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Abstract

Robotic assistance for rehabilitation has benefited from the use of models for motor adaptation. The assist-
as-needed paradigm for rehabilitation robotics was based on a single-state model of human adaptation to
a neurological handicap. Recent studies have shown that human motor adaptation consists of two or more
parallel adaptation processes. A two-state model of adaptation based on the presence of a fast process and a
slow process has been widely adopted. The fast process adapts faster than the slow process but has a lower
retention than the slow process. Designing training methods that can influence the individual adaptation
processes could help make sure that patients retain what is desired (how to adapt to a neurological injury)
and forget what is detrimental to rehabilitation (dynamics of the robotic assistance for example). The goal of
this work is to design an optimal control paradigm for selectively influencing the slow and fast processes.

A feedforward discrete-time linear-quadratic tracking controller was designed for a 2-state linear time-
invariant model of sensorimotor adaptation to increase the contribution of the slow process to the net adap-
tation at the end of training. This control signal was implemented as the sequence of visuomotor rota-
tions in an upper-limb reaching task. This sequence of visuomotor rotations were dubbed the Adaptation-
State-Tracking (AST) perturbation. The retention behaviour after this AST perturbation was compared with
that after a non-adaptive (constant-level) perturbation. A between-subject comparison of the retention be-
haviour showed that the AST perturbation exhibited better retention than the constant-level perturbation
(p =0.0415). As far as the author is aware, this is first time the 2-state Linear Time-Invariant (LTT) model has
been used to design a perturbation and to predict the subsequent behaviour of the participants. The suffi-
ciency of the control based on the 2-state LTT model and the possibility of improving retention with optimal
control could positively impact the domain of robot-assisted rehabilitation.
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Introduction

1.1. Motivation

1.1.1. Robot-Assisted Rehabilitation

The human nervous system with all its complex circuits and feedback loops plays a crucial role in controlling
the movement of the human body. A neurological injury (like cerebrovascular accident or incomplete spinal
cord injury) can lead to abnormalities in the motor function. Rehabilitation efforts to aid recovery from such
neurological injuries involves providing assistance to patients for performing movements. Conventionally,
therapists provide the necessary forces and support for the patients. In many cases, like gait training, this in-
volves the application of large and repetitive forces often from uncomfortable poses. These can lead to strain
and injuries for the therapists themselves. This is where robotic assisted rehabilitation becomes relevant.
Robots can be designed to give consistent forces and movement patterns.

As the patients progressively learn, the level of assistance must be modulated so that eventually the pa-
tient can perform the actions without any assistance. Experienced therapists can intuitively modulate the
level of assistance based on feedback from the patient. Robotic devices, on the other hand, lack this in-
tuition. Hence, there is a need for designing the mechanisms by which robotic assistance changes as the
patient learns.

Reinkensmeyer [2003] proposed that neurological injuries affect the sensorimotor mapping between sen-
sory inputs and muscular activations. Reinkensmeyer et al. [2004] modelled the recovery process from a neu-
rological injury as the adaptation to a new sensorimotor mapping. Based on these assumptions, Reinkens-
meyer et al. [2004] designed the Assist-As-Needed (AAN) paradigm for rehabilitation robotics. According to
the AAN paradigm the level of robotic assistance is slowly decreased as movement errors decrease. At the
start of adaptation, the movement errors will be large. As rehabilitation progresses, the patient will slowly
adapt and the movement errors will decrease. If the robotic assistance is not modulated, the patient will stop
adapting and let the robot do most of the work. AAN forces the patient to adapt more and in the end, the
share of the robot will be minimal.

Reinkensmeyer et al. [2004] modelled the rehabilitation behaviour by considering that the muscle force
applied on a given trial (x(k + 1)) is based on the muscle forces applied on the previous trial (x(k)) and the
movement error on the previous trial (e(k)). The retention rate (ay) dictates how much of the muscle forces
on the previous trial influence those on the next trial. The learning rate (by) captures how the error in each
trial influences the muscle forces. Thus the forces applied by the patient on each trial is governed by the
equation

x(k+1) = ag-x(k)+by-e(k). (1.1)

In AAN, the robotic assistance at each trial (p(k)) is updated based on the movement error (e) as

plk+1) = ag-plk)+bg-ek), (1.2)

for the retention rate (agr) and learning rate (bg) chosen for the robot. With this control law it was shown
that the human learns progressively if ag < ay!.

IMore details regarding the AAN rehabilitation is provided in Appendix A.



2 1. Introduction

The adaptation model in Eq. (1.1) has only one state of adaptation (xi;). Recent advances in the field of
neuroscience have hinted at the existence of multiple processes of adaptation (Smith et al. [2006]). This has
led to models with more than one state of adaptation.

1.1.2. Single Process Vs Multiple Processes

Sensorimotor adaptation is the process of making adjustments in learned motor behaviour in response to
changes in the dynamics of the body or the environment. These updates occur in a feedforward fashion as
past experience of movement errors is used to update the motor commands for subsequent movements. Mo-
tor adaptation is a subset of the broader field of motor function (which includes other topics like motor skill
learning and motor control). Motor adaptation is considered to be driven by sensorimotor error (e(k)) which
can be caused by errors in sensing, planning or movement execution. As a response to this sensorimotor er-
rors the nervous system make adjustments in order to minimise the error. The actual adjustments made are
distributed over different aspects of the motor control loop. In order to save the trouble of keeping track of all
these intricate changes, adaptation is usually studied in terms of an adaptation index. The adaptation index
is a metric that encapsulates all the intricate changes associated with an adaptation task. Examples of adap-
tation indices are mean force applied per trial for a force-field adaptation and mean movement angle per trial
for adaptation to a visuomotor adaptation. In Eq. (1.1), the adaptation index is the muscle force applied per
trial (xy(k)).

The single-state model of adaptation as shown in Eq. (1.1) cannot account for a range of behavioural
findings in motor adaptation experiments. According to the one-state model, only the previous adaptation
state (x(k)) and the sensorimotor error (e(k)) influence the next adaptation state (x(k+1)). As per this model,
irrespective of the number of times participants have experienced a perturbation, as long they start from the
same baseline adaptation level, they should exhibit identical behaviour. Experiments have shown that this is
not the case and that the history of perturbations experienced by the participant have an effect on adaptation
behaviour. Some of the behavioural effects? that are not explained by the single-state model of adaptation
(as per Smith et al. [2006]) are:

* Savings — Faster re-adaptation from baseline behaviour to a perturbation that was previously experi-
enced.

» Anterograde Interference — Slower adaptation from baseline behaviour to a perturbation in the oppo-
site direction to that of a previously adapted perturbation.

* Rapid De-adaptation to baseline behaviour when the perturbation is removed.

e Accelerated Re-adaptation to a downscaled version of a previously experienced perturbation.

* Spontaneous Recovery from baseline behaviour after Error-Clamp Trials (in which error feedback is set
to zero) following de-adaptation.

In response to these behavioural effects, different dichotomies have been suggested for separating the
net adaptation into component processes . The prominent dichotomies are the fast-slow and the explicit-
implicit dichotomies. Section 1.2 provides a detailed introduction of the fast-slow and explicit-implicit di-
chotomies.

1.1.3. Rehabilitation based on Multiple Processes

As per the AAN paradigm of robotic rehabilitation, the most important metric to be considered is the adapta-
tion index at the end of training (x(kr), for the final adaptation trial k;). However, the existence of behavioural
effects mentioned in Section 1.1.2 means that in addition to the final adaptation state, the history of the per-
turbation also plays a role in deciding the outcome of a rehabilitation intervention.

The effect of rehabilitation interventions usually decay with time and hence multiple training sessions are
required for complete rehabilitation. Designing a training paradigm which improves retention can potentially
reduce the number of training sessions needed for complete rehabilitation. The current work explores how
the multiple process models of adaptation can be used to design a training paradigm for improving retention.
As an initial step in this direction the current work looks at how perturbation schedules can be optimised for
improving retention in adaptation experiments for healthy participants.

2 brief summary of the different adaptation tasks and the behavioural effects can be found in Appendices B.1 and B.2.
3More information from a literature survey on the multiple component processes of adaptation is included in Appendix C.
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Figure 1.1: Block diagram showing the fast and slow processes arranged in parallel. Both processes are driven by the same sensorimotor
error. The fast process has a higher learning rate (b > bs). The slow process has more retention (as > a).

1.2. Multiple-Process Models of Adaptation
1.2.1. Fast-Slow Dichotomy

To account for the behavioural effects like savings, Smith et al. [2006] suggested that there are multiple inter-
acting adaptive processes which together contribute to sensorimotor adaptation. Smith et al. [2006] proposes
that motor adaption within a timescale of minutes has two distinct components - a fast process (xg) and a slow
process(x;). The fast process has a faster learning rate(b) but a lower retention(as) and the slow process has a
lower learning rate(bs) but a higher retention(as). Both these process are adapted based on the sensorimotor
error(e(k)) experienced during each trial. The net motor output is a the result of the superposition of both the
slow and fast processes (Fig. 1.1). Smith et al. [2006] has mathematically modelled these processes as follows:

xs(k+1) = as- x5+ bs - e(k)
xe(k+1) = ag- x¢+ bg- e(k)
x(k) = x5 (k) + x¢(k)

O0<bs<bs<l,0<ar<as<l1

(1.3)

The fast process is crucial for the quick adaptation to transient perturbations like change in the weight of
an object being lifted or in the slope of a hill being climbed. The slow process helps retain the adaptations in
response to more steady perturbations like growth of the limbs*. Thus together they help the body adapt to a
whole range of perturbations over different timescales.

This model (Eq. (1.3)) was fit onto experimental data from adaptation experiments. It could explain those
characteristics mentioned earlier that the single state model cannot explain and is the most widely used
model in literature ( Smith et al. [2006], Kording et al. [2007], C-Hemminger and Shadmehr [2008], Ethier
et al. [2008], Joiner and Smith [2008], Zarahn et al. [2008], Huang and Shadmehr [2009], Lee and Schweighofer
[2009], Keisler and Shadmehr [2010], Sing and Smith [2010], Turnham et al. [2012], Trewartha et al. [2014],
Colagiorgio et al. [2015], Inoue et al. [2015], Kim et al. [2015], McDougle et al. [2015], McDougle et al. [2017],
Albert and Shadmehr [2018], Charalambous et al. [2018], Coltman et al. [2019], van Es and Knapen [2019] ).
More complex variants of fast-slow model have been suggested in literature °.

The fast and slow processes have distinctive characteristics like generalisation (how adapting to one per-
turbation can benefit adaptation to other perturbations) and effector-dependence (e.g., how adapting with
the right hand differs from adapting with the left hand). These characteristics are summarized in Table 1.1.

1.2.2. Explicit-Implicit Dichotomy

Mazzoni and Krakauer [2006] and Taylor et al. [2014] have observed another dichotomy in the contributing
processes to sensorimotor adaptation - an explicit process and an implicit process. The explicit process is an
aiming strategy (like, aiming 10 cm above the bullseye while throwing darts) of which the adapting organism

41t is possible that an ultra-slow process is responsible for the adaptation to limb growth that persists over very long timescales (Inoue
etal. [2015]).
5Refer to Table C.5 on Appendix C for a summary of the different mathematical models of sensorimotor adaptation.
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Table 1.1: Characteristics of the Fast and Slow Processes of Adaptation which were introduced by Smith et al. [2006].

Characteristics of Fast and Slow Processes

Fast Process Slow Process
More learning rate (Smith et al. [2006]). Lower learning rate (Smith et al. [2006]).
Lower retention rate (Smith et al. [2006]). More retention rate (Smith et al. [2006]).

Does not contribute much towards long-term
retention (Joiner and Smith [2008],Charalambous
et al. [2018]). But, is crucial for adaptations to

Contributes more towards long-term retention
(Joiner and Smith [2008],Charalambous et al.

sudden perturbations (Smith et al. [2006]). (2018]).
The fast process is disrupted by a secondary The slow process is enhanced when a task disrupts
declarative task (Keisler and Shadmehr [2010]). the fast process (Keisler and Shadmehr [2010]).

Dominates in cases of rapid perturbation changes Dominates in cases of gradual perturbation
(Pelisson et al. [2010]). changes (Pelisson et al. [2010]).

The fast process shows greater generalisation andis The slow process shows lesser generalisation and is
effector-independent (Keisler and Shadmehr [2010], driven by intrinsic coordinates (Keisler and
Mandelblat-Cerf et al. [2011]). Shadmehr [2010], Mandelblat-Cerf et al. [2011]).

has conscious control and awareness. The implicit process results in a change in the internal model of which
the organism is not consciously aware.

Taylor et al. [2014] isolated the explicit component of adaptation by seeing where the participants were
aiming in a visuomotor rotation task. Subtracting the explicit component from the total adaptation gave an
indication of the implicit adaptation component (Fig. 1.2).

Since aiming strategies can be adapted quickly and consciously, the explicit process of adaptation is usu-
ally faster than the implicit process of adaptation which is adapted without much conscious awareness. Tay-
lor and Ivry [2011] suggested that the explicit process is driven by the target error and that the implicit process
is driven by the sensory-prediction error. The properties of the explicit and implicit processes have been stud-
ied extensively ( Keisler and Shadmehr [2010], Taylor et al. [2014], Trewartha et al. [2014], Kim et al. [2015],
Leukel et al. [2015], McDougle et al. [2015], Morehead et al. [2015], Werner et al. [2015], Poh et al. [2016],
Thurer et al. [2016], Butcher et al. [2017], McDougle et al. [2017], de Brouwer et al. [2018], French et al. [2018],
Leow et al. [2018], Liew et al. [2018], Schween et al. [2018], van Es and Knapen [2019], Mazzoni and Krakauer
[2006], Werner et al. [2019] ). Table 1.2 provides the key features of the explicit and implicit components of
sensorimotor adaptation.

1.2.3. Fast-Slow as Explicit-Implicit

McDougle et al. [2015] hypothesised that the explicit component of adaptation is the fast process and the
implicit process is the slow process of adaptation. This idea has since gained popularity as can be seen from
the increase in the number of studies relating the fast-slow processes with the explicit-implicit processes
(Fig. C.3). It was observed that the explicit process adapts fast and the slow process adapts slowly. Both the
fast process and the explicit process are disrupted by secondary cognitive tasks (Keisler and Shadmehr [2010],
van Es and Knapen [2019]). The fast process and the explicit process also show better generalisation (Keisler
and Shadmehr [2010], Mandelblat-Cerf et al. [2011], McDougle et al. [2017], Schween et al. [2018]). On the
other hand, the slow process and the implicit process are both correlated with greater retention (Joiner and
Smith [2008], Charalambous et al. [2018], Kim et al. [2015]).

Possible contradictions for this hypothesis was provided by Morehead et al. [2015]. Morehead et al. [2015]
showed that savings (faster adaptation in successive sessions) was correlated with the size of the perturbation,
which would not be explained by a linear model. Another discrepancy between the dichotomies is regarding
the error that drives adaptation. The fast and slow process have been found to adapt based on the same error
signal (Smith et al. [2006]). The explicit and implicit process on the other hand are adapted by different errors.
The explicit process is thought to be adapted by the target error and the implicit process by the sensory-
prediction error (Taylor et al. [2014]).
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Adaptation to Visuomotor Rotations

. .
. .
. .
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@ Target - Explicit Component
©  Origin - Implicit Component
® Hand << Visuomotor Perturbation
o Cursor ) Sensorimotor Error

Figure 1.2: Explicit and Implicit Components of Adaptation for a visuomotor rotation task.
The net adaptation is the sum of the implicit and explicit components. Only the explicit component is accessible to conscious
awareness. The explicit component is estimated from the reported aiming directions. The side panel illustrates how subtracting the
explicit contribution from the net adaptation can be used to estimate the contribution of the implicit component.

The explicit-implicit dichotomy has important impact on rehabilitation studies as patients with different
pathologies might have altered cognitive resources which might affect the adaptation behaviour. Accounting
for the possibility of the fast and slow processes being identical to the explicit and implicit processes will thus
have relevance to rehabilitation.

