
 
 

Delft University of Technology

Using Hopfield Networks to Correct Instruction Faults

Köylü, T.C.; Fieback, M.; Hamdioui, S.; Taouil, M.

DOI
10.1109/ATS56056.2022.00030
Publication date
2022
Document Version
Final published version
Published in
2022 IEEE 31st Asian Test Symposium (ATS)

Citation (APA)
Köylü, T. C., Fieback, M., Hamdioui, S., & Taouil, M. (2022). Using Hopfield Networks to Correct Instruction
Faults. In 2022 IEEE 31st Asian Test Symposium (ATS) (pp. 102-107). IEEE.
https://doi.org/10.1109/ATS56056.2022.00030

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ATS56056.2022.00030
https://doi.org/10.1109/ATS56056.2022.00030


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Using Hopfield Networks
to Correct Instruction Faults

Troya Çağıl Köylü, Moritz Fieback, Said Hamdioui and Mottaqiallah Taouil
Quantum & Computer Engineering Department

Delft University of Technology
Delft, the Netherlands

{T.C.Koylu, M.C.R.Fieback, S.Hamdioui, M.Taouil}@tudelft.nl

Abstract—Fault injection attacks pose an important threat
to security-sensitive applications, such as secure commu-
nication and storage. By injecting faults into instructions,
an attacker can cause information leakage or denial-of-
service. Hence, it is important to secure the sensitive parts
not only by detecting faults in the executed instructions
but also by correcting them. In this work, we propose a
hardware detection and correction module based on Hopfield
networks. Our module is connected to the instruction buffer
and validates all fetched instructions. In case faults are
detected, faulty instructions are replaced by corrected ones.
Experimental results on a small RISC-V processor and two
RSA implementations show that we achieve near perfect
detection and around 70% accurate correction with 9% area
overhead. This correction rate is enough to secure some
implementations for all considered attacks.

Index Terms—statistical error correction, Hopfield net-
works, fault injection, hardware security, machine learning

I. INTRODUCTION

Fault injection attacks are important threats to micro-
processors, as they can cause disruptions in operation
and even leak secret data [1]. It is relatively easy for
an attacker to inject these faults, as simple techniques
such as clock glitching or voltage underfeeding can
be used [2], [3]. This has been shown for widely-used
cryptosystems in numerous instances such as RSA [4],
where fault injection leads to faulty instructions [5],
[6]. Furthermore, recently it was demonstrated that it
is possible to underfeed the voltage remotely to a
line of secure Intel chips, resulting in leaking secrets
from a Chinese remainder theorem (CRT)-based RSA
implementation [7]. Although it is important to detect
these faulty instructions and prevent faulty results from
reaching the attackers, doing so should not result in a
denial-of-service attack. Hence, mechanisms to not only
detect but also correct faulty instructions are crucial to
sustain security-sensitive applications, especially crypto
implementations that are widely employed.

Solutions that address the detection and correction
of instruction faults typically introduce some sort of
redundancy. The redundancy can be added in time or
hardware. Redundancy in time is typically implemented
on the software level, e.g., by repeating instructions
that are prone to faults [8]. This increases the execution

time of the program and does not guarantee that all
faults will be corrected. Hardware approaches typically
introduce error correcting codes [9], [10], signature com-
parisons [11], or duplicate/triplicate hardware that is
prone to faults [12], [13]. Error correcting codes can only
detect and correct a limited number of bit-flips and as
such do not protect all instructions in security-sensitive
applications, just like signature comparisons. Duplicat-
ing or even triplicating the hardware is very expensive in
terms of area and power consumption, which prohibits
the use in resource-constrained devices, such as IoT.
Therefore, for security-demanding applications, there is
a need for a scheme with high error detection/correction
capability and low area overhead.

To address this need, we present a statistical error
correction scheme that is based on Hopfield networks.
Our scheme is able to (i) detect and (ii) correct erroneous
instructions before they are executed, thereby preventing
(i) information leakage and (ii) denial-of-service. In sum-
mary, our contributions in this work are as follows:
• Proposal of an efficient and effective statistical error
correction scheme based on Hopfield networks to
detect and correct instruction faults.

• Efficient hardware design of the proposed error
correction scheme for general-purpose processors.

