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A B S T R A C T

Machine learning (ML) for real-time security assessment requires a diverse training database to be accurate for
scenarios beyond historical records. Generating diverse operating conditions is highly relevant for the uncertain
future of emerging power systems that are completely different to historical power systems. In response, for
the first time, this work proposes a novel split-based sequential sampling approach based on optimisation
that generates more diverse operation scenarios for training ML models than state-of-the-art approaches. This
work also proposes a volume-based coverage metric, the convex hull volume (), to quantify the quality
of samplers based on the coverage of generated data. This metric accounts for the distribution of samples
across multidimensional space to measure coverage within the physical network limits. Studies on IEEE test
cases with 6, 68 and 118 buses demonstrate the efficiency of the approach. Samples generated using the
proposed split-based sampling cover 37.5% more volume than random sampling in the IEEE 68-bus system.
The proposed  metric can assess the quality of generated samples (standard deviation of 0.74) better
than a distance-based coverage metric which outputs the same value (standard deviation of < 0.001) for very
different data distributions in the IEEE 68-bus system. As we demonstrate, the proposed split-based sampling
is relevant as a pre-step for training ML models for critical tasks such as security assessment.
1. Introduction

The integration of more renewable energy introduces a high level of
uncertainty in power systems operations. This uncertainty challenges
future reliability management [1]. Conventional reliability manage-
ment involves considering large safety margins for system operations.
Subsequently, the security of the energy supply is reliable in most
cases. However, allowing such large safety margins on top of the in-
creasing uncertainty of system operations implies inefficiently utilising
the infrastructure at most times. Maintaining this inefficient status-quo
requires expensive infrastructure investments in the future. A more
efficient approach would be to use the existing infrastructure more
exhaustively by lowering safety margins. Nevertheless, this approach
needs to improve the situational awareness of the system operation.

The availability of real-time operation data, for instance, from
Phasor measurement units (PMUs) [2] allows for carrying out state es-
timation [3] and the subsequent dynamic security analysis (DSA) of the
system. However, with current operating tools and uncertain operation
data, it is computationally expensive to assess system security in real-
time for numerous possible operating scenarios and disturbances. For
example, a single assessment can take up-to 56 s in large systems [4],
and several thousand assessments would be needed. In such scenarios,
ML is particularly promising as it allows for predictions in real-time
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with little computational time [5]. A functioning ML-based DSA tool
has the potential to increase situational awareness, support reliability
management, improve uncertainty handling, and efficiently integrate
more renewable energy.

1.1. ML approach to security assessment

The idea of ML for DSA is the following: Offline, a database of
many possible operating conditions (OCs) with the corresponding in-
formation on whether the OC is secure (or not) for one (or multiple)
disturbances is generated. Subsequently, models are trained using ML
approaches. Then, in real-time operations, the learned models predict
the level of security as an output where the input is the current OC.
Although the models may sometimes be inaccurate, the main benefit is
that OCs that were not part of the database can be input, and most
importantly, no computational time (e.g., for simulations) is needed
in real-time operations. This approach is promising to increase the
situational awareness of the system operator (SO) by allowing the SO
to consider a large number of possible OCs and disturbances in real-
time. In light of this development, machine-learned models including
decision trees (DTs) [6,7], support vector machines (SVMs) [8], and
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Nomenclature

Indices

𝜌 user-defined threshold on the size of 𝛺𝐺

𝑑 index of sample where the primary variable is
located

𝑘 index of gaps
𝑁 number of selected secondary variables
𝑛 number of samples that are vertices of the convex

hull
𝑝 index of all variables
𝑞 index of selected secondary variables
𝑆 user-defined number of samples to generate
𝑢 index of samples
𝑣 index of all secondary variables

Sets

𝛺̂ subset of variables to compute volume
𝛺𝑃 set of all variables
𝛺𝑆 set of generated feasible samples
𝛺𝐺 set of all gaps
𝛺𝑄∗ set of selected secondary variables
𝛺𝑄 set of all secondary variables
𝛺𝑆′′ set of all generated samples
𝛺𝑆′ set of generated infeasible samples
𝛺𝑉 −𝑆

𝑝 set of ordered generated feasible samples in
variable 𝑝

Parameters

𝛼 tolerance parameter on variable 𝑝 in optimisation
𝛽 share of infeasible samples
𝛥𝑥(𝑚𝑎𝑥)𝑝 maximum gap in variable 𝑝
𝛥𝑥(𝑢)𝑝 gap between (𝑢+1)th and (𝑢)th largest samples in

variable 𝑝
𝜀 weighted Euclidean distance between optimised

sample 𝑥∗ and corresponding target 𝑇𝑝
𝑁+ number of insecure operating conditions
𝑁− number of secure operating conditions
𝑟𝑝 range of variable 𝑝
𝑇𝑝 target of variable 𝑝
𝑤𝑝 weight of variable 𝑝 in optimisation
𝑥𝐿𝐵𝑝 lower bound of variable 𝑝
𝑥𝑈𝐵
𝑝 upper bound of variable 𝑝

Variables

𝛿 slack variable in optimisation
𝑥 variable defining an operating condition

Others

𝛾𝑖 minimum distance between sample 𝑥𝑖 and other
samples in 𝛺𝑆

̂ normalised convex hull volume

more recently deep learning models [9] have shown promise to assess
dynamic stability problems ranging from voltage stability [7,10], tran-
sient stability [6,9] and frequency stability [11,12]. Recent works [13–
16] show real promise for real-time probabilistic DSA including con-
sidering topological changes [17,18]. There, using ML, estimating the
dynamic security boundary [19] particularly works well for future low
2

𝜆 coverage metric based on distance
𝜆 real number
 convex hull volume
 distance based coverage metric
(𝑝) position of 𝑥∗ in 𝛺𝑉 −𝑆

𝑝
 moving average
(𝑘) mapping to retrieve variable index 𝑝
 (𝑘) mapping to retrieve sample index 𝑢
𝐶 convex hull of a set of points
𝑓 function describing random selection of 𝛺𝑄∗

𝑔(𝑥∗) ≤ 0 constraints on optimised operating condition 𝑥∗

ℎ coverage metric based on point norm distribution
ℎ𝑖 maximum distance between sample 𝑥𝑖 and ver-

tices of its associated cell 𝑉𝑖
𝑉𝑖 Voronoi tessellation formed by sample 𝑥𝑖
𝑥∗ an optimised operating condition
𝑦 vertex of Voronoi cell

inertia grids [20] and may become possible through the increasing
availability of larger amount of (PMU-) data and monitoring tools
in control centers [21]. However, as these ML-based approaches to
DSA are data-driven these approaches can only be as good as their
training database. Using only historical observations as training data
is insufficient [22,23]. Therefore, the generation (sampling) of data is
highly relevant for the success of all aforementioned approaches [24].
Many papers that focus on developing ML-based models consider the
generation of the data, a few have focused only on the generation of
database. This work focuses only on the generation of training data.

1.2. Sampling approaches

The prediction performance of ML models is generally a reflection
of the quality (coverage, variability, and balance) of the data used
in training [25]. The choice of training databases in DSA application
differs from other ML applications that use (recorded) observations.
Using recorded, historical data for DSA has limitations. Often, the
majority of historical observations are secure. However, a good training
database needs to consider both secure and insecure conditions [5].
Also, historical OCs rarely involve extreme operating scenarios. Hence,
sampling approaches are used to generate synthetic OCs. When gener-
ating synthetic samples, firstly, an OC is sampled, then it is assessed
with a time-domain simulation for the considered contingency.

The generation of data for ML-based DSA is highly relevant which
is why many contributions were made along three types of approaches:
the first type of approach, historic sampling uses historical records [23],
fits a probability distribution to it (e.g., vine-copulas in [26,27] to
capture the dependencies between loads and wind power outputs), then
generates OCs using Monte-Carlo (MC) type samplings [28,29]. This
type of approach is suitable to sample OCs following the same distri-
bution as historical observations. Another variant of historic sampling
determines the ‘relevant’ buses to obtain sparse PMU measurements.
By selecting subsets of these ‘relevant’ buses for sampling, the issue of
high dimensionality can be mitigated as only a smaller (‘relevant’) di-
mension of variables need to be sampled as shown in [30,31]. However,
future OCs may be different than historical OCs, and sampling from
distributions is unsuitable for creating extreme OCs typically found
at the tails of distributions. The second type of approach, importance
ampling is where the sequence of sampling and classifier training
teratively repeats to maximise high information content [32–36]. In
ach iteration, the sampling (e.g., with MC-sampler) generates possible
Cs. Then, the classifier quantifies the importance of these OCs based
n the predicting confidence. Subsequently, the security assessment is



International Journal of Electrical Power and Energy Systems 146 (2023) 108790A.-A.B. Bugaje et al.

t
a
w
u
a

d
O
w
w
o
t
s
r
t
4
a
t
p
c
l
s
O

a
t
o
n
(
t
d
T
t
s
D
a
d
c
o

used only on samples with low confidence. For instance, Yan [22] uses
entropy as a metric to generate ‘relevant’ samples closer to the deci-
sion boundary. [24] uses ‘directed walk’ methods to samples around
the decision boundary. The third type of approach, generic sampling,
generates points uniformly distributed in the feasible space to explore
all possible OCs. However, large systems require large amounts of gen-
erated data, and most data adds little knowledge to the database. For
instance, Jafar [37] uses the Latin hypercube sampling (LHS) approach
to uniformly sample the entire search space, and researchers in [38]
sample within the feasible neighbourhood of OCs, while researchers
in [39] proposed an outer approximation to convexify the original non-
convex feasible space, then sample from the convex region to generate
samples close to the security boundary. Venzke [40] uses infeasibility
certificates based on separating hyperplanes to discard large portions
of the input space as infeasible. More recently, the authors in [41]
developed a framework to generate representative samples that span
the AC OPF feasible space by uniformly sampling loads from a convex
input space and using infeasibility certificates to reduce the search
space. The drawback of the first and second type of sampling ap-
proaches is that they neglect some feasible OCs. The first approach
is biased towards historical observations, and the second towards the
importance of learning the security boundary. Hence, sampling extreme
OCs with those approaches is rare. However, studying extreme OCs
beyond historical records is crucial as these can be dangerous for system
operations. The challenge of the third type of approach is that sampling
in high-dimensions is not trivial. Therefore, a current research gap
and need is an efficient generic sampling approach that scales to larger
systems and can generate extreme synthetic OCs as the introduction
of intermittent renewables into the energy mix means that the power
system will experience new OCs that were historically not covered.