1.3. Project Structure
1.3.1. Research Goals

The main objective of this work are:

¢ Objective 1: Design a means of influencing the adaptation processes independently.
* Objective 2: Use this to maximize the contribution of the slow process with the aim of improving reten-
tion after adaptation.

As an example, visual perturbations (visuomotor rotations) during an upper-extremity reaching task are
considered. An optimal perturbation schedule is to be designed based on the mathematical models of the fast
and slow processes. Parameter estimation would be conducted to estimate the learning and retention rates
of each participant. These estimated parameters would then be used to predict the adaptation behaviour of
the participants in the subsequent adaptation blocks and to tailor the optimal perturbation schedule to each
participant. As far as the author is aware, this is first time the fast-slow model has been used to design a per-
turbation and to predict the subsequent behaviour of the participants. Since there is a likely overlap between
the fast-slow and the explicit-implicit dichotomies, the trajectories of the fast and slow processes that result
from the optimisation should be coherent from the perspective of the explicit and implicit processes (i.e., the
trajectories of the fast and slow processes should have the qualitative properties of the explicit and implicit
processes respectively).

The designed perturbation will be compared against a constant perturbation to see if the optimal pertur-
bation can improve retention after adaptation in healthy human participants. It was hypothesised that the
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Table 1.2: Characteristics for the Explicit and Implicit Processes of Adaptation first proposed by (Mazzoni and Krakauer [2006]).

Characteristics of Explicit and Implicit Processes

Explicit Process

Implicit Process

Learning component of which the participant is
aware and is more under the control of conscious
effort (Mazzoni and Krakauer [2006], Taylor et al.
[2014]).

The explicit process adapts fast. (McDougle et al.
[2015]).

End-point Feedback and instructions promote the
use of the explicit process (Liew et al. [2018], Taylor
etal. [2014]).

The variance of the explicit process evolves in a
non-monotonic fashion as adaptation progresses
(Taylor et al. [2014]).

Explicit visual feedback did not lead to an increase
of retention Kim et al. [2015].

Explicit processes show greater and more complete
transfer of learning (Werner et al. [2015], Poh et al.
[2016], Werner et al. [2019]).

Generalisation pattern of the explicit component to
untrained regions of the workspace is flat
(McDougle et al. [2017], Schween et al. [2018]).

Enforcing or removing task errors both reduce the
contribution of the explicit process (Leow et al.
[2018]).

Increasing cognitive load reduces the capacity for
applying the explicit process (van Es and Knapen
[2019]).

Learning component of which the participant is
unaware and is more automated (Mazzoni and
Krakauer [2006], Taylor et al. [2014]).

The implicit process adapts slowly (McDougle et al.
[2015]).

Online feedback promotes the use of the implicit
process (Liew et al. [2018], Taylor et al. [2014]).

The variance of the implicit process evolves in a
monotonic fashion as adaptation progresses (Taylor
et al. [2014]).

Implicit visual feedback is associated with greater
retention Kim et al. [2015].

Transfer of implicit learning is generally not
complete and is dependent on the degree of
compatibility in intrinsic coordinates (Poh et al.
[2016]).

Generalisation pattern of the implicit component to
untrained regions of the workspace is not flat and
shows peaks in the positions which were trained
(McDougle et al. [2017], Schween et al. [2018]).

Removing task errors reduces the contribution of
the implicit process. Enforcing task errors seem to
have negligible effect on the implicit process (Leow
et al. [2018]).

When cognitive load is high the implicit process will
dominate and hence the adaptation will be slower
(van Es and Knapen [2019]).

movement angles in the retention block after the optimal perturbation would be greater than the movement
angles in the retention block after the constant perturbation. The initial idea was to compare the retention
after the two types of perturbations within subjects. This comparison did not show significant effects due
to deficiencies in the washout between perturbations. An incomplete washout would mean that the sec-
ond perturbation experienced by each participant would be tainted. This led to the second between-subject
hypothesis which considers only the first perturbation experienced by each participant. In addition to the
hypothesis tests, the completeness of the washouts and the accuracy of the model predictions will also be
analysed.

1.3.2. Approach

The research approach is summarised in the following steps :

1. The 2-rate LTI model of adaptation ( Eq. (1.3) ) was chosen to design an optimal feedforward perturba-
tion.

2. A discrete time Linear-Quadratic Tracking (LQT) perturbation was formulated for a desired terminal
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state with zero contribution from the fast process and unit contribution from the slow process ©. This
perturbation will be referred to as the Adaptation-State-Tracking (AST) perturbation.

3. The formulated AST perturbation was tailored to each participant after conducting parameter estima-
tion which fits the 2-rate LTI model of adaptation on the experimental data of each participant.

4. For the purpose of comparison, a Constant-Level (CL) perturbation which would produce the same
terminal net adaptation as the AST perturbation was calculated based on the simulation of the AST
perturbation and identified human model.

5. The AST and CL perturbations were presented to each participant in a random order and the retention
after each adaptation block was studied.

6. The experimental results were analysed to check the hypothesis whether the average movement angles
in the retention trials for the AST block was greater than those for the CL block.

1.3.3. Scope

The current work explores how an optimal perturbation schedule can be designed to improve retention after
adaptation. Even though the long term motivation behind this work pertains to robotic rehabilitation, the
current work does not involve any robotic assistance or recovery from a neurological injury. Only healthy
participants were included for the experimental study. Motor adaptation (which is the modulation of learned
behaviour) is distinct from motor-skill learning (which deals with how a new skill is acquired in the first place)
and the latter is not the subject of the current work. The trial-based model of adaptation used in the model is
only valid for short time intervals spanning only a couple of hours and does not account for decay of adapta-
tion with time. Consolidation of the learned adaptations is also beyond the scope of this work.

1.3.4. Report Structure

Chapter 2 contains an account of the control design for the fast and slow processes of adaptation based on
the two-state LTI model of adaptation (Eq. (1.3)). Chapter 3 deals with design of the visuomotor rotation
experiments, how the perturbations were tailored for each participant, the hypotheses and details regarding
the analysis of experimental observations. The results of the experiment are collected in Chapter 4. Chap-
ter 5 discusses the results. The conclusions and recommendations for control engineers and therapists are
included in Chapter 6.

6The value of unity for the slow process was an arbitrary choice. Since the model is LTI, the calculated input can be scaled to achieve any
value of the slow state.






Controlling Adaptation Processes

2.1. Two-State Model of Adaptation

2.1.1. 2-State Linear Time-Invariant (LTI) Model
Many mathematical models have been proposed for modelling adaptation behaviour. For the present study,
the 2-state LTI model was chosen. The motivation behind this choice is explained in this section.

Smith et al. [2006] proposed that sensorimotor adaptation can be modelled as the combination of fast and
slow adaptive processes. The fast adaptive process (xf) learns fast(bs) but has lower retention(as) between
trials. The slow process (x¢) on the other hand has a lower learning rate(bs) but has higher retention(as)
between trials. The net adaptation (x(k)) on each trial (k) is the sum of the fast adaptive process and the
slow adaptive process. Both the fast and the slow processes are updated based on the net sensorimotor error
(e(k)):

xs(k+1) = ag - xs(k) + bs - e(k),
xe(k+1) = ag- x¢(k) + bg- e(k),

(2.1)
x(k) = x5 (k) + x¢(k),
O0<bs<bs<l,0<as<ag<l.
For a given perturbation (P(k)), the sensorimotor error is calculated as
e(k) = P(k) — x(k) = P(k) — (xs(k) + x¢(k)) . (2.2

The parameters — as, bs, as and by — are selected for each participant to fit the prediction of model
Eq. (2.1) to experimental observations. In this models, these parameters are assumed to be invariant to per-
turbation blocks.

The decay of the adaptation processes are trial-based in the above model. There have been some models
that look at the time-based decay of adaptive processes where the time-constants were used as the metric
( Ethier et al. [2008], Kim et al. [2015] ) . McDougle et al. [2015] studied the effect of changing the time be-
tween trials — inter-trial interval (ITI) — on the progress of adaptation. It was observed that the adaptation
behaviour was virtually invariant for ITIs of up to 30s. This has motivated the current study to favour trial-
based models of adaptation over time-based models.

The fast and slow processes of adaptation proposed by Smith et al. [2006] provides a simple model to
explain a range of behavioural findings related to sensorimotor adaptation. This model has since been used
to model behavioural findings in a wide variety of adaptation tasks and is gaining popularity !. Many other
papers have suggested more complex models of adaptive processes (Table C.5). The majority of these models
are generalisations of the linear time-invariant model suggested by Smith et al. [2006]. "Varying-parameter"
models (which have different learning and retention rates for each adaptation block, but, is LTT within each
block) (Zarahn et al. [2008]) and three-rate model (Inoue et al. [2015]) were proposed to explain savings that
were observed even after long washout periods.

1 Refer Figs. C.2 and C.3 in Appendix C for more information on the popularity of the 2-state LTI model.
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All the models in Table C.5 are abstract and over-simplified models used to study the complex interactions
in the brain. Modelling all the complex interactions of the brain might lead to cumbersome models that are
not very useful for real-time interventions during adaptation or rehabilitation. A simple model on the other
hand gives us a good approximation of adaptive behaviour. Simple models have the added benefit that they
have better interpretability. Thus, simple and interpretable models which provide good approximations of
adaptation can be very useful in guiding rehabilitative efforts. The 2-state LTI model suggested by Smith
et al. [2006] provides a nice trade-off between complexity and accuracy. It can sufficiently model adaptation
behaviour within the timespan of a day. The fact that it is a linear time-invariant model means that controller
design for such a model is relatively easy. Since the focus of the project is on the models of adaptation in a
single day, the 2-state LTI model was selected to be adequate (Inoue et al. [2015] had showed that the 2-state
LTI model was sufficient for predicting retention for experiments with up to 250 trials and that a 3-rate models
were only needed to explain retention after 500 or more trials).

2.1.2. Model Parameters from Literature
The 2-state model introduced by Smith et al. [2006] is a simple model that can predict many of the experi-
mental observations in sensorimotor adaptation experiments. This model has been widely used in literature
on many sensorimotor adaptation tasks. The learning and retention parameters for various adaptation tasks
were extracted from theses studies to be used as an initial estimate for running simulations and tuning the
control gains. Also, it should be noted that all the parameters extracted here are for trial-based models.

The parameters for the slow and fast processes are plotted in Figs. 2.1 and 2.2. The values can also be
found in Tables 2.1 and 2.2.
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2.1. Two-State Model of Adaptation
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Table 2.1: Parameters of the Slow Process of Adaptation extracted from Literature

As As Bs Bs
Article Adaptation Type Number of As 95%CI  95%CI B 95%CI  95%CI
Participants Mean Mean
Lower Upper Lower Upper
C-Hemminger and Shadmehr [2008] Force Field 107 0.984
Joiner and Smith [2008] Force Field 48 0.998 0.021
Huang and Shadmehr [2009] Force Field 53 0.988 0.04
Sing and Smith [2010] Force Field 58 0.9967 0.021
Trewartha et al. [2014] Force Field 21 0.994 0.992 0.996 0.025 0.02 0.03
McDougle et al. [2015] Force Field 10 0.97 0.95 0.99 0.01 0.05
Coltman et al. [2019] Force Field 53 0.998 0.049
Smith et al. [2006] Saccade 14 0.992 0.99 0.994 0.02 0.013 0.025
Colagiorgio et al. [2015] Vestibulo-Occular 8 0.999 0.0009
Inoue et al. [2015] Visuomotor Prism 7 0.995 0.987 0.999  0.0612 0.0307 0.1
Zarahn et al. [2008] Visuomotor Rotation 14 0.983 0.97 0.996 0.159 0.135 0.183
Lee and Schweighofer [2009] Visuomotor Rotation 12 0.9901 0.9876 0.9986 0.2147 0.0582 0.2729
Turnham et al. [2012] Visuomotor Rotation 27 1 1 1 0.012 0.008 0.016
McDougle et al. [2015] Visuomotor Rotation 9 0.99 0.99 0.99 0.05 0.03 0.07
Albert and Shadmehr [2018] Visuomotor Rotation 20 0.985 0.097
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Table 2.2: Parameters of the Fast Process of Adaptation extracted from Literature

Af Af Bf Bf
Article Adaptation Type Number of Af 95%CI  95%CI B 95%CI  95%CI
Participants Mean Mean
Lower Upper Lower Upper
C-Hemminger and Shadmehr [2008] Force Field 107 0.855
Joiner and Smith [2008] Force Field 48 0.85 0.11
Huang and Shadmehr [2009] Force Field 53 0.85 0.08
Sing and Smith [2010] Force Field 58 0.55 0.14
Trewartha et al. [2014] Force Field 21 0.521 0.401 0.641 0.268 0.172 0.364
McDougle et al. [2015] Force Field 10 0.52 0.3 0.74 0.22 0.08 0.36
Coltman et al. [2019] Force Field 53 0.597 0.227
Smith et al. [2006] Saccade 14 0.59 0.43 0.76 0.21 0.1 0.35
Colagiorgio et al. [2015] Vestibulo-Occular 8 0.85 0.0085
Inoue et al. [2015] Visuomotor Prism 7 0.914 0.795 0.95 0.202 0.119 0.296
Zarahn et al. [2008] Visuomotor Rotation 14 0.519 0.352 0.686 0.193 0.138 0.247
Lee and Schweighofer [2009] Visuomotor Rotation 12 0.8251 0.6338 0.9767 0.3096 0.1585 0.5118
Turnham et al. [2012] Visuomotor Rotation 27 0.74 0.622 0.858 0.034 0.02 0.048
McDougle et al. [2015] Visuomotor Rotation 9 0.85 0.77 0.93 0.44 0.38 0.5
Albert and Shadmehr [2018] Visuomotor Rotation 20 0.556 0.213
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2.2. Slow and Steady Training

2.2.1. Influencing the Fast and Slow Processes

The fast and the slow process help the body to adapt to perturbations acting over different timescales. Di-
chotomies with more component processes have been suggested, but for the current work, the 2-state model
with a fast and a slow process was chosen. The fast process enables quick adaptation to rapid perturbations
but also forgets them fast (Smith et al. [2006], Pelisson et al. [2010]). The slow process on the other hand helps
the body adapt to more gradual and permanent perturbations (Smith et al. [2006], Pelisson et al. [2010]). The
fast process forgets what it learns fast and thus does not contribute much towards long-term retention. The
slow process on the other hand retains what it learns for longer and thus significantly contributes toward
long-term retention (Joiner and Smith [2008], Charalambous et al. [2018]).

The contrasting characteristics of the fast and slow processes if harnessed could be useful in designing
training/rehabilitation paradigms that cater to different goals. If maximising the retention of learned be-
haviour is the goal, it could be achieved by teaching it to the slow process. The LTI model described in Eq. (2.1)
lends itself to optimal control design to selectively influence the fast and slow processes. As far as the author
is aware, this is first time optimal control is applied to selectively influence the slow and fast states of adapta-
tion. Previous studies have looked at how the fast and slow states evolve in response to perturbations. Here,
the perturbation is designed to generate specific trajectories for the fast and slow states.

Retention is strongly related to the slow process. Based on this observation, it was hypothesised that
increasing the contribution of the slow process will improve retention after adaptation. This was the goal of
the optimal control design.

2.2.2. Implication of overlap with Explicit and Implicit Processes

We could use the mathematical model of the fast-slow processes to design controllers. But since these are
over-simplified abstractions of complex neural processes, it would be important to check whether the tra-
jectories suggested by the control make sense when considering the qualitative properties of the explicit and
implicit processes.

The convergence of the fast-slow and explicit-implicit dichotomies could have profound impact on adap-
tation studies. The Fast-Slow dichotomy has yielded mathematical models for adaptation but rely on hidden
states which cannot be directly measured. The Explicit-Implicit dichotomy on the other hand provides clear
characteristics which can be used to directly estimate the adaptive components. A marriage of these di-
chotomies would yield a mathematical model for adaptive processes with distinctive properties. The rele-
vance of the explicit-implicit dichotomy to rehabilitation warrants this qualitative regularisation.