• Demonstration of the effectiveness of the proposed
scheme by fault attack experimentation on two RSA
implementations for different fault attack models.

The rest of this paper is organized as follows. Section II
describes the motivation and our proposed error correc-
tion scheme. Section III presents an efficient hardware
design of the scheme, while Section IV validates it
experimentally. Finally, Section V concludes the paper.

II. METHODOLOGY

In this section, we first describe the concept behind our
detection and correction scheme. Thereafter, we describe
the application and threat model. Finally, we show how
Hopfield networks can be used for the scheme.

A. Concept
Our fault detection and correction scheme is a hard-

ware module that resides between the instruction buffer

102

2022 IEEE 31st Asian Test Symposium (ATS)

2377-5386/22/$31.00 ©2022 IEEE
DOI 10.1109/ATS56056.2022.00030

20
22

 IE
EE

 3
1s

t A
sia

n 
Te

st
 S

ym
po

siu
m

 (A
TS

) |
 9

78
-1

-6
65

4-
72

27
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AT
S5

60
56

.2
02

2.
00

03
0

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Functional Overview of the Proposed Scheme

and the processor. Its functionality is shown in Figure 1.
As indicated in the figure, our module verifies the

instructions that the processor fetches. The module is ap-
plication dependent and a fault in an instruction causes
an unexpected instruction for the application. During
instruction verification, the instruction is forwarded to
the processor without modifications in case no fault has
been detected. On the other hand, when the detection
and correction module detects a fault in an instruction,
it raises the fault flag and sends the corrected instruction
to the processor instead. Note that this solution is not
disruptive to the implementation of the processor and
hence, does not require costly modifications to it.

B. Application and Threat Model

In this work, we focus on commonly employed soft-
ware implementations of crypto cores [14] as security-
sensitive application. The reason is twofold: (i) given the
inputs (e.g., key and ciphertext), cryptosystems typically
generate a deterministic output. This makes it possible
to check for application reliability and denial-of-service
in general under the influence of a fault attack, by com-
paring the golden output with the obtained output; (ii)
there are mathematical models that describe how secret
key information can be leaked from a faulty output and
hence, it allows us to evaluate the proposed detection
and correction scheme.

The RSA cryptosystem [15] presents a very suitable
case study. Namely, there are multiple ways to imple-
ment the algorithm which results in different vulnerabili-
ties. A commonly used algorithm to make the RSA mod-
ular calculation faster is using CRT [16]. This implemen-
tation however is vulnerable to the Bellcore threat [17],
which may leak the entire secret key when correct and
faulty decryption results are compared. Another popular
vulnerability is based on Bao’s threat [18], which is also
applicable to RSA implementations without CRT. With
each successfully inserted fault, one bit of the secret key
may be leaked.

The Bellcore and Bao threats require fault injections
to specific values during the calculation. Many fault
attacks on instructions can be used to exploit these
vulnerabilities. To evaluate the strength of the detection
and correction scheme, we use the following fault attack

models [19]: bit-level, byte-level, branch-to-opposite, and
instruction-to-instruction I/II fault models.

The bit-level fault model comprises a single bit flip in
an instruction. This can be caused naturally by radia-
tion [1] or by sophisticated attack means such as laser-
based fault injection [20] and Rowhammering [21]. The
byte-level fault model comprises corrupting one byte of
the instruction. This can be caused by less sophisticated
attack means, such as exposing the chip to ultraviolet
light [22]. The branch-to-opposite fault model comprises
changes in branch instructions to their opposite ones
(e.g., branch equal to branch not equal), effectively
reverting the branch behavior. This was for example
achieved in [5], where the authors used voltage under-
feeding to successfully break RSA. Finally, instruction-
to-instruction I/II fault models are extensions of the
previous one, where an instruction can be changed into
any other valid instruction. Variant I prevents another
instruction to become a branch to avoid many crashes,
while variant II does not come with this limitation.
These two fault models can only be realized by very
sophisticated means of attack, such as using multiple
lasers at once.

