator (KPI) selected in this research, as
it enables the quantification of the difference in CO2 released into the atmosphere by the end of the
simulation time. This metric ultimately represents the critical environmental impact of passenger avia-
tion. The initial experimental results for the reference scenario highlight the substantial impact of a fuel
efficiency rebound effect, leading to several billion metric tons of additional CO2 emitted compared to
the baseline scenario, within a period of just 15 years. The implications of this effect in the reference
scenario amount to an almost complete offset of potential emission reductions. The scenario analysis
further demonstrates that the rebound effect could reach even greater magnitudes, leading to more
severe consequences. In fact, additional emissions compared to a scenario in which no efficiency
improvements are implemented, are undesirable but likely in a substantial number of scenarios.

The research highlights that when consumers are highly sensitive to incentives that reduce fare
prices, the fuel efficiency rebound effect can take on extreme forms, in theory. The extent of these
incentives is determined by airlines, who have the ability to pass on cost reductions to consumers
either partially or fully. These findings underscore the need for complementary policies that mitigate
the incentives driving this behavior of actors within the system.
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7.5. Scientific Implications
The research provides valuable contributions to future predictive studies on rebound effects and broader
emission reduction efforts in aviation. First, it conceptualizes the key drivers and feedback mechanisms
of the rebound effect through a systems thinking approach. Second, it captures these dynamics in a
compact SD model, that operates without relying on extensive empirical datasets. Third, it estimates
the rebound effect and its implications within a reference scenario, and explores a range of plausible
scenario outcomes. Fourth, it analyzes these outcomes to identify influential combinations of market-
specific uncertain parameters. Finally, the research highlights critical market-specific empirical data
gaps that must be addressed to narrow the plausible range of model results. This section elaborates
on these contributions.

In the absence of a comprehensive conceptualization of the underlying dynamics of the fuel effi-
ciency rebound effect in existing literature, this research adopts a systems thinking approach to en-
hance understanding of the system structure and its underlying behavior. By translating this conceptu-
alization into a quantitative SD model, it extends previous studies on the rebound effect in aviation by
introducing a predictive, forward-looking model, rather than relying on empirical, retrospective analyses.
This approach enables the estimation of the potential future rebound effect in passenger aviation and
the identification of its implications and key contributing market-specific factors, while using a data-light
method. While broadly aligned with earlier studies on rebound effects in aviation, this research esti-
mates a significantly higher rebound effect for the reference scenario (91.3%) than reported previously.
Specifically, the estimated rebound effect exceeds the 49% and 18.8% values reported in previous
research by Miyoshi and Fukui (2018). This discrepancy can be attributed to key methodological differ-
ences, including the use of a ceteris paribus approach in this research that isolates behavioral feedback
effects, and the exclusive focus on passenger aviation, whereas previous research also included cargo
operations.

This research addresses key limitations of traditional transport modeling approaches by adopting
an exploratory modeling and analysis approach to investigate the plausible range of rebound effects
and associated emissions under various alternative future scenarios. Rather than attempting to predict
a single future outcome, the exploratory approach systematically examines how the system behaves
across a broad set of plausible combinations of uncertain parameters. Through this process, the re-
search identifies which market-specific uncertainties are most critical in shaping the outcomes. These
parameters remain uncertain due to the limited transparency and availability of empirical data in the
aviation sector. By addressing the knowledge gaps in available market-specific data, this research en-
ables future research to produce insights with reduced uncertainty and stronger empirical foundations.

7.5.1. Academic Context
Climate change can be described as a wicked problem1 (Walls, 2018), a phenomenon that has been
examined across various contributing domains within the MSc. Engineering & Policy Analysis program.
Although aviation is a major contributor to climate change, it is not an extensively covered sector within
this master’s program. While policymaking in this sector is becoming a global priority, the systematic
policy evaluation in this field remains relatively underexplored. This research enhances informed inter-
national policy development by exploring the fuel efficiency rebound effect and its implications, while
also establishing a setup to integrate these dynamics into policy evaluation models. Consequently, this
thesis fulfills the requirements of a final research project for theMaster of Science degree in Engineering
& Policy Analysis.

1A ’wicked problem’ is the term used to describe some of the most challenging and complex issues of our time, many of which
threaten human health (Walls, 2018).
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Conclusion & Recommendations

Actual emission reductions in passenger aviation are often overestimated, due to the absence of a
comprehensive analysis of how future fuel efficiency rebound effects might affect projected reductions
over time. The objective of this research was to uncover fuel efficiency rebound effects in passen-
ger aviation and generate strategic insights to support effective policymaking for achieving substantial
global emission reductions. Two primary knowledge gaps were addressed: (1) the lack of a concep-
tual and quantitative understanding of how future rebound effects could undermine projected emission
reductions, and (2) the dearth of an analysis of how this quantification is influenced by market-specific
uncertainties.

This chapter begins by presenting answers to each sub-question, followed by an answer to the main
research question. Finally, these findings - together with the discussion on key insights, limitations and
implications in Chapter 7 - form the basis for the policy recommendations and recommendations for
future research.

SQ1: What factors contribute to a fuel efficiency rebound effect and how do they
interact?
In addition to the already growing baseline demand for air travel, further passenger demand can be
stimulated by ongoing reductions in fuel consumption per revenue passenger-kilometer (RPK). These
reductions lead to lower fuel costs per passenger-kilometer, a portion of which is typically passed on to
consumers, resulting in lower fare prices per passenger-kilometer. This trend can, in turn, induce ad-
ditional demand, depending on the fare elasticity of passenger demand. Although there is uncertainty
surrounding the precise interactions between airlines and between pricing dynamics and consumer
behavior, the highly competitive nature of the aviation sector and limited availability suggest that both
pass-through rates and fare elasticities are sufficiently high to trigger a fuel efficiency rebound effect.
While fuel consumption per revenue passenger-kilometer is likely to exhibit a downward trend due to
ongoing operational and aircraft fuel efficiency improvements, total fuel consumption may still rise. This
is driven by the increase in overall RPK demand, which necessitates additional aircraft-kilometers. De-
spite improvements in aircraft technology that reduce fuel use per aircraft-kilometer, aggregate fuel
consumption can still increase due to the volume of aircraft-kilometers required to meet growing de-
mand.

SQ2: How can a System Dynamics model effectively capture and integrate the
key factors and interactions of a fuel efficiency rebound effect?
Quantifying the rebound effect within a SDmodel is inherently complex, as it cannot be fully captured by
a single variable. Instead, constructing a model that explicitly incorporates the feedback mechanisms
driving the rebound effect is required. These feedback loops must be designed in a way that allows
them to be activated or deactivated between simulation runs, enabling a comparison of total emissions
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over the simulation time, with and without the rebound effect. This approach is implemented through
the following steps:

1. Defining the model purpose and experimental design

2. Establishing the model boundaries by including or excluding relevant variables

3. Developing the SD model to represent the rebound-inclusive structure of the experimental design

4. Including a rebound switch in the model to (de-)activate the rebound feedback loop

5. Including an efficiency switch in the model to (de-)activate efficiency improvements

When the rebound switch is set to zero, no additional demand induced by efficiency improvements
is added to the total passenger demand projections. When the efficiency switch is set to zero, the
model runs with a constant fuel consumption per RPK, to effectively simulate a scenario without fuel
efficiency improvements and without a rebound effect. This allows for the estimation of potential emis-
sion reductions in the baseline simulation, serving as a reference point to assess the extent to which
this potential is offset by the rebound effect.

