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Historic urban areas (HUAs) are visually and culturally sensitive environments where blue-green infrastructure
(BGI) plays an increasingly important role in shaping spatial identity and environmental quality. While BGI's
ecological functions are well documented, its influence on human visual perception, particularly within HUAs,
remains largely unexplored. Addressing this gap, this paper proposes an integrative framework to assess how BGI
affects visual experiences in heritage contexts, bridging methodological, perceptual, and user-group dimensions.
By combining UAV-based photogrammetry with a three-layered perception model, the research integrates spatial
analysis and empirical methods across seeing (eye-tracking), feeling (questionnaire), and understanding (in-
terviews) layers. Street-level BGI exposure was spatially quantified and used to inform perception experiments
involving both expert and general public groups. This multi-methodological, multi-layered, cross-group approach
extends existing research by providing a comprehensive examination of BGI's visual impact at different cognitive
levels, particularly within historic settings. Findings reveal that BGI enhances perceptual diversity, visual pref-
erence evaluation, and cognitive engagement across both groups. Although it may slightly divert attention from
dominant heritage features, BGI fosters broader visual exploration and higher environmental ratings. Experts
interpret BGI through more systemic and functional perspectives, while the public emphasizes emotional,
aesthetic, and recreational values. Overall, this study presents a replicable framework integrating digital spatial
modeling with layered perception analysis, offering new insights for evaluating and enhancing visual environ-
ments in HUAs. It supports more inclusive visual assessments and provides a basis for informed planning and
selective design interventions in heritage contexts.

1. Introduction

The concept of “historic urban areas” (HUAs) was introduced in
1987, defining these areas as: “regardless of size, any area including cities,
towns, historic centers, and residential districts, as well as their natural and
constructed environments (Washington Charter, 1987).” HUAs are a
crucial part of humanity’s cultural heritage, playing a vital role in pre-
serving and continuing traditional cultural history and providing unique
cultural experiences over time (UNESCO, 2021). As “living” heritage,
HUAs not only accommodate activities such as commerce and tourism
but also increasingly incorporate urban blue-green infrastructure (BGI),
including green spaces, parks, and waterways. While numerous studies
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have examined the effects of human activities on the visual character
and experiential quality of HUAs (Dincer, 2011; Ferreira and Ramirez
Eudave, 2022; Sastre et al., 2013), the role of BGI in shaping human
visual perception remains underexplored. This paper addresses this gap
through an integrated approach that combines empirical perception-
based methods (e.g., eye-tracking, questionnaires, interviews) with
digital spatial analysis techniques, including UAV (Unmanned Aerial
Vehicle)-based photogrammetry and view-based BGI quantification. To
ensure diverse perspectives, participants in the perception experiments
include both experts (primarily architects and landscape architects) and
the general public without relevant educational backgrounds.

E-mail addresses: Y.Peng-1@tudelft.nl (Y. Peng), 15705289993@163.com (W. Li), S.Nijhuis@tudelft.nl (S. Nijhuis), Christinayu@tudelft.nl (Y. Yu), Z.Wu-4@

tudelft.nl (Z. Wu).
! Wen Li is a co-first author.

https://doi.org/10.1016/j.eiar.2025.108301

Received 28 April 2025; Received in revised form 10 November 2025; Accepted 5 December 2025

Available online 10 December 2025

0195-9255/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:Y.Peng-1@tudelft.nl
mailto:15705289993@163.com
mailto:S.Nijhuis@tudelft.nl
mailto:Christinayu@tudelft.nl
mailto:Z.Wu-4@tudelft.nl
mailto:Z.Wu-4@tudelft.nl
www.sciencedirect.com/science/journal/01959255
https://www.elsevier.com/locate/eiar
https://doi.org/10.1016/j.eiar.2025.108301
https://doi.org/10.1016/j.eiar.2025.108301
http://creativecommons.org/licenses/by/4.0/

Y. Peng et al.
1.1. Blue-green infrastructure and HUA

BGI refers to the integration of natural and artificial ecosystems,
including urban green spaces, parks, gardens, wetlands, rivers, and lakes
(Escobedo et al., 2019; Liao et al., 2017). It contributes to climate
regulation, biodiversity, flood mitigation, and enhances physical,
mental, and environmental well-being (Li et al., 2025; Machac et al.,
2022; Zhang et al., 2025).

In historic urban areas, BGI is more than a functional amenity; it is
often constitutive of the urban landscape and cultural experience (Pruijt,
2004; Vallerani and Visentin, 2018). A representative case is the Jian-
gnan water-town tradition, where canal-edge corridors, bridge ap-
proaches, and land-water alleys structure eye-level views alongside
year-round greenery from garden practices (Zuo and Zhang, 2023).
Historically, these corridors functioned as water-land interfaces for
social-cultural activity, and the white-wall-and-black-tile palette codi-
fied a restrained aesthetic that continues to anchor local identity (Huang
et al., 2025). Beyond this illustrative case, prior research indicates that
Green infrastructure (GI) within HUAs, including green spaces, parks,
and urban greenery, also contributes to urban livability and reinforces
cultural character (Hua et al., 2022; Stanley et al., 2012). Elements, such
as ancient and heritage trees, can further enrich the historical and cul-
tural atmosphere of these areas (Haneca et al., 2009; Rostami et al.,
2015).

Previous studies on HUAs have primarily focused on two aspects of
BGI: (a) its spatial integration with historic fabric and landscape evo-
lution (Halbac-Cotoara-Zamfir et al., 2021; Wang et al., 2020); and (b)
its functional roles in urban resilience and well-being (Yang et al., 2020;
Zhao et al., 2024). However, despite BGI's prominence in heritage
landscapes, systematic investigations into its role in shaping human
visual perception and experiential qualities are almost absent.
Addressing this gap is crucial for advancing heritage-sensitive landscape
assessment and planning.

1.2. Visual perception research on HUAs

Visual perception plays a critical role in evaluating the environ-
mental and cultural quality of HUAs. As carriers of cultural memory and
landscape identity, HUAs have increasingly been examined in terms of
how users visually engage with their spatial environment (Deghati Najd
et al., 2015; Ren, 2024). Existing research can be broadly grouped into
two complementary streams: perception-based and geo-spatial analyt-
ical approaches.

(a) Perception-based approaches emphasize subjective and expe-
riential dimensions. Two primary directions are evident: (i) User-group
differences, exploring how perceptions vary among stakeholders such
as heritage professionals, planners, and the general public. These studies
highlight socio-demographic factors, including age, gender, and cultural
background, as key influences on visual evaluations. (Pendlebury and
Townshend, 1997; Remoaldo et al., 2014). (ii) Aesthetic and emotional
responses, investigating how urban form and landscape settings evoke
feelings of beauty, nostalgia, or belonging (Chen et al., 2015; Deghati
Najd et al., 2015; Jenks, 2008; Nasar, 1989; Smardon, 1988). These
insights are valuable for understanding user preferences and acceptance
of conservation or redevelopment strategies.

(b) Geo-spatial and computational approaches rely on digital
tools to assess visual characteristics from a performance perspective.
Key directions include: (i) Visual impact assessments of new architectural
insertions or infrastructure projects, evaluated for compatibility with
historic contexts using simulation and modeling techniques (Bu et al.,
2022; Jiang et al., 2022; Serra et al., 2021). (ii) Spatial cognition and
visibility analysis, using tools like spatial syntax, viewshed modeling, and
GIS to understand how people navigate and perceive historic environ-
ments (Esposito et al., 2020; Tan and Ujang, 2012; Wang et al., 2022).
Both approaches increasingly benefit from recent advancements in high-
resolution spatial data acquisition technologies, such as UAV-based
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photogrammetry and point clouds derived from scanning devices (e.g.,
LiDAR), significantly enhancing visibility analysis and spatial cognition
modeling in HUAs (Curcio et al., 2022; Zhang et al., 2021).

Although both perception-based and geo-spatial analytical ap-
proaches have yielded valuable insights, they remain largely separated
in methodology and scope. In particular, little attention has been paid to
how BGI structures visual experiences in HUAs through integrated
spatial and perceptual analysis. Given the growing relevance of
ecosystem-based design and nature-based solutions in impact assess-
ment, embedding BGI within perception research frameworks presents a
timely and underexplored direction for heritage-sensitive urban
analysis.