C. Hopfield Network-Based Instruction Fault Detection and
Correction

The implementation of our detection and correction
scheme is based on Hopfield networks. The original
Hopfield network is a basic memory structure that re-
calls patterns. Its simplicity and recalling property is the
main reason why we use Hopfield networks, instead
of complex networks like a convolutional neural net-
work. A simple example with one iteration is illustrated
in Figure 2. The memory in the example contains six
neurons (n0 to n5) and hence, it can recall patterns of
length six. For simplicity, we assume that the patterns
consist of bipolar bits, i.e., x ∈ {−1, 1}6. When a new
pattern xnew is provided for evaluation, the network tries
to reconstruct it with the resembling patterns that were
previously learned. Initially, the state equals the input,
i.e., ξ0 = xnew. Thereafter, the new state is obtained by
multiplying the current state ξ0 with the weight matrix
W , resulting in ξ1. In general, the state update formula
for t iterations equals the following [23]:

ξt+1 = sgn(Wξt). (1)

Here, sgn represents the sign function with the output
either equal to -1 (if the argument is negative) or 1 (if
it is positive). The iterations end when the new state
equals the current one, i.e., ξt+1 = ξt. Furthermore, the
weight matrix is simply obtained from the dot product
of the learning patterns, i.e., W = ∑N−1

i=0 (xixT
i ), where

xi|i ∈ [0, N) are the learned patterns.
The main issue with the example Hopfield network in

Figure 2 is its very limited memory capacity. According

103

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Sample Hopfield Network over a State Iteration

to the formula provided in [24], this Hopfield network is
expected to only memorize 0.84 patterns. The capability
of storing patterns has to be increased, which can be
achieved by including non-linear operations inside the
neurons. This enables both a capacity increase and an
improved ability to distinguish between close patterns.
This is indicated by the following formula [25], which is
a modification of Equation 1:

ξt+1[l] = sgn[
N−1

∑
i=0

F(xT
i ξ

(l+)
t )−

N−1

∑
i=0

F(xT
i ξ

(l−)
t )]. (2)

Here, ξ
(l+)
t and ξ

(l−)
t only differ in bit l, where ξ

(l+)
t [l] = 1

and ξ
(l−)
t [l] = −1. F is the aforementioned nonlinear

function that increases the capacity. If F(a) = a2, the sim-
ple Hopfield network is obtained. When the exponent
is higher, the recall capability of the neurons and thus
the overall memory capacity increases in a nonlinear
fashion [26]. For instance, when F(a) is changed from
a2 to a3, the expected number of stored patterns with
the same six neurons increases from 0.84 to 3.35.

With nonlinear Equation 2, it is theoretically possible
to store all unique instructions of a program by using
32 or 64 neurons - equal to the typical instruction size.
The unique instructions of the RSA implementation can
be extracted from the binary. The Hopfield network
learns (or stores) these instructions. At runtime when the
RSA implementation is executed, fetched instructions are
validated and corrected using the learned instructions
(see Equation 2).

There are however two challenges in realizing this.
The first and the main challenge is the hardware cost of
implementing the nonlinear function F(a). The second
is the iterative nature of Equation 2 to reach conver-
gence, which makes the hardware implementation more
difficult due to the potential need for multiple cycles.
Note that the convergence state can also be an invalid
instruction. This is typically not a problem when stored
patterns are images and the reconstructed image only
differs in a couple of pixels. However in our case, even
a single bit difference in the corrected instruction can

result in crashes (when a faulty instruction is corrected
to an invalid one) or significantly different results (e.g.,
when loading a value from an incorrect address or
register).

To solve both issues, we analyze Equation 2 in more
depth. Let’s assume a very large value for the exponent K
in F(a) = aK to increase the performance of the network.
This results in the following equation:

ξt+1[l] = sgn[
N−1

∑
i=0

(xT
i ξ

(l+)
t )K −

N−1

∑
i=0

(xT
i ξ

(l−)
t )K]. (3)

Let us consider two scenarios for this equation. The first
case is when ξt = xî (i.e., the current instruction equals
the stored instruction î). In this case, ∀l the following
holds: xT

i ξ
(l+)
t will dominate the summation if ξt = ξ

(l+)
t

and xT
i ξ

(l−)
t otherwise; and determine the bit as l = xî[l].