Other fields faced with similar sampling challenges from large
solution spaces have proposed novel approaches. In particular, bio-
engineering employs random sampling  techniques to investigate
constraint-based metabolic reactions that have a large solution space. A
popular sampling technique often employed is the family of ‘‘hit-and-
run’’ (HR) samplers (ACHR [42], CHRR [43]) that randomly choose
directions to traverse a model’s solution space based on warm start
positions. This approach relies on the convexity of the solution space
and requires relaxation of non-convex models as found in the II-ACHR
sampler [44]. A new approach called GAPSPLIT was introduced to
sample models directly [45]. The sampler generates points by jumping
to unexplored regions of the space in contrast with the random walk
approach employed by HR samplers. GAPSPLIT is a competitive al-
ernative to HR samplers that scales relative to the size of the model
nd can sample directly from non-convex models. Samples generated
ith GAPSPLIT also have better coverage than ACHR and CHRR on
nbounded model variables. The approach was used in [46] to sample
highly constrained solution space.

The state-of-the-art methods in the literature focusing on generating
ata for a training database of ML-based DSA is presented in Table 1.
ur proposed approach is fundamentally novel to other peer-reviewed
orks we have investigated. Specifically, our approach is novel in the
ay the initial OCs are being sampled. Our approach conceptually
utperforms other state-of-the-methods in it’s practicality, and ability
o generate all (feasible) possible operating conditions. Typically, most
tate-of-the-art works consider generator outputs to be scheduled to
epresent conventional systems operations, often as a result of solving
he optimal power flow problem that minimises generation cost [26,32,
1,33,34,31,48,36]. However, as it is likely that the initial OC where
fault occurs is different from the optimal set-points, it is necessary

o develop methods that explore these likely OCs [22]. Thus, a first
oint of comparison to generate pre-fault OCs is with methods that
onsider the OPF to generate initial OCs. The other approaches in the
iterature explore the entire feasible space in a generic way via random
ampling, often using the Latin Hypercube sampling to generate initial
3

Cs [37,39,40,24,22]. As a consequence, a second and more pivotal
comparison is with those methods that aim to uniformly cover the
search space using techniques like the Latin Hypercube sampling. As
highlighted in Table 1, additionally, a major shortcoming of historical
and some importance sampling approaches is that the resulting database
of OCs represents only a small portion of the feasible space. Conse-
quently generic sampling allows the exploration of the full physical
feasible space. While existing generic sampling approaches currently
in the literature attempt to discard sections of the search space via
rapid rejection sampling [41,39,40,24], our proposed method differs
fundamentally from state-of-the-art approaches by optimally exploring
the feasible space in an iterative fashion. This exploration is done by
varying the objective function and active constraints while respecting
all the physical feasible constraints. The novelty of this work stems from
presenting for the first time a generic sampling method that categorically
explores the feasible space in an optimal manner. Finally, our proposed
approach is versatile and could be further developed towards the
combination with other database generation approaches like impor-
tance sampling and together with historical records. In parallel to this
work, the generic sampling approach [47] investigates multiple objective
functions to explore the feasible space.

1.3. Measuring quality of sampling

The quality of a training database is a measure of coverage of the
feasible space and data usefulness, representing the pre- and post- fault
data, respectively, in ML DSA application. For the coverage, typically, a
set of points is said to uniformly cover a region when the points satisfy
the following characteristics: (1) placed equidistant relative to one
another (2) cover the entire region/volume of interest (3) distributed
equally along all directions [49]. Point-to-point coverage measures
focus on the first characteristic and aim to quantify how well the points
are placed relative to one another. Examples of such metrics include
the coverage metric (COV) used in [45], the coefficient of variation (𝜆)
nd mesh ratio (𝛾). Volumetric coverage measures, however, combine
he first characteristic with one or both of the other two. Examples
f volumetric measures based on Voronoi tessellation include point
orm distribution (ℎ), point distribution ratio (𝜇), regularity metric
𝜒), etc. [49]. In high dimensional space, proximity measures (point-
o-point coverage measures) used in two or three-dimensional space
o not carry the same intuitive descriptive information quality [50].
he intuition of Euclidean distance falls apart, and a skin-effect-like
endency is observed such that the volume is concentrated around the
kin of a high dimensional hyper-sphere instead of the centre [51].
ue to this concentration effect, the relative contrast between far
nd near points diminishes as the dimensionality increases, making it
ifficult to discriminate between far and near points [52]. Therefore, a
urrent research gap and need is a metric that can quantify the quality
f a training database for generic sampling approaches that have the

objective to generate diverse OCs in the physical feasible space for
power system DSA application.

For data usefulness, typically the issue of imbalanced datasets in
the post-fault label is in focus. In DSA application, the distribution of
secure/insecure OCs represents an important consideration for train-
ing ML models. There, the state-of-the-art methods in the literature
use a preprocessing step such as synthetic minority oversampling
(SMOTE) [53] and adaptive synthetic sampling (ADASYN) [54] to
achieve this balance, usually to supplement with insecure OCs. The
second way to address this imbalance is by combining historical records
with OCs generated using a generic sampling approach. In power sys-
tem security assessment, accurately predicting insecure OCs is more
important than predicting secure ones [14], and as historical OCs
are disproportionately biased with more secure OCs, it motivates the
creation of synthetic datasets.

This work focuses on the first quality measure of coverage and aims
to generate pre-fault data so that the datasets can have diverse OCs. The
motivation of this work is to fully concentrate on the issue of variability
in the pre-fault database, where this does not include variability of the

post-fault label.
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Table 1
Summary of relevant state-of-the-art works on database generation for ML-based DSA.

Reference Type Sampling of initial OCs Advantages Shortcomings

[41] Generic sampling Solving OPF to minimise
generation cost

Uses convex relaxations and hyperplanes to
discard large sections of the input space.
Explores load space via Monte-Carlo
sampling

Only considers generator outputs obtained
from solving OPF to represent conventional
operation, which is a small subset of the
feasible space.

[40] Generic sampling LHC sampling or uniform
sampling.

Systematically covers the search space with
uniform sampling while discarding large
hyperplanes of infeasible regions

Fitting a multivariate distribution around
secure OCs only generates OCs of similar
distribution without exploring other
possibilities.

[39] Generic sampling LHC sampling Systematically covers the search space with
uniform sampling while discarding
hyperspheres of infeasible regions

Discarding hyperspheres of many
initialisation points in high-dimensions in
not computationally trivial

[33] Importance
sampling

Solving OPF to minimise
generation cost

Focuses on sampling close to the decision
boundary thereby reducing computational
budget

Biassing the sampling towards the security
boundary ignores rare extreme OCs. Only
considers OPF solutions

[26] Historical sampling Solving OPF to minimise
generation cost

High density sampling of OCs from
historical records.

Neglects unseen or rare OCs that are critical
to be analysed.

[24] Generic +
Importance
sampling

Grid search, uniform
sampling in each
dimension or LHC
sampling

Focuses on sampling close to the decision
boundary using enhancement methods such
as directed walks, the prediction model as a
pre-selection tool for relevant samples and
performance guarantee of entire regions.

Relies on resampling techniques to bias
sampling to narrow regions of the space.
Using performance guarantees significantly
reduces the search space and can affect
model performance.

[47] Generic sampling Sequentially generated to
explore the physical
feasible space

Sequentially explores the physical feasible
space to maximise distance from previously
generated samples.

Performance on larger systems (bus ≥ 68) is
not tested.

[34] Importance
sampling

Solving OPF to minimise
generation cost

Computes quadratic approximation of the
security boundary and use importance
sampling to generate OCs

Dataset represents only a small portion of
the feasible space.

[32] Importance
sampling

Solving OPF to minimise
generation cost

Identifies the decision boundary and fits a
polynomial function so as to sample OCs
within the proximity of the boundary

Dataset represents only a small portion of
the feasible space

[22] Importance
sampling

LHC sampling Uses a transient stability index to direct
sampling in a high-information content
region formulated as an optimisation
problem.

Focuses only on generating datasets for
identifying the transient stability boundary.

[30] Historical sampling Solving OPF to minimise
generation cost

Dimensionality reduction using neural
networks reduces the search space
considerably thereby improving
computational time.

A large part of the search space is ignored.
Rare OCs are not considered.

