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A B S T R A C T

Historic urban areas (HUAs) are visually and culturally sensitive environments where blue-green infrastructure 
(BGI) plays an increasingly important role in shaping spatial identity and environmental quality. While BGI’s 
ecological functions are well documented, its influence on human visual perception, particularly within HUAs, 
remains largely unexplored. Addressing this gap, this paper proposes an integrative framework to assess how BGI 
affects visual experiences in heritage contexts, bridging methodological, perceptual, and user-group dimensions. 
By combining UAV-based photogrammetry with a three-layered perception model, the research integrates spatial 
analysis and empirical methods across seeing (eye-tracking), feeling (questionnaire), and understanding (in
terviews) layers. Street-level BGI exposure was spatially quantified and used to inform perception experiments 
involving both expert and general public groups. This multi-methodological, multi-layered, cross-group approach 
extends existing research by providing a comprehensive examination of BGI’s visual impact at different cognitive 
levels, particularly within historic settings. Findings reveal that BGI enhances perceptual diversity, visual pref
erence evaluation, and cognitive engagement across both groups. Although it may slightly divert attention from 
dominant heritage features, BGI fosters broader visual exploration and higher environmental ratings. Experts 
interpret BGI through more systemic and functional perspectives, while the public emphasizes emotional, 
aesthetic, and recreational values. Overall, this study presents a replicable framework integrating digital spatial 
modeling with layered perception analysis, offering new insights for evaluating and enhancing visual environ
ments in HUAs. It supports more inclusive visual assessments and provides a basis for informed planning and 
selective design interventions in heritage contexts.

1. Introduction

The concept of “historic urban areas” (HUAs) was introduced in 
1987, defining these areas as: “regardless of size, any area including cities, 
towns, historic centers, and residential districts, as well as their natural and 
constructed environments (Washington Charter, 1987).” HUAs are a 
crucial part of humanity’s cultural heritage, playing a vital role in pre
serving and continuing traditional cultural history and providing unique 
cultural experiences over time (UNESCO, 2021). As “living” heritage, 
HUAs not only accommodate activities such as commerce and tourism 
but also increasingly incorporate urban blue-green infrastructure (BGI), 
including green spaces, parks, and waterways. While numerous studies 

have examined the effects of human activities on the visual character 
and experiential quality of HUAs (Dinçer, 2011; Ferreira and Ramírez 
Eudave, 2022; Sastre et al., 2013), the role of BGI in shaping human 
visual perception remains underexplored. This paper addresses this gap 
through an integrated approach that combines empirical perception- 
based methods (e.g., eye-tracking, questionnaires, interviews) with 
digital spatial analysis techniques, including UAV (Unmanned Aerial 
Vehicle)-based photogrammetry and view-based BGI quantification. To 
ensure diverse perspectives, participants in the perception experiments 
include both experts (primarily architects and landscape architects) and 
the general public without relevant educational backgrounds.
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1.1. Blue-green infrastructure and HUA

BGI refers to the integration of natural and artificial ecosystems, 
including urban green spaces, parks, gardens, wetlands, rivers, and lakes 
(Escobedo et al., 2019; Liao et al., 2017). It contributes to climate 
regulation, biodiversity, flood mitigation, and enhances physical, 
mental, and environmental well-being (Li et al., 2025; Macháč et al., 
2022; Zhang et al., 2025).

In historic urban areas, BGI is more than a functional amenity; it is 
often constitutive of the urban landscape and cultural experience (Pruijt, 
2004; Vallerani and Visentin, 2018). A representative case is the Jian
gnan water-town tradition, where canal-edge corridors, bridge ap
proaches, and land–water alleys structure eye-level views alongside 
year-round greenery from garden practices (Zuo and Zhang, 2023). 
Historically, these corridors functioned as water–land interfaces for 
social-cultural activity, and the white-wall-and-black-tile palette codi
fied a restrained aesthetic that continues to anchor local identity (Huang 
et al., 2025). Beyond this illustrative case, prior research indicates that 
Green infrastructure (GI) within HUAs, including green spaces, parks, 
and urban greenery, also contributes to urban livability and reinforces 
cultural character (Hua et al., 2022; Stanley et al., 2012). Elements, such 
as ancient and heritage trees, can further enrich the historical and cul
tural atmosphere of these areas (Haneca et al., 2009; Rostami et al., 
2015).

Previous studies on HUAs have primarily focused on two aspects of 
BGI: (a) its spatial integration with historic fabric and landscape evo
lution (Halbac-Cotoara-Zamfir et al., 2021; Wang et al., 2020); and (b) 
its functional roles in urban resilience and well-being (Yang et al., 2020; 
Zhao et al., 2024). However, despite BGI’s prominence in heritage 
landscapes, systematic investigations into its role in shaping human 
visual perception and experiential qualities are almost absent. 
Addressing this gap is crucial for advancing heritage-sensitive landscape 
assessment and planning.

1.2. Visual perception research on HUAs

Visual perception plays a critical role in evaluating the environ
mental and cultural quality of HUAs. As carriers of cultural memory and 
landscape identity, HUAs have increasingly been examined in terms of 
how users visually engage with their spatial environment (Deghati Najd 
et al., 2015; Ren, 2024). Existing research can be broadly grouped into 
two complementary streams: perception-based and geo-spatial analyt
ical approaches.

(a) Perception-based approaches emphasize subjective and expe
riential dimensions. Two primary directions are evident: (i) User-group 
differences, exploring how perceptions vary among stakeholders such 
as heritage professionals, planners, and the general public. These studies 
highlight socio-demographic factors, including age, gender, and cultural 
background, as key influences on visual evaluations. (Pendlebury and 
Townshend, 1997; Remoaldo et al., 2014). (ii) Aesthetic and emotional 
responses, investigating how urban form and landscape settings evoke 
feelings of beauty, nostalgia, or belonging (Chen et al., 2015; Deghati 
Najd et al., 2015; Jenks, 2008; Nasar, 1989; Smardon, 1988). These 
insights are valuable for understanding user preferences and acceptance 
of conservation or redevelopment strategies.

(b) Geo-spatial and computational approaches rely on digital 
tools to assess visual characteristics from a performance perspective. 
Key directions include: (i) Visual impact assessments of new architectural 
insertions or infrastructure projects, evaluated for compatibility with 
historic contexts using simulation and modeling techniques (Bu et al., 
2022; Jiang et al., 2022; Serra et al., 2021). (ii) Spatial cognition and 
visibility analysis, using tools like spatial syntax, viewshed modeling, and 
GIS to understand how people navigate and perceive historic environ
ments (Esposito et al., 2020; Tan and Ujang, 2012; Wang et al., 2022). 
Both approaches increasingly benefit from recent advancements in high- 
resolution spatial data acquisition technologies, such as UAV-based 

photogrammetry and point clouds derived from scanning devices (e.g., 
LiDAR), significantly enhancing visibility analysis and spatial cognition 
modeling in HUAs (Curcio et al., 2022; Zhang et al., 2021).

Although both perception-based and geo-spatial analytical ap
proaches have yielded valuable insights, they remain largely separated 
in methodology and scope. In particular, little attention has been paid to 
how BGI structures visual experiences in HUAs through integrated 
spatial and perceptual analysis. Given the growing relevance of 
ecosystem-based design and nature-based solutions in impact assess
ment, embedding BGI within perception research frameworks presents a 
timely and underexplored direction for heritage-sensitive urban 
analysis.

1.3. Research gaps and research questions

Although BGI is widely acknowledged for enhancing both visual 
quality and ecological function in urban environment (Li et al., 2025; 
Macháč et al., 2022; Zhang et al., 2025), its specific impact on human 
visual and spatial perception in HUAs remains insufficiently understood. 
While previous research has recognized BGI as a product of historical 
processes with aesthetic and environmental value (Haneca et al., 2009; 
Rostami et al., 2015), few studies systematically assess how users 
perceive it or how it contributes to experiential qualities in heritage 
contexts. Another gap lies in the methodological fragmentation of visual 
perception studies. Research typically relies either on empirical user- 
based methods (e.g., surveys, interviews, behavioral observation) or 
on digital spatial techniques (e.g., GIS, viewshed analysis, photogram
metry), with limited integration between the two.

Recent advances in multi-view photogrammetric modeling technol
ogies, such as Structure-from-Motion (SfM), combined with increasingly 
accessible and affordable UAVs, now enable the acquisition of high- 
resolution spatial data suitable for detailed visual analyses (Berra and 
Peppa, 2020; Fernández-Hernandez et al., 2015). These advancements 
significantly lower the technical and financial barriers for integrating 
empirical and digital spatial methods. UAV-based digital models can 
thus be effectively embedded within perception-driven research 
frameworks, providing reliable data support for initial scene selection 
and subsequent generalization of findings.

Therefore, this paper proposes an integrated framework that com
bines digital modeling techniques, including UAV-based 3D recon
struction and human-scale view extraction, with multi-layered 
perception methods including eye-tracking, questionnaires, and semi- 
structured interviews. The goal is to investigate how BGI influences vi
sual perception in HUAs and how such effects vary between expert and 
public users. Accordingly, the study addresses the following research 
questions: (RQ1) How can BGI exposures and spatial characteristics be 
effectively measured from pedestrian perspectives in HUAs? (RQ2) How 
can integrated, multi-layered methods combining spatial modeling and 
empirical perception analysis be applied to assess BGI’s visual impacts? 
(RQ3) How does BGI influence visual attention patterns, perceptual 
evaluations, and cognitive interpretations across expert and general 
public user groups?