1.3. Research gaps and research questions

Although BGI is widely acknowledged for enhancing both visual
quality and ecological function in urban environment (Li et al., 2025;
Machac et al., 2022; Zhang et al., 2025), its specific impact on human
visual and spatial perception in HUAs remains insufficiently understood.
While previous research has recognized BGI as a product of historical
processes with aesthetic and environmental value (Haneca et al., 2009;
Rostami et al., 2015), few studies systematically assess how users
perceive it or how it contributes to experiential qualities in heritage
contexts. Another gap lies in the methodological fragmentation of visual
perception studies. Research typically relies either on empirical user-
based methods (e.g., surveys, interviews, behavioral observation) or
on digital spatial techniques (e.g., GIS, viewshed analysis, photogram-
metry), with limited integration between the two.

Recent advances in multi-view photogrammetric modeling technol-
ogies, such as Structure-from-Motion (SfM), combined with increasingly
accessible and affordable UAVs, now enable the acquisition of high-
resolution spatial data suitable for detailed visual analyses (Berra and
Peppa, 2020; Fernandez-Hernandez et al., 2015). These advancements
significantly lower the technical and financial barriers for integrating
empirical and digital spatial methods. UAV-based digital models can
thus be effectively embedded within perception-driven research
frameworks, providing reliable data support for initial scene selection
and subsequent generalization of findings.

Therefore, this paper proposes an integrated framework that com-
bines digital modeling techniques, including UAV-based 3D recon-
struction and human-scale view extraction, with multi-layered
perception methods including eye-tracking, questionnaires, and semi-
structured interviews. The goal is to investigate how BGI influences vi-
sual perception in HUAs and how such effects vary between expert and
public users. Accordingly, the study addresses the following research
questions: (RQ1) How can BGI exposures and spatial characteristics be
effectively measured from pedestrian perspectives in HUAs? (RQ2) How
can integrated, multi-layered methods combining spatial modeling and
empirical perception analysis be applied to assess BGI’s visual impacts?
(RQ3) How does BGI influence visual attention patterns, perceptual
evaluations, and cognitive interpretations across expert and general
public user groups?

This paper contributes to the field of heritage-sensitive urban visual
impact assessment in two key ways. (a) Novel thematic focus: While
previous studies have explored BGI’s ecological and functional roles,
this research is among the first to systematically examine its influence on
human visual perception within HUAs, addressing an important and
underexplored dimension in heritage landscape evaluation. (b) Inte-
grated framework and cross-group analysis: The study develops an
integrated approach combining UAV-based spatial modeling and multi-
layered perception analysis, and systematically compares expert and
general public responses to reveal differentiated perceptual structures
related to BGI in HUAs, advancing methodological practices and
stakeholder-informed assessment.
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2. Reviewing visual perception analysis methods in urban
contexts

This section reviews two complementary methodological domains
that have been widely used in visual perception research related to
HUAs: digital geo-spatial approaches, and perception-based methods.
While the former focuses on modeling spatial structure and visibility, the
latter emphasizes users’ cognitive and emotional engagement. Review-
ing both domains provides a foundation for identifying opportunities for
methodological integration in the context of evaluating BGI in urban
heritage settings.

2.1. Digital geo-spatial approaches

Geo-spatial and computational approaches often utilize spatial data
and simulation techniques to analyze visibility, spatial composition, and
structural patterns of HUAs, which can be categorized as:

(a) GIS-based methods: Used to quantify land cover, vegetation,
hydrology, and built structures, GIS enables mapping and modeling of
spatial patterns in historic contexts. Also, GIS-based viewshed/visibility
analysis tools calculate the spatial visibility of elements from a given
observer’s location (Jerpasen and Larsen, 2011; Sarihan, 2021), simu-
lating what is seen from specific points in 2D or 3D terrain environ-
ments. They are useful for assessing visual accessibility and the
prominence of landscape elements across an urban environment (Florio
et al., 2017; Zhou et al., 2023).

(b) 3D modeling visual analysis: Using photogrammetry or LiDAR
data, urban scenes can be reconstructed in 3D to simulate human
viewpoints. Field of view (FOV) analyses within these models help
determine the relative exposure of various visual components, such as
vegetation, water, built heritage (Balsa-Barreiro and Fritsch, 2018;
Prechtel et al.,, 2013). Recently, UAV-based photogrammetry has
increasingly been employed due to its flexibility, cost-effectiveness, and
ability to produce detailed, high-resolution spatial models (Berra and
Peppa, 2020; Fernandez-Hernandez et al., 2015). UAV-derived point
clouds provide accurate spatial relationships between elements, capture
complex urban morphology, and offer perspectives unavailable through
traditional ground-based observations, making them particularly suit-
able for heritage-sensitive urban contexts (Lo Brutto et al., 2014; Pepe
et al., 2022).

(c) Street-level and image-based analysis with computer vision:
Techniques using street view imagery (e.g., Google Street View) com-
bined with semantic segmentation and deep learning allow for auto-
matic classification and quantification of visual elements like trees, sky,
water, or building facades (Gao et al., 2025; Li et al., 2017; Zhang et al.,
2023). These methods approximate human perspectives at the street
level and have been applied to both modern urban studies and heritage
districts.

The strengths of these methods lie in their objectivity, repeatability,
and ability to capture spatial complexity. However, they often lack
sensitivity to human perception, emotion, and cultural meaning. While
they provide precise accounts of what is spatially present or visible, they
reveal little about how these environments are actually perceived. This
underscores the need to complement geo-spatial analysis with user-
centered perception methods—particularly when evaluating the visual
role of BGI in culturally significant urban settings.

2.2. Perception-based methods

Perception-based approaches explore the cognitive, emotional, and
sensory dimensions of how people engage with urban spaces—revealing
not just what is seen, but how it is interpreted, evaluated, and remem-
bered. In the context of HUAs, these methods are especially valuable for
capturing the layered experiences shaped by spatial form, cultural
memory, and atmospheric qualities. These methods can be broadly
classified into three complementary strands:
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(a) Psychophysical approaches examine the physiological basis of
perception, using biometric tools such as eye-tracking, EEG, or heart rate
monitoring to capture unconscious reactions to visual stimuli (Braddick,
1997; Bruce et al., 2014; Xiao et al., 2024). Among these, eye-tracking
has gained prominence in landscape and urban research as a non-
intrusive method to analyze attention distribution and visual salience
(De Lucio et al., 1996; Fang et al., 2024; Ye et al., 2022).

(b) Psychological approaches focus on how individuals evaluate
and emotionally respond to environments (Leventhal and Scherer, 1987;
Moser and Uzzell, 2003). Techniques such as questionnaires, semantic
differential scales, and image-based scoring help measure aesthetic
preferences, perceived atmosphere, and affective responses (Brosch
et al., 2013; Gifford et al., 2011).

(c) Phenomenological approaches delve into the interpretive and
experiential layers of perception, using interviews, self-reports, and
narrative observations to explore how people assign personal and sym-
bolic meaning to spaces (Albertazzi, 2013; Merleau-Ponty et al., 2013;
Ohta, 2001; Santo-Tomas Muro et al., 2020). These methods are espe-
cially relevant in HUAs, where individual lived experience is often
entangled with historical identity and cultural memory.

Together, these approaches offer a multilayered understanding of
perception, tracing how people see, feel, and make sense of their sur-
roundings. However, when used in isolation, perception-based methods
present two critical limitations. First, they lack the capacity to quantify
what is spatially visible from different viewpoints. Without geo-spatial
data on visual exposure, such as which elements are actually seen and
how prominently, subjective evaluations risk being disconnected from
the physical environment. Second, the fragmented nature of perceptual
data—spread across physiological signals, survey responses, and quali-
tative insights—makes it difficult to synthesize findings into a coherent,
spatially grounded interpretation. These limitations highlight the need
for integration with geo-spatial approaches. Only by combining the
spatial precision of modeling tools with the experiential richness of
perception-based methods can we fully understand how blue-green
infrastructure (BGI) influences visual experience in culturally signifi-
cant urban settings.

3. Methods

Building on the methodological insights outlined in the previous
section, this study applied an integrated framework that merged the
spatial precision of geo-spatial modeling with the interpretive depth of
perception-based analysis to systematically examine the influence of BGI
on visual experience in HUAs. The framework comprised three com-
plementary modules (Fig. 1):

(a) Digital modeling module: A high-resolution 3D mesh model of
the case area was reconstructed using Unmanned Aerial Vehicle (UAV)-
based photogrammetry combined with ground-level imaging. Eye-level
panoramic viewpoints were then extracted to quantify the exposure
levels of GI and BI from pedestrian perspectives. These quantified spatial
representations informed the selection of representative scenes for the
perception experiments.