In the end, ξt+1 = xî will hold.
The second case is when ξt differs from xî by one bit,

due to for example a fault at l̂. Then, l = xî[l] holds
∀l �= l̂. On the other hand, the sign will be reversed
for ξt+1[l̂], as xT

i ξ
(l+)
t will dominate the summation if

ξt �= ξ
(l̂+)
t and xT

i ξ
(l̂−)
t otherwise. This will make ξt+1

and xî differ in only one bit. Thus, correcting as ξt+1 = xî
will be valid.

From these, we conclude from the ideal case that when
K is very large, each bit of ξt+1 is heavily influenced by
the most similar stored instruction xî. Hence, it is mean-
ingful to make the instruction correction as ξt+1 ≈ xî.
This eliminates the need for multiple iterations to reach
convergence (by equating the new state simply to one
of the stored instructions). In addition, it enables us to
simplify the calculations into a bitwise comparison with
all stored instructions and select the most similar one.

III. HARDWARE IMPLEMENTATION

The implementation of our fault detection and cor-
rection scheme is based on the observations made in
Section II-C. We integrate it with a 32-bit RISC-V pro-
cessor [27].

The architecture of the detection and correction
scheme is provided in Figure 3. As shown in the figure,
the architecture consists of three stages: Stage 1 - com-
parison, Stage 2 - calculation, and Stage 3 - verification.
In the comparison stage, the current instruction (denoted
as inst0 ) is compared with all stored unique instructions
(denoted as sti|i ∈ [0, N)). The comparison is done with
modified XOR gates, which output the total number of
bits that are different. As the maximum difference can
at most be 32, five bits are needed.

The calculation stage aims to find the instruction ID (i.e.,
the storage address of the instruction in our module)
with the minimum difference. To this end, this stage
uses a tree-like structure of min units. These units take

104

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Hardware Architecture of the Detection & Cor-
rection Module

four inputs: two difference values (represented with 5
bits) and two corresponding IDs (represented by log2N
bits). This unit simply forwards the value and the ID of
the smaller difference. Naturally, the depth of the tree
depends on the number of stored instructions N. The
end product of this stage is the ID of the most similar
stored instruction stmin_diff.

The third and the final verification stage determines
if there is a fault. It accomplishes this by first loading
stmin_diff using the ID output of Stage 2. Then, it com-
pares to see if inst0 = stmin_diff. If they are equal, it sets
the fault flag to 0 and to 1 otherwise. In both cases, it
forwards stmin_diff to the processor, which is the same
instruction in the no fault detected case and the corrected
version of the instruction in the fault detected case.

IV. VALIDATION

In this section, we describe the experimental setup and
validate the effectiveness of our proposed scheme.

A. Experimental Setup
The experimental setup is based on the one presented

in [19]. We used random keys for the C-based RSA
decryption implementations with and without CRT. We
first extracted the unique instructions from their corre-
sponding binaries. This resulted in 120 unique instruc-
tions for the CRT and 48 for the non-CRT implementa-
tion. Note that this extraction process does not consider
speculative or out-of-order execution. However, they
do not affect our module, as instructions are checked
individually without considering their order.

In this work, we conduct two sets of experiments.
In the first one, we investigate the performance of our

simplified Hopfield network based on bitwise compar-
isons against other Hopfield realizations with higher
exponentiation (see Section II-C). This experiment is
conducted in Python using the unique instructions of
the non-CRT implementation. In the second experiment,
we investigate the error detection and correction per-
formance of our hardware scheme. Per fault model (see
Section II-B), we conduct 1000 RSA decryptions. This is
performed for both RSA implementations.

We carried out all hardware simulations for the sec-
ond set of experiments using the QuestaSIM simula-
tor [28], where our Hopfield-based detection and correc-
tion scheme is integrated into a RISC-V processor. We
inject the faults into the instruction buffer during each
RSA decryption run. At each run, we inject faults in one
up to four different instructions based on the selected
fault model (see Section II-B). These faults are injected
randomly at run-time. Note that the faulty instructions
that are sent to the processor for execution are either
accurately or inaccurately corrected by the detection and
correction scheme.

Finally, we evaluated the hardware overhead of
our module by synthesizing it for the FPGA device
XC7K325TFFG900-2 from the Kintex-7 family [29] and
comparing it with the RI5CY core [30]; RI5CY is a small
scale RISC-V processor and is synthesized on the same
FPGA device.