[37] Importance
sampling

LHC sampling Considers rare cases by fitting a generalised
pareto distribution to the tail-region.

Dataset represents only a small portion of
the feasible space as only OPF solutions are
considered.

[31] Historical sampling Solving OPF to minimise
generation cost

Uses advancements in GAN to address the
issue of missing PMU data when
implementing ML-based DSA.

Dataset represents only a small portion of
the feasible space as only OPF solutions are
considered. Method cannot generate
arbitrarily new OCs.

[35] Importance
sampling

Solving OPF to minimise
generation cost

Interpolating between secure and insecure
cases to sample new points ensures the
creation of relevant samples

Dataset represents only a small portion of
the feasible space.

[48] Historical sampling Solving OPF to minimise
generation cost

Adopts a feature selection strategy to
optimise PMU data collection for fast and
robust prediction.

Dataset represents only a small portion of
the feasible space as only OPF solutions are
considered. Method cannot generate
arbitrarily new OCs.

[23] Historical sampling Historical records. Use of a cycleGAN model to refine
simulated data such that it mimics actual
transients from historical data improves the
quality of synthetic data.

Dataset represents only a small portion of
the feasible space as only historical records
are considered.

[36] Importance
sampling

Solving OPF to minimise
generation cost

Improves computation time needed to build
a transient stability assessment database
using a semi-supervised ensemble learning
approach.

Dataset represents only a small portion of
the feasible space as only OPF solutions are
considered.

Proposed
approach

Generic sampling Sequentially generated to
explore the physical
feasible space

Sequentially explores the physical feasible
space to maximise distance from previously
generated samples.

Method does not currently consider class
imbalance in the formulation
1.4. Contributions

This work proposes a novel split-based generic sampling approach,
GAPSPLIT∗. This novel split-based approach is a modification of the
GAPSPLIT approach. The novel split-based sampling approach aims
to systematically generate diverse pre-fault operating conditions. The
proposed approach covers previously unexplored OCs that are physical
4

feasible but have not occurred in the past. With the proposed approach,
high-quality databases (of pre-fault OCs) can be generated for training
ML models used in real-time DSA. The proposed algorithm’s crucial
advantage over other statistical, distribution-based approaches that
require fitting to a pre-existing database is the ability to consider
the full physical search space defined by the ACOPF and requires no
historical data to work. In this paper, the contribution is threefold: first,
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for the first time, this work investigates the GAPSPLIT approach for
power system application. Second, this work modifies the GAPSPLIT
approach to make it suitable for power system application. Third, this
work investigates metrics to assess the quality of a generic sampling
approach.

In the first contribution, the GAPSPLIT approach uses mathemat-
ical optimisation for sampling [45]. In this proposed work, sampling
feasible OCs considers all power system constraints, such as power flow
equations, line flow constraints, and node balances from the Alternating
Current (AC) model. Then, an optimisation is solved sequentially for
each new sample. Each sequence considers previously generated sam-
ples and determines the maximal gap in the entire feasible region, then
uses optimisation to add physical constraints at the maximal gap, which
is the sampling target. The approach considers primary and secondary
targets, where the primary target is a hard-constraint on the maximal
gap in the optimisation, and the secondary targets are in the objective
function to minimise the Euclidean distance to the target.

In the second contribution, the proposed modification from GAP-
SPLIT to the proposed GAPSPLIT∗ approach has two pivotal advance-
ments: to avoid converging to infeasible samples that do not satisfy the
power flow equations and to efficiently analyse previously generated
data to boost scalability to larger systems. The first advancement to
avoid infeasibility is achieved by one of two proposed approaches:
(i) relaxing the hard constraint on the primary target and activating
only the constraints on secondary targets and (ii) storing infeasible
samples and considering them as closed gaps to prevent the sampling
from diverging. The second advancement to support scalability to larger
systems is achieved by introducing the efficient sorting of sets.

In the third contribution, this work proposes a new volumetric
coverage assessment metric, the convex hull volume () to assess
the quality of a generic sampling approach. The convex hull is the union
of all simplices with vertices in a set, i.e., the smallest convex polygon
that surrounds a set of points. The () of this envelope serves as a

etric to represent the coverage of points. In our studies, we show the
enefits of  as a better coverage metric to distance-based coverage
etrics.

The rest of the paper is structured as follows: Section 2 discusses
he regular split-based sampling GAPSPLIT and the proposed modified
plit-based approach GAPSPLIT∗. Section 3 introduces performance
easuring metrics, including coverage using the proposed  metric.

ection 4 outlines case studies to compare the performance of our
roposed modified sampling approach, the proposed performance met-
ic and the computational performance. Tests are carried out on the
EEE 6-bus, the IEEE 68-bus, and the IEEE 118-bus systems. Section 5
oncludes the paper.

. Split-based sampling

The proposed split-based approach follows the idea of generic sam-
ling that aims to uniformly cover the full physical feasible space with
ll possible OCs.

.1. Regular split-based approach

This section describes the GAPSPLIT sampling algorithm [45] that
llows to include physical model-based constraints by formulating the
ampling as an optimisation problem. Algorithm 1 illustrates this sam-
ling strategy that comprises an initialisation step, an iteration step that
erforms analysis and optimisation, and criteria to stop the iterating
lgorithm.

The algorithm initialises with an empty set of samples |𝛺𝑆
| = 0. The

symbol | ⋅ | denotes the cardinality of a set. The subsequently generated
samples 𝛺𝑆 have a sample vector 𝑥 ∈ |𝛺𝑃

| that describes the OC of
the power system in |𝛺𝑃

| dimensions and satisfies the constraints of
5

he physical model. The lower and upper bounds of the 𝑝th variable
Algorithm 1: GAPSPLIT algorithm

Define samples-set 𝛺𝑆 with each sample 𝑥 ∈ |𝛺𝑃
| ;

Define range 𝑟𝑝 = 𝑥𝑈𝐵
𝑝 − 𝑥𝐿𝐵𝑝 ∀ 𝑝 ∈ 𝛺𝑃 ;

Define normalisation parameter 𝑤𝑝 =
1
𝑟2𝑝

∀ 𝑝 ∈ 𝛺𝑃 ;

while true do
Sort 𝛺𝑆 ∀ 𝑝 ∈ 𝛺𝑃 ;
Compute 𝛥𝑥(𝑢)𝑝 = 𝑥(𝑢+1)𝑝 − 𝑥(𝑢)𝑝 ∀ 𝑝 ∈ 𝛺𝑃 ;
Search ∀ 𝑝 ∈ 𝛺𝑃

𝛥𝑥(𝑚𝑎𝑥)𝑝 = max{𝛥𝑥(𝑘)𝑝 | ∀ 𝑘 = 1, 2,… , (|𝛺𝑆
| + 1)} ;

Select 𝑝̃ s.t 𝑥(𝑚𝑎𝑥)𝑝̃ = max{𝛥𝑥(𝑚𝑎𝑥)𝑝 | ∀ 𝑝 ∈ 𝛺𝑃 };

Compute 𝑇𝑝 =
𝑥(𝑑+1)𝑝 −𝑥(𝑑)𝑝

2 + 𝑥(𝑑)𝑝 ∀ 𝑝 ∈ 𝛺𝑃 ;
Select 𝛺𝑄∗ = {𝑞 | 𝑞 = 𝑓 (𝑣), 𝑓 ∶ [𝑁] ↦ 𝛺𝑄, 𝑁 ≤ |𝛺𝑄

|};
Solve ;

min
𝑥∗

∑

𝑝∈𝛺𝑄∗
𝑤𝑝(𝑥∗𝑝 − 𝑇𝑝)2

𝑔(𝑥∗) ≤ 0

(1 − 𝛼)𝑇𝑝̃ ≤ 𝑥∗𝑝̃ ≤ (1 + 𝛼)𝑇𝑝̃

Update 𝛺𝑆 ⟵ 𝑥∗ ;
Recalculate 𝛥𝑥(𝑚𝑎𝑥)𝑝 ∀ 𝑝 ∈ 𝛺𝑃 ;
if |𝛺𝑆

| ≤ 𝑆 then
return 𝛺𝑆 ;

end
end

are denoted as 𝑥𝐿𝐵𝑝 and 𝑥𝑈𝐵
𝑝 , respectively, and the ranges are 𝑟𝑝 =

𝑥𝑈𝐵
𝑝 − 𝑥𝐿𝐵𝑝 .