(b) Perception analysis module: This module was structured into
three layers: “seeing” (physiological attention), “feeling” (subjective
preference), and “understanding” (cognitive interpretation). It inte-
grated eye-tracking experiments, structured questionnaires, and semi-
structured interviews, providing a holistic framework for assessing the
perceptual effects of BGI across user groups.

(c) Integration and generalization module: This module com-
bined empirical results from the perception analysis with the spatial
exposure levels of BGI derived from digital modeling. By establishing
relationships between BGI exposure and perceptual responses, it
enabled integrated assessments at the street level and predictive
modeling of visual perceptual impacts in areas not directly examined
through experiments.

This framework bridges digital modeling with human centered
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perception research, enabling both objective spatial quantification and
subjective evaluation. Building on this foundation, step (a) answers RQ1
by providing spatial exposure metrics, step (b) answers RQ2 and RQ3
through multi-layer perceptual evidence and group comparisons, and
step (c) supplements RQ2 and RQ3 by linking exposure to perception for
integrated evaluation and scenario based prediction.

3.1. Case study area

Pingjiang Road in Suzhou, China, was selected as the case study. As a
nationally protected historic street situated within the buffer zone of the
UNESCO World Heritage Site “Classical Gardens of Suzhou” (Wang
et al., 2015), Pingjiang Road exemplifies the Jiangnan water-town ty-
pology. The corridor is structured by canal-edge streets and bridge ap-
proaches, narrow lateral alleys that connect land and water, and a
pedestrian-scale fabric of white-wall and black-tile facades (Fig. 2).
These spatial and cultural features support everyday practices such as
strolling, trading, neighborhood socializing, and heritage tourism, pro-
ducing a layered setting in which BGI is both infrastructural and
experiential.

Within this area, the primary street can be divided into two main
segments (north and south). Five lateral streets connected with water
channels branch off from these segments. The selected study fragment
comprises the southern segment, specifically chosen due to its proximity
and direct connection to Zhongzhangjia Xiang, a street whose original
water channel was recently restored. This restoration differentiates
Zhongzhangjia Xiang from other BGI conditions within the Pingjiang
Road area, providing unique comparative value. Thus, the southern
segment was selected to capture this distinctive transitional context.

3.2. 3D modeling and BGI exposure computation

To address RQ1, we quantified pedestrian-level exposure to BGI by
building a high-resolution 3D semantic mesh of Pingjiang Road via an
integrated aerial- and ground-based photogrammetry workflow and
using it for subsequent visibility and exposure analyses. This model
served as the analytical base for evaluating the exposure of BI and GI
within the human visual field. Image acquisition was conducted in
December 2024, using two complementary modes (Fig. 1):

(a) Aerial imaging: Low-altitude photographs were taken using a
DJI Phantom 4 Pro UAV at heights ranging from 2 to 10 m, capturing
rooftops, tree canopies, and canal structures.

(b) Ground-level imaging: Manual photos were captured at
approximately 1.6 m—the average eye level of pedestrians—focusing on
facades, vegetation, and water features within narrow alleys and
walking paths.

The photogrammetric processing pipeline involved: (a) feature
matching and alignment via Structure-from-Motion (SfM); (b) point
cloud generation using Multi-View Stereo (MVS); (c) mesh surface
reconstruction; and (d) texture mapping to retain photorealistic detail.
The resulting mesh was annotated with semantic labels, assigning each
surface element to one of several categories: BI, GI, or other urban
components. This enabled spatially explicit quantification of BGI expo-
sure without the need for post-rendered segmentation.

To quantitatively assess BGI exposure, pedestrian-level viewpoints
were placed at 1-m intervals along the primary walking route. At each
viewpoint, lines of sight (LoS) were systematically constructed hori-
zontally at 5-degree intervals over a full 360-degree field-of-view, and
vertically from 30 to 175 degrees relative to the ground plane,
approximating human visual coverage. When an LoS intersected with a
semantic mesh surface labeled as BI or GI, the intersection was recorded
(Peng et al., 2025; Peng et al., 2024). The proportions of Bl and GI visible
surfaces within each viewpoint’s visual field were then calculated.

Due to accuracy constraints associated with consumer-grade UAV
equipment, exposure levels in the resulting semantic mesh model were
simplified into categorical rankings rather than precise numeric
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intervals. Exposure thresholds for BI and GI were defined separately
based on their distinctive visibility characteristics in urban setting. For
GI, higher thresholds were applied, defined as high (G1, >25 %), me-
dium (G2, 15-24.9 %), low (G3, 5-14.9 %), and none/very low (G4, <5
%), consistent with its relatively greater coverage in urban environ-
ments (Aoki, 1987; Li et al., 2021). For BI, given the absence of estab-
lished thresholds in the existing literature, a proportional scaling factor
of 0.3—derived from observed relative exposure ratios between BI and
Gl—was applied to define exposure categories (Peng et al., 2025).
Therefore, thresholds were set as high (B1, >7.5 %), medium (B2,
4.5-7.4 %), low (B3, 1.5-4.4 %), and none/very low (B4, <1.5 %),
reflecting the typically lower yet perceptually significant presence of
water elements.

Based on combinations of these BI and GI exposure categories, the
street was segmented into 16 distinct BGI typologies (e.g., G1B2 refers to
a scene with over 25 % GI exposure and 4.5-7.4 % BI exposure).
Representative scenes covering diverse spatial and environmental con-
ditions were subsequently selected from these typologies to serve as
visual stimuli in the subsequent perception experiments. At last, to
verify the accuracy of this custom approach, selected viewpoint results
were validated through panoramic camera simulations within the Unity
environment.

3.3. Multi-layered perception-based experiments

This section addresses RQ2 by integrating measures of perception
and supplies comparative evidence for RQ3 across participant groups.
We implemented a three-layer experimental framework that spans the
physiological, psychological, and cognitive dimensions of human
experience in historic urban areas. The framework comprises three
layers: (Fig. 1):

“Seeing”: early-stage visual attention, assessed using eye-tracking
technology;

“Feeling”: intuitive preferences and evaluative judgments,
measured through structured questionnaires;

“Understanding”: interpretive and reflective responses, explored
via semi-structured interviews.

These methods were selected for their complementarity. Eye-
tracking captures unconscious attentional patterns and perceptual
salience; questionnaires elicit subjective appraisals of environmental
quality across multiple dimensions; and interviews reveal deeper
meanings and contextual interpretations associated with BGI in heritage
settings. Together, they provide a multi-faceted and integrative
perspective on perception, bridging the gap between observable
behavior and experiential understanding.

3.3.1. Recruitment of participants

Participants underwent the experimental tasks in a sequential
manner, progressively refining the sample size at each stage. First,
structured questionnaires were administered to all recruited participants
(80 valid responses per group, Table 1a), enabling rapid collection of
subjective appraisals. Based on questionnaire quality and participant
engagement, suitable candidates (40 valid participants per group,
Table 1b), who met standard visual acuity requirements (corrected or
uncorrected between 0.8 and 1.5), proceeded to the eye-tracking
experiment. Finally, representative participants who successfully
completed the eye-tracking tasks were invited to participate in semi-
structured interviews (20 per group, Table 1c).

This sequential and layered approach ensures efficient data collec-
tion, enhances data quality through rigorous participant screening, and
reduces potential interference between experimental stages. By struc-
turing the methods sequentially, the potential influence of later tasks on
participants’ initial responses is minimized. Furthermore, the gradual
refinement of participant pools based on task-specific inclusion criteria
ensures that each experimental stage involves individuals suited to
provide meaningful and reliable insights.
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Table 1
Participants information.

(a) Participants for questionnaire survey:

Variables Features Sum Expert (80,) General public (80)
18-22 28 11 17
Age 23-25 57 24 33
26-30 44 26 18
31-40 31 19 12
Gender Male 83 42 41
Female 77 38 39

(b) Participants for eye-tracking experiment:

Variables Features Sum Expert (40) General public (40)
18-22 17 8 9
Age 23-25 26 13 13
26-30 26 14 12
31-40 11 5 6
Gender Male 38 20 18
Female 42 20 22

(c) Participants for in-depth interview:

Variables Features Sum Expert (20) General public (20)
18-22 9 4 5
Age 23-25 11 6 5
26-30 13 7 6
31-40 7 3 4
Male 19 9 10
Gender Female 21 11 10

Note: Participants who did not meet the inclusion criteria have been excluded
from the table (including those with poor-quality eye-tracking data or partici-
pants who completed questionnaires carelessly or randomly). For the expert
group, participants were required to have academic backgrounds in architec-
ture, landscape architecture, urban planning, or closely related fields, with at
least senior-level undergraduate standing or higher. Additionally, considering
that questionnaires were administered electronically and the eye-tracking
experiment required familiarity with computer operations and equipment cali-
bration—tasks potentially difficult for middle-aged and older adults—all par-
ticipants were limited to individuals aged 40 or younger.