B. Accuracy of Simplified Hopfield Network

In this experiment, we compare the performance of
our simplified Hopfield network based on bitwise com-
parisons with the non-simplified F(a) = a2 standard
Hopfield network, F(a) = exp(a) [24], and F(a) = a8.
We conduct three trials in this experiment.

In the first trial, we test the performance of the differ-
ent Hopfield networks without injecting any faults. Here
we want to check whether they can store the instructions
properly and analyze how many iterations are needed
for convergence. For F(a) = a2, F(a) = exp(a), and
F(a) = a8, we limit the number of iterations to 10 in
order to avoid infinite loops of non-convergence. In the
second trial, we exhaustively inject bit-flips in every bit
of the unique instructions, one at each time (i.e., there
are in total 48× 32 = 1536 runs). In the third trial, we
corrupt the bytes of the unique instructions to create 20
faulty instances (i.e., there are 48× 20 = 960 runs).

Table I presents the results of the three trials; it shows
how many instructions are corrected in an accurate and
inaccurate manner, as well as the average number of
iterations required to reach convergence.

As can be observed from the table, our simplified
Hopfield network significantly outperforms the other
realizations in terms of accurate corrections and required
number of iterations. In addition, its hardware imple-
mentation is much cheaper.

105

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Accuracy of Hopfield Networks
trial method accurate correction inaccurate correction average iterations

1
bitwise 48 0 1.0

a2 1 47 4.54
exp(a) 35 13 1.31

a8 34 14 1.33

2
bitwise 1488 48 1.0

a2 32 1504 4.63
exp(a) 1089 447 2.26

a8 1055 481 2.26

3
bitwise 782 178 1.0

a2 20 940 4.66
exp(a) 579 381 3.02

a8 537 423 3.18

TABLE II: Detection Performance
detection decryption security

fault #faults CRT non- CRT non- CRT non-
model ( f ) CRT CRT CRT

1 f = 1 0.97 1.00 0.98 1.00 0.98 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I f = 1 0.94 0.93 0.98 0.95 0.99 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II f = 1 0.98 0.99 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

C. Validation of Error Detection and Correction Scheme
First, we tested our scheme with non-faulty decryp-

tions. For this, we used 10,000 non-faulty decryptions.
Our scheme did not raise any false alarms in these runs.
Next, we tested our module against faulty runs. Our
module successfully detects a fault if it raises at least one
fault flag during that run. Table II presents the detection
results.

In the table, the results are presented in three classes,
just as in [19]: detection, decryption (coverage), and
security (coverage). Detection is the percentage of faulty
runs that our module detected. The decryption column
also includes the undetected cases where the decryption
output is still correct, making it impossible for an at-
tacker to exploit such faults. The security column further
includes the faulty output cases that Bellcore and Bao
threats were not able to exploit. Note that Bellcore threat
is only applicable to the CRT implementation, while
Bao is applicable to both. Moreover, the table further
differentiates cases where only one instruction is faulty
(i.e., f = 1) and cases where more than one instruction
is faulty (i.e., f > 1). As the results show, we achieve
perfect or near perfect detection in all cases except
for fault model 4-I where f = 1. Note that this fault
model has constraints that make the detection harder;
instructions are changed into other valid instructions,
while branches are protected. Overall, the decryption
and security coverage is even higher than detection,
making it very hard for an attacker to leak information
while our module is active. The non-CRT case is even
fully secure against Bao’s attack.

Next, we test the correction performance of our
scheme. The results are presented in Table III. This table

TABLE III: Correction Performance
correction operational

fault #faults CRT non- CRT non-
model ( f ) CRT CRT

1 f = 1 0.94 0.96 0.94 0.97
f > 1 0.81 0.92 0.91 0.97

2 f = 1 0.67 0.77 0.78 0.84
f > 1 0.31 0.63 0.59 0.75

3 f = 1 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00

4-I f = 1 0.45 0.46 0.49 0.48
f > 1 0.35 0.30 0.60 0.41

4-II f = 1 0.66 0.76 0.69 0.79
f > 1 0.49 0.58 0.67 0.65

presents the results in two cases: (i) correction and (ii)
operational (coverage). The correction column presents
the ratio of faulty runs where the scheme corrected
the instructions in an accurate manner. The operational
column includes all cases where the output is correct,
i.e., cases where the correction was successful but also
some cases where it was not.

