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Abstract

Traditionally, geometry has been represented differently in the field of Computer Aided Design
(CAD) and Finite Element Analysis (FEA). This means that the CAD geometry, which can be seen
as exact, must be converted to an Analysis Suitable Geometry (ASG) for input in a FEA program.
A cumbersome and time consuming process, more commonly known as meshing. Furthermore,
most engineering analysis techniques use linear or quadratic approximations of the originally exact
geometry. Besides the geometry error, these crude geometry approximations can give rise to
numerical errors such as spurious oscillations. In order to avoid these problems an integrated
approach is necessary which unifies CAD and FEA.

Two recently emerged Finite Element Methods attack this problem by directly using the CAD
geometry in FEA, namely IsoGeometric Analysis (IGA) and the NURBS Enhanced Finite Element
Method (NEFEM). Inspired by these methods a new method has been developed as part of this
thesis, called AnisoGeometric Analysis (AGA). In this thesis we investigate if non-linear transfor-
mation error (NLTE) is detrimental for the higher continuity approaches of IGA and if there are
any benefits in combining the ideas of IGA and NEFEM in the AGA approach.

In IGA the solution space is expanded using the same basis functions as the CAD provided ge-
ometry. These basis functions are Non-Uniform Rational B-Splines (NURBS), a generalization
of B-Splines. NURBS have analogues of classical finite element h- and p-refinement, and a new
higher-order and continuity concept, k-refinement. IGA has proven to be a superior alternative to
classical FEM. However, due to the tensor product basis, local refinement is still underdeveloped
in IGA and generating good quality 3D meshes is still an open problem. Furthermore, IGA invokes
the isoparametric concept, giving rise NLTE.

NEFEM on the other hand uses NURBS only for its boundary description while employing stan-
dard finite elements on the interior preserving the computational efficiency of the classical FEM.
Moreover, standard refinement schemes and unstructured meshing technology can be reused.
Furthermore, NEFEM circumvents NLTE by defining the basis functions in Cartesian coordinates
leading to improved accuracy when compared to isoparametric FEM. In numerical experiments,
NEFEM showed a minimal 1 order of magnitude improvement in accuracy when compared to
isoparametric FEM.

AGA employs exact NURBS geometry with an arbitrary choice for the solution space basis, gen-
eralizing IGA and NEFEM. Here the approach is presented with a B-Spline basis (AGAsp) and a
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viii Abstract

Lagrange polynomial basis (AGAlg). When using a B-Spline basis higher continuity approaches
are not limited by the continuity of the geometry, Gauss quadrature is efficient and exact and
sub- and superparametric approaches become possible. When choosing a Lagrange basis for the
solution space exact NURBS geometry can easily be implemented on existing FEM codes, only
an additional Jacobian evaluation needs to be added. Furthermore, it also solves the local refine-
ment problems of IGA, but loses the favourable dispersion properties. In addition, AGA, like IGA,
invokes the isoparametric concept giving rise to NLTE.

Numerical experiments showed that AGAlg and superparametric AGAsp attain optimal conver-
gence rates. Furthermore, adaptively refined AGAlg gave an additional efficiency boost based
on accuracy per dof. Subparametric AGAsp approaches, however fail when the continuity of the
solution space exceeds the continuity of the NURBS geometry space. Additionally, triangle quality
can be an issue on highly curved geometry in AGAlg.

A comparison of the three methods was done on several test problems. The results show that
k-refined IGA is superior on every test problem based on a comparison per degree of freedom. On
smooth problems NEFEM gives a 2 order of magnitude increase in accuracy over AGA, while on
the more challenging problems AGA and NEFEM are close together despite the NLTE. Adaptively
refined AGA is competitive with k-refined IGA on the Gaussian spike test problem.
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Chapter 1

Introduction

This introduction gives an overview of a master thesis which is focused on comparing two recently
emerged Finite Element Methods, namely IsoGeometric Analysis (IGA) by Hughes et al. [37] and
the NURBS Enhanced Finite Element Method (NEFEM) by Sevilla et al. [63]. In addition a
third method, called AnisoGeometric Analysis (AGA) has been developed which combines the
ideas of IGA and NEFEM. Each of these methods use the exact Computer Aided Design (CAD)
provided geometry. However, they are subject to different sources of error. NEFEM, for example
has inconsistent weight function spaces while IGA is subject to non-linear transformation errors
(NLTE).

First the need for exact representation of engineering geometry is discussed. Next, some history of
exact geometry representation in Finite Element Analysis (FEA) is given. Then the three methods
are introduced and their advantages and disadvantages are discussed. Subsequently, the objectives
of the thesis are stated and motivated. Finally an overview of the structure of the thesis is given.

1.1 Overview

Real-world engineering problems involve analysis on products like aircraft, automobiles, boats, wind
turbines and components of these products. The geometry of all these products are described
using Computer Aided Design (CAD).

In the field of engineering a lot of time is lost on approximating this geometry for analysis purposes.
Most engineering analysis techniques use piecewise linear or piecewise quadratic approximations
of the boundary. Since such an approximation is not unique, engineers waste time going back
and forth between these two definitions of the geometry. It is a paradox that the stress engineer
does have access to the exact geometry through the CAD drawing provided by his colleague at the
design engineering department. So why is he approximating it when he wants to perform analysis?
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Traditionally, geometry has been represented differently in the fields of CAD and FEA. This means
that the CAD geometry, which is exact, must be converted to an Analysis Suitable Geometry (ASG)
for input into a FEA program. In order to obtain an ASG, features like inserts, holes and other
details are often omitted to avoid numerical problems during analysis. This cumbersome process
takes up to 80%[39] of the total analysis time and is generally known as ’meshing’.

The need for precise geometry in analysis is obviated by Figure 1.1. Here an example is shown
where spurious oscillations arise due to a crude geometric approximation with straight-sided el-
ements. Smoothing the geometry completely eliminates the spurious oscillations even when the
flow field is approximated by linear elements. Other areas for which exact geometry representation

Figure 1.1: Isodensity contours of GLS discretization of Ringleb flow. Isoparametric linear La-
grange element approximation: (a) both solution space and geometry space are represented by
piecewise linear functions. (b) Superparametric element approximation: solution space is piecewise
linear, while geometry space is piecewise quadratic. Smooth geometry avoids spurious entropy
layers associated with piecewise linear geometric approximations. Taken from Barth [2].

is important are for example: Fluid Structure Interaction (FSI) requires a precise description of
the fluid structure interface; non-linear phenomena such as transition to turbulence and buckling
of thin-shell structures are extremely sensitive to small deviations in the geometry.

The disparity between the fields of FEA and CAD on the subject of geometry representation is
remarkable. This has mainly to do with the fact that they are seen as separate fields, which
are interfaced using complicated and expensive mesh generation schemes. In order to avoid this
problem, it is preferable to use an integrated approach where the CAD geometry is directly used in
the FEA. Some attempts at this have been made in the recent years a few of which are highlighted
in the next section.
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1.2 Previous attempts

The idea to bring exact geometry to the Finite Element Method in an integrated way is not new. In
1973 Gordon and Hall [32] proposed the transfinite mapping technique to get an exact description
of the computational domain [33] by using analytical functions to define the boundary of the
domain. It was not a solution to the aforementioned meshing problems but did introduce exact
geometry in analysis. A blend of the transfinite mapping method and NURBS can be found in
the paper by Schramm and Pilkey [56]. They recognized that using NURBS for both the analysis
and geometry description comes with great advantages in the design process. More recent is the
approach by Cirak et al. [20] which uses subdivision surfaces1 for geometry and analysis and the
work of Höllig [34], Höllig et al. [35, 36] which uses weighted B-Splines. Independently, Botella
and Shariff [12] recognized the added benefit of higher inter-element continuity which the B-
Spline basis offers. Although all these works proved the benefits of using exact geometry and an
integrated approach it really needed someone with high standing in FEA to promote these ideas.

1.3 IsoGeometric Analysis

IsoGeometric analysis was introduced in 2005 by Hughes et al. [37] to bring exact engineering
geometry to Finite Element Analysis (FEA) and alleviate the cumbersome process of meshing
altogether. The Isogeometric Analysis concept unifies the two fields of CAD and FEA by expanding
the solution space using the same basis as that of the geometry description from CAD. Since its
introduction, IGA has successfully been applied to a wide variety of problems in structural analysis
[22, 38, 67], electromagnetics [17], turbulence [1, 6, 8], fluid structure interaction [4, 7, 10, 11]
and higher order partial differential equations [31]. Figure 1.2 shows some results of a full FSI of
a wind turbine using IGA.

There are several candidate technologies available to the Isogeometric Analysis framework, of which
NURBS is most commonly used since it is the standard technology employed in CAD programs.
NURBS generalize B-Splines and consequently inherit all of their favourable properties for free-
form design. NURBS are commonly used in Computer Aided Design (CAD), Manufacturing
(CAM), and Engineering (CAE) and are part of numerous industry-wide used standards, such as
IGES, STEP, ACIS, and PHIGS. NURBS are piecewise-rational functions and allow a compact
representation of geometry, can be efficiently evaluated [24, 26, 54], can exactly represent some
simple geometries2 like cylinders, spheres, ellipsoids and allow easy manipulation through their
control points.

Isogeometric Analysis based on NURBS has refinement procedures analogue to h- and p-refinement
in FEA, which are respectively known as knot insertion and degree elevation. The property of
splines having a high level of derivative continuity at element interfaces also gives rise to the
potentially more powerful k-refinement [1, 23], where the degree is elevated together with the
continuity at the element interfaces. In practise, however, pure k-refinement is generally not

1Which are a bi-cubic B-Splines.[19]
2More generally known as quadric. http://en.wikipedia.org/wiki/Quadric
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Figure 1.2: Isocontours of air speed at a planar cut superposed with the wind turbine rotor on the
deformed configuration. Rotor blade deflection is clearly visible: (a) t = 0.7 [s]; (b) t = 1.2 [s];
(c) t = 2.0 [s]; (d) t = 4.5 [s]. Taken from Bazilevs et al. [10]

possible due to geometric restrictions on the continuity.

The B-Spline basis has proven to have superior dispersion properties when compared to the classic3

high order FEM basis, Chapter 5 [39] and [29, 38]. Figure 1.3 shows this for 1D wave propagation.
The high frequency mode behaviour of classical FEM is divergent with the order of approximation.
NURBS on the other hand offer almost spectral approximation properties and all modes converge
with increasing order of approximation. These are very desirable properties in problems with

3When referring to classic FEM I mean the collection of methods based on Lagrangian polynomials as basis
functions.
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Figure 1.3: Comparison of p-FEM with k-refined B-Splines numerical spectra for 1D free vi-
bration, with on the y-axis the discrete-to-exact ratio of the frequencies and on the x-axis the
scaled mode number. By the duality principle this is equivalent to the 1D Helmholtz equation by

interchanging frequency with wave number
ωh

n

ωn
↔ kn

kh
n

. Taken from Hughes et al. [38].

wave propagation, long time integration and a multi-scale character. These properties are mainly
ascribed to the aforementioned inter-element continuity of the basis functions.

1.3.1 Issues in IGA

Multiple dimensions are typically handled using tensor products of 1D basis functions, therefore
local mesh refinement and adaptive mesh refinement (i.e. in an error estimation framework) is
not possible with the global operating tensor product B-Splines. Furthermore, due to the tensor
product nature it is also difficult to deal with various topological shapes. A single NURBS patch
can only represent quadric shapes. Employing multiple patches seems a natural way of solving
these [23] issues, although it becomes progressively more difficult with increasing p and k to
produce seamless patch interfaces. The topological limitations can be solved partly by employing
trimmed NURBS [42, 43, 60] or web-splines [34–36]. Alternatives to the tensor product approach
which do provide local refinement capibilities are the following.

T-Splines, a generalization of NURBS, are a promising technology giving the same adaptivity as
quadrilateral FEM codes [9, 57, 59] with huge savings in degrees of freedom compared to NURBS.
Note that T-Splines are also a solution to the topology problem, they produce seamless patch
interfaces and can be combined with trimmed NURBS. However, issues remain: in certain cases
the refinement algorithm operates in a non-local way leading to additional refinements propagating
through the whole patch. The refinement pattern is non-unique, depending on the order in which
elements are refined. The inability to locally vary p and k is also a shortcoming. Finally, linear
independence is not guaranteed through the refinement process [15] but can be ensured using the
procedure proposed by [50]. There is also a procedure to convert an unstructured quadrilateral
mesh to a T-mesh [70].
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Multilevel/hierarchical B-Splines [45, 46] are another way to overcome the refinement issue while
keeping all the standard evaluation algorithms. The hierarchical structure of the basis is exploited
by combining basis functions at different levels of refinement. When refinement is needed the basis
functions of a level higher become active at that location. The construction of the hierarchical
basis is flexible, various combinations of hpk-refinements can be used on each refinement level.
This even allows for local anisotropic refinement. Furthermore the hierarchical basis can probably
facilitate a multigrid method for the solution of the linear system. Recently the first application
in IGA was done by Vuong et al. [68].

A new interesting approach is that of Locally Refined splines [28] (LR-Splines). LR-Splines share
some of their properties with multilevel splines and T-splines. The main difference is that in LR-
splines the refinement is done by locally inserting additional knots. Unfortunately this technique
is still shrouded in mystery because the only account of it is the referred conference presentation.

An alternate solution are simplex based technologies which abandon NURBS as a basis for Iso-
Geometric Analysis. Instead, they adopt an alternative framework that does permit local mesh
refinement such as simplex B-Splines or subdivision surfaces [25, 44, 66].

Although IGA alleviates the cumbersome process of meshing by directly employing the CAD
geomety in analysis, even in 2D problems it is not clear how to best generate a mesh based on a
CAD description of only the boundary of the domain. However, this can still be solved with the
current CAD technology, a bigger challenge are 3D volume meshes.

Current NURBS technology can only provide a surface representation of an object. Volumes are
defined by their bounding surfaces. For IsoGeometric Analysis to become a mature technology a
solid NURBS modeller is needed. The development of a threedimensional (trivariate) representa-
tion of the solid such that the surface representation is exactly preserved is not trivial. Surface
differential and computational geometry are fairly well understood, but the three dimensional
problem is still open. New technologies are being developed to tackle this problem, such as Ricci
flows and polycube splines [49, 69]. Polycube splines have similarities with the template-based
system created by Zhang et al. [73] who used a solid NURBS modeller to construct patient specific
models of arteries. See for more preliminary efforts [21, 71].

Finally, IGA invokes the isoparametric concept which introduces NLTE through the mapping from
the pararameter space to physical space. This mapping is non-linear when non-polygonal geometry
is considered. The basis functions in physical space are therefore not polynomial. Convergence
rates, however, are retained. This has been known as one of the variational crimes committed in
the FEM , see [13] for a complete overview.

1.4 NURBS Enhanced Finite Element Method

The NURBS enhanced Finite Element Method (NEFEM) by Sevilla et al. [63] also unifies CAD
geometry with classical FEM. There are two main differences between NEFEM and IGA. First,
NEFEM considers the exact NURBS description only for the boundary of the computational
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domain, the usual information provided by CAD software.

Secondly, NEFEM circumvents NLTE by approximating the solution with a standard piecewise
polynomial interpolation in Cartesian coordinates. Now the basis is polynomial in physical space,
but by doing so an inconsistency arises. Due to the basis functions being polynomial they are
non-zero on the boundary when it is curved. Therefore violating the requirements of the weight
function space such that strong boundary conditions cannot be imposed. An elegant fix for this
has been provided by Scott [58] in 1975, by placing Lobatto points on the boundary in such a way
that the error of the inconsistency goes faster to zero than the approximation error. This makes
the inconsistency not an issue in practise. Figure 1.4 shows the improved accuracy by employing
this approach on domains with curved boundaries.

(a) (b)

Figure 1.4: Poisson equation results on a curved domain. Here NEFEM, isoparametric FEM,
p-FEM and Cartesian FEM are compared. Isoparametric FEM approximates the boundary with
piecewise polynomials and has NLTE, p-FEM employs an exact boundary representation but
still has NLTE and Cartesian FEM circumvents NLTE by defining the interpolation in Cartesian
coordinates while approximating the boundary with piecewise polynomials. Figure 1.4(a) shows
the p-refinement results for a polynomial manufactured solution of degree 7. NEFEM satisfies
this patch test even on curved domains. Figure 1.4(b) shows the p-refinement results for a non-
polynomial manufactured solution. Note the improved accuracy of the NEFEM approach due to
the Cartesian basis. From Sevilla et al. [62].

Moreover, every interior element (i.e. elements not having an edge or face in contact with the
NURBS boundary) can be defined and treated as a standard FEM element. Therefore, in the
vast majority of the domain, interpolation and numerical integration are standard, preserving the
computational efficiency of the classical FEM. Specific numerical strategies for the interpolation
and the numerical integration are needed only for those elements affected by the NURBS boundary
representation.