This paper contributes to the field of heritage-sensitive urban visual 
impact assessment in two key ways. (a) Novel thematic focus: While 
previous studies have explored BGI’s ecological and functional roles, 
this research is among the first to systematically examine its influence on 
human visual perception within HUAs, addressing an important and 
underexplored dimension in heritage landscape evaluation. (b) Inte
grated framework and cross-group analysis: The study develops an 
integrated approach combining UAV-based spatial modeling and multi- 
layered perception analysis, and systematically compares expert and 
general public responses to reveal differentiated perceptual structures 
related to BGI in HUAs, advancing methodological practices and 
stakeholder-informed assessment.

Y. Peng et al.                                                                                                                                                                                                                                    Environmental Impact Assessment Review 118 (2026) 108301 

2 



2. Reviewing visual perception analysis methods in urban 
contexts

This section reviews two complementary methodological domains 
that have been widely used in visual perception research related to 
HUAs: digital geo-spatial approaches, and perception-based methods. 
While the former focuses on modeling spatial structure and visibility, the 
latter emphasizes users’ cognitive and emotional engagement. Review
ing both domains provides a foundation for identifying opportunities for 
methodological integration in the context of evaluating BGI in urban 
heritage settings.

2.1. Digital geo-spatial approaches

Geo-spatial and computational approaches often utilize spatial data 
and simulation techniques to analyze visibility, spatial composition, and 
structural patterns of HUAs, which can be categorized as:

(a) GIS-based methods: Used to quantify land cover, vegetation, 
hydrology, and built structures, GIS enables mapping and modeling of 
spatial patterns in historic contexts. Also, GIS-based viewshed/visibility 
analysis tools calculate the spatial visibility of elements from a given 
observer’s location (Jerpåsen and Larsen, 2011; Sarihan, 2021), simu
lating what is seen from specific points in 2D or 3D terrain environ
ments. They are useful for assessing visual accessibility and the 
prominence of landscape elements across an urban environment (Florio 
et al., 2017; Zhou et al., 2023).

(b) 3D modeling visual analysis: Using photogrammetry or LiDAR 
data, urban scenes can be reconstructed in 3D to simulate human 
viewpoints. Field of view (FOV) analyses within these models help 
determine the relative exposure of various visual components, such as 
vegetation, water, built heritage (Balsa-Barreiro and Fritsch, 2018; 
Prechtel et al., 2013). Recently, UAV-based photogrammetry has 
increasingly been employed due to its flexibility, cost-effectiveness, and 
ability to produce detailed, high-resolution spatial models (Berra and 
Peppa, 2020; Fernández-Hernandez et al., 2015). UAV-derived point 
clouds provide accurate spatial relationships between elements, capture 
complex urban morphology, and offer perspectives unavailable through 
traditional ground-based observations, making them particularly suit
able for heritage-sensitive urban contexts (Lo Brutto et al., 2014; Pepe 
et al., 2022).

(c) Street-level and image-based analysis with computer vision: 
Techniques using street view imagery (e.g., Google Street View) com
bined with semantic segmentation and deep learning allow for auto
matic classification and quantification of visual elements like trees, sky, 
water, or building façades (Gao et al., 2025; Li et al., 2017; Zhang et al., 
2023). These methods approximate human perspectives at the street 
level and have been applied to both modern urban studies and heritage 
districts.

The strengths of these methods lie in their objectivity, repeatability, 
and ability to capture spatial complexity. However, they often lack 
sensitivity to human perception, emotion, and cultural meaning. While 
they provide precise accounts of what is spatially present or visible, they 
reveal little about how these environments are actually perceived. This 
underscores the need to complement geo-spatial analysis with user- 
centered perception methods—particularly when evaluating the visual 
role of BGI in culturally significant urban settings.

2.2. Perception-based methods

Perception-based approaches explore the cognitive, emotional, and 
sensory dimensions of how people engage with urban spaces—revealing 
not just what is seen, but how it is interpreted, evaluated, and remem
bered. In the context of HUAs, these methods are especially valuable for 
capturing the layered experiences shaped by spatial form, cultural 
memory, and atmospheric qualities. These methods can be broadly 
classified into three complementary strands:

(a) Psychophysical approaches examine the physiological basis of 
perception, using biometric tools such as eye-tracking, EEG, or heart rate 
monitoring to capture unconscious reactions to visual stimuli (Braddick, 
1997; Bruce et al., 2014; Xiao et al., 2024). Among these, eye-tracking 
has gained prominence in landscape and urban research as a non- 
intrusive method to analyze attention distribution and visual salience 
(De Lucio et al., 1996; Fang et al., 2024; Ye et al., 2022).

(b) Psychological approaches focus on how individuals evaluate 
and emotionally respond to environments (Leventhal and Scherer, 1987; 
Moser and Uzzell, 2003). Techniques such as questionnaires, semantic 
differential scales, and image-based scoring help measure aesthetic 
preferences, perceived atmosphere, and affective responses (Brosch 
et al., 2013; Gifford et al., 2011).

(c) Phenomenological approaches delve into the interpretive and 
experiential layers of perception, using interviews, self-reports, and 
narrative observations to explore how people assign personal and sym
bolic meaning to spaces (Albertazzi, 2013; Merleau-Ponty et al., 2013; 
Ohta, 2001; Santo-Tomás Muro et al., 2020). These methods are espe
cially relevant in HUAs, where individual lived experience is often 
entangled with historical identity and cultural memory.

Together, these approaches offer a multilayered understanding of 
perception, tracing how people see, feel, and make sense of their sur
roundings. However, when used in isolation, perception-based methods 
present two critical limitations. First, they lack the capacity to quantify 
what is spatially visible from different viewpoints. Without geo-spatial 
data on visual exposure, such as which elements are actually seen and 
how prominently, subjective evaluations risk being disconnected from 
the physical environment. Second, the fragmented nature of perceptual 
data—spread across physiological signals, survey responses, and quali
tative insights—makes it difficult to synthesize findings into a coherent, 
spatially grounded interpretation. These limitations highlight the need 
for integration with geo-spatial approaches. Only by combining the 
spatial precision of modeling tools with the experiential richness of 
perception-based methods can we fully understand how blue-green 
infrastructure (BGI) influences visual experience in culturally signifi
cant urban settings.

3. Methods

Building on the methodological insights outlined in the previous 
section, this study applied an integrated framework that merged the 
spatial precision of geo-spatial modeling with the interpretive depth of 
perception-based analysis to systematically examine the influence of BGI 
on visual experience in HUAs. The framework comprised three com
plementary modules (Fig. 1):

(a) Digital modeling module: A high-resolution 3D mesh model of 
the case area was reconstructed using Unmanned Aerial Vehicle (UAV)- 
based photogrammetry combined with ground-level imaging. Eye-level 
panoramic viewpoints were then extracted to quantify the exposure 
levels of GI and BI from pedestrian perspectives. These quantified spatial 
representations informed the selection of representative scenes for the 
perception experiments.

(b) Perception analysis module: This module was structured into 
three layers: “seeing” (physiological attention), “feeling” (subjective 
preference), and “understanding” (cognitive interpretation). It inte
grated eye-tracking experiments, structured questionnaires, and semi- 
structured interviews, providing a holistic framework for assessing the 
perceptual effects of BGI across user groups.

(c) Integration and generalization module: This module com
bined empirical results from the perception analysis with the spatial 
exposure levels of BGI derived from digital modeling. By establishing 
relationships between BGI exposure and perceptual responses, it 
enabled integrated assessments at the street level and predictive 
modeling of visual perceptual impacts in areas not directly examined 
through experiments.

This framework bridges digital modeling with human centered 
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Fig. 1. The workflow of this research.

Fig. 2. The location and historic map of Pingjiang Road.

Y. Peng et al.                                                                                                                                                                                                                                    Environmental Impact Assessment Review 118 (2026) 108301 

4 



perception research, enabling both objective spatial quantification and 
subjective evaluation. Building on this foundation, step (a) answers RQ1 
by providing spatial exposure metrics, step (b) answers RQ2 and RQ3 
through multi-layer perceptual evidence and group comparisons, and 
step (c) supplements RQ2 and RQ3 by linking exposure to perception for 
integrated evaluation and scenario based prediction.

3.1. Case study area

Pingjiang Road in Suzhou, China, was selected as the case study. As a 
nationally protected historic street situated within the buffer zone of the 
UNESCO World Heritage Site “Classical Gardens of Suzhou” (Wang 
et al., 2015), Pingjiang Road exemplifies the Jiangnan water-town ty
pology. The corridor is structured by canal-edge streets and bridge ap
proaches, narrow lateral alleys that connect land and water, and a 
pedestrian-scale fabric of white-wall and black-tile façades (Fig. 2). 
These spatial and cultural features support everyday practices such as 
strolling, trading, neighborhood socializing, and heritage tourism, pro
ducing a layered setting in which BGI is both infrastructural and 
experiential.