The explicit process usually exhibits overshooting behaviour and is generally non-monotonic. The im-
plicit process evolves more gradually and shows a monotonic nature. To qualitatively regularise the optimal
trajectories, they will be visually examined to ensure that the optimal fast state and slow state have trajectories
that obey the characteristics of the explicit process and the implicit process respectively.

2.2.3. Control Objective

The main goal of this work is to increase the retention after an adaptation session. Since the slow process
is correlated with more retention, it was posited that increasing the contribution of the slow process will in-
crease the retention. Since the net adaptation is the combination of the slow and fast processes, increasing the
contribution of the slow process is equivalent to decreasing the contribution of the fast process (for the case
where the net adaptation is to be kept constant). Considering the overlap of the fast-slow and explicit-implicit
dichotomies, the trajectories of the fast and slow states from the optimal control should be consistent with
the nature of the explicit and implicit processes. All these factors boil down to the following requirements:

1. Increase the contribution of the slow process.

2. Decrease the contribution of the fast process (for the case where net adaptation has to be kept the
same).

3. Ensure that the slow state trajectory is consistent with the properties of the implicit process (i.e., mono-
tonicity)

4. Ensure that the fast state trajectory is consistent with the properties of the explicit process (i.e., over-
shooting and non-monotonicity)
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To achieve these goals we have to find the optimal input ((k)) which has to be applied as the perturbation
(P(k)). This input will thus result in a sensorimotor error (e(k)) as

e(k) = P(k) — (xs(k) + x¢(k)) = u(k) — (xs(k) + x¢(k)) - (2.3)

2.3. Infinite-Time Control for the Slow Process
2.3.1. Analytical Solution for Infinite-Time Control

Infinite-time control is providing a steady input (u(k)) which drives the state of a system asymptotically to
some desired state at infinite time. For the problem at hand, this offers less flexibility over the final states
because two states (x;,x;) have to be controlled with one input (). So, for the infinite-time control, only the
final slow state will be considered. Our goal is to find the steady input () for maintaining the slow process at
desired value (lets take, x5 = 1). The value of the fast process(xt ) , in this case, is unimportant for us.
At steady state,
Xs(k+1) = x5(k) = x5 =1. (2.4)

Looking at equations 2.1 and steady-state condition 2.4 for the slow process, we get the steady-state value
of the error (ey,) as

_ (1—as)- xsy

o0 — bs

(2.5)

Substituting this steady-state error back into the model equation, we can see that the steady-state value
for the fast process is given as

b¢ (I-as)- Xsr
= . = 2.6
1—as bg (2.6}

Xf,00

The error (ey,) is the difference between the perturbation (which is the control input « in our case) and
the sum of the states x; and x¢. Thus the expression for the steady input u is given by the relation

by ) (I—as)- xsy + (1-as) - Xsr

2.7
1—-ag by b @0

U= X+ Xfoo + €oo = Xgr +

We can see that the required input u varies linearly with the desired level of the slow process. This is
expected since this is a linear system. Simplifying the relation we get

by 1—a5+1—as
l—a; by bs

u=|\1+ *Xsr | (2.8)

If this input u is applied continuously for infinite time, the state of adaptation asymptotically approaches
the desired state starting from any initial state. This is an instance of infinite-time control.

2.3.2. Example of Infinite-Time Control

Assuming that the system parameters are 2

as=0.996 bs=0.003

(2.9)
ar=0.92  by=0.03,
solving equations 2.6 and 2.8, for xs; = 1 we get,
Xfoo =0.5 and
beo (2.10)

u=2.8333.

The dynamics of this system for the above constant input u and initial conditions [xs,o;vao] = [0;0] is
plotted in Fig. 2.3.

2This is an arbitrary choice which is consistent with the requirements for the learning and retention parameters
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Slow State
Fast State |

States

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Trials

Figure 2.3: Infinite-time control of the slow and fast processes. The values have been normalised to so that the desired value of the slow
process is unity.

2.3.3. Inferences regarding Infinite-Time Control

We can see that for the example shown above, the steady-state error e, is non-zero. This implies that the
adaptation can never fully reach the level of the perturbation.

The states decay if left unperturbed, since a5 and ar are less than 1. To maintain the states at a steady
value, the degradation of the states must be compensated by an error. This error acts on the states through
the parameters bs and by. Since we are interested in the slow state, we can focus on the values of as and bs.
In the example above, the value of bs is very small and hence the steady-state error required to maintain the
slow process at x;  is large.

2.4. Adaptation-State-Tracking (AST) Perturbation

2.4.1. Linear-Quadratic Tracking (LQT) Problem Formulation for Slow and Fast Processes
Optimal control is a subdomain of control theory where the objective is the find the optimal input which
minimises some cost function. The cost function usually has terms related to the magnitude of the input and
deviations of states from some desired values. For such a cost function, the optimal input is based on a trade-
off between the input and state deviations. Linear-Quadratic Tracking (LQT) is a common case of optimal
control where a quadratic cost function is defined for a linear system in order to track some desired trajectory
of the state/output.

A Linear-Quadratic Tracking (LQT) problem was formulated to find the optimal perturbation (P (k)) which
would make the slow and fast states (xs and xf) of adaptation track some desired trajectory (rather than a fixed
steady-state value). Thus the input u(k) is the perturbation P(k) and the output y(k) is a vector containing
the slow and fast states ([xs x;]7). Using Eq. (2.1) and Eq. (2.2), we can rewrite the model equations in terms
of the perturbations (u(k)) as

Xs(k+1) = as - xs(k) + bs - [u(k) — (x5 (k) + x¢(k))] = (as — bs) - x5 (k) + (= bs) - x¢(k) + bs - u(k),
xp(k +1) = ag- x¢p(k) + by - [u(k) — (x5 (k) + x¢(k))] = (=) - x5 (k) + (ag — by) - x¢(k) + be- u(k), (2.11)

;
Yy = |xs(k)  xe(k)| -

This system of equations can be written as
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x(k+1)=A-x(k)+B-u(k),

y(k) =C-x(k),
;
where, x(k)=[xs(k) xf(k)] , u(k)=[u(k)] (2.12)
-b -b 1 0
A= |7 | B=|n bf]T, and C=
— by ag— bg 0 1

This linear system is observable if as # a;. The conditions for controllability are — as # ag, bs # 0 and by # 0.

As described in Section 2.2.3, the goal was to increase the contribution of the slow state and decrease the
contribution of the fast state. This can be achieved by making the fast state zero (xf = 0). If the fast state is
zero, all the adaptation will be from the slow process (x = x;). Since the system as described in Eq. (2.12)
is linear, if an optimal input to achieve a nominal desired state is known, then the optimal input to achieve
any other state which is a scaled version of the nominal state is obtained by scaling the optimal input for the
nominal case. Considering this, the reference for the slow process was set as one and the reference for the
fast state was set as zero ([xs, xf] = [1, 0]). Based on this requirement a quadratic cost function was defined
as the deviation from a reference trajectory z(k) :

1
J (x(ko), u, ko) = P [z(ky) — Cx (k)" F [2(ky) — Cx (k)]

L kel (2.13)
+ Ek 7 [[Z(k) —Cx(k)I"Q[z(k) — Cx(k)] + u"(k)Ru(k)
=Ko
where,
ko - is the initial trial number,
kr - is the terminal trial number,
z(k) - is the reference vector for y(k) for the k" instant,
Q - is a 2 x 2 positive semi-definite weighting matrix for the deviation from the reference,
R -isal x 1 positive definite weighting matrix for the input, and
F - is a 2 x 2 positive semi-definite weighting matrix for the terminal error from the reference.

The desired terminal state is z(k;) = [xs(kr) , x¢(k)]T = [1, 0]7. Adaptation was assumed to start from the
initial state x (ko) = [xs(ko) , x¢(ko)]T = [0, 0]T. The Adaptation-State-Tracking (AST) perturbation was chosen
to have a duration of 100 trials (k; = 100). Considering the possible overlap between the slow state and the
implicit process, the ideal trajectory for the slow process would be monotonic. This motivated the selection
of an exponential function that asymptotically approached unity for the reference trajectory of the slow state.
The shape factor of the exponential function was hand tuned. An elegant choice for the fast state is a steady
value of zero. Reducing the weight associated with the trajectory error for the fast process would result in
overshooting and non-monotonic optimal trajectories for the fast state. Thus the following reference trajec-
tory was chosen :

2(k) = [l_eXp(%)] . (2.14)
0

2.4.2. Unconstrained Discrete-Time Linear-Quadratic Tracking Solution

The solution for the optimal control problem from Section 2.4.1 can be obtained using Pontryagin’s Minimum
Principle (see, e.g., Naidu [2002]). The detailed derivation of the Linear-Quadratic Tracking (LQT) solution
from Pontryagin’s Principle is provided in Appendix D. The main steps necessary to solve the linear-quadratic
tracking with unconstrained input for a discrete-time model are listed in Table 2.3. This gives the optimal
input trajectory u(k) and the optimal state trajectories y(k).

The unconstrained discrete-time LQT solution was implemented in MATLAB. The system described in
Eq. (2.12) depends on the learning and retention parameters. To tune the weights (Q, R and F) of the cost
function (Eq. (2.13)), learning and retention parameters obtained from literature (Tables 2.1 and 2.2 and Figs. 2.1
and 2.2) were used. The mean learning and retention parameters documented in papers which conducted vi-
suomotor rotation experiments were used to generate virtual participants. The weights Q, R and F were then
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Table 2.3: Steps for Discrete-Time Linear-Quadratic Tracking with Unconstrained Input

Discrete-Time Linear-Quadratic Tracking with Unconstrained Input

Step 1:
Solve the matrix difference Riccati equation

P(k)=AT [P (k+1)+E] A+V (2.15)
with final condition

P(kr) =C'FC (2.16)

and the vector difference equation

g(k)=AT{1- [P~'(k+ 1) +E] " Ef g(k+ 1) + Wz(k) 2.17)
with the boundary condition
g(ky) = C"Fz(ky) (2.18)
where,
E=BR !B, V=C'QC and W=C'Q. (2.19)
Step 2:

Solve for the optimal state x*(¢) from the equation:

x*(k+1) = [A-BL(k)] x* (k) + BLg(k) g (k + 1) (2.20)
with the initial condition
x(%) = xo (2.21)
where,
L(k) = [R+BP(k+1)B] 'BTP(k+ 1)A (222
Lg(k) = [R+B"P(k+ 1)B] 'B. '
Step 3:

The optimal control u*(k) is obtained as

w*(k) = —L(k)x" (k) + Lg(k) g (k +1). (2.23)
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(b) Bad Example where the trajectories of the fast and slow states does not agree with the properties of the explicit and implicit processes. Trajectories like
these were excluded when tuning the weights of the cost function. Here the slow state is moving to the final state with a jump; which is uncharacteristic of
the slow/implicit process.

Figure 2.4: Qualitative Regression Examples.

tuned such that the optimal state trajectories for all the virtual participants were acceptable. One of the main
considerations while judging the acceptability of the state trajectories was the overlap with the implicit and
explicit processes — the slow process should evolve monotonously and the fast process shows overshooting
and is non-monotonous. The input and state trajectories that resulted from the final selection of weights are
plotted in Figs. 2.5a and 2.5b respectively. Note the high variability in behaviour depending on the human
parameters. Also, not all are successful in finite time. The hand tuned values of the weights are

100 0 100 0
Q= , R=[1] and F=

0 1

(2.24)
0 0.1

The perturbation for the experiment is an angular offset expressed in degrees. All the weights are dimen-
sionless and the cost function is in units of squared degrees. More generally, the perturbation and motor
adaptation are quantified in the same domain and the cost function has the same units, but squared. The
weights were tuned such that the deviations from the reference trajectory were more severely penalised for
the slow state than the fast state. The relaxed penalisation of the deviations of the fast state allows for the
non-monotonous overshooting behaviour which was one of the design criteria.
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(a) AST inputs for virtual participants with parameters as seen in literature.
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(b) Optimal state trajectories for the AST inputs for the virtual participants.

Figure 2.5: Optimal input and state trajectories from Adaptation-State-Tracking (AST) for virtual participants with learning and
retention rates as seen in literature. The participants have been arranged in ascending order of the maximum value of the AST input.

Refer to Table 2.4.

Table 2.4: Learning and retention of the virtual participants. The participants have been arranged in ascending order of the maximum
value of the AST input. These values have been taken from Tables 2.1 and 2.2

Virtual Participants

Participant Number as

ag bs bf

Participant 1
Participant 2
Participant 3
Participant 4

Participant 5

0.9830
0.9901
1.0000
0.9900
0.9850

0.5190 0.1590 0.1930
0.8251 0.2147 0.3096
0.7400 0.0120 0.0340
0.8500 0.0500 0.4400
0.5560 0.0970 0.2130




Experimental Methods

3.1. Constant-Level (CL) Perturbation

3.1.1. Selecting a Benchmark Perturbation

A benchmark perturbation was required against which the AST perturbation can be compared. Constant
level perturbations are commonplace in sensorimotor adaptation studies and was selected as the benchmark
perturbation. The level of the perturbation was to be chosen based on some criteria for a just comparison
with the AST perturbation. The purpose of the AST perturbation was to improve retention after training. In
rehabilitation interventions, the final state of adaptation of the patient is a major consideration for evaluating
the patients progress. Thus the final state of adaptation after the training block can be used as the basis for
relating the AST and CL perturbations of each participant. Showing that the AST perturbation can produce
better retention than a CL perturbation which produces the same final state of adaptation can objectively
prove the superiority of the AST perturbation. The CL perturbation will also have to be the same number of
trials as the AST perturbation.

3.1.2. Calculation of the Contrast Perturbation Level

The value of CL perturbation is constant for all the 100 trials (#(k) = uc;). Assuming that the initial state of
adaptation is x(ko) = [xs(ko), x¢(ko)]T = [0, 0]7, Eq. (2.12) shows that the final net adaptation after the CL
perturbation (xc;(kr)) (which is the sum of the slow (xs ¢ (kr)) and fast states (xg . (kr)) is a function of the
initial state and the constant input u¢, :

Xcr(kr) = Xg o1 (k) + xf,CL(kT) = fer(x(ko), ucy). (3.1)

The final net adaptation after the AST adaptation (x,sr(ky)) is the sum of the slow (xss1 (k1)) and fast
(xg a5t (kr)) states at the end of the AST perturbation can be obtained from the optimal state trajectories of the
AST perturbation:

Xast (k) = Xs ast (kor) + X a7 (kor). (3.2)

The condition of equal final net adaptation (x¢; (k1) = Xasr(kr)) implies that

SoL(x(ko), ucr) = X5 ast (ky) + xf,AST(kT)- (3.3)

Solving Eq. (3.3) for uc,, gives the level of the required CL perturbation. This was solved using the symbolic
toolbox of MATLAB for the optimal trajectories resulting from the AST algorithm.

3.2. Experiment Design
3.2.1. Task

The experiments were conducted in the neuroscience department of Erasmus MC, Rotterdam. The AST and
CL perturbations were implemented for adaptations to visuomotor rotations. In a visuomotor rotation exper-
iment, the participants are asked to move a cursor on a screen with the help of a manipulandum or a stylus
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(Figs. 3.1a, 3.1b and 3.2). For unperturbed conditions, the cursor would move just as the manipulandum or
stylus is moved. When visuomotor rotations are applied, the cursor movements will be rotated by a certain
angle about the origin of the movement. In each movement trial, the participants are asked to hit targets
shown on the screen. When visuomotor rotations are applied, the hand movements have to compensate for
the visuomotor rotation for the cursor to hit the target. This compensation of the hand movement is the
adaptation and the angle of the rotational offset of the hand movement is taken as the adaptation index.