Furthermore NEFEM solves the aforementioned problems with local refinement and volume
meshes, because NEFEM is a regular FEM on the interior, which gives it a strong advantage
over IGA. Standard (adaptive) refinement schemes can be directly applied without the need to
refine for the geometry and at most a NURBS boundary representation is needed, removing the
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need for a NURBS volume mesher and it allows NEFEM to exploit standard unstructured mesh-
ing technology. However, the change to the Lagrange basis makes NEFEM lose the favourable
dispersion properties of the B-Spline basis.

1.5 AnisoGeometric Analysis

The AnisoGeometric Analysis (AGA) approach was developed during the graduation period to-
gether with René Hiemstra and is inspired by the ideas of NEFEM and IGA. AGA employs exact
NURBS geometry with an arbitrary choice for the solution space basis. The decoupling of the
solution space from the geometry space lifts the restrictions imposed by the continuity of the
geometry enabling pure k-refinement, which will be referred to as ”high regularity approaches”.
Here AGA is presented with a B-Spline basis and a Lagrange basis, but can in principal be applied
to any type of element/basis function. Furthermore, hybrid approaches can be constructed using
B-Splines in the interior for favourable dispersion characteristics and NEFEM elements on the
boundary to avoid NLTE.

When using a B-Spline basis for the solution space, higher regularity approaches are not limited by
the continuity of the geometry. Potentially saving a considerable amount of degrees of freedom.
Furthermore, Gauss quadrature is exact and efficient when piecewise polynomial B-Splines are
used. This work will show that on smooth geometry (C1 and above) this approach potentially
gives the same accuracy as IGA up to a certain difference between geometric and solution space
continuity, while retaining optimal convergence rates.

When choosing a Lagrange basis for the solution space, AGA can be easily applied to an existing
FEM code. In fact, only an additional Jacobian evaluation needs to be added in the assembly
process. It turns out that Lagrange-based AGA reaches optimal convergence rates in all test
problems and is competitive with NEFEM for lower-degree approximations. Furthermore Lagrange-
based AGA also solves the aforementioned problems with local refinement, although without the
favourable dispersion properties of IGA.

1.6 Test cases

The test cases used throughout this thesis are Poisson problems, furthermore a convection-diffusion
problem will be introduced in Chapter 3. The source terms are found by the method of manufac-
tured solutions. Hence the following equation is solved

−∆u(x, y) = f(x, y) ∈ Ω

u(x, y) = Iu(x, y) = g(x, y) ∈ Γd

∇u(x, y) · n = h(x, y) ∈ Γn (1.1)
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where Ω is the physical domain, Γd ∪ Γn = ∂Ω and n is the outward unit normal on ∂Ω. The
manufactured solutions used in this thesis are the following

u(x, y) = x5 − 5x3y2 − 3y5

f(x, y) = −20x3 + 70y3 + 30yx2 (1.2a)

u(x, y) = x cos (y) + y sin (x)

f(x, y) = x cos (y) + y sin (x) (1.2b)

u(x, y) = sin (kπx) sin (kπy)

f(x, y) = 2(kπ)2 sin (kπx) sin (kπy) (1.2c)

u(x, y) = exp

(−(x2 + y2)

0.02

)

f(x, y) = 200 exp

(−(x2 + y2)

0.02

)

(

−1 + 50x2 + 50y2
)

(1.2d)

where the Dirichlet boundary conditions are found by interpolation. Case (1.2b) is taken from
Sevilla et al. [63] and case (1.2d) will be used to test adaptive refinement. When comparing
results the L2-norm versus hmax or

√
ndof is used to define the quality of the solution. Where

hmax is defined as the maximum circumdiameter of the element in physical space and
√
ndof is

the square root of the number of degrees of freedom.

1.7 Goal of the thesis

The goal of this thesis is to quantify and clarify some of the limitations of IGA, NEFEM and AGA.
These include the effect of non-linear transformation error on the higher continuity approaches.
It is known from the previous sections of this chapter that Cartesian Lagrange bases remove this
error, improving the accuracy of the approximation. On the other hand, the higher inter-element
continuity of the B-Spline basis is also known to increase the accuracy of the approximation by
giving superior dispersion characteristics when compared to those of the Lagrange basis.

In this thesis the following research questions are answered:

• How detrimental is NLTE opposed to the beneficial properties of higher continuity B-Splines
in steady problems?

• Are there any benefits in combining the ideas of IGA and NEFEM in AGA?

Furthermore this thesis will clarify some of the limitations of IGA and NEFEM which are not found
in literature.
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1.8 Structure of the thesis

The structure of the thesis is as follows. Chapter 2 will start with the necessary theory on B-Splines
and NURBS and acts as a prelude for the proceeding chapter(s). Then, refinement strategies for
the B-Spline basis are demonstrated and limitations of NURBS in an analysis framework are
discussed. Next, in Chapter 3, will show the development of a NURBS based FEM for the
convection-diffusion equation. Numerical experiments are performed on the convection-diffusion
equation and the Poisson equation. Some observations are made on the conditioning of the linear
system as well as some counterintuitive NURBS results. Chapter 4 will describe the NURBS
Enhanced Finite Element Method. This method also uses NURBS for the geometry definition but
represents its field variables using Lagrange polynomials. Here the focus is on the development of
boundary elements and their basis functions. NEFEM avoids non-linear transformation errors but
in doing so an inconsistency arises. Attempts at fixing this inconsistency are the main topic of this
chapter. Numerical experiments will show the superior accuracy on curved geometry which can
be attained by using a NEFEM approach. Then the AnisoGeometric method developed during
the course of this thesis is presented in Chapter 5. The development is shown for both B-Splines
and Lagrange polynomials. In Chapter 6 the potential of AnisoGeometric Analysis is shown using
numerical experiments, and a comparison between IGA, NEFEM and AGA is made. Conclusions
and recommendations will be given in Chapter 7.
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Chapter 2

B-Splines and NURBS

2.1 Introductory remarks

In this chapter B-Splines and NURBS are introduced as a compact and elegant way to describe
geometry. This chapter will show the reasons why splines are an attractive basis, not only for CAD
but also in an analysis framework. To this end some observations are already made in the light of
analysis with splines, as preliminary for Chapter 3. The chapter starts with a brief history and the
definition of the parametric space and the B-Spline basis functions which live there. Subsequently
the construction of curves, surfaces and volumes will be addressed. The possibilities to refine the
basis will be discussed thereafter. The generalization to NURBS is made in Section 2.5.

In this chapter the notation of Hughes et al. [39] combined with Piegl and Tiller [54] is used.
Other important references for this chapter are the works by [24, 26, 27, 48, 55, 69].

2.2 Brief history

Historically splines were first used for shipbuilding before the age of computer modelling. Naval
architects used splines, which were thin bendable strokes of wood, to draw smooth curves for
the lines plan of the ship. Metal weights, called ducks, were placed such that the spline had its
preferred shape. In between the ducks the spline will assume shapes of minimum strain energy
leading to smooth curvature continuous (C2) geometry everywhere, see also Figure 2.1.

With the advent of the computer, Computer Aided Geometric Design (CAGD) emerged. CAGD
is concerned with the generation of smooth curves and surfaces, which generally have to satisfy
a large number of constraints. When using polynomials this requires high degree approximations
because degree p polynomials can satisfy p+1 constraints. High degree polynomials are inefficient
to process, can become unstable and have the disadvantage that changes are global, while local
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12 B-Splines and NURBS

Figure 2.1: A spline held by ducks to obtain the required smooth design shape.

control is needed. In addition, continuity should be maintained when local changes are made.

These issues were overcome by the definition of a Spline in the mathematical sense, a function
constructed from polynomial elements pieced together with a certain level of continuity between
the elements. The required continuity is directly built into the basis which made Basis Splines
or B-Splines, the natural basis in which to define splines, such a success in CAGD. The B-Spline
basis allows an arbitrary choice of continuity between the elements from C0 to maximum Cp−1.
Curvature continuity is an important requirement in design, because it guarantees a smooth change
of reflections. Cubic Splines are therefore most commonly used in CAGD.

B-Splines are convenient for free-form modelling, but they lack the ability to exactly represent some
simple engineering shapes like circles and ellipsoids. This is why today, the de facto standard tech-
nology in CAD is a generalization of B-Splines called NURBS. NURBS stands for Non-Uniform
Rational B-Splines, they are rational functions of B-Splines and inherit all their favourable prop-
erties. NURBS extend B-Splines since they allow exact representation of conic sections.

For a full account on the history of curves and surfaces in CAGD the interested reader is referred
to [30].

2.3 B-Splines

The natural starting point for a discussion about NURBS are B-Splines, remember NURBS are
built from B-Splines.

2.3.1 Parameter domain

B-splines are defined on a parameter space Ω′. The B-Spline parameter space is local to ”patches”
instead of elements, where the patch can be seen as a ”macro-element”. The parameter domain
itself is defined by the knot vector(s) Ξ. The knot vector is defined as

Ξ = {(ξ1, . . . , ξp+1 = a) , ξp+2, . . . , ξn, (ξn+1, . . . , ξn+p+1 = b)}
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2.3 B-Splines 13

where, ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, . . . , n+ p+1 and n equals the number
of basis functions. Higher dimensional parameter spaces are constructed using a tensor product
of 1D knot vectors. Hence the parameter domains are defined by the set [a, b]d ∈ Rd with d the
dimension of the space.

Using the knot vector one can construct B-spline basis functions of order p+1 which are piecewise
polynomials of degree p. Repeated knots are allowed, hence ξ1 ≤ ξ ≤ . . . ≤ ξn+p+1. A knot that
is repeated k times is said to have a multiplicity k.

Remark 2.3.1:
(1) There is a clear distinction between order and degree in the definition of the knot vector.

This thesis obeys the computational geometry convention that order is degree plus one or
o = p+ 1.

(2) The knots can be equally spaced giving a uniform knot vector, unequally spaced knots con-
sequently give a non-uniform knot vector.

(3) The knot vector is open, meaning that, the first p+1 and last p+1 knots are repeated. The
implications of repeated knots will become clear in Section 2.3.2.

(4) Note that we can define an element or knot span in the parameter domain as [ξi, ξi+1).

2.3.2 B-Spline basis functions

The B-Spline basis functions are defined recursively starting with piecewise constants

Bi,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise.
(2.1)

For p = 1, 2, 3, . . . , the definition is

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (2.2)

So given a knot vector and a polynomial degree the B-Spline function space B is uniquely defined
as

B ≡ B(Ξ; p) := span {Bi,p}ni=1

by using the recursive algorithm. Higher-dimensional B-Spline function spaces are constructed
using tensor products of univariate B-Spline basis functions namely

B ≡ B(Ξ,H, . . . ; p, q, . . .) := span {Bi,p ⊗Bj,q ⊗ . . .}n,m,...
i,j,...=1 . (2.3)

The result of (2.1) and (2.2) is shown in Figure 2.2 for the knot vector Ξ =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. An example of a quadratic basis for an open, non-uniform knot vector
is shown in Figure 2.3. Here the implications of the repeated knots at the ends of the interval
and also at ξ = 4 are shown, where the continuity is lowered to C0. The other basis functions
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Figure 2.2: Recursive generation of a cubic basis for the uniform knot vector Ξ =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.

are C1 continuous. Degree p basis functions have up to p− 1 continuous derivatives. A repeated
knot will reduce the number of continuous derivatives by 1. When the multiplicity equals p, the
basis function is nodal. The basis functions possess the following important properties:

1. Non-negativity: Bi,p(ξ) ≥ 0∀i, p and a ≤ ξ ≤ b.

2. On a knot span [ξi, ξi+1) there are p+ 1 non-zero functions.

3. Partition of unity.
∑n

i=1 Bi,p(ξ) = 1.

4. The basis functions form a linear independent basis which makes them suitable for analysis.

5. B0,p(0) ≡ Bn,p(1) ≡ 1.

6. Compact support [ξi, ξi+p+1). Higher order functions have support across larger portions of
the domain. This increase in support has no implications on the bandwidth of the resulting
linear system in numerical applications. The total number of functions that any function
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Figure 2.3: Quadratic basis functions for the non-uniform knot vector Ξ =
{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

shares support with (including the function itself) is 2p+1 which is equal to that for Lagrange
polynomials.

 

 
control polygon

p=2

p=4

p=6

Figure 2.4: Variation diminishing property depicted for increasing curve degree.
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16 B-Splines and NURBS

2.3.3 B-Spline derivatives

Derivatives of B-Spline basis functions are generated using the B-Spline lower order bases

dk

dξk
Bi,p(ξ) =

p!

(n− p)!

k
∑

j=0

αk,jBi+j,p−k(ξ),

with

α0,0 = 1

αk,0 =
αk−1,0

ξi+p−k+1 − ξi

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, . . . , k − 1

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
.

When the denominator becomes zero due to repeated knots, the coefficient is defined to be zero.1

2.3.4 B-Spline curves

B-Spline curves are defined by the coefficients of the basis functions, the control points Pi.
The curve is constructed in Rd by taking linear combinations of a set of n basis functions Bi,p,
i = 1, 2, . . . , n , with their corresponding control points Pi ∈ Rd, i = 1, 2, . . . , n. The piecewise-
polynomial B-Spline curve is given by

C(ξ) =

n
∑

i=1

Bi,p(ξ)Pi a ≤ ξ ≤ b. (2.4)

Hence given a degree p, a knot vector Ξ and set of control points Pi the curve is defined. The
curve C(ξ) is a vector-valued function of one parameter. It maps a line segment into Euclidean
3D space or more formally C : Ω′ → Ω, this is shown graphically in Figure 2.5. Figure 2.6(b)
shows an example of a curve using the basis functions considered in Figure 2.3. Note that the
curve, like its basis, is interpolatory at the first and last control point due to the open knot vector
and at control point P6 due to the multiplicity of ξ = 4. Furthermore the curve is tangent to the
control polygon at the first, last and sixth control point.

The derivative of a curve can be easily computed using the derivatives of the basis functions, like

C ′(ξ) =
n
∑

i=1

dBi,p(ξ)

dξ
Pi a ≤ ξ ≤ b.

B-Spline curves posses the following important properties:

1For algorithms see Piegl and Tiller [54].
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Figure 2.5: The creation of a curve. Figure 2.5(a) shows the parameter domain Ω′ together with
the control net P. Taking linear combinations of the basis with the control net (2.4) results in
the curve in Figure 2.5(b).

1. The properties of the B-spline curve follow directly from the properties of the B-spline basis
functions. Like its basis a B-spline curve of degree p has p − 1 continuous derivatives in
the absence of repeated knots or control points. Another important property is that the
compact support of the basis gets passed on to the curve. Thus moving a single control
point does not affect more then p+ 1 elements of the curve.

2. Repeating a knot or control point k times, reduces the number of continuous derivatives by
k.

3. Non-negativity of the basis leads to the convex hull property, if ξ ∈ [ξi, ξi+1) then C(ξ) lies
within the convex hull of the control points Pi−p, . . . ,Pi.

4. Variation diminishing property with increasing degree. Figure 2.4 shows this property for
increasing degree. The curve will never wiggle more than its control polygon, hence the
spectral content of the curve is at most equal to the spectral content of the data. See
Section 3.4.4 for a discussion on the implications of this property in analysis.

5. Affine invariance property. Affine transformations of a B-spline curve are applied to the
control points directly.
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Figure 2.6: Figure 2.6(a) shows a quadratic curve with a uniform knot vector. Figure 2.6(b)
shows a curve where ξ = 4 has a multiplicity of k = 2. Note the reduced continuity of the curve
at P6 due to the multiplicity of ξ = 4.

2.3.5 B-Spline surfaces and solids

The B-Spline surface is defined by a control net Pij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m and the knot
vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} ,H = {η1, η2, . . . , ηm+q+1} . Taking the tensor product of the
univariate basis functions Bi,p(ξ) and Bj,q(η) with the control net results in a B-Spline surface
defined as S : Ω′ → Ω with the map defined as

S(ξ, η) =

n,m
∑

i=1,j=1

Bi,p(ξ)Bj,q(η)Pi,j .

It is important to note that the univariate functions are defined on their own knot vector, hence
they can have a different parametrization. Furthermore a different degree can be chosen for each
coordinate direction.

Analogous to B-Spline surfaces, B-Spline solids are defined as the tensor product of three univariate
basis functions. Given a control net Pi,j,k, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , l and
knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} ,H = {η1, η2, . . . , ηm+q+1} andZ = {ζ1, ζ2, . . . , ζl+r+1} ,
the B-Spline solid is defined as V : Ω′ → Ω with the map defined as

V (ξ, η, ζ) =

n,m,l
∑

i=1,j=1,k=1

Bi,p(ξ)Bj,q(η)Bk,r(ζ)Pi,j,k.