Within this area, the primary street can be divided into two main 
segments (north and south). Five lateral streets connected with water 
channels branch off from these segments. The selected study fragment 
comprises the southern segment, specifically chosen due to its proximity 
and direct connection to Zhongzhangjia Xiang, a street whose original 
water channel was recently restored. This restoration differentiates 
Zhongzhangjia Xiang from other BGI conditions within the Pingjiang 
Road area, providing unique comparative value. Thus, the southern 
segment was selected to capture this distinctive transitional context.

3.2. 3D modeling and BGI exposure computation

To address RQ1, we quantified pedestrian-level exposure to BGI by 
building a high-resolution 3D semantic mesh of Pingjiang Road via an 
integrated aerial- and ground-based photogrammetry workflow and 
using it for subsequent visibility and exposure analyses. This model 
served as the analytical base for evaluating the exposure of BI and GI 
within the human visual field. Image acquisition was conducted in 
December 2024, using two complementary modes (Fig. 1):

(a) Aerial imaging: Low-altitude photographs were taken using a 
DJI Phantom 4 Pro UAV at heights ranging from 2 to 10 m, capturing 
rooftops, tree canopies, and canal structures.

(b) Ground-level imaging: Manual photos were captured at 
approximately 1.6 m—the average eye level of pedestrians—focusing on 
façades, vegetation, and water features within narrow alleys and 
walking paths.

The photogrammetric processing pipeline involved: (a) feature 
matching and alignment via Structure-from-Motion (SfM); (b) point 
cloud generation using Multi-View Stereo (MVS); (c) mesh surface 
reconstruction; and (d) texture mapping to retain photorealistic detail. 
The resulting mesh was annotated with semantic labels, assigning each 
surface element to one of several categories: BI, GI, or other urban 
components. This enabled spatially explicit quantification of BGI expo
sure without the need for post-rendered segmentation.

To quantitatively assess BGI exposure, pedestrian-level viewpoints 
were placed at 1-m intervals along the primary walking route. At each 
viewpoint, lines of sight (LoS) were systematically constructed hori
zontally at 5-degree intervals over a full 360-degree field-of-view, and 
vertically from 30 to 175 degrees relative to the ground plane, 
approximating human visual coverage. When an LoS intersected with a 
semantic mesh surface labeled as BI or GI, the intersection was recorded 
(Peng et al., 2025; Peng et al., 2024). The proportions of BI and GI visible 
surfaces within each viewpoint’s visual field were then calculated.

Due to accuracy constraints associated with consumer-grade UAV 
equipment, exposure levels in the resulting semantic mesh model were 
simplified into categorical rankings rather than precise numeric 

intervals. Exposure thresholds for BI and GI were defined separately 
based on their distinctive visibility characteristics in urban setting. For 
GI, higher thresholds were applied, defined as high (G1, ≥25 %), me
dium (G2, 15–24.9 %), low (G3, 5–14.9 %), and none/very low (G4, <5 
%), consistent with its relatively greater coverage in urban environ
ments (Aoki, 1987; Li et al., 2021). For BI, given the absence of estab
lished thresholds in the existing literature, a proportional scaling factor 
of 0.3—derived from observed relative exposure ratios between BI and 
GI—was applied to define exposure categories (Peng et al., 2025). 
Therefore, thresholds were set as high (B1, ≥7.5 %), medium (B2, 
4.5–7.4 %), low (B3, 1.5–4.4 %), and none/very low (B4, <1.5 %), 
reflecting the typically lower yet perceptually significant presence of 
water elements.

Based on combinations of these BI and GI exposure categories, the 
street was segmented into 16 distinct BGI typologies (e.g., G1B2 refers to 
a scene with over 25 % GI exposure and 4.5–7.4 % BI exposure). 
Representative scenes covering diverse spatial and environmental con
ditions were subsequently selected from these typologies to serve as 
visual stimuli in the subsequent perception experiments. At last, to 
verify the accuracy of this custom approach, selected viewpoint results 
were validated through panoramic camera simulations within the Unity 
environment.

3.3. Multi-layered perception-based experiments

This section addresses RQ2 by integrating measures of perception 
and supplies comparative evidence for RQ3 across participant groups. 
We implemented a three-layer experimental framework that spans the 
physiological, psychological, and cognitive dimensions of human 
experience in historic urban areas. The framework comprises three 
layers: (Fig. 1):

“Seeing”: early-stage visual attention, assessed using eye-tracking 
technology;

“Feeling”: intuitive preferences and evaluative judgments, 
measured through structured questionnaires;

“Understanding”: interpretive and reflective responses, explored 
via semi-structured interviews.

These methods were selected for their complementarity. Eye- 
tracking captures unconscious attentional patterns and perceptual 
salience; questionnaires elicit subjective appraisals of environmental 
quality across multiple dimensions; and interviews reveal deeper 
meanings and contextual interpretations associated with BGI in heritage 
settings. Together, they provide a multi-faceted and integrative 
perspective on perception, bridging the gap between observable 
behavior and experiential understanding.

3.3.1. Recruitment of participants
Participants underwent the experimental tasks in a sequential 

manner, progressively refining the sample size at each stage. First, 
structured questionnaires were administered to all recruited participants 
(80 valid responses per group, Table 1a), enabling rapid collection of 
subjective appraisals. Based on questionnaire quality and participant 
engagement, suitable candidates (40 valid participants per group, 
Table 1b), who met standard visual acuity requirements (corrected or 
uncorrected between 0.8 and 1.5), proceeded to the eye-tracking 
experiment. Finally, representative participants who successfully 
completed the eye-tracking tasks were invited to participate in semi- 
structured interviews (20 per group, Table 1c).

This sequential and layered approach ensures efficient data collec
tion, enhances data quality through rigorous participant screening, and 
reduces potential interference between experimental stages. By struc
turing the methods sequentially, the potential influence of later tasks on 
participants’ initial responses is minimized. Furthermore, the gradual 
refinement of participant pools based on task-specific inclusion criteria 
ensures that each experimental stage involves individuals suited to 
provide meaningful and reliable insights.
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3.3.2. Questionnaire survey (“feeling” layer)
To assess users’ intuitive responses to BGI in HUAs, a structured 

questionnaire survey was conducted as the basis for the “feeling” layer. 
This layer focuses on affective and evaluative judgments, capturing how 
different types of scenes influence participants perceived aesthetics, 
cultural atmosphere, and functional value. The web-based questionnaire 
was organized around three dimensions, each composed of multiple 
relatively independent items to capture distinct aspects within the same 
domain:

D1: Historical and cultural atmosphere; Derived from cultural 
memory theory (Assmann, 2011b), genius loci theory (Norberg-Schulz, 
1976), and place attachment frameworks (Lewicka, 2013). These the
ories collectively emphasize cultural symbolics (F11), spatial memory 
(F12), and genius loci or spirit of place (F13), acknowledging that cultural 
and spatial atmospheres form crucial perceptual foundations that must 
not be overlooked in heritage contexts.

D2: Spatial aesthetics; Based primarily on the classical urban aes
thetics and landscape preference theories (Kaplan et al., 1989; Nasar, 
1994), emphasizing visual aesthetics (F21) such as form, material, and 
color, and ecological aesthetics (F22) concerning the harmonious inte
gration of natural elements. These aesthetic dimensions are vital as vi
sual attributes fundamentally shape heritage landscapes’ experiential 
quality.

D3: Spatial functionality; Encompasses ecological functions (F31), 
recreational and well-being functions (F32), and spatial function (F33). This 
dimension integrates established theoretical perspectives from 
ecosystem services literature (Assessment, M. E, 2005), restorative 
environment theory (Hartig et al., 1997; Kaplan, 1992), and spatial 
coherence and legibility principles (Kaplan et al., 1989; Nasar, 1994). 

These functional aspects are critical in determining how effectively BGI 
enhances ecological resilience, user comfort, recreational value, and 
spatial legibility in heritage areas.

Each item was rated using a 1–5 interval scale with 0.5-point in
crements (e.g., 1.0, 1.5, …, 5.0), allowing for moderate resolution in 
perception-based scoring while retaining comparability across items. 
The questionnaire was scene-based: a total of 20 representative view
point scenes were selected (Fig. 3d), each accompanied by 3–5 stimulus 
images and corresponding map locations to help participants accurately 
identify spatial context. The questionnaire survey was conducted in 
March 2025. This ensured that evaluations were grounded in place- 
specific memory and spatial experience rather than abstract visual 
judgment.

Responses were first analyzed using descriptive statistics (mean and 
median scores) to identify perceptual trends across scenes and user 
groups. To further assess the influence of BGI variables, two comple
mentary analytical methods were employed: (a) LMMs evaluated the 
influence of BI and GI exposure levels on each perception item while 
accounting for inter-individual variability and repeated scene measures; 
(b) Random Forest (RF) was used to quantify the relative influence of 
BI and GI, with separate models for expert and public groups. Feature 
importance scores were calculated using Mean Decrease in Impurity 
(MDI). Together, these two methods provide complementary insights: 
LMMs establish statistically significant effects of BGI exposure, while RF 
analysis identifies which variables exert the strongest practical influence 
on perceptual variation.