For the current study a 2DOF robotic manipulandum was used. The manipulandum was placed under
a table and participants would use their right hand to hold the manipulandum below the table (Fig. 3.2).
The table obstructed direct vision of the hand and the visual scene with the cursor and the targets were pro-
jected onto the table. Moving the manipulandum made the cursor move on the screen. A black cloth worn
around the neck of the participant and attached to the table ensured that participants could not get any vi-
sual feedback on the position of the arm. On each trial, the cursor starts at the origin and one target appears
pseudorandomly in one of three positions arranged 10 cm from the origin. The three targets were arranged
along a circular arc at -30°, 0° and 30° from the origin as shown in Fig. 3.2. The participants were instructed
to make shooting movements to make the cursor shoot through the target. The robotic manipulandum was
designed to apply forces on the hand. As soon as the cursor crosses an imaginary circle on which the targets
are arranged the cursor disappears and a simulated force field captures the hand and slows it down. After
each trial the robotic manipulandum provides small forces to guide the hand back to the origin for the next
trial. After the participant brings the hand back to the origin, the cursor becomes visible again and the next
trial starts with a new target. The experiment was conducted in blocks of perturbations perturbation each
with either 200, 130 or 60 trials. There were four types of perturbation blocks — Parameter Estimation (Block
- A), Washout (Block - B), AST Perturbation (Block - C) and CL Perturbation (Block D) (Fig. 3.3). The schedule
of the perturbation blocks for the participants is described in Fig. 3.4. More details regarding the perturbation
blocks are included in the Section 3.3.

The perturbation blocks shown in Fig. 3.4 were presented after a familiarisation block of 60 trials. Ini-
tially some experiments were conducted with a shorter familiarisation block. This led to learning effects that
seeped into the parameter estimation block. To stabilize the learning effects a longer familiarisation block of
60 trials was chosen and the earlier participants with smaller familiarisation blocks were excluded. Based on
initial experiments some changes were made to the settings of the parameter estimation to rectify for some
technical issues. The 16 participants discussed in the Section 3.3.2 were all tested under similar conditions.

3.2.2. Participants

The details of the participants are included in Table 3.1. All the participants were right handed individuals
who were invited from among the students of TU Delft and Erasmus MC, Rotterdam. There were 16 partic-
ipants (13 males and 3 females) from an age range of 19-29 years with a median age of 25 years. Pilot exper-
iments on four participants showed an effect size of 2.2087 for the Difference in Movement Angles (DMA)
metric (defined in Section 3.4.2). G*Power was used to calculate the number of participants required to have
an a = 0.05 and power (1 — ) = 0.95 for a one-tailed one-sample t-test. The required number of participants
was found to be 5 which is much lower than the 16 chosen for the main experiment.The participants were
split into two equal groups (of 8) based on the order of presentation of the perturbation blocks.

3.2.3. Data Acquisition and Processing

The hand position was measured recorded using the encoders on the manipulandum at a sample rate of
200 Hz with the analog inputs from a motor controller card (DMC-1826; Galil Motion Control). Hand velocity
was calculated by differentiating the hand position and smoothing using Savitzky-Golay filtering with a fil-
tering width of 25 ms and order of 4. The Inter-Trial Interval (ITI) was 1000 ms. The maximum time per trial
is 1500 ms after which the target disappears and the hand the guided back to the origin for the next trial. The
hand movement on each trial is analysed from movement onset (defined as the time point when movement
velocity exceeds 0.04 m/s) to movement end (defined as the time point when the distance from the origin is
equal to or larger than 10 cm). The movement angle of the hand with respect to the target is metric the used
to assess adaptation. The movement angle was calculated as the angle between the vector connecting the
origin and the target and the vector connecting the hand positions at movement onset and movement end.
The perturbations were signed such that counter-clockwise perturbations are positive. The hand movement
angles on the other hand were signed so that clockwise rotations are positive. This convention was chosen
for ease in interpretation of movement angles with respect to perturbation angles. With this convention, for
a perturbation of +30°, a hand movement angle of +30° would be a complete adaptation where the cursor
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(b) The participant moves the manipulandum under the table to control the cursor.

Figure 3.1: Photos of the Experiment Setup
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Figure 3.2: Experimental setup. The participants grasps a manipulandum placed beneath a table to control the motion of a cursor on
screen projected on top of the table. A black cloth was worn around the neck of the participants and attached to the table to occlude
direct vision of the arm. This is not shown in figure. In perturbation trials, the direction of cursor movement is rotated from the
direction of arm movement about the origin. On each trial the participants are asked to hit targets randomly chosen from one of three
positions.
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Perturbation Schedule for Participants
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Figure 3.4: The schedule of presentation of perturbation blocks for groups of participants. The order of the AST and CL perturbations
are randomized between participants. The C-block has 100 trials of the AST perturbation followed by 30 retention trials. The D-block
has 100 trials of the CL perturbation followed by 30 retention trials.
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Table 3.1: Details of the participants.

Participant Details

Participant ID Gender Age Perturbation Order
P1 Male 25 AST First
P2 Male 27 CL First
P3 Male 22 AST First
P4 Male 26 CL First
P5 Male 28 CL First
P6 Male 24 AST First
p7 Male 24 AST First
P8 Male 19 AST First
P9 Male 29 CL First

P10 Male 28 AST First
P11 Male 25 CL First
P12 Female 26 AST First
P13 Male 27 CL First
P14 Male 24 CL First
P15 Female 25 AST First
P16 Female 23 CL First

perfectly hits the target.

3.3. Personalised Perturbations

3.3.1. Parameter Estimation

A staircase perturbation similar to the one used by van der Vliet et al. [2018] was used to estimate the learning
and retention parameters of each participant. The magnitude of the perturbation signal changes in incre-
ments of +2° or —2° every 6-9 trials. The number of trials between increments were randomly chosen to
prevent the participant from guessing when the perturbation signal will change (Fig. 3.5). The perturbation
magnitude increased from 0° to a maximum of +8° and then decreased back to 0° in 60 trials. In the follow-
ing 60 trials, the perturbations moved towards a minimum of —8° and then to 0°. The third set of 60 trials
was similar to the first set and moved to +8° and back to 0°. The last 20 trials of the perturbation block were
at 0° intended at bringing the participants closer to baseline behaviour. The increments were limited to a
magnitude of 2° to minimise the chances of participants getting explicit awareness about the perturbations.
When creating the perturbation block A for the experiment, the targets were also randomised within the 3
candidate locations.

The learning and retention parameters were estimated from the observed adaptation behaviour of the
participants to the parameter estimation perturbation using the toolbox from Albert and Shadmehr [2018]
which uses Expectation Maximisation (EM). Albert and Shadmehr [2018] had showed that expectation max-
imisation provided a better estimate of the fast and slow states of adaptation than least mean square error
minimisation. The hyperparameters used for running the estimation are listed in Table 3.2!. These were
tuned and finalized after some initial experiments. The minimum difference between the retention rates of
the fast and slow states and the minimum difference between the learning rates of the fast and slow states

1The upper and lower bounds for as, ag, bs and by were set at the same levels as the paper which introduced the toolbox (Albert and
Shadmehr [2018]).
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Figure 3.5: Parameter Estimation Signal. Three examples have been shown to illustrate how the randomisation of increments was used

to make the signal unpredictable.

were set as 0.05 to ensure that the slow and fast states have appreciable differences in learning and retention
rates. If this is not ensured, it was observed that in some cases some parameters had a value of zero while
two other parameters have nearly identical values. This is akin to fitting a single rate model. To enforce the
fitting of a proper two rate model the constraint was set at 0.05. This ensures that the system described by the
estimated parameters are observable and controllable. The toolbox fits a 2-state model onto the adaptation
behaviour of the participants and outputs estimates of the learning rates, the retention rates and the initial

state of adaptation.

Table 3.2: Hyperparameters for the Expectation Maximisation Toolbox used to estimate the learning and retention rates.

Hyperparameters for Parameter Estimation

Parameter Search Space Initial Estimate
Slow state retention factor (ag) (0,1.1) 0.95
Fast state retention factor (ay) (0,1.1) 0.9
Slow state learning rate (bs) (0,1) 0.05
Fast state learning rate (by) (0,1) 0.30
Initial slow state (xs(kg)) (-5,5) 0
Initial fast state (x¢(kp)) (-5,5) 0
State noise variance (le-7,10) 0.5
Motor noise variance (le-7,10) 0.5
Initial state variance (1e-7,10) 0.5
Settings Value
Number of Iterations 100
Minimum difference between (as) and (ar) 0.05
Minimum difference between (bs) and (bf) 0.05

3.3.2. Scaled Inputs

The learning and retention parameters of each participant estimated from the behavioural results of Block A
is used to tailor the AST and CL perturbations. The perturbations are calculated as described in Sections 2.4
and 3.1. At this stage, the perturbations might have different peak magnitudes for each participant as is seen
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in Fig. 2.5a. The perturbation magnitude should be limited for the purposes of the experiment. For the ex-
periment 30° was selected as the maximum limit for the perturbation magnitude. The AST perturbation was
scaled to have a maximum magnitude of 30° (Fig. 3.6a) which would result in optimal state trajectories which
are also scaled up (Fig. 3.6b). The CL perturbation is also scaled by the same factor as the AST perturbation
so that the net adaptation at the end of 100 trials is same for both perturbations.

3.3.3. Perturbation Blocks

The Familiarisation Block had 100 trials of 0° perturbation in which the participants can get accustomed
to the experimental setup. Perturbation Block A is comprised of 200 trials of the staircase perturbation for
parameter estimation. Block B was a washout block with 60 trials of 0° perturbation.

The AST and CL perturbations were embedded in Blocks C and D respectively. The 100 trials of the AST/CL
perturbations were followed by 30 retention trials. The retention trials were included to study how the adap-
tation decays after the perturbations. In the retention trials, the participants experienced zero sensorimotor
error (e(n) = 0°). This was achieved by making the cursor hit the target perfectly on all trials. The cursor
would move along the line connecting the origin and the target as the hand moved away from the origin. At
any given instant, the distance between the cursor and the origin would be equal to the distance between the
hand and the origin. The number of retention trials were limited to 30 so as to avoid the participants from
becoming aware of the retention trials.

In all the perturbation blocks, the target were randomly selected from one of 3 locations are described in
Fig. 3.2. Online feedback about the cursor position was provided during each trial as it moved from the origin
towards the target. The cursor would disappear at the end of each trial (i.e., when the distance from the origin
surpasses 10 cm) and only reappear at the start of the next trial.

3.4. Analysis

3.4.1. Model Predictions

The experiments were based on the assumption that the parameter estimation from Block A was sufficiently
accurate to predict the adaptation behaviour of the participants in the perturbations blocks that followed. To
check the aptness of the parameter estimation from Block A, the Expectation Maximisation (EM) toolbox was
used to fit the 2-state model onto the adaptation behaviour for the AST and CL perturbations. This provided
the learning and retention parameters for the model that best fit the behavioural findings of the correspond-
ing blocks. The initial state of adaptation was a free parameter that was tuned to get the best fit. To make
sure that arbitrary initial values were not selected for the start of the actual perturbation of interest (Blocks C
and D), the washout blocks that preceded Blocks C and D were also considered while fitting the model. Thus
for the AST and CL blocks, the models were fit for 190 trials ( 60 trials of Block B + 130 trials of Block C/D). It
must also be noted that the perturbation signals in Blocks C and D were not the ideal perturbations for use
in system identification. Since the goal of conducting the parameter estimation for Blocks C and D were only
to verify that the parameters estimated from Block A were representative of the adaptation behaviour of the
participant, the parameter estimates from Block A were given as the initial estimates while running the EM
toolbox for the AST and CL blocks. The search space was the same for all cases.

The parameters estimated were then used to simulate the mean adaptation trajectories - including tra-
jectories for the fast, slow and net adaptation. The predicted Movement Angle (MA), observed MA and the
mean-fit MA were plotted for each participant. The mean-fit fast and slow states were also plotted against
their predicted trajectories. The difference between the predicted trajectories and the mean-fit ones were
quantified in terms of MSEs. For the current project, all the analysis was done in MATLAB except for the
Analysis of Variance (ANOVA) for which IBM SPSS Statistics was used.

3.4.2. Within-Subject Analysis

The Difference in Movement Angles (DMA) averaged over the 30 retention trials at the end of Blocks C and D
was used as the metric to test if retention after AST perturbation was better than that after the CL perturba-
tion. The DMA was calculated in terms of the MAs in the i'" trial of Block C (A(i)) and the MAs in the i" trial
of Block D (0 (7)) as 2

2In some cases where participants did not complete some trials, the corresponding trials for both Block C and Block D were disregarded
in the summation. In these cases, the sum was divided by the actual number of trials considered (instead of the default value of 30).
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Figure 3.6: Scaled optimal input and state trajectories from Adaptation-State-Tracking (AST) for virtual participants with learning and

retention rates as seen in literature.
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130

DMA=—- ) [Bc(i)—HD(i) . (3.4)
30 i=101

Based on this metric the following within-subject hypothesis was formulated:

H1: Within-Subject Hypothesis

It was hypothesised that the AST perturbation would result in more retention than the CL perturbation
and that this would be reflected in the value of DMA having a value greater than zero for each participant.

DMA > 0. (3.5)

A one-sample Kolmogorov-Smirnov test (with a = 0.05) was used to check if the DMAs were non-normal.
Since the test showed that the DMAs were significantly non-normal, a one-tailed one-sample Wilcoxon signed-
rank test (with a = 0.05) was used to check hypothesis HI.

3.4.3. Washout Effects

During initial analysis, it was observed that in most of the participants that violated hypothesis H1 belonged
to the AST-First group. This warranted a closer look into the completeness of the washout between the per-
turbation blocks. An incomplete washout would mean that there might be residual adaptation from the pre-
vious perturbation block which might result in distorted results when doing a within-subject analysis. The
presence of residual adaptation would be reflected in the parameter estimates for the first and second pertur-
bation blocks. One sample Kolmogorov-Smirnov tests where used to test the normality of the distributions
of parameter estimates. They showed that the null hypothesis of normality can be rejected for all the param-
eters. To uncover any possible effects of perturbation order on the parameters, the participants were divide
according to the order of presentation of perturbations. And, two-tailed paired-sample Wilcoxon signed-
rank tests (with a = 0.05) were used to compare each of the learning and retention parameters of the first and
second perturbation blocks.

The DMA metric considers both the perturbation blocks experienced by a participant. If the washout is
incomplete, the second perturbation block experienced by the participants might be tainted. To separately
quantify the adaptation behaviour of each participant on both the perturbation blocks, a new metric (Mean
Scaled Movement Angle (MSMA)) was formulated after tests of hypothesis H1 returned non-significant re-
sults. As explained in Section 3.2.2, the inputs for each participant was scaled up so that the maximum per-
turbation angle was +30°. This means that different participants are trained to different terminal states. To
conduct an consistent analysis, the MAs should be scaled back by the same factor (y) as the input for each
participant. Thus Mean Scaled Movement Angles (MSMAs) for the perturbation blocks was formulated as

130

1 1
MSMAsr === Y [0c(0)],
Y 30 ;S 36
1 1 130 ( : )
MSMAw =—-—- Y [o,()].
Ty 30 i:;)l[ D(l)]

A mixed ANOVA was conducted to explore any interactions between the MSMAs of the perturbation
blocks (within-subject factor) and the perturbation order (between-subject factor). The mixed ANOVA was
conducted using IBM SPSS Statistics 25. The analysis of the completeness of the washout was explorative in
nature.

3In some cases where participants did not complete some trials, the corresponding trials were disregarded in the summation. In these
cases, the sum was divided by the actual number of trials considered (instead of the default value of 30).
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3.4.4. Between-Subject Analysis

After recognising that the washout between perturbations might have been incomplete and that there might
be residual adaptations that leak into the perturbation block that is experienced last, a second between-
subject hypothesis was formulated to compare the retention after AST and CL perturbations. In this hypoth-
esis, only the first perturbation block experienced by each participant is considered. To compare the AST-first
and CL-first groups, the MSMA metric was used. The between-subject hypothesis was formulated as:

H2: Between-Subject Hypothesis

It was hypothesised that the AST perturbation would result in more retention than the CL perturbation
and that this would be reflected in the value of MSMAs for the AST-first group having a value greater than
the MSMAs for the CL-first group.