3.3.2. Questionnaire survey (“feeling” layer)

To assess users’ intuitive responses to BGI in HUAs, a structured
questionnaire survey was conducted as the basis for the “feeling” layer.
This layer focuses on affective and evaluative judgments, capturing how
different types of scenes influence participants perceived aesthetics,
cultural atmosphere, and functional value. The web-based questionnaire
was organized around three dimensions, each composed of multiple
relatively independent items to capture distinct aspects within the same
domain:

D1: Historical and cultural atmosphere; Derived from cultural
memory theory (Assmann, 2011b), genius loci theory (Norberg-Schulz,
1976), and place attachment frameworks (Lewicka, 2013). These the-
ories collectively emphasize cultural symbolics (F11), spatial memory
(F12), and genius loci or spirit of place (F13), acknowledging that cultural
and spatial atmospheres form crucial perceptual foundations that must
not be overlooked in heritage contexts.

D2: Spatial aesthetics; Based primarily on the classical urban aes-
thetics and landscape preference theories (Kaplan et al., 1989; Nasar,
1994), emphasizing visual aesthetics (F21) such as form, material, and
color, and ecological aesthetics (F22) concerning the harmonious inte-
gration of natural elements. These aesthetic dimensions are vital as vi-
sual attributes fundamentally shape heritage landscapes’ experiential
quality.

D3: Spatial functionality; Encompasses ecological functions (F31),
recreational and well-being functions (F32), and spatial function (F33). This
dimension integrates established theoretical perspectives from
ecosystem services literature (Assessment, M. E, 2005), restorative
environment theory (Hartig et al., 1997; Kaplan, 1992), and spatial
coherence and legibility principles (Kaplan et al., 1989; Nasar, 1994).
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These functional aspects are critical in determining how effectively BGI
enhances ecological resilience, user comfort, recreational value, and
spatial legibility in heritage areas.

Each item was rated using a 1-5 interval scale with 0.5-point in-
crements (e.g., 1.0, 1.5, ..., 5.0), allowing for moderate resolution in
perception-based scoring while retaining comparability across items.
The questionnaire was scene-based: a total of 20 representative view-
point scenes were selected (Fig. 3d), each accompanied by 3-5 stimulus
images and corresponding map locations to help participants accurately
identify spatial context. The questionnaire survey was conducted in
March 2025. This ensured that evaluations were grounded in place-
specific memory and spatial experience rather than abstract visual
judgment.

Responses were first analyzed using descriptive statistics (mean and
median scores) to identify perceptual trends across scenes and user
groups. To further assess the influence of BGI variables, two comple-
mentary analytical methods were employed: (a) LMMs evaluated the
influence of BI and GI exposure levels on each perception item while
accounting for inter-individual variability and repeated scene measures;
(b) Random Forest (RF) was used to quantify the relative influence of
BI and GI, with separate models for expert and public groups. Feature
importance scores were calculated using Mean Decrease in Impurity
(MDI). Together, these two methods provide complementary insights:
LMMs establish statistically significant effects of BGI exposure, while RF
analysis identifies which variables exert the strongest practical influence
on perceptual variation.

3.3.3. Eye-tracking experiment (“seeing” layer)

To capture unconscious visual responses to different BGI configura-
tions, an eye-tracking experiment was conducted as the basis for the
“seeing” layer. This method focuses on early-stage visual attention and
perceptual salience, providing objective data on how users scan and
prioritize landscape elements in HUA environments (Dupont et al.,
2014). Participants were selected and contacted based on questionnaire
responses and sequentially invited for the eye-tracking experiment be-
tween March and April of the same year. Participants were presented
with a series of static images simulating pedestrian views of the case
area. A total of 24 images were used as stimuli: 20 images were captured
at representative viewpoints previously identified in the spatial analysis
(Fig. 3d indicates specific viewpoints and angles), and 4 additional
images were selected to diversify the stimulus pool and enhance the
range of visual BGI exposure (Fig. 3d). Each viewpoint was represented
by only one image. Since these images presented only a partial field of
view rather than full 360-degree panoramas, the visual composition did
not fully correspond to the modeled BGI exposure values. To ensure
consistency, each image was independently reclassified based on the
visible proportion of GI and BI within the photo frame, using a four-level
scale: none/very low (N), low (L), medium (M), and high (H). This
image-based classification was used to guide subsequent analysis and
group comparison.

Each image was displayed for 20 s, preceded by a central fixation
point to standardize attention. Participants were instructed to view the
images naturally, simulating spontaneous observation. To support visual
analysis, eight Areas of Interest (AOIs) were defined for each image,
corresponding to semantic categories: (a) historical and cultural elements,
(b) commercial elements, (c) paved ground, (d) sky, (e) perspective focal
points, (f) buildings and structures, (g) green infrastructure (GI), and (h)
blue infrastructure (BI).

Visual attention was analyzed through fixation duration and gaze
heatmaps (de la Fuente Suarez, 2020). Group-level heatmaps were
generated to visualize attention distribution across AOIs. Fixation data
were then analyzed using linear mixed-effects models (LMMs), which
allowed for the evaluation of BGI exposure effects on visual attention
while accounting for group, AOI category, and scene-level variance.
Descriptive statistics such as mean and median fixation durations were
also examined to support trend interpretation.
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Fig. 3. (a)-(c): Visualization and modeling results; (d)-(e) Scene type classification based on BI and GI exposure.
Note: Seasonal variations were not specifically considered in this study, as the study area experiences minimal seasonal water-level fluctuations, and the dominant
vegetation comprises subtropical evergreen species with negligible phenological changes (see in Fig. 3 a-c).
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3.3.4. Semi-structured interviews (“understanding” layer)

To capture the cognitive and interpretive depth of user responses to
BGI, semi-structured interviews were conducted as the foundation of the
“understanding” layer. This method aimed to uncover how different user
groups conceptualize the spatial, symbolic, and functional roles of BI
and GI within HUAs. The interview protocol was structured around
three open-ended thematic prompts, corresponding to the three
perception dimensions explored in the survey: T1 — Historical and cultural
atmosphere, T2 — Spatial aesthetics, and T3 — Spatial functionality.

To support memory recall and contextual grounding, participants
who successfully completed the eye-tracking experiment and expressed
willingness were invited to participate in the semi-structured interviews.
Gender and age ratios were controlled within both participant groups
(Table 1). Participants were shown selected photographs from the pre-
vious eye-tracking and questionnaire experiments. This multimodal
cueing method was designed to evoke both affective and analytical re-
flections anchored in place-based experience. All interviews were audio-
recorded, transcribed verbatim, and analyzed using a frequency-based
thematic coding approach. The analysis followed a structured four-
step process:

(a) Open coding: Initial concepts and expressions were tagged line-
by-line from the transcripts without pre-imposed categories.

(b) Subdimension classification: The open codes were then
grouped into eight perception subdimensions (the same as the ques-
tionnaire), including Genius loci, Ecological aesthetics, Recreational and
well-being function, among others.

(c) Infrastructure attribution: Each coded phrase was linked to
either BI or GI stimuli, based on contextual references in the partici-
pants’ statements.

(d) Cognitive activation modeling: Final frequencies were syn-
thesized into two user-specific models (expert and public), mapping the
perceived activation paths from infrastructure contact through sub-
dimensions to the three thematic categories (T1-T3).

This coding structure enabled the reconstruction of distinct percep-
tual pathways for each group, revealing both shared cognitive patterns
and key divergences in how BGI is interpreted in a HUA setting.

3.4. Spatially explicit cross-layer integration at the street level

As a complement to Section 3.3, this section integrates its multi-
layer perception datasets with the UAV derived spatial exposure data
introduced in Section 3.2 to deliver a unified street-scale assessment. To
systematically evaluate the visual impact of BGI at the street scale, we
combine empirical findings from all three perceptual layers (Seeing,
Feeling, and Understanding) with the exposure metrics. The goal is to
clearly link BI and GI exposure levels at street level viewpoints, cate-
gorized as high, medium, low, or none or very low, to the corresponding
perceptual outcomes.