In each iteration of GAPSPLIT, the algorithm generates a single
ptimised sample 𝑥∗, starting with an analysis of previous samples 𝛺𝑆 .
he analysis begins with sorting the samples 𝛺𝑆 for each variable 𝑝 ∈

𝛺𝑃 resulting in |𝛺𝑃
| ordered sets of the same samples 𝛺𝑆 . GAPSPLIT

sorts these sets according to the values in variable 𝑝

𝛺𝑉 −𝑆
𝑝 = {𝑥(𝑢)𝑝 ∣ ∀ 𝑢 = 1, 2,… , |𝛺𝑆

|, 𝑥(𝑢+1)𝑝 ≥ 𝑥(𝑢)𝑝 } (1)

where 𝑥(𝑢)𝑝 corresponds to the 𝑢th largest sample in the 𝑝th variable.
ubsequently, the algorithm computes the gaps of the samples next to
ach other

𝑥(𝑢)𝑝 = 𝑥(𝑢+1)𝑝 − 𝑥(𝑢)𝑝 (2)

nd then identifies the maximal gap in each 𝑝th variable

𝑥(𝑚𝑎𝑥)𝑝 = max{𝛥𝑥(𝑘)𝑝 ∣ ∀ 𝑘 = 1, 2,… , (|𝛺𝑆
|)}, (3)

here the algorithm denotes the two samples next to the maximal gap
𝑥(𝑚𝑎𝑥)𝑝 = 𝑥(𝑑+1)𝑝 − 𝑥(𝑑)𝑝 with (𝑑 + 1) and (𝑑). The maximal gap among all
ariables is

𝑥(𝑚𝑎𝑥)𝑝̃ = max{𝛥𝑥(𝑚𝑎𝑥)𝑝 ∣ ∀ 𝑝 = 1, 2,… , |𝛺𝑃
|}, (4)

here 𝑝̃ denotes the variable with the maximal gap called the primary
ariable. All other variables are called secondary variables 𝛺𝑄 = 𝛺𝑃 ⧵
̃. Subsequently, the algorithm computes targets for all primary and
econdary variables at the centre of their respective maximal gaps

𝑝 =
𝑥(𝑑+1)𝑝 − 𝑥(𝑑)𝑝

2
+ 𝑥(𝑑)𝑝 ; (5)

these are accordingly called primary and secondary targets, e.g., the
primary target is 𝑇𝑝̃. Subsequently, the algorithm considers a subset of
secondary variables 𝛺𝑄∗ ⊂ 𝛺𝑄 as not all secondary variables are further



International Journal of Electrical Power and Energy Systems 146 (2023) 108790A.-A.B. Bugaje et al.

t

o
b
s
s

n
0
s
a
s
t
n
s

e
T
s

2

s
t
i

i
r
d
i
c
t

Fig. 1. (a) GAPSPLIT generates new samples by attempting to split maximal gaps. (b) GAPSPLIT converges to an infeasible sample when the primary target ( ) is located in
he infeasible region. Max gap is found in 𝑋2.
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needed. There are multiple user-specific ways to select the subset of
secondary variables 𝛺𝑄∗ . One way is to consider a random selection

𝛺𝑄∗
= {𝑞 ∣ 𝑞 = 𝑓 (𝑣), 𝑓 ∶ [𝑁] ↦ 𝛺𝑄, |𝑓 | = 𝑁,𝑁 ≤ |𝛺𝑄

|} (6)

f a subset of 𝑁 elements from 𝛺𝑄, where 𝑁 is fixed and defined
y the user (e.g., 𝑁 = 0.05 |𝛺𝑄

|). Then, the algorithm uses random
election 𝑓 ∶ [𝑁] ↦ 𝛺𝑄 in each iteration. Other ways to select the
econdary variables are in [45], including to select |𝛺𝑄∗

| = 0 as empty.
In the remainder of the text, referring to secondary variables and targets
corresponds to the subset of secondary variables 𝛺𝑄∗ .

After the above analysis, the GAPSPLIT algorithm generates a
single, new sample with the mathematical optimisation

minimise
𝑥∗

∑

𝑝∈𝛺𝑄∗
𝑤𝑝(𝑥∗𝑝 − 𝑇𝑝)2

subject to 𝑔(𝑥∗) ≤ 0

(1 − 𝛼)𝑇𝑝̃ ≤ 𝑥∗𝑝̃ ≤ (1 + 𝛼)𝑇𝑝̃,

(7)

where the optimisation considers a constraint on the value 𝑥∗𝑝̃ of the
primary variable 𝑝̃ at the primary target 𝑇𝑝̃ with a relaxation to avoid
numerical issues. The relaxation is considered with a tolerance param-
eter 𝛼 on the primary target 𝑇𝑝̃ (e.g., of 𝛼 = 0.001). This optimisation
minimises the mean squared error from the generated sample 𝑥∗ to the
targets of the selected secondary variables 𝛺𝑄∗ ⊂ 𝛺𝑄. 𝑤𝑝 = 1

𝑟2𝑝
is a

ormalisation parameter that re-weighs all variables equally. 𝑔(𝑥) ≤
are the constraints that define the feasible space including power

ystem constraints such as power flow equations. This optimisation
ims to consider the physical constraints of the power system and to
plit the gaps between the previously generated samples (that is why
he algorithm is called GAPSPLIT). The optimisation in (7) returns a
ew sample, the optimised OC 𝑥∗. This sample 𝑥∗ is added to the set of
amples 𝛺𝑆 ← 𝑥∗, and the next iteration is started.

The algorithm terminates when a user-specified criterion is met, for
xample, when a specified number of samples 𝑆 have been generated.
hen, a new sample is only generated if |𝛺𝑆

| ≤ 𝑆, otherwise the
ampling algorithm stops.

.2. Issues with GAPSPLIT

Two issues arise when using the above split-based approach for
ampling power system OCs. The first issue is the low coverage of
he physical feasible space and the second issue is the computational
nefficiency when generating a large number of samples.

The first issue of low coverage is the result of GAPSPLIT converg-
ng to infeasible regions. GAPSPLIT may converge to such infeasible
egions when the search space (feasible space) is non-convex and
isconnected as in power systems. The feasible space in power systems
s the set of OCs that satisfy all operational equality and inequality
onstraints in 𝑔(𝑥) ≤ 0 [55]. When the GAPSPLIT algorithm locates
6

he primary target 𝑇𝑝̃ in an infeasible region, the algorithm results in
Table 2
Computational analysis of the GAPSPLIT algorithm where |𝛺𝑃

| is a
constant and |𝛺𝑆

| corresponds to the number of iterations. The sorting
step is the computational bottleneck of the algorithm.

Steps Computation time

Sort 𝛺𝑉 −𝑆
𝑝 ∀ 𝑝 in Eq. (1) (|𝛺𝑃

||𝛺𝑆
| log |𝛺𝑆

|)
Compute 𝛥𝑥(𝑢)𝑝 in Eq. (2) (|𝛺𝑃

||𝛺𝑆
|)

Compute 𝛥𝑥(𝑚𝑎𝑥)𝑝 in Eq. (3) (|𝛺𝑃
||𝛺𝑆

|)
Compute 𝑥(𝑚𝑎𝑥)𝑝̃ in Eq. (4) (|𝛺𝑃

|)

an infeasible optimisation (7) and returns an infeasible sample 𝑥∗ as the
onstraint 𝑔(𝑥) ≤ 0 when lim𝑥𝑝̃→𝑇𝑝̃ 𝑔(𝑥) > 0 is not met. This issue is illus-
rated in Fig. 1. In Fig. 1(a), the primary target 𝑇𝑝̃ of the 4th candidate
ample is in the feasible space, and GAPSPLIT successfully generates a
orresponding sample. However, when trying to generate the following
th candidate sample in Fig. 1(b), the primary target 𝑇𝑝̃ is in the
nfeasible region where lim𝑥𝑝̃→𝑇𝑝̃ 𝑔(𝑥) > 0. Hence, GAPSPLIT is unable
o generate the 5th candidate sample as lim𝑥𝑝̃→𝑇𝑝̃ 𝑔(𝑥) > 0. As a result,
he maximal gap 𝛥𝑥(𝑚𝑎𝑥)𝑝̃ from Eq. (4) does not change in subsequent
terations as all the gaps 𝛥𝑥(𝑢)𝑝 between previously generated samples
emain unchanged, and consequently, GAPSPLIT converges to that
nfeasible sample (5th candidate sample in Fig. 1(b)). The second issue
s the computational bottleneck of sequential sampling approaches in
igh-dimensional settings. This bottleneck is particularly critical in
ower systems that have a large number of variables |𝛺𝑃

| and require
large number of samples |𝛺𝑆

|. The computational bottleneck of some
equential sampling approaches, such as GAPSPLIT, is that they often
eed to analyse a large number of previously generated samples 𝛺𝑆 in
ach iteration. Table 2 analyses the computational requirements in each
teration for the GAPSPLIT algorithm in Big-() notation to demon-
trate this issue. In each iteration, the sorting of samples 𝛺𝑆 , computing
f gaps 𝛥𝑥(𝑢)𝑝 and maximal gaps 𝛥𝑥(𝑚𝑎𝑥)𝑝 steps have complexities of
(|𝛺𝑃

||𝛺𝑆
| log |𝛺𝑆

|), (|𝛺𝑃
||𝛺𝑆

|) and (|𝛺𝑃
||𝛺𝑆

|) respectively. The
ey bottleneck is the sorting step which grows (|𝛺𝑃

||𝛺𝑆
| log |𝛺𝑆

|) as
he size of |𝛺𝑆

| → 𝑎, where 𝑎 ≫ 1 is a large number.

.3. Proposed split-based approach: GAPSPLIT ∗

Our proposed GAPSPLIT∗ approach improves the GAPSPLIT ap-
roach with two modifications to address each of the above issues as
ollows.

.3.1. Exclusive sampling of secondary variables and introducing the set of
nfeasible samples

The first proposed modification of GAPSPLIT∗ approach is twofold
i) sampling exclusively with secondary variables 𝛺𝑄∗ and (ii) consid-
ring infeasible samples in the subsequent progressions of GAPSPLIT∗

lgorithm. This modification addresses the first issue of low coverage
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Fig. 2. (a) GAPSPLIT∗ uses only secondary targets ( ) to minimise the shortest distance to the feasible region. (b) GAPSPLIT∗ with only secondary targets ( ) generates
amples around the boundary of the feasible space ( ) when 𝑇𝑝 is located in infeasible regions. (c) GAPSPLIT∗ re-directs sampling to other regions of the physical space by

memorising infeasible targets ( )
when the feasible space is non-convex and disconnected as in power
systems.