MSMAyst > MSMAc;. (3.7

It should be noted that this hypothesis H2 was formulated after the experiments were conducted. This
was formulated after observing that incomplete washout might have caused the hypothesis H1 to have non-
significant effects.

A one-sample Kolmogorov-Smirnov test (with a@ = 0.05) was used to check if the MSMAs were non-normal.
Since the test showed that the MSMAs were significantly non-normal, a one-tailed Mann-Whitney U-test
(with @ = 0.05) was used to compare the two groups of MSMAs.






Results

4.1. Model Predictions

The estimates of the learning and retention parameters of each participant for each adaptation block is plot-
ted in Fig. 4.1, grouped by perturbation order !. A red upward pointing triangle denotes the participants
belonging to the AST-first group and the participants from the CL-first group are denoted by a yellow down-
ward pointing triangle. Based on these parameters, the mean-fit MAs were simulated for each adaptation
block. These mean-fit MAs were plotted along with the predicted MAs and the observed MAs. The predicted,
observed and mean-fit net adaptation for the AST Block is plotted in Fig. 4.2. The predicted, observed and
mean-fit net adaptation for the CL Block is plotted in Fig. 4.3. Since the fast and slow states cannot directly
be measured, model simulations based on the estimated learning and retention rates were used to find the
mean-fit fast and slow states of adaptation. The predicted and mean-fit trajectories of the fast and slow states
for the AST block is plotted in Fig. 4.4. The predicted and mean-fit trajectories of the fast and slow states
for the CL block is plotted in Fig. 4.5. The MSEs between the predicted and mean-fit trajectories for each
participant are summarised in Fig. 4.6. It can be seen that the predicted and mean-fit trajectories for the net
adaptation line up well. This is also reflected in the relatively low MSEs for the net adaptation (Fig. 4.6). Thus
the 2-state LTI model was able to predict the adaptation behaviour. The fast and slow states on the other
hand, show more deviations from the predicted values.

4.2. Within-Subject Results

The initial hypothesis (H1) was based on a within-subject analysis. For this the retention after the AST and
CL blocks of each participant was compared with each other using the DMA metric. The DMAs of all the
participants are plotted in Fig. 4.7. A one-sample Kolmogorov-Smirnov test on the DMAs (with a = 0.05)
showed that the null hypothesis of assuming a normal distribution can be rejected (p < 0.001). One-tailed
one-sample Wilcoxon signed-rank test (with @ = 0.05) used to check hypothesis H1 did not show a significant
effect (p = 0.1567).

4.3. Washout Effects

The comparisons of the learning and retention parameters of the first and second perturbations is plotted
in Fig. 4.8. While carrying out the comparisons, the AST-first and CL-first groups were treated separately.
One-sample Kolmogorov-Smirnov tests showed that all the parameter distributions deviated from a normal
distribution (p < 0.001 for all). The results of the two-tailed paired-sample Wilcoxon signed-rank tests are
mentioned in the corresponding plots. Even though none of the effect sizes are significant, there is a weak
effect for the AST-first group on the retention rate of the slow process as (p = 0.1094) and the learning rate of
the fast process bs (p = 0.1094).

The mixed ANOVA of all the MSMAs showed no significant effect of the perturbation block, F(1,12) = 0.92,
p = 0.767. The perturbation order had more effect on the MSMAs albeit non-significant, F(1,12) = 3.98,
p =0.069. There was a weak non-significant interaction between the perturbation order and the perturbation
block on the MSMAs, F(1,12) =2.82, p=0.119.

1Refer to Appendix E for some additional results regarding parameter estimation, input scaling and terminal MAs.
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Figure 4.6: MSE between predicted and mean-fit adaptation behaviour. Since the comparison is between the predicted and mean-fit
values, the effect of randomness in the adaptation behaviour does not affect this metric.

4.4. Between-Subject Results

Since the incompleteness of the washout blocks might have tainted the second perturbation block experi-
enced by the participants, a second hypothesis (H2) was formulated after the experiment which only con-
siders the first perturbation block experienced by the participants. In order to conduct the between-subject
analysis the metric MSMA of the first adaptation block experienced by the participants were used. Fig. 4.9
plots the scaled MAs of the first adaptation blocks and illustrates how the MSMAs were calculated. The MS-
MAs of the two groups of participants are shown in Fig. 4.10. One-sample Kolmogorov-Smirnov tests (with
a = 0.05) showed that for MSMA,sr the null hypothesis of assuming a normal distribution could be rejected
(p = 0.0013) and that the null hypothesis of normality for MSMA(, cannot be rejected (p = 0.0513). A one-
tailed Mann-Whitney U-test (with a = 0.05) used to compare the two groups of MSMAs showed significant
difference between the MSMAs of the two groups (p = 0.0415). Thus MSMA,s: is significantly greater than
MSMA:; which shows that retention is improved by the use of the AST perturbation.
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Discussion

5.1. Does AST improve adaptation?

The between-subject analysis (for hypothesis H2) showed that the AST perturbation generated significantly
better retention than the CL perturbation (p = 0.0415). The original within-subject analysis (for hypothesis
H1) on the other hand only showed a weak effect of the AST in improving retention (p = 0.1567). 6 out of the 16
participants violated hypothesis H1. Of these 6, 5 were from the AST-first group. This hints that the retention
caused by the AST block outlasting the washout block and leaking into the CL block that followed. This
prompted the analysis into the completeness of the washout block. The discussion on washout is detailed
in Section 5.3.

The natures of the component processes of adaptation exhibit dichotomies. The present work focuses
on the difference in retention between the fast and slow processes. The slow process was found be the major
contributor towards long-term retention (Joiner and Smith [2008],Charalambous et al. [2018]). It was hypoth-
esised that increasing the contribution of the slow process would improve retention. This hypothesis was
proven in the between-subject analysis. Beyond this particular hypothesis, the results prove that the compo-
nent processes of adaptation can be influenced by manipulating the perturbation schedule. This opens up
possibilities for enhancing not only retention, but also other aspects of adaptation like generalisation, trans-
ferability, cognitive load and reaction times. The slow/implicit process has lower cognitive requirements and
is thus less affected by secondary tasks (Keisler and Shadmehr [2010], van Es and Knapen [2019]). There-
fore, the AST perturbation designed here will likely reduce the effect of secondary tasks on the adaptation.
Generalisation and transfer are associated with the fast/explicit component of adaptation (Keisler and Shad-
mehr [2010], Mandelblat-Cerf et al. [2011], McDougle et al. [2017], Schween et al. [2018], Werner et al. [2015],
Poh et al. [2016], Werner et al. [2019] ). Thus to improve generalisation and transfer, the AST perturbation
should be designed to increase the contribution of the fast state and reduce the contribution of the slow state
([xs, xe1 = [0, 11).

Combining explicit aiming instructions with AST perturbations might provide better control over adap-
tation. This idea hinges on the explicit-implicit nature of the fast-slow processes of adaptation. Instructions
can be used to control the trajectory of the explicit process. The schedule of instructions must parallel the
optimal trajectory of the fast process from AST calculation. Mazzoni and Krakauer [2006] had explored the
effects of giving instructions to counteract a visuomotor rotation. It was observed that instruction was able to
produce rapid compensation of rotational perturbations. But, as time went by, the growth of the implicit pro-
cess led to increase in errors. This problem of increasing error due to growth of the implicit adaptation might
be rectified by the varying the instructions with each trial based on the optimal trajectory for the fast process.
Thus by intelligently manipulating the instruction and perturbation, we can improve learning and retention.
Leukel et al. [2015] had shown that the experts as opposed to novices have a stronger (more precise) explicit
process and that they have longer retention. It might be possible that experts modulate their explicit process
to improve the contribution of the implicit process which is more stable. AST perturbations might enable the
application of this strategy to rehabilitation.

Context-based adaptation has not been explored in this work. Lee and Schweighofer [2009] showed that
context based adaptation can be modelled with a 1-fast N-slow model. A single fast process is shared by
all the contexts and each context has a slow process associated with it (N slow states for N contexts). AST
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perturbations designed for multiple contexts could be used to verify the validity of the 1-fast N-slow model.

One of the main contributions of this thesis is the thinking of adaptation as a standard linear control prob-
lem. This enables many new options for influencing adaptation with existing linear control theory, including
optimal control. Adaptation-State-Tracking (AST) in the current work was based on a feedforward control
design. This is a basic control design. The open-loop aspect is a useful first step in that it enables the eval-
uation of how accurate the underlying model is. The effectiveness of the AST perturbation illustrated in the
current work warrants the use of more involved control designs. Feedback with state estimators can be used
to ensure that the actual adaptation states follow the predicted trajectories. Model Predictive Control (MPC)
could be used to generate optimal trajectories for the input and states while obeying constraints.

5.2.1Is the 2-state LTI model sufficient?

The predicted MAs from 2-state LTI model suggested by Smith et al. [2006] were similar to the observed MAs
(Figs. 4.2 and 4.3). The EM toolbox for estimating the learning and retention parameters from Albert and
Shadmehr [2018] was instrumental in tuning the model parameters to fit each individual participant. The
similarity of the predicted and observed MAs validate the 2-state LTI model where adaptation is composed
of two error-driven processes acting at different timescales and the use of EM for fitting the model to each
individual. The AST and CL perturbations were designed based on the 2-state LTI model and the AST per-
turbation exhibited more retention as hypothesised. This proves that the 2-state LTI model can be used to
design perturbations to influence the characteristics of adaptation. As far as the author is aware, this is first
time the 2-state LTT model has been used to design a perturbation and to predict the subsequent behaviour
of the participants.

The fast and slow states have larger MSEs between predicted and observed values than the predicted and
observed MAs for the net adaptation (Fig. 4.6). There is no direct method of probing the slow and fast states.
They can only be estimated based on model fits as seen in the following articles — C-Hemminger and Shad-
mehr [2008], Joiner and Smith [2008], Huang and Shadmehr [2009], Sing and Smith [2010], Trewartha et al.
[2014], McDougle et al. [2015], Coltman et al. [2019], Smith et al. [2006], Colagiorgio et al. [2015], Inoue et al.
[2015], Zarahn et al. [2008], Lee and Schweighofer [2009], Turnham et al. [2012], McDougle et al. [2015] and
Albert and Shadmehr [2018]. The perturbation signal in Block A (parameter estimation block) was designed
with the objective of getting the best estimate of the learning and retention parameters. The staircase shape
of the perturbation ensures maximum frequency content. The AST and CL perturbations on the other hand,
are not the perfect signals for conducting parameter estimations (since some frequencies might be missing
in the signal). This might be the reason why the estimates of the fast and slow states show large deviations
from the predicted values (Figs. 4.4 and 4.5). Contrary to the fast and slow processes, there are many meth-
ods for measuring the explicit and implicit processes of adaptation — Process Dissociation Procedure (PDP)
(Werner et al. [2015]), self-reported aim (Taylor et al. [2014]), and gaze-based estimation (de Brouwer et al.
[2018]). These methods could be used to check the effects of the AST perturbation on the explicit and im-
plicit components and verify the overlap between the fast-slow and explicit-implicit dichotomies proposed
by McDougle et al. [2015]. If there is an overlap between the dichotomies, real-time estimates of the explicit
and implicit components can be useful in designing online feedback controllers for the fast and slow states
of adaptation.

Piecewise-linear perturbations have been widely used in studies that try to fit the fast and slow process
models of adaptation: C-Hemminger and Shadmehr [2008], Joiner and Smith [2008], Sing and Smith [2010],
Trewartha et al. [2014], McDougle et al. [2015], Coltman et al. [2019], Smith et al. [2006], Inoue et al. [2015],
Zarahn et al. [2008], Lee and Schweighofer [2009] and McDougle et al. [2015] uses combinations of step signals
alone whereas Huang and Shadmehr [2009], Turnham et al. [2012], Colagiorgio et al. [2015] and Albert and
Shadmehr [2018] incorporates trapezoidal/triangular perturbation signals along with step signals. Turnham
et al. [2012] uses an additional random signal also. None of the papers use smooth nonlinear perturbations
like the AST perturbation. The MSEs for the AST perturbation blocks observed from the current experiment
were likely to have larger values than the CL perturbation. This lack of fit hints at system dynamics associated
with nonlinear perturbations that are not modelled by the 2-state LTI model by Smith et al. [2006].

Contradictions for the linear model in relation to the explicit and implicit processes have been observed
by Morehead et al. [2015]. Morehead et al. [2015] found that the contribution of the explicit process is more
prominent for larger perturbations while the contribution of the implicit process is not dependent on the size
of the perturbation. This cannot be explained by a linear model of adaptation. Berniker and Kording [2011]
suggested a model of adaptation where large perturbations are attributed to world rotation and smaller per-
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turbations are attributed to body rotation. The magnitude of the error determines which component un-
dergoes adaptation. Incorporating a similar nonlinear relation between the sensorimotor error and the fast
process might be able to capture the explicit character of the fast process. The nonlinearity could be in the
form of a minimum error threshold below which the fast process is not adapted. With this condition, for small
perturbations, only the slow process will be adapted. As the magnitude of the error increases, the contribu-
tion of the fast process increases. This is in agreement with the observations of Morehead et al. [2015]. This
nonlinear response to error might have originated from the presence of execution noise. van der Vliet et al.
[2018] found that the net adaptation rate was positively correlated with planning noise and negatively corre-
lated with the execution noise. Larger execution noise would mean that participants would be less likely to
properly attribute the error on a particular trial to motor noise or external perturbations. This lack of aware-
ness might hinder the fast/explicit process. Going by this logic, a lower planning noise would result in a lower
error threshold which in turn would lead a greater contribution of the fast process. The larger contribution
of the fast process will increase the overall adaptation rate as observed by van der Vliet et al. [2018]. Werner
et al. [2015] suggested the use of Process-Dissociation Procedure (PDP) to estimate the contributions of the
explicit and implicit components. Experiments with AST and CL perturbations followed by PDP can be useful
in verifying whether the fast and slow process are the explicit and implicit processes.

Scaling of the inputs was done based on the assumption of linearity. In the light of nonlinear charac-
teristics, it might be better to avoid scaling the input signals. Also, scaling of the inputs to make sure that
all the participants have the same maximum perturbation magnitude means that the final level of the slow
process is different for each participant. This is not ideal for conducting a between-subject analysis. Future
work might benefit from not having scaled inputs. Instead, have all the participants train to the same level of
adaptation.

The retention parameters of the slow process (as) found in the prior literature were very close to 1, which is
the usual upper bound in studies (Fig. 2.1 and Table 2.1). The search space for as for the current study was set
as (0,1.1) to prevent the saturation of as at 1. A value of a; slightly greater than 1 would mean than for a steady
perturbation, the adaptation would overshoot and stop at a value higher than what is required to just cancel
out the effect of the perturbation (refer Section 2.3 and Fig. 2.3). The sensorimotor error (e(k)) through the
term bs - e(k) would limit the adaptation from indefinitely increasing. But in the case of error-clamp trials like
those of the retention trials, the absence of sensorimotor error can prevent the adaptation from stopping. In
real-life, this type of escalating adaptation might be limited by other neural dynamics which are not captured
by the 2-state LTI model. It is interesting to note that participant 7 showed this kind of behaviour for both
perturbation blocks and is reflected in as values slightly greater than 1. Some other participants also have
estimates of ag slightly greater than 1 — all of which is closer to 1 than 1.1. Thus the issue of saturation of the
estimates of ag at the upper bound is precluded with the current selection of the search space.

5.3. Washout vs Non-stationarity

The parameter estimates for the perturbation blocks were used to probe the effectiveness of the washout
block between Blocks C and D. It was observed that the retention rate of the slow process (as) and the learn-
ing rate of the fast process (bf) increased slightly from the first to the second perturbation for the AST-first
group (Fig. 4.8). The slow process contributes more towards net retention (as > as) and the fast process con-
tributes more towards the net learning rate of adaptation (bs > bg). Larger values of as and by means that net
adaptation has more retention and is faster, which is indicative of savings when moving from the AST pertur-
bation to the CL perturbation. Thus the washout does not completely bring the adaptation back to baseline
behaviour. The weak effects of the perturbation order (F(1,12) = 3.98, p = 0.069) and the interaction between
the perturbation order and the perturbation block (F(1,12) = 2.82, p = 0.119) on the MSMAs also hint at the
incompleteness of washout.