2.3.6 Global curve interpolation

In order to be able to impose Dirichlet conditions a form of interpolation is needed. To this end
global curve interpolation is used [54]. When using Lagrange polynomials the Dirichlet condition
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can be directly imposed at the nodes. Because B-Splines are not interpolatory a system needs to
be solved to find the right control points such that the Dirichlet condition is interpolated in the
right way.

For the interpolation a set of interpolation points needs to be chosen. The Greville abscissae
or Marsden-Schoenberg points are the standard choice [27] and defined as the average of p
consecutive knot values, viz

ξ∗j =
1

p+ 1

p+j+1
∑

i=j+1

ξi.

The Greville abscissae coincide with the location of the control points in parameter space. Hence
they are an ideal choice for interpolation purposes.

Now given a known function g(x), knot vector Ξ and map x = C(ξ) from our B-Spline or NURBS
geometry global curve interpolation is defined as

g
(

C(ξ∗j )
)

=
n
∑

i=1

Bi,p(ξ
∗
j )gi. (2.5)

This results in a solvable n×n system of linear equations. For a surface repeated curve interpolation
can be used, see [54] for details.

2.4 Refinement

The B-Spline basis can be enriched by three types of refinement of which two have an analogue
in standard FEM bases. These are knot insertion, degree elevation and degree and continuity
elevation. The first two are equivalent to h- and p-refinement respectively, the last one is dubbed
k-refinement and has no equivalent in standard FEM. In this section these three enrichments are
discussed and examples are shown.

2.4.1 Knot insertion: h-refinement

Knot insertion or h-refinement in classical FEM nomenclature enriches the basis by increasing the
resolution of the parameter space. Given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} and introducing
an extended knot vector Ξ̄ =

{

ξ̄1 = ξ1, ξ̄2, . . . , ξ̄n+m+p+1 = ξ̄n+p+1

}

such that Ξ ⊂ Ξ̄. The new
n + m basis functions are formed by (2.1) and (2.2) by applying them to Ξ̄. The new n + m

control points, P̄ =
{

P̄1, P̄2, . . . , P̄n+m

}T
, are formed from linear combinations of the original

control points, P = {P1,P2, . . . ,Pn}T , by

P̄ = αiPi + (1− α)Pi−1 (2.6)
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where

αi =











1, 1 ≤ i ≤ k − p,
ξ̄−ξi

ξi+p−ξi
, k − p+ 1 ≤ i ≤ k,

0, k + 1 ≤ i ≤ n+ p+ 2.

(2.7)

Note that choosing the control points as in (2.6) and (2.7) the continuity of the curve is
preserved. Figure 2.7 gives an example of knot insertion. The initial knot vector is Ξ =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, a new knot is inserted at ξ̄ = 2.5. The curve with its old and new
control polygon is shown in Figure 2.7(a). The new curve is geometrically identical to the original
curve, but the basis functions and control points are changed. The new knot added one basis
function, compare Figure 2.7(b) with Figure 2.7(c), and one control point.

Remark 2.4.1:
Next to increasing the resolution of the parameter space, knot insertion can also be used to control
the continuity of the basis by repeating knots. This is one of the distinguishing features of the
spline basis compared with the classical FEM basis.

2.4.2 Degree elevation: p-refinement

Degree elevation is the second method of enriching the basis and is the equivalent of p-refinement
in regular FEM. This procedure starts by effectively subdividing the curve into Bézier elements by
knot insertion, (2.6) and (2.7), to raise the multiplicity to the polynomial degree. Then the order
of the polynomial is raised on each individual segment. Finally excess knots are removed to create
the new B-spline. Recall from Section 2.3.2 that the basis has p − k continuous derivatives, so
increasing p also implies increasing k. This ensures that the basis keeps its original continuity.

As with h-refinement the solution space spanned by the degree elevated basis functions contains
the space spanned by the original functions. So it is possible to degree elevate without changing
the geometry of the B-Spline curve. An example of degree elevation is given in Figure 2.8. Again
the starting point is a cubic curve with the control net P and basis functions shown in Figure 2.8(a)
and Figure 2.8(b) respectively. After degree elevation the multiplicity of the knots is increased by
one and consequently the locations of the control points, P̄, change. Though, the elevated curve
is still geometrically and parametrically the same. Figure 2.8(c) shows the enriched basis, there
are now 11 quartic basis functions.

Remark 2.4.2:
(1) Note that unlike knot insertion, degree elevation is a global process.

2.4.3 Continuity and degree elevation: k-refinement

A potentially more powerful type of refinement which is unique to the B-Spline basis is k-
refinement. Basically k-refinement is a different order elevation strategy taking advantage of
the fact that knot insertion and degree elevation do not commute. Inserting a unique knot value
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Figure 2.7: Figure 2.7(a) shows an example of knot insertion performed on a cubic B-Spline
curve defined by the initial knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} and control net P. The
basis functions defined by Ξ are shown in Figure 2.7(b). Inserting the knot ξ̄ = 2.5 results
in an additional control point and basis function as shown in Figure 2.7(a) and Figure 2.7(c)
respectively.
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(b) Initial basis functions: p = 3,Ξ =

{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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(c) New basis functions: p = 4, Ξ̄ =

{0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4}

Figure 2.8: Figure 2.8(a) shows a degree elevation of a cubic B-Spline curve defined by the initial
knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} and control net P. The basis functions defined by
Ξ are shown in Figure 2.8(b). The degree elevation results in a quartic curve with the enriched
knot vector Ξ̄ = {0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4} and control net P̄. The enriched basis is
shown in Figure 2.8(c).
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2.4 Refinement 23

ξ̄ between two distinct knots in a degree p curve lowers the number of continuous derivatives at ξ̄
to p − 1. Elevating the degree to q, using the process of Section 2.4.2, increases the multiplicity
of each knot so that discontinuities in the pth derivative of the basis are preserved. Hence the
basis still has p − 1 continuous derivatives at ξ̄. The above process can be turned around by
first elevating the curve degree to q and then inserting the unique knot ξ̄. Now the basis has
q − 1 continuous derivatives at ξ̄. This process is called k-refinement and has, as said before, no
analogue in classical FEM.

By enriching the basis using k-refinement there is also the potential to save a significant amount
of degrees of freedom. Consider again the previous example but this time keeping track of the
number of basis functions, see also Figure 2.9. Lets start with a single element2 of degree p,
this element has p + 1 basis functions. Then perform knot insertion to arrive at n − p elements
with a total of n basis functions. Like before elevate the degree keeping the continuity p − 1 by
increasing the multiplicity of each knot by one. This adds a basis function per element, hence
the total number of basis functions is now 2n− p. After r degree elevations the number of basis
functions has become (r + 1)n − rp. This is a large number because in practice the number of
elements surpasses the polynomial degree by multiple orders of magnitude.

Repeating this process using k-refinement starting again with one element and p+1 basis functions.
First elevate the degree r times adding one basis function each time and then insert knots until the
number of elements is n− p. This results in n+ r basis functions all having r+ p− 1 continuous
derivatives. Note that n + r ≪ (r + 1)n − rp especially when going to higher dimensions, then
these get raised to the dth power namely (n+ r)d ≪ ((r + 1)n − rp)d.

Furthermore k-refinement adds the benefit of smoother derivatives leading to more accurate repre-
sentation of physical quantities. Some examples are: the representation of the structure of bones
for a smooth transition from the solid outer part to the softer inner part [52]; the representation of
structural vibration modes resulting in converging spectra [22, 38, 47]; enabling the use of higher
order gradient damage models [67]; removing the need for second derivative reconstruction in the
momentum residual of the VMS method [1, 6].

Remark 2.4.3:
(1) It is important to note that the highest continuity of the B-Spline basis is limited by the

continuity of the basis of the geometrical domain of interest. Hence highest regularity B-
Splines are only attained for simple geometries.

(2) When a physical situation requires a lower level of continuity at a knot value, it is always
possible to increase the multiplicity of that knot value.

2which is equivalent to a Bézier element.
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24 B-Splines and NURBS

Figure 2.9: k-refinement versus p-refinement. (a) Starting with one linear element. (b) Classic
p-refinement approach, knot insertion followed by degree elevation results in seven piecewise
quadratic basis functions that are C0 at the internal knots. (c) k-refinement approach, degree
elevation followed by knot insertion results in five piecewise quadratic basis functions that are C1

at the internal knots.

Dennis Ernens M.Sc. Thesis



2.5 Non-Uniform Rational B-Splines 25

2.5 Non-Uniform Rational B-Splines

B-splines have their rational counterparts giving the ability to exactly represent objects that cannot
be represented by polynomials. For example in CAD circular and conic shapes are often used, which
can be exactly represented by NURBS.

2.5.1 NURBS basis functions

The NURBS basis is defined by associating the B-spline basis functions with a strictly positive
weight, wi as

Ni,p(ξ) =
wiBi,p(ξ)

W (ξ)
(2.8)

where

W (ξ) =

n
∑

i=1

wiBi,p(ξ)

spanning the NURBS function space uniquely defined as N ≡ N (Ξ; p;w) := span {Ni,p}ni=1.
Analogous to B-Splines higher dimensional function spaces are constructed using tensor products
of univariate basis functions N ≡ N (Ξ,H, . . . ; p, q, . . . ;w) := span {Ni,p ⊗Nj,q ⊗ . . .}n,m,...

i,j,...=1.
The NURBS basis has the following properties:

1. The NURBS basis constitutes a partition of unity
∑n

i=1 Ni,p(ξ) = 1 ∀ξ.

2. NURBS inherit their properties from the B-Spline basis functions like continuity across knots,
local support and non-negativity.

3. The NURBS basis functions are not polynomial but rational functions.

4. If the weights are all equal the basis is again polynomial. Hence, B-Splines are a special
case of NURBS.

2.5.2 NURBS derivatives

NURBS derivatives are found by using the quotient rule on (2.8), expressing the derivative in the
B-Spline basis, namely

d

dξ
Ni,p(ξ) = wi

W (ξ)B
′

i,p(ξ)−W
′

(ξ)Bi,p(ξ)

(W (ξ))2

where B
′

i,p(ξ) ≡ d
dξBi,p(ξ) and W

′

(ξ) =
∑n

î
B

′

î,p
(ξ)wî. Now define

A
(k)
i (ξ) = wi

dk

dξk
Bi,p(ξ), no sum on i
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26 B-Splines and NURBS

and let

W (k)(ξ) =
dk

dξk
W (ξ).

Then higher order derivatives are expressed in terms of lower order derivatives as

dk

dξk
Ni,p(ξ) =

A
(k)
i (ξ)−∑k

j=1

(k
j

)

W (j)(ξ) d(k−j)

dξ(k−j)Ni,p(ξ)

W (ξ)
,

where
(

k

j

)

=
k!

j!(k − j)!
.

Efficient algorithms for the evaluation of NURBS and their derivatives can be found in [54].

2.5.3 NURBS curves

Using (2.8) the NURBS curve can be defined in the same way as the B-Spline curve namely

C(ξ) =
n
∑

i=1

Ni,p(ξ)Pi.

Figure 2.10 shows the construction of a circular arc. Note that one weight has the value 1√
2
to

allow exact representation of the circle. The dashed line shows the curve when all weights are
equal to one and hence this curve is polynomial. Comparing the two curves it is clear that due to
the weight the middle control point pulls the curve less strong.

w1 = 1

P1 : (0,0)

w2 =
1
√

2

P2 : (0,1)

w3 = 1

P3 : (1,1)

P1

P2

P3

Figure 2.10: Example of the construction of a NURBS quarter circle curve based on the knot
vector Ξ = {0, 0, 0, 1, 1, 1}. The dashed line indicates the unweighed curve.
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2.5 Non-Uniform Rational B-Splines 27

2.5.4 NURBS surfaces and solids

In an analogous way the NURBS surface and NURBS solid are defined as

S(ξ, η) =

n,m
∑

i=1,j=1

Ni,p(ξ)Nj,q(η)Pi,j , (2.9)

V (ξ, η, ζ) =

n,m,l
∑

i=1,j=1,k=1

Ni,p(ξ)Nj,q(η)Nk,r(ζ)Pi,j,k.

Figure 2.11 shows the construction of a circular surface by a mapping from parameter space to
physical space using the control points and weights of the circular arc, Figure 2.10, for each side
of the parameter space forming a circular surface in physical space.

w11 = 1

P11 : (−1, 0)

w21 =
1
√

2

P21 : (−1, 1)

w31 = 1

P31 : (0, 1)

w12 =
1
√

2

P12 : (−1,−1)

w22 = 1

P22 : (0, 0)

w32 =
1
√

2

P32 : (1, 1)

w13 = 1

P13 : (0,−1)

w23 =
1
√

2

P23 : (1,−1)

w33 = 1

P33 : (1, 0)

Figure 2.11: Construction of a circle using NURBS. The surface is constructed using the knot
vectors Ξ = H = {0, 0, 0, 1, 1, 1} and control points and weights as shown in the figure.
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28 B-Splines and NURBS

2.6 Summary

• B-Spline basis functions are easily computed using the Cox-de Boor algorithm;

• B-Spline derivatives are easily computed using the B-Spline lower degree bases;

• B-Spline curves, surface and solids are defined by their degree(s), knot vector(s) and control
net;

• B-Splines have refinement procedures analogue to classical FEM, namely h-refinement and
p-refinement. The k-refinement procedure is unique to B-Spline and gives the possibility to
raise both the degree and continuity of the basis;

• Because a B-Spline curve does not interpolate its control points a system needs to be solved
to find the control points for interpolation;

• NURBS basis functions are defined by associating the B-Spline basis functions with a strictly
positive weight;

• NURBS derivatives are found by the quotient rule expressing them in the B-Spline basis.
Higher order derivatives can be expressed in terms of lower degree derivatives;

• NURBS curves, surface and solids are defined by their degree(s), knot vector(s), weight(s)
and control net;
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Chapter 3

Isogeometric Analysis: NURBS as a basis for

analysis

3.1 Introductory remarks

This chapter describes the Isogeometric Paradigm introduced by Hughes et al. [37]. For FEM
practitioners this chapter can feel a bit redundant as most of the changes are nomenclature
based and characteristic for the NURBS basis. Although it seems only a change of basis, this is
what makes the method so powerful. Building finite element function spaces using the NURBS
basis eliminates the need for communication with the CAD program, provides exact geometry,
enhances FEA with the potentially superior k-refinement and makes higher-degree approaches
trivial on curved domains.

The chapter starts by explaining the main difference between classical FEM and IGA: the mesh/-
geometry definition. Subsequently, the linear convection-diffusion equation is discretized with
a standard Galerkin approach using the NURBS basis. Differences in the development will be
pointed out. Finally numerical experiments are performed to demonstrate the method.

For further reading on the fundamentals of IGA the following references are recommended [3, 5–
7, 16, 23, 29, 38, 40] for applications see for instance [4, 8, 17, 18, 22, 31].

3.2 Mesh

Before going to the mesh definition, Table 3.1 summarizes the important differences and similarities
between FEM and IGA. As said before these differences come from the NURBS basis, Chapter 2.
Note further that for instance element and knot span will be used interchangeably. In addition,
remember from Section 2.3.1 that B-Spline and NURBS basis functions are local to patches or
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30 Isogeometric Analysis: NURBS as a basis for analysis

Table 3.1: Comparison of FEM and IGA summarizing the differences and similarities between
FEM and IGA. Taken from Hughes et al. [37].

FEM IGA

Nodal points Control points
Nodal variables Control variables

Mesh Knots
Element Knot span

Basis interpolates nodal points Basis does not interpolate
and variables control points and variables

Approximate geometry Exact geometry
Polynomial basis NURBS basis
Gibbs phenomena Variation Diminishing

Subdomains Patches
Compact support
Partition of unity

Isoparametric concept
Affine covariance

Patch tests satisfied

macro-elements. Figure 3.1 illustrates what this implies from an analysis point of view. In classical
FEM each element has its own mapping from parameter space to physical space, Figure 3.1(a).
While in IGA, internal knots partition the parameter space in elements and a single B-Spline maps
parameter space to physical space, Figure 3.1(b).

(a) FEA (b) IGA

Figure 3.1: In classical FEA, Figure 3.1(a), the parameter space is local to elements. Each
element has its own mapping from parameter space to physical space. In IGA, Figure 3.1(b), the
parameter space is local to patches. Internal knots partition the parameter space in elements. A
single B-Spline or NURBS maps parameter space to physical space. Taken from Hughes et al.
[39].

The mesh in IGA is directly defined by the NURBS parametrization. Let Ω′ be an open bounded
domain with a boundary ∂Ω′. The domain is divided into subdomains Ω′ ∪e Ω

′
e by quadrilaterals

such that Ω′
i∩Ω′

j = ∅ for i 6= j. The elements are defined as the knot spans, Ω′
e = {[ξi, ξi+1)}, or

tensor products thereof, Ω′
e = {[ξi, ξi+1)⊗ [ηj, ηj+1)⊗ . . .}, in higher dimensions. The element
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3.2 Mesh 31

in physical space is defined as,

Ωe = S ◦ Ω′
e,

where S is the NURBS map (2.9). Figure 3.2 illustrates this idea schematically on the plate
with circular hole. Depicted here is the initial CAD description resulting in a 2 element mesh.
Furthermore the parent element, Ω̃ = [−1, 1]d, is shown, which is used to facilitate the quadrature.