The model is subscripted across five haul segments to enhance predictive accuracy. As discussed
in Chapter 7, future modeling efforts would benefit from extending this approach by introducing addi-
tional dimensions, such as carrier types, traveler motives and the distinction between domestic and
international flights.

SQ3: What is an initial projection of the magnitude of the fuel efficiency rebound
effect and the corresponding actual emission reduction through 2040 in the ref-
erence scenario?
Within the time horizon of 2025-2040, the baseline scenario - with efficiency improvements but without
accounting for rebound - offers a potential emission reduction of 14%. In the reference scenario, total
accumulated emissions in the rebound scenario exceed those in the baseline scenario by 14.9% (see
Figure 8.1).

Figure 8.1: The left panel shows total accumulated emissions from 2025-2040 in a baseline scenario with efficiency
improvements relative to a null scenario without efficiency improvements, indicating a 14% emission reduction potential. The
right panel compares the baseline scenario to a scenario with rebound feedback, indicating a 14.9% rebound relative to the

baseline.

These additional emissions offset 91.3% of the emission reduction potential. As a result, only a
modest actual emission reduction of 1.3% remains.
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Table 8.1: Rebound implications in the reference scenario by 2040.

Implications Percentage
Emission reduction potential 14%
Rebound effect 91.3%
Actual emission reduction 1.3%

SQ4: How do market-specific uncertainties impact the potential magnitude of a
fuel efficiency rebound effect?
Market specific factors and their associated uncertainty ranges contribute significantly to the variability
in the potential magnitude of a fuel efficiency rebound effect. The key uncertainties that determine the
extent to which this effect offsets the potential for emission reductions are as follows:

• Consumer sensitivity to fare price reductions. This key uncertainty is captured by the fare
elasticity of demand. A high (absolute) elasticity value indicates that consumers are highly re-
sponsive to fare price reductions, strengthening the rebound feedback mechanism and leading
to increased additional demand.

• Market share distribution across haul segments. This uncertainty reflects the relative market
share of long-haul and ultra-long haul segments compared to shorter-haul segments. A greater
share of long-distance flights results in significantly higher additional fuel consumption, due to the
greater number of aircraft-kilometers flown (AKF).

• Flight restrictions. The stringency of regulatory measures or airport capacity constraints influ-
ences the extent to which airlines can accommodate growing demand. In the absence of such
constraints, additional demand induced by efficiency improvements is more likely to be met. This
means that the rebound effect reaches its full potential.

Although pass-through rate of cost reductions is highly influential, it doesn’t help identify the
conditions under which the rebound effect exceeds the 91.3% in the reference scenario. Even at
its lowest assumed value, a substantial rebound effect of over 91.3% can occur.

In summary: when consumers are highly responsive to the resulting fare price reductions, the re-
bound effect becomes particularly problematic in long-haul and ultra-long haul market segments, and
in the absence of restrictions on flight volume.

Research Question: What is the potential impact of a future fuel efficiency re-
bound effect on the environmental benefits from efficiency improvements in
passenger aviation?
Although the annual CO2 emissions in passenger aviation are not expected to decline solely as a re-
sult of efficiency improvements1, these improvements still offer a desirable means to slow the growth
rate of emissions. However, the rebound effect in passenger aviation can partially or even fully offset
the potential emission reductions achieved through operational and aircraft efficiency gains in the ref-
erence scenario. In the majority of other scenarios, it may even lead to additional emissions, further
amplifying the already increasing trend in aviation-related emissions. It is therefore an oversimplifica-
tion for policymakers and international organizations to assume that fuel efficiency improvements alone
will reduce the amount of CO2 emitted in the environment by 2040. This is especially relevant given
that the short-term measures outlined in IATA’s four-pillar strategy, which emphasize advancements in
operational and aircraft fuel efficiency, primarily target efficiency gains without addressing the demand
side of the equation. As this research shows, such measures do not necessarily result in environmental
benefits in passenger aviation, due to fuel efficiency rebound effects. There is a significant risk that
the sector’s contribution to global emission reduction targets is overestimated. Even if other sectors
succeed in decarbonizing, aviation could account for an increasingly larger share of global emissions,

1The anticipated annual efficiency gains are smaller than the projected baseline demand growth, meaning that demand growth
outpaces efficiency improvements in the baseline scenario already.



8.1. Policy Recommendations 49

while creating a false sense of progress. This false idea of progress can undermine future efforts to
decarbonize the sector.

8.1. Policy Recommendations
Promoting sustainable mobility remains a central objective in transport policy, aiming to ensure that
transport systems continue tomeet society’s economic and social needs. This section proposes several
policy recommendations to prevent or mitigate the fuel efficiency rebound effect in passenger aviation.
These recommendations are based on the research findings, discussion of the results and the overall
conclusions drawn in this research.

Integrate rebound feedback mechanisms into policy evaluation models. The quantitative re-
sults of this research underscore the relevance of the fuel efficiency rebound effect and its potential
implications. Ex ante transport policy evaluations should incorporate all unintended negative impacts
and align outcomes with established goals and government targets (van Wee et al., 2013). Accordingly,
policymakers should systematically consider rebound feedbackmechanisms that may offset anticipated
efficiency gains when evaluating the effectiveness of proposed measures.

Stimulate the adoption of Sustainable Aviation Fuels (SAF). As this research highlights, a criti-
cal trade-off emerges in the design of aviation emission reduction policies, balancing demand growth,
technological innovation and the need for substantial emission reductions. The results of the scenario
analysis show that imposing a cap on the annual number of flights can effectively mitigate the rebound
effect. However, such a policy measure would also constrain the sector’s capacity to meet growing
passenger demand. Supporting SAF uptake through subsidies can help decouple emissions from air
traffic growth and reduce reliance on efficiency improvements alone. The complete replacement of fos-
sil fuels with sustainable alternative fuels is physically achievable, but would require substantial policy
support to become commercially viable (ICAO, 2019).

Strengthen carbon pricing mechanisms. As outlined in the conceptual model of this research,
both baseline demand growth and additional demand induced by fuel efficiency improvements con-
tribute to a continued upward trajectory in total fuel consumption. Existing literature suggests that
decarbonization of the aviation sector requires stronger integration into emission reduction schemes
(Muehlberger et al., 2024). While such a demand-side strategy may impose constraints on the sec-
tor’s economic expansion, it does hold potential to mitigate the rebound driven increase in total fuel
consumption and related emissions.

Implement fiscal measures to manage demand and limit fare reductions. The quantitative
SD model developed in this research operates under a ceteris paribus assumption. Within this frame-
work, the fuel efficiency rebound effect emerges as a significant dynamic. Consumer sensitivity to
fare price reductions and the pass-through rate of fuel cost savings were identified as critical leverage
factors. However, policy interventions can influence such key determinants of fuel efficiency-induced
passenger demand, thereby counteracting the mechanisms that drive the rebound effect. Price-based
instruments such as taxes and minimum fare thresholds can compensate for fare reductions triggered
by efficiency improvements, preventing additional demand growth. Moreover, tax incomes can be used
to commercialize Sustainable Aviation Fuels (Kettler & Walls, 2022).