The length of the washout blocks was set at 60 trials as a trade-off between a long washout and a short
experiment duration. Zarahn et al. [2008] noted that savings-like behaviour was still evident with washouts
of 40 trials. Inoue et al. [2015] suggested a 3-state LTI model of adaptation with an additional "ultra-slow"
process. Inoue et al. [2015] stated that the 2-state LTI model was sufficient for predicting retention for exper-
iments with upto 250 trials. For adaptation experiments with more than 500 trials, the 3-state LTI model was
needed to predict retention. Huang and Shadmehr [2009] and Turnham et al. [2012] had suggested that the
learning and retention rates may vary in response to statistics of the perturbations. To minimise the impact
of such non-stationarities, the experiment duration should be limited. Interestingly, 60 trials were sufficient
to washout the effects of the CL perturbation. This is evident in the lack of significant difference between
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the estimated parameters for the CL-first group. This might also hint that the AST perturbation is training an
ultra-slow process that is not modelled.

Future experiments might benefit from longer washouts between the AST and CL perturbation blocks. Or
the washout block can be bypassed in favour of a between-subject design. For a between-subject experiment
design, it would be better to avoid the scaling of the inputs to ensure that all the participants adapt to the
same final state of adaptation. In this case, the desired terminal state should be a small angle (for visuomotor
rotation experiments) for the slow state, like [xs, xf] = [0°, 5°].

5.4. Augmenting Rehabilitation

Assist-As-Needed (AAN) is a paradigm in robot-assisted rehabilitation where the level of robotic assistance is
reduced in response to a reduction in trajectory errors (Reinkensmeyer et al. [2004], Liu and Reinkensmeyer
[2004] and Emken and Reinkensmeyer [2004]). AAN assumes that rehabilitation from a neurological injury
can be modelled as a adaptation process (Reinkensmeyer [2003]). AAN is based on a single-state model of
adaptation. Adaptation-State-Tracking (AST) on the other hand, is based on a 2-state LTI model and can thus
leverage the presence of savings-like effects. AAN considers the perturbation on each trial to be the sum of
the effect of the neurological injury and the effect of the robotic assistance. To utilise AST for rehabilitation,
the level of robotic assistance should be controlled to make the net perturbation (robot + neurological injury)
follow the trajectory of the AST perturbation. One of the main benefits of AAN is that task-errors are min-
imised throughout rehabilitation. Applying the feedforward AST from the start of rehabilitation can lead to
high task-errors which might be harmful for patients (especially in the case of walking and balance). To pre-
vent the problem of high task errors, AAN can be employed in the initial stages of rehabilitation and the AST
can be used in the final stages to push the adaptation to the required state. This hybrid approach would also
solve the problem of incomplete rehabilitation (Emken et al. [2007]) associated with AAN. While AAN updates
are based on task error, parameter estimation using EM enables AST to predict adaptation behaviour.

AST-based AAN might also be achieved by defining a cost function that weighs off robot control effort and
human error for the 2-state LTI model. This could be implemented as an MPC problem with feedback and
state estimators. The MPC formulation allows for applying constraints on task errors too.

Human-assisted rehabilitation might also benefit from the AST perturbations. AST produces an over-
shooting trajectory for the fast/explicit process. An understanding of the structure of AST and the overshoot-
ing trajectory of the fast process might be useful for rehabilitation practitioners to control the level of as-
sistance and perturbation. Estimates of the slow and fast states of adaptation could be used as indicators
of adaptation in addition to the level of net adaptation. In this work, the parameter estimates from the EM
toolbox was used to tune the AST perturbation. Rehabilitation practitioners with practice might be able to fit
AST-style perturbations to each patient based on feedback from the patients.

Shadmehr and Krakauer [2008] suggests that different regions of the brain are responsible for the different
elements of optimal control associated with motor control. The cerebellum was believed to be responsible
for internal model formation. State estimation was thought to rely on the parietal cortex. The basal-ganglia is
assumed to take care of the cost functions and rewarding mechanisms. The best actions are then converted
into motor commands and implemented by the primary motor cortex and the premotor cortex. This hypoth-
esis suggests that neural injuries to different regions of the brain will lead to different types of movement
pathologies. This is indeed what is seen in patients with neurological deficits.

Adaptations on the whole is based on cerebellar-thalamic-cortical and cerebellar-basal ganglia networks
(Mawase et al. [2017],Kim et al. [2015]). Experimental evidence paints a picture where the prefrontal cortex
and the parietal lobes contribute to the fast process and the explicit process (Kim et al. [2015], Thurer et al.
[2016] and Liew et al. [2018]). The cerebellum contributes to both the fast the slow processes as well as both
explicit and implicit processes (Kim et al. [2015] and Butcher et al. [2017]). Posterior cerebellum is supposed
to be responsible for a fast component while anterior-medial cerebellum is the basis for a slow component
(Kim et al. [2015]). A vast body of literature exists on the neural activations during sensorimotor adaptation
apart from the ones mentioned here. A more detailed account is available in Appendix C.5.

Deficits to particular regions of the brain can thus lead to deficiencies in the fast and slow processes.
These should be accounted for when designing AST based rehabilitation interventions. For example, an in-
jury to the prefrontal cortex will impair the fast process and thus the AST design should reflect the deficiency.
Stimulating the neural regions was also found to influence the components of adaptation. Transcranial Di-
rect Current Stimulations (tDCMs) is one such stimulation method which was used to increase or decrease
the activation of different neural regions (Herzfeld et al. [2014], Liew et al. [2018]). Stimulations such as these
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could be used to augment AST perturbations. Since the fast/explicit and slow/implicit processes are believed
to originate from different neural regions, AST could possibly be used to selectively activate the adaptation
processes for the purpose of studying the neural regions associated with each adaptation process.






Conclusion and Recommendations

6.1. Conclusion

An Adaptation-State-Tracking (AST) perturbation was designed to increase the share of the slow process of
adaptation. It was believed that increasing the contribution of the slow process would improve retention.
The AST perturbation is based on the 2-state LTI model of adaptation suggested by Smith et al. [2006]. For the
experiments, the learning and retention parameters of the participants were estimated with the help of stair-
case perturbations and the EM toolbox from Albert and Shadmehr [2018]. Personalised AST perturbations
were calculated for each participant based on these estimated parameters. Comparison of the AST and CL
perturbations revealed superior retention for the AST perturbation. The within-subject comparison did not
show significant effects (p = 0.1567). An incomplete washout block is believed to have let the effects of the
AST block leak into the CL block for the AST-first group. A between-subject analysis conducted with only the
first perturbation blocks revealed a significantly greater retention for the AST perturbation (p = 0.0415). The
incompleteness of washout after the AST perturbation hints at the possibility of AST training an ultra-slow
process that was not modelled — which is good for improving retention. The effectiveness of the AST pertur-
bation opens up the possibility of designing rehabilitation paradigms which can selectively target different
aspects of human sensorimotor adaptation.

6.2. Recommendations
¢ Experiment Design: A between-subject experiment design can be used to preclude the effects of in-
complete washouts. All the participants should be trained to the same level of adaptation (say 5° for
the slow state and 0° for the fast state). The input signals should not be scaled differently for different
participants.

* Deeper into Adaptation Processes: Overlap with explicit-implicit could be explored by using the same
perturbations (AST and CL) but followed by a PDP instead of the retention block. PDP can be used to
find the contributions of the explicit and implicit components of adaptation. This can be used to verify
the connection between the fast-slow components and the explicit-implicit components of adaptation.
Explicit processes have been shown to be sensitive to large and abrupt errors. The 2-state LTI model
captures no such effect. Since there is a likely overlap between the fast-slow and explicit-implicit di-
chotomies, it might be wise to introduce error-based non-linearities into the models of adaptation.
An error threshold could be incorporated into the dynamics of the fast/explicit process to capture the
effects of the saliency of errors. AST could possibly be used to selectively activate the adaptation pro-
cesses for the purpose of studying the neural regions associated with each adaptation process.

¢ Better Control Schemes: Feedback and state estimators could be used to ensure that the actual adap-
tation behaviour matches the optimal trajectories predicted by AST. An online MPC formulation would

be able to optimally track the adaptation states and also satisfy constraints on the inputs or states.

* Rehabilitation: AST-based trajectories for assistance and instruction could be useful in improving re-
tention in rehabilitation intervention. Qualitatively, these trajectories would engender an overshooting
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6. Conclusion and Recommendations

trajectory for the fast/explicit process. Qualitative understanding of the structure of AST perturbations
and the optimal state trajectories can be beneficial in human-assisted rehabilitation. Human practi-
tioners might be able to intuitively tune the level of assistance to fit the learning and retention char-
acteristics of each patient. It would be interesting to study whether an understanding of AST can be
utilised by human practitioners to modulate the level of assistance given to participants. The benefits
of using estimates of the slow and fast states of adaptation as additional markers for evaluating the
progress of patients could also be studied.
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Assist-as-Needed Rehabilitation

The "Assist-as-Needed" paradigm for robotic rehabilitation was conceived based on a model for how people
adapt to a neurological injury (Reinkensmeyer et al. [2004]). Rehabilitation was considered as an adaptation
to an altered sensorimotor mapping which was a result of some neurological injury (Appendix A.1) and mod-
els of human adaptation were used to arrive at a slacking control for rehabilitation using robotic assistance
(Appendix A.2).

A.1. Rehabilitation as Adaptation

Assist-as-needed control for robotic rehabilitation was designed based on the assumption that neurological
injuries affect the sensorimotor mapping between sensory inputs and muscular activations (Reinkensmeyer
[2003]), and that the recovery process from a neurological injury can be modelled as the adaptation to a new
sensorimotor mapping (Reinkensmeyer et al. [2004]). Simulations using a Markov model of adaptation have
shown the benefits of assist-as-needed rehabilitation for Hebbian-learning based adaptations (Reinkens-
meyer [2003]). Reinkensmeyer et al. [2004] combines this with an understanding of adaptive strategies (Liu
and Reinkensmeyer [2004]) and how motor learning can be enhanced by transiently increasing the trajectory
error (Emken and Reinkensmeyer [2004]) to develop the slacking controller (detailed in Appendix A.2).

Liu and Reinkensmeyer [2004] tells us that motor adaptation can be modelled as an optimal combination
of four major adaptive strategies:

1. Internal Model Formation: when the forces are small and predictable.
2. Impedance Control: when the forces are small and unpredictable.

3. Force Minimisation: when the forces are large.

4. Trajectory Planning: for both large and small forces.

The internal model formation is the change in the mapping between the sensory input and the muscular
output. This is useful in the feedforward control of motion. Impedance control is useful when the effect of
small external perturbations can be minimized by the stiffening of the body. Force minimization refers to the
dynamic optimization strategy that tries to optimize the muscle activations with the goal of minimizing some
cost function related to force, torque or energy consumption. Trajectory optimization refers to shifting the
equilibrium trajectory in the opposite direction to that of the mean of the environmental perturbations.

Liu and Reinkensmeyer [2004] has formulated a mathematical model of adaptation based on the following
learning law in which the muscle forces on a given trial depend on the muscles forces on the previous trial
and the trajectory error on the current trial :

Uir1 = fa-ui— gu-|xi — x4l (A1)

where!

IThe nomenclature used in the Appendix is different from the nomenclature in the main text. The nomenclature in Section 1.1.1 is
chosen to be consistent with the nomenclature used throughout the main text. The nomenclature in Appendix A is chosen to be
consistent with the original papers for ease of reference.
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u; = the average force generated by the body muscles on the ith trial
x; = the average deviation in the ith trial

x4 = the desired deviation

gu = the learning gain of the nervous system (H for Human)

fu1 = forgetting(retention) factor of the nervous system, fiy <1

Additionally, considering that the human body acts like a spring of constant stiffness K when an external
force F; is acts on it, we get,

1
Xi—Xq = _E(Fi + u;) (A.2)
Combining Egs. (A.1) and (A.2) we get:
Xi+1 =(f —g—H)xi—f—HFi+lFi+1+(1—(f —g—H))Xd (A3)
K K K K
which can be written as:
Xi+1 = aoXi + b1 Fi+ boFiv1+¢o (A.4)
where,
_ . 8H _ Ju _ 1 (1 (s 8&H
ao = fu X by = I bo—K Co—(l (fH K))xd

Liu and Reinkensmeyer [2004] has applied the above model to the adaptation of a reaching task in a force
field (upper-body task). The adaptation behaviour has been explained on the basis of an optimal control
paradigm where the nervous system tries to minimize a cost function based on the kinematic error (e), the
resultant muscle force (1) and the muscle stiffness (K):

J=hHe+ f2(w)+ f3(K) (A.5)

The internal model formation strategy is useful for predictive or feedforward control and is dominant
when the learning gain gy and forgetting(retention) factor fiy are large. As the internal model becomes more
accurate the values of fiy and gy are increased. The impedance control strategy is dominant when the pertur-
bations are small and predictable. In these cases the muscle stiffness K is increased to minimise the effect of
random perturbations. When the external forces are large, the cost function is dominated by the muscle force
term and thus force minimization strategies are applied. Trajectory planning shifts the equilibrium point x;
opposite to the the average perturbation field to minimize the kinematic error. Thus the various characteris-
tics of the reaching adaptation was explained in Liu and Reinkensmeyer [2004] with the help of the adaptation
model (Eq. (A.3)). Emken and Reinkensmeyer [2004] showed that the same model is applicable for a stepping
adaptation (lower-body task).

This model was later used to model the recovery from neurological injury in Reinkensmeyer et al. [2004]
and was subsequently used to formalize the Assist-as-Needed rehabilitation as an optimization problem
(Emken et al. [2005]).

A.2. Slacking Assistance

Reinkensmeyer et al. [2004] developed the "Assist-as-Needed" paradigm of robotic rehabilitation which was
based on a computational model of rehabilitation. This model was based on the idea that recovery from
a neurological injury can be considered as the relearning of a mapping between input senses and output
muscle forces. The adaptation model (Eq. (A.4)) which was applied to reaching (Liu and Reinkensmeyer
[2004]) and stepping (Emken and Reinkensmeyer [2004]) adaptations was used as the model for recovery
from a neurological injury.

Reinkensmeyer et al. [2004] noted that the model of adaptation showed that the nervous system "slacks"
while adapting; ie, at each trial, the nervous system has a tendency to rely on the previous trials too, so that
the resulting adaptation lags behind the perturbation signal. It was shown that an assistive robotic device that
"out-slacked" the nervous system was able to force the human to learn the adaptation while at the same time
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limiting the kinematic error. This requirement for minimizing the trajectory error is crucial for applications
like walking where large errors are harmful to the patient.

Reinkensmeyer et al. [2004] modelled the robotic assistance as a position-controlled device that acted like
a spring and produced a force proportional to the trajectory error:

R =—-G(x; — xq) (A.6)

The stiffness of the assistance G was adapted based on the trajectory error on previous trials. Assuming
that the human body behaves like a spring as described in Eq. (A.2), we get the equation for the coupled
human-robot system as:

1
X; :_m(Fi+ui)+Xd (A.7)

The learning law associated with the nervous system is as described earlier in Eq. (A.1). To "out-slack"
this nervous system the stiffness of the robotic assistance R was adapted on based on the trajectory error in
the previous trials as:

Ritv1=fr-Ri+gr-|xi — x4l (A.8)

where,

fr = forgetting(retention) factor of the robot, fr <1

gr = learning gain of the robot

Thus the stiffness of the robotic assistance increases if the trajectory error on the previous trial was large
and decreases if the trajectory error on the previous trial was small. With this control law, it was shown that
the human learns progressively if the slacking of the assistance is more than the slacking of the human, which
forces the human to adapt.