The modification (i) of sampling exclusively with secondary vari-
ables 𝛺𝑄∗ is to discard the hard constraint on the primary variable 𝑝̃
in optimisation (7). Therefore, the optimisation simplifies to

minimise
𝑥∗

∑

𝑝∈𝛺𝑄∗
𝑤𝑝(𝑥∗𝑝 − 𝑇𝑝)2

subject to 𝑔(𝑥∗) ≤ 0,
(8)

where the objective is to minimise the mean squared error of 𝑥∗ to
econdary targets 𝑇𝑝, ∀ 𝑝 ∈ 𝛺𝑄∗ of the secondary variables. The effect is

illustrated in Fig. 2(a) where a target is located in the infeasible region
where lim𝑥𝑝→𝑇𝑝 𝑔(𝑥) > 0. When comparing Fig. 1(b) (GAPSPLIT) with
Fig. 2(a) (GAPSPLIT∗), GAPSPLIT would converge to an infeasible
sample when the primary target 𝑇𝑝̃ is located in the infeasible region.
However, GAPSPLIT∗ addresses this issue by removing the hard con-
straint on 𝑝̃ and minimising the distance to the optimised feasible OC,
marked with a red circle in Fig. 2(a). This minimisation of distances
generates samples around the boundary of the feasible space and close
to each other as illustrated in Fig. 2(b). This accumulation does not
support effectively covering the full feasible space.

The modification (ii) addresses the issue of accumulating infeasible
samples presented in Fig. 2(b). This modification (ii) re-directs the
sampling to other regions of the feasible space by considering previ-
ously encountered infeasible samples. The algorithm of GAPSPLIT∗

with modification (ii) is similar to that described in Section 2.1 with
the crucial difference being the iteration step when the solution to the
optimisation (7) is infeasible. Here, GAPSPLIT∗ stores (memorises)
the targets that led to the infeasible solutions, and subsequently uses
them to avoid sampling at these infeasible targets again. Fig. 2(c)
presents a visual illustration of this approach. The set 𝛺𝑆′ is the set of
infeasible samples and 𝛺𝑆′′ = 𝛺𝑆′ ∪𝛺𝑆 is the set of all feasible 𝛺𝑆 and
infeasible 𝛺𝑆′ samples. Fig. 3 shows the algorithmic flowchart of this
key difference in GAPSPLIT∗ modification (ii). If the optimisation is
infeasible lim𝑥𝑝̃→𝑇𝑝̃ 𝑔(𝑥) > 0, then GAPSPLIT∗ assigns the value of this
infeasible primary target 𝑇𝑝̃ to the primary variable, and the minimal
alues 𝑥𝐿𝐵𝑝 to all other secondary variables 𝛺𝑄 of the infeasible sample

∗
𝑝̃ = 𝑇𝑝̃
∗ 𝐿𝐵 𝑄 (9)
7

𝑝 = 𝑥𝑝 ∀ 𝑝 ∈ 𝛺 .
Fig. 3. The iteration step of the proposed modification (ii) of GAPSPLIT∗ that
introduces the set of infeasible samples 𝛺𝑆′ .

Subsequently, GAPSPLIT∗ adds this infeasible sample 𝑥∗ to the set
of infeasible samples 𝛺𝑆′

← 𝑥∗. This step implicitly stores the informa-
tion that the primary target 𝑇𝑝̃ is in the infeasible region and allows
GAPSPLIT∗ to disregard the corresponding gap 𝛥𝑥(𝑚𝑎𝑥)𝑝̃ between 𝑥(𝑑)𝑝̃
and 𝑥(𝑑−1)𝑝̃ in subsequent iterations, and therefore avoids converging to
that infeasible sample. Finally, GAPSPLIT∗ computes the next maximal
gaps

𝛥𝑥(𝑚𝑎𝑥)𝑝 = max{𝛥𝑥(𝑘)𝑝 ∣ ∀ 𝑘 = 1, 2,… , |𝛺𝑆′′
|} (10)

by using feasible and infeasible samples 𝛺𝑆′′ , and continues with
Eq. (4) and subsequent steps in Section 2.1.

2.3.2. Efficient sorting
The second proposed modification of GAPSPLIT∗ approach is the

efficient sorting of gaps to identify the largest gap in each iteration. This
modification addresses the second issue of scalability of the GAPSPLIT
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approach in high-dimensional settings as in the power system. The
algorithm starts with an initialisation step, followed by iterations that
terminate when a stopping criterion is satisfied.

Initially, GAPSPLIT∗ assigns a set 𝛺𝐺 to maintain an ordered
set of all gaps across all variables which has the cardinality |𝛺𝐺

| =
|𝛺𝑃

|× |𝛺𝑆
|. This ordered set contains all gaps 𝛥𝑥(𝑢)𝑝 from Eq. (2) for all

variables 𝑝. The set is

𝛺𝐺 = {𝛥𝑥(𝑘) ∣ ∀ 𝑘 = 1, 2,… , |𝛺𝑃
| × |𝛺𝑆

|, 𝛥𝑥(𝑘) ≥ 𝛥𝑥(𝑘−1)}, (11)

where 𝛥𝑥(𝑘) is the 𝑘th largest gap across all variables and all samples.
The notation of the gap 𝛥𝑥(𝑘) drops the index for the sample 𝑢 and
for the variable 𝑝 for simplicity reasons. The sample index 𝑢 and the
variable index 𝑝 can be retrieved with the two mappings  (𝑘) and (𝑘),
respectively. The overall largest gap is the last element of the ordered
set 𝛥𝑥(|𝛺𝐺

|) which avoids using the max operators in Eqs. (3)–(4).
In each iteration, GAPSPLIT∗ locates the primary target 𝑇𝑝̃ at the

centre of this overall largest gap 𝛥𝑥(|𝛺𝐺
|). GAPSPLIT∗ obtains 𝑑 =

 (|𝛺𝐺
|), 𝑝̃ = (|𝛺𝐺

|), and the primary target

𝑇𝑝̃ =
𝑥(𝑑+1)𝑝̃ − 𝑥(𝑑)𝑝̃

2
+ 𝑥(𝑑)𝑝̃ , (12)

where the samples 𝑥(𝑑+1)𝑝̃ and 𝑥(𝑑)𝑝̃ form the gap 𝛥𝑥(|𝛺𝐺
|). Subsequently,

APSPLIT∗ selects the secondary variables, for instance with Eq. (6),
nd then solves optimisation (7) to obtain the optimised OC, the new
ample 𝑥∗. Subsequently, GAPSPLIT∗ copies this generated sample 𝑥∗

n total |𝛺𝑃
| times and inserts one copy each into the sets

𝑉 −𝑆
𝑝 ← 𝑥∗ ∀ 𝑝 ∈ 𝛺𝑃 (13)

using the bisection method, which can only be used as the sets 𝛺𝑉 −𝑆
𝑝

are ordered. The position of the insertions in the corresponding sets is
the map (𝑝) such that 𝑥((𝑝)−1)𝑝 ≤ 𝑥∗𝑝 ≤ 𝑥((𝑝)+1)𝑝 . Note that this bisection
insertion step is the key advancement as it replaces the sorting step
required in each iteration of GAPSPLIT. The reader may recall that
the sorting step is the key bottleneck of GAPSPLIT as per analysis in
Table 2. However, the bisection method requires only a computational
time of (|𝛺𝑃

| log |𝛺𝑆
|) in the worst case. Hence, this efficient bisection

step with (|𝛺𝑃
| log |𝛺𝑆

|) replaces the inefficient sorting step with
(|𝛺𝑃

||𝛺𝑆
| log |𝛺𝑆

|). Following the insertion, GAPSPLIT∗ generates
2|𝛺𝑃

| new gaps at

𝛥𝑥(𝑎)𝑝 = 𝑥((𝑝)+1)𝑝 − 𝑥∗𝑝
𝛥𝑥(𝑏)𝑝 = 𝑥∗𝑝 − 𝑥((𝑝)−1)𝑝 .

(14)

Subsequently, GAPSPLIT∗ inserts these 2|𝛺𝑃
| new gaps in 𝛺𝐺 ←

𝛥𝑥(𝑎)𝑝 , 𝛺𝐺 ← 𝛥𝑥(𝑏)𝑝 ∀ 𝑝 ∈ 𝛺𝑃 by using the bisection method, as well.
GAPSPLIT∗ limits the cardinality of the set |𝛺𝐺

| ≤ 𝜌 to avoid memory
issues when the size of |𝛺𝑆

| → 𝑎, where 𝑎 ≫ 1 is a large number.
In response to this threshold, if |𝛺𝐺

| > 𝜌, then GAPSPLIT∗ drops the
smallest 2|𝛺𝑃

| gaps in each iteration

𝛺𝐺 ⧵ 𝛥𝑥(𝑘) ∣ ∀ 𝑘 = 1, 2,… , 2|𝛺𝑃
|, (15)

such that |𝛺𝐺
| ≤ 𝜌 is satisfied at all times. GAPSPLIT∗ terminates

when sufficient samples are created |𝛺𝑆
| ≥ 𝑆.

3. Measuring performance of samplers

Generic sampling focuses on covering the feasible space with the
generated samples 𝛺𝑆 . A performance metric of such samplers should
quantify the coverage of feasible space, which also is a metric for the
quality of samples in 𝛺𝑆 . Such a metric for coverage can also serve
as a criterion to stop sampling when the feasible space is sufficiently
sampled.