3.3.3. Eye-tracking experiment (“seeing” layer)
To capture unconscious visual responses to different BGI configura

tions, an eye-tracking experiment was conducted as the basis for the 
“seeing” layer. This method focuses on early-stage visual attention and 
perceptual salience, providing objective data on how users scan and 
prioritize landscape elements in HUA environments (Dupont et al., 
2014). Participants were selected and contacted based on questionnaire 
responses and sequentially invited for the eye-tracking experiment be
tween March and April of the same year. Participants were presented 
with a series of static images simulating pedestrian views of the case 
area. A total of 24 images were used as stimuli: 20 images were captured 
at representative viewpoints previously identified in the spatial analysis 
(Fig. 3d indicates specific viewpoints and angles), and 4 additional 
images were selected to diversify the stimulus pool and enhance the 
range of visual BGI exposure (Fig. 3d). Each viewpoint was represented 
by only one image. Since these images presented only a partial field of 
view rather than full 360-degree panoramas, the visual composition did 
not fully correspond to the modeled BGI exposure values. To ensure 
consistency, each image was independently reclassified based on the 
visible proportion of GI and BI within the photo frame, using a four-level 
scale: none/very low (N), low (L), medium (M), and high (H). This 
image-based classification was used to guide subsequent analysis and 
group comparison.

Each image was displayed for 20 s, preceded by a central fixation 
point to standardize attention. Participants were instructed to view the 
images naturally, simulating spontaneous observation. To support visual 
analysis, eight Areas of Interest (AOIs) were defined for each image, 
corresponding to semantic categories: (a) historical and cultural elements, 
(b) commercial elements, (c) paved ground, (d) sky, (e) perspective focal 
points, (f) buildings and structures, (g) green infrastructure (GI), and (h) 
blue infrastructure (BI).

Visual attention was analyzed through fixation duration and gaze 
heatmaps (de la Fuente Suárez, 2020). Group-level heatmaps were 
generated to visualize attention distribution across AOIs. Fixation data 
were then analyzed using linear mixed-effects models (LMMs), which 
allowed for the evaluation of BGI exposure effects on visual attention 
while accounting for group, AOI category, and scene-level variance. 
Descriptive statistics such as mean and median fixation durations were 
also examined to support trend interpretation.

Table 1 
Participants information.

(a) Participants for questionnaire survey:

Variables Features Sum Expert (80,) General public (80)

Age

18–22 28 11 17
23–25 57 24 33
26–30 44 26 18
31–40 31 19 12

Gender
Male 83 42 41
Female 77 38 39

(b) Participants for eye-tracking experiment:
Variables Features Sum Expert (40) General public (40)

Age

18–22 17 8 9
23–25 26 13 13
26–30 26 14 12
31–40 11 5 6

Gender
Male 38 20 18
Female 42 20 22

(c) Participants for in-depth interview:
Variables Features Sum Expert (20) General public (20)

Age

18–22 9 4 5
23–25 11 6 5
26–30 13 7 6
31–40 7 3 4

Gender
Male 19 9 10
Female 21 11 10

Note: Participants who did not meet the inclusion criteria have been excluded 
from the table (including those with poor-quality eye-tracking data or partici
pants who completed questionnaires carelessly or randomly). For the expert 
group, participants were required to have academic backgrounds in architec
ture, landscape architecture, urban planning, or closely related fields, with at 
least senior-level undergraduate standing or higher. Additionally, considering 
that questionnaires were administered electronically and the eye-tracking 
experiment required familiarity with computer operations and equipment cali
bration—tasks potentially difficult for middle-aged and older adults—all par
ticipants were limited to individuals aged 40 or younger.
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Fig. 3. (a)-(c): Visualization and modeling results; (d)-(e) Scene type classification based on BI and GI exposure. 
Note: Seasonal variations were not specifically considered in this study, as the study area experiences minimal seasonal water-level fluctuations, and the dominant 
vegetation comprises subtropical evergreen species with negligible phenological changes (see in Fig. 3 a-c).
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3.3.4. Semi-structured interviews (“understanding” layer)
To capture the cognitive and interpretive depth of user responses to 

BGI, semi-structured interviews were conducted as the foundation of the 
“understanding” layer. This method aimed to uncover how different user 
groups conceptualize the spatial, symbolic, and functional roles of BI 
and GI within HUAs. The interview protocol was structured around 
three open-ended thematic prompts, corresponding to the three 
perception dimensions explored in the survey: T1 – Historical and cultural 
atmosphere, T2 – Spatial aesthetics, and T3 – Spatial functionality.

To support memory recall and contextual grounding, participants 
who successfully completed the eye-tracking experiment and expressed 
willingness were invited to participate in the semi-structured interviews. 
Gender and age ratios were controlled within both participant groups 
(Table 1). Participants were shown selected photographs from the pre
vious eye-tracking and questionnaire experiments. This multimodal 
cueing method was designed to evoke both affective and analytical re
flections anchored in place-based experience. All interviews were audio- 
recorded, transcribed verbatim, and analyzed using a frequency-based 
thematic coding approach. The analysis followed a structured four- 
step process:

(a) Open coding: Initial concepts and expressions were tagged line- 
by-line from the transcripts without pre-imposed categories.

(b) Subdimension classification: The open codes were then 
grouped into eight perception subdimensions (the same as the ques
tionnaire), including Genius loci, Ecological aesthetics, Recreational and 
well-being function, among others.

(c) Infrastructure attribution: Each coded phrase was linked to 
either BI or GI stimuli, based on contextual references in the partici
pants’ statements.

(d) Cognitive activation modeling: Final frequencies were syn
thesized into two user-specific models (expert and public), mapping the 
perceived activation paths from infrastructure contact through sub
dimensions to the three thematic categories (T1–T3).

This coding structure enabled the reconstruction of distinct percep
tual pathways for each group, revealing both shared cognitive patterns 
and key divergences in how BGI is interpreted in a HUA setting.

3.4. Spatially explicit cross-layer integration at the street level

As a complement to Section 3.3, this section integrates its multi- 
layer perception datasets with the UAV derived spatial exposure data 
introduced in Section 3.2 to deliver a unified street-scale assessment. To 
systematically evaluate the visual impact of BGI at the street scale, we 
combine empirical findings from all three perceptual layers (Seeing, 
Feeling, and Understanding) with the exposure metrics. The goal is to 
clearly link BI and GI exposure levels at street level viewpoints, cate
gorized as high, medium, low, or none or very low, to the corresponding 
perceptual outcomes.

For the “seeing” and “feeling” layers, eye-tracking data (fixation 
duration) and questionnaire scores were explicitly structured around 
scenes selected based on UAV-derived exposure categories. Thus, 
perceptual variations inherently corresponded with these spatial cate
gories, enabling two types of flexible, spatially explicit assessments that 
surpass the limitations of traditional point-based perception studies:

(a) Street-level integrated assessment: By aggregating perceptual 
outcomes (e.g., mean fixation duration, mean preference ratings) ac
cording to the proportional distribution of exposure categories along the 
entire street, it is possible to systematically evaluate the cumulative 
perceptual impact of BGI across the full spatial extent. This approach 
provides a holistic, spatially integrated evaluation of how varying BGI 
exposures collectively influence visual attention and environmental 
preferences along the street.

(b) Localized impact predictions: Using the established empirical 
relationships between perceptual outcomes and BGI exposure cate
gories, perceptual impacts can be flexibly predicted at smaller sca
les—whether specific street segments or individual viewpoints—even if 

empirical data at these locations have not been explicitly collected. Such 
predictive capability facilitates targeted planning and enables scenario- 
based evaluations of BGI impacts at specific spatial locations.

For the “understanding” layer, interpretive qualitative responses 
from semi-structured interviews were mapped via cognitive pathways 
linking BGI exposure categories to specific perceptual subdimensions (e. 
g., ecological function, spatial memory), and subsequently to over
arching themes (T1–T3). Although qualitative in nature and less directly 
integrated with quantitative spatial modeling, these cognitive insights 
were systematically anchored in the UAV-derived exposure typologies, 
ensuring consistent spatial referencing and coherent interpretation of 
cognitive meanings attributed to BGI.

Together, this spatially explicit cross-layer integration approach not 
only establishes a rigorous analytical linkage between spatial exposure 
and perceptual responses but also significantly enhances the flexibility, 
depth, and practical applicability of visual impact assessments within 
historic urban contexts.

4. Results

This section reports findings in the order of the research questions. 
Section 4.1 quantifies pedestrian exposure to BI and GI and directly 
answers RQ1. Sections 4.2 to 4.4 then present perception results layer 
by layer at the viewpoint scale, providing evidence for group differences 
that speaks to RQ3 and addressing RQ2 within each layer. Section 4.5 
synthesizes the evidence across layers and scales, links it to the street 
scale exposure metrics, and delivers a consolidated answer to RQ2 while 
revisiting RQ3 at a broader level.