ξ

η

x

y

ξ̃

η̃

Ω̃

S(ξ, η)

Ψ(ξ̃, η̃)

Ω′

Ω

Figure 3.2: Mesh definition in Isogeometric Analysis. The initial CAD geometry for the plate with
circular hole. The parameter space, Ω′, is defined by the knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1}
and {0, 0, 0, 1, 1, 1}. The result is a 2 element mesh as indicated by the two different colors.
The result after mapping the elements to physical space is shown on the right. Integration is
performed on the parent element Ω̃.

To perform analysis, more resolution is necessary and therefore an Analysis Suitable Geometry
(ASG) needs to be created. This is done by one, or a combination, of the refinement methods of
Section 2.4. Figure 3.3 shows the creation of an ASG by knot insertion for the initial geometry of
Figure 3.2 leading to a sequence of meshes.

(a) (b) (c)

Figure 3.3: Construction of a sequence of ASG’s by knot insertion.

Remark 3.2.1:
(1) Note that the initial CAD provided 2 element mesh of Figure 3.2 already exactly represents

the geometry. The mesh refinement of Figure 3.3 is only needed for analysis.
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32 Isogeometric Analysis: NURBS as a basis for analysis

(2) For convergence plots the maximum element circumdiameter1 hmax is defined by the element
in physical space Ωe.

3.3 Development of a NURBS based FEM

The development of a NURBS based FEM is not much different than developing a classical
FEM. Subtle differences are introduced due to the non-interpolatory character of NURBS and the
definition of an element. In this Section the development is done for linear convection-diffusion
on the unit square.

3.3.1 Problem statement

Consider the convection-diffusion equation on a domain Ω, Figure 3.4:

Figure 3.4: Problem description.

−κ∆u(x, y) + a∇u(x, y) = f(x, y) in Ω

u = g(x, y) on Γ

where u(x, y) is the concentration of a pollutant, κ is the diffusivity tensor, a is the convection
velocity and f(x, y) is a source term.

3.3.2 Function spaces

The Galerkin method is used for the discretization of the convection-diffusion problem. The needed
function spaces are defined here, for the weak formulation and variational form see Appendix B.

1See for instance http://mathworld.wolfram.com/CyclicQuadrilateral.html for a definition.
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3.3 Development of a NURBS based FEM 33

Define a collection of trial solutions S, required to be square integrable and to satisfy the boundary
conditions:

S =
{

u|u ∈ H1(Ω), u|Γ=g(x,y)

}

.

Next define a collection of weighting functions V:

V =
{

w|w ∈ H1(Ω), w|Γ=0

}

where w = w(x, y). The Sobolev space, H1, induces the following L2(Ω) inner product and norm,
viz

(u, v) =

∫

Ω
uvdΩ

||u||2 = (u, v)
1
2 .

3.3.3 Discrete form

Let the solution space consist of all linear combinations of a given set of NURBS functions
NA : Ω −→ R, where A = 1, . . . , nnp. Where NA denotes the tensor product of univariate NURBS
basis functions, with A being the global equation number connected to the local numbering
through the “NURBS coordinates array” (INC-array)2. Using the compact support property of
the functions and assuming that there exists an integer neq < nnp such that

NA|Γ = 0 ∀A = 1, . . . , neq.

Hence, for all wh ∈ Vh, there exist constants cA, A = 1, . . . , neq such that

wh =

neq
∑

A=1

NA(x, y)cA. (3.2)

Then require that each NA(x, y) satisfies

NA(1) = 0 ∀A = 1, . . . , neq

from which it follows by (3.2) that wh(1) = 0. Hence Vh has dimension neq.

Next to define members of Sh we need to specify gh (a ”lifting”), therefore we introduce the
coefficients gA, A = 1, . . . , nnp. Note that it is convenient to choose gh such that g1 = . . . =
gneq = 0 as they have no effect on its value on Γ. So,

gh =

nnp
∑

A=neq+1

NA(x, y)gA.

2See Appendix A of Hughes et al. [39].
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Now apply (B.2), such that for any uh ∈ Sh there exist a dA, A = 1, . . . , neq such that

uh =

neq
∑

A=1

NA(x, y)dA +

nnp
∑

B=neq+1

NB(x, y)gB =

neq
∑

A=1

NA(x, y)dA + gh. (3.3)

Finally substitute (3.2) and (3.3) into (B.4) and exploit linearity to obtain the expression

neq
∑

A=1

cA

{ neq
∑

B=1

dB

(
∫

Ω
∇NA(x, y)κ∇NB(x, y) + aNA(x, y)∇NB(x, y)dΩ

)

−
∫

Ω
NA(x, y)fdΩ+ (3.4)

nnp
∑

B=neq+1

gB

(
∫

Ω
∇NA(x, y)κ∇NB(x, y) + aNA(x, y)∇NB(x, y)dΩ

)







= 0.

The Galerkin equation has to hold for all wh ∈ Vh. By (3.2), this means for all cA, A = 1, . . . , neq.
Since the cA’s are arbitrary in (3.4) it follows that the term between braces must vanish. Hence,
for A = 1, . . . , neq, dropping arguments for brevity,

neq
∑

B=1

dB

(
∫

Ω
∇NAκ∇NB + aNA∇NBdΩ

)

=

∫

Ω
NAfdΩ−

nnp
∑

B=neq+1

gB

(
∫

Ω
∇NAκ∇NB + aNA∇NBdΩ

)

. (3.5)

Now further define the matrix system,

KAB =

∫

Ω
∇NAκ∇NB + aNA∇NBdΩ

FA =

∫

Ω
NAfdΩ.−

nnp
∑

B=neq+1

gB

(
∫

Ω
∇NAκ∇NB + aNA∇NBdΩ

)

.

Then (3.5) becomes, after inclusion of the Dirichlet conditions,

neq
∑

B=1

KABdB = FA A = 1, . . . , neq.

Or, using matrix notation

K = [KAB]

d = {dB}
F = {FA}

to obtain the form

Kd = F.
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3.3 Development of a NURBS based FEM 35

Where the Dirichlet condition will be treated slightly different in practice by choosing a numbering
such that

[

K11 K12

K21 K22

]{

dB

gB

}

=

{

FA

FgB

}

.

Then the system can be solved as follows, viz

K11dB = FA −K12gB

The assembly process takes the following form in terms of the local ”node” numbers 1 ≤ a, b ≤
nen,

K =A
e
Ke

ab Ke
ab =

∫

Ωe

∇Naκ∇Nb + aNa∇NbdΩ

F =A
e
Fe
ab f e

a =

∫

Ωe

NafdΩ

where A is the assembly operator. Defining Ba = ∇Na =

[

Na,x(x, y)
Na,y(x, y)

]

then the component

version becomes

Kab =

∫

Ωe

BT
a κBb + aTNa(x, y)BbdΩ.

The quadrature points and their weights are provided by Gauss-Legendre quadrature, see Sec-
tion 3.3.5.

The solution is d = K−1 (FA −K12 gB), assuming that K is invertible. Once d is known, the
solution can be constructed at any point x, y ∈ Ω using the NURBS basis, namely

uh =

nnp
∑

A=1

NA(x, y)dA. (3.7)

3.3.4 Boundary conditions

Boundary conditions in IGA are imposed in the same way as in a classical FEM. The essential
boundary conditions are imposed on the control points. Because NURBS are non-interpolatory
strong boundary conditions tend to get smeared for higher order basis functions when discontinuous
boundary data is imposed. Figure 3.5 shows this for a step profile which corresponds to the
west boundary conditions in the convection-diffusion problem. On the left an interpolation of
these conditions is shown, on the right the conditions are directly imposed on the control points.
Note that although NURBS have the variation diminishing property they still exhibit the Gibbs
phenomenon, but gets less for increasing degree as opposed to polynomials. Furthermore note
how the data gets smeared for increasing p. It is obvious that for discontinuous data it is better
to impose the data directly on the control points. The converse is true when smooth data is
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36 Isogeometric Analysis: NURBS as a basis for analysis

considered. If this smearing is unacceptable a better lifting can be found by a curve or surface
fitting algorithm using a least squares approach.

Another option is to impose Dirichlet conditions weakly. Although this is an approximation of the
Dirichlet condition, it comes with great advantages. In problems with boundary layer phenomena
for instance, it can help to eliminate spurious oscillations [3]. In addition the strong imposition is
also an approximation due to the smearing effect, thus one can argue which method is better.
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p=1

p=2

p=3

p=4

p=5

Step

Figure 3.5: Imposition of strong boundary conditions on the west boundary of the convection
diffusion problem. The left hand figure shows interpolation of the discontinuous data. Note that
NURBS also exhibit the Gibbs phenomenon, though much less than Lagrange polynomials due to
the variation diminishing property of the B-Spline basis. The right hand figure shows imposition
of the data directly on the control points. Note how the boundary condition gets smeared for
increasing p.

3.3.5 Quadrature

For the assembly of the stiffness and mass matrix and the load vector the following general integral
must be performed

∫

Ωe

f (x) dΩ

where f is assumed sufficiently smooth and integrable. To facilitate the integration, the integrals
are pulled from physical space to the parent element. In order to do this a change of variables has
to be performed, in 1D this becomes

∫

Ω̃
f(ξ̃)

dx

dξ

dξ

dξ̃
dΩ̃ (3.8)

and in 2D
∫

Ω̃
f(ξ̃, η̃)|JS||JΨ| dΩ̃
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3.4 Numerical experiments 37

where J is the Jacobian and |J | is the Jacobian determinant.

For a typical stiffness matrix component f(x, y) = ∇NA(x, y)κ∇NB(x, y). The basis functions
N are defined in the parameter space Ω′ in order to define the basis in Ω we need the derivative
of the pull back DS−1 = J−1

S
and apply the chain rule, viz

∇N(x, y) = J−1
S

∇N(ξ, η).

Now the integral becomes
∫

Ω̃

(

J−1
S

∇NA(ξ̃, η̃)
)

κ
(

J−1
S

∇NB(ξ̃, η̃)
)

|JS||JΨ| dΩ̃ (3.9)

Lets perform the integration of (3.8) numerically, viz

∫

Ω̃
f(ξ̃)

dx

dξ

dξ

dξ̃
dΩ̃ =

nip
∑

i=1

Wif(ξ̂i)
dx

dξ

dξ

dξ̂
+ r ≈

nip
∑

i=1

Wif(ξ̂i)
dx

dξ

dξ

dξ̂

where nip are the number of integration points ξ̂i, Wi is the weight corresponding to the ith
integration point and r is a residual.

Gaussian quadrature is optimal in a sense that it integrates a function accurately with the least
amount of quadrature points. The B-spline basis fulfils the smoothness and integrability conditions
and is polynomial so standard Gauss rules can be applied. However, this is a suboptimal choice
which does not exploit the properties of the B-spline basis.

Hughes et al. [40] initiated the study by finding optimal rules for tensor product piecewise linear
functions and C1 tensor product piecewise quadratic functions. They found that for the C1 B-
spline basis optimal rules must span multiple elements exploiting the smoothness of the basis.
This leads to a rule of thumb, the ’half-point rule’, which indicates that an optimal rule needs a
number of quadrature points equal to half the number of degrees of freedom. Compare this to the
standard rule which uses 4 Gauss-points per element for C1 quadratics. This means a tremendous
reduction of computational time during assembly of the matrices. Research is ongoing to see if
this can be extended to higher order and higher continuity.

3.4 Numerical experiments

This section will showcase some numerical experiments for the linear convection-diffusion equation
and the Poisson equation. The linear convection-equation is discretized as in section Section 3.3,
the discretization for the Poisson equation is obtained by setting the convection velocity to a = 0.
Here the Poisson problem (1.1) is solved for test case (1.2c) with k = 2 for Dirichlet boundary
conditions on ∂Ω. The quality of the solution is measured in the L2(Ω)-norm defined as

L2(Ω) =

√

∫

Ω
(ua − uh)

2
dΩ
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38 Isogeometric Analysis: NURBS as a basis for analysis

where ua is the analytical solution. The h-convergence results are plotted against the maximum
element circumdiameter denoted as hmax. For the linear convection-diffusion case only qualitative
results will be shown. Although it is possible to compare to a fine-mesh solution for a quantitative
comparison, due to the sharp layer a very fine resolution is needed. Otherwise, the layer gets
smeared like the boundary conditions in Section 3.3.4. When comparing the results with a fine
mesh for convergence, they are dominated by this smearing effect and hence do not make much
sense.

3.4.1 Meshes

The meshes used for the numerical experiments are shown in Figure 3.6, Figure 3.7, Figure 3.8
and Figure 3.9. Here 3 levels of refinement are used for the h-refinement cases. Note that mesh
4 has a self-overlap, this mesh is used to show the robustness of the method. The higher degree
results for h-refinement are obtained using a k-refinement strategy, see Section 2.4.3. Hence for
these simple cases a Cp−1 basis is obtained in the interior of the domain. Note further that the
number of elements and thus hmax stays constant for increasing order. Where hmax is defined as
the largest element circumdiameter.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.6: Refinement sequence for the unit square.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.7: Refinement sequence for curvilinear 1.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.8: Refinement sequence for curvilinear 2

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 3.9: Refinement sequence for curvilinear 3

3.4.2 Convection-Diffusion

The convection-diffusion problem (3.1) is solved for κ = 10−6, a = (cos θ, sin θ) with θ = 45◦.
The SUPG method [14] is used to provide stability. The stability parameter was chosen as τ = ha

2a ,

where ha = h
max{cos θ,sin θ} , the element length in the flow direction. Figure 3.10 shows the results

for the convection dominated case at a flow angle of 45 degrees on mesh 4 of Figure 3.6 and
polynomial degree p = 4. While there is indeed smearing of the sharp layer, it is properly captured
and the results are monotone showing the power of higher order/continuity approaches provided
by IsoGeometric Analysis as opposed to higher order classical FEM.

3.4.3 Poisson problem

Figure 3.11 shows the h-refinement results of the Poisson problem (1.1) with (1.2c) and k = 2.
On all meshes the expected rate of convergence is reached. The accuracy is reduced on the
curvilinear grids due to non-linear transformation errors. Even on the self-overlapping mesh the
convergence rates are retained, showing the robustness of IGA and FEM in general. Figure 3.12
shows the p-refinement results of the Poisson problem. Again reduced accuracy is observed for
the curvilinear cases.
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Figure 3.10: Convection-diffusion at 45 degrees flow angle for mesh 4 of Figure 3.6 at p = 4.
Clearly visible is the smearing of the sharp layer and boundary conditions. Note further the
smoothness of the solution due to the variation diminishing property.

3.4.4 Condition number

In Figure 3.13 and Figure 3.14 the condition numbers are shown as a function of hmax and p
respectively. The condition number stays constant for increasing hmax, hence there is no mesh
dependence like classical FEM. For increasing p here the condition number increases with 10p−1.
The results show no loss of accuracy however, which is normally a sign of bad conditioning. This
can be explained by the properties of the B-Spline basis, Section 2.3.2. A change in the coefficients
leads to a small change in the solution especially for higher degree B-Splines, see also Figure 2.4.
This is exactly opposite to the definition of a poorly conditioned system, for which a small change
in the coefficients leads to a large change in the solution. However, the poor conditioning is still a
problem when using iterative solvers which require a well conditioned system to keep the amount
of iterations low.
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(a) Unit square.

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

hmax

L
2
(Ω

)
er

ro
r

 

 

1
4

1
5

1
6

1
7

1
8 p=3

p=4
p=5
p=6
p=7

(b) Curvilinear 1.
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(c) Curvilinear 2.
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(d) Curvilinear 3.

Figure 3.11: Convergence in the L2(Ω) norm versus hmax for test case (1.2c) with k = 2. It is
clear that on all meshes optimal convergence rates are attained.
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(d) Curvilinear 3.

Figure 3.12: Convergence in the L2(Ω) norm versus p for test case (1.2c) with k = 2.
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(d) Curvilinear 3.

Figure 3.13: Condition number of the stiffness matrix for each mesh, showing that the condition
number is constant in h.
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(b) Curvilinear 1.
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Figure 3.14: Condition number of the stiffness matrix for increasing p, showing that the condition
number increases with 10p−1.
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3.5 Summary

• In IsoGeometric Analysis elements are defined in the parameter domain by the knot spans;

• The development of a FEM based on NURBS is equal to a classical FEM. Differences are
introduced when imposing boundary conditions;.