Industry stakeholders and regulators often dismiss demand reduction as unrealistic, citing the es-
sential role of aviation in a highly mobile and interconnected world (Kettler & Walls, 2022). However,
policy measures aimed at demand reductions need to remain on the table in the near term to bene-
fit from fuel efficiency improvements and address climate change, at least until viable alternatives to
kerosene-powered aircraft become available. Fare elasticities in aviation are generally higher than in
other transport sectors (Miyoshi & Fukui, 2018), and the quantitative findings in this research indicate
a significant potential for a rebound effect over a 15-year period. This highlights the importance of
sustained policy interventions for aviation, particularly when combined with efficiency investments to
mitigate the risk of rebound (Druckman et al., 2011).
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8.2. Recommendations for Future Research
The scenario analysis in this research explored plausible future scenarios of the occurrence of the
rebound effect. While robust transport futures research explicitly incorporates uncertainty (Annema
et al., 2013), this section categorizes the recommendations for future research into three key areas:
(1) addressing knowledge gaps in data availability, (2) refining traditional emission projection models,
and (3) future modeling efforts for meaningful expansion or integration of the current model. These
recommendations stem from uncertain factors identified in model conceptualization, key findings and
the reflection on modeling choices.

To reduce uncertainty around key factors and move towards a more data-driven modeling approach,
future empirical research should focus on addressing existing knowledge gaps in data availability.
Specifically, empirical data collection is needed on:

• market share distributions across different haul segments;

• fare elasticities of demand, differentiated by haul segment and traveler motives;

• pass-through rates of fuel cost savings by carrier type;

• market share distributions across carrier types.

To better assess the potential benefits of fuel efficiency improvements and the impact of rebound
effects on total emissions, future emission projection models for aviation should be refined by:

• Integrating rebound feedback mechanisms into traditional emission projection models to account
for behavioral responses to efficiency gains;

• Differentiating emission forecasts by haul segments to capture varying rebound intensities.

The current model offers a solid foundation for future studies on the fuel efficiency rebound effect,
both in aviation and in other sectors where such effects may arise. To enhance reliability and policy
relevance of results, future modeling efforts can improve the current model by:

• Capturing the dynamic interplay between supply and demand over time;

• Embedding the model into existing air transport system models to reflect a more comprehensive
context, thus moving beyond the ceteris paribus assumption;

• Incorporating context-specific heterogeneity by integrating multiple spatial and market scale lev-
els.



Bibliography

Abrahams, M. (1983). A service quality model of air travel demand: an empirical study. Transportation
Research Part A: General, 17(5), 385–393.

Abrantes, I., Ferreira, A. F., Silva, A., & Costa, M. (2021). Sustainable aviation fuels and imminent tech-
nologies - co2 emissions evolution towards 2050. Journal of Cleaner Production, 313, 127937.
doi: 10.1016/j.jclepro.2021.127937

Achachlouei, M. A., & Hilty, L. M. (2016). Using systems thinking and system dynamics modeling to
understand rebound effects. Advances and New Trends in Environmental and Energy Informatics,
237–255.

Adler, N., Martini, G., & Volta, N. (2013). Measuring the environmental efficiency of the
global aviation fleet. Transportation Research Part B: Methodological, 53, 82-100. doi:
10.1016/j.trb.2013.03.009

Airbus. (2018). Global market forecast 2018-2037, global networks, global citizens. Airbus. (ISBN:
978-2-9554382-3-6, Accessed: 2025-04-03)

Alderighi, M., Nicolini, M., & Piga, C. A. (2016). Targeting leisure and business
passengers with unsegmented pricing. Tourism Management, 54, 502-512. doi:
https://doi.org/10.1016/j.tourman.2015.12.014

Annema, J., Marchau, V., Walker, W., & van der Waard, J. (2013). Transport futures research. In J. An-
nema, G. Wee, & D. Banister (Eds.), The transport system and transport policy: An introduction
(pp. 305–328). United Kingdom: Edward Elgar Publishing.

Arjomandi, A., & Seufert, J. H. (2014). An evaluation of the world’s major airlines’ technical and environ-
mental performance. Economic Modelling, 41, 133-144. doi: 10.1016/j.econmod.2014.05.002

ATAG. (2021). Waypoint 2050: Balancing growth in connectivity with a comprehensive global air
transport response to the climate emergency: a vision of net-zero aviation by mid-century (Tech.
Rep.). Air Transport Action Group.

Auping, W., d’Hont, F., Kubli, M., Slinger, J., Steinmann, P., van der Heijde, F., … Thissen, W. (2024).
The delft method for system dynamics. TU Delft OPEN Publishing. doi: 10.59490/tb.97

Avogadro, N., & Redondi, R. (2024). Pathways toward sustainable aviation: Analyzing emissions from
air operations in europe to support policy initiatives. Transportation Research Part A: Policy and
Practice, 186, 104121. doi: 10.1016/j.tra.2024.104121

Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation
study. Annals of Operations Research, 53(1), 121-173. doi: 10.1007/BF02136828

Bankes, S. (1993). Exploratory modeling for policy analysis. Operations Research, 41(3), 435–449.
Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. Sys-

tem Dynamics Review, 12(3), 183-210. doi: 10.1002/(SICI)1099-1727(199623)12:3<183::AID-
SDR103>3.0.CO;2-4

Belobaba, P. (2009). The global airline industry. In (p. 73 - 111). doi: 10.1002/9780470744734.ch4
Berkhout, P. H., Muskens, J. C., & Velthuijsen, J. W. (2000). Defining the rebound effect. Energy policy,

28(6-7), 425–432.
Boeing. (2019). Commercial market outlook 2019–2038. Boeing. (Accessed: 2025-04-03)
Bouarfa, S., Blom, H. A., Curran, R., & Everdij, M. H. (2013). Agent-based modeling and simulation

of emergent behavior in air transportation. Complex Adaptive Systems Modeling, 1(1), 15. doi:
10.1186/2194-3206-1-15

Brons, M., Pels, E., Nijkamp, P., & Rietveld, P. (2002). Price elasticities of demand for passen-
ger air travel: a meta-analysis. Journal of Air Transport Management, 8(3), 165–175. doi:
10.1016/S0969-6997(01)00050-3

Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, computer-assisted
approach to scenario discovery. Technological Forecasting and Social Change, 77(1), 34-49.
doi: 10.1016/j.techfore.2009.08.002

51

http://doi.org/10.1016/j.jclepro.2021.127937
http://doi.org/10.1016/j.trb.2013.03.009
http://doi.org/https://doi.org/10.1016/j.tourman.2015.12.014
http://doi.org/10.1016/j.econmod.2014.05.002
http://doi.org/10.59490/tb.97
http://doi.org/10.1016/j.tra.2024.104121
http://doi.org/10.1007/BF02136828
http://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4
http://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4
http://doi.org/10.1002/9780470744734.ch4
http://doi.org/10.1186/2194-3206-1-15
http://doi.org/10.1016/S0969-6997(01)00050-3
http://doi.org/10.1016/j.techfore.2009.08.002


Bibliography 52

Davydenko, I., & Hilbers, H. (2024). Decarbonization paths for the dutch aviation sector. Sustainability,
16(3). doi: 10.3390/su16030950

Druckman, A., Chitnis, M., Sorrell, S., & Jackson, T. (2011). Missing carbon reductions? exploring
rebound and backfire effects in uk households. Energy policy, 39(6), 3572–3581.