4.1. Digital model-based classification of BGI exposure

A detailed digital model of the case area was first constructed, 
incorporating surface-level detail and basic semantic distinctions (BI, GI, 
and others) to support visibility-based analysis (Fig. 3a-c). Based on this 
model, a spatial classification was conducted to evaluate the distribution 
and intensity of BGI across the case area. At each observation point, the 
proportion of visible surfaces occupied by GI and BI was calculated. The 
results reveal a highly heterogeneous spatial pattern of BGI distribution 
(Fig. 3d): (a) High BI exposure was concentrated along the central, 
eastern and northern segments of the street, where proximity to primary 
canal zones resulted in extensive water visibility. These areas were 
characterized by strong waterfront spatial identity. (b) High GI expo
sure occurred primarily in the southern segments and northern side al
leys, typically associated with street vegetation, courtyard greenery, and 
vertical plantings. (c) High BGI scenes, characterized by the simulta
neous visual dominance of water and greenery, were spatially scattered 
across the area. These scenes typically appeared at locations where 
canal-edge vegetation and historic structures intersected. (d) Low BGI 
scenes were generally located in densely built-up commercial segments 
with limited open space or vegetation, producing enclosed and visually 
hardened environments.

The resulting classification map identified 15 BGI composition types 
based on the cross-combination of BI and GI exposure levels. From this 
spatial dataset, a set of representative scenes was selected to serve as the 
basis for subsequent perception experiments. These scenes reflected 
diverse combinations of water–vegetation composition and spatial 
context while avoiding overrepresentation of any single exposure con
dition (Fig. 3d-e).

4.2. Results of eye-tracking experiments (seeing layer)

Eye-tracking data was collected from 40 participants in each group, 
using 24 images that were independently reclassified based on their 
visible GI and BI proportions, and focusing on two metrics: gaze heat
map and fixation duration.
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4.2.1. Gaze heatmap
Gaze heatmaps overlay participants’ fixation locations and durations 

on the image, with warmer colors indicating longer fixation time 
(Fig. 4). Although no dominant preference for BGI-related AOIs is 
observed in the overall heatmap patterns, scenes with salient vegetation 
still exhibit moderate visual attraction. In addition, the focus is higher 
on (a) historical and cultural elements. Notably, both groups demonstrate 
higher fixation on (e) perspective focal points. Differences emerge in the 
professional group, which disperses more warm areas and a varied fix
ation sequence, suggesting an irregular pattern rather than a uniform 
pattern.

4.2.2. Fixation duration
Fixation duration data were analyzed after removing outliers above 

3 s. Results are averaged across all 24 photos for 8 predefined AOI 
categories (Fig. 5). Overall, historical and cultural elements received the 
longest average fixation time across both user groups (professionals: 
0.64 s; public: 0.78 s), followed by perspective focal points and buildings/ 
structures. In contrast, paved ground had the shortest fixation durations. 
GI shows moderate attention, with higher durations in scenes where 
vegetation is visually salient. BI demonstrates more variable results, 
influenced by scene composition. The total fixation time on GI is lower 
than that on cultural or architectural features, but still notable in scenes 
classified as high-GI. These findings indicate that while BGI elements 

can draw visual attention, particularly when prominent in the frame, 
cultural and architectural components remain the primary visual an
chors in the historic environment.

4.2.3. Effect of BI and GI levels on fixation duration
The LMM results demonstrate that various types of AOIs exert 

distinct influences on visual attention in HUA environments. Among all 
AOIs, historical and cultural elements yield the highest fixation durations 
(Coef = 0.784, p < 0.001), followed by perspective focal points (Coef =
0.517) and buildings/structures (Coef = 0.318). These findings under
score the central role of culturally and compositionally salient features 
in shaping gaze behavior. In contrast, natural elements such as BI and GI 
receive less attention, while paved ground (Coef = 0.213) displays a 
moderate but significant effect (Fig. 6a). Beyond main AOI effects, the 
interaction between infrastructure exposure levels and AOI categories 
reveals nuanced perceptual dynamics:

(a) A negative interaction between BI and historical and cultural ele
ments (Coef = − 0.124, p < 0.001) indicates that increasing BI may 
visually compete with or overshadow cultural and historical features, 
reducing attention to them (Fig. 6b).

(b) GI positively influences attention to GI (p < 0.001), suggesting a 
reinforcing effect between perceptual salience and visual exposure 
(Fig. 6b).

(c) Additional significant interactions include GI/BI× perspective 

Fig. 4. Eye-tracking heatmaps: The examples of the two groups. 
Note: Other heatmaps from the two groups can be found in Appendix A1.

Y. Peng et al.                                                                                                                                                                                                                                    Environmental Impact Assessment Review 118 (2026) 108301 

9 



Fig. 5. Analysis results of fixation duration. 
Note: Additionally, fixation durations for each AOI category under different BI/GI exposure levels are also computed for reference at (b)-(c). In addition, the table of 
fixation duration for each participant can be found in Appendix A2. Details of the fixation duration for each participant can be seen in Appendix A3.
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focal points and GI × paved ground, illustrating that GI/BI may enhance or 
redirect spatial cognition depending on scene composition, because the 
gaze on perspective focal points and paved grounds always relates to spatial 
cognition (Fig. 6b).

The analysis also reveals notable group-level differences. Public 
participants exhibit significantly lower attention to historical and cultural 
elements (Coef = − 0.087, p = 0.017) and perspective focal points (Coef =
− 0.079, p = 0.030) compared to professionals. This suggests that pro
fessionals are more attuned to symbolic and visual-spatial features. 
Interestingly, under higher GI Level conditions, the general public group 
demonstrates greater engagement with paved ground AOIs (Coef =
0.043, p = 0.042) (Fig. 6c).

4.3. Questionnaire results (feeling layer)

4.3.1. Overview of response patterns
To ensure internal consistency across repeated scene evaluations, 

Cronbach’s Alpha was computed for each perception factor (F11–F33) 
separately within the expert and public groups. All 16 (8 factors, 2 
groups) coefficients exceeded 0.92 (Appendix A4), confirming the 
reliability of responses and the stability of factor structures across 20 
spatial scenarios. Descriptive analysis reveals a clear alignment between 
perceived environmental quality and infrastructure exposure. Scenes 
with high combined infrastructure levels—particularly Scene 10 (BI = 1, 
GI = 1) and Scene 8 (BI = 1, GI = 2)—consistently received the highest 
average ratings from both groups. Scene 10, for example, yields mean 
scores of 4.73 (experts) and 4.87 (public), the highest across all evalu
ated scenes. In contrast, scenes with minimal infrastructure receive 
noticeably lower ratings, often falling below 4.0. These trends are robust 
across factors and user groups, indicating that both experts and non- 
experts consistently associate greater infrastructure presence with 
higher perceived value in historic urban settings. While GI exhibits a 
broad positive effect—particularly on ecological aesthetics and spatial 
memory—BI displayed more focused influence. Among public partici
pants, BI strongly enhances perceptions of visual aesthetics and genius 
loci, producing mean score differences of 0.3–0.5 points between low- 
and high-BI scenarios (Fig. 7a).

4.3.2. BGI influence analysis: LMM and RF
All LMM analyses accounted for inter-individual variability and 

repeated scene measures to ensure robustness of estimated effects. LMM 
results revealed that both BI and GI have significant positive effects 
across nearly all perception factors, though with distinct patterns be
tween expert and public groups (Fig. 7b): For historical atmosphere- 
related factors (F11–F13), both BI and GI are highly significant (p <
0.001). In the public group, GI has a stronger effect on F11 (cultural/ 
symbolics) (coef = 0.25) than in the expert group (0.15), while BI more 
strongly influences F12 (spatial memory) among experts (coef = 0.27 vs. 
0.18 in public). For spatial aesthetics (F21–F22), experts are more 
influenced by GI, particularly for ecological aesthetics (F22) (coef =
0.23). Conversely, public participants are more responsive to BI, espe
cially on visual aesthetics (F21) (BI coef = 0.25 vs. GI = 0.21), reflecting a 
more visually driven perception. In functionality-related factors 
(F31–F33), GI is the dominant predictor in both groups, especially for 
recreational and well-being (F32) and spatial function (F33). BI shows 
positive but generally weaker effects.

RF analysis assesses the contribution of BI and GI without relying on 
statistical thresholds (Fig. 7c). Importance scores, calculated using MDI, 
further confirm the differential impact of BI and GI across perception 
factors: In the expert group, GI consistently ranks higher than BI in 
importance scores, averaging 0.63 across all factors. It is particularly 
dominant for F22 (ecological aesthetics) and F11 (cultural/symbolics), 
where importance reaches 0.92 and 0.88, respectively. Among public 
participants, BI emerges as a stronger predictor for specific factors, 
namely F21 (visual aesthetics) and F13 (genius loci), where its importance 
surpasses that of GI (0.56 vs. 0.44 and 0.52 vs. 0.39, respectively).

The convergence of LMM significance and RF importance highlights 
the robustness of these findings: GI has a broad and stable influence, 
especially among experts, while BI’s impact is more factor-specific and 
visually driven, especially in the public group.

4.4. Interview-based perception analysis (understanding layer)

In total, a combined 620 coded pathways have been identified across 
both groups, comprising 264 codes from the public group and 356 from 
the expert group (Fig. 8). Across all interview responses, both public and 
expert groups exhibit a general preference for GI over BI, though the 
distribution is relatively balanced. The public group records 115 GI- 
related mentions and 102 for BI, while the expert group registers 119 
for GI and 106 for BI.

Fig. 6. Results of the LMM analysis. 
Note: Details of the LMM results can be seen in Appendix A4.
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Fig. 7. Results of the questionnaire-based analysis. 
Note: Details of the questionnaire results can be seen in Appendix A5.
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Fig. 8. Results of coding analysis.