As can be observed from the table, the correction
performance does not significantly vary per implemen-
tation, but does vary for different fault models. For
the bit-level faults (fault model 1), our module attains
>81% correction rate. When there is only one bit-flip, the
success rate increases to >94%. Furthermore, our module
attains a perfect correction rate for branch faults (fault
model 3). The correction rate however drops for other
fault models. In the majority of the cases for these fault
models however, the correction rates are still acceptable,
i.e., 70.3% on average. The operational coverage on the
other hand reaches 77.7%. The performance particularly
suffers when there are multiple faults during a single
run or faults change an instruction to another valid
instruction (especially in fault model 4-I). Both perfor-
mance drops are to be expected: it is harder to correct
when there are more faults in different or in the same
instruction. It must be stressed that these cases are not
as common as the others.

A final observation from Tables II and III is that
our module has a significantly higher fault detection
performance than the correction performance. This is
because it is enough to raise one fault flag during a run
to successfully detect a fault, while all faulty instructions
should be accurately corrected to achieve a correct run.
The latter is particularly challenging when instructions
are changed with multiple bits, making them potentially
closer to other stored instructions.

Finally, Table IV shows the area of the RI5CY core and
the detection/correction schemes for the CRT and non-
CRT implementations. Next to the resources required
for the detector, the overhead relative to the RISC-V
processor is also indicated in brackets. Both schemes
have less than 9.2% overhead as compared to the RI5CY
core in terms of LUT slices.

106

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Hardware Overhead
implementation slice LUTs slice registers f7 MUX f8 MUX DSPs
RI5CY core 15857 8333 3373 1286 6
Scheme - CRT 1453 (9.2%) 0 (0.0%) 3 (0.1%) 0 (0.0%) 0 (0.0%)
Scheme - non-CRT 1338 (8.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

V. DISCUSSION AND CONCLUSION

In this work, we presented an effective and efficient
statistical error correction scheme based on Hopfield
networks. We conclude this paper by discussing the
following points.
• Security and Generality: Our scheme is shown to be
able to detect and correct faulty instructions for two
RSA implementations. Especially, it is able to reach a
near 100% security coverage. Furthermore, our scheme
can be used in general for any secure application.
The only requirement is that the designer includes
a sufficient number of XORs and a depth of min
units (see Section III). As such, different applications
can seamlessly be protected by our module, without
requiring any hardware changes.

• Comparison: Our scheme improves upon the state of
the art in different aspects (see Section I). Instruc-
tion repeating, error correction codes, and signature
comparisons are not able to correct different types
of faults. This is shown to increase the vulnerability
for some cases [31]. In contrast, our scheme is shown
to detect and correct various instruction faults with
various amounts of bitflips (up to 11 for fault models
4-I/II). Next, only certain hardware TMR can outper-
form our scheme. Triplicating the instruction buffer is
not sufficient, as a fault injected during the execution
of a branch instruction can cause all three instruction
buffers to receive erroneous proceeding instructions.
Our scheme can still detect these faulty instructions, in
case they are not a part of the stored unique instruction
set. Thus, triplicating the whole core is the only option
that guarantees the detection and correction of all
faulty instructions, which certainly outperforms our
scheme, albeit with a huge added cost.

• Limitations: The results show that our correction per-
formance is not as high as our detection performance.
The main issue causing this is that some faults cause
instructions to be closer to other stored unique in-
structions. A way to alleviate this is to make the
instructions as different as possible. Hence, a compiler
that uses maximally different instructions to accom-
plish the same operation can increase the correction
performance significantly.

REFERENCES

[1] H. Bar-El et al., “The sorcerer’s apprentice guide to fault attacks,”
Proceedings of the IEEE, vol. 94, pp. 370–382, 2006.

[2] F. Amiel et al., “Fault analysis of dpa-resistant algorithms,” in
FDTC. Springer, 2006, pp. 223–236.

[3] N. Selmane et al., “Practical setup time violation attacks on aes,”
in EDCC.

[4] R. Abid et al., “An optimised homomorphic CRT-RSA algorithm
for secure and efficient communication,” Personal and Ubiquitous
Computing, pp. 1–14, 2021.