This "Assist-as-Needed" paradigm was further formalized as an optimization problem in Emken et al.
[2005]. Emken et al. [2005] considered the following cost function based on trajectory error and robotic assis-
tance force for the minimization problem:

1 A
J =5 (in _xd)2+7R(Ri+1)2 (A.9)

where, Ay is a constant that weighs the relative cost of the error and force terms.
The total perturbation F; was assumed to be the sum of the effect of the neurological impairment I; and
the robotic assistance R;:

Fi=R;+1I; (A.10)

Substituting equation A.10 into equation A.4 gives:

Xi+1 = AoXi + b1 R; + boRj1 + b1 I; + bolit1 + co (A.11)

Now the minimum of the cost function (equation A.9) occurs when

oJ = (Xia1 — X) 0Xi+1
OR;11 T oR
Taking the partial derivative of x;;; with respect to R;+; from equation A.11, we get the optimality condi-
tion as:

+ARRi+1=0 (A.12)

b
Riy1 = —A—O (Xis1— Xa) (A.13)
R

Substituting for x;.; from equation A.11, we get:

Ris1 = foRi— 8rK (x; — xg) + e (fuli — Ii+1) (A.14)
where,
fu fu—8u 1 . &H
- = — = = — A15
= e ER =Rk +1 R ARKZ+1 EH= ", (A-15)
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The optimal robotic assistance as described in equations A.14 and A.15 is similar to that of the neural
controller described by the learning law A.1 and has both a forgetting(retention) term fr and a learning gain
gr. Itis also evident that A.14 is a more rigorous definition of the slacking robotic assistance described earlier
inA.8.

This "Assist-as-Needed" paradigm of robotic rehabilitation is based on the assumption that motor adap-
tation in humans can be satisfactorily modelled by the learning law described in equation A.1. However,
recent advances in neuroscience has pointed to the existence of multiple learning processes in motor adapta-
tion. Incorporating such models of adaptation with multiple processes into the robotic rehabilitation paradigm
could open up new dimensions of control for robotic rehabilitation.



Sensorimotor Adaptation — Addendum

B.1. Sensorimotor Adaptation Tasks
This section gives an overview of the various sensorimotor adaptation tasks that have been studied in neuro-
science.

Visuomotor Rotation

In these tasks, the participant moves a stylus or manipulandum to move a cursor on a screen. The goal is to
make reaching movements to hit targets on the screen. The motion of the cursor on the screen is rotated such
that the participant has to compensate for this rotation to hit the target.

Force Field

In force field adaptation, the participant has to move a manipulandum to make the cursor hit target shown
on a screen. A viscous curl force field perturbs the motion of the hand in a direction perpendicular to that of
the movement.

Prism Rotation
In these tasks, the participants are made to wear prism goggles that create a rotation of visual feedback. The
objective is to hit target by throwing balls while having rotated visual feedback.

Saccade

There are two types of saccade adaptation — gain-up and gain-down. In gain-up saccade adaptation , the
target location moves farther away from the origin as saccade progresses. During saccade no feedback can
be obtained and to adapt to such a sudden shift in target, the adaptation has to rely on internal models. A
gain-down adaptation is the reverse of a gain-up adaptation.

Vestibulo-Occular Reflex

The vestibulo-occular reflex is responsible for stabilising the eye during head movements. Artificial perturba-
tions can be applied on this reflex by having a drum/screen around the head which rotates at different speed
than that of the head.

Locomotor Adaptation
Locomotor adaptation refers to adapting the asymmetry of gait. The stride lengths are made to vary between
left and right legs through distorted visual feedback or through the use of a split-belt treadmill.
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B.2. Behavioural Properties of Adaptation

Table B.1: Behavioural characteristics of Sensorimotor Adaptation

Behavioural Properties of Sensorimotor Adaptation

Adaptation Behaviour Description

Savings is the faster re-adaptation from baseline behaviour to a

Savings . . ;
8 perturbation that was previously experienced.

Spontaneous Recovery from baseline behaviour after Error-Clamp Trials (in

Spontaneous Recovery which error feedback is set to zero) following de-adaptation.

Rapid De-adaptation to baseline behaviour when the perturbation is

Rapid De-adaptation removed.

Accelerated Re-adaptation to a downscaled version of a previously

Accelerated Re-adaptation . .
experienced perturbation.

Slower adaptation from baseline behaviour to a perturbation in the

Anterograde Interference . . . ;
& opposite direction to that of a previously adapted perturbation.




Literature Review on Multiple Processes

This appendix a brief account of the literature review on the multiple processes of adaptation.

C.1. Finding Relevant Literature

Literature on the fast-slow and explicit-implicit dichotomies were gathered through database searches in Web
of Science, Scopus and Pubmed. The structure of the search strings used are explained in Tables C.1 and C.2.
From the results found, relevant articles were shortlisted as shown in Fig. C.1.

Table C.1: Search String Blocks for each research topic of interest

Blocks Block Structure

(*motor NEAR/3 (learn* OR adapt*) OR ((*motor NEAR/3 skill*) AND (learn* OR adapt*))
& OR (*motor NEAR/10 rehabilitation))

(cortex OR *cortico* OR cerebellum OR cerebellar OR “basal ganglia” OR supraspinal OR

neural* OR “subtangia nigra” OR striatum OR caudate OR putamen OR “globus pallidus” OR
“ventral pallidum” OR “subthalamic nucleus” OR brain OR (Neurorehab* OR Neuro-rehab*
OR Neuroscience OR Neurophysiol* OR Neurolog* OR Neuron*) )

(multirate OR multi-rate OR (slow OR fast) OR rate OR rates OR time-scale* OR timescale*
P OR time-constant* OR (implicit OR explicit))
(model* OR computational OR “process” OR “processes”)

(retent* OR forget* OR sav* OR extinct* OR memory)
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Table C.2: Search String Structure based on the search string blocks of Table C.1

Search String Structure

| Learning |AND INeuro I AND | Temporal |AND |M0de1 I AND | Memory |

AND

[ (| Temporal |NEAR| Process I) OR (| Temporal |NEAR (Learn* OR Adapt*) )]

C.2. Literature Found

Table C.3: List of references that were included for the quantitative and qualitative analyses and whether they talked about the
Fast-Slow or the Explicit-Implicit Dichotomies.

References for Qualitative and Quantitative Analyses
Reference Adaptation Type lfi?:sl:;)f(l)(:lvy Ex}l))liiz}ilt;?lggcit Qlilasrfgti;?‘t;ve
Analysis
References From Database Searches
Kojima et al. [2004]  Saccade
Smith et al. [2006] Saccade . O
Kording et al. [2007]  Sacccade .
C-Hemminger and Shadmehr [2008]  Force Field ‘ O
Ethier et al. [2008]  Saccade (0}
Joiner and Smith [2008]  Force Field @) ©)
Zarahn et al. [2008]  Visuomotor Rotation 0] O
Huang and Shadmehr [2009]  Force Field (0] O
Lee and Schweighofer [2009]  Visuomotor Rotation (@) O
Angueraetal. [2010]  Visuomotor Rotation
Keisler and Shadmehr [2010]  Force Field (@) (€]
Sing and Smith [2010]  Force Field ‘ O
Angueraetal. [2011]  Visuomotor Rotation
Berniker and Kording [2011]  Visuomotor Rotation
Mandelblat-Cerf et al. [2011]  Force Field
Turnham et al. [2012]  Visuomotor Rotation . O
Wong and Shelhamer [2013]  Saccade
Herzfeld et al. [2014]  Force Field
Taylor et al. [2014]  Visuomotor Rotation .
Trewartha et al. [2014]  Force Field . . O
Colagiorgio et al. [2015]  Vestibulo Occular ‘ O
Inoue et al. [2015]  Visuomotor Prism () O
Kim et al. [2015]  Visuomotor Rotation
Kim et al. [2015]  Visuomotor Rotation 0]
Continued on next page
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Table C.3 - continued from previous page
Reference Adaptation Type I;i:(-)ff)(:lvy Ex};:::;zlrﬁgdt Ql?afgti;;zve
Analysis

Kim etal. [2015] Locomotor .
Leukel et al. [2015]  Visuomotor Prism ‘

McDougle et al. [2015] f/?srssiigr Ri‘taﬁon (0] (<] @)
Morehead et al. [2015]  Visuomotor Rotation ‘
Werner et al. [2015]  Visuomotor Rotation .
Poh etal. [2016] Visuomotor Rotation .
Thurer et al. [2016] ~ Force Field (<
Butcher et al. [2017]  Visuomotor Rotation .

Mawase et al. [2017] Locomotor

McDougle et al. [2017]  Visuomotor Rotation . .

Albert and Shadmehr [2018]  Visuomotor Rotation . O

Charalambous et al. [2018] Locomotor ‘

de Brouwer et al. [2018]  Visuomotor Rotation (©]
French etal. [2018] Locomotor (©]
Leow et al. [2018]  Visuomotor Rotation (©]
Liew et al. [2018]  Visuomotor Rotation (€]
Schween et al. [2018]  Visuomotor Rotation (€]

Coltman et al. [2019]  Force Field (0] O
van Es and Knapen [2019]  Saccade (0] (€]

References From Other Sources

Mazzoni and Krakauer [2006] Visuomotor Rotation ‘
Werner et al. [2019]  Visuomotor Rotation .

C.3. Dichotomies of Adaptation Processes

Table C.4: Proposed Dichotomies of Adaptive Processes based on the Nature of Component Processes.

Dichotomy of Adaptive Processes

Process Dichotomy Description

Fast-Slow (Smith et al. [2008]).

Explicit-Implicit (Mazzoni and Krakauer [2006]).

Adaptive processes acting in different timescales

Awareness dependant components of adaptation

Adaptive components for intrinsic vs extrinsic

Body-World
Kording [2011]).

perturbations. ( Kording et al. [2007], Berniker and
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~
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337 241 213
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Title and Abstract Scan Excluded Papers
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Figure C.1: Summary of the literature shortlisting process with the number of articles that were selected after each stage.
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Figure C.2: Distribution of Adaptation Tasks and Dichotomies in the final selection of articles. F-S as E-I refers to those articles that talk
of the fast process as the explicit process and the slow process as the implicit process. (F-S) & (E-I) refers to those articles that
separately consider the Fast-Slow and Explicit-Implicit dichotomies without drawing any correlation between them.
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C.4. List of Mathematical Models of Adaptation

Table C.5: Mathematical Models of Adaptation. For detailed descriptions of the various mathematical models please check appendix ??

Mathematical Models of Adaptation

Model

Equations

Description

2-rate Linear Time
Invariant

Xs(n+1) = as - xs(n) + bs - e(n)
xg(n+1) = ag- x¢(n) + bg- e(n)
x(n) = xs(n) + x¢(n)

bs < b, ag< as

Fast Process and Slow Process with
unchanging parameters (Smith et al.
[2006])

2-rate Varying
Parameter

Xs(n+1) = as(1) - xs(n) + bs (1) - e(n)
xg(n+1) = ag(t) - x¢g(n) + be(t) - e(n)
x = xs(n) + x¢(n)

bs (1) < be(t), ag(t) < as(t)

Fast Process and Slow Process where
parameters change according to
previous experience of Perturbations
(Zarahn et al. [2008])

3-rate Linear Time
Invariant

Xus(n+1) = ays - xus (1) + bys - e(n)
Xs(n+1)=as-xs(n)+ bs-e(n)
xg(n+1) = ag- x¢(n) + bg- e(n)

X = Xs + Xp

bus < bs < bg, af < as < ays

Fast Process, Slow Process and
Ultra-Slow Process with unchanging
parameters (Inoue et al. [2015])

Context Based:
1-Fast N-Slow

xg(n+1) = ag- x¢(n) + bg- e(n)
Xs(n+1)=Ag-x5(n)+Bg-e(n)-c(n)
X =Xg+ Xf
As=1I-ag
Bs=1-bs

bs<bf, ag < as

A single fast process shared with all
contexts and n slow processes for n
contexts. The slow process become
active based in the context (Lee and
Schweighofer [2009])

2-State
Gain-Specific

x1(n+1)=min(0,a-x1(n)+b-e(n))
Xo(n+1)=max(0,a-x2(n)+b-e(n))

X=X1+X2

Two separate processes — one for
increasing gain and the other for
decreasing gain (Kojima et al. [2004]).

Continued on next page




68

C. Literature Review on Multiple Processes

Table C.5 - continued from previous page

Model Equations Description
xs(n+1) x5 (1)
* =A-|"° +€
xp(n+1) x¢(1)
Fast Process influences slow process
Active: when adaptation is
Active-Inactive: Fast as 0 inactive(environment is not
to Slow when A=Aa= 0 a ande=¢q observable). Fast and Slow uncoupled
Inactive when active(when environment is
observable) (C-Hemminger and
Inactive:
Shadmehr [2008]).
a, a,
A=A;= s f and e =¢€;
0 ag
bs < bg, as< as
1 . .
xi(n+1)= (1 - ;) “x;(m) +e; In the credit assignment model a range
N l of timescales are considered and there
P+ =1+) x;(n+1) . . .
. . 7 is an adaptive state corresponding to
Credit Assignment . .
Model y=j+ey each timescale. Observations on each
ei ~ N (0,02) trial are used to update the state
5 - estimates using a Kalman Filter
O; =CT; .
P (Kording et al. [2007]).
ey~ (0,0%)
Output
In+1=A1-An+A2-Xntey
Mean Process
Brfin+ 5 ¢; (J’j - J7j) "y Keeps track of the mean of the
JEn=THl perturbation on previous trials until the
A Ecumulative = Ethresh accumulated error passes a threshold.
Regime Switching Hn+1= Once the accumulated error surpasses a
Model threshold, regime switching ensues
Hn . . .
. whereby all the information regarding
otherwise

Error-Correction Process

)ACnJrl:fl'an'*'fZ'Wn’(J’n—ﬂi)

Error-Tolerance Process
Updates Ethresh

based on recent experience.

the previous trials are discarded (Wong
and Shelhamer [2013]).

Continued on next page
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Table C.5 - continued from previous page

Model Equations Description
Op(n+1)f [“b 0 l ) [917(”) Body Rotation is constantly updated
Ow(n+1) 0 aw| [Owm while World Rotation is only activated if
Body Rotation Vs . the predictions of Body Rotation alone
World Rotation + K-(y-9 cannot account for the observed
0 P(A=11y) sensory feedback (Berniker and Kording
A= { 1 = World rotation is present [2011]).
0 = World rotation is absent

C.5. Neural Bases of Adaptation

Fast-Slow

Kim et al. [2015] correlated neural activity to states of adaptive processes operating at different timescales.
They observed four principle components of neural activations related to different timescales — two fast,
one intermediate and one slow. One of the fast components was related to activity in the prefrontal and
parietal lobes. The other fast process was related to the posterior part of the cerebellum. The intermediate
component was based in the inferior parietal region while the slow component was based in the anterior-
medial cerebellum. Thus the cerebellum as a whole affects both fast and slow components of adaptation.
The prefrontal and parietal regions contribute to fast and intermediate timescales of adaptation.

Mawase et al. [2017] studied how connectivity between different regions of the brain are related to adap-
tation. It was noted that long term behaviour was correlated with baseline activity in the cerebellar-thalamic-
cortical network. The contribution of cerebellum, prefrontal cortex and the parietal lobe suggested by Kim
et al. [2015] is in line with this observation as cerebellar-thalamic-cortical network connects the cerebellum,
the prefrontal cortex and the parietal lobe. In addition to changes in the cerebellar-thalamic-cortical net-
works, adaptation was also observed to cause changes in the cerebellar-basal ganglia networks. The involve-
ment of the basal ganglia could be contributing to reinforcement learning related to adaptation.

Explicit-Implicit

The results from Thurer et al. [2016] suggest that the prefrontal cortex is related to the explicit process. Liew
et al. [2018] observed the effects of the prefrontal cortex and the cerebellum on the explicit and implicit pro-
cesses respectively. Butcher et al. [2017] shows the contribution of the cerebellum towards both explicit and
implicit processes.

In the early stages of adaptation the explicit process will be predominant and as adaptation progresses,
the implicit process starts to dominate. Anguera et al. [2010] observed that prefrontal cortex and parietal
lobules showed greater activity during the early stages of adaptation. In later stages, the activity shifted to
the temporal gyrus and the cerebellum. Thurer et al. [2016] also noted higher activity in the prefrontal cortex
during early adaptation.