• Boundary conditions can be imposed directly on the control points or by interpolation. For
discontinuous data it is beneficial to impose the boundary conditions to the control points
directly;

• In the convection diffusion cases the sharp layers are smeared due to the properties of the
basis. Furthermore the solution is smooth due to the variation diminishing property;

• The Poisson cases showed optimal convergence even on distorted meshes confirming previous
results;

• The conditioning of the stiffness matrix is constant with degree. Furthermore, poor condi-
tioning has no implications on the accuracy of the solution.
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Chapter 4

NURBS Enhanced Finite Element Method

4.1 Introductory remarks

In this chapter the ideas behind the NURBS Enhanced Finite Element Method will be introduced.
NEFEM builds on the foundations of spectral/hp-FEM combined with a Cartesian basis function
definition. NEFEM was introduced by Sevilla et al. [63] who showed how non-linear transformation
errors and geometry errors can be avoided by means of a Cartesian FEM combined with a NURBS
boundary definition. However, by doing so the basis loses the capability to exactly impose strong
boundary conditions.

The chapter starts with the definition of a mesh described by a partition of curved triangles
along the boundary. Then the interpolation on these triangles is defined by constructing a basis
of orthonormal polynomials using a proper nodal set. The Lagrange polynomial basis and its
derivatives will then be constructed by solving the dual interpolation problem on the triangle.
Next a quadrature rule is constructed on the curved element from tensor product 1D Gauss-
Legendre rules. Finally numerical experiments will be performed to show the added accuracy of
this approach.

This chapter draws on the publications on NEFEM by Sevilla et al. [62, 63, 64] and for the basis
functions generation by Warburton [72]. For more extensive material the interested reader is
referred to the dissertation by Sevilla [61].

4.2 NEFEM

For this introduction to the NURBS Enhanced Finite Element Method the development is restricted
to the boundary elements. Interior elements are handled in the same way as in classical FEM.
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48 NURBS Enhanced Finite Element Method

4.2.1 Mesh

Let Ω ⊂ R2 be an open bounded domain with a (partly) curved boundary ∂Ω. The domain is
divided into subdomains Ω = ∪eΩe by triangles such that Ωi ∩ Ωj = ∅, for i 6= j. Figure 4.1
shows the curved domain where ∂Ω is described by a NURBS curve corresponding to a circle.

λ

θ

x

y

Ψ(λ, θ)
Ω̃

λ1 λ2

0

1

r

r1

r3

r2

Ie

r5r6

r4

Φ(x, y)

s

C(λ)

Ω

Ωe

Figure 4.1: Physical domain Ω with a curved boundary, triangulated with curved elements Ωe.

4.2.2 Interpolation on the triangle

Let’s introduce the standard triangle Ie with vertices r1 = (−1,−1), r2 = (1,−1), r3 = (−1, 1).
This triangle can have a curved side as depicted on the right hand side in Figure 4.2. Furthermore
a numbering is chosen such that r3 always corresponds to an interior node in Ω.

x

y

x1

x3

x2

Ωe

C(λ)

r

s
r1

r3

r2

Ie

Φ(x, y)−1

Φ(r, s)

r5r6

r4

x5

x6

x4

Figure 4.2: Definition of mapping from physical element Ωe to curved parent element Ie.
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4.2 NEFEM 49

Before giving a basis function definition on the triangle an interpolation is formulated which has
the property

I2
nf(ri) = f(ri)

for any f ∈ Ie. For the construction of the interpolation polynomials introduce the complete
polynomial basis ϕi(r) ∈ P2

N and express the interpolation property as

∀i : f(ri) =
n
∑

j=0

f̂jϕj(ri). (4.1)

Where n = (N + 1)(N + 2)/2 the number of nodal points and the total degree ≤ N . Writing
(4.1) in compact form gives

f = V f̂

where f̂ =
[

f̂1 . . . f̂n

]T
, f = [f(r1) . . . f(rn)]

T and Vij = ϕj(ri).

Likewise we can define (4.1) as

∀i : f(ri) =

n
∑

j=0

f(ri)Lj(ri) (4.2)

which has to be true for any f ∈ Ie. Where Lj(ri) are the Lagrange polynomials. Hence the
Lagrange polynomials can be evaluated at any point by substituting (4.1) in (4.2) and solving the
dual interpolation problem:

I2f(r) =

n
∑

i=0

f(ri)Li(r),

n
∑

j=0

f̂jϕj(r) =

n
∑

i=0

n
∑

j=0

f̂jϕj(ri)Li(r),

ϕ(r) = V L(r)

4.2.3 Curved element basis function definition

In order to define a basis we need a node distribution on the triangle. For this we choose a Fekete
node distribution {ri}ni=1. The motivation for this choice is given in Section 4.2.6. Furthermore let
{ϕk}nk=1 be the orthonormal Proriol-Koornwinder-Dubiner (PKD) basis [41] in P2

N the polynomial
space defined on the triangle Ie. We can now construct1 the Vandermonde matrix V using the
PKD basis in the Fekete points as

Vij = ϕj(ri) 1 ≤ i, j ≤ n.

1See [65, 72] for algorithms.
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Using the same procedure we can construct the Vandermonde matrix for the integration points
{r̃l}ml=1, viz

V ′
lj = ϕj(r̃l) 1 ≤ l ≤ m, 1 ≤ j ≤ n,

where m is the number of quadrature points.

The Lagrange polynomials {Li}ni=1 built on these points can now be constructed. If we know
ui = uN (ri), 1 ≤ i ≤ n, where uN ∈ P2

N (Ie), we can compute uN (r̃l), 1 ≤ l ≤ m by solving the
following dual interpolation problem

ui =

n
∑

j=1

ûjϕj(ri) =

n
∑

j=1

Vij ûj ⇔ u = V û,

u′l =
n
∑

j=1

ûjϕj(r̃l) =

n
∑

j=1

V ′
lj ûj ⇔ u′ = V ′û,

û = V −1u → u′ = V ′V −1u.

From the dual problem we obtain the Lagrange polynomials at the quadrature points

Lli = Li(r̃l) = V ′
ljV

−1
ij .

The same procedure can be followed for the derivatives of the Lagrange basis. To do so we need the
derivatives of the PKD basis {ϕk,r}nk=1 and {ϕk,s}nk=1. Now define the derivative Vandermonde
matrix as

V r
lj = ϕj,r(r̃l) 1 ≤ l ≤ m, 1 ≤ j ≤ n

and compute the derivatives of the Lagrange basis using the dual problem

Lli,r = Li,r(r̃l) = V r
ljV

−1
ij .

In order to define the basis in Ωe, we need a mapping Φ : Ie → Ωe to the curved standard element
Ie to facilitate the computation of the Jacobi polynomials, see Figure 4.2. This mapping is affine
and defined as

Φ(r, s) =

[

x2 − x1 x3 − x1
y2 − y1 y3 − y1

] [

r
s

]

+

[

x1
y1

]

.

The Jacobian of the mapping is defined as

DΦ = JΦ =

[

x2 − x1 x3 − x1
y2 − y1 y3 − y1

]T

and is used to define the derivative basis functions in physical space like

∇xL(x) = J−1
Φ ∇rL(Φ

−1(x, y)).

Note that the affine map is linear and therefore the basis in Ωe is still polynomial.
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4.2.4 Node distribution using arc length parametrization

An important part of NEFEM is the node distribution on the triangle, first of a Lobatto node
distribution on the edges needs to be chosen (hence the choice for Fekete nodes) then these nodes
need to be placed along the curved side using an arc length parametrization2, see Scott [58].
The importance of this placement is twofold: it ensures optimal convergence rates for strongly
imposed boundary conditions, see Theorem 4.2.2; it keeps the condition number low for higher
order approximations.

That the nodes need to be distributed using an arc length parametrization is difficult to extract
from the publications and even the dissertation on NEFEM, therefore this is mentioned here
explicitly to save people a substantial amount of time implementing strong boundary conditions.

4.2.5 Integration

The integration points are defined using a tensor product of the 1D Gauss-Legendre rule on the
unit square. The unit square is scaled to [λ1, λ2]× [0, 1] such that C (λ1) = x1 and C (λ2) = x2,
see Figure 4.3. Then we introduce the mapping from the rectangle Ω̃ to the element in physical
space Ωe, Ψ : Ω̃ → Ωe, where

λ

θ

x

y
x1

x3

x2

Ψ(x, y)−1

Ψ(λ, θ)
Ωe

Ω̃

λ1 λ2

0

1

C(λ)

x5

x6

x4

Figure 4.3: Definition of mapping for quadrature points from Ω̃ to the physical element Ωe.

Ψ(θ, λ) = (1− θ)C (λ) + θx3.

Where C (λ) is denoting the curved side defined by the NURBS curve. The map Ψ is linear in θ
but generally non-linear in λ.

A typical integral in Ωe can now be defined as
∫

Ωe

f(x)dΩe =

∫

Ω̃
f(Ψ(θ, λ))|JΨ|dΩ̃

2Personal correspondance with R. Sevilla.
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where JΨ is the Jacobian of the mapping. If we now set f(x) = ∇xLi(x)∇xLj(x), which is your
typical stiffness matrix component, the integration becomes

∫

Ωe

∇xLi(x)∇xLj(x)dΩe =

∫

Ω̃

(

J−1
Φ ∇rLi(Φ

−1(Ψ(θ, λ)))
) (

J−1
Φ ∇rLj(Φ

−1(Ψ(θ, λ)))
)

|JΨ|dΩ̃.

Note that we do not need |JΦ| because we go back and forth between Ie and Ωe.

4.2.6 Boundary conditions

For the discussion on boundary conditions the following two theorems are repeated without proof
from [63].

Theorem 4.2.1:
Let Th be a non-degenerate triangulation (i.e. there is a positive constant β such that
ρe
he

≥ β ∀Ωe ∈ Th, where he and ρe are the diameters of Ωe and of the circle inscribed
in Ωe, respectively). Assuming that all boundary conditions along curved boundaries are
imposed in weak form, the following a priori estimate holds:

‖u− uh‖L2(Ω) ≤ Khp+1|u|Hp+1(Ω) (4.3)

where u ∈ Hp+1(Ω) and uh are the exact and the NEFEM solutions, respectively, K is a
constant, h is the mesh size and p is the polynomial degree of interpolation.

Moreover, for p-convergence, the following estimate also holds:

‖u− uh‖E(Ω) ≤ C exp(−kN r) (4.4)

where ‖ · ‖E(Ω) is the energy norm, C and k are positive constants, N is the number of

degrees of freedom and r & 1
2 for 2D problems.

Theorem 4.2.2:
Under the assumptions of Theorem 4.2.1, the error bounds (4.3) and (4.4) hold for a NEFEM
solution with a strong implementation of Dirichlet boundary conditions, if Fekete nodal
distributions adapted for every curved element along the Dirichlet boundary are considered.

Theorem 4.2.1 and Theorem 4.2.2 state that for both weak and strong boundary conditions
estimates (4.3) and (4.4) hold. Although Theorem 4.2.2 is not guaranteed due to the use of
polynomial nodal basis functions in Cartesian coordinates. The errors in the approximation of the
prescribed value along the boundary may deteriorate the convergence. Figure 4.4 shows this for
the quadratic basis function associated with x3. It interpolates the nodes but fails to be zero on
Γ in between the nodes. This violates the requirements for the weight function space V such that
strong boundary conditions cannot be imposed, namely

Vh ⊆ H1 but Vh * V = H̊1.

Interesting, however, from Theorem 4.2.2 this inconsistency or boundary condition error goes to
zero faster than the approximation error by a factor h1/2, see Theorem 1 and its proof in [58].
Hence patch tests are “satisfied” in practise even though the method is not consistent.
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Figure 4.4: Basis function associated with node 3 seen from its adjacent edge. The basis function
interpolates the nodes x1,x2,x4 but is non-zero on the rest of the boundary.

4.3 Numerical experiments

Some numerical experiments are done to show the benefit of the NEFEM approach. The unit disk
is considered for the Poisson problem with case (1.2c), now with k = 1. Instead of a Dirichlet
boundary condition, a Neumann boundary condition is imposed on ∂Ω avoiding for now the issue
raised in Section 4.2.6.

4.3.1 Mesh

The meshes used for these test cases are shown in Figure 4.5. These meshes are obtained by
uniformly subdividing each triangle by four.

4.3.2 Poisson equation

The results for the Poisson test case are shown in Figure 4.6. The h-convergence results show
that optimal convergence rates are attained.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 4.5: Refinement sequence for the unit disc using triangles in NEFEM.
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Figure 4.6: Poisson equation results for the unit disk, the problem solved is (1.2c). The figure
shows the h-refinement results. It is clear that optimal convergence rates are attained.
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4.4 Summary

• NEFEM uses a Lagrange polynomial basis defined in Cartesian coordinates and a special
integration routine on curved elements, improving the accuracy by 2 orders of magnitude
compared to isoparametric FEM;

• The definition of the basis in Cartesian coordinates introduces an inconsistency in the varia-
tional formulation leading to a weighting space on which strong boundary conditions cannot
be imposed. This is fixed in an elegant way using the procedure of Scott [58] using Lobatto
points on the curved boundary, placed using an arc length parametrization. Then this in-
consistency or boundary condition error goes to zero faster than the approximation error by
a factor h1/2.
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Chapter 5

AnisoGeometric Analysis

5.1 Introductory remarks

AnisoGeometric Analysis is the method developed during the course of this thesis work. It combines
the ideas of IGA and NEFEM into an approach that is more general and flexible than both of
them. In AGA the solution space and geometry space are separated. This explicit separation
allows them to have different definitions. Therefore AGA retains the exact NURBS geometry on
any basis function space. Depending on the choice of basis functions it becomes IGA, NEFEM,
p-FEM1 or a hybrid approach, explaining the name of this method. Furthermore, AGA gives the
ability to use sub- or superparametric approaches. Although some limitations will be described in
later chapters. Especially the superparametric approach is interesting for its potential to save dofs
and provide better conditioning of the resulting system by choosing lower degree solution spaces
regardless of the degree of the geometry space, which is usually cubic or higher in CAD. Here the
development of AGA is shown for the B-Spline basis and the Lagrange polynomial basis.

AGA will be described by starting from the basic ideas behind the method. The appropriate
function spaces and mappings will be introduced and subsequently used to define the solution space
and geometry space with their respective mappings. First the B-Spline/NURBS case with highest
regularity B-Spline solution spaces will be discussed. The second case is Lagrange polynomials
combined with NURBS geometry. Then numerical experiments are performed with the AGA
approach on four different geometries. First B-Spline based AGA is tested with the same parameter
space as the NURBS geometry, after that a sub- and superparametric approach is tested where
the parameter space does not coincide with the NURBS geometric space. Next, Lagrange based
AGA is tested to check if theoretical convergence rates are reached on exact NURBS geometries.
Furthermore, local adaptive refinement is demonstrated showing the potential for considerable
savings in degrees of freedom without the need to refine for the geometry.

1Using the definition of Sevilla et al. [62].
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5.2 AGA

5.2.1 Basic idea

Figure 5.1 illustrates the basic idea of AnisoGeometric Analysis. The spaces in Figure 5.1 will be
used to define the anisogeometric approach. There are four spaces shown, of which two coincide,
indicated by the identity map I between them, the solution space and geometry space. Hence
there are three unique spaces with their respective mappings. First the parent element Ω̃ with
its mapping, Ψ, to parameter/solution/geometry space Ω′, then the mapping G from parameter
space to physical space Ω. Important is to stress again the explicit separation of the parameter
space of the geometry and the parameter space of the solution space. Systematically this is written
as

Ψ : Ω̃ → Ω′

I : Ω′ → Ω̂

G : Ω̂ → Ω.

In AGA the parameter space Ω′ can be spanned for instance by B-Splines or by triangles or
quadrilaterals with Lagrange polynomials. Actually any element type or basis function can be
used on the parameter space. Here the development is restricted to B-Splines and Lagrange
polynomials. The exact geometry in Ω is provided by the NURBS definition through the identity
map. Furthermore, one can also envision blended versions with B-Splines on the interior for
superior dispersion characteristics and a NEFEM approach on the boundary to avoid NLTE.

The additional transformation in AGA can be implemented as a plugin which takes NURBS
geometry and the unit square coordinates as input and gives a Jacobian and the corresponding
coordinates in physical space as output. This can then be easily added to the assembly of any
existing FEM or IGA code.

Remark 5.2.1:
1. Note that, as in IGA, because the geometry is exact from the coarsest mesh onwards no

communication is needed with CAD.

5.2.2 B-Spline solution space and NURBS geometry

The first variant of AGA considered uses a B-Spline solution space, coupled with a NURBS
geometry space for exact representation of the physical domain. For future reference this approach
is abbreviated as AGAsp.

