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Abstract
Dysarthria is a motor speech disorder resulting in slurred

or slow speech that can be difficult to understand. This re-
search paper evaluates the effectiveness of various metrics for
automatic speech recognition (ASR), such as character error
rate (CER), Jaro-Winkler distance, and BERTscore, in assess-
ing performance specifically for dysarthric speech, which is
often inadequately measured by the commonly used word er-
ror rate (WER). Using the TORGO database, which includes a
range of dysarthria severities, we analyze the performance of
chosen evaluation metrics with the Whisper and wav2vec 2.0
ASR systems to understand how they reflect the true speech
recognition challenges presented by such atypical speech pat-
terns. Our findings reveal that Whisper generally outperforms
wav2vec 2.0, particularly in sentence utterances, by effectively
managing complex speech patterns and maintaining semantic
integrity. The analysis highlights that single-word utterances
strongly correlate with dysarthria severity, while sentence utter-
ances show a lesser correlation due to the mitigating effect of
additional linguistic context.
Index Terms: automatic speech recognition, evaluation metric,
dysarthria

1. Introduction
Dysarthria is a neuromotor speech disorder that can result from
conditions like Parkinson’s, Alzheimer’s, multiple sclerosis, or
from traumatic events such as brain injuries or strokes [1].
There are various forms of dysarthria, each distinguished by
unique speech traits. While classification typically considers
the location of the lesion and the extent of neurological damage,
literature often categorizes dysarthria more broadly by sever-
ity—measured in terms of speech intelligibility and articula-
tion—using terms such as mild, moderate, and severe [2]. Indi-
viduals with dysarthria that is classified as more than mild often
face challenges in being understood by both other people and
technology. These difficulties are particularly evident in inter-
actions involving automatic speech recognition (ASR) systems.

ASR systems have become pivotal in modern technology,
used in everything from virtual assistants to transcription ser-
vices. Evaluation metrics are used in order to measure how
accurate a transcription hypothesis is compared to the refer-
ence. The most widely used and accepted metric is word er-
ror rate (WER), which is derived from