Fig. 9. Integration and generalization at “seeing” and “feeling” layer: (a) Visual attention weights by integrating LMM and BGI exposure; (b) Preference scores 
enhancing estimation for the entire street by integrating RF and BGI exposure; (c) The local analysis for the different segments; (d) The local analysis for 
the viewpoints.
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The two groups demonstrate distinct patterns in how each infra
structure type is cognitively linked to specific subdimensions. For the 
public group, GI is most strongly associated with Recreational and well- 
being functions (37 mentions), followed by Visual aesthetics (18) and 
Genius loci (21). BI is linked primarily to Visual aesthetics (21) and Rec
reational and well-being functions (23), with some mention of Ecological 
function (15). The expert group exhibits a more functionally and 
ecologically integrated mapping. GI is most commonly linked to 
Ecological function (31) and Recreational and well-being functions (23), 
whereas BI is associated with Ecological aesthetics (11), Ecological func
tion (18), and Spatial function (18).

At the subdimension level, the most cited categories for the public 
group are Recreational and well-being functions (60), Genius loci (44), and 
Visual aesthetics (39)—highlighting an affective and sensory-driven 
mode of engagement. Experts emphasize Ecological function (49), Rec
reational and well-being functions (39), and Spatial function (33), reflecting 
a more analytic, systems-based framework. These findings underscore 
fundamental differences in how public and expert groups interpret BGI 
in HUAs at the “understanding” layer.

4.5. Cross-layer visual enhancement from BGI on HUA

This section integrates findings from all three perceptual layers with 
UAV-derived BGI exposure modeling to assess how BGI enhances visual 
experience across multiple spatial scales along Pingjiang Road. Consis
tent with the methodology outlined in Section 3.4, the analysis is 
structured into the following three subsections:

(a) Integrated street-level analysis of visual attention and 
preference.

Aggregated perceptual outcomes from the eye-tracking (“seeing”) 
and questionnaire (“feeling”) experiments reveal a coherent spatial 
relationship between BGI exposure and perceptual impacts at the street 
level (Fig. 9a, b).

Specifically, street segments characterized by higher combined GI 
and BI exposure exhibit systematically modified visual attention distri
butions, reducing fixation intensity on historically dominant AOIs (such 
as cultural elements and perspective focal points) and slightly shifting 
visual attention toward GI elements. This attentional redistribution 
implies subtle attentional competition effects, where increased BGI 
exposure may moderately draw gaze away from traditional heritage 
focal points. Notably, these attentional shifts remain consistent across 
both expert and general public groups, suggesting a generalized atten
tional impact of BGI exposure.

In parallel, the street-level integrated analysis of affective preference 
consistently demonstrates positive perceptual uplift associated with 
increased BGI exposure. Higher exposure levels of GI and BI strongly 
correlate with elevated environmental preference ratings across all 
perceptual factors. GI emerges as a particularly consistent and influen
tial factor, especially among experts who link it with ecological aes
thetics and spatial coherence. In contrast, BI’s perceptual contribution is 
more nuanced and context-specific, exerting a somewhat stronger in
fluence among the public, particularly concerning visual aesthetics and 
symbolic resonance (genius loci). Collectively, this integrated analysis 
clearly demonstrates that the high spatial exposure to BGI significantly 
enhances perceptual quality across the street, simultaneously promoting 
broader visual exploration and elevated environmental preferences.

(b) Localized predictions of BGI impacts.
Building upon UAV-derived spatial exposure modeling, this study 

further conducted detailed perceptual assessments for different seg
ments of the street, specifically divided into the southern, northern, and 
eastern segments (Fig. 9c).

In the southern segment, the area toward the south exhibited high 
levels of GI exposure and moderate BI exposure, contributing to a pos
itive distribution of visual attention and significantly enhancing 
perceptual evaluations across ecological aesthetics (F22), visual aesthetics 
(F21), and spatial functionality (F33), resulting in high overall preference 

scores (approximately 4.6–4.8). Conversely, the northern area of the 
southern segment, characterized by generally low levels of BGI expo
sure, exhibited notably lower preference ratings (approximately 
3.8–4.1).

Similarly, in the northern segment, the central area demonstrated 
low BGI exposure levels, corresponding with reduced overall perceptual 
preference ratings (approximately 3.8–4.0). However, the southern and 
northern ends of the northern segment presented moderate BI exposure 
and relatively higher GI exposure, substantially improving environ
mental perceptions and spatial quality ratings (approximately 4.2–4.5), 
though still slightly below those of the southern portion of the southern 
segment.

For the eastern segment, high levels of BI exposure significantly 
elevated perceptual ratings for visual aesthetics (F21) and genius loci 
(F13). Specifically, the western area of the eastern segment, with rela
tively lower GI exposure, exhibited somewhat reduced ratings for 
ecological aesthetics and spatial coherence, though overall preference 
scores remained relatively high (approximately 4.4–4.6). Meanwhile, 
the eastern area, characterized by both high GI and BI exposure, further 
enhanced ratings across visual and ecological aesthetics, leading to 
overall spatial perception scores of approximately 4.5–4.7, approaching 
the highest levels observed in the southern portion of the southern 
segment.

In addition, the environmental impact of BGI can also be assessed 
based on the specific areas of different viewpoints. For instance, the 
three viewpoints depicted in the figure show relatively low impacts of 
BGI on visual attention and preference, resulting in slightly lower 
preference scores (Fig. 9d). This UAV-based spatial-perceptual analyt
ical approach not only facilitates systematic evaluation at the overall 
street scale but also enables targeted assessments and predictions for 
specific points or segments of varying lengths and detail. Compared with 
traditional perception studies based solely on individual scenes or 
viewpoints, this method offers significantly greater flexibility and 
generalizability, providing robust support for spatial planning and 
design decisions in heritage areas.

(c) Understanding Layer: Divergent cognitive structures 
anchored in BGI.

At the understanding level, both user groups construct distinct 
cognitive pathways from BGI to perceptual meanings (Fig. 10). Experts 
show a more comprehensive and balanced structure, linking both BI and 
GI to all three major themes—historical/cultural atmosphere, spatial 
aesthetics, and spatial functionality. Their interpretation is systematic, 
combining ecological, spatial, and symbolic dimensions. In contrast, the 
public group focuses more on affective and sensory experiences. Their 
pathways concentrate on visual aesthetics, cultural identity (genius 
loci), and recreational and well-being functions, reflecting a perception 
mode rooted in personal emotion and visual impression rather than 
systemic reasoning. These results highlight that while both groups 
recognize the value of BGI, experts approach it through functional and 
integrated thinking, whereas the public engages through aesthetic and 
experiential dimensions.

5. Discussions

By integrating UAV photogrammetry with a three-layer perceptual 
framework, this study offers nuanced insight into how BGI shapes visual 
experience in HUAs. The findings indicate that (a) the digital modeling 
approach supports perception analysis by providing more reliable 
exposure estimates, addressing RQ1; (b) explaining BGI’s influence 
benefits from a multi-layer design that links attention, appraisal, and 
interpretation, addressing RQ2; and (c) BGI appears to diversify visual 
attention, tends to enhance subjective perceptual quality, and activates 
distinct cognitive interpretations among experts and the general public, 
informing RQ3. The discussion that follows develops these three strands 
and then outlines theoretical and practical implications, limitations, and 
directions for future research.
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5.1. Cross methodological gaps: Combination of digital tools with 
empirical approaches

In recent years, the study of visual perception has been characterized 
by a methodological divide: quantitative, expert-driven tools such as GIS 
and 3D modeling dominate spatial analysis, while empirical, perception- 
based approaches focus on users’ subjective experiences (Gulten et al., 
2025; Nijhuis et al., 2011). Although both streams offer valuable in
sights, each has inherent limitations when used independently. Purely 
spatial analyses (e.g., digital modeling approaches evaluating visibility 
or exposure metrics) frequently neglect human subjective experiences 
and emotions, especially inadequate for environments embedded with 
complex historical or cultural meanings (Ervin, 2001). Likewise, AI- 
based analyses using Street View Imagery (SVI) are constrained by 
fixed viewpoints, coverage limitations, and inadequate adaptability to 
diverse historical urban settings (Fan et al., 2025; Peng et al., 2025). For 
instance, in many heritage-sensitive areas, comprehensive street-view 
datasets are unavailable, severely restricting analysis applicability. On 
the other hand, empirical perception/behavior-based methods alone 
often undervalue spatial or environmental characteristics, making their 
findings challenging to generalize or integrate at larger scales (Chhetri 
and Stimson, 2014).

In relation to RQ1, this paper contributes to bridging this gap by 
integrating UAV-based photogrammetry and 3D semantic modeling 
with a three-layer empirical framework, combining eye-tracking, ques
tionnaire surveys, and interviews. Specifically, the UAV-based data 
acquisition presented here overcomes the viewpoint and coverage con
straints inherent to SVI approaches, offering a non-intrusive, flexible 
alternative ideal for analyzing sensitive heritage contexts. The digital 
modeling component enables spatially explicit visibility mapping of BGI, 
producing scene-specific exposure metrics from pedestrian perspectives. 
These serve as the foundation for selecting representative visual stimuli 
and calibrating perceptual data at a fine-grained level. Empirical 
methods validate and contextualize these spatial metrics through user 
responses. This hybrid approach provides triangulated evidence across 
methods and links the objective spatial attributes of visual impact 
sources with the comprehensive spectrum of human perceptual re
sponses. By correlating measurable exposure metrics with layered user 
perceptions, it enables a nuanced evaluation of visual impact levels that 
extends beyond mere geometric analysis. Although demonstrated here 
through the case of BGI (the influence is in general positive), the 

framework is broadly applicable to assessing diverse visual impact 
sources in different urban heritage contexts.