Enserink, B., Bots, P., Daalen, E., Hermans, L., Koppenjan, J., Kortmann, R., … Thissen, W. (2022).
Policy analysis of multi-actor systems. TU Delft OPEN Textbooks. doi: 10.5074/T.2022.004

Eurocontrol. (2021). The role of ans in a decarbonising world – current knowledge and questions for
debate, performance insight no. 3. technical report (Tech. Rep.). Euro control.

Evans, A., & Schäfer, A. (2013). The rebound effect in the aviation sector. Energy Economics, 36,
158-165. doi: 10.1016/j.eneco.2012.12.005

Forrester, J. (1961). Industrial dynamics. M.I.T. Press. Retrieved from https://books.google.nl/books
?id=4CgzAAAAMAAJ

Forrester, J. (1987). Nonlinearity in high-order models of social systems. European Journal of
Operational Research, 30(2), 104-109. (Modelling Complex Systems I) doi: 10.1016/0377-
2217(87)90086-5

Forrester, J., & Senge, P. (1980). Tests for building confidence in system dynamics models. TIMS
Studies in the Management Sciences, 209-228.

Gillen, D. (2020). Aviation economics and forecasting. In Air transport management (pp. 27–45).
Routledge.

Grewe, V., Gangoli Rao, A., Grönstedt, T., Xisto, C., Linke, F., Melkert, J., … Dahlmann, K. (2021).
Evaluating the climate impact of aviation emission scenarios towards the paris agreement includ-
ing covid-19 effects. Nature Communications, 12. doi: 10.1038/s41467-021-24091-y

Guzzo, D., Walrave, B., & Pigosso, D. C. (2023). Unveiling the dynamic complexity of rebound effects
in sustainability transitions: Towards a system’s perspective. Journal of Cleaner Production, 405,
137003. doi: 10.1016/j.jclepro.2023.137003

Hassan, M., & Mavris, D. (2020). Impact of vehicle technologies and operational improvements on
aviation system fuel burn. Journal of Aircraft, 57(3), 418–427. doi: 10.2514/1.C035470

Hilty, L. M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., & Wäger, P. A. (2006). The relevance
of information and communication technologies for environmental sustainability – a prospective
simulation study. Environmental Modelling & Software, 21(11), 1618-1629. (Environmental Infor-
matics) doi: 10.1016/j.envsoft.2006.05.007

Hong, Y., Cui, H., Dai, J., & Ge, Q. (2019). Estimating the cost of biofuel use to mitigate interna-
tional air transport emissions: A case study in palau and seychelles. Sustainability, 11(13). doi:
10.3390/su11133545

Hsu, C.-I., & Eie, W.-Y. (2013). Airline network design and adjustment in response to fluctu-
ation in jet fuel prices. Mathematical and Computer Modelling, 58(11), 1791-1803. doi:
10.1016/j.mcm.2013.04.005

Huntington, D., & Lyrintzis, C. (1998). Improvements to and limitations of latin hypercube sam-
pling. Probabilistic Engineering Mechanics, 13(4), 245-253. doi: https://doi.org/10.1016/S0266-
8920(97)00013-1

Huse, C., & Evangelho, F. (2007). Investigating business traveller heterogeneity: Low-cost vs full-
service airline users? Transportation Research Part E: Logistics and Transportation Review,
43(3), 259-268. doi: 10.1016/j.tre.2006.10.005

IATA. (2021a). Aircraft technology roadmap to 2050 (Tech. Rep.). International Air Transport
Association. Retrieved December, 2025, from https://www.iata.org/en/programs/sustainability/
roadmaps/

IATA. (2021b). Net-zero carbon emissions by 2050 (Tech. Rep.). International Air Transport Associa-
tion.

IATA. (2023). Global outlook for air transport: Highly resilient, less robust (Tech. Rep.). International Air
Transport Association. Retrieved December, 2024, from https://www.iata.org/en/iata-repository/
publications/economic-reports/global-outlook-for-air-transport----june-2023/

ICAO. (2016). Environmental report 2016. aviation and climate change. on board a sustain-
able future (Tech. Rep.). International Civil Aviation Organization. Retrieved December,
2025, from https://www.icao.int/environmental-protection/documents/ICAO%20Environmental%
20Report%202016.pdf

http://doi.org/10.3390/su16030950
http://doi.org/10.5074/T.2022.004
http://doi.org/10.1016/j.eneco.2012.12.005
https://books.google.nl/books?id=4CgzAAAAMAAJ
https://books.google.nl/books?id=4CgzAAAAMAAJ
http://doi.org/10.1016/0377-2217(87)90086-5
http://doi.org/10.1016/0377-2217(87)90086-5
http://doi.org/10.1038/s41467-021-24091-y
http://doi.org/10.1016/j.jclepro.2023.137003
http://doi.org/10.2514/1.C035470
http://doi.org/10.1016/j.envsoft.2006.05.007
http://doi.org/10.3390/su11133545
http://doi.org/10.1016/j.mcm.2013.04.005
http://doi.org/https://doi.org/10.1016/S0266-8920(97)00013-1
http://doi.org/https://doi.org/10.1016/S0266-8920(97)00013-1
http://doi.org/10.1016/j.tre.2006.10.005
https://www.iata.org/en/programs/sustainability/roadmaps/
https://www.iata.org/en/programs/sustainability/roadmaps/
https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport----june-2023/
https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport----june-2023/
https://www.icao.int/environmental-protection/documents/ICAO%20Environmental%20Report%202016.pdf
https://www.icao.int/environmental-protection/documents/ICAO%20Environmental%20Report%202016.pdf


Bibliography 53

ICAO. (2019). Future of aviation. Retrieved December 12, 2024, from https://www.icao.int/Meetings/
FutureOfAviation/Pages/default.aspx

ICAO. (2022). Report on the feasibility of a long-term aspirational goal (ltag) for international civil avi-
ation co2 emission reductions. international civil aviation organization (Tech. Rep.). International
Civil Aviation Organization.

Kettler, J., &Walls, J. L. (2022). Airline perspective. InSustainable aviation: Amanagement perspective
(pp. 109–136). Springer International Publishing. doi: 10.1007/978-3-030-90895-9_6

Kharina, A., Rutherford, D., & Zeinali, M. (2016). Cost assessment of near and mid-term technologies
to improve new aircraft fuel efficiency (Tech. Rep.). International Council on Clean Transportation.
Retrieved January, 2025, from https://theicct.org/wp-content/uploads/2021/06/ICCT-aircraft-fuel
-efficiency-cost-assessment_final_09272016.pdf

Klöwer, M., Allen, M. R., Lee, D. S., Proud, S. R., Gallagher, L., & Skowron, A. (2021). Quantifying
aviation’s contribution to global warming. Environmental Research Letters, 16(10), 104027. doi:
10.1088/1748-9326/ac286e

Koopmans, C., & Lieshout, R. (2016). Airline cost changes: To what extent are they passed
through to the passenger? Journal of Air Transport Management, 53, 1-11. doi:
10.1016/j.jairtraman.2015.12.013

Kwakkel, J. H., Auping, W. L., & Pruyt, E. (2013). Dynamic scenario discovery under deep uncertainty:
The future of copper. Technological Forecasting and Social Change, 80(4), 789-800. Retrieved
from https://www.sciencedirect.com/science/article/pii/S0040162512002387 (Scenario Method:
Current developments in theory and practice) doi: 10.1016/j.techfore.2012.09.012

Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling heterogeneous
uncertainties and multinomial classified outcomes. Environmental Modelling & Software, 79, 311-
321. doi: 10.1016/j.envsoft.2015.11.020

Kwakkel, J. H., & Pruyt, E. (2013). Exploratory Modeling and Analysis, an approach for model-based
foresight under deep uncertainty. Technological Forecasting and Social Change, 80(3), 419-431.
doi: 10.1016/j.techfore.2012.1

Kölker, K., Bießlich, P., & Lütjens, K. (2016). From passenger growth to aircraft movements. Journal
of Air Transport Management, 56, 99-106. (Growing airline networks -Selected papers from the
18th ATRS World Conference, Bordeaux, France, 2014) doi: 10.1016/j.jairtraman.2016.04.021

Lee, D., Fahey, D., Forster, P., Newton, P., Wit, R., Lim, L., … Sausen, R. (2009). Aviation and
global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537.
doi: 10.1016/j.atmosenv.2009.04.024

Lee, D., Fahey, D., Skowron, A., Allen, M., Burkhardt, U., Chen, Q., … Wilcox, L. (2021). The contri-
bution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environ-
ment, 244, 117834. doi: 10.1016/j.atmosenv.2020.117834

Lempert, R. J., Groves, G., Popper, S. W., & Bankes, S. C. (2006). A general, analytic method for
generating robust strategies and narrative scenarios. Management Science, 52, 514-528. doi:
10.1287/mnsc.1050.0472

Malmaeus, M., Hasselström, L., Mellin, A., Åsa Nyblom, & Åkerman, J. (2023). Addressing rebound
effects in transport policy – insights from exploring five case studies. Transport Policy, 131, 45-55.
doi: 10.1016/j.tranpol.2022.12.004

Martins, L. F., Gan, Y., & Ferreira-Lopes, A. (2017). An empirical analysis of the influence of macroe-
conomic determinants on world tourism demand. Tourism management, 61, 248–260.

Miyoshi, C., & Fukui, H. (2018). Measuring the rebound effects in air transport: The impact of
jet fuel prices and air carriers’ fuel efficiency improvement of the european airlines. Trans-
portation Research Part A: Policy and Practice, 112, 71-84. (2016 ATRS Conference) doi:
10.1016/j.tra.2018.01.008

Muehlberger, C.-M., Gruen, L., Liefner, I., & Losacker, S. (2024). Socio-technical imaginar-
ies of climate-neutral aviation. Energy Research & Social Science, 114, 103595. doi:
10.1016/j.erss.2024.103595

Njegovan, N. (2006). Elasticities of demand for leisure air travel: A systemmodelling approach. Journal
of Air Transport Management, 12(1), 33-39. (Leisure Traffic and Tourism: New Strategies for
Airlines, Airports and the Travel Trade) doi: 10.1016/j.jairtraman.2005.09.003

Oum, T. H., Fu, X., & Yu, C. (2005). New evidences on airline efficiency and yields: a comparative
analysis of major north american air carriers and its implications. Transport Policy, 12(2), 153-164.

https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx
https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx
http://doi.org/10.1007/978-3-030-90895-9_6
https://theicct.org/wp-content/uploads/2021/06/ICCT-aircraft-fuel-efficiency-cost-assessment_final_09272016.pdf
https://theicct.org/wp-content/uploads/2021/06/ICCT-aircraft-fuel-efficiency-cost-assessment_final_09272016.pdf
http://doi.org/10.1088/1748-9326/ac286e
http://doi.org/10.1016/j.jairtraman.2015.12.013
https://www.sciencedirect.com/science/article/pii/S0040162512002387
http://doi.org/10.1016/j.techfore.2012.09.012
http://doi.org/10.1016/j.envsoft.2015.11.020
http://doi.org/10.1016/j.techfore.2012.1
http://doi.org/10.1016/j.jairtraman.2016.04.021
http://doi.org/10.1016/j.atmosenv.2009.04.024
http://doi.org/10.1016/j.atmosenv.2020.117834
http://doi.org/10.1287/mnsc.1050.0472
http://doi.org/10.1016/j.tranpol.2022.12.004
http://doi.org/10.1016/j.tra.2018.01.008
http://doi.org/10.1016/j.erss.2024.103595
http://doi.org/10.1016/j.jairtraman.2005.09.003


Bibliography 54

doi: 10.1016/j.tranpol.2005.01.002
Oum, T. H., & Yu, C. (1998). Cost competitiveness of major airlines: an international compari-

son. Transportation Research Part A: Policy and Practice, 32(6), 407-422. doi: 10.1016/S0965-
8564(98)00007-X

Owen, B., Lee, D. S., & Lim, L. (2010). Flying into the future: aviation emissions scenarios to 2050.
Environmental Science & Technology, 44(7), 2255–2260. doi: 10.1021/es902530z

Peeters, P., Higham, J., Kutzner, D., Cohen, S., & Gössling, S. (2016). Are technology myths stalling
aviation climate policy? Transportation Research Part D: Transport and Environment, 44, 30-42.
doi: 10.1016/j.trd.2016.02.004

Peeters, P., & Melkert, J. (2024). Factsheet toekomst verduurzaming luchtvaart (actualisatie 2024).
Pitfield, D., Caves, R., & Quddus, M. (2010). Airline strategies for aircraft size and airline frequency with

changing demand and competition: A simultaneous-equations approach for traffic on the north
atlantic. Journal of Air Transport Management, 16(3), 151-158. (Selected papers from the 48th
Congress of the European Regional Science Association) doi: 10.1016/j.jairtraman.2009.07.008

Ploetner, K. O., Rothfeld, R., Urban, M., Hornung, M., Tay, G., & Oguntona, O. (2017). Technological
and operational scenarios on aircraft fleet-level towards atag and iata 2050 emission targets.
In 17th aiaa aviation technology, integration, and operations conference (p. 3771). AIAA. doi:
10.2514/6.2017-3771

Preece, R., & Milanović, J. V. (2016). Efficient estimation of the probability of small-disturbance insta-
bility of large uncertain power systems. IEEE Transactions on Power Systems, 31(2), 1063-1072.
doi: 10.1109/TPWRS.2015.2417204

Proost, S. (2024). Looking for winning policies to address the climate issue in eu-aviation. Journal of
Air Transport Management, 115, 102534. doi: 10.1016/j.jairtraman.2023.102534

Pruyt, E. (2013). Small system dynamics models for big issues: Triple jump towards real-world com-
plexity. TU Delft Library.

Rahn, R. J. (1985). Aggregation in system dynamics. System Dynamics Review, 1(1), 111-122. doi:
10.1002/sdr.4260010109

Randt, N. P., Jessberger, C., & Ploetner, K. O. (2015). Estimating the fuel saving potential of commercial
aircraft in future fleet-development scenarios. In 15th aiaa aviation technology, integration, and
operations conference (p. 2435). AIAA.

Samunderu, E. (2024). The scope of the global aviation industry. In The economic effects of air
transport market liberalisation: A perspective analysis of the single african air transport market
(saatm) (pp. 1–116). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-61864-2_1

Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organization. New York,
NY: Doubleday/Currency.