The  metric measures the performance of the GAPSPLIT sam-
pler in [45]

 = 1 − − 1
|𝛺𝑃

|

|𝛺𝑃
|

∑ 𝛥𝑥(𝑚𝑎𝑥)𝑝

𝑟
(16)
8

𝑝=1 𝑝 t
epresenting the average relative maximal gap 𝛥𝑥(𝑚𝑎𝑥)𝑝 in |𝛺𝑃
| dimen-

ions. To illustrate this metric, the  metric has a minimal value
 = 0 when all samples 𝛺𝑆 are stacked on top of each other, and
maximal value  = 1 when an infinite number of samples 𝛺𝑆

re uniformly distributed. For example,  = 0.75 indicates that the
elative maximum gap is 25% on average over all variables 𝛺𝑃 .

The drawback of analysing sample distributions using the  met-
ic is that the analysis focuses on the marginal (univariate) and not the
ultivariate distribution. Hence, using  as a performance metric

o assess samplers in high-dimensional settings may result in a poor
haracterisation of multivariate sample distributions, which is impor-
ant when using an optimisation procedure to generate the samples (as
e will demonstrate in the case study). The example in Fig. 4 illustrates

his drawback of using  to measure coverage. The samples in the
wo figures, Figs. 4(a) and 4(b), are clearly differently distributed but
ave the same marginal distributions in both dimensions. However, as
he  metric only assesses the marginal univariate distribution, it
alculates the same  values for the two figures, thereby ignoring

the difference in the two bivariate distributions. Hence, the  metric
is an unsuitable measure of the coverage of samples. Generally in
the literature, point-to-point coverage measures fail to quantify how
well samples are distributed relative to one another in high dimen-
sional settings and do not account for the distribution of samples in
a region [51,50].

Conversely, assessing the volume occupied by the samples seems
to be a suitable approach to measure the performance of multivariate
sample distributions. The proposed  metric based on computing an
approximation of the convex hull volume can overcome the drawback
of the  metric. The convex hull of a set of samples 𝛺𝑆

𝐶 =

{

𝜆1𝑥(1) +⋯ + 𝜆𝑛𝑥(𝑛)
|

|

|

|

|

𝑛
∑

𝑢=1
𝜆𝑢 = 1, 𝑥(𝑢) ∈ 𝛺𝑆 , 𝜆𝑢 ≥ 0

}

(17)

is the smallest convex set that contains all other samples defined in
some |𝛺𝑃

|-dimensional space, where 𝑥(1), 𝑥(2),… , 𝑥(𝑛) are independent
samples in some Euclidean space |𝛺𝑃

|, and 𝜆𝑢 are real numbers. The
samples 𝑥(1), 𝑥(2),… , 𝑥(𝑛) are the vertices of the convex hull as they
enclose all other samples. The index 𝑛 represents the number of samples
that form the vertices of the convex hull, where 𝑛 ≤ 𝛺𝑆 . In this work,
we use the Qhull algorithm [56] to compute the  metric that
measures the convex hull volume occupied by the generated samples
𝛺𝑆 .

Subsequently, the volume of the convex hull with vertices
𝑥(1), 𝑥(2),… , 𝑥(𝑛) is

 = |

1
𝑛!
𝑑𝑒𝑡

(

𝑥(2) − 𝑥(1) 𝑥(3) − 𝑥(1) ⋯ 𝑥(𝑛) − 𝑥(1)
)

| (18)

which further resolves to

|

1
𝑛!
𝑑𝑒𝑡

(

𝑥(1) 𝑥(2) ⋯ 𝑥(𝑛)

1 1 ⋯ 1

)

| (19)

However, computing the  in higher dimensions (|𝛺𝑃
| > 6) is

intractable, as it is a P-hard problem. In this work, we circumvent
this issue by randomly selecting a subset of the input variables 𝛺̂ ⊂
𝛺𝑃 ; |𝛺̂| ≤ 6 to compute the volume. This random selection allows us to
approximate the  in higher dimensions, as we will show in the case
study section. The notation 

|𝛺𝑃
|=|𝛺̂|

denotes the |𝛺̂|−dimensional
convex hull volume for a set of samples. The reader may refer to the text
in [57,58] for further information on convex hulls and their associated
volumes.

Finally, we consider other state-of-art coverage metrics in [49].
Specifically, the coefficient of variation between all samples 𝑥𝑖, 𝑥𝑗 ∈

ℜ|𝛺𝑃
| is 𝜆 = (𝑁

∑𝑁
𝑖=1 𝛾

2
𝑖

(
∑𝑁

𝑖=1 𝛾𝑖)
2 )

1∕2, where 𝛾𝑖 = min
𝑖≠𝑗

|𝑥𝑖 − 𝑥𝑗 |. The smaller
the value of 𝜆, the more uniform the distribution of samples and
𝜆 = 0 signifies a perfect uniform mesh. We also consider the point
orm distribution, ℎ = max

𝑖=1,2…,𝑁
ℎ𝑖, where ℎ𝑖 = max

𝑦∈𝑉𝑖
|𝑥𝑖 − 𝑦|, where ℎ𝑖 is
he maximum distance between a sample-point 𝑥𝑖 and the points that
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Fig. 4. The samples (blue circles) in (a) and (b) have the same  but different  values. The proposed  metric (dotted black line) is suitable for measuring multivariate
coverage.
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enclose the cell of its Voronoi tessellation 𝑉𝑖. Here also, the smaller
the value of ℎ, the more uniform is the distribution. The scalability
of 𝜆 as the number of samples |𝛺𝑆

| → 𝑎 increase, where 𝑎 ≫ 1 is
a large number is challenging as it requires (|𝛺𝑆

|

2) computations.
The scalability of the ℎ coverage measure is similar to that of the
proposed  metric. Therefore, 𝜆 is not suitable for this application
in the paper, however, is included in the comparison for the sake of
completeness.

4. Case study

In this section, firstly, we investigate the suitability of the proposed
GAPSPLIT∗ approach to generate representative power systems OCs
in comparison to  and minimised generation cost  approaches.
Secondly, we investigate the performance of the proposed GAPSPLIT∗

pproach to address the low coverage issue of GAPSPLIT when gen-
rating OCs for power systems. Thirdly, we show the suitability of the
roposed  metric to measure coverage of samples generated by
he proposed GAPSPLIT∗ approach. Fourthly and finally, we discuss
he scalability of the proposed  metric to higher dimensions and

the computational time of the proposed GAPSPLIT∗ approach on the
IEEE 118-bus system.

4.1. Test system and assumption

The case studies consider the IEEE 6-bus [59] and IEEE 68-bus [60]
test systems. Subsequently, using the IEEE 118-bus system [61], we
present a scalability study that considers a DC approximation of the
power flow. To generate the load profiles, we sample the active loads
from a multivariate Gaussian distribution (via Monte Carlo sampling)
and assume the correlation between loads to follow Pearson’s cor-
relation with a correlation coefficient of 0.75. The distribution was
then converted to a marginal Kumaraswamy(1.6, 2.8) distribution using
inverse transformation. The reactive loads at the buses scale linearly
with active loads by a factor of 0.15 (𝑄𝑃 ≈ 0.15). To create the generator
profiles, 𝑥∗𝑝 ∀ 𝑝 ∈ 𝛺𝑃 , different sampling approaches, including the
roposed split-based sampling, , and  approaches attempt to

solve an optimisation problem that balances generator output with
randomly generated loads. The proposed split-based sampling follows
the sampling procedure described in Section 2.3, whereas the 
approach solves the optimal power flow of the AC-model. Finally,
the  approach involves sampling generator profiles using a Latin
Hypercube Sampling (LHS) procedure and accepting either the LHS
generated profile 𝑥∗𝑝 , or a perturbation 𝑥∗𝑝 + 𝛿𝑥𝑝 , where 𝛿𝑥𝑝 ∀ 𝑝 ∈
𝛺𝑃 are slack variables in the optimisation. The AC models of the
networks are used to ensure feasible OCs representing the steady-state
operation of the system under AC assumptions. |𝛺𝑆

| = 1000 OCs
were generated for each sampling approach. After this pre-fault OC
data was generated, their corresponding post-fault security labels were
simulated with time-domain dynamic simulations. For the simulations,
the initial conditions included the pre-fault variables for active and
9

reactive power generations, and active and reactive power loads. The
dynamic simulation considered a three-phase fault on line 31–38 for the
EEE-68 bus system with a clearance time of 0.5 s. Subsequently, the
imulations were analysed and the post-fault transient security label
as computed. The label of an OC was either secure 𝑌𝑖,𝑘 = 0 when all

phase angle differences between any two generators were less than 180°
within the 10 s simulation time after the fault, otherwise, the OC was
insecure 𝑌𝑖,𝑘 = 1. To see the generation of database in the context of the
inal use case, ML models were trained using the generated data. There,
he pre-fault OCs and post-fault security labels were used as training
atabases for quantifying the performance of the trained ML models
n testing data. Different ML models, including feed-forward Artifi-
ial Neural Network (ANN), Support Vector Machine (SVM), boosting
lgorithms (Xgboost and Adaboost), and Decision Trees (DTs), were
rained as example ML models. The ANNs had three hidden layers
ith 60, 30, and 10 neurons, respectively, and were trained with
stochastic gradient descent optimiser using the package PyTorch

.10.0 [62]. The SVM training used a linear kernel, and the boosting
lgorithms had 50 estimators using the package scikit-learn 0.18.1 [63].