For the “seeing” and “feeling” layers, eye-tracking data (fixation
duration) and questionnaire scores were explicitly structured around
scenes selected based on UAV-derived exposure categories. Thus,
perceptual variations inherently corresponded with these spatial cate-
gories, enabling two types of flexible, spatially explicit assessments that
surpass the limitations of traditional point-based perception studies:

(a) Street-level integrated assessment: By aggregating perceptual
outcomes (e.g., mean fixation duration, mean preference ratings) ac-
cording to the proportional distribution of exposure categories along the
entire street, it is possible to systematically evaluate the cumulative
perceptual impact of BGI across the full spatial extent. This approach
provides a holistic, spatially integrated evaluation of how varying BGI
exposures collectively influence visual attention and environmental
preferences along the street.

(b) Localized impact predictions: Using the established empirical
relationships between perceptual outcomes and BGI exposure cate-
gories, perceptual impacts can be flexibly predicted at smaller sca-
les—whether specific street segments or individual viewpoints—even if
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empirical data at these locations have not been explicitly collected. Such
predictive capability facilitates targeted planning and enables scenario-
based evaluations of BGI impacts at specific spatial locations.

For the “understanding” layer, interpretive qualitative responses
from semi-structured interviews were mapped via cognitive pathways
linking BGI exposure categories to specific perceptual subdimensions (e.
g., ecological function, spatial memory), and subsequently to over-
arching themes (T1-T3). Although qualitative in nature and less directly
integrated with quantitative spatial modeling, these cognitive insights
were systematically anchored in the UAV-derived exposure typologies,
ensuring consistent spatial referencing and coherent interpretation of
cognitive meanings attributed to BGL

Together, this spatially explicit cross-layer integration approach not
only establishes a rigorous analytical linkage between spatial exposure
and perceptual responses but also significantly enhances the flexibility,
depth, and practical applicability of visual impact assessments within
historic urban contexts.

4. Results

This section reports findings in the order of the research questions.
Section 4.1 quantifies pedestrian exposure to Bl and GI and directly
answers RQ1. Sections 4.2 to 4.4 then present perception results layer
by layer at the viewpoint scale, providing evidence for group differences
that speaks to RQ3 and addressing RQ2 within each layer. Section 4.5
synthesizes the evidence across layers and scales, links it to the street
scale exposure metrics, and delivers a consolidated answer to RQ2 while
revisiting RQ3 at a broader level.

4.1. Digital model-based classification of BGI exposure

A detailed digital model of the case area was first constructed,
incorporating surface-level detail and basic semantic distinctions (BI, GI,
and others) to support visibility-based analysis (Fig. 3a-c). Based on this
model, a spatial classification was conducted to evaluate the distribution
and intensity of BGI across the case area. At each observation point, the
proportion of visible surfaces occupied by GI and BI was calculated. The
results reveal a highly heterogeneous spatial pattern of BGI distribution
(Fig. 3d): (a) High BI exposure was concentrated along the central,
eastern and northern segments of the street, where proximity to primary
canal zones resulted in extensive water visibility. These areas were
characterized by strong waterfront spatial identity. (b) High GI expo-
sure occurred primarily in the southern segments and northern side al-
leys, typically associated with street vegetation, courtyard greenery, and
vertical plantings. (c) High BGI scenes, characterized by the simulta-
neous visual dominance of water and greenery, were spatially scattered
across the area. These scenes typically appeared at locations where
canal-edge vegetation and historic structures intersected. (d) Low BGI
scenes were generally located in densely built-up commercial segments
with limited open space or vegetation, producing enclosed and visually
hardened environments.

The resulting classification map identified 15 BGI composition types
based on the cross-combination of BI and GI exposure levels. From this
spatial dataset, a set of representative scenes was selected to serve as the
basis for subsequent perception experiments. These scenes reflected
diverse combinations of water-vegetation composition and spatial
context while avoiding overrepresentation of any single exposure con-
dition (Fig. 3d-e).

4.2. Results of eye-tracking experiments (seeing layer)

Eye-tracking data was collected from 40 participants in each group,
using 24 images that were independently reclassified based on their
visible GI and BI proportions, and focusing on two metrics: gaze heat-
map and fixation duration.
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4.2.1. Gaze heatmap

Gaze heatmaps overlay participants’ fixation locations and durations
on the image, with warmer colors indicating longer fixation time
(Fig. 4). Although no dominant preference for BGI-related AOIs is
observed in the overall heatmap patterns, scenes with salient vegetation
still exhibit moderate visual attraction. In addition, the focus is higher
on (a) historical and cultural elements. Notably, both groups demonstrate
higher fixation on (e) perspective focal points. Differences emerge in the
professional group, which disperses more warm areas and a varied fix-
ation sequence, suggesting an irregular pattern rather than a uniform
pattern.

4.2.2. Fixation duration

Fixation duration data were analyzed after removing outliers above
3 s. Results are averaged across all 24 photos for 8 predefined AOI
categories (Fig. 5). Overall, historical and cultural elements received the
longest average fixation time across both user groups (professionals:
0.64 s; public: 0.78 s), followed by perspective focal points and buildings/
structures. In contrast, paved ground had the shortest fixation durations.
GI shows moderate attention, with higher durations in scenes where
vegetation is visually salient. BI demonstrates more variable results,
influenced by scene composition. The total fixation time on GI is lower
than that on cultural or architectural features, but still notable in scenes
classified as high-GI. These findings indicate that while BGI elements

(a) AOIs of the different photos
I il

Fig. 4. Eye-tracking heatmaps: The examples of the two groups.
Note: Other heatmaps from the two groups can be found in Appendix Al.

(b) Gaze heatmaps of experts
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can draw visual attention, particularly when prominent in the frame,
cultural and architectural components remain the primary visual an-
chors in the historic environment.

4.2.3. Effect of BI and GI levels on fixation duration

The LMM results demonstrate that various types of AOIs exert
distinct influences on visual attention in HUA environments. Among all
AOIs, historical and cultural elements yield the highest fixation durations
(Coef = 0.784, p < 0.001), followed by perspective focal points (Coef =
0.517) and buildings/structures (Coef = 0.318). These findings under-
score the central role of culturally and compositionally salient features
in shaping gaze behavior. In contrast, natural elements such as BI and GI
receive less attention, while paved ground (Coef = 0.213) displays a
moderate but significant effect (Fig. 6a). Beyond main AOI effects, the
interaction between infrastructure exposure levels and AOI categories
reveals nuanced perceptual dynamics:

(a) A negative interaction between BI and historical and cultural ele-
ments (Coef = —0.124, p < 0.001) indicates that increasing BI may
visually compete with or overshadow cultural and historical features,
reducing attention to them (Fig. 6b).

(b) GI positively influences attention to GI (p < 0.001), suggesting a
reinforcing effect between perceptual salience and visual exposure
(Fig. 6b).

(c) Additional significant interactions include GI/BIx perspective

(c) Gaze heatmaps of general public
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Fig. 5. Analysis results of fixation duration.
Note: Additionally, fixation durations for each AOI category under different BI/GI exposure levels are also computed for reference at (b)-(c). In addition, the table of
fixation duration for each participant can be found in Appendix A2. Details of the fixation duration for each participant can be seen in Appendix A3.
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(a) Main AOI effects on duration
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Fig. 6. Results of the LMM analysis.
Note: Details of the LMM results can be seen in Appendix A4.

focal points and GI x paved ground, illustrating that GI/BI may enhance or
redirect spatial cognition depending on scene composition, because the
gaze on perspective focal points and paved grounds always relates to spatial
cognition (Fig. 6b).

The analysis also reveals notable group-level differences. Public
participants exhibit significantly lower attention to historical and cultural
elements (Coef = —0.087, p = 0.017) and perspective focal points (Coef =
—0.079, p = 0.030) compared to professionals. This suggests that pro-
fessionals are more attuned to symbolic and visual-spatial features.
Interestingly, under higher GI Level conditions, the general public group
demonstrates greater engagement with paved ground AOIs (Coef =
0.043, p = 0.042) (Fig. 6¢).