Smyth, M., & Pearce, B. (2008). Air travel demand. IATA economics briefing, 9, 46.
Sorrell, S., & Dimitropoulos, J. (2008). The rebound effect: Microeconomic definitions, limitations and

extensions. Ecological Economics, 65(3), 636–649.
Stasinopoulos, P., Compston, P., & Jones, H. M. (2012). Policy resistance to fuel efficient cars and

the adoption of next-generation technologies. In 30th international conference of the system
dynamics society.

Sterman, J. (2000). Business dynamics, system thinking and modeling for a complex world. McGraw
Hill Higher Education.

Terekhov, I., Schilling, T., Niklaß, M., & Ghosh, R. (2018). Assessing the impact of new technologies
in aviation using a global aircraft fleet forecasting model. Journal of Air Transport Management.

UNFCCC. (2015). Paris agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
(Accessed: January 21, 2025)

van Wee, B., Annema, J., & Banister, D. (2013). The transport system and transport policy: An
introduction. Edward Elgar. Retrieved from https://books.google.nl/books?id=_UwJWfgoOeEC

Vensim documentation [Computer software manual]. (2025). Retrieved January, 2025, from https://
www.vensim.com/documentation/ref_subscripts.html

Wadud, Z. (2015). Decomposing the drivers of aviation fuel demand using simultaneous equation
models. Energy, 83, 551-559. doi: 10.1016/j.energy.2015.02.061

Walls, H. (2018). Wicked problems and a ‘wicked’ solution. Globalization and Health, 14(1). doi:
10.1186/s12992-018-0353-x

Wei, W., & Hansen, M. (2005). Impact of aircraft size and seat availability on airlines’ demand and

http://doi.org/10.1016/j.tranpol.2005.01.002
http://doi.org/10.1016/S0965-8564(98)00007-X
http://doi.org/10.1016/S0965-8564(98)00007-X
http://doi.org/10.1021/es902530z
http://doi.org/10.1016/j.trd.2016.02.004
http://doi.org/10.1016/j.jairtraman.2009.07.008
http://doi.org/10.2514/6.2017-3771
http://doi.org/10.1109/TPWRS.2015.2417204
http://doi.org/10.1016/j.jairtraman.2023.102534
http://doi.org/10.1002/sdr.4260010109
http://doi.org/10.1007/978-3-031-61864-2_1
https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://books.google.nl/books?id=_UwJWfgoOeEC
https://www.vensim.com/documentation/ref_subscripts.html
https://www.vensim.com/documentation/ref_subscripts.html
http://doi.org/10.1016/j.energy.2015.02.061
http://doi.org/10.1186/s12992-018-0353-x


Bibliography 55

market share in duopoly markets. Transportation Research Part E: Logistics and Transportation
Review, 41(4), 315-327. doi: 10.1016/j.tre.2004.06.002

Wittmer, A., & Bieger, T. (2021). Fundamentals and structure of aviation systems. In A. Wittmer,
T. Bieger, & R. Müller (Eds.), Aviation systems: Management of the integrated aviation value
chain (pp. 39–78). Cham: Springer International Publishing. doi: 10.1007/978-3-030-79549-8_2

Yim, H. (2019). System dynamics modeling on rebound effects from improved automobile fuel-
efficiency. Korean System Dynamics Review, 20(4), 91–123.

Zou, B., Elke, M., Hansen, M., & Kafle, N. (2014). Evaluating air carrier fuel efficiency in the
us airline industry. Transportation Research Part A: Policy and Practice, 59, 306-330. doi:
10.1016/j.tra.2013.12.003

http://doi.org/10.1016/j.tre.2004.06.002
http://doi.org/10.1007/978-3-030-79549-8_2
http://doi.org/10.1016/j.tra.2013.12.003


A
Model Variables & Data

Themodel file, along with the Excel file containing parameter estimations and the supporting references,
can be found on the GitHub Repository. Most variables are subscripted across five haul segments,
which differ in average flight distance and maximum average seating capacity of aircraft (Table A.1).

Table A.1: Estimations of industry-wide averages per haul segment

Haul segment Initial average Maximum average seating
flight distance capacity of aircraft

Short haul 600 km 108.75 seats
Short-medium haul 1000 km 126.25 seats
Medium haul 1600 km 146.43 seats
Long haul 3250 km 183.33 seats
Ultra-long haul 12000 km 308.33 seats

A.1. Variables
The model variables presented in this section reflect the model configuration applied in the full rebound
simulation. For the uncertain input parameters, the values corresponding to the reference scenario are
used.

Initial total value passenger demand = 8.5e+12

UNIT[(Passengers*km)/Year]

Initial value passenger demand = Initial value passenger demand sector wide*Market share per haul
segment[Haul segment]
UNIT[(Passengers*km)/Year]

Market share per haul segment = 0.2

UNIT[Dmnl]

Annual passenger demand = INTEG(Baseline demand growth[Haul segment]+Fuel efficiency induced
demand growth[Haul segment])
UNIT[(Passengers*km)/Year]

Total annual passenger demand = SUM(Annual passenger demand[Haul segment!])
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UNIT[(Passengers*km)/Year]

Baseline demand growth = Annual passenger demand[Haul segment]*Baseline prediction yearly de-
mand growth rate[Haul segment]
UNIT[(Passengers*km)/(Year*Year)]

Baseline prediction yearly demand growth rate = 0.044

UNIT[1/Year]

Total annual change of passenger demand =SUM(Annual passenger demand[Haul segment!])-Annual
passenger demand previous year
UNIT[(Passengers*km)/Year]

Annual passenger demand previous year = DELAYFIXED(SUM(Annual passenger demand[Haul seg-
ment!]) , 1 , SUM(Annual passenger demand[Haul segment!]))
UNIT[(Passengers*km)/Year]

Current value annual number of flights demanded = (Current value annual passenger demand[Haul
segment])/(PAX per flight[Haul segment]*Average flight distance[Haul segment])
UNIT[1/Year]

Demand fulfillment rate = IF THENELSE(Maximum annual number of flights[Haul segment]>=Current
value annual number of flights demanded[Haul segment], 1 , (Maximum annual number of flights[Haul
segment]/Current value annual number of flights demanded[Haul segment]))
UNIT[Dmnl]

Maximum annual number of flights = Market share per haul segment[Haul segment]*Maximum total
annual number of flights sector wide
UNIT[1/Year]

Maximum total annual number of flights sector wide = 5e+09

UNIT[1/Year]

PAX per flight = Average PLF*Maximum average seating capacity of aircraft[Haul segment]

UNIT[Passengers]

Initial average flight distance = [600, 1000, 1600, 3250, 12000]

UNIT[km]

Average flight distance = INTEG(-Decrease in average flight distance[Haul segment])

UNIT[km]

Decrease in average flight distance = Average flight distance[Haul segment]*Yearly percentage route
optimization
UNIT[km/Year]

Yearly percentage route optimization = 0.00349*Unit*Efficiency Switch

UNIT[1/Year]

Efficiency Switch = [0 OR 1]
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UNIT[Dmnl]

Maximum average seating capacity of aircraft = [108.75, 126.25, 146.43, 183.33, 308.33]

UNIT[Passengers]

Annual ASK = Maximum annual number of flights[Haul segment]*Maximum average seating capacity
of aircraft[Haul segment]*Average flight distance[Haul segment]
UNIT[(Passengers*km)/Year]

Total annual ASK = SUM(Annual ASK[Haul segment!])
UNIT[(Passengers*km)/Year]