DTs were trained with the CART algorithm [64] from the package scikit-
earn 0.18.1 [63] in Python 3.5.2. The default training settings were
elected except using gini impurity instead of entropy to measure the
uality of the splits. The data-set was split into training/testing sets in
atio of 75%/25%. 5-fold cross-validation was applied to address under-

/overfitting. Subsequently, the Platt method was used to calibrate the
score-output 𝑆 of the classifier [65]. The ML models were evaluated
with metrics as the testing accuracy = 𝑇 𝑝+𝑇 𝑛

𝑇 𝑝+𝑇 𝑛+𝐹𝑝+𝐹𝑛 , precision = 𝑇 𝑝
𝑇 𝑝+𝐹𝑝 ,

specificity = 𝑇 𝑛
𝑇 𝑛+𝐹𝑝 , and 𝐹1-score = 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 , where 𝑇 𝑝 and
𝑇 𝑛 are correctly classified positive and negative OCs, and 𝐹𝑝 and 𝐹𝑛
are incorrectly classified negative and positive OCs. Additionally, the
fraction of insecure OCs 𝑁−

𝑁−+𝑁+
was computed, where 𝑁+ and 𝑁− are

the number of insecure and secure OCs, respectively.
The non-linear optimisation problems were implemented using the

package Pyomo 5.6.8 [66] in Python 3.7.4 and solved using IPOPT
3.13.2 [67]. All studies except the scalability section were carried
out on a Dell XPS 13 9360 running an Intel(R) Core(TM) i5-8250U
processor with 8 GB installed RAM. The scalability study was carried
out on a Windows Server 2008 R2 Enterprise running an Intel(R)
processor with 96 GB installed RAM. The dynamic simulations are
implemented in Julia 1.6.4 with the packages PowerSystems.jl [68],
PowerSimulationsDynamics.jl [69]. The simulations were solved with the
IDA package from Sundials solvers [70]. All dynamic simulations were
performed on a standard machine with six cores and 16 GB RAM.

4.2. Effective sampling with GAPSPLIT ∗

In this study, we contrast the performance of the candidate ap-
proaches (the proposed GAPSPLIT∗, , and ) in generating
representative power systems OCs, which results appear in Fig. 5. Con-
cretely, the figure depicts the 3D- covered by 5000 OCs generated
with the candidate approaches in the IEEE 6- and 68-bus systems.
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Fig. 5. (a) The  of samples generated using the proposed modification (i) (■), the proposed modification (ii) ( ), and  ( ).
Table 3
 of 5000 samples computed for 10′000 random variable subsets
{𝛺̂ ⊂ 𝛺𝑃 }, where |𝛺̂| = 3 for different sampling approaches.
Approach 

IEEE 6 bus IEEE 68 bus

GAPSPLIT∗ 0.77 ± 0.60 407 ± 474
 0.05 ± 0.24 < 10−11(< 10−11)
 0.70 ± 0.55 296 ± 250

The  values in the figure are normalised with the minimum
value for each test system such that ̂ = 

𝑚𝑖𝑛() . In the pro-
posed GAPSPLIT∗ approach, we consider |𝛺𝑄∗

| = 0.3|𝛺𝑃
| secondary

variables.
As evidenced by Fig. 5, the proposed GAPSPLIT∗ cover a higher

3D- than the  approach, as much as 40% and 55% more in
the IEEE 6- and 68-bus systems, respectively. In contrast, as evidenced
by Table 3, the proposed GAPSPLIT∗ approach cover a significantly
higher 3D- than the  approach, in the order of 15× and
more than 1011× magnitude, respectively, in the IEEE 6- and 68-bus
systems. Admittedly, the poor performance of the  approach is a
reflection of its objective function in solving the optimisation problem.
Thus, the samples generated by the  approach will only cover a
small volume even as the approach generates more OCs, as a result of
choosing the same cheap generator combinations to minimise cost.

For a more exhaustive evaluation, we investigate the performance
of the proposed GAPSPLIT∗ and  approaches considering 10′000
random variable selections {𝛺̂ ⊂ 𝛺𝑃 }, where |𝛺̂| = 3. The results are
summarised in Table 3, which shows the 

|𝛺𝑃
|=3 of the candidate

approaches. Overall, the proposed GAPSPLIT∗ approach cover 10%
and 37.5% more volume than the  approach in the IEEE 6- and
68-bus systems, respectively.

These results imply that the proposed GAPSPLIT∗ is suitable for
generating a wide range of OCs, which is necessary to enrich the
database, especially as the integration of intermittent renewable energy
sources becomes the norm.

4.3. Addressing GAPSPLIT issues

In this study, we investigate the performance of the first proposed
modification of the GAPSPLIT∗ approach (Section 2.3.1) to address
the low coverage issue of GAPSPLIT (Algorithm 1). We contrast the
proposed modification (ii) that introduces the set of infeasible samples
𝛺𝑆′ , the proposed modification (i) that utilises only secondary variables
𝛺𝑄∗ , and regular GAPSPLIT.
10
To preface this comparison, regular GAPSPLIT can generate on
average three and six unique OCs in the IEEE 6-bus and IEEE 68-
bus systems, respectively, before converging to an infeasible region.
Subsequently, the maximal gap 𝛥𝑥(𝑚𝑎𝑥)𝑝̃ (Eq. (4)) remains the same,
and the algorithm is unable to generate any more feasible OCs. The
comparison with the proposed modification (ii) is demonstrated by the
results in Fig. 6. Concretely, the figure shows the share of infeasible
OCs 𝛽 = |𝛺𝑆′

|

|𝛺𝑆′′
|

in the IEEE 6- and 68-bus systems as the candidate
sampling approaches generate many OCs |𝛺𝑆

| → 𝑎, where 𝑎 ≫ 1 is
a large number. As evidenced by Fig. 6, the proposed modification
(ii) has a higher value of 𝛽 in earlier iterations for both systems that
decrease as more OCs are generated. The value of 𝛽 decreases from
19.5% when |𝛺𝑆′′

| = 210 to 4.9% when |𝛺𝑆′′
| = 15593 in the IEEE

6-bus system, and from 29.3% when |𝛺𝑆′′
| = 3622 to 21.3% when

|𝛺𝑆′′
| = 9366 in the IEEE 68-bus system. This downward trend of

𝛽 indicates an improved performance of the proposed modification
(ii) as the algorithm generates more OCs. The proposed modification
(ii) works for both small and relatively large systems as 𝛽 decreases
when |𝛺𝑆

| grows in both systems. In contrast, the share of infeasible
samples 𝛽 increases in both systems for regular GAPSPLIT. On the
other hand, from this perspective of 𝛽, the proposed modification (i) has
the best performance as it generates on average only one infeasible OC
in both systems. Modification (ii) also avoids converging to infeasible
regions. Admittedly, the modification (i) trivially avoids converging to
infeasible regions as its optimisation discards the hard constraint on the
primary target. Additionally, its objective function aims to minimise the
distance to the candidate targets. However, in terms of generating OCs
in a non-convex and disconnected feasible space, as is the case in power
systems, these results indicate that the first proposed modification of
GAPSPLIT∗ improves on the low coverage issue of GAPSPLIT.

Furthermore, we note that modification (ii) is preferred to modifi-
cation (i) in small systems by the results in Figs. 7(b) and 7(a). The
figures show a scatter-plot of OCs generated by the modifications (ii)
and (i), respectively. As evidenced by the figures in Fig. 7, the OCs
generated with modification (ii) cover the entire feasible space and
not only the boundaries, and is thus the preferred approach. However,
this preference of modification (ii) over modification (i) is not entirely
visible in larger systems. In larger systems (e.g., IEEE 68-bus), there is a
higher share of infeasible OCs 𝛽 (e.g., 𝛽 =5.1% and 23.5%, respectively,
in the IEEE 6- and 68-bus systems). This higher value of 𝛽 in the IEEE
68-bus system denotes an increase in the number of iterations required
by the algorithm before termination, and invariably, an increase in the
computation time of modification (ii). On that note of computation
time, modification (i) is suitable for large networks. However, the
 comparison between the two approaches in Fig. 5(b) indicates
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Fig. 6. The value of 𝛽 = |𝛺𝑆′
|

|𝛺𝑆′′
|

for the proposed modification (ii) ( ) reduces while regular GAPSPLIT’s ( ) increases as more samples are generated in both (a) small and (b)
larger systems.
Fig. 7. Modification (ii) better distributes samples across the feasible than modification (i) in small systems, respectively in (b) and (a).
that coverage of OCs generated using the proposed modification (ii) is
marginally better than modification (i). In the rest of the manuscript,
unless otherwise stated, we consider the proposed modification (ii) as
GAPSPLIT∗.

It is also worth highlighting that GAPSPLIT∗ sampling with both
primary and secondary variables is preferred over GAPSPLIT∗ sam-
pling with only primary variables, as demonstrated by the distribution
of samples in Figs. 9(b)–9(a).

4.4. Measuring performance of samplers

This case study contrasts the proposed  metric with the 
metric to measure coverage of the feasible space by generated OCs.
As an illustrative example on the IEEE 68-bus system, we use the
two candidate metrics to compute coverage of different multivariate
distributions in Figs. 9(a) and 9(b). Concretely, the figures depict a
scatter-plot of OCs generated using GAPSPLIT∗ sampling with only
primary variables and GAPSPLIT∗ sampling with both primary and
secondary variables, respectively.