4.3. Questionnaire results (feeling layer)

4.3.1. Overview of response patterns

To ensure internal consistency across repeated scene evaluations,
Cronbach’s Alpha was computed for each perception factor (F11-F33)
separately within the expert and public groups. All 16 (8 factors, 2
groups) coefficients exceeded 0.92 (Appendix A4), confirming the
reliability of responses and the stability of factor structures across 20
spatial scenarios. Descriptive analysis reveals a clear alignment between
perceived environmental quality and infrastructure exposure. Scenes
with high combined infrastructure levels—particularly Scene 10 (BI =1,
GI = 1) and Scene 8 (BI = 1, GI = 2)—consistently received the highest
average ratings from both groups. Scene 10, for example, yields mean
scores of 4.73 (experts) and 4.87 (public), the highest across all evalu-
ated scenes. In contrast, scenes with minimal infrastructure receive
noticeably lower ratings, often falling below 4.0. These trends are robust
across factors and user groups, indicating that both experts and non-
experts consistently associate greater infrastructure presence with
higher perceived value in historic urban settings. While GI exhibits a
broad positive effect—particularly on ecological aesthetics and spatial
memory—BI displayed more focused influence. Among public partici-
pants, BI strongly enhances perceptions of visual aesthetics and genius
loci, producing mean score differences of 0.3-0.5 points between low-
and high-BI scenarios (Fig. 7a).

4.3.2. BGI influence analysis: LMM and RF
All LMM analyses accounted for inter-individual variability and
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repeated scene measures to ensure robustness of estimated effects. LMM
results revealed that both BI and GI have significant positive effects
across nearly all perception factors, though with distinct patterns be-
tween expert and public groups (Fig. 7b): For historical atmosphere-
related factors (F11-F13), both BI and GI are highly significant (p <
0.001). In the public group, GI has a stronger effect on F11 (cultural/
symbolics) (coef = 0.25) than in the expert group (0.15), while BI more
strongly influences F12 (spatial memory) among experts (coef = 0.27 vs.
0.18 in public). For spatial aesthetics (F21-F22), experts are more
influenced by GI, particularly for ecological aesthetics (F22) (coef =
0.23). Conversely, public participants are more responsive to BI, espe-
cially on visual aesthetics (F21) (BI coef = 0.25 vs. GI = 0.21), reflecting a
more visually driven perception. In functionality-related factors
(F31-F33), GI is the dominant predictor in both groups, especially for
recreational and well-being (F32) and spatial function (F33). BI shows
positive but generally weaker effects.

RF analysis assesses the contribution of BI and GI without relying on
statistical thresholds (Fig. 7c). Importance scores, calculated using MDI,
further confirm the differential impact of BI and GI across perception
factors: In the expert group, GI consistently ranks higher than BI in
importance scores, averaging 0.63 across all factors. It is particularly
dominant for F22 (ecological aesthetics) and F11 (cultural/symbolics),
where importance reaches 0.92 and 0.88, respectively. Among public
participants, BI emerges as a stronger predictor for specific factors,
namely F21 (visual aesthetics) and F13 (genius loci), where its importance
surpasses that of GI (0.56 vs. 0.44 and 0.52 vs. 0.39, respectively).

The convergence of LMM significance and RF importance highlights
the robustness of these findings: GI has a broad and stable influence,
especially among experts, while BI's impact is more factor-specific and
visually driven, especially in the public group.

4.4. Interview-based perception analysis (understanding layer)

In total, a combined 620 coded pathways have been identified across
both groups, comprising 264 codes from the public group and 356 from
the expert group (Fig. 8). Across all interview responses, both public and
expert groups exhibit a general preference for GI over BI, though the
distribution is relatively balanced. The public group records 115 GI-
related mentions and 102 for BI, while the expert group registers 119
for GI and 106 for BI.
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Fig. 7. Results of the questionnaire-based analysis.
Note: Details of the questionnaire results can be seen in Appendix A5.

12



Y. Peng et al. Enviro 1 Impact A Review 118 (2026) 108301

(a) Coding counst by Bl (b) Coding counst by Gl

Bl-related Frequency of Subdimensions by Group (Sorted) Gl-related Frequency of Subdimensions by Group (Sorted)
16 group
- Expert
14 - Public

5 5

frequency
o =
Frequency

& \0\“ & &
g .Vé"& « &

Subdimension (Scene Type)

Subdimension (Scene Type)

Fig. 8. Results of coding analysis.

(a) Integration of "Seeing" layer at the street level (b) Integration of "Feeling" layer at the street level
0.5

= Expert- Bl

m= Public - GI
commercial elements I
paved ground [ J

Public - BI
perspective focal points

o e
w >

Weighted Contribution Score
e
~

0.1

historical and cultural elements

0.0

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

- G283
) s | G284

G381 . css1
. G382 . G2
I G383 . cse3
I G384 =

N 51, high81 I G1, high-GI

. 52, vic-el I G2, Mid-GI

. 53, Lov-B! I G3, Low-GI

I 64 Herdly [N G4, Hardly
N

00m  1000m  200.0m @ i
— —

Fig. 9. Integration and generalization at “seeing” and “feeling” layer: (a) Visual attention weights by integrating LMM and BGI exposure; (b) Preference scores
enhancing estimation for the entire street by integrating RF and BGI exposure; (c) The local analysis for the different segments; (d) The local analysis for
the viewpoints.
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The two groups demonstrate distinct patterns in how each infra-
structure type is cognitively linked to specific subdimensions. For the
public group, GI is most strongly associated with Recreational and well-
being functions (37 mentions), followed by Visual aesthetics (18) and
Genius loci (21). BI is linked primarily to Visual aesthetics (21) and Rec-
reational and well-being functions (23), with some mention of Ecological
function (15). The expert group exhibits a more functionally and
ecologically integrated mapping. GI is most commonly linked to
Ecological function (31) and Recreational and well-being functions (23),
whereas BI is associated with Ecological aesthetics (11), Ecological func-
tion (18), and Spatial function (18).

At the subdimension level, the most cited categories for the public
group are Recreational and well-being functions (60), Genius loci (44), and
Visual aesthetics (39)—highlighting an affective and sensory-driven
mode of engagement. Experts emphasize Ecological function (49), Rec-
reational and well-being functions (39), and Spatial function (33), reflecting
a more analytic, systems-based framework. These findings underscore
fundamental differences in how public and expert groups interpret BGI
in HUAs at the “understanding” layer.

4.5. Cross-layer visual enhancement from BGI on HUA

This section integrates findings from all three perceptual layers with
UAV-derived BGI exposure modeling to assess how BGI enhances visual
experience across multiple spatial scales along Pingjiang Road. Consis-
tent with the methodology outlined in Section 3.4, the analysis is
structured into the following three subsections:

(a) Integrated street-level analysis of visual attention and
preference.

Aggregated perceptual outcomes from the eye-tracking (“seeing”)
and questionnaire (“feeling”) experiments reveal a coherent spatial
relationship between BGI exposure and perceptual impacts at the street
level (Fig. 9a, b).

Specifically, street segments characterized by higher combined GI
and BI exposure exhibit systematically modified visual attention distri-
butions, reducing fixation intensity on historically dominant AOIs (such
as cultural elements and perspective focal points) and slightly shifting
visual attention toward GI elements. This attentional redistribution
implies subtle attentional competition effects, where increased BGI
exposure may moderately draw gaze away from traditional heritage
focal points. Notably, these attentional shifts remain consistent across
both expert and general public groups, suggesting a generalized atten-
tional impact of BGI exposure.

In parallel, the street-level integrated analysis of affective preference
consistently demonstrates positive perceptual uplift associated with
increased BGI exposure. Higher exposure levels of GI and BI strongly
correlate with elevated environmental preference ratings across all
perceptual factors. GI emerges as a particularly consistent and influen-
tial factor, especially among experts who link it with ecological aes-
thetics and spatial coherence. In contrast, BI's perceptual contribution is
more nuanced and context-specific, exerting a somewhat stronger in-
fluence among the public, particularly concerning visual aesthetics and
symbolic resonance (genius loci). Collectively, this integrated analysis
clearly demonstrates that the high spatial exposure to BGI significantly
enhances perceptual quality across the street, simultaneously promoting
broader visual exploration and elevated environmental preferences.

(b) Localized predictions of BGI impacts.

Building upon UAV-derived spatial exposure modeling, this study
further conducted detailed perceptual assessments for different seg-
ments of the street, specifically divided into the southern, northern, and
eastern segments (Fig. 9c).

In the southern segment, the area toward the south exhibited high
levels of GI exposure and moderate BI exposure, contributing to a pos-
itive distribution of visual attention and significantly enhancing
perceptual evaluations across ecological aesthetics (F22), visual aesthetics
(F21), and spatial functionality (F33), resulting in high overall preference

14

Environmental Impact Assessment Review 118 (2026) 108301

scores (approximately 4.6-4.8). Conversely, the northern area of the
southern segment, characterized by generally low levels of BGI expo-
sure, exhibited notably lower preference ratings (approximately
3.8-4.1).