By demonstrating the value of cross-methodological integration, this 
study advances current visual assessment practices in heritage planning 
and Environmental Impact Assessment (EIA) (Dentoni et al., 2023). It 
supports a shift from static visibility simulations or isolated surveys 
toward multi-methodological and perception-informed evaluations, of
fering a more realistic reflection of how people experience complex, 
visually sensitive environments.

5.2. Cross perceptual layers: Seeing, feeling, and understanding

This study advances understanding of visual perception in HUAs by 
integrating three complementary layers, namely seeing, feeling, and 
understanding, into a unified analytical framework that clarifies, with 
respect to RQ2, how BGI relates to attention, appraisal, and interpre
tation. Previous perceptual assessments often focus exclusively on one 
isolated dimension, limiting their explanatory power. Physiological 
methods, such as eye-tracking, are precise in revealing patterns of visual 
attention at the neurological and behavioral levels. However, they 
inherently neglect the experiential complexity and interpretive richness 
of visual perception. Specifically, eye-tracking data alone cannot clarify 
whether visual attention reflects attraction, confusion, or even cultural 
significance, as identical visual attention patterns could emerge from 
vastly different perceptual motivations (Geise, 2011; McGrath et al., 
2019). Surveys capturing aesthetic or emotional preferences rely on 
participants’ retrospective self-reports, which are inherently influenced 
by memory biases, social desirability, or cultural framing effects. 
Nevertheless, subjective evaluations derived purely from surveys are 
detached from real-time perceptual experiences, making it difficult to 
reliably associate reported preferences with actual visual processing 
behaviors or spatial-environmental features (Bishop and Rohrmann, 
2003; Vo et al., 2024). Qualitative cognitive studies, such as in-depth 
interviews or discourse analyses, excel at uncovering rich narratives 
and interpretive frameworks through which people understand visual 
environments. Yet, without grounding in measurable physiological data 
or systematically collected subjective ratings, these qualitative in
terpretations can remain speculative, contextually bounded, and diffi
cult to generalize or systematically integrate into spatially explicit 
analyses (Lloyd and Gifford, 2024).

By merging physiological (seeing), affective (feeling), and cognitive 

Fig. 10. Understanding layer: Cognitive pathways for both groups.
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(understanding) dimensions, the present study moves beyond these 
limitations, achieving a comprehensive and integrative analysis of visual 
perception. Each layer captures a distinct but interconnected facet of 
human experience, offering a progressively deeper view into how BGI 
shapes the visual environment. The seeing layer captures the immediate 
physiological responses through eye-tracking (Liu and Nijhuis, 2020), 
showing that BGI subtly diversifies visual attention without overriding 
cultural focal points. The feeling layer further reveals that greater BGI 
exposure consistently enhances subjective evaluations across aesthetic, 
atmospheric, and functional dimensions. Building on these sensory and 
affective responses, the understanding layer maps the cognitive path
ways through which different user groups interpret BGI, from experts’ 
functional-symbolic reasoning to the public’s emotional and aesthetic 
engagement.

Together, these layers form a complementary and hierarchical 
structure, where sensory perception (seeing) initiates emotional 
appraisal (feeling), which subsequently supports deeper cognitive 
interpretation (understanding). This structured integration allows a 
multi-dimensional reading of visual experience and a gradual unfolding 
from surface-level impressions to meaning-making processes. Such an 
approach highlights both the analytical complementarity—each layer 
offering distinct but interconnected insights—and the progressive depth 
of perception, reinforcing the value of layered frameworks for nuanced 
visual impact assessments in culturally significant environments.

Notably, in heritage-sensitive contexts, where spatial perception is 
deeply embedded in cultural memory, symbolic narratives, and 
emotional attachments, visual impact assessment must move beyond 
numerical measures of visibility or the physiological tracking of gaze 
patterns. It must also address the experiential and interpretive di
mensions that shape how individuals and groups relate to historic spaces 
(Assmann, 2011a; Lowenthal, 1975). Interventions (such as BGI in this 
study), when introduced into such contexts, interact not only with the 
physical environment but also with collective memory and identity, 
making its visual impact inseparable from affective responses and 
cognitive constructions of meaning (McDowell, 2016). By systematically 
linking seeing, feeling, and understanding, the present framework cap
tures this complexity, offering a more holistic, culturally attuned 
methodology. It thus provides a critical basis for future heritage visual 
impact assessments that aim to respect, preserve, and enrich the expe
riential authenticity of historic urban landscapes.

5.3. Cross groups differences: General public and experts

While the three-layer framework addresses RQ3 by revealing cross- 
group differences between experts and the general public in visual 
attention, affective evaluation, and cognitive interpretation, these var
iations are secondary to a broader implication: the ongoing shift in 
heritage value assessment paradigms. Briefly, experts tend to interpret 
BGI interventions through multidimensional functional, ecological, and 
symbolic frameworks, whereas the general public’s engagement is 
anchored in aesthetic pleasure, emotional resonance, and immediate 
spatial experiences.

This divergence reflects a broader and increasingly recognized shift 
in heritage theory and practice. Traditional models of heritage evalua
tion, predominantly expert-driven and focused on formally recognized 
values, are now expanding to incorporate diverse public perceptions and 
everyday experiences (Jones, 2017). Concepts such as “everyday heri
tage (Atkinson, 2016),” “informal heritage (Barrère, 2016),” and 
participatory heritage management emphasize that cultural significance 
is not solely determined by expert authority but emerges through lived 
experience, emotional attachment, and collective memory within com
munities (Li et al., 2020). In this context, visual impact assessment for 
heritages landscapes must move beyond narrowly technical or profes
sionalized perspectives. They must systematically account for the 
perceptual, affective, and cognitive frameworks through which non- 
expert users engage with interventions in the landscape. By capturing 

both expert and public pathways of meaning-making, assessments can 
better reflect the pluralistic nature of heritage value judgments and 
more effectively guide the design and management of culturally sensi
tive environments.

5.4. Insights for HUA development

Building upon the cross-layer and cross-group findings, several in
sights emerge for the future planning and visual management of HUAs, 
with this case situated in a Jiangnan water-green context where BGI is 
closely interwoven with canals, bridges, narrow alleys, and garden 
traditions.

First, the layered perception model demonstrates that BGI is not 
merely a functional or decorative component, but a perceptual agent 
that modulates attention, influences preferences, and shapes meaning. 
Even when not the primary visual focus, BGI supports more diversified 
and relaxed visual scanning, contributing to environmental legibility 
and psychological restoration. This suggests that strategic incorporation 
of BGI can enhance visual coherence without overwhelming the heritage 
character. For example, in a newly reconstructed historic environment 
within the case area (Zhongzhangjia Xiang), higher levels of BGI expo
sure can effectively enhance people’s preference for the newly created 
spaces, as illustrated by Scene 20. Although its score is slightly lower 
than other scenes with similar BGI levels, the preference rating is still 
higher than many areas with lower BGI exposure.

Second, by linking BGI exposure to perceptual evaluations, the study 
provides a framework for evidence-based visual enhancement. Scenes 
with moderate to high BGI exposure consistently achieved higher 
perceptual scores, indicating that balanced integration (not excess) is 
key. Overdesign or uncontrolled vegetation growth, while not present in 
the case area, may lead to visual clutter or loss of historical legibility, a 
risk noted in other studies.

Third, the differentiated cognitive responses between experts and the 
general public underscore the need for multi-vocal design and evalua
tion processes. Experts seek systemic coherence and functional perfor
mance, while the public prioritizes sensory richness and cultural 
resonance. Planning strategies should therefore accommodate both 
analytical and experiential perspectives, facilitating broader public 
engagement and heritage appreciation.

Finally, integrating digital modeling with empirical perception offers 
a practical and scalable way to manage visual environments in HUAs, 
particularly in Jiangnan settings. Recent advances in consumer-grade 
imaging and efficient modeling methods such as 3D Gaussian Splat
ting lower technical barriers and enable low-disturbance surveys. The 
approach is transferable conditionally to canal- and green-structured 
districts with similar sightline structures, pedestrian-scale street forms, 
comparable eye-level BGI placement, and heritage contexts that sustain 
place attachment; beyond these conditions, findings should be re-tested 
before use.