As evidenced by Fig. 9, the  value is the same in both Figs. 9(a)
and 9(b), while the  value is approximately 100% higher in
Fig. 9(b) than in Fig. 9(a). This result shows that the  does not
distinguish between different multivariate distributions.
11
Fig. 8. Samples that have similar  values are differentiated with the proposed
 .

For a more exhaustive evaluation, we consider four different sets of
5000 OCs that are generated by varying the number of secondary vari-
ables |𝛺𝑄∗

| = {0, 1, 2, 3} in the GAPSPLIT∗ algorithm. Subsequently,
we compute the  and  of the different sets considering 10′000
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Fig. 9. (a) GAPSPLIT∗ with only primary targets (shown for 𝑃1 ( ) and 𝑄3 ( )) generates samples that are distributed along the axis of that variable and do not cover the
entire feasible space. (b) Proposed use of GAPSPLIT∗ uses primary and secondary targets to cover the entire feasible space.
Table 4
The  ,  , ℎ and 𝜆 values of four different sets of 5000 samples computed for
10′000 random variable selections {𝛺̂ ⊂ 𝛺𝑃 }, where |𝛺̂| = 3.
|𝛺𝑄∗

|   ℎ 𝜆

0 0.49 ± 0.36 0.99(< 0.01) 9.84 ± 0.16 0.75 ± 0.15
1 0.99 ± 0.78 0.99(< 0.01) 9.75 ± 0.24 0.60 ± 0.06
2 1.02 ± 0.72 0.99(< 0.01) 9.90 ± 0.07 0.46 ± 0.04
3 1.09 ± 0.86 0.99(< 0.01) 9.83 ± 0.18 0.49 ± 0.04

random variable selections {𝛺̂ ⊂ 𝛺𝑃 }, where |𝛺̂| = 3. The results are in
Fig. 8, which depicts a scatter-plot of the proposed  metric against
the  metric for the same sets of OCs. Overall, the proposed 
can distinguish the coverage of ‘good’ from ‘bad’ sample distributions
while  cannot. Concretely, the proposed  has a wider range
of values (0.25, 2.50) and higher standard deviation of 0.74 than the
 metric with values ranging between (0.9985, 0.9995) and standard
deviation of < 0.001. Additionally, other coverage metrics like 𝜆 and ℎ
range between (0.65, 1.02) and (9.89, 9.99), respectively, with standard
deviations of 0.18 and 0.03 for the same dataset. There, just as  , ℎ
cannot distinguish ‘good’ from ‘bad’ sample distributions, while 𝜆 can
distinguish. However, as we pointed out in Section 3, the metric 𝜆 is
not suitable as it does not computationally scale well to large number of
samples. The  metric considers the multivariate distribution of OCs
to measure coverage, and that makes it a better metric to quantify the
spread of OCs across multidimensional space. Table 4 summarises the
comparison between  , 𝜆, ℎ and the proposed  metrics for the
different sets of sample distributions, showing that the proposed 
is more suitable to measure coverage by differentiating the distinct sets
of OCs.

4.5. Computational performance & scalability

This case study tests the computational performance and scalabil-
ity of the proposed split-based sampling approach and the proposed
coverage metric to larger systems. The performance was tested for the
number of OCs generated and the size of the power system (number
of dimensions of variables). In this study, GAPSPLIT was modified to
store infeasible OCs for comparison (to prevent early convergence to an
infeasible OC), while the proposed GAPSPLIT∗ approach is modified
as described in Section 2.3.2. To study the scalability of the 
metric, on the IEEE 118-bus system, 100 random subsets of variables
with dimension sizes |𝛺𝑃

| = {2 − 7} and sample size |𝛺𝑆
| = 5000 are

drawn and the  is computed for each subset of variables. Fig. 10(a)
shows that the random selection of variables does not influence the
12
Table 5
Computation time to generate 100’000 samples in IEEE 118-bus
generator space.
Approach Average time Total time

GAPSPLIT∗ (0.57 ± 0.20) s 16 h
GAPSPLIT (0.78 ± 0.24) s 21 h
 (0.60 ± 0.20) s 17 h
 (0.64 ± 0.28) s 17 h

Table 6
ANN trained for dynamic security on 1000 OCs from IEEE 68-bus system.

Approach 𝑁+

𝑁−+𝑁+
𝐹1-score Accuracy Precision Specificity

GAPSPLIT∗ 93.3% 99.5% 98.4% 99.9% 99.9%
 84.4% 93.7% 91.2% 93.5% 90.0%

 and the mean and median values of the normalised  are
suitable to approximate the  for dimension sizes |𝛺𝑃

| = {2 − 7}.
Fig. 10(b) shows the relationship between the  of random subsets
for dimensions 3 and 7. The correlation shows that the average value
of 

|𝛺𝑃
|=3 is sufficient to approximate 

|𝛺𝑃
|=7, and therefore

computing a reduced  is a good estimator for  in higher
dimensions.

Table 5 shows the computational times to generate 100′000 OCs with
different approaches on the IEEE 118-bus system. GAPSPLIT takes 21
hours, in contrast to 17 hours by the  and  approaches. Albeit,
the OCs generated using GAPSPLIT cover a 30% larger volume than
OCs generated using . This increase in total time for GAPSPLIT is
as a result of increased time to sort 𝛺𝑆 and find the maximal gap 𝛥𝑥(𝑚𝑎𝑥)𝑝̃
as more OCs are generated. The moving average (with a sliding window
of 1000) of the time it takes to sample an OC for GAPSPLIT shows a
linear increase over time, with a slope angle ∠ 𝛥𝑡

𝛥𝑠 of 45◦. The proposed
second modification of the GAPSPLIT∗ approach from Section 2.3.2
mitigates this increase in time by regulating the size of the set of gaps
and efficiently sorting newly generated OCs.

4.6. Dynamic security and machine learning

This case study tests the generated data when applied to the in-
tended use case of ML-based DSA on the IEEE 68-bus system. The
dynamic security labels of OCs from GAPSPLIT∗ and  were simu-
lated, and different ML models including SVM, Adaboost, Xgboost, DT,
and ANN were trained. The results in Table 6 show that the generated
data from GAPSPLIT∗ results in better performances when training
an ANN across the metrics of test accuracy, 𝐹1-score, precision, and
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Fig. 10. (a) The normalised  mean ( ) and median ( ) values of random subset selections are similar across different dimensions (b) There is some correlation
between the  of a random subset and the  of the full dimension.
Table 7
DT trained for dynamic security on 1000 OCs from IEEE 68-bus system.

Approach 𝑁+

𝑁−+𝑁+
𝐹1-score Accuracy Precision Specificity

GAPSPLIT∗ 93.3% 99.6% 99.2% 99.6% 99.6%
 84.4% 99.2% 98.8% 99.0% 99.5%

Table 8
𝐹1-score for 5 different ML models trained on 1000 OCs from the IEEE 68-bus system.
Each type of model is trained 100 times.

Approach SVM Adaboost Xgboost DT ANN

GAPSPLIT∗ 99.0% 99.5% 99.2% 99.5% 98.8%
 96.0% 98.0% 98.6% 98.2% 91.9%

specificity by 7.2%, 5.8%, 6.4% and 9.9%, respectively. GAPSPLIT∗

generated more insecure OCs which can enhance the prediction accu-
racy of predicting insecure OCs. Maximising the accuracy for insecure
OCs and reducing false negatives is important as these type of errors
can lead to power blackouts which are significantly worse than false
positives. For DTs the values remained similar in GAPSPLIT∗ and
 as shown in Table 7. For a more exhaustive comparison, each of
SVM, Adaboost, Xgboost, DT, and ANN models were trained 100 times
on data from GAPSPLIT∗ and . The results in Table 8 show that
the generated data results in marginally better performance across the
two approaches for SVM, Adaboost, Xgboost, and DT models. A 6.9%
improvement is recorded for the ANN.

5. Conclusion

A systematic approach to creating representative databases is piv-
otal to the adoption of ML methods for real-time (dynamic-) security
assessment. This work proposes a novel split-based sampling approach
GAPSPLIT∗ to generate representative samples that systematically
explore the feasible space of power systems. The key feature of the split-
based sampling is the ability to consider model-based constraints 𝑔(𝑥) ≤
0 when generating a sample (OC) in the optimisation. When using this
sampling approach for power systems, the physical constraints can be
considered for the steady-state in the form of the AC network power
flow constraints, as used when optimising the generator dispatches in
an ACOPF model. The proposed split-based sampling aims for diverse
data by jumping from one part of the solution space to another un-
derrepresented part to cover a larger space (distribution) with fewer
OCs. In the IEEE 68-bus system, samples generated using the proposed
split-based sampling cover 37.5% more volume than with . The
proposed  is better suited than distance-based metrics to quantify
13
the performance of a generic sampler and differentiate good from bad
sample distributions. The proposed split-based approach takes 0.57 s
on average to generate samples for the IEEE 118-bus system. Future
work will involve exploiting historical data in the sampling procedure
to generate new OCs that improve the information gain of the classifier.
There, the proposed algorithm as a sequential process shall consider
another variable that creates balanced datasets. Our vision is to use
this proposed algorithm as a baseline then consider ‘‘active learning’’
that can use discriminative information on the class distribution in the
sequential sampling process.
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