Initial value average PLF = 0.834
UNIT[Dmnl]

Average PLF = INTEG(Increase of average PLF)

UNIT[Dmnl]

Increase of average PLF = Yearly percentage increase PLF*Average PLF

UNIT[Dmnl/Year]

Yearly percentage increase PLF = 0.00317*Efficiency Switch

UNIT[1/Year]

Current annual RPK = Average flight distance[Haul segment]*PAX per flight[Haul segment]*Current
value annual number of flights[Haul segment]
UNIT[(Passengers*km)/Year]

RPK = Current annual RPK[Haul segment]
UNIT((Passengers*km)/Year)

Total accumulated RPKs = INTEG(RPK[Haul segment])
UNIT[Passengers*km]

Current value annual number of flights = Current value annual number of flights demanded[Haul seg-
ment]*Demand fulfillment rate[Haul segment]
UNIT[1/Year]

Current value annual AKF = Current value annual number of flights[Haul segment]*Average flight dis-
tance[Haul segment]
UNIT[km/Year]

AKF = Current value annual AKF[Haul segment]
UNIT[km/Year]

Total accumulated AKF = INTEG(AKF[Haul segment])
UNIT[km]

Initial value total fuel consumption = Initial value total fuel consumption sector wide*Market share per
haul segment[Haul segment]
UNIT[Ltrs]
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Initial value total fuel consumption sector wide = 3.59575e+11

UNIT[Ltrs]

Fuel consumed = Current value annual AKF[Haul segment]*Fuel consumption per AKF[Haul seg-
ment]
UNIT[Ltrs/Year]

Total accumulated fuel consumption = INTEG(Fuel consumed[Haul segment])

UNIT[Ltrs]

Initial value fuel consumption per AKF = Initial value fuel consumption per ASK*Maximum average
seating capacity of aircraft[Haul segment]
UNIT[Ltrs/km]

Initial value fuel consumption per ASK = 0.0315

UNIT[Ltrs/(Passengers*km)]

Fuel consumption per AKF = INTEG(-Decrease fuel consumption per AKF[Haul segment])

UNIT[Ltrs/km]

Decrease fuel consumption per AKF = Fuel consumption per AKF[Haul segment]*Average yearly per-
centage increase of aircraft fuel efficiency
UNIT[Ltrs/(km*Year)]

Average yearly percentage increase of aircraft fuel efficiency = 0.0125*Unit*Efficiency Switch

UNIT[1/Year]

Annual fuel consumption = IF THENELSE(Time=INITIAL TIME, Initial value total fuel consumption[Haul
segment], Total accumulated fuel consumption[Haul segment]-Total accumulated fuel consumption pre-
vious year[Haul segment])
UNIT[Ltrs]

Total accumulated fuel consumption previous year = DELAY FIXED(Total accumulated fuel consump-
tion[Haul segment], 1 , Total accumulated fuel consumption[Haul segment])
UNIT[Ltrs]

Fuel consumption per RPK = Annual fuel consumption[Haul segment]/Current annual RPK[Haul seg-
ment]
UNIT[Ltrs/((Passengers*km)/Year)]

Fuel cost per RPK = Jet fuel price*Fuel consumption per RPK[Haul segment]

UNIT[euro/(Passengers*km)/Year]

Jet fuel price = 0.541

UNIT[euro/Ltrs]

Initial value fuel cost per RPK = Jet fuel price*Initial value fuel consumption per RPK[Haul segment]

UNIT[euro/(Passengers*km)/Year]
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Initial value annual RPK = Initial value passenger demand[Haul segment]*Market share per haul seg-
ment[Haul segment]
UNIT[(Passengers*km)/Year]

Initial value fuel consumption per RPK = Initial value total fuel consumption[Haul segment]/Initial value
annual RPK[Haul segment]
UNIT[Ltrs/((Passengers*km)/Year)]

Change ratio fuel cost per RPK = IF THENELSE(Time=INITIAL TIME, (Fuel cost per RPK[Haul segment]-
Initial value fuel cost per RPK[Haul segment])/Initial value fuel cost per RPK [Haul segment] , (Fuel cost
per RPK[Haul segment]-Fuel cost per RPK previous year[Haul segment])/Fuel cost per RPK previous
year[Haul segment])
UNIT[Dmnl]

Fuel cost per RPK previous year = DELAY FIXED(Fuel cost per RPK[Haul segment], 1 , Fuel cost
per RPK[Haul segment])
UNIT[euro/(Passengers*km)/Year]

Fare price change ratio = Change ratio fuel cost per RPK[Haul segment]*Pricing strategy factor[Haul
segment]
UNIT[Dmnl]

Pricing strategy factor = 0.45

UNIT[Dmnl]

Fuel efficiency induced demand growth rate = MAX(0,Fare elasticity of demand[Haul segment]*Fare
price change ratio[Haul segment])
UNIT[1/Year]

Fare elasticity of demand = [-0.83, -0.83, -1.06, -1.28, -1.28]

UNIT[1/Year]

Fuel efficiency induced demand growth = Fuel efficiency induced demand growth rate[Haul segment]*Annual
passenger demand[Haul segment]*RE Loop Switch
UNIT[(Passengers*km)/(Year*Year)]

RE Loop Switch = [0 OR 1]

UNIT[Dmnl]

Total annual CO2 emissions = Fuel consumed[Haul segment]*CO2 emissions per liter jet fuel
UNIT[MtCO2/Year]

CO2 emissions per liter jet fuel = 0.00316

UNIT[MtCO2/Ltrs]

Accumulated CO2 emissions = INTEG(Total annual CO2 emissions[Haul segment])
UNIT[MtCO2]

Total accumulated CO2 emissions = SUM(Accumulated CO2 emissions[Haul segment!])
UNIT[MtCO2]
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A.2. Data
Seating capacity of aircraft per haul segment are estimated based on Figure A.1.

Figure A.1: Demand of aircraft per distance and aircraft size based on empirical data

For example, a major quantity of medium size aircraft with a capacity from 101 up to 150 seats are
used for a distance range of 801–2000 km (Kölker et al., 2016). A detailed justification and references
supporting the chosen parameter values and industry-wide averages can be found in the Excel file on
GitHub.

https://github.com/Saskia-XCVI/rebound-passenger-aviation


B
Model Validation

This appendix presents the results of the selected validation tests, including sensitivity analysis and
extreme conditions testing. A historical and future emissions data check is provided in a textbox within
the main text.

B.1. Sensitivity Analysis
For sensitivity testing, the baseline input variables were varied within a range of -10% to +10% rela-
tive to their values in the reference scenario, defined in Chapter 5. This approach helps assess the
model’s validity by testing the robustness of its outcomes. The baseline input parameters tested include
baseline demand growth, annual increase of passenger load factor, annual reduction of flight distance
and annual increase of aircraft fuel efficiency. 200 sensitivity simulations are conducted using the full
model configuration, consistent with the structure applied in the rebound simulations. Values for each
baseline input parameter were sampled from the specified range using a uniform random distribution,
with a fixed random seed of 1234 to ensure reproducibility. The corresponding results are presented
in Figures B.1 and B.2.

Figure B.1: Results of 200 sensitivity simulations for baseline input parameters, illustrating the sensitivity of projected annual
passenger demand.
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Figure B.2: Results of 200 sensitivity simulations for baseline input parameters, illustrating the sensitivity of projected
accumulated emissions.