Similarly, in the northern segment, the central area demonstrated
low BGI exposure levels, corresponding with reduced overall perceptual
preference ratings (approximately 3.8-4.0). However, the southern and
northern ends of the northern segment presented moderate BI exposure
and relatively higher GI exposure, substantially improving environ-
mental perceptions and spatial quality ratings (approximately 4.2-4.5),
though still slightly below those of the southern portion of the southern
segment.

For the eastern segment, high levels of BI exposure significantly
elevated perceptual ratings for visual aesthetics (F21) and genius loci
(F13). Specifically, the western area of the eastern segment, with rela-
tively lower GI exposure, exhibited somewhat reduced ratings for
ecological aesthetics and spatial coherence, though overall preference
scores remained relatively high (approximately 4.4-4.6). Meanwhile,
the eastern area, characterized by both high GI and BI exposure, further
enhanced ratings across visual and ecological aesthetics, leading to
overall spatial perception scores of approximately 4.5-4.7, approaching
the highest levels observed in the southern portion of the southern
segment.

In addition, the environmental impact of BGI can also be assessed
based on the specific areas of different viewpoints. For instance, the
three viewpoints depicted in the figure show relatively low impacts of
BGI on visual attention and preference, resulting in slightly lower
preference scores (Fig. 9d). This UAV-based spatial-perceptual analyt-
ical approach not only facilitates systematic evaluation at the overall
street scale but also enables targeted assessments and predictions for
specific points or segments of varying lengths and detail. Compared with
traditional perception studies based solely on individual scenes or
viewpoints, this method offers significantly greater flexibility and
generalizability, providing robust support for spatial planning and
design decisions in heritage areas.

(¢) Understanding Layer:
anchored in BGI.

At the understanding level, both user groups construct distinct
cognitive pathways from BGI to perceptual meanings (Fig. 10). Experts
show a more comprehensive and balanced structure, linking both BI and
GI to all three major themes—historical/cultural atmosphere, spatial
aesthetics, and spatial functionality. Their interpretation is systematic,
combining ecological, spatial, and symbolic dimensions. In contrast, the
public group focuses more on affective and sensory experiences. Their
pathways concentrate on visual aesthetics, cultural identity (genius
loci), and recreational and well-being functions, reflecting a perception
mode rooted in personal emotion and visual impression rather than
systemic reasoning. These results highlight that while both groups
recognize the value of BGI, experts approach it through functional and
integrated thinking, whereas the public engages through aesthetic and
experiential dimensions.

Divergent cognitive structures

5. Discussions

By integrating UAV photogrammetry with a three-layer perceptual
framework, this study offers nuanced insight into how BGI shapes visual
experience in HUAs. The findings indicate that (a) the digital modeling
approach supports perception analysis by providing more reliable
exposure estimates, addressing RQ1; (b) explaining BGI’s influence
benefits from a multi-layer design that links attention, appraisal, and
interpretation, addressing RQ2; and (c) BGI appears to diversify visual
attention, tends to enhance subjective perceptual quality, and activates
distinct cognitive interpretations among experts and the general public,
informing RQ3. The discussion that follows develops these three strands
and then outlines theoretical and practical implications, limitations, and
directions for future research.
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"Understanding" layer at the street level
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Fig. 10. Understanding layer: Cognitive pathways for both groups.

5.1. Cross methodological gaps: Combination of digital tools with
empirical approaches

In recent years, the study of visual perception has been characterized
by a methodological divide: quantitative, expert-driven tools such as GIS
and 3D modeling dominate spatial analysis, while empirical, perception-
based approaches focus on users’ subjective experiences (Gulten et al.,
2025; Nijhuis et al., 2011). Although both streams offer valuable in-
sights, each has inherent limitations when used independently. Purely
spatial analyses (e.g., digital modeling approaches evaluating visibility
or exposure metrics) frequently neglect human subjective experiences
and emotions, especially inadequate for environments embedded with
complex historical or cultural meanings (Ervin, 2001). Likewise, Al-
based analyses using Street View Imagery (SVI) are constrained by
fixed viewpoints, coverage limitations, and inadequate adaptability to
diverse historical urban settings (Fan et al., 2025; Peng et al., 2025). For
instance, in many heritage-sensitive areas, comprehensive street-view
datasets are unavailable, severely restricting analysis applicability. On
the other hand, empirical perception/behavior-based methods alone
often undervalue spatial or environmental characteristics, making their
findings challenging to generalize or integrate at larger scales (Chhetri
and Stimson, 2014).

In relation to RQ1, this paper contributes to bridging this gap by
integrating UAV-based photogrammetry and 3D semantic modeling
with a three-layer empirical framework, combining eye-tracking, ques-
tionnaire surveys, and interviews. Specifically, the UAV-based data
acquisition presented here overcomes the viewpoint and coverage con-
straints inherent to SVI approaches, offering a non-intrusive, flexible
alternative ideal for analyzing sensitive heritage contexts. The digital
modeling component enables spatially explicit visibility mapping of BGI,
producing scene-specific exposure metrics from pedestrian perspectives.
These serve as the foundation for selecting representative visual stimuli
and calibrating perceptual data at a fine-grained level. Empirical
methods validate and contextualize these spatial metrics through user
responses. This hybrid approach provides triangulated evidence across
methods and links the objective spatial attributes of visual impact
sources with the comprehensive spectrum of human perceptual re-
sponses. By correlating measurable exposure metrics with layered user
perceptions, it enables a nuanced evaluation of visual impact levels that
extends beyond mere geometric analysis. Although demonstrated here
through the case of BGI (the influence is in general positive), the
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framework is broadly applicable to assessing diverse visual impact
sources in different urban heritage contexts.

By demonstrating the value of cross-methodological integration, this
study advances current visual assessment practices in heritage planning
and Environmental Impact Assessment (EIA) (Dentoni et al., 2023). It
supports a shift from static visibility simulations or isolated surveys
toward multi-methodological and perception-informed evaluations, of-
fering a more realistic reflection of how people experience complex,
visually sensitive environments.

5.2. Cross perceptual layers: Seeing, feeling, and understanding

This study advances understanding of visual perception in HUAs by
integrating three complementary layers, namely seeing, feeling, and
understanding, into a unified analytical framework that clarifies, with
respect to RQ2, how BGI relates to attention, appraisal, and interpre-
tation. Previous perceptual assessments often focus exclusively on one
isolated dimension, limiting their explanatory power. Physiological
methods, such as eye-tracking, are precise in revealing patterns of visual
attention at the neurological and behavioral levels. However, they
inherently neglect the experiential complexity and interpretive richness
of visual perception. Specifically, eye-tracking data alone cannot clarify
whether visual attention reflects attraction, confusion, or even cultural
significance, as identical visual attention patterns could emerge from
vastly different perceptual motivations (Geise, 2011; McGrath et al.,
2019). Surveys capturing aesthetic or emotional preferences rely on
participants’ retrospective self-reports, which are inherently influenced
by memory biases, social desirability, or cultural framing effects.
Nevertheless, subjective evaluations derived purely from surveys are
detached from real-time perceptual experiences, making it difficult to
reliably associate reported preferences with actual visual processing
behaviors or spatial-environmental features (Bishop and Rohrmann,
2003; Vo et al., 2024). Qualitative cognitive studies, such as in-depth
interviews or discourse analyses, excel at uncovering rich narratives
and interpretive frameworks through which people understand visual
environments. Yet, without grounding in measurable physiological data
or systematically collected subjective ratings, these qualitative in-
terpretations can remain speculative, contextually bounded, and diffi-
cult to generalize or systematically integrate into spatially explicit
analyses (Lloyd and Gifford, 2024).

By merging physiological (seeing), affective (feeling), and cognitive
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(understanding) dimensions, the present study moves beyond these
limitations, achieving a comprehensive and integrative analysis of visual
perception. Each layer captures a distinct but interconnected facet of
human experience, offering a progressively deeper view into how BGI
shapes the visual environment. The seeing layer captures the immediate
physiological responses through eye-tracking (Liu and Nijhuis, 2020),
showing that BGI subtly diversifies visual attention without overriding
cultural focal points. The feeling layer further reveals that greater BGI
exposure consistently enhances subjective evaluations across aesthetic,
atmospheric, and functional dimensions. Building on these sensory and
affective responses, the understanding layer maps the cognitive path-
ways through which different user groups interpret BGI, from experts’
functional-symbolic reasoning to the public’s emotional and aesthetic
engagement.