The coupling is through the identity map between the B-Spline parameter space and the NURBS
parameter space. The concept is shown in Figure 5.1 for a 2D example. Recall the B-Spline
function space defined on Ω′, (2.3),

B ≡ B(Ξ,H, . . . ; p, q, . . .) := span {Bi,p ⊗Bj,q ⊗ . . .}n,m,...
i,j,...=1 . (2.3)
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F (ξ, η)

Ψ(ξ̃, η̃)
ξ = (ξ, η)

ξ = (ξ, η)

Ω

Figure 5.1: AnisoGeometric concept using a B-Spline solution space and a NURBS geometry
space.

Normally this space is equipped with the map F : Ω′ → Ω. In the AnisoGeometric approach this
is replaced by the composition

G ◦ I = GI

GI : Ω′ → Ω

allowing the use of a NURBS geometry definition with a B-Spline solution space. Hence the
B-Spline function space is defined on Ω as

B̂ := span
{

Bi,p ⊗Bj,q ⊗ . . . ◦ (G−1 ◦ I−1)
}n,m,...

i,j,...=1
.

where

G(ξ, η) =

n,m
∑

i=1,j=1

Ni,p(ξ)Nj,q(η)Pi,j . (5.1)

Further defining the Jacobian of the mapping as, dropping the identity map for brevity,

D(GI) = JGJI = JG

allows for the explicit definition of derivative basis functions on Ω by the chain rule, viz

∇xB = J−1
G

∇ξB.
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A typical stiffness matrix entry (3.9) is now written as

∫

Ω̃

(

J−1
G

∇NA(ξ̃, η̃)
)

κ
(

J−1
G

∇NB(ξ̃, η̃)
)

|JG||JΨ| dΩ̃.

The solution is reconstructed in the same way as (3.7) but now using the B-Spline basis for the
solution and the NURBS map for the coordinates, namely

uh(G(ξ)) =

nnp
∑

A=1

BA(ξ)dA.

Note that the above development lifts the restriction of Remark 2.4.3, hence a subparametric
approach can be constructed using highest regularity B-Splines on a NURBS geometry space
which would normally be restricted by the continuity of the geometry. Note further that the
converse, a superparametric approach, allows the use of lower degree B-Spline bases. Hence
lowering the dof count and improving conditioning of the linear system. This is very desirable as
most CAD geometry is cubic or higher.

Remark 5.2.2:
(1) When NURBS are chosen for the solution space, AGA becomes IGA.

5.2.3 Lagrange polynomial solution space and NURBS geometry

Another choice for the AnisoGeometric approach is based on a Lagrange polynomial solution
space. The difference with a classical FEM is the partitioning of the NURBS parameter domain
into subdomains Ω̂ = ∪eΩ̂e by triangles or quadrilaterals such that Ω̂i ∩ Ω̂j = ∅, for i 6= j.
The choice of nodal set and the basis function definition is the same as Section 4.2, except here
the isoparametric concept is invoked. For future reference this approach is abbreviated as AGAlg.
Figure 5.2 shows this for a 2D example. Define the space of Lagrange polynomials on Ω̃ generated
using the procedure of Section 4.2.3,

P ≡ PN := span {L} .

Normally this space is equipped with the map Ψ : Ω̃ → Ω, instead the composition

G ◦Ψ : Ω̃ → Ω

is used. Giving a Lagrange polynomial solution space with exact NURBS geometry. Hence the
polynomial basis is defined on an element Ωe ∈ Ω as

P̂ := span
{

L ◦ (G−1 ◦Ψ−1)
}

where G is again defined by (5.1).

The Jacobian for each element is defined as

D(GΨ) = JGJΨ
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Figure 5.2: AnisoGeometric concept using a Lagrange polynomial solution space and a NURBS
geometry space.

and defines

∇xL = J−1
G

J−1
Ψ

∇
ξ̃
L.

A typical stiffness matrix entry (3.9) is now written as

∫

Ω̃

(

J−1
G

J−1
Ψ

∇ξ̃LA

)

κ
(

J−1
G

J−1
Ψ

∇ξ̃LB

)

|JG||JΨ| dΩ̃.

The solution is reconstructed like

uh(G(ξ)Ψ(ξ̃)) =

nnp
∑

A=1

LA(ξ̃)dA.

Remark 5.2.3:
(1) Note that Ω′ is partitioned such that an element edge coincides with a knot line. This ensures

C∞ continuity in the interior of the element Ω′
e.

(2) Note that Lagrange based AGA becomes NEFEM when the NURBS geometry definition is
restricted to the edges of the boundary elements.
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5.2.4 Local refinement

In the case of Lagrange polynomials it is easy to apply local/adaptive refinement. First of all
because the geometry is exact the refinement only needs to take into account the accuracy of the
solution. Furthermore, the refinement is performed in the unit square parameter domain and thus
leads to very easy refinement schemes. For the numerical experiments a simple L2(Ω

′
e) refinement

indicator is used to steer the refinement algorithm.

5.2.5 Boundary conditions

Strong boundary conditions are imposed in the same way as regular IGA. Only now the boundary
conditions are imposed on the control points of the B-Spline solution space. Again this is done by
interpolation of the exact solution, only now the coordinates are given by the NURBS map. So
the interpolation, using repeated curve interpolation (2.5), becomes

g (G(ξ∗k , η
∗
l )) =

n,m
∑

i,j=1

Bi,p(ξ
∗
k)Bj,p(η

∗
k)gij

where the Greville abscissae are coming from the B-Spline parameter space and the gij ∈ ∂Ω′ are
used for the boundary condition.

In case of Lagrange polynomials the boundary conditions are imposed by finding the nodes on ∂Ω′

and computing the value in physical space

gD = g (G(ξ, η)) where (ξ, η) ∈ ∂Ω′.

5.2.6 AGAlg using simplices

When implementing AGAlg using simplices, triangle quality becomes an issue. The knot lines in
the interior of the geometry are curved according to the control net, see for instance Figure 3.9.
This can lead to bad triangle quality, especially on course grids. Figure 5.3 shows a sequence
of triangle meshes for the curvilinear 3 mesh of Section 3.4.1. Especially on the course meshes,
Section 3.4.1(a) and Section 3.4.1(b), it is hard to discern a triangular shape. These meshes
(except for mesh 1), however, still produced converging results demonstrating the robustness of
the method, see Figure 5.4. Controlling the quality can be difficult, though it can be partially
improved by locally refining the parameter space in areas with high curvature. Normally there are
enough elements for this to be not a major issue.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 5.3: Refinement sequence for curvilinear 3 Figure 3.9 using triangles in AGAlg. Note
the distortion of the triangles. However, even on these distorted elements, AGAlg still produced
converging results showing the robustness of the method.
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Figure 5.4: Convergence in the L2(Ω) norm versus p for test case (1.2c) with k = 2. Compare
these results with Figure 3.12 for curvilinear 3.
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5.3 Numerical experiments

For the numerical experiments the same Poisson problem test case (1.1) is used as in Section 3.4,
namely (1.2c) here with k = 1. Next to that, the Poisson equation is solved for a Gaussian spike
to show the adaptive refinement with Lagrange polynomials.

In all IGA cases the refinement is done as optimally as possible, this means that k-refinement
is used in all instances and knots are only duplicated due to degree elevation. In the sub- and
superparametric B-Spline based AGA test cases, knots are inserted at the same locations as the
NURBS geometry after degree elevation, thus pure k-refinement.

5.3.1 Meshes

The unit disk geometry, Figure 5.5, is included to show how the method performs with coinciding
knot vectors.

The L-shaped domains, Figure 5.6, Figure 5.7, are included to explore the limits of the Aniso-
Geometric method. The test cases are run with two L-shaped geometries, with a C0 and C1

continuous geometry space respectively, where the C1 geometry space has singular points in (0, 0)
and (1, 1). Along the line connecting these points the continuity is C0 and C1 , respectively, as
dictated by the initial mesh. It is interesting to see how the solution space handles this when it
has higher regularity.

Finally a free form domain, Figure 5.8, is included to test sub- and superparametric approaches
on domains with more than one knot in the interior. This particular domain is cubic with nine
unique internal knots in each direction, hence C2 continuity is imposed at these knots.

The meshes for Lagrange based AGA are the same as those used for the NEFEM cases as shown
in Figure 4.5.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 5.5: Refinement sequence for the unit disc.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 5.6: Refinement sequence for the C0 L-shaped domain.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 5.7: Refinement sequence for the C1 L-shaped domain.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 5.8: Refinement sequence for the free form cubic domain.
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5.3.2 B-Spline based AGA

Figure 5.9 shows the results of the comparison of AGAsp with IGA when the B-Spline solution
space is spanned using the same knot vectors as the NURBS geometry. It is clear that using
AGAsp gives the same convergence and solution accuracy as IGA.
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Figure 5.9: Comparison of IGA and AGAsp on the unit disk domain in blue and green respectively.
Symbols indicate the polynomial degree of the approximation. Here the B-Spline solution space
is spanned using the same knot vectors as the NURBS geometry. From the figure it is clear that
in this case AGAsp gives the same solution accuracy and convergence rates as IGA.

Figure 5.10 shows the results when the B-Spline solution space is spanned by different knot vectors
than the geometry space on the L-shaped domains. The h-convergence plots for the C0 geometry
space in Figure 5.10(a) show that AGAsp is not converging due to the C0 continuity of the
geometry space. This stresses the need for matching continuity when applying AGAsp to these
types of problems. Increasing the continuity of the geometry space to C1 is enough to have a
converging solution for AGAsp as can be seen in Figure 5.10(b). However, when the continuity
of the solution space increases too much, p ≥ 5, C≥4 in this case, the solution deteriorates again.
Hence the continuity needs to be equal or close to the continuity of the initial geometry.

To confirm this, additional tests are performed on the free form cubic domain, Figure 5.8. The
results are shown in Figure 5.11, it is clear that the superparametric approach with B-Splines
reaches optimal convergence rates. The subparametric approach, however, fails when the conti-
nuity surpasses the continuity of the geometry. This happens already at p = 4 where the B-Spline
solution space reaches C3 continuity over the knots, which is a direct failure as opposed to the
C1 L-shape domain. This is explained by the increased continuity of the solution space which
cannot satisfy the continuity of the geometry. Furthermore, here the lower continuity needs to be
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(a) h-convergence C0 L-Shape
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Figure 5.10: Comparison of IGA and AGAsp on the L-shaped domains in blue and green re-
spectively. Symbols indicate the polynomial degree of the approximation. Figure 5.10(a) shows
the results for the C0 version. It can be concluded that AGAsp does not converge for the C0

geometry. The C1 geometry results in Figure 5.10(b), however, do converge for continuity close
to the geometry continuity. When the continuity is increased further p ≥ 5, C≥4, the results
deteriorate.
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satisfied at 9 knots instead of 1, it is clear from the results that the basis cannot handle this.
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Figure 5.11: Comparison of IGA and AGAsp on the free form domain in blue and green respec-
tively. Symbols indicate the polynomial degree of the approximation. When the solution space
has approximation degree p ≤ 3 optimal convergence rates are attained and at p = 3 the results
coincide. Increasing the degree further does not improve accuracy nor convergence caused by the
higher continuity of the solution space which cannot satisfy the continuity of the geometry.

5.3.3 Lagrange-based AGA

The results for AGAlg are shown in Figure 5.12 for the unit disk domain. The figure shows
that theoretical convergence rates are reached on curved domains. More results will be shown in
Section 6.2.

5.3.4 Adaptive refinement

To illustrate adaptive refinement, the Poisson equation is solved for the manufactured solution
of a Gaussian spike (1.2d) at the origin. The adaptive refinement was stopped after 7 iterations
and the uniform refinement was stopped after 5 iterations. The results are shown in Figure 5.13.
Figure 5.13(a) shows the final mesh for the degree 2 results. It is clear from the figure that the
refinement is only controlled by the complexity of the solution. There is no refinement needed at
the boundary. In Figure 5.13(b) the results for the h-refinement are given. The reduction in the
number of dofs is clear from this picture. Note further that for this problem, increasing the order
has no effect due to the sharpness of the spike, see Figure 5.14.
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Figure 5.12: AGAlg results on the unit disk domain. Here colors indicate the polynomial degree
of the solution. AGAlg reaches optimal convergence rates on curved domains.
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(a) Final mesh in physical space.
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(b) h-convergence

Figure 5.13: Adaptively refined AGAlg versus uniformly refined AGAlg. Colours indicate the
degree of the approximation, symbols indicate uniform or adaptive refinement. Figure 5.13(a)
shows the final mesh for the p = 2 after 7 refinement steps. Note that the refinement is only
done for the solution, the geometry needs no refinement as it is already exact from the coarse
mesh onwards. Figure 5.13(b) shows h-convergence in the L2(Ω) norm. It shows a substantial
reduction in the degrees of freedom when adaptive refinement is utilized.
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Figure 5.14: Exact solution for the Gaussian spike test problem.

MSc. Thesis Dennis Ernens



72 AnisoGeometric Analysis

5.4 Summary

• AGA is a flexible method, able to apply any basis function space to exact NURBS geometry.
When a NURBS basis is used AGA becomes IGA. Like IGA, in AGA the geometry is exact
from the coarse mesh onwards;

• AGAsp leads to sub- and superparametric approaches. Both can have their advantages.
Subparametric approaches allow highest regularity B-Spline solution spaces, lifting the re-
striction of the geometry dictated continuity. Superparametric approaches allow lower order
solution spaces leading to a reduction in degrees of freedom and better conditioned systems,
which is desirable as most CAD geometry is cubic or higher;

• AGAlg leads to a flexible classical FEM with exact NURBS geometry by partitioning the
parameter domain with triangles or quadrilaterals. Triangle quality can be an issue on highly
curved domains, however, AGAlg still produces converging solutions showing the robustness
of the method. Adaptive refinement can easily be applied on the unit square parameter
domain and only the complexity of the solution dictates the refinement.

• The numerical experiments demonstrated that AGAsp on coinciding parameter spaces has
the same convergence rates and accuracy as IGA; subparametric approaches fail when the
continuity exceeds the continuity of the geometry; superparametric approaches show optimal
convergence rates;

• The numerical experiments with AGAlg showed that optimal convergence rates are attained
on curved geometry. Adaptive refinement improved the accuracy and convergence per degree
of freedom considerably.

These approaches will be compared to IGA and NEFEM in the following chapter.
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Chapter 6

Results

6.1 Introductory remarks

In the previous chapters IGA, NEFEM and AGA were introduced. This chapter presents the results
of the comparisons with IGA and NEFEM.

The chapter starts with a short summary of the previous chapters highlighting properties of the
methods important for the comparison. The comparison of IGA, NEFEM and AGA follows there-
after, including a thorough discussion of the results. For the comparison all three test cases
given in Section 1.6 are considered on the unit disk domain and the domain from the NEFEM
publication.

6.2 Comparison

In this section all three methods are compared. The comparison will be made based on the
convergence in the L2-norm, versus both hmax and the number of degrees of freedom.

6.2.1 Overview

Table 6.1 gives a summary of the main differences between the three approaches. All three
methods represent the geometry exactly. Only NEFEM has a Cartesian basis and avoids NLTE.
Higher inter-element continuity is provided by IGA and AGA with a B-Spline basis. It is further
important to note that the difference between IGA and Lagrange based AGA is the inter-element
continuity, the only difference between NEFEM and Lagrange based AGA is NLTE. In addition,
both NEFEM and AGAlg use triangles for their discretization.
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Table 6.1: Comparison between the qualitative properties of the three methods considered in this
thesis.

Properties IGA NEFEM AGA

Basis B-Spline, NURBS Lagrange Lagrange/B-Spline, NURBS
Exact NURBS geometry yes yes yes
Non-Linear transformation error yes no yes
Higher inter element continuity yes no no/yes

6.2.2 Preliminaries

The meshes used for this comparison are the unit disk domain from the previous chapters, see
Figure 2.11, and the domain taken from [63], shown in Figure 6.1. The unit disk domain is
physically slightly bigger than Figure 6.1, thus consequently hmax is bigger and the solution has
more spectral content. Here the Poisson problem (1.1) is solved for all three test cases, where for
test case (1.2c) k = 1. The comparison on the unit disk domain is done with Neumann boundary
conditions on ∂Ω. The comparison on Figure 6.1 is done with Dirichlet boundary conditions on
the square part of the domain, Neumann boundary conditions are imposed on the curved part of
the domain.

For IGA Figure 6.1 is constructed using six patches, hence on the patch interfaces the continuity is
reduced to C0. Furthermore, for the IGA runs, the basis is restricted by the geometry to a lowest
degree of 2, therefore there are no p = 1 results for IGA. For IGA, all the higher-order results are
obtained using the k-refinement approach. It is therefore interesting to look at convergence per
degree of freedom as the k-refinement approach has the potential to save huge amounts of dofs
compared to classical FEM.

Figure 6.1: Mesh for the comparison taken from Sevilla et al. [63].