The relatively narrow range of resulting outcomes indicates that the model is not highly sensitive
to small changes in the baseline input parameters, suggesting internal consistency and stability in the
model’s structure.

To conduct a more comprehensive sensitivity analysis, the parameters related to rebound feedback
are also included. Because these parameters are associated with variables and subsystems that close
critical feedback loops, even small changes in their values can produce significant systemic effects.
These parameters are considered highly uncertain due to limited empirical consensus and data avail-
ability. This approach allows for an exploration of how sensitive model outcomes are to parameters that
may significantly affect the rebound effect. The parameters tested include the pricing strategy factor
and fare elasticity of demand.

Figure B.3: Results of 200 sensitivity simulations for pricing strategy factor input, illustrating the sensitivity of projected annual
passenger demand.
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Figure B.4: Results of 200 sensitivity simulations for pricing strategy factor input, illustrating the sensitivity of projected
accumulated emissions.

The sensitivity analysis shows the model is more sensitive to the pricing strategy factor. Even small
changes in this parameter have a strong effect on output variability. The model is less sensitive to fare
elasticity, meaning changes in this parameter do not have a strong effect on output variability. The
results are presented in Figures B.5 and B.6.

Figure B.5: Results of 200 sensitivity simulations for fare elasticity of demand input, illustrating the sensitivity of projected
annual passenger demand.



B.2. Extreme Conditions Test 65

Figure B.6: Results of 200 sensitivity simulations for fare elasticity of demand input, illustrating the sensitivity of projected
accumulated emissions.

B.2. Extreme Conditions Test
Extreme conditions testing was conducted to evaluate the model’s robustness by applying extreme
input values and assessing whether it continues to produce consistent and logical behavior. Simulations
are conducted with both the parameter values of the reference scenario and with extreme values using
the full model configuration, consistent with the structure applied in the rebound simulations. Once
again, extreme values were assigned to rebound-related parameters for testing, as these parameters
influence variables and subsystems that close critical feedback loops. This approach provides insight
into whether the full model structure behaves consistently and logically. The results are presented in
Figures B.7 and B.8.

Figure B.7: Difference in total annual passenger demand
over time between the reference scenario and an extreme
scenario in which the pricing strategy factor is set to a high

value of 1.5, representing an unrealistically high
pass-through rate of fuel cost savings.

Figure B.8: Difference in total annual passenger demand
over time between the reference scenario and an extreme
scenario in which the fare elasticity of demand is set to a
high absolute value of -2, representing a highly elastic

demand response.

For the tests of the rebound-related parameters, total annual passenger demand was expected to
increase, and the model reflected this behavior accordingly. To assess whether the subsystem of flight
operations produces logical outputs under extreme conditions, the impact of a stringent flight restriction
was tested. Specifically, the effects on the demand fulfillment rates and total accumulated emissions
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were evaluated to confirm that a forced reduction in flight operations leads to a corresponding decrease
in accumulated emissions, as would be expected. The results are presented in Figures B.9 and B.10.

Figure B.9: Effect of demand fulfillment rates by haul
segment over time in an extreme scenario imposing a

stringent flight restriction, allowing only 90% of initial annual
flight operations.

Figure B.10: Difference in total accumulated emissions over
time between the reference scenario and an extreme

scenario imposing a stringent flight restriction, allowing only
90% of initial annual flight operations.



C
Initial Experiment Results

This appendix presents additional results not included in the main text. These results cover variables re-
lated to efficiency improvements, baseline estimates of flight operations, and rebound-related variables
that close the key feedback loops. The results of the rebound simulations are based on the reference
scenario.

C.1. Efficiency Improvements

Figure C.1: Fuel consumption per aircraft-kilometer flown
from 2025-2040 in the null simulation, which excludes

efficiency improvements.

Figure C.2: Fuel consumption per aircraft-kilometer flown
from 2025-2040 in the baseline simulation, which includes

efficiency improvements.
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Figure C.3: Average flight distance from 2025-2040 in the
null simulation, which excludes efficiency improvements.

Figure C.4: Average flight distance from 2025-2040 in the
baseline simulation, which includes efficiency improvements.

Figure C.5: Average passenger load factor from 2025-2040
in the null simulation, which excludes efficiency

improvements.

Figure C.6: Average passenger load factor from 2025-2040
in the baseline simulation, which includes efficiency

improvements.

C.2. Baseline Variables

Figure C.7: Annual aircraft-kilometers flown from 2025-2040
in the baseline simulation, which excludes rebound

feedback.

Figure C.8: Annual aircraft-kilometers flown from 2025-2040
in the rebound simulation, which includes rebound feedback.
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Figure C.9: Fuel consumption per RPK from 2025-2040 in
the baseline simulation, which corresponds with the rebound

simulation as both simulations include efficiency
improvements.

Figure C.10: Annual fuel consumption from 2025-2040 in
the rebound simulation, which includes both efficiency

improvements and rebound feedback.

C.3. Rebound Variables

Figure C.11: Change ratio of fuel costs per RPK from
2025-2040 in the rebound simulation, which includes

rebound feedback.

Figure C.12: Fare price change ratio from 2025-2040 in the
rebound simulation, which includes rebound feedback.



D
Scenario Analysis Results

This appendix presents the results of the PRIM analysis. The complete Scenario Analysis, conducted
using the EMA Workbench in Python, is available in the ipynb-files on GitHub.

D.1. PRIM
To apply PRIM, the market-specific uncertain parameters were first grouped into experiment subsets,
and the algorithm was run separately for each subset. This approach reduces correlations and allows
for a clearer understanding of how each category of uncertain parameters affects the outcome. The
first subset includes all market shares across haul segments to identify which market segments most
strongly affect the results. Figure D.1 presents the outcomes of the PRIM analysis for scenario out-
comes where the rebound threshold of the reference scenario was exceeded. Parameters that appear
in the box with narrower value ranges are considered more influential in shaping the magnitude of the
fuel efficiency rebound effect.

Figure D.1: Input spaces of market share parameters per haul segment that explain higher rebound magnitudes than that of
the reference scenario.

Figure D.2 displays the algorithm’s peeling trajectory, showing how the trade-off between scenario
coverage and density evolves as the market shares per haul segment are progressively constrained.
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https://github.com/Saskia-XCVI/rebound-passenger-aviation
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Figure D.2: Peeling trajectory of the PRIM algorithm applied to the market share subset, where the rebound threshold exceeds
the rebound in the reference scenario.

Based on the PRIM results from the first experiment subset, the longer haul segments emerged as
particularly influential. Consequently, a second subset of experiments was analyzed, focusing specifi-
cally on how ultra-long-haul-related parameters affect the outcomes of interest. This approach allows
to focus on interactions across parameter types within a single haul segment. Figure D.3 presents the
results.

Figure D.3: Input spaces of market-specific parameters within the ultra-long-haul segment that explain higher rebound
magnitudes than that of the reference scenario.

Figure D.4 displays the algorithm’s peeling trajectory, showing how the trade-off between scenario
coverage and density evolves as the market-specific parameters within the ultra-long-haul segment are
progressively constrained.
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Figure D.4: Peeling trajectory of the PRIM algorithm applied to the ultra-long-haul subset, where the rebound threshold
exceeds the rebound in the reference scenario.
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