Together, these layers form a complementary and hierarchical
structure, where sensory perception (seeing) initiates emotional
appraisal (feeling), which subsequently supports deeper cognitive
interpretation (understanding). This structured integration allows a
multi-dimensional reading of visual experience and a gradual unfolding
from surface-level impressions to meaning-making processes. Such an
approach highlights both the analytical complementarity—each layer
offering distinct but interconnected insights—and the progressive depth
of perception, reinforcing the value of layered frameworks for nuanced
visual impact assessments in culturally significant environments.

Notably, in heritage-sensitive contexts, where spatial perception is
deeply embedded in cultural memory, symbolic narratives, and
emotional attachments, visual impact assessment must move beyond
numerical measures of visibility or the physiological tracking of gaze
patterns. It must also address the experiential and interpretive di-
mensions that shape how individuals and groups relate to historic spaces
(Assmann, 2011a; Lowenthal, 1975). Interventions (such as BGI in this
study), when introduced into such contexts, interact not only with the
physical environment but also with collective memory and identity,
making its visual impact inseparable from affective responses and
cognitive constructions of meaning (McDowell, 2016). By systematically
linking seeing, feeling, and understanding, the present framework cap-
tures this complexity, offering a more holistic, culturally attuned
methodology. It thus provides a critical basis for future heritage visual
impact assessments that aim to respect, preserve, and enrich the expe-
riential authenticity of historic urban landscapes.

5.3. Cross groups differences: General public and experts

While the three-layer framework addresses RQ3 by revealing cross-
group differences between experts and the general public in visual
attention, affective evaluation, and cognitive interpretation, these var-
iations are secondary to a broader implication: the ongoing shift in
heritage value assessment paradigms. Briefly, experts tend to interpret
BGI interventions through multidimensional functional, ecological, and
symbolic frameworks, whereas the general public’s engagement is
anchored in aesthetic pleasure, emotional resonance, and immediate
spatial experiences.

This divergence reflects a broader and increasingly recognized shift
in heritage theory and practice. Traditional models of heritage evalua-
tion, predominantly expert-driven and focused on formally recognized
values, are now expanding to incorporate diverse public perceptions and
everyday experiences (Jones, 2017). Concepts such as “everyday heri-
tage (Atkinson, 2016),” “informal heritage (Barrere, 2016),” and
participatory heritage management emphasize that cultural significance
is not solely determined by expert authority but emerges through lived
experience, emotional attachment, and collective memory within com-
munities (Li et al., 2020). In this context, visual impact assessment for
heritages landscapes must move beyond narrowly technical or profes-
sionalized perspectives. They must systematically account for the
perceptual, affective, and cognitive frameworks through which non-
expert users engage with interventions in the landscape. By capturing
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both expert and public pathways of meaning-making, assessments can
better reflect the pluralistic nature of heritage value judgments and
more effectively guide the design and management of culturally sensi-
tive environments.

5.4. Insights for HUA development

Building upon the cross-layer and cross-group findings, several in-
sights emerge for the future planning and visual management of HUAs,
with this case situated in a Jiangnan water-green context where BGI is
closely interwoven with canals, bridges, narrow alleys, and garden
traditions.

First, the layered perception model demonstrates that BGI is not
merely a functional or decorative component, but a perceptual agent
that modulates attention, influences preferences, and shapes meaning.
Even when not the primary visual focus, BGI supports more diversified
and relaxed visual scanning, contributing to environmental legibility
and psychological restoration. This suggests that strategic incorporation
of BGI can enhance visual coherence without overwhelming the heritage
character. For example, in a newly reconstructed historic environment
within the case area (Zhongzhangjia Xiang), higher levels of BGI expo-
sure can effectively enhance people’s preference for the newly created
spaces, as illustrated by Scene 20. Although its score is slightly lower
than other scenes with similar BGI levels, the preference rating is still
higher than many areas with lower BGI exposure.

Second, by linking BGI exposure to perceptual evaluations, the study
provides a framework for evidence-based visual enhancement. Scenes
with moderate to high BGI exposure consistently achieved higher
perceptual scores, indicating that balanced integration (not excess) is
key. Overdesign or uncontrolled vegetation growth, while not present in
the case area, may lead to visual clutter or loss of historical legibility, a
risk noted in other studies.

Third, the differentiated cognitive responses between experts and the
general public underscore the need for multi-vocal design and evalua-
tion processes. Experts seek systemic coherence and functional perfor-
mance, while the public prioritizes sensory richness and cultural
resonance. Planning strategies should therefore accommodate both
analytical and experiential perspectives, facilitating broader public
engagement and heritage appreciation.

Finally, integrating digital modeling with empirical perception offers
a practical and scalable way to manage visual environments in HUAs,
particularly in Jiangnan settings. Recent advances in consumer-grade
imaging and efficient modeling methods such as 3D Gaussian Splat-
ting lower technical barriers and enable low-disturbance surveys. The
approach is transferable conditionally to canal- and green-structured
districts with similar sightline structures, pedestrian-scale street forms,
comparable eye-level BGI placement, and heritage contexts that sustain
place attachment; beyond these conditions, findings should be re-tested
before use.

5.5. Limitations

Despite these contributions, several limitations must be acknowl-
edged. First, the study privileges spatial metrics and quantitative evi-
dence, and its engagement with social, historical, and ethnographic
dimensions remains limited. Interpretations are therefore framed largely
as context-specific associations rather than culturally situated explana-
tions. Future work should incorporate stronger ethical engagement and
reflexivity, for example by deepening community participation,
expanding qualitative and ethnographic inquiry, and making researcher
positionality explicit in order to situate findings within lived histories
and local meanings (Muhammad et al., 2015). Second, the representa-
tiveness of the study sample was limited in terms of demographic vari-
ability (including gender, age, cultural background) and the structure of
both general public and expert groups. These sampling limitations
potentially constrain the broader applicability of perceptual and
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cognitive findings. Demographic factors (e.g., gender, age, culture) were
intentionally not controlled, as the study focused primarily on percep-
tual differences between expert and public groups. However, future
work should address these variables explicitly. Third, the integrated
methodological approach employed in this study, including UAV-based
data acquisition, eye-tracking, and qualitative assessments, is resource-
intensive and logistically complex, limiting its immediate scalability
beyond small-scale pilot studies. Future research could explore meth-
odological simplifications or adaptations suitable for broader or larger-
scale applications. Finally, the eye-tracking experiments utilized static
photographs rather than mobile glasses in field settings, potentially
reducing the ecological validity of perceptual data. Future research
should consider employing mobile eye-tracking technology to capture
more realistic perceptual responses.

6. Conclusions

This paper investigates how BGI shapes visual perception in HUAs by
integrating UAV photogrammetry with a perception-based framework
encompassing three layers: seeing, feeling, and understanding.
Combining spatially explicit modeling with empirical methods,
including eye-tracking, questionnaire surveys, and in-depth interviews,
the study assessed the perceptual influence of BGI across experts and the
general public.

The findings reveal that BGI contributes to HUA perception in
distinct but complementary ways. At the seeing layer, BGI moderates
visual attention patterns, subtly reducing the dominance of traditional
focal points and encouraging more diverse visual engagement. At the
feeling layer, BGI exposure correlates with consistently higher user
evaluations across historical atmosphere, aesthetics, and spatial func-
tionality. At the understanding layer, BGI serves as a cognitive trigger,
activating different interpretive pathways among user groups. GI exerts
a more stable and broadly positive impact, while BI exhibits more
context-dependent and group-specific effects. Professionals display a
balanced and systemic interpretation of BGI, whereas the general public
emphasizes emotional and aesthetic connections.

Methodologically, this study demonstrates the value of integrating
digital spatial analysis with perception-based empirical approaches. By
systematically bridging spatial quantification and multi-layered
perception analysis, it offers a novel framework that advances visual
impact assessment beyond traditional singular-method approaches. The
proposed cross-method, cross-layer, and cross-group framework offers a
practical, replicable model for perception-informed visual impact
assessment in heritage contexts. This research is among the first to
explicitly examine how BGI influences visual perception in HUAs,
addressing a critical but previously overlooked dimension of heritage-
sensitive landscape evaluation. Beyond BGI, the framework holds sig-
nificant potential for broader applications in evaluating diverse spatial
interventions in culturally sensitive environments, supporting more in-
clusive, evidence-based, and culturally attuned planning practices. By
highlighting both spatial attributes and lived perceptual experiences,
the study contributes new methodological pathways for advancing vi-
sual environmental assessments that respond to the pluralistic and
evolving nature of heritage conservation demands.
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