6.2.3 Numerical experiments

The results for the first test case are shown in Figure 6.2. Here p-convergence is shown for
the polynomial solution (1.2a). This shows that NEFEM also satisfies the patch test on curved
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domains with Neumann boundary conditions. IGA and AGAlg do not satisfy this patch test due
to NLTE (thus a non-polynomial basis in Ω), but still show spectral convergence.
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Figure 6.2: Comparison of IGA, NEFEM and AGAlg on the unit disk domain in blue, black and
red respectively. Here test case (1.2a) is considered on the four element mesh for all methods.
Shown is p-convergence in the L2-norm versus degree of freedom. NEFEM satisfies the patch
test even on curved domains. IGA and AGAlg show spectral convergence.

In Figure 6.3 the results for the domain of Figure 6.1 are shown. Here test case (1.2b) is consid-
ered. Figure 6.3(a) shows the L2-error versus the maximum element diameter hmax. It is clear
that NEFEM performs really well on this smooth problem when higher order approximations are
considered. Furthermore, for lower degree approximations, p < 4, the higher continuity of NURBS
accounts for the improved accuracy relative to AGAlg, for higher degrees AGAlg and IGA have the
same accuracy. This can be explained by the NLTE taking over in higher degree approximations.
The comparison based on degrees of freedom, Figure 6.3(b), shows the converse, here IGA takes
the upper hand showing the superiority of k-refinement. Both the convergence rates and the
accuracy are higher than NEFEM and AGAlg, note for instance that p = 2 IGA reaches a better
accuracy per dof than p = 3 AGAlg and has almost the same accuracy per dof as p = 3 NEFEM.

In Figure 6.4 the results for the domain of Figure 6.1 are shown for test case (1.2c). This case
has higher spectral content, and part of the sine lies on the boundary demanding more from the
resolution properties of the basis. Figure 6.4(a) shows the L2-error versus the maximum element
diameter hmax. On this more challenging test case the methods are close together up to p = 3.
Apparently higher continuity or avoiding NLTE are less beneficial on this problem. It seems that
up to p = 3 the accuracy is dominated by interpolation error. From p = 4 onwards NLTE starts
to affect the accuracy of IGA and AGAlg.

It is more difficult to explain the larger difference between IGA and AGAlg for this case. The
domain is the same as in the previous results hence NLTE is equal, so the difference in accuracy
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Figure 6.3: Comparison of IGA, NEFEM and AGAlg on the domain of Figure 6.1 in blue, black
and red respectively. Symbols indicate the polynomial degree of the approximation. Here test
case (1.2b) is considered. Figure 6.3(a): For this test case NEFEM shows excellent performance
on higher degree approximations, whereas AGAlg and IGA are limited by NLTE. On lower degree
approximations the benefit of k-refinement becomes apparent, putting IGA in front of NEFEM
and AGAlg. Figure 6.3(b): When comparing on degrees of freedom IGA, more specifically k-
refinement, shows its strength, convergence and accuracy per degree of freedom surpasses both
NEFEM and AGAlg. Note for instance the p = 2 IGA results versus p = 3 AGAlg/NEFEM.
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cannot be attributed to NLTE. Comparing to Figure 6.3(a), it can be concluded that indeed the
increase in the gap between IGA and AGAlg is approximately the same. Hence this can only be
explained by difference in resolution between both methods for the same hmax, which is more
pronounced on this more difficult test case. This in turn is motivated by Figure 6.4(b) which
shows clearly the lower dof count for IGA. Again IGA leaves both NEFEM and AGAlg behind in
convergence and accuracy per degree of freedom. Note here, for instance, the accuracy and rate
of convergence of p = 2 IGA versus p = 3 AGAlg and NEFEM.

The previous test cases are repeated on the unit disk which is a full NURBS domain. Remember
that this domain is physically slightly bigger, thus hmax is consequently bigger and the solution
has more spectral content. Figure 6.5 shows the results of the unit disk domain using test case
(1.2b), Figure 6.6 shows the results of test case (1.2c). Upon comparing these results, note the
difference in y-axis scale.

Figure 6.5 paints in general the same picture as Figure 6.3. The NEFEM results show again an ap-
proximately 2 orders of magnitude improvement in accuracy when looking at hmax, Figure 6.5(a).
Furthermore, the resolution argument for the gap between IGA and AGAlg is fortified by these
results because on this geometry the spectral content is higher while the resolution is lower than
Figure 6.1.

Figure 6.6 shows the results of the unit disk domain using test case (1.2c). These results are
really interesting because NEFEM and AGAlg show equal convergence rates and accuracy. The
same domain is considered thus the NLTE is of equal magnitude. Hence for this test case the
main source of error is the interpolation error itself. The gap between IGA and AGAlg is again
bigger for this more difficult problem, see Figure 6.6(a), fortifying again the resolution argument.
The conclusion for convergence versus degrees of freedom, Figure 6.6(b) remains unchanged, IGA
with its k-refinement features again improved convergence rates and accuracy per dof.

When the above results are studied in general it is clear that higher inter element continuity gives
a clear advantage over a classical C0 basis. Remember from Table 6.1 that the only difference
between IGA and Lagrange based AGA is the inter element continuity. The comparisons based on
degrees of freedom show that the order of convergence is generally one higher when compared to
AGAlg and NEFEM. Furthermore, comparing with IGA based on hmax is in general not an honest
criterion, convergence per dof is a better indicator in this case.

At higher degree approximations the NLTE starts to play a role, judging by the difference between
NEFEM and IGA/AGAlg. Depending on the test case and the domain, NLTE is more or less
important. The results of the unit disk for test case (1.2c) showed that the error is completely
dominated by the interpolation error. So on problems with high(er) spectral content AGA is
competitive with NEFEM. The other test cases showed 1 to 2 orders of magnitude difference
between AGAlg and NEFEM due to NLTE.

Although NEFEM showed a significant increase in accuracy by eliminating the non-linear trans-
formation error it is no match for k-refined IGA based on a comparison on degrees of freedom.
However, care should be taken in extrapolating these results to larger problems, where the geom-
etry becomes more restrictive for the continuity of the basis, and due to internal knot repetition,
the amount of degrees of freedom increases faster for degree elevation. If this is the case AGAsp
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Figure 6.4: Comparison of IGA, NEFEM and AGA on the domain of Figure 6.1 in blue, black
and red respectively. Symbols indicate the polynomial degree of the approximation. Here test
case (1.2c) is considered. Figure 6.4(a): Again on higher degree approximations NEFEM shows
improved performance compared to AGAlg and IGA. The benefit of higher continuity or avoiding
NLTE is less striking on this test case. Probably interpolation error dominates on lower order. At
higher order NLTE starts to dominate, judged by the gap between NEFEM and IGA/AGAlg. The
larger gap between IGA and AGAlg is attributed to lower resolution in the IGA case, Figure 6.4(b)
motivates this. Figure 6.4(b): Comparing on degrees of freedom, again IGA shows better conver-
gence rates and accuracy per degree of freedom. Note for instance the p = 2 IGA results versus
p = 3 AGAlg/NEFEM.
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Figure 6.5: Comparison of IGA, NEFEM and AGAlg on the unit disk in blue, black and red
respectively. Symbols indicate the polynomial degree of the approximation. Test case (1.2b) is
considered. Figure 6.6(a): The results of the previous test cases are confirmed on this domain.
NEFEM shows again an approximate 2 orders of magnitude improvement over IGA and AGAlg.
Furthermore, due to higher spectral content and larger element size on this domain, the resolution
argument for the gap between IGA and AGA is fortified. Figure 6.6(b): The convergence results
versus degrees of freedom are unchanged, IGA shows better convergence and accuracy per dof.
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Figure 6.6: Comparison of IGA, NEFEM and AGAlg on the unit disk in blue, black and red
respectively. Symbols indicate the polynomial degree of the approximation. Here test case (1.2c)
is considered. Figure 6.6(a): Here the accuracy of AGAlg and NEFEM is clearly bounded by the
interpolation error as NLTE is the same as the results of Figure 6.5(a). Furthermore, the results
fortify the resolution arguments for the difference between IGA and AGAlg again for reasons stated
earlier. Figure 6.6(b): The dof savings of k-refinement in IGA becomes again apparent in this
comparison, leading to higher convergence rates and accuracy per dof.
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can be employed to keep the dof count low while still retaining optimal convergence rates.

As a final test case adaptively refined AGAlg is compared to k-refined AGAlg on the unit disk
domain for the test case of Section 5.3.4, (1.2d). Figure 6.7 shows the results of this comparison.
These results are completely in line with those from Section 3.4.2 where k-refinement showed to
be more than capable of capturing sharp layers and producing monotone solutions. Furthermore,
it is on par with an adaptively refined AGAlg solution, showing not only the power of k-refinement
but also that a FEM with exact geometry is competitive when adaptive refinement is used.
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Figure 6.7: Comparison of adaptively refined AGAlg with uniformly k-refined IGA, results are
obtained for p = 5 on the unit disk for a Gaussian spike solution. This shows that a FEM with
adaptive refinement can be competitive with a uniformly k-refined IGA solution.
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Chapter 7

Conclusions and Recommendations

The main goals of this thesis were to determine if non-linear transformation error has a detrimental
effect on IsoGeometric Analysis and if there are any benefits in combining the ideas of IsoGeometric
Analysis and the NURBS Enhanced Finite Element Method in the more general method developed
in this thesis, AnisoGeometric Analysis.

The answer to the first question and the conclusion found in this thesis is found to be negative in
the sense that while the solution of IGA is indeed polluted by NLTE, the higher continuity of the
basis compensates this effect more than adequately.

The answer to the second question and the conclusion found in this thesis is found to be positive
in the sense that AGA adds NURBS geometry to any FEM code and showed optimal convergence
rates for both a B-Spline basis and a Lagrange polynomial basis. Furthermore, AGAsp added
the possibility to use the superparametric approach with B-Spline basis functions leading to more
economical computations on high degree geometry spaces. Subparametric approaches, however,
failed because of non-matching continuity between the solution space and the geometry space.
In addition, on smooth problems AGAlg showed a 2 orders of magnitude negative difference in
accuracy compared to NEFEM. On the more challenging problem, however, AGAlg and NEFEM
showed the same accuracy and convergence rates.

7.1 Conclusions

In this thesis AnisoGeometric Analysis was successfully developed, implemented and tested. Aniso-
Geometric Analysis enables the use of any basis function space in conjuction with NURBS geom-
etry. Like IsoGeometric Analysis, the geometry is exact from the coarsest mesh onwards. Existing
FEM codes can also benefit from this if they are capable of computing on a unit square mesh as
input for the NURBS map. The implementation of AGA in this thesis was done with B-Splines
and Lagrange polynomials. When using a B-Spline basis:
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• On coinciding parameter spaces, convergence rates and accuracy are equal to IsoGeometric
Analysis;

• Subparametric approaches fail when the continuity of the solution space is higher that that
of the geometry;

• Superparametric approaches show optimal convergence rates and give the ability to save
degrees of freedom while retaining all the favourable properties of the B-Spline basis.

When using a Lagrange polynomial basis:

• Any element type can be used;

• Optimal convergence rates are reached on all test problems;

• Local refinement becomes possible and is only dictated by the complexity of the solution.
The refinement is performed in the unit square parameter domain and thus leads to very
easy refinement schemes;

• Local refinement adds an additional efficiency boost, bringing the accuracy and convergence
per degree of freedom on the same problem up to par with IsoGeometric Analysis;

• Triangle quality can be an issue on highly curved geometries, however, AGAlg still produces
converging solutions.

The second part of this thesis is concerned with the comparison of IGA, NEFEM and AGAlg
to investigate if non-linear transformation errors have a detrimental effect on higher continuity
approaches and to compare the performance of AGAlg to IGA and NEFEM. The main conclusions
from this comparison are:

1. On smooth problems NEFEM gives a 2 order of magnitude increase in accuracy over IGA
and AGAlg when comparing on hmax. However, the results showed that comparing against
hmax for IGA is not completely fair, IGA clearly lacked resolution on the more challenging
problems due to the low dof count, staying behind in the hmax comparison. When comparing
against dofs the above conclusion still holds for AGAlg. IGA, however, takes the upper hand
in all comparisons versus dofs due to the huge savings in degrees of freedom by k-refinement;

2. On the more challenging problem AGAlg and NEFEM are closer together showing that
interpolation error becomes the leading error instead of NLTE. On the unit disk with test
case (1.2c) the results were almost identical proving this fact;

3. NLTE is not detrimental for k-refined IGA when comparing versus dofs, in fact pure k-
refinement showed to be superior in every test case;

4. Adaptively refined AGAlg is competitive with k-refined IGA on the Gaussian spike test
problem.
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5. NEFEM or AGAlg with adaptive refinement can be a competitive choice, where NEFEM
can also compute easily on volume meshes.

The intermediate chapters also include some important findings. The condition numbers of stiff-
ness matrices in IsoGeometric Analysis are constant with the mesh parameter hmax which is very
beneficial in large problems, but increase with degree as 10p−1. Furthermore, IsoGeometric Analy-
sis is robust under severe mesh distortion confirming previous results [51]. To impose strong BC’s
in NEFEM an arc length parametrization of Lobatto nodes (Fekete nodes here) on the boundary
needs to be employed. This important fact is poorly documented in the current literature.

7.2 Recommendations and Future work

This section lists some recommendations and future work. Recommendations based on this work:

1. An AGAlg plug-in should be created for existing FEM codes.

2. More difficult test cases and larger domains should be attacked with AGA to prove the
increased efficiency of the AGAsp approach.

3. The comparison results provide compelling evidence that a hybrid AGA approach, with for
instance NEFEM on the boundary and B-Splines in the interior, can provide superior accuracy
and convergence rates. However, this is a technically challenging method to construct.

4. An other interesting alternative are triangular B-Splines, which can possibly be used to
construct a NEFEM based on B-Splines, see Neamtu [53] for a nice starting point on
triangular B-Splines.

5. It would be very interesting to see if more exotic element types like Raviart-Thomas can
improve the AGAlg results obtained in this thesis.

Future work and/or possible MSc. project subjects:

1. In a goal oriented reduced order modelling framework, NURBS or B-Splines can provide a
compact description of coherent structures in turbulent flows.

2. Augment IGA with the local refinement capabilities of LR-Splines [28] and combine this
with the goal oriented error estimation framework.

3. The recently implemented hierarichal B-Splines [45, 46, 68] can provide a natural basis for
a VMM method.

4. More research is needed on the meshing problem for IGA, in 3D this is still an open problem.
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Appendix A

Geometry data

Geometry data for the domains used in this thesis. All coordinates are in (x, y).