5.5. Limitations

Despite these contributions, several limitations must be acknowl
edged. First, the study privileges spatial metrics and quantitative evi
dence, and its engagement with social, historical, and ethnographic 
dimensions remains limited. Interpretations are therefore framed largely 
as context-specific associations rather than culturally situated explana
tions. Future work should incorporate stronger ethical engagement and 
reflexivity, for example by deepening community participation, 
expanding qualitative and ethnographic inquiry, and making researcher 
positionality explicit in order to situate findings within lived histories 
and local meanings (Muhammad et al., 2015). Second, the representa
tiveness of the study sample was limited in terms of demographic vari
ability (including gender, age, cultural background) and the structure of 
both general public and expert groups. These sampling limitations 
potentially constrain the broader applicability of perceptual and 
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cognitive findings. Demographic factors (e.g., gender, age, culture) were 
intentionally not controlled, as the study focused primarily on percep
tual differences between expert and public groups. However, future 
work should address these variables explicitly. Third, the integrated 
methodological approach employed in this study, including UAV-based 
data acquisition, eye-tracking, and qualitative assessments, is resource- 
intensive and logistically complex, limiting its immediate scalability 
beyond small-scale pilot studies. Future research could explore meth
odological simplifications or adaptations suitable for broader or larger- 
scale applications. Finally, the eye-tracking experiments utilized static 
photographs rather than mobile glasses in field settings, potentially 
reducing the ecological validity of perceptual data. Future research 
should consider employing mobile eye-tracking technology to capture 
more realistic perceptual responses.

6. Conclusions

This paper investigates how BGI shapes visual perception in HUAs by 
integrating UAV photogrammetry with a perception-based framework 
encompassing three layers: seeing, feeling, and understanding. 
Combining spatially explicit modeling with empirical methods, 
including eye-tracking, questionnaire surveys, and in-depth interviews, 
the study assessed the perceptual influence of BGI across experts and the 
general public.

The findings reveal that BGI contributes to HUA perception in 
distinct but complementary ways. At the seeing layer, BGI moderates 
visual attention patterns, subtly reducing the dominance of traditional 
focal points and encouraging more diverse visual engagement. At the 
feeling layer, BGI exposure correlates with consistently higher user 
evaluations across historical atmosphere, aesthetics, and spatial func
tionality. At the understanding layer, BGI serves as a cognitive trigger, 
activating different interpretive pathways among user groups. GI exerts 
a more stable and broadly positive impact, while BI exhibits more 
context-dependent and group-specific effects. Professionals display a 
balanced and systemic interpretation of BGI, whereas the general public 
emphasizes emotional and aesthetic connections.

Methodologically, this study demonstrates the value of integrating 
digital spatial analysis with perception-based empirical approaches. By 
systematically bridging spatial quantification and multi-layered 
perception analysis, it offers a novel framework that advances visual 
impact assessment beyond traditional singular-method approaches. The 
proposed cross-method, cross-layer, and cross-group framework offers a 
practical, replicable model for perception-informed visual impact 
assessment in heritage contexts. This research is among the first to 
explicitly examine how BGI influences visual perception in HUAs, 
addressing a critical but previously overlooked dimension of heritage- 
sensitive landscape evaluation. Beyond BGI, the framework holds sig
nificant potential for broader applications in evaluating diverse spatial 
interventions in culturally sensitive environments, supporting more in
clusive, evidence-based, and culturally attuned planning practices. By 
highlighting both spatial attributes and lived perceptual experiences, 
the study contributes new methodological pathways for advancing vi
sual environmental assessments that respond to the pluralistic and 
evolving nature of heritage conservation demands.
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de la Fuente Suárez, L.A., 2020. Subjective experience and visual attention to a historic 
building: a real-world eye-tracking study. Frontiers of Architectural Research 9 (4), 
774–804. https://doi.org/10.1016/j.foar.2020.07.006.

De Lucio, J.V., Mohamadian, M., Ruiz, J.P., Banayas, J., Bernaldez, F.G., 1996. Visual 
landscape exploration as revealed by eye movement tracking. Landsc. Urban Plan. 
34 (2), 135–142. https://doi.org/10.1016/0169-2046(95)00208-1.

Deghati Najd, M., Ismail, N.A., Maulan, S., Mohd Yunos, M.Y., Dabbagh Niya, M., 2015. 
Visual preference dimensions of historic urban areas: the determinants for urban 
heritage conservation. Habitat Int. 49, 115–125. https://doi.org/10.1016/j. 
habitatint.2015.05.003.

Dentoni, V., Lai, A., Pinna, F., Cigagna, M., Massacci, G., Grosso, B., 2023. 
A comprehensive methodology for the visual impact assessment of mines and 
quarries. Environ. Impact Assess. Rev. 102, 107199. https://doi.org/10.1016/j. 
eiar.2023.107199.
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Santo-Tomás Muro, R., de Tejada, Sáenz, Granados, C., Rodríguez Romero, E.J., 2020. 
Green infrastructures in the Peri-urban landscape: exploring local perception of well- 
being through ‘go-Alongs’ and ‘semi-structured interviews’. Sustainability 12 (17), 
6836. https://www.mdpi.com/2071-1050/12/17/6836.

Sarihan, E., 2021. Visibility model of tangible heritage. Visualization of the urban 
heritage environment with spatial analysis methods. Heritage 4 (3), 2163–2182. 
https://doi.org/10.3390/heritage4030122.

Y. Peng et al.                                                                                                                                                                                                                                    Environmental Impact Assessment Review 118 (2026) 108301 

18 

https://www.mdpi.com/2071-1050/12/11/4625
https://doi.org/10.1016/j.compenvurbsys.2025.102253
https://doi.org/10.1016/j.eiar.2024.107535
https://doi.org/10.1016/j.eiar.2024.107535
https://doi.org/10.1111/arcm.12078
https://doi.org/10.3389/feart.2022.847959
https://doi.org/10.1016/j.egypro.2017.07.437
https://doi.org/10.1016/j.egypro.2017.07.437
https://doi.org/10.1016/j.eiar.2025.107917
https://doi.org/10.1016/j.eiar.2025.107917
https://doi.org/10.5771/2192-4007-2011-2-149
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0170
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0170
https://doi.org/10.3390/su17083402
https://doi.org/10.3390/su132414068
https://doi.org/10.1016/j.jas.2008.07.005
https://doi.org/10.1016/j.jas.2008.07.005
https://doi.org/10.1080/02815739708730435
https://doi.org/10.1016/j.scs.2022.103755
https://doi.org/10.1016/j.scs.2022.103755
https://doi.org/10.3390/buildings15142571
https://doi.org/10.3390/buildings15142571
https://doi.org/10.1007/s10708-008-9205-1
https://doi.org/10.1007/s10708-008-9205-1
https://doi.org/10.1016/j.eiar.2010.12.005
https://doi.org/10.1016/j.eiar.2010.12.005
https://www.mdpi.com/2073-445X/11/8/1251
https://www.mdpi.com/2073-445X/11/8/1251
https://doi.org/10.1080/20518196.2016.1193996
https://doi.org/10.1080/20518196.2016.1193996
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0225
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0225
https://doi.org/10.1177/0013916589215001
https://doi.org/10.1177/0013916589215001
https://doi.org/10.1080/02699938708408361
https://doi.org/10.1080/02699938708408361
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0240
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0240
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0245
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0245
https://doi.org/10.1016/j.cities.2019.102476
https://doi.org/10.1016/j.cities.2019.102476
https://doi.org/10.1016/j.ufug.2021.127153
https://doi.org/10.1016/j.ufug.2021.127153
https://doi.org/10.1016/j.ufug.2024.128631
https://doi.org/10.1007/978-981-10-4113-6_10
https://doi.org/10.1007/978-981-10-4113-6_10
https://doi.org/10.1016/j.eiar.2020.106376
https://doi.org/10.1016/j.jenvp.2024.102347
https://doi.org/10.1016/j.jenvp.2024.102347
https://doi.org/10.5194/isprsannals-II-5-227-2014
https://doi.org/10.2307/213831
https://doi.org/10.1016/j.ufug.2022.127695
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0295
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0295
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0300
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0300
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0300
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0300
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0305
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0305
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0310
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0310
https://doi.org/10.1177/0896920513516025
https://doi.org/10.1007/978-1-4684-5601-1_3
https://doi.org/10.1007/978-1-4684-5601-1_3
https://doi.org/10.1177/001391659402600305
https://doi.org/10.1177/001391659402600305
https://doi.org/10.7480/rius.2.205
https://doi.org/10.7480/rius.2.205
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0335
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0335
https://doi.org/10.1006/jevp.2001.0233
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0345
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0345
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0345
https://doi.org/10.1016/j.ufug.2023.128159
https://doi.org/10.1016/j.eiar.2025.108032
https://doi.org/10.1016/j.eiar.2025.108032
https://doi.org/10.3390/app122412886
https://doi.org/10.5194/isprsannals-II-5-W1-253-2013
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0370
http://refhub.elsevier.com/S0195-9255(25)00498-6/rf0370
https://doi.org/10.1080/10645578.2014.885362
https://doi.org/10.1080/10645578.2014.885362
https://doi.org/10.1007/s00530-024-01514-6
https://doi.org/10.1007/s00530-024-01514-6
https://doi.org/10.3390/su71013290
https://doi.org/10.3390/su71013290
https://www.mdpi.com/2071-1050/12/17/6836
https://doi.org/10.3390/heritage4030122


Sastre, J., Sastre, A., Gamo, A.M., Gaztelu, T., 2013. Economic impact of 
Pedestrianisation in historic Urban Centre, the Valdemoro case – study (Spain). 
Procedia Soc. Behav. Sci. 104, 737–745. https://doi.org/10.1016/j. 
sbspro.2013.11.168.
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