[5] A. Barenghi et al., “Low voltage fault attacks on the rsa cryptosys-
tem,” in FDTC. IEEE, 2009, pp. 23–31.

[6] J.-M. Schmidt et al., Optical and EM fault-attacks on CRT-based RSA:
Concrete results, 2007.

[7] K. Murdock et al., “Plundervolt: Software-based fault injection
attacks against intel sgx,” in S&P. IEEE, 2020, pp. 1466–1482.

[8] A. Mokhtarpour et al., “PB-IFMC: A selective soft error protection
method based on instruction fault masking capability,” in CSICC,
2020, pp. 1–9.

[9] S. Gupta et al., “SHAKTI-F: A fault tolerant microprocessor archi-
tecture,” in ATS, 2015, pp. 163–168.

[10] Y.-J. Ke et al., “An integrated design environment of fault tolerant
processors with flexible HW/SW solutions for versatile perfor-
mance/cost/coverage tradeoffs,” in ITC-Asia, 2017, pp. 162–167.

[11] N. Farazmand et al., “FEDC: Control flow error detection and
correction for embedded systems without program interruption,”
in ARES. IEEE, 2008, pp. 33–38.

[12] L. T. Clark et al., “A dual mode redundant approach for micropro-
cessor soft error hardness,” IEEE Transactions on Nuclear Science,
vol. 58, pp. 3018–3025, 2011.

[13] A. Rohani et al., “An on-line soft error mitigation technique for
control logic of VLIW processors,” in DFT, 2012, pp. 85–91.

[14] E. Ochoa-Jiménez et al., “Implementation of RSA signatures on
GPU and CPU architectures,” IEEE Access, vol. 8, pp. 9928–9941,
2020.

[15] R. L. Rivest et al., “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21,
pp. 120–126, 1978.

[16] C. Paar et al., Understanding cryptography: a textbook for students and
practitioners. Springer Science & Business Media, 2009.

[17] D. Boneh et al., “On the importance of checking cryptographic
protocols for faults,” in Eurocrypt. Springer, 1997, pp. 37–51.

[18] F. Bao et al., “Breaking public key cryptosystems on tamper re-
sistant devices in the presence of transient faults,” in International
Workshop on Security Protocols. Springer, 1997, pp. 115–124.

[19] T. C. Koylu et al., “RNN-based detection of fault attacks on RSA,”
in ISCAS, 2020, pp. 1–5.

[20] M. Agoyan et al., “How to flip a bit?” in IOLTS. IEEE, 2010, pp.
235–239.

[21] Y. Kim et al., “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 361–372.

[22] J.-M. Schmidt et al., “Optical fault attacks on aes: A threat in
violet,” in FDTC. IEEE, 2009, pp. 13–22.

[23] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities.” PNAS, vol. 79, pp. 2554–
2558, 1982.

[24] M. Demircigil et al., “On a model of associative memory with
huge storage capacity,” Journal of Statistical Physics, vol. 168, pp.
288–299, 2017.

[25] H. Ramsauer et al., “Hopfield networks is all you need,” arXiv
preprint arXiv:2008.02217, 2020.

[26] D. Krotov et al., “Dense associative memory for pattern recog-
nition,” Advances in neural information processing systems, vol. 29,
2016.

[27] A. Waterman et al., “The RISC-V instruction set manual-volume
i: User-level isa-document version 2.2,” RISC-V Foundation (May
2017), 2017.

[28] “Questa® advanced simulator.” [Online]. Available: https://
www.mentor.com/products/fv/questa/

[29] “7 series FPGAs data sheet: Overview,” Sep 2020. [On-
line]. Available: https://www.xilinx.com/content/dam/xilinx/
support/documents/data_sheets/ds180_7Series_Overview.pdf

[30] “RI5CY: User manual,” Apr 2019. [Online]. Available: https://
www.pulp-platform.org/docs/ri5cy_user_manual.pdf

[31] A. Rhisheekesan et al., “Control flow checking or not?(for soft
errors),” TECS, vol. 18, pp. 1–25, 2019.

107

Authorized licensed use limited to: TU Delft Library. Downloaded on December 23,2022 at 07:12:39 UTC from IEEE Xplore.  Restrictions apply. 