Table A.1: Control points and weights for the curvilinear 1 domain of Figure 3.7

P11 = (0, 0) w11 = 1
P12 = (0, 13) w12 = 1
P13 = (0, 23) w13 = 1
P14 = (0, 1) w14 = 1
P21 = (13 , 0) w21 = 1
P22 = (269522 ,

609
4780 ) w22 = 1

P23 = ( 982
5747 ,

971
2044 ) w23 = 1

P24 = (13 , 1) w24 = 1
P31 = (23 , 0) w31 = 1
P32 = (529613 ,

2300
4537 ) w32 = 1

P33 = ( 758
1753 ,

4157
5278 ) w33 = 1

P34 = (23 , 1) w34 = 1
P41 = (1, 0) w41 = 1
P42 = (1, 13) w42 = 1
P43 = (1, 23) w43 = 1
P44 = (1, 1) w44 = 1
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II Geometry data

Table A.2: Control points and weights for the curvilinear 2 domain of Figure 3.8

P11 = (0, 0) w11 = 1
P12 = (0, 13 ) w12 = 1
P13 = (0, 23 ) w13 = 1
P14 = (0, 1) w14 = 1
P21 = (13 , 0) w21 = 1
P22 = (13772413 ,

−473
1530 ) w22 = 1

P23 = (−1386
3299 , 11051669 ) w23 = 1

P24 = (13 , 1) w24 = 1
P31 = (23 , 0) w31 = 1
P32 = (28462167 ,

996
1925 ) w32 = 1

P33 = (15053303 ,
601
526 ) w33 = 1

P34 = (23 , 1) w34 = 1
P41 = (1, 0) w41 = 1
P42 = (1, 13 ) w42 = 1
P43 = (1, 23 ) w43 = 1
P44 = (1, 1) w44 = 1

Table A.3: Control points and weights for the curvilinear 3 domain of Figure 3.8

P11 = (0, 0) w11 = 1
P12 = ( −1

750599937895083 ,
618
2761 ) w12 = 1

P13 = ( 1
2251799813685248 ,

367
740 ) w13 = 1

P14 = ( −1
4503599627370496 ,

2111
2675 ) w14 = 1

P15 = (0, 1) w15 = 1
P21 = ( 753

3043 ,
−1

1125899906842624 ) w21 = 1
P22 = (18024129 ,

−857
2751 ) w22 = 1

P23 = (119464 ,
512
937 ) w23 = 1

P24 = (−263
1192 ,

1373
1797 ) w24 = 1

P25 = ( 753
3043 , 1) w25 = 1

P31 = (241477 ,
1

2251799813685248 ) w31 = 1
P32 = (625852 ,

552
1345 ) w32 = 1

P33 = ( 767
1550 ,

2330
4581 ) w33 = 1

P34 = ( 218
1057 ,

1569
1175 ) w34 = 1

P35 = (241477 , 1) w35 = 1
P41 = (161208 ,

−1
4503599627370496 ) w41 = 1

P42 = (45193235 ,
2206
4833 ) w42 = 1

P43 = (587496 ,
5771
7922 ) w43 = 1

P44 = (353507 ,
1735
1833 ) w44 = 1

P45 = (161208 , 1) w45 = 1
P51 = (1, 0) w51 = 1
P52 = (1, 618

2761 ) w52 = 1
P53 = (1, 367740 ) w53 = 1
P54 = (1, 21112675 ) w54 = 1
P55 = (1, 1) w55 = 1
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III

Table A.4: Control points and weights for the unit disk domain of Figure 2.11

P11 = (−1, 0) w11 = 1
P12 = (−1,−1) w12 =

985
1393

P13 = (0,−1) w13 = 1
P21 = (−1, 1) w21 =

985
1393

P22 = (0, 0) w22 = 1
P23 = (1,−1) w23 =

985
1393

P31 = (0, 1) w31 = 1
P32 = (1, 1) w32 =

985
1393

P33 = (1, 0) w33 = 1

Table A.5: Control points and weights for the C0 L-shape domain of Figure 5.6

P11 = (−1,−1) w11 = 1
P12 = (−1, 1) w12 = 1
P13 = (1, 1) w13 = 1
P21 = (0,−1) w21 = 1
P22 = (0, 0) w22 = 1
P23 = (1, 0) w23 = 1

Table A.6: Control points and weights for the C1 L-shape domain of Figure 5.7

P11 = (−1,−1) w11 = 1
P12 = (−1, 1) w12 = 1
P13 = (−1, 1) w13 = 1
P14 = (1, 1) w14 = 1
P21 = (−1

2 ,−1) w21 = 1
P22 = (−985

1393 ,
408
1393 ) w22 = 1

P23 = (−408
1393 ,

985
1393 ) w23 = 1

P24 = (1, 12) w24 = 1
P31 = (0,−1) w31 = 1
P32 = (0, 0) w32 = 1
P33 = (0, 0) w33 = 1
P34 = (1, 0) w34 = 1
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IV Geometry data

Table A.7: Control points and weights for the free form domain
of Figure 5.8

P11 = (−677
4335 ,

−142
2427 ) w11 = 1

P12 = (−343
2410 ,

−203
11083 ) w12 = 1

P13 = (−1826
16121 ,

172
2711 ) w13 = 1

P14 = (−591
9391 ,

93
506 ) w14 = 1

P15 = ( −171
91378 ,

412
1407 ) w15 = 1

P16 = ( 644
8735 ,

313
815) w16 = 1

P17 = ( 317
1898 ,

179
393) w17 = 1

P18 = ( 790
2809 ,

775
1529 ) w18 = 1

P19 = ( 674
1595 ,

1208
2255 ) w19 = 1

P110 = (456791 ,
141
262) w110 = 1

P111 = (470689 ,
684
1301 ) w111 = 1

P112 = ( 739
1007 ,

429
829 ) w112 = 1

P21 = (−509
3415 ,

−165
2687 ) w21 = 1

P22 = (−404
3005 ,

−387
18001 ) w22 = 1

P23 = (−143
1380 ,

427
7183 ) w23 = 1

P24 = (−229
4626 ,

97
546 ) w24 = 1

P25 = ( 77
4728 ,

647
2281 ) w25 = 1

P26 = ( 303
3127 ,

731
1970 ) w26 = 1

P27 = (13887125 ,
1042
2379 ) w27 = 1

P28 = ( 551
1762 ,

2264
4675 ) w28 = 1

P29 = ( 819
1796 ,

1248
2459 ) w29 = 1

P210 = (11251846 ,
345
683 ) w210 = 1

P211 = (564791 ,
183
373) w211 = 1

P212 = (19632572 ,
359
745 ) w212 = 1

P31 = (−129
956 , −193

2864 ) w31 = 1
P32 = (−590

4967 ,
−209
7438 ) w32 = 1

P33 = (−607
7192 ,

359
7026 ) w33 = 1

P34 = ( −329
14450 ,

201
1220 ) w34 = 1

P35 = ( 189
3617 ,

310
1173 ) w35 = 1

P36 = ( 348
2443 ,

3911
11382 ) w36 = 1

P37 = ( 729
2929 ,

282
703) w37 = 1

P38 = (313839 ,
683
1563 ) w38 = 1

P39 = ( 966
1861 ,

447
995) w39 = 1

P310 = (515769 ,
833
1901 ) w310 = 1

P311 = (10381351 ,
502
1193 ) w311 = 1

P312 = (590723 ,
2013
4897 ) w312 = 1

P41 = (−847
7446 ,

−166
2153 ) w41 = 1

P42 = (−257
2699 ,

−493
12677 ) w42 = 1

P43 = (−194
3501 ,

437
11710 ) w43 = 1

P44 = ( 128
7421 ,

2713
18932 ) w44 = 1

P45 = ( 313
2974 ,

1434
6181 ) w45 = 1

P46 = ( 210
1009 ,

715
2399 ) w46 = 1

P47 = (20136200 ,
292
857) w47 = 1

P48 = (14393163 ,
178
493) w48 = 1
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V

P49 = ( 602
1003 ,

563
1568 ) w49 = 1

P410 = (561754 ,
849
2507 ) w410 = 1

P411 = (33944073 ,
240
749 ) w411 = 1

P412 = (406465 ,
257
818) w412 = 1

P51 = (−1420
15417 ,

−129
1469 ) w51 = 1

P52 = (−636
8935 ,

−161
3168 ) w52 = 1

P53 = (−174
6713 ,

109
4949 ) w53 = 1

P54 = ( 1426
24827 ,

205
1716 ) w54 = 1

P55 = ( 939
5968 ,

940
4789 ) w55 = 1

P56 = ( 511
1887 ,

445
1793 ) w56 = 1

P57 = (238603 ,
499
1809 ) w57 = 1

P58 = (21494080 ,
163
578) w58 = 1

P59 = (615919 ,
625
2331 ) w59 = 1

P510 = (11801477 ,
449
1832 ) w510 = 1

P511 = (678773 ,
636
2735 ) w511 = 1

P512 = (12401349 ,
861
3845 ) w512 = 1

P61 = (−358
5149 ,

−811
8120 ) w61 = 1

P62 = (−281
6076 ,

−857
13343 ) w62 = 1

P63 = ( 58
13103 ,

267
54815 ) w63 = 1

P64 = ( 629
6416 ,

305
3284 ) w64 = 1

P65 = ( 251
1204 ,

623
3971 ) w65 = 1

P66 = ( 331
1002 ,

445
2292 ) w66 = 1

P67 = ( 689
1505 ,

162
781) w67 = 1

P68 = (485822 ,
298
1483 ) w68 = 1

P69 = (703975 ,
240
1327 ) w69 = 1

P610 = (12691507 ,
447
2804 ) w610 = 1

P611 = (12301327 ,
3967
28298 ) w611 = 1

P612 = (301311 ,
514
3925 ) w612 = 1

P71 = (−1299
28526 ,

−351
3086 ) w71 = 1

P72 = (−134
6697 ,

−166
2087 ) w72 = 1

P73 = ( 150
4171 ,

−103
7069 ) w73 = 1

P74 = ( 151
1085 ,

304
4817 ) w74 = 1

P75 = ( 343
1326 ,

373
3285 ) w75 = 1

P76 = (12933350 ,
349
2564 ) w76 = 1

P77 = ( 522
1013 ,

406
2981 ) w77 = 1

P78 = (591923 ,
201
1672 ) w78 = 1

P79 = (10641391 ,
173
1764 ) w79 = 1

P710 = (467524 ,
574
8243 ) w710 = 1

P711 = (12511285 ,
100
2039 ) w711 = 1

P712 = (338333 ,
278
7261 ) w712 = 1

P81 = (−179
9099 ,

−121
931 ) w81 = 1

P82 = ( 145
18303 ,

−705
7247 ) w82 = 1

P83 = ( 295
4279 ,

−167
4536 ) w83 = 1

P84 = ( 428
2365 ,

289
9730 ) w84 = 1

P85 = (290943 ,
154
2335 ) w85 = 1

P86 = (103235 ,
181
2429 ) w86 = 1

P87 = (12352189 ,
301
4817 ) w87 = 1
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VI Geometry data

P88 = (504737 ,
239
5713 ) w88 = 1

P89 = (524645 ,
281

20377 ) w89 = 1
P810 = (31183329 ,

−269
14640 ) w810 = 1

P811 = (25242475 ,
−283
6733 ) w811 = 1

P812 = (763719 ,
−181
3347 ) w812 = 1

P91 = ( 41
4868 ,

−700
4691 ) w91 = 1

P92 = ( 355
9389 ,

−848
7183 ) w92 = 1

P93 = ( 347
3352 ,

−305
4887 ) w93 = 1

P94 = ( 2375
10638 ,

−56
7117 ) w94 = 1

P95 = (10272893 ,
91

6450 ) w95 = 1
P96 = ( 653

1344 ,
70

7989 ) w96 = 1
P97 = (15622573 ,

−158
14331 ) w97 = 1

P98 = (246337 ,
−174
4813 ) w98 = 1

P99 = ( 867
1012 ,

−490
7107 ) w99 = 1

P910 = (679692 ,
−291
2761 ) w910 = 1

P911 = (947890 ,
−347
2636 ) w911 = 1

P912 = (639578 ,
−560
3861 ) w912 = 1

P101 = ( 145
3718 ,

−661
3837 ) w101 = 1

P102 = ( 343
4912 ,

−470
3297 ) w102 = 1

P103 = ( 271
1939 ,

−31
337 ) w103 = 1

P104 = ( 829
3119 ,

−519
10360 ) w104 = 1

P105 = (12613145 ,
−349
8263 ) w105 = 1

P106 = (516977 ,
−141
2353 ) w106 = 1

P107 = (519796 ,
−239
2897 ) w107 = 1

P108 = (10541363 ,
−33
292 ) w108 = 1

P109 = (13561507 ,
−205
1367 ) w109 = 1

P1010 = (17051666 ,
−1067
5607 ) w1010 = 1

P1011 = (417377 ,
−1072
4893 ) w1011 = 1

P1012 = (16331423 ,
−696
2977 ) w1012 = 1

P111 = ( 83
1351 ,

−171
895 ) w111 = 1

P112 = ( 317
3409 ,

−295
1819 ) w112 = 1

P113 = ( 172
1041 ,

−139
1205 ) w113 = 1

P114 = (12884367 ,
−312
3817 ) w114 = 1

P115 = ( 980
2283 ,

−65
761 ) w115 = 1

P116 = ( 814
1459 ,

−209
2015 ) w116 = 1

P117 = (10131488 ,
−707
5413 ) w117 = 1

P118 = ( 999
1246 ,

−169
1033 ) w118 = 1

P119 = (29223151 ,
−344
1693 ) w119 = 1

P1110 = (188179 ,
−431
1753 ) w1110 = 1

P1111 = (572505 ,
−529
1915 ) w1111 = 1

P1112 = (816695 ,
−227
778 ) w1112 = 1

P121 = ( 116
1585 ,

−6891
34190 ) w121 = 1

P122 = ( 247
2352 ,

−311
1797 ) w122 = 1

P123 = ( 943
5287 ,

−593
4635 ) w123 = 1

P124 = ( 835
2699 ,

−1216
12249 ) w124 = 1

P125 = ( 944
2127 ,

−705
6647 ) w125 = 1

P126 = ( 620
1083 ,

−313
2483 ) w126 = 1
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VII

P127 = (447643 ,
−352
2279 ) w127 = 1

P128 = ( 841
1031 ,

−218
1155 ) w128 = 1

P129 = (874929 ,
−185
806 ) w129 = 1

P1210 = (739695 ,
−1082
3959 ) w1210 = 1

P1211 = (858749 ,
−941
3091 ) w1211 = 1

P1212 = (25212124 ,
−387
1208 ) w1212 = 1
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Appendix B

Weak and variational form IGA

B.1 Weak formulation

Start by multiplying the strong form (3.1) by the weighting function and integrate over the domain
Ω, dropping the arguments for brevity,

∫

Ω
−κw∆udΩ +

∫

Ω
wa∇udΩ =

∫

Ω
wfdΩ.

Using Green’s first identity on the diffusion part and applying the boundary conditions to finally
get

∫

Ω
κ∇w∇udΩ+

∫

Ω
wa∇udΩ =

∫

Ω
wfdΩ. (B.1)

B.2 Variational form

Now construct a finite dimensional approximation of S and V, viz.
Sh ⊂ S Vh ⊂ V,

hence uh ∈ Sh and wh ∈ Vh. The collection Sh can be further characterized by constructing to
each member vh ∈ Vh a function uh ∈ Sh by

uh = vh + gh (B.2)

where gh is a given function satisfying the essential boundary condition(s). Now a variational form
can be written of the form of (B.1). Given the boundary conditions, find uh = vh + gh where
vh ∈ Vh, such that for all wh ∈ Vh

∫

Ω
∇whκ∇uhdΩ +

∫

Ω
wha∇uhdΩ =

∫

Ω
whfdΩ. (B.3)
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X Weak and variational form IGA

Now using equation (B.2), equation (B.3) becomes

∫

Ω
∇whκ∇vhdΩ+

∫

Ω
wha∇vhdΩ =

∫

Ω
whfdΩ−

∫

Ω
∇whκ∇ghdΩ−

∫

Ω
wha∇ghdΩ. (B.4)

Dennis Ernens M.Sc. Thesis






	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Previous attempts
	1.3 IsoGeometric Analysis
	1.3.1 Issues in IGA

	1.4 NURBS Enhanced Finite Element Method
	1.5 AnisoGeometric Analysis
	1.6 Test cases
	1.7 Goal of the thesis
	1.8 Structure of the thesis

	2 B-Splines and NURBS
	2.1 Introductory remarks
	2.2 Brief history
	2.3 B-Splines
	2.3.1 Parameter domain
	2.3.2 B-Spline basis functions
	2.3.3 B-Spline derivatives
	2.3.4 B-Spline curves
	2.3.5 B-Spline surfaces and solids
	2.3.6 Global curve interpolation

	2.4 Refinement
	2.4.1 Knot insertion: h-refinement
	2.4.2 Degree elevation: p-refinement
	2.4.3 Continuity and degree elevation: k-refinement

	2.5 Non-Uniform Rational B-Splines
	2.5.1 NURBS basis functions
	2.5.2 NURBS derivatives
	2.5.3 NURBS curves
	2.5.4 NURBS surfaces and solids

	2.6 Summary

	3 Isogeometric Analysis: NURBS as a basis for analysis
	3.1 Introductory remarks
	3.2 Mesh
	3.3 Development of a NURBS based FEM
	3.3.1 Problem statement
	3.3.2 Function spaces
	3.3.3 Discrete form
	3.3.4 Boundary conditions
	3.3.5 Quadrature

	3.4 Numerical experiments
	3.4.1 Meshes
	3.4.2 Convection-Diffusion
	3.4.3 Poisson problem
	3.4.4 Condition number

	3.5 Summary

	4 NURBS Enhanced Finite Element Method
	4.1 Introductory remarks
	4.2 NEFEM
	4.2.1 Mesh
	4.2.2 Interpolation on the triangle
	4.2.3 Curved element basis function definition
	4.2.4 Node distribution using arc length parametrization
	4.2.5 Integration
	4.2.6 Boundary conditions

	4.3 Numerical experiments
	4.3.1 Mesh
	4.3.2 Poisson equation

	4.4 Summary

	5 AnisoGeometric Analysis
	5.1 Introductory remarks
	5.2 AGA
	5.2.1 Basic idea
	5.2.2 B-Spline solution space and NURBS geometry
	5.2.3 Lagrange polynomial solution space and NURBS geometry
	5.2.4 Local refinement
	5.2.5 Boundary conditions
	5.2.6 AGAlg using simplices

	5.3 Numerical experiments
	5.3.1 Meshes
	5.3.2 B-Spline based AGA
	5.3.3 Lagrange-based AGA
	5.3.4 Adaptive refinement

	5.4 Summary

	6 Results
	6.1 Introductory remarks
	6.2 Comparison
	6.2.1 Overview
	6.2.2 Preliminaries
	6.2.3 Numerical experiments


	7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Recommendations and Future work

	Bibliography
	A Geometry data
	B Weak and variational form IGA
	B.1 Weak formulation
	B.2 Variational form