Anguera et al. [2010] and Anguera et al. [2011] identified the correlation between neural activity in the
prefrontal cortex and spatial working memory which was in turn associated with the explicit process.

In conclusion, the regions near the prefrontal cortex and the parietal lobule can be assumed to be con-
tributing to the explicit process while the cerebellum contributes to both explicit and implicit components.

Fast-Slow as Explicit-Implicit

The explicit process is believed to be the fast process and the implicit process is believed to be the slow pro-
cess. Studies on the neural bases of the Fast-Slow and Explicit-Implicit processes also seem to support this
convergence.

Both the fast process and the explicit process are related to the prefrontal cortex and the parietal lobe. The
cerebellum was found to influence both the explicit and implicit components of adaptation. It is interesting
to note that Kim et al. [2015] related the cerebellum to one fast and one slow component of adaptation. Poste-
rior part of the cerebellum was associated with the fast process whereas the anterior-medial cerebellum was
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associated with the slow process. Based on the proposed relation between the Fast-Slow dichotomy with the
Explicit-Implicit dichotomy, it is plausible to hypothesise that different parts of the cerebellum affect explicit
and implicit processes.



Optimal Control - Addendum

This appendix provides a refresher for the derivation of Linear-Quadratic Tracking (LQT) control using Pon-
tryagin’s Minimum Principle.

D.1. Linear-Quadratic Tracking (LQT) Formulation

The goal of the controller design for the thesis is to formulate am Optimal Tracking controller for a Linear Sys-
tem which minimises Quadratic Cost Function of the tracking error and input. A controller with Constrained
Inputs will also be studied. Only Open-Loop controllers will be considered as the intended experiments do
not involve online feedback.

D.1.1. Linear System
Linear Continuous-Time Model
x(t) =A)x(t) +B(Hu(r) D.1)
Linear Discrete-Time Model
x(k+1)=Ak)x(k) + B(k)u(k) (D.2)

D.1.2. Quadratic Cost Function

A quadratic cost function is considered for formulating the optimal control problem. The cost function is
quadratic in the states (x) and input (u#). The cost is defined for initial time fy and final time # ! The final
state is represented in this chapter as x; = x(¢;) for simplicity 2. For a regulator problem the cost function
penalises the value of the states (x) Eq. (D.3). For a tracking problem, the cost function penalises the error (e)
of the output (y) from a desired trajectory (z) Eq. (D.7). Apart from the input, the cost function also depends
on the initial conditions of the system (initial time #y, and initial states x (%))

Cost function for the regulator problem:

1 1k
J (x(%0), u, to) = ExT(tf)F(tf)x(tf) + 5[ [xT()Q(D)x(1) + u (DR u(r)] dt (D.3)
4}

Cost function for the tracking problem we consider the tracking error e(t) = z(f) — x(#):
1 1k
J (x(%0), u, to) = EeT(tf)F(tf)e(tf) + 5[ [eT(t)Q(t)e(t) + uT(t)R(t)u(t)] ds

fo

-1 [2(t) — y ()] "B (1) [z (1) - y(17)] (D.4)
2

1
+ Ef [[z(0) - y(O]" QD) [2(t) - y ()] + uT(DR(D)u(1)] dt

I
fo

INOTE: ¢ refers to final time and is not related to the fast process.
2This is not to be confused with the fast process.
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The output of the system y(t) is given by the relation:

y(0) =C(0)x(1) (D.5)

Substituting Eq. (D.5) into the relation for tracking error e(¢) gives,

e(t) =z(t) —y(t) =z(r) - C(1)x(¢) (D.6)

From Egs. (D.4) and (D.6) we ge the cost function in terms of the states x(¢) as:

1

J (x(10), u, o) = > [z(#) = C()x (191" B(ty) [2(tr) — C(£) x(t)]

L i (D.7)

+ Eft [[z(8) = C(x ()] Q(1) [2(1) - C()x(1)] + w (HR(Du(1)] dt
0

The cost functions mentioned above are for continuous-time control. For discrete-time control, the inte-
gration in the cost function is replaced by a summation.
Thus the cost function for a discrete-time regulator is:

ke—1

1 1
J (x(ko), u, ko) = ExT(kT)F(kT)x(kT) t3 Y [T (0Qk)x(k) + u' (k)R(K)u(k)] (D.8)
k=ko

And, the cost function for a discrete-time tracking controller is :

1
J (x(ko), u, ko) = > [z(kr) — C(K)x (k)T F(ky) [2(kr) — CU)x(ky)]

ko1 (D.9)

1
*+3 Y [lz(k) — Cx (k)T Q(k) [z(k) — C(k)x (k)] + uT(K)R(k) u(k)]
k=ko

D.1.3. Input Constraints
In some cases the inputs (#(#)) are constrained. Here the only type of input constraints considered is of the

type:
U <ut)<U'—|u®)|<U (D.10)

For simplicity the inputs can also be represented by normalising the inputs with U as :

—1<u®)<+1—|u(®)l<1 (D.11)

or component-wise
luj(n|<1 j=12,...,r (D.12)

D.2. Pontryagin Minimum Principle
Pontryagin principle states that for a plant as described by:

x(1) = f(x(0),u(®), ) (D.13)

, a cost function (performance index) as:

1 [
J(x(t0),u, to) = S(x(), 1) + Ef V(x(0), u(), t)dt (D.14)

o

and with fixed initial conditions (x(#) = x¢) and free final conditions (#, x(#) = x¢), the optimal control is
obatined by formulating the Hamiltoninan ./ as:

FE(x(0), u(D), A1), 1) =V (x(1), u(t), 1) + AT®) f (x(2), u(t), 1) (D.15)

and minimising it with respect to the input u(?):

(% (1), u* (1), A"(1), 1) < A0 (x™(1), u(), A*(1), t) (D.16)
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The optimal state trajectories can be calculated by solving the state and costate equations:

() =+ 6if) (D.17)
o loa ), '
- 0
A ()= —(iﬁ (D.18)
ox J,
with the boundary conditions x( and
oS oS T
Jﬁ*+(—)] Ot + [(—) —A*()| 6x¢=0 (D.19)
ot )]y 0x /. i

Eq. (D.16) is a general condition for optimality. For unconstrained systems, this can be reduced to the
necessary condition:

oA
=71 =0 (D.20)
ou |,
and the sufficient condition:
(62%) >0 (D.21)
ou? ), )

The Pontryagin principle for unconstrained and constrained input have been summarised in Tables D.1
and D.2 respectively. The Pontryagin principle for discrete-time control is summarised in Table D.3
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Table D.1: Unconstrained Optimal Control Formulation using Pontryagin Minimum Principle

Optimal Control Formulation — Unconstrained

Plant Model
x(0) = f (x(0), u(p), 1)
Cost Function .
f
J (x(to), u, to) = S (x(tf), ) +[ V(x(2), u(r),n)dt
4]
Hamiltonian
F(x(1), u(1), A1), 1) =V (x(8), (), ) + AT(0) f (x(8), u(), 1)
Optimal Control

Canonical System

Boundary Conditions

. [0S aS N L
[% +(E\”tf6tf+[(£)*—ﬂ (t)]tfé.Xf—O

D.3. Unconstrained Linear-Quadratic Tracking (LQT) — Discrete-Time
From Naidu [2002].

This section looks at the design of a tracking controller for a discrete-time model as in Eq. (D.2) but a time
invariant version as:

x(k+1) =Ax(k) +Bu(k) (D.22)

and a cost function as in Eq. (D.9):

1
J (x(ko), u, ko) = > [2(ky) — Cx (k)" F [2(ky) — Cx (k)]

L keml (D.23)
*+3 Y. [[z(k) - Cx(K)]T Q[z(k) — Cx(k)] + u(k)Ru(k)]
k=ko

D.3.1. Hamiltonian
The Hamiltonian for the system in Eq. (D.1) with the cost function Eq. (D.7) is :
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Table D.2: Constrained Optimal Control Formulation using Pontryagin Minimum Principle

Optimal Control Formulation — Constrained

Plant Model
x(0) = f (x(0), u(p), 1)
Cost Function .
f
J (x(to), u, to) = S (x(tf), ) +[ V(x(2),u(r),n)dt
4]
Hamiltonian
F(x(1), u(1), A1), 1) =V (x(8), (), ) + AT() f (x(8), u(), 1)
Optimal Control

0 (x*(1), w* (1), A*(1), t) < A (x* (1), w(1), A* (1), 1)

Canonical System

x*m—+("i")
o laa),
- 0
A (t)——(a)*

Boundary Conditions

T
ox;=0
53

. [0S S i
(5] o |(5) -2

S (x(k), u(k), A(k+1)) = % [z(k) - Cx(k)]" Q[z(k) — Cx(k)] + %uT(k)Ru(k) (D.24)

+ AT(k+1) [Ax(k) + Bu(k)]

D.3.2. Optimal Control
The realtion for optimal control for the unconstrained discrete-time tracking problem with the hamiltonian
Eq. (D.24) is:
0H
(0_) =0 = Ru(k)+B"A(K+1)=0 (D.25)
uj,

So the optimal input is:

u'(k)=-RIBTA*(k+1) (D.26)

D.3.3. Canonical System

The state relation for the optimal solution is obtained from the Hamiltonian as:
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Table D.3: Unconstrained Discrete-Time Optimal Control Formulation using Pontryagin Minimum Principle

Discrete-Time Optimal Control Formulation — Unconstrained

Plant Model
x(k+1) = f (x(k), u(k), k)
Cost Function i
-1
J (x(ko), u, ko) = S (x(ky), kr) + Z V (x(k), u(k), k)
k=ko
Hamiltonian
HE (x(k), u(k),A(k+1),k) =V (x(k), uk), k) + AT(k+1)f (x(k), u(k), k)
Optimal Control

( aif) “o
oul)),

Canonical System

X+ 1) = ("’L)
oAtk +1)
- 0%
ATk = (ax*(k))

Boundary Conditions for free x; and fixed ky

[(OS(x*(k),k)

)
ox° (k) )_’1 (k)]kT ox=0
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0
k+1)=—————=Ax" (k) +Bu* (k D.27
x(+)0/'l*(k+1) x" (k) +Bu’ (k) ( )
Substituting for the optimal input u*(¢) from Eq. (D.26), gives:
x*(k+1) :Ax*(k)—BR_lBT}L*(k+l) (D.28)
The costate relation is obtained from the Hamiltonian as:
At (k) = =ATA*(k+1)+CTQCx" (k) —C'Qz(k) (D.29)
ox*(k)
Thus Egs. (D.28) and (D.29) give the canonical system:
x*(k+1) A -E x*(k) 0
= + z(t) (D.30)
A*(k) vV AT Afk+1) -W(1)
where,
E=BR !B’ V=CTQC Ww=CTQ (D.31)

The solution for the state must satisfy the boundary condition (x(fy) = x¢). Since the final time is fixed

and the final state is free, the solution for the costate must satisfy the boundary condition:

0S (x*(k), k
A*(kT)=(—é’;*((k)) ))
(0[5 lz(ky) — Cx(ky)] " F [2(kr) — Cx(kr)]]
- 0x(kr)

=CTFCx"(k;) —C"Fz(tp)

D.3.4. Matrix Difference Riccati Equation and Vector Difference Equation
Let us assume a transformation between the states and costates as:

A% (k) =P(k)x™ (k) — g (k)

This transform is inspired from the structure of the boundary condition Eq. (D.32).
Eliminating A* from the expression for x* from Eq. (D.30) using Eq. (D.33) gives:

x*(k+1)=Ax"(k) —EP(k+ 1)x"(k+1) +Eg(k+1)

Collecting all the terms with x*(k + 1),

I+EP(k+1D]x"(k+1) =Ax*(k) +Eg(k+1)
Solving for x*(k + 1),

x*(k+1) = [I+EP(k+1)] ' [Ax*(k) + Eg(k+1)]

(D.32)

(D.33)

(D.34)

(D.35)

(D.36)

Substituting for x*(k+1) and A* (k+1) from Egs. (D.33) and (D.36) into the co-state relation from Eq. (D.30):

P(k)x*(k) — g(k) = Vx*(k) +AT [P(k+ 1)x*(k+ 1) - g(k+1)] - Wz(k)
=Vx*(k) +ATP(k+ Dx"(k+1) —ATg(k+1) —Wz(k)
=Vx*(k) +ATP(k+1) [+ EP(k+ 1)) [Ax*(k) + Eg(k + 1)]
—ATg(k+1)—Wz(k)

Rearranging,

[-P(k) +ATP(k+ 1) [I+EP(k+ 1) 'A+V]x*(k) +
[g(k) +ATP(k+1)[I+EP(k+1)] 'Eg(k+1)-ATg(k+1)-Wz(k)] =0

(D.37)

(D.38)
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Which can be simplifed as:

[-Pto+AT [Pk + 1)+ B] A+ V] ')+
(D.39)
[g(k)+AT [P_l(k+1)+E]_1Eg(k+1)—ATg(k+1)—Wz(k)] -0

Now Eg. (D.39) should hold for all x*(k) , z(k) and k. This condition leads to the matrix difference equa-
tion:

P(k)=AT [Pl (k+1) +E]‘1A+V (D.40)

and the vector difference equation:

g(k) =AT {1 — [P k+1) +E] E}g(k+ 1) +Wz(k) (D.41)

From Eq. (D.33), the boundary condition at ky is :

A* (k) = Plkr)x™ (kr) — g (kr) (D.42)
Comparing Egs. (D.32) and (D.42) gives the following boundary conditions of P(k;) and g (k) for all x (k)

and z(ky):
o

g(ky) = C"Fz(ky) (D.44)

From Egs. (D.26) and (D.33), the optimal input is :

w' ()=-R'BP(k+Dx*(k+1)+R 'BTg(k+1) (D.45)

Substituting for x*(k + 1) from Eq. (D.27) gives:
u* ()= -R'B"P(k+1) [Ax* (k) + Bu* (k)] + R 'BTg(k +1) (D.46)
Premultiplying by R and rearranging :

w* (1) [R+B'P(k+1)B] = —B"P(k+ DAx* (k) + B'g(k+1) (D.47)

This gives the relation for the optimal input #*(k) as:

u*(t) = —L(k)x* (k) + Lg(k) g (k + 1) (D.48)

where,
L(k) = [R+B'P(k+ )B] 'B"P(k+ DA (D.49)
Lg(k) = [R+BTP(k+ 1)B] ' BT (D.50)

Substituting for u*(¢) from Eq. (D.48) into Eq. (D.27), gives:

x*(k+1) = [A-BL(k)] x* (k) + BLg(k) g (k +1) (D.51)
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Table D.4: Steps for Discrete-Time Linear Quadratic Tracking with Unconstrained Input

Discrete-Time Linear Quadratic Tracking with Unconstrained Input

Step 1:

Solve the matrix difference Riccati equation Eq. (D.40)
P(k)=AT [P (k+1)+E] 'A+V
with final condition Eq. (D.43)
P(kr) =C'FC
and the vector difference equation Eq. (D.41)
g(k)=AT{1- [P~"(k+ 1) +E] " B} glk+ 1) + Wz(k)
with the boundary condition Eq. (D.44):

g(k'r) = CTFZ(ICT)

where,
E=BR!BT v=C'QC W=C'Q

Step 2:

Solve for the optimal state x*(¢) from Eq. (D.51):
x*(k+1)=[A-BL(k)] x* (k) + BLg(k)g(k +1)

with the initial condition

x(tp) = xo
where,
L(k) = [R+BP(k+1)B] 'BTP(k+ 1)A
Lg(k) = [R+B"P(k+ )B] ' BT
Step 3:

The optimal control u*(#) is obtained from Eq. (D.48) as :

w*(t) = -L(k)x" (k) + Lg(k) g (k + 1)
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Figure E.1: AST Input vs Scaling. The participants are sorted in ascending order of the scaling factor (with Participant 2 having the
smallest scaling factor). The thickness of each line is inversely proportional to the scaling factor.
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