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A B S T R A C T

Physics-based crystal plasticity models rely on certain statistical assumptions about the collective behavior
of dislocation populations on one slip system and their interactions with the dislocations on the other slip
systems. One main advantage of using such physics-based constitutive dislocation models in crystal plasticity
kinematic frameworks is their suitability for predicting the mechanical behavior of polycrystals over a wide
range of deformation temperatures and strain rates with the same physics-based parameter set. In this study,
the ability of a widely used temperature-dependent dislocation-density-based crystal plasticity formulation
to reproduce experimental results, with a main focus on the yield stress behavior, is investigated. First, the
material parameters are identified from experimental macroscopic stress–strain curves using a computationally
efficient optimization methodology that uses a genetic algorithm along with the response surface methodology.
For this purpose, a systematic set of compression tests on interstitial free (IF) steel samples is performed
at various temperatures and strain rates. Next, the influence of the individual parameters on the observed
behavior is analyzed. Based on mutual interactions between various parameters, the ability to find a unique
parameter set is discussed. This allows identifying shortcomings of the constitutive law and sketch ideas
for possible improvements. Particular attention is directed toward identifying possibly redundant material
parameters, narrowing the acceptable range of material parameters based on physical criteria, and modifying
the crystal plasticity formulation numerically for high-temperature use.
. Introduction

Crystal plasticity (CP) models are powerful and indispensable tools
or modeling and understanding the relationship between the mi-
rostructure and the mechanical behavior of crystalline materials (Rot-
rs et al., 2010). In CP modeling, the deformation’s kinetics is related
o the physics of the material behavior through the constitutive law.
uch constitutive law relies on internal state variables that constitute
nd track the deformation history. Various constitutive flow laws have
een developed during the last few decades, e.g. phenomenological
onstitutive models (Voce, 1948; Hutchinson, 1976; Peirce et al., 1982;
ecker, 1991) and physics-based constitutive models (Kocks et al.,
975; Nemat-Nasser et al., 1998; Arsenlis and Parks, 2002; Ma and
oters, 2004; Evers et al., 2002).

Phenomenological models use laws with fitted variables and are
umerically cost-effective. While they incorporate the relevant features

∗ Corresponding author at: Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
E-mail address: k.sedighiani@mpie.de (K. Sedighiani).

of plastic slip in metals via kinematic and kinetic assumptions, phe-
nomenological models suffer from the drawback that they consider very
limited physical information to define slip rates and the evolution of
the internal variables. In other words, the internal variables are not
directly related to physical quantities and, hence, their evolution laws
are not related to physical processes, such as dislocation production,
annihilation, interaction with other defects or thermal activation of
specific dislocation processes. Therefore, any value of the constitutive
parameters is deemed valid as long as the behavior of interest, such as
the stress–strain curve, is predicted correctly, under the exact boundary
and initial conditions where the parameters were fitted. This means,
however, that there is no guarantee that the model correctly predicts
the behavior for other loading conditions, e.g. strain rate and temper-
ature, than the ones that have been used for fitting (Mandal et al.,
2017).
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In contrast to phenomenological models, physics-based constitutive
laws rely on physically-defined internal variables, e.g. typically dis-
location densities, twin volume fractions, etc. (Roters et al., 2010).
Dislocations are the most crucial internal variable type in the case
of plasticity of materials with medium and high stacking fault energy
as they are the carriers of the plastic deformation. In a physics-based
crystal plasticity model, the plastic deformation is defined by the
dislocation motion, and the hardening behavior is expressed in terms
of generation, interaction, and annihilation of dislocations on different
slip systems. Orowan (1934) related the plastic slip rate on a given
slip system to the motion of dislocations through an average dislocation
velocity. This dislocation motion is impeded by short-range and long-
range barriers. The short-range barriers are those that can be overcome
by thermal activation, while the long-range barriers are those which are
too strong for thermal activation to be significant, such as the interac-
tion between dislocations. At a finite temperature, thermal energy helps
a dislocation to overcome short-range barriers by thermal activation,
and the average dislocation velocity is determined by the probability
of a successful jump from one obstacle to the next (Ono, 1968; Kocks
et al., 1975; Regazzoni et al., 1987). Therefore, the average dislocation
velocity is temperature-dependent. Kocks et al. (1975) decomposed the
stress required for dislocation glide into an athermal component and a
thermal component, and they related the probability of the successful
jumps and the average dislocation velocity to the thermal stress.

The ideas of Kocks et al. (1975) form the basis for most temperature-
dependent physics-based crystal plasticity models: Nemat-Nasser et al.
(1998) suggested a dislocation-density-based model for face-centered
cubic (fcc) and body-centered cubic (bcc) crystals which considers
the effect of short-range and long-range barriers on the motion of
dislocations. Voyiadjis and Abed (2005) proposed a constitutive model
based on thermally activated dislocation glides, which takes into ac-
count the effect of the evolution of mobile and forest dislocation
densities on the thermal and athermal parts of flow stress. Arsenlis
and Parks (2002) implemented thermally activated dislocation-based
constitutive laws into a crystal plasticity finite element (CPFE) sim-
ulation framework. Cheong and Busso (2004) developed a model in
which the dislocations are discretized into edge and screw components
with intrinsically different mobilities and dynamic recovery processes.
Ma and Roters (2004), Ma et al. (2006a,b) developed a dislocation-
density-based constitutive models for fcc and bcc crystals in which the
geometrically necessary dislocation density is used in addition to the
statistically stored dislocations in order to consider strain gradients and
the microstructural size sensitivity. Evers et al. (2004b,a) developed a
non-local crystal plasticity model that incorporates the interactions of
various types of dislocation densities. Reuber et al. (2014) presented
a model that explicitly accounts for the spatial redistribution of sign-
polarized dislocation populations due to their motion. Monnet et al.
(2013) proposed a dislocation-density-based crystal plasticity law for
predicting the deformation behavior of bcc crystal at low- and high-
temperature regimes. Alankar et al. (2014) presented a model for bcc
crystals in which they considered the individual behavior of screw and
edge dislocations. Cereceda et al. (2016) formulated and parametrized
a velocity law for screw dislocations in bcc Tungsten based on atomistic
simulations. Yuan et al. (2018, 2019, 2020) developed a model for
single crystal plasticity which considers both dislocation glide and
climb. Castelluccio and McDowell (2017) presented a cyclic crystal
plasticity model by introducing a back stress formulation related to
the mesoscale dislocation substructure. Luscher et al. (2017), Addessio
et al. (2017) developed a dislocation-density-based model to inves-
tigate the deformation of metals under dynamic and shock-loading
conditions. Keshavarz and Ghosh (2013, 2015), Ghosh et al. (2016),
Keshavarz et al. (2016) proposed crystal plasticity constitutive models
for modeling Ni-based superalloys in which the grain-scale response
is obtained from the homogenization of the dislocation-density-based
subgrain model. Wong et al. (2016) incorporated both transformation-
induced plasticity and twinning-induced plasticity in a thermally ac-
2

tivated dislocation-density-based crystal plasticity model. Patra and
McDowell (2012, 2013, 2016), Li et al. (2014), Chakraborty and Bu-
lent Biner (2016) developed crystal plasticity models for the inelastic
deformation of irradiated bcc metals. Zhao et al. (2016, 2018) devel-
oped a coupled full-field model between fast Fourier transform-based
crystal plasticity model and a phase-field recrystallization model to
investigate the evolution of microstructural and micromechanical fields
in polycrystals during dynamic recrystallization. These are only some
examples of the diverse models developed in the past decades based on
the temperature-dependent physics-based concept introduced by Kocks
et al. (1975).

Furthermore, constitutive laws developed based on such thermally
activated dislocation slip formulation are extensively used to investi-
gate different deformation behavior such as the impact of hydrogen
on the plastic deformation of metal under monotonic and cyclic load-
ing (Castelluccio et al., 2018), the contribution of non-Schmid effects
on the deformation behavior of Fe single crystal (Patra et al., 2014), the
development of residual phase stresses due to processing in additively
manufactured two-phase steel (Pokharel et al., 2019), the impact of
crystallographic orientations on the evolution of misorientations and
residual strains (Thool et al., 2020).

All such physics-based CP models have a large number of adjustable
material parameters (Khan et al., 2015). Most of these constitutive
parameters have a physical meaning, and the order of magnitude for
them and most of their physics-defined upper and lower bounds are
known (Ma and Roters, 2004; Khan et al., 2015). Physics-based models
are, therefore, only correctly parametrized for a specific material under
the two conditions that they predict the correct behavior (e.g. flow
curves) and their parameters (e.g. the stacking fault energy) have the
appropriate values. The advantage of a physically parametrized model
is its predictive capability over a broad range of loading conditions using
a single set of material parameters, i.e. all loading conditions for which
the underlying physical processes do not change.

However, even though in physics-based CP models the order of mag-
nitude for most of the parameters is known, a remaining obstacle for
the routine use is posed by the complexity of calibrating its parameters
for a desired material. In this study, a recently introduced methodology
by Sedighiani et al. (2020), which uses a genetic algorithm along
with the response surface methodology, is employed to determine
the constitutive parameters of a temperature-dependent dislocation-
density-based CP model introduced first by Ma and Roters (2004).
A systematic series of compression tests were conducted at different
deformation temperatures and strain rates on interstitial-free (IF) steel
samples. The stress–strain curves from these experiments are used to
determine the constitutive parameters. Furthermore, the uniqueness
of the identified parameters is investigated. For this purpose, it is
necessary first to understand the impact of the single-crystal parameters
on the deformation behavior of polycrystals and second, to analyze the
complex and non-linear interactions among the variables. The method-
ology introduced by Sedighiani et al. (2020) is also used for this task
as it allows to quantitatively analyze the effect of different constitutive
parameters and their interactions. Based on this analysis, the relevance
and impact of the individual material parameters and their interactions
are discussed. Moreover, the shortcomings of the constitutive law are
addressed, and tighter bounds than those found in the literature are
presented for selected parameters. The temperature-dependent motion
of dislocations in the constitutive law used in this study has the same
basis as the one proposed by Kocks et al. (1975). Therefore, most of
the conclusions made in this study are applicable also to many other
models that use the same concept, and this knowledge can help improve
existing or newly developed constitutive laws.

This study is organized as follows. Section 2 summarizes the formu-
lation of the crystal plasticity model employed in this work. Section 3
presents the experimental procedure and results of the compression
tests conducted on IF steel at different temperatures and strain rates.
This section is followed by a description of the simulation procedure

and setup in Section 4. The identified material parameters and their
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effects are presented in Section 5. The results are discussed in Section 6,
which includes a discussion on the high-temperature instability of the
CP model, acceptable physical ranges for some parameters, and the
uniqueness of the identified material parameters. The main conclusions
of this work are summarized in Section 7.

2. Physics-based crystal plasticity model

This section outlines the constitutive law of the CP model used
in this study. The kinematics for elasto-plastic deformation is defined
within the framework for finite deformation (Roters et al., 2010). The
model is implemented in the open-source software DAMASK (Düssel-
dorf Advanced Material Simulation Kit), see (Roters et al., 2019; Diehl
et al., 2020) for more detail.

2.1. Constitutive law

The shear rate on the slip system 𝛼, �̇�𝛼 , is related to the (average)
velocity of mobile dislocations, 𝑣𝛼 , by the Orowan equation (Orowan,
1934):

�̇�𝛼 = 𝜌𝛼𝑏𝑣𝛼 , (1)

where 𝜌𝛼 is the mobile dislocation density of the slip system 𝛼, and 𝑏
is the length of the Burgers vector for slip.

The dislocation velocity is mainly controlled by the distance be-
tween the short-range barriers and the average activation energy to
overcome these barriers (Nemat-Nasser et al., 1998; Amirkhizi and
Nemat-Nasser, 2007). The dislocation velocity is given as:

𝑣𝛼 = 𝑙
𝑡𝑤 + 𝑡𝑟

, (2)

where 𝑙 represents the average distance between the short-range barri-
ers, 𝑡𝑤 is the waiting time required to overcome a barrier, and 𝑡𝑟 is the
unning time for a dislocation to move from one barrier to the next one.
ased on the assumption that 𝑡𝑟 is much smaller than 𝑡𝑤, the latter is
ften neglected (Amirkhizi and Nemat-Nasser, 2007). Following Kocks
t al. (1975), the waiting time is estimated as:

𝑤 = 𝜔−1
0 exp

(

𝛥𝐺
𝑘B𝑇

)

, (3)

here 𝛥𝐺 is the average activation energy to overcome the short-range
arriers, 𝜔0 is the attempt frequency, 𝑇 is the absolute temperature,
nd 𝑘B is Boltzmann’s constant. Using Eqs. (2) and (3), the dislocation
lide velocity is calculated as:

𝛼 = 𝑣0 exp
(

−𝛥𝐺
𝑘B𝑇

)

, (4)

here 𝑣0 = 𝑙𝜔0 is the dislocation glide velocity pre-factor. Inserting
q. (4) into Eq. (1), gives the shear rate of slip system 𝛼 as:

�̇�𝛼 = 𝜌𝛼𝑏𝑣0 exp
(

−𝛥𝐺
𝑘B𝑇

)

(5)

The stress dependence of �̇�𝛼 is due to the stress dependence of 𝛥𝐺.
𝛥𝐺 can be formulated as:

𝛥𝐺 = 𝛥𝐹

{

1 −

[

𝜏∗𝛼𝑇
𝜏∗0

]𝑝}𝑞

, (6)

here 𝛥𝐹 is the total short-range barrier energy, i.e. the activation
nergy for glide in the absence of any applied stresses. 𝑝 and 𝑞 define

the shape of the short-range barrier. For most barrier profiles, 0 < 𝑝 ≤ 1
and 1 ≤ 𝑞 ≤ 2 (Kocks et al., 1975) holds. 𝜏∗𝛼𝑇 is the thermal component
f the stress, which is calculated as:

∗𝛼
𝑇 =

{

|𝜏𝛼| − 𝜏𝛼𝜇 for |𝜏𝛼| > 𝜏𝛼𝜇
𝛼 𝛼 (7)
3

0 for |𝜏 | ≤ 𝜏𝜇
where 𝜏𝛼 is the total resolved shear stress on the slip system 𝛼, and 𝜏𝛼𝜇
is the athermal component of the resolved shear stress which is given
as:

𝜏𝛼𝜇 = 𝜇𝑏

( 𝑁𝑠
∑

𝛼′=1
𝜉𝛼𝛼′ (𝜌𝛼

′ + 𝜌𝛼𝑑
′)

)1∕2

, (8)

where 𝜌𝛼𝑑 is the dislocation dipole density of the slip system 𝛼, 𝜉𝛼𝛼′ is
the interaction coefficient matrix between the different slip systems 𝛼
and 𝛼′, and 𝜇 is the shear modulus.

𝜏∗0 is the barrier strength, i.e. the stress needed to overcome short-
range barriers without thermal assistance:

𝜏∗0 = (|𝜏𝛼| − 𝜏𝛼𝜇 ) at 𝑇 = 0 K, (9)

Combining Eqs. (5) and (6), the shear rate for slip system 𝛼 is

�̇�𝛼 = 𝜌𝛼𝑏𝑣0 exp

(

−𝛥𝐹
𝑘B𝑇

{

1 −

[

𝜏∗𝛼𝑇
𝜏∗0

]𝑝}𝑞)

sign(𝜏𝛼), (10)

islocation density evolution

The evolution rate of the mobile dislocation density is given as (Rot-
rs et al., 2019; Blum and Eisenlohr, 2009):

̇𝛼 =
|�̇�𝛼|
𝑏𝛬𝛼 −

2𝑑𝛼dipole

𝑏
𝜌𝛼|�̇�𝛼|, (11)

nd the evolution rate of the dislocation dipole density is defined
s (Blum and Eisenlohr, 2009):

̇𝛼
𝑑 =

2(𝑑𝛼dipole − 𝑑𝛼anni)

𝑏𝑏
𝜌𝛼|�̇�𝛼| −

2𝑑𝛼anni
𝑏

𝜌𝛼𝑑 |�̇�
𝛼
|. (12)

The dislocation multiplication rate, see the first term in Eq. (11), is
determined by the dislocation mean free path 𝛬𝛼 (Roters et al., 2019):

1
𝛬𝛼 = 1

𝑑g
+ 1

𝜆𝛼
, (13)

where 𝑑g is the effective grain size, and

1
𝜆𝛼

= 1
𝐶𝜆

( 𝑁𝑠
∑

𝛼′=1
𝑔𝛼𝛼′ (𝜌𝛼

′ + 𝜌𝛼𝑑
′)

)1∕2

, (14)

where 𝐶𝜆 is a coefficient that determines the number of dislocations
assed by a dislocation before forest dislocations trap it. 𝑔𝛼𝛼′ are
oefficients that account for the interaction between dislocations on
ifferent slip systems.

The mobile dislocation density decreases due to annihilation and
ipole formation, as described in the second term of Eq. (11). Dislo-
ation annihilation occurs when two mobile dislocations of opposite
igns meet each other within the area of 2𝑑𝛼anni𝑣

𝛼d𝑡 during a time
ncrement of d𝑡. 𝑑𝛼anni represents a critical distance for annihilation
f two mobile dislocations of opposite sign. Commonly, a dislocation
nnihilation coefficient, 𝐶anni, is introduced to express 𝑑𝛼anni in multiples
f the Burgers vector: 𝑑𝛼anni = 𝐶anni𝑏. The annihilation term in Eq. (11)
s calculated based on the assumption that the system contains equal
umbers of positive and negative dislocations.

The dipole formation also decreases the mobile dislocation density.
dipole is formed if two mobile dislocations with opposite sign have
distance above 𝑑𝛼anni but less than the critical radius for dipole

ormation, 𝑑𝛼dipole, see the first term in Eq. (12). The critical distance
or dipole formation is defined as:

𝛼
dipole =

𝜇
16𝜋|𝜏𝛼|

𝑏, (15)
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Fig. 1. (a) Electron backscatter diffraction inverse pole figure map of the hot rolled IF-steel measured across the thickness (ND) perpendicular to the rolling direction (RD), and
(b) 𝜑2 = 45◦ ODF section of the as-received hot-rolled IF steel (Sedighiani et al., 2020).
Table 1
The chemical composition of the IF steel considered in this study.

Element C Mn S Ti N Al Cr Fe

wt. (%) 0.002 0.095 0.006 0.045 0.002 0.05 0.02 Balance

3. Experiments

3.1. Material

The material used in the present study is an IF steel with chem-
ical composition as given in Table 1. The initial microstructure and
crystallographic texture of the material were measured across the thick-
ness (ND) perpendicular to the rolling direction (RD) using electron
backscatter diffraction (EBSD). Standard metallographic techniques
were used to prepare the specimens for characterization. Analysis of
the EBSD data was performed using the TSL OIM software. The grain
structure is almost equiaxed, and the material exhibits a mild texture,
see Fig. 1.

3.2. Compression testing

The uniaxial compression tests were performed in a Bähr DIL
805A/D deformation dilatometer. Cylindrical specimens with a diam-
eter of 3mm and a height of 6mm were extracted by wire electrical
discharge machining from the as-delivered hot-rolled sheet along the
rolling direction. The temperature of the specimens was measured
during the heating and deformation by means of a thermocouple
attached to the surface of the specimen. The specimens were heated
to the deformation temperatures with a heating rate of 50K s−1 and
then held at the deformation temperature for 2 s before applying the
deformation.

Specimens were deformed to a logarithmic strain of about 0.65.
However, for a few cases of low temperatures and high strain rates,
the applied strain was limited to 0.4 or 0.5 to prevent exceeding the
load limit of the machine. Nine different deformation temperatures,
namely 323, 373, 473, 573, 673, 773, 873, 973, and 1073 K, and
three different strain rates, namely 0.01, 0.1, and 1.0 s−1, were used
in compression tests. All tests were performed at isothermal loading
conditions. However, for low temperature and high strain rate cases
of (T, �̇�) = (323 K, 1.0 s−1), (373 K, 1.0 s−1), and (473 K, 1.0 s−1),
a temperature rise of 31, 26, and 11 K, respectively, was observed.
For all other experiments, the temperature rise during deformation was
negligible.
4

The equivalent true stress–logarithmic strain curves obtained from
the compression tests at different temperatures and strain rates are
shown in Fig. 2. Generally, it can be seen that the hardening rate
decreases with an increase in deformation temperature for a given
strain rate, and it increases with an increase in strain rate for a fixed
deformation temperature. In this work, all comparisons between simu-
lated and the experimental data are performed using the equivalent true
stress and equivalent logarithmic strain. For the sake of brevity, they
will be referred to as stress and strain, respectively, in the remainder
of this study.

Fig. 3 shows the variation of yield stress with deformation tem-
perature at different strain rates. It is obvious that the influence of
deformation temperature and strain rate on the yield stress is significant
for the tested conditions. For a given strain rate, a decrease in yield
stress can be seen with an increase in temperature. In contrast, the yield
stress increases with an increase in strain rate for a given deformation
temperature. However, the rate of change in the yield stress is con-
siderably dependent on the deformation temperature and strain rate.
At low temperatures, the yield stress is highly temperature and strain
rate sensitive. The sensitivity to a change in deformation temperature
or strain rate decreases by increasing the deformation temperature. An
intermediate regime is observed at which the sensitivity to a change in
deformation temperature or strain rate is minimal. After this transition
regime, the dependency of the yield stress to temperature and strain
rates increases again.

4. Simulations

A Fast Fourier Transform (FFT)-based spectral solver implemented
in DAMASK (Eisenlohr et al., 2013; Shanthraj et al., 2015, 2019) is
used to conduct CP simulations using the constitutive law outlined in
Section 2. It is assumed that the slip occurs on 24 slip systems: 12
slip systems of <111>{110} and 12 slip systems of <111>{112}. The
representative volume element (RVE) is made of 512 grains, as shown
in Fig. 4(a). A grid with dimension 8 × 8 × 8 was used, i.e. each
grain is represented by one voxel. The texture and the crystallographic
orientations of the grains were assigned according to the EBSD map of
the undeformed sample using the approach presented in Eisenlohr and
Roters (2008). Fig. 4(b) shows the 𝜑2 = 45◦ ODF section of the RVE.
Periodic boundary conditions hold on this RVE which was subjected to
uniaxial compression up to around 0.4 strain.
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Table 2
Ranges of the adjustable model parameters used in the optimization.
Variable Description Units Range

𝜌𝛼0 Initial dislocation density m/m3 [1011 , 1013]
𝑣0 = 𝑙𝜔0 Dislocation glide velocity pre-factor m/s [102 , 104]
𝛥𝐹 Activation energy for dislocation glide J [1.3, 2.5] × 10−19

𝑝 p-exponent in glide velocity – [0.25, 0.7]
𝑞 q-exponent in glide velocity – [1.2, 1.85]
𝜏∗0 Short-range barriers strength at 0 K MPa [300, 600]
𝐶𝜆 Parameter controlling dislocation mean free path – [10, 50]
𝐶anni Coefficient for dislocation annihilation – [2, 15]
Fig. 2. Equivalent true stress–logarithmic strain curves for IF steel deformed by compression at various temperatures at strain rates of (a) 0.01 s−1, (b) 0.1 s−1, and (c) 1.0 s−1.
T
C

.1. Adjustable model parameters

Table 2 lists the ranges of the adjustable model parameters used
o build the off-line database for the response surface methodology,
ee Sedighiani et al. (2020) for more information. These ranges are
elected based on the physical interpretation of the parameters and
he values reported in the literature. However, the ranges provided
n the literature for 𝑝 and 𝑞 are considered as too wide. Therefore,
ew ranges are introduced for them as elaborated in more detail later
Section 6.2).

.2. Fixed model parameters

In this study, some of the parameters are considered to be known
nd fixed. These parameters will not be studied in the optimization
rocedure. The elastic coefficients are considered to be temperature-
ependent, and they are taken from Dever (1972), Adams et al. (2006).
he dislocation interaction coefficients are also taken as an average
alue for iron from Madec and Kubin (2017), see Table 3. The Burgers
5

ector is also a known material constant and equals 0.248 nm.
able 3
oefficients of interaction between different slip systems.
Self Coplanar Collinear Orthogonal Glissile Sessile

0.1 0.1 0.72 0.053 0.137 0.073

5. Results

5.1. Optimized parameters

The values selected for material parameters strongly influence a
crystal plasticity model’s ability to correctly predict a specific mate-
rial’s deformation behavior. Therefore, a prerequisite for utilizing any
constitutive models is determining a proper set of material parameters.
Theoretically, most of the material parameters for a physics-based
crystal plasticity model can be determined directly from single-crystal
experiments (Bertin et al., 2016; Raabe et al., 2001). However, since
engineering materials are usually only available as polycrystals after

synthesis, homogenization, and processing, it is more convenient to
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Fig. 3. Variation of yield stress with temperature for different strain rates. The solid
lines are third-order regression lines.

identify the material parameters from experimental macroscopic tests
such as stress–strain data. Recently, Sedighiani et al. (2020) intro-
duced a computationally efficient approach to identify and quantify
the material parameters from macroscopic stress–strain curves. This
methodology is used here to determine the material parameters for
IF steel. The suggested methodology uses a genetic algorithm, to-
gether with the response surface methodology. The methodology is also
employed to quantitatively and systematically analyze the relatively
complex dislocation-density-based CP model. Appendix A provides a
brief summary of the methodology which is presented in detail in
Sedighiani et al. (2020).

Table 4 lists the optimized constitutive parameters obtained for IF
steel. This set of parameters can be used to capture the temperature
and strain rate sensitivity of the plastic deformation for a wide range of
temperatures and strain rates. CP simulations are performed using this
single set of parameters, and the results obtained for yield stress are
discussed in Section 5.1.1. In addition, the uniqueness and dependency
of these parameters are discussed in Section 6.3. It should be noted
that the values of 𝐶𝜆 and 𝐶anni are dependent on the other recovery
mechanisms employed in the crystal plasticity model. However, the
yield stress behavior is independent of these two parameters, and their
values do not affect the determination of the rest of the parameters, see
Section 5.2.1 for more information. Therefore, in this work, these two
parameters are not further discussed.
6

Fig. 5. Predicted yield stress versus temperature for optimized parameters as compared
with experimental data. The solid lines are third-order regression lines for the
experimental data. The crystal plasticity model is capable of predicting the yield stress
over a wide range of temperatures and strain rates using a single set of material
parameters. However, the model fails to correctly predict the material response at
temperatures above 800K. This indicates that the CP model does not include some
physical effects occurring at elevated temperatures.

5.1.1. Yield stress prediction
The yield stress in dependence of temperature predicted with the

optimized parameters is shown in Fig. 5. The experimental data is given
for comparison. It can be seen that the crystal plasticity model is capa-
ble of predicting the yield stress over a wide range of temperatures and
strain rates. Moreover, the model is able to capture the rate sensitivity
at different temperatures and vice versa. The maximum error observed
for temperatures lower than 773K is approximately 5.7MPa, which is
for the loading condition of 𝑇 = 373 K and �̇�𝑝 = 1.0 s−1. However, the
model fails to correctly predict the material response at temperatures
above 800K. Around this point, there is a second pronounced drop
in the experimental data, while the simulations predict only a much
smaller decrease.

To investigate the observed discrepancy between the simulation
results and the experimental data, Eq. (10) is rewritten for the resolved
shear stress as a function of shear rate and temperature:

𝜏𝛼 = 𝜏𝛼𝜇 + 𝜏∗𝛼𝑇 = 𝜏𝛼𝜇 + 𝜏∗0

⎡

⎢

⎢

⎢

1 −
⎛

⎜

⎜

⎝

−
𝑘B𝑇 ln( |�̇�𝛼 |

𝜌𝛼𝑏𝑣0𝜔0
)

𝛥𝐹

⎞

⎟

⎟

⎠

1
𝑞 ⎤
⎥

⎥

⎥

1
𝑝

, (16)
⎣ ⎦
Fig. 4. (a) Voxel representation of the RVE used in the CP simulations. The RVE is made of 512 grains and each grains is represented by one voxel. The coloring displays the
Inverse Pole Figure (IPF) color map parallel to the loading (vertical) direction. (b) 𝜑2 = 45◦ ODF section of the RVE. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Table 4
Optimized constitutive parameters for IF steel.
𝜌𝛼0 (m

−2) 𝑣0 (ms−1) 𝛥𝐹 (J) 𝜏∗0 (MPa) 𝑝 𝑞 𝐶𝜆 𝐶anni

2.81 × 1012 1.4 × 103 1.57 × 10−19 454 0.325 1.55 23.3 7.4
e

Table 5
The initial dislocation density needed to reproduce the experiential data for three
exemplar loading conditions.

Loading conditions (973 K, 0.1 s−1) (1073 K, 0.01 s−1) (1073 K, 1.0 s−1)

𝜌𝛼0 (m∕m3) 2.14 × 1012 5.85 × 1011 1.50 × 1012

Table 6
The required reduction in the dislocation interaction coefficients to reproduce the
experimental data for three exemplar loading conditions.

Loading conditions (973 K, 0.1 s−1) (1073 K, 0.01 s−1) (1073 K, 1.0 s−1)

Reduction (%) 25% 79% 47%

The derivative with respect to temperature of Eq. (16) can be
alculated as:

d𝜏𝛼
d𝑇 = −

𝜏∗0

(

−
𝑘B𝑇 ln( |�̇�𝛼 |

𝜌𝛼𝑏𝑣0𝜔0
)

𝛥𝐹

)
1
𝑞 ⎡
⎢

⎢

⎣

1 −

(

−
𝑘B𝑇 ln( |�̇�𝛼 |

𝜌𝛼𝑏𝑣0𝜔0
)

𝛥𝐹

)
1
𝑞 ⎤
⎥

⎥

⎦

−1+ 1
𝑝

𝑝 𝑞 𝑇
, (17)

These equations indicate that the thermal stress smoothly decreases
for an increase in temperature, see also Fig. 7. However, based on
Eq. (17), the rate of decrease in thermal stress decreases with an
increase in temperature until it becomes zero at a critical temperature,
𝑇𝑐 . After this point, the thermal stress component vanishes, and the
athermal component solely determines the resolved shear stress, see
Section 6.1. Therefore, the CP model predicts a smooth decrease of
the flow stress until a plateau at 𝑇𝑐 is reached. Consequently, the
second drop in the yield stress cannot be predicted using this type
of thermally activated constitutive law. It should be noted that the
ongoing decrease of the yield stress seen in the simulation results is only
due to the dependency of the athermal stress to temperature through
the temperature dependency of the shear modulus. Consequently, this
decrease is independent of the applied strain rate.

The experimentally observed drop of the yield stress for higher
temperatures suggests the activation of a new mechanism at high
temperatures. One possible explanation for this second drop is climb-
based recovery during the heating period prior to deformation. The
reduced initial dislocation densities to match the experimental data are
listed in Table 5 for three exemplar loading conditions. The data show
that a considerable amount of recovery is required before the onset of
the plastic deformation to reproduce the experimental data. However,
the specimens were machined from an as-delivered hot-rolled sheet and
consequently, the EBSD data shows no in-grain misorientation patterns.
Moreover, the high heating rate, 50K s−1, used to heat up the samples
prior to deformation kept the time at elevated temperatures short.
Therefore, significant recovery does not seem a plausible explanation
for the decrease of the yield stress for testing temperatures above
approximately 800K.

A second possibility to explain the second drop is a dependency
of the dislocation interaction coefficients, 𝜉𝛼𝛼′ , on the temperature.
However, these interactions are typically considered as too strong for
thermal activation to be significant. Nevertheless, Table 6 lists the re-
quired reduction in the dislocation interaction coefficients to reproduce
the experimental data under the assumption of a constant ratio for all
interactions. It can be seen that a significant reduction in the dislocation
interaction coefficients is required. Therefore, the temperature depen-
dency of the dislocation interaction coefficient would be too high to be
7

physically plausible. i
A third possibility to explain the second drop can be attributed
to the way Eq. (10) is derived. In this form of a thermally activated
constitutive law, the short-range barriers are defined in an average
sense using an average barrier’s strength 𝜏∗0 and average activation
energy for glide 𝛥𝐹 . The average shape of the barriers is defined by 𝑝
and 𝑞. However, short-range barriers may have different characteristics
and physical meaning, and it may not be possible to present all types
of barriers collectively as one average set. Therefore, one suggestion
to solve this issue is to estimate the dislocation velocity using two or
more different classes of short range obstacles. A promising approach
for novel CP constitutive models targeting deformations at high temper-
ature, therefore, is the consideration of a temperature dependence of
obstacles. However, evaluating such new and more complex approach
is beyond the scope of this paper.

Finally, as a fourth possibility, the second drop of the yield stress ob-
served at high temperatures can be attributed to the use of an isotropic
effective shear modulus when calculating the effect of dislocation in-
teractions in Eq. (8). Voigt’s (Voigt, 1889) and Reuss’s (Reuss, 1929)
assumptions are the two approaches for calculating the equivalent
shear modulus which predict the upper and lower bounds of the effec-
tive shear modulus (Hill, 1952), respectively. In this study, the former
assumption is used. However, since for ferritic steels the anisotropy
ratio 2𝐶44∕(𝐶11 − 𝐶12) rises from approximately 2.4 at 300K to ap-
proximately 7.4 at 1173K, the assumption of an isotropic equivalent
shear modulus might be inappropriate for elevated temperatures. At
least at the level of individual dislocations, it is well-established that the
elastic anisotropy has strong effects on the yield behavior (Fitzgerald
and Dudarev, 2008; Fitzgerald, 2010; Aubry et al., 2011) and high
elastic anisotropy may result in a pronounced softening irrespective of
the mean shear modulus (Fitzgerald, 2010). It remains an open question
how this knowledge from small scale investigations can be used to
improve the mean field approximations used in continuum scale CP
formulations.

5.2. Constitutive parameters effects and their interaction

Fig. 6 shows the main effects and the interaction effects of the
adjustable material parameters on the yield stress. A main effect shows
how a change in an explanatory variable affects the response variable,
ignoring all other explanatory variables’ effects. An interaction effect
indicates how an explanatory variable’s effect may depend on the
other explanatory variables’ level. Eq. (A.3) is used to calculate the
magnitudes of the effects and the interaction effects. It is clear that
the most significant positive main effects are 𝑝, 𝜏∗0 , 𝛥𝐹 , and 𝜌𝛼0 , and the
most significant negative main effect are 𝑞, and 𝑣0. Additionally, the
interactions between some of the material parameters are significant,
e.g. the interaction effect between 𝑝 and 𝜏∗0 . The results also reveal that
both the temperature and the strain rate sensitivities are controlled es-
sentially by the material parameters that define the barrier, i.e. 𝜏∗0 , 𝛥𝐹 ,
𝑝, and 𝑞. In this study, we only show effects with an absolute magnitude
larger than 30% of the most significant effect’s absolute magnitude.
However, based on the ANOVA (analysis of variance) output (Doncaster
and Davey, 2007), there are many more statistically significant effects
than those shown in the figures. For a full discussion on the effect
analysis see Sedighiani et al. (2020)

5.2.1. Grouping the parameters
The yield stress is controlled mainly by 𝑝, 𝜏∗0 , 𝛥𝐹 , 𝜌𝛼0 , 𝑞, and 𝑣0, while

the hardening behavior depends mainly on 𝐶anni and 𝐶𝜆, see Sedighiani
t al. (2020) for detailed discussion. In addition, there is no significant

∗ 𝛼
nteraction between 𝐶anni and 𝐶𝜆 on the one hand and 𝑝, 𝜏0 , 𝛥𝐹 , 𝜌0 ,
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Fig. 6. The main effects and interactions effects for the yield stress (a) for �̇� = 0.1𝑠 −1 at varying temperatures, (b) for 𝑇 = 323 K at varying strain rates. The effects are in MPa,
and their magnitudes are calculated using Eq. (A.3). For the definition of the material parameters see Table 2.
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𝑞, and 𝑣0 on the other hand. This opens the possibility of splitting the
material parameters into two groups for the response surface method-
ology (RSM) analysis and determining parameters in these groups
independently. For instance, using experimental data for yield stress
alone is sufficient for accurate identification of 𝑝, 𝜏∗0 , 𝛥𝐹 , 𝜌𝛼0 , 𝑞, and
0. Additionally, grouping the parameters substantially decreases the
umber of simulations needed to build the off-line database and results
n a smaller error in the response predicted by the RSM (Sedighiani
t al., 2020). In the following, the influence of the parameters that
etermine the yield strength, i.e. 𝑝, 𝜏∗0 , 𝛥𝐹 , 𝜌𝛼 , 𝑞, and 𝑣0 is discussed.

. Discussion

.1. Importance of running time for high-temperature applications

The optimization methodology introduced in this study explores
ifferent combinations of material parameters at different loading con-
itions to find a set of parameters that reproduces all experimental
esults. Consequently, its success depends on the stability of the CP
odel within the whole parameter space. However, no converge was

bserved for certain parameter combinations at elevated temperatures.
n this subsection, the reason for this instability and an approach to
vercome this issue are discussed.

The constitutive law is based on the assumption that dislocation
otion is impeded by short-range and long-range barriers. The short-

ange barriers are those barriers that can be overcome by thermal
ctivation, while the long-range barriers are essentially independent
f temperature since they are too strong for thermal activation to be
ignificant. Therefore, the resolved shear stress consists of a thermal
omponent, 𝜏∗𝛼𝑇 , and an athermal component, 𝜏𝛼𝜇 . The thermal compo-
ent is the main reason for the temperature and strain rate sensitivity
f the flow stress. The athermal component is temperature-dependent
nly through the temperature dependency of the shear modulus, see
q. (8).

An increase in the deformation temperature or a decrease in the
pplied strain rate increases the probability of thermal activation,
hich results in a reduction in the flow stress. However, there is a

ritical temperature 𝑇𝑐 , above which there is sufficient thermal en-
rgy to overcome the short-range barriers by thermal activation alone,
.e. 𝜏∗𝛼𝑇 = 0. The critical temperature can be calculated as:

𝑐 = − 𝛥𝐹
𝑘B log[ |�̇�𝛼 |

𝜌𝛼𝑏𝑣0
]

(18)

For temperatures above the critical temperature, the shear rate
ormulation reduces to:

�̇�𝛼 = 𝜌𝛼𝑏𝑣0 exp
(

−𝛥𝐹
)

for 𝑇 ⩾ 𝑇𝑐 (19)
8

𝑘B𝑇 c
At the starting point of the plastic deformation, 𝜌𝛼 can be considered
as a constant parameter and equal to 𝜌𝛼0 for all samples. Therefore, all
parameters in this equation are constant except T. Hence, for 𝑇 ⩾ 𝑇𝑐 ,
he shear rate is related to temperature only and does not depend on
he effective applied stress. This results in numerical instabilities and
onvergence cannot be achieved at temperatures close to and above the
ritical temperature.

To understand why the original formulation is numerically unstable
t high temperatures, it should be recalled that the dislocation velocity
s controlled by the waiting time and running time, see Eq. (2). It is
enerally assumed that the running time is much smaller than the wait-
ng time, and, hence, its effect is negligible. However, at temperatures
lose to or above the critical temperature, this assumption is no longer
alid and the running time is comparable to or even higher than the
aiting time. Therefore, it cannot be neglected. The running velocity of
dislocation follows a viscous flow law (Hansen et al., 2013; Cereceda

t al., 2016; Reuber et al., 2014):

𝛼
𝑟 =

𝜏∗𝛼𝑇 𝑏
𝐵

, (20)

Substituting this equation into Eq. (2) give the effective velocity as:

𝑣𝛼 = 𝑙
𝑡𝑤 + 𝑡𝑟

= 1
𝑡𝑤
𝑙 + 𝑡𝑟

𝑙

= 1
1
𝑣𝛼𝑏

+ 1
𝑣𝛼𝑟

, (21)

where 𝑣𝛼𝑏 = 𝑡𝑤∕𝑙 is the same velocity as presented earlier in Eq. (4).
For temperatures much lower than the critical temperatures, 𝑣𝛼𝑏 ≪

𝑣𝛼𝑟 holds, and the original formulation is approximately recovered.
However, with increasing temperature the running time will become
more important until it finally fully determines the velocity. Therefore,
numerical instabilities described in Eq. (19) are avoided and a phys-
ically sound behavior is achieved even for higher temperatures. This
allows to find suitable parameter combinations from the whole param-
eter space, which does not contain ‘‘forbidden regions’’ of numerical
instabilities (cf. Sections 6.2 and 6.3.2).

6.2. Limiting material parameters 𝑝 and 𝑞 based on physical criteria

The profile of the barrier is controlled via parameters 𝑝 and 𝑞, which
re usually seen as free parameters with 0 < 𝑝 ≤ 1 and 1 ≤ 𝑞 ≤ 2 (Kocks

et al., 1975). However, these limits present only the extreme cases
for which Eq. (16) is mathematically valid. In this section, the effect
of these two parameters on the thermal stress is discussed and an
approach is presented for determining (more narrow) physical limits.

The parameters 𝑝, 𝑞, 𝛥𝐹 , and 𝜏∗0 together define the relation be-
ween the activation energy for dislocation glide, 𝛥𝐺, and the thermal

∗𝛼
omponent of the stress, 𝜏𝑇 . However, the development of thermal
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stress with temperature is affected differently by these parameters. 𝛥𝐹
s a coefficient for the temperature-dependent ratio inside the expo-
ential term, and it linearly affects this ratio. As a result, the critical
emperature 𝑇𝑐 is linearly dependent on 𝛥𝐹 , while it is independent of
he other three barrier parameters, see Eq. (18). The stress needed to
vercome the barrier at 0K is solely defined by the barrier strength
∗
0 . The curvature between 0K and 𝑇𝑐 , is defined by 𝑝 and 𝑞. Although
oth of the parameters have a significant effect on the curvature for all
emperatures between these two points, the effect of 𝑝 and 𝑞 is more
ronounced at high and low temperatures, respectively (Fig. 7).

The limits proposed in the literature for 𝑝 and 𝑞 are defined based
n mathematical arguments, and they describe the experimental ob-
ervations only qualitatively. For 𝑝 > 1.0 or 𝑞 < 1.0, the sign of the
urvature in the thermal stress versus temperature curve is reversed
n comparison to the experimentally observed behavior. For 𝑝 ≤ 0 the
esolved shear stress becomes larger than the barrier strength. To our
nowledge, there is no such argument why 𝑞 should be strictly smaller
han 2. One reason, however, can be the intense effect of a large 𝑞 at
ery low temperatures, i.e. a large 𝑞 results in a significant drop in the
hermal stress with a small increase in temperature. To prevent such
n extreme condition, having an upper bound for 𝑞 seems physically
easonable.

As outlined, the advised limits for 𝑝 and 𝑞 except the upper bound
or 𝑞 only ensure that the general shape of the curve is qualitatively
easonable. However, unwanted behavior is already observed when
hoosing values in the vicinity of the limits. For instance, a small 𝑝
esults in an almost constant 𝜏∗ over a vast range of temperatures, see
he red dashed line in Fig. 7. Although a wide temperature-insensitive
egime has been observed for some materials, modeling this phe-
omenon by setting 𝑝 to small values results in an unphysical barrier
rofile: A small 𝑝 requires a higher value for 𝛥𝐹 which in turn in-
reases 𝑇𝑐 beyond reasonable values. It is physically more meaningful
o attribute the temperature insensitivity to the critical temperature
nd the energy needed to overcome the barrier. As mentioned earlier,
he thermal stress vanishes for temperatures larger than the criti-
al temperature, and a temperature-insentitive behavior is naturally
chieved.

Now the question arises whether there is a physics-based limit for
and 𝑞. There may be no exact answer to this question because of

wo main reasons: Firstly, these two parameters are introduced into
he equations in a phenomenological way, and they are not derived
ased on any obstacle profiles. Secondly, there is a strong correlation
etween these two parameters, which results in a dependency of the
imiting bounds to the value of the other parameter. For example, a
ange for 𝑝 may be reasonable at a specific 𝑞, while it is not reasonable
or another 𝑞.

Although no strict physics-based limit can be provided for 𝑝 and 𝑞, it
s still possible to limit these two parameters based on physical criteria.
ombining Eqs. (10) and (19) gives:
(

𝜏∗𝛼𝑇
𝜏∗0

)𝑝

= 1 −
(

𝑇
𝑇𝑐

)
1
𝑞

(22)

A lower bound for 𝑝 can be determined by setting a limit for the
degree of flatness of the thermal stress before 𝑇𝑐 . In other words,
by setting a reasonable minimum increase in the stress ratio at a
specific temperature ratio, a lower bound for 𝑝 can be estimated. For
example, by assuming the minimum required stress ratio of 𝜏∗𝛼𝑇 ∕𝜏∗0 =
0.001 at 𝑇∕𝑇𝑐 = 0.8, the lower limit for 𝑝 is approximately 0.25 when
𝑞 = 1. The choice of 𝑝 = 0.25 already results in an extremely wide
temperature-insensitive regime below the critical temperature.

A literature survey shows, however, that small values for 𝑝, such
as 0.1, have been frequently identified to match experimental data,
e.g. Arsenlis and Parks (2002), Alankar et al. (2009), Ha et al. (2017),
Khan et al. (2015). The reason for the frequently reported small 𝑝
could be related to the numerical difficulties at temperatures close to
or above the critical temperature, see Section 6.1. A small 𝑝 has been
9

i

Fig. 7. Thermal stress versus temperature for different combinations of 𝑝 and 𝑞. The
sual limits for 𝑝 and 𝑞 are 0 < 𝑝 ≤ 1 and 1 ≤ 𝑞 ≤ 2. Setting 𝑝 = 1 and 𝑞 = 1, the blue

dashed line, results in a linear relationship between thermal stress and temperature,
which corresponds to a physically unreasonable rectangular profile for the barrier and
a non-smooth transition at the critical temperature. A small 𝑝, such as 𝑝 = 0.1, results
in a physically unacceptable flat curve for a vast range of temperatures below 𝑇𝑐 , and
it indirectly shifts the critical temperature, see the red dashed line. Although no strict
physics-based limit can be provided for 𝑝 and 𝑞, it is still possible to limit them in
a physically measurable way using the slope of the curve at 0 K and 𝑇𝑐 . The solid
ines show the resulting curves for different combinations of 𝑝 and 𝑞using the limits
alculated in this study. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

sed to increase the critical temperature, and consequently to postpone
he numerical instability. However, the numerical difficulties can be
vercome using the alternative formulation presented for dislocation
elocity in Section 6.1, making artificially high critical temperatures
nnecessary.

Eq. (22) can also be used to estimate an upper bound for 𝑞. For
xample, by assuming a maximum acceptable drop of 5% in the stress
atio, i.e. 𝜏∗𝛼𝑇 ∕𝜏∗0 = 0.95, at 𝑇∕𝑇𝑐 = 0.001, the upper limit of 𝑞 ≈ 1.85
s achieved when 𝑝 = 0.5. Even 𝑞 = 1.85 results in a relatively sharp

drop in the thermal stress for a very small increase in temperature.
Therefore, it seems physically reasonable to use 𝑞 < 1.85 when 𝑝 is
lose to 0.5. It should be noted that the upper bound of 𝑞 is strongly
ependent on 𝑝, and an higher bound for 𝑞 can be reasonable for a large
.

Setting 𝑝 = 1 and 𝑞 = 1 results in a linear relationship between
hermal stress and temperature as shown in Fig. 7, which corresponds
o a rectangular profile for the barrier. Such a barrier profile results
n a non-smooth transition at the critical temperature. Therefore, one
ay consider an upper bound around 0.7–0.8 for 𝑝 to have a smoother

ransition at the critical temperature. The same argument may be used
or 𝑞, and one may consider a lower bound of 1.2 for 𝑞. Fig. 7 shows
hermal stress versus temperature for the suggested bounds.

It should be noted that the mentioned ranges for 𝑝 and 𝑞 still include
xtreme combinations which may result in unphysical behaviors, see
he red solid line in Fig. 7. This is especially true for regimes where 𝑝
pproaches the lower bound, and 𝑞 approaches the upper bound.

.3. Uniqueness and relevance of parameters

In this section, the uniqueness of the parameters obtained as the
ptimal solution by the RSM-GA approach is discussed. For the sake
f convenience, the parameters are categorized into two groups: The
irst group includes 𝑣0 and 𝜌𝛼0 . These two parameters characterize the
ost relevant features of the dislocation network for plastic defor-
ation, i.e. the dislocation density and the distribution of dislocation

egment lengths. They have a linear relationship with the shear rate,
ee Eq. (10). The second group includes those parameters that define
he short-range barrier, i.e. 𝑝, 𝑞, 𝜏∗0 , and 𝛥𝐹 . These parameters appear

n the exponential part of the shear rate formulation.
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Fig. 8. Effects plot for temperature- over strain rate-sensitivity ratio. 𝑣0 and 𝜌𝛼0 are the
ain two parameters which affect the temperature over strain rate sensitivity.

.3.1. Dislocation network parameters: 𝑣0 and 𝜌𝛼0
The velocity pre-factor 𝑣0 has a linear relationship with the shear

rate, which results in a relatively low influence of this parameter on the
yield stress in comparison to the other parameters. This small effect of
𝑣0 may lead to a misinterpretation of its importance. The initial mobile
dislocation density 𝜌𝛼0 also has a linear relationship with the shear
ate. However, due to its dominating influence on the athermal stress
omponent, its effect is generally much higher than 𝑣0 and comparable

to the effect of other material parameters. Despite the significant effect
of 𝜌𝛼0 on the yield stress, a survey of the pertinent literature reveals
that its value is often assumed without any critical assessment. In this
section, the distinctive role of these two parameters is discussed, and
the possibility of finding a unique solution for both is elaborated.

Using Eq. (16) and by assuming 𝜏𝛼𝜇 is temperature and strain rate
ndependent, one can determine the relationship for temperature- over
train rate-sensitivity as
d𝜏𝛼
d𝑇 |�̇�𝛼=𝑐𝑜𝑛𝑠𝑡
d𝜏𝛼
d�̇�𝛼 |𝑇=𝑐𝑜𝑛𝑠𝑡

=
|�̇�𝛼| log[ |�̇�𝛼 |

𝜌𝛼𝑏𝑣0
]

𝑇
. (23)

It can be seen that the temperature- over strain rate-sensitivity ratio
itself depends on the temperature and shear rate. This ratio decreases
with an increase in temperature for a given shear rate and increases
with an increase in the shear rate for a given temperature. However, the
only way to alter the temperature- over strain rate-sensitivity ratio for
a given temperature and strain rate is an adjustment of 𝜌𝛼𝑏𝑣0. In other
words, to reach a particular combination of yield stresses at different
temperatures and strain rates, this product needs to be adequately
determined. Since the Burgers vector is a known parameter, the only
open parameters are 𝜌𝛼 and 𝑣0.

The same conclusion can be derived from the RSM study. Fig. 8
shows the effects plot for temperature- over strain rate-sensitivity ra-
tio at the yield point for two typical cases. Clearly, the most pro-
nounced two parameters which affect the temperature- over strain
rate-sensitivity ratio are 𝑣0 and 𝜌𝛼0 . Other parameters influence the
temperature- over strain rate-sensitivity ratio only through interaction
with these two parameters.

These results reveal that it is possible to reach a unique solution
for the product 𝜌𝛼𝑣0 if the boundary conditions for the optimization
are appropriately selected in a way that captures the temperature
over strain rate sensitivity. On the other hand, 𝜌𝛼0 contributes also to
the athermal component of the stress. Therefore, its effects can be
distinguished from the effects of 𝑣0. It can be concluded that the value
for both parameters can be uniquely determined.

To test this hypothesis, we have performed 50 independent opti-
10

mization runs. Fig. 9 shows the results for the optimized solutions.
Table 7
Four exemplar optimized solutions with almost similar fitness values. Examples 3 and
4 show the possibility of finding multiple suitable solutions even if one parameter is
set to a constant value.

Parameter set 𝛥𝐹 (J) 𝜏∗0 (MPa) 𝑝 𝑞 Fitness value

1 1.82 × 10−19 548 0.30 1.82 11.5
2 1.88 × 10−19 448 0.27 1.58 11.5
3 1.90 × 10−19 334 0.25 1.30 11.5
4 2.00 × 10−19 440 0.25 1.50 11.8

It can be seen that there is a clear convergence for 𝜌𝛼0 , and the opti-
mization methodology is able to determine this parameter uniquely.
The distribution for 𝜌𝛼0 is around 0.2% of the considered range. The
optimization outputs for 𝑣0 are also located in a relatively narrow
distribution, i.e. around 5% of the optimization range. The main reason
for the broader range of solutions for 𝑣0 is its small main effect, which
results in a negligible error in the stress–strain curves for a change in
its value.

It should be noted that the discussion in this section does not mean
that the other parameters have no effect on the temperature or strain
rate sensitivity of the yield stress. In fact, the barrier parameters mainly
determine the temperature and the strain rate sensitivity, while 𝜌𝛼0 and
𝑣0 adjust the temperature- over strain rate-sensitivity ratio.

6.3.2. Barrier parameters: p, q, 𝜏, and 𝛥𝐹
Fig. 9 shows the optimized solution for the barrier parameters from

50 independent optimization runs. The barrier parameters define the
activation energy for dislocation glide, i.e. 𝛥𝐺 = 𝛥𝐹 (1− (𝜏𝛼∕𝜏∗0 )

𝑝)𝑞 . The
optimized solutions for 𝜏∗0 and 𝑞 are distributed in a very wide range,
i.e. these parameters do not converge to a unique solution. Besides, 𝑝
converges to the lower bound of the allowed range. Therefore, also
𝑝 cannot be considered as a converged parameter despite its narrow
distribution. Additional investigations show that, regardless of the se-
lected bounds, 𝑝 always converges to the lower bound. These additional
investigations also show that the value for 𝛥𝐹 depends strongly on
the value of 𝑝. Hence, also 𝛥𝐹 cannot be considered as a converged
parameter despite its narrow distribution. Table 7 shows the values for
four exemplar optimized solutions with almost the same fitness value.
It is obvious that multiple solutions result in a similar constitutive
behavior. It is even possible to find multiple suitable solutions for any
other three parameters even when one of the parameters is set to a fixed
value. For example, parameter sets 3 and 4 in Table 7 are obtained for
a fixed value of 𝑝 = 0.25.

Fig. 10 shows the thermal stress versus temperature for two different
sets of parameters. The predicted thermal stresses almost overlap for
a wide range of temperatures, and the observed difference is much
smaller than the expected experimental errors. Although there is a
clear disagreement between the two curves at low temperatures, it is
impossible to make a differentiation between these two cases during the
optimization procedure due to the lack of experimental data for these
temperatures. It can be concluded that no unique solution for the bar-
rier parameters can be achieved using the current set of experimental
data.

Even though the difference between the value of the predicted ther-
mal stress is negligible at elevated temperatures, there is a significant
difference between the predicted critical temperatures for the two cases
given in Fig. 10. As discussed earlier in Section 6.1, 𝛥𝐹 is the only
barrier parameter that affects the critical temperature. Therefore, the
start of the temperature-insensitive regime is determined solely by 𝛥𝐹 .
However, as discussed in Section 6.2, 𝑝 has a significant effect on
thermal stress’s flatness when approaching the critical temperature. In
other words, for a small 𝑝, there is a wide temperature range before the
critical temperature where the thermal stress is almost zero. Although
𝑝 theoretically does not affect the critical temperature, it practically
creates a region that is hardly distinguishable from the region above the
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Fig. 9. The optimized solutions from 50 independent optimization runs. The distribution of the fitness value and the maximum observed error in the yield stress prediction shows
hat the optimized solution from different runs has nearly the same quality. It should be noted that a solution with a lower maximum observed error does not necessarily have a
etter fitness value, see Eq. (A.9) for how the fitness values are calculated. There is a very good convergence for both 𝜌𝛼0 and 𝑣0. However, the optimized solutions for 𝜏∗0 and 𝑞
re distributed in a very wide range, and these two parameters are not converged to a unique solution. Besides, 𝑝 converges to the lower bound of the optimization range, and it
annot be considered as a converged parameter despite its narrow distribution. The converged value for 𝛥𝐹 is strongly dependent on the converged value for 𝑝. Hence, 𝛥𝐹 also
annot be considered as a converged parameter despite its relatively narrow distribution.
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ritical temperature. This allows to use a combination of a high 𝛥𝐹 and
small 𝑝 without any notable change in the thermal stress response.
owever, both solutions will have a significantly different critical

emperatures, see Fig. 10. It can be concluded that an infinite number of
umerically equivalent solutions can be found if no assumption about
he value of the critical temperature is made.

On the other hand, the decrease of the thermal stress in the low
emperature regime depends strongly on 𝑞. For different values of 𝜏∗0 ,
he parameters 𝑞 and—to some extent—𝑝 can be selected in a way to
ompensate for the difference in the barrier strength for temperatures
lose to 0K, see the solid red curve in Fig. 10. Based on this fact
nd the underdetermined system at high temperatures, different sets
f parameters result in a very similar behavior over a vast range of
emperatures. Therefore, it is not possible to find a unique set of
arameters without any assumption about the values for either 𝜏∗0 or
𝐹 .

This issue is mainly because 𝑝 and 𝑞 are introduced into the equa-
ions in a purely phenomenological way to relate 𝛥𝐺 to 𝛥𝐹 . Originally,
q. (10) has been derived for a barrier with a rectangular profile,
.e. 𝑝 = 1.0 and 𝑞 = 1.0. Therefore, 𝛥𝐹 is related to 𝜏∗0 as 𝛥𝐹 =
∗
0 𝑏𝑙

2. This results in a linear relationship between thermal stress and
emperature, which is physically not plausible. Introduction of 𝑝 and 𝑞
llows to add curvature to the thermal stress curve. As a result of how
and 𝑞 are introduced into the equations, it is no longer possible to

hysically relate 𝜏∗0 and 𝛥𝐹 . This results in a situation where the critical
emperature is completely independent of 𝜏∗0 . Therefore, the system
ecomes an underdetermined system for a vast range of temperatures,
nd the only way to uniquely determine all four parameters will be by
nowing both the critical temperature and the barrier’s strength.

Due to many uncertainties and complexities in the deformation
ehavior at high temperatures, the critical temperature cannot be de-
ermined with certainty. Moreover, experiments at temperatures close

∗

11

o 0 K are needed to determine 𝜏0 , which is not an easy and routine h
xperiment to perform. Therefore, neither 𝑇𝑐 nor 𝜏∗0 is easy to deter-
ine experimentally. Consequently, reaching a unique solution for the

arrier parameters is very challenging.
One way to partially overcome this issue is by constraining the

ritical temperature. Although it is difficult to determine the critical
emperature precisely, a range for the critical temperature can be esti-
ated based on the rate of change in the yield stress with temperature.
his estimated range can be used along with Eq. (18) to constrain the
ritical temperature.

As discussed earlier in Section 5.1.1, the inflection point in the
ield stress versus deformation temperature curve may correspond to
he activation of a new softening mechanism. However, before the
nflection point, the rate of change in the yield stress with temperature
s decreased considerably, and the experimental data show a tendency
o reach a plateau. It can be expected that the critical temperature
ies in the vicinity but higher than the inflection point. The inflection
oints determined in this study are 725, 688, and 656 K for the
train rates of 1.0, 0.1, and 0.01 s−1, respectively. Hence, the critical
emperature range is here selected to be between 600 to 900 K. The
pper limit is selected high enough to prevent over constraining the
ritical temperature.

Fig. 11 shows the optimized solutions from 50 independent opti-
ization runs when the critical temperature is constrained. It can be

een that the distribution for 𝑝 is still relatively narrow, around 10%
f the optimization range, and 𝑝 is no longer converging to the lower
ound. Consequently, the values achieved for 𝛥𝐹 also can be consid-
red as adequately converged solutions. The optimization outputs for
𝐹 are distributed in a range around 5% of the optimization range.
he width of the distribution for 𝜏∗0 and 𝑞 is noticeably smaller than
or the unconstrained case. However, these distributions are still too
ide to be considered as converged solutions. It can be concluded that

onstraining the critical temperature is partially solving the problem at
∗
igh temperatures. It also improves the results for 𝜏0 and 𝑞. However,
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Fig. 10. Thermal stress versus temperature for two different sets of parameters.
Although there is a clear disagreement between the two curves at very low temperatures
and the estimated critical temperature, the predicted thermal stresses almost overlap
for a wide range of temperatures.

it seems that the system is still underdetermined, especially at low
temperatures. Therefore, to fully solve the issue, experimental data
at much lower temperatures are required. Constraining the critical
temperature does not noticeably affect the distribution for 𝜌𝛼0 and 𝑣0.

The main reason for introducing 𝑝 and 𝑞 in the way outlined in
his section is the simplicity of the equations. An alternative approach
o fundamentally overcome the non-uniqueness issue is by using a
athematically reasonable profile for the barrier, such as a sinusoidal
rofile. In this case, 𝛥𝐺 can be estimated directly from the barrier’s
rofile by calculating the activation volume for dislocation glide. This
vercomes the need to introduce the curvature in thermal stress by phe-
omenological parameters like 𝑝 and 𝑞. Although such a barrier profile
esults in more complex equations for the constitutive law, it reduces
he number of phenomenological material parameters by one or two.
his can be a significant advantage for physics-based models, which
enerally have a large number of material parameters. Evaluating such
12

n approach is, however, beyond the scope of this manuscript.
. Conclusions

In this study, the material parameters for a physics-based crystal
lasticity model were identified using macroscopic stress–strain curve
ata experimentally obtained for IF steel. The uniqueness of the pa-
ameters was studied, and an in-depth analysis of the parameters was
rovided. Since the temperature-dependent motion of dislocations of
he constitutive law used in this study has the same basis as the one
roposed by Kocks et al. (1975), most of the conclusions made in this
tudy are expandable to many other models that use the same concept.

The following conclusions can be drawn:

• The dislocation-density-based constitutive law is capable of pre-
dicting the polycrystal yield stress behavior over a wide range
of temperatures and strain rates with a single set of material
parameters. However, it fails to predict the material response at
very high temperatures correctly.

• The temperature-dependent crystal plasticity model is not nu-
merically stable at temperatures close to or above the critical
temperature if only the waiting time is considered in the formula-
tion of the dislocation velocity. The formulation can be modified
and stabilized at high temperatures by adding the running time
into the formulations.

• The ranges provided for 𝑝 and 𝑞, parameters which determine the
shape of the short-range barrier, in the literature are rather wide
and include unphysical barrier profiles. New limits for these two
parameters are provided.

• Initial dislocation density 𝜌𝛼0 and dislocation glide velocity pre-
factor 𝑣0 are determining the temperature- over strain
rate-sensitivity ratio. Due to this distinct role of the two parame-
ters, it is possible to determine them uniquely.

• The barrier parameters are the main variables in determining the
stress response at the yield point. The temperature and strain rate
sensitivity is also mainly controlled by them.

• The system is underdetermined for the barrier parameters. Prior
knowledge about the barrier’s strength and the critical tempera-

ture is necessary to uniquely determine these parameters.
Fig. 11. The optimized solutions from 50 independent optimization runs for constrained critical temperature. Constraining the critical temperature is partially solving the issue of
aving an underdetermined system at high temperatures. Besides, it improves the results for 𝜏∗0 and 𝑞. However, the system is still underdetermined, especially at low temperatures.
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• Although the critical temperature is theoretically independent of
the shape of the barrier, it is practically altered by the material
parameter 𝑝.
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Appendix A. Parameter identification methodology

A.1. Genetic algorithm

Genetic algorithms (GA) are randomized search optimization meth-
ods based on the principles of natural selection and evolution pro-
cesses (Goldberg, 1989; Beg and Islam, 2016). In a GA, the first step is
to randomly select a number of chromosomes to create an initial pop-
ulation. A chromosome, 𝜣, is a potential solution for the optimization
problem, and it is made up of a number of genes, 𝛩𝑖,

𝜣 = (𝛩1, 𝛩2,… , 𝛩𝑘),

A gene is an adjustable parameter that is needed to be identified,
i.e. here a material parameter.

In the next steps of a GA, the chromosomes are manipulated to
produce new generations. These steps involve the selection and evalu-
ation of chromosomes inspired by natural processes like crossover and
mutation. In the previous work by the authors, (Sedighiani et al., 2020),
the details of the processes used in this study are outlined.
13
A.1.1. Genetic algorithm processes

Selection
A chromosome with a better fitness value has a higher chance of

being a parent, which mates and recombines to create offspring for
the next generation. In this study, the rank-based wheel approach is
used for selecting pairs of parents. According to this approach, the
selection is solely based on the relative ranking of the chromosomes
in the population.

Crossover
Crossover is an operation in which a pair of chromosomes swap

their genes to generate a new pair of offspring. For this study, the
reduced surrogate methods is used. In this approach, the chromosomes
of both parents are divided into two parts. The division is applied at
the same position for both parents which is selected randomly under the
condition that each part contains at least one gene. The genes up to the
division point for each parent are then combined with the remaining
genes of the other parent to generate a pair of offspring. However, the
division is limited to those positions which result in offsprings with
different genes.

Mutation
Mutation randomly changes one or more genes in a chromosome

with a probability equal to the mutation rate. Mutation is used to
maintain diversity during evolution of the population. Diversity helps
to avoid local minima by preventing the generations from becoming
very similar.

Elitist selection
By means of elitist selection a small proportion of the best chro-

mosomes from the current generation is preserved and passed without
any changes to the next generation. Elitist selection increases the
performance as it ensures that the achievement is not lost from one
generation to the next. The elite chromosomes are not allowed to be
crossed over or subjected to mutation. However, the elite chromosomes
are eligible for selection as parents.

A.2. Approximate evaluation function: response surface methodology

In a GA, the objective functions need to be evaluated repeatedly to
determine the quality of chromosomes, i.e. the potential solutions. This
makes GAs time-consuming for computationally expensive evaluation
functions, here, the CP simulations. To overcome this problem, Sedighi-
ani et al. (2020) evaluated the fitness of the chromosomes using a
cost-effective approximate evaluation function based on the response
surface methodology (RSM).

The RSM is a statistical method that gives the relationship between
explanatory variables and response variables (Moran et al., 2004; Bez-
erra et al., 2008). In this paper, the adjustable constitutive parameters
are the explanatory variables, and the stress is the response variable.
The deformation temperature, the strain rate, and the applied strain
are independent (conditional) input variables. RSM is especially helpful
when an explanatory variable’s effects depend on the levels of the other
explanatory variables.

In RSM, a function (typically a polynomial) fitted to a set of support
points is used to approximate the response variable as a function of
the explanatory variables. In this paper, a second-order polynomial,
including up to four-way interaction effects, is used:

̂ = 𝛽0 +
𝑘
∑

𝑖=1
𝛽𝑖𝜃𝑖 +

𝑘
∑

𝑖=1
𝛽𝑖𝑖𝜃

2
𝑖 +

𝑘
∑

1≤𝑖<𝑗
𝛽𝑖𝑗𝜃𝑖𝜃𝑗 +

𝑘
∑

1≤𝑖<𝑗<𝑙
𝛽𝑖𝑗𝑙𝜃𝑖𝜃𝑗𝜃𝑙

+
𝑘
∑

𝛽𝑖𝑗𝑙𝑚𝜃𝑖𝜃𝑗𝜃𝑙𝜃𝑚 + 𝑒 𝑖 ≠ 𝑗 ≠ 𝑙,

1≤𝑖<𝑗<𝑙<𝑚

http://dx.doi.org/10.17632/msg3vx7rkv.1
https://damask.mpie.de
https://git.damask.mpie.de
http://www.m2i.nl
http://www.stw.nl
http://www.nwo.nl


Mechanics of Materials 164 (2022) 104117K. Sedighiani et al.

e

𝜃

b

t
s

𝑑

where �̂� is the response variable, and 𝜃𝑖 is the normalized value for
xplanatory variable (i.e. gene) 𝛩𝑖:

𝑖 =
𝛩𝑖 − 𝛩𝑚

𝑖
𝛩𝑠
𝑖

, (A.1)

where 𝛩𝑠
𝑖 and 𝛩𝑚

𝑖 are respectively the span and center point of the range
for 𝛩𝑖.

The last term in Eq. (A.1) (𝑒) represents the error, i.e. the difference
etween the predicted values and the observed results. 𝛽0 is the con-

stant effect. 𝛽𝑖 is the main effect of parameter 𝜃𝑖 which determines the
significance of the variable. 𝛽𝑖𝑗 , 𝛽𝑖𝑗𝑙, and 𝛽𝑖𝑗𝑙𝑚 are two-way, three-way,
and four-way interaction effects, respectively. 𝛽𝑖𝑖 are curvilinear effects.

Eq. (A.1) can be rewritten in matrix notation as:

𝐘�̂� = 𝐗𝜃𝜷 + 𝐄, (A.2)

where 𝐘�̂� is the response matrix, 𝐗𝜃 is the full experimental design
matrix, 𝜷 is the full parameter matrix, and 𝐄 is the error matrix. The
matrix 𝜷 can be calculated using the least squares method (Bezerra
et al., 2008) to minimize the residual:

𝜷 = (𝐗𝑇
𝜃 𝐗𝜃)−1(𝐗𝑇

𝜃 𝐘�̂�). (A.3)

The RSM requires a series of designed simulations to approximate
the response. Here, the face-centered composite design is employed to
build this off-line database, which allows us to build up a second-order
polynomial model (Moran et al., 2004; Bezerra et al., 2008). For more
detail on this methodology, see Sedighiani et al. (2020).

A.3. Objective functions and fitness

A fitness value is determined for each chromosome in the popula-
tion, which signifies the chromosomes’ capability in reproducing the
target response, here, the stress–strain curves measured experimentally.
For this purpose, four types of objective functions are used to estimate
the difference between the result obtained using a specific chromosome
and the target function.

Objective functions
The first objective function measures the difference between the

simulated stress at selected strain values and the experimentally de-
termined stress:

𝑑𝑚1 (𝜣, 𝑇 , �̇�) =

√

√

√

√

√

√

√

√

√

√

√

𝑁
∑

𝑖=0
(�̂�𝑖(𝜣, 𝑇 , �̇�) − 𝜎𝑖(𝑇 , �̇�))2

𝑁
∑

𝑖=0
𝜎𝑖(𝑇 , �̇�)2

, (A.4)

where 𝜎𝑖 is the stress experimentally measured at strain level 𝜀𝑖, and
𝑁 is the total number of all strain levels considered. �̂�𝑖 is the stress
response predicted for the potential solution 𝜣.

The second type of objective function measures the difference be-
ween the average slope of the response and the experimentally ob-
erved stress–strain curves:

𝑚
2 (𝜣, 𝑇 , �̇�) =

|

|

|

|

|

(

�̂�𝑁 (𝜣, 𝑇 , �̇�) − �̂�0(𝜣, 𝑇 , �̇�)
)

−
(

𝜎𝑁 (𝑇 , �̇�) − 𝜎0(𝑇 , �̇�)
)

𝜎𝑁 (𝑇 , �̇�) − 𝜎0(𝑇 , �̇�)

|

|

|

|

|

,

(A.5)

where indices 0 and 𝑁 represent the yield strain and the maximum
evaluated strain, respectively. This objective function returns zero error
for two parallel stress–strain curves.

In addition to the above mentioned objective functions, two addi-
tional objective functions are defined, an objective function to measure
the strain rate sensitivity:
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𝑑𝑚3 (𝜣, 𝑇 , �̇�𝑘, �̇�𝑙)

=

√

√

√

√

√

√

√

√

√

√

√

𝑁
∑

𝑖=0

[

(�̂�𝑖(𝜣, 𝑇 , �̇�𝑙) − �̂�𝑖(𝜣, 𝑇 , �̇�𝑘)) − (𝜎𝑖(𝑇 , �̇�𝑙) − 𝜎𝑖(𝑇 , �̇�𝑘))
]2

𝑁
∑

𝑖=0
(𝜎𝑖(𝑇 , �̇�𝑙) − 𝜎𝑖(𝑇 , �̇�𝑘))2

, (A.6)

and an objective function to measure the temperature sensitivity:

𝑑𝑚4 (𝜣, 𝑇𝑙 , 𝑇𝑘, �̇�)

=

√

√

√

√

√

√

√

√

√

√

√

𝑁
∑

𝑖=0
[(�̂�𝑖(𝜣, 𝑇𝑘, �̇�) − �̂�𝑖(𝜣, 𝑇𝑙 , �̇�)) − (𝜎𝑖(𝑇𝑘, �̇�) − 𝜎𝑖(𝑇𝑙 , �̇�))]2

𝑁
∑

𝑖=0
(𝜎𝑖(𝑇𝑘, �̇�) − 𝜎𝑖(𝑇𝑙 , �̇�))2

, (A.7)

where (𝑇𝑙 , 𝑇𝑘) and (�̇�𝑘, �̇�𝑙) represent different combinations of tempera-
tures and strain rates, respectively.

Fitness
The distance between the experimental and simulated data esti-

mated using the objective functions defined in Eq. (A.4) to Eq. (A.7)
is only for one loading condition. For each types of objective function
mentioned above, the total normalized distance under all 𝑀 considered
loading conditions is calculated as:

𝐷𝑗 (𝜣) =
𝑀
∑

𝑚=1
𝑑𝑚𝑗 (𝜣, 𝑇 , �̇�), 𝑗 = 1, 2, 3, 4, (A.8)

Eventually, the four types of objective functions are combined to
obtain a unified fitness value for a chromosome:

𝐹 (𝜣) =
4
∑

𝑗=1
𝑤𝑗 𝐷𝑗 (𝜣), (A.9)

where 𝑤𝑗 are weights for each type of objective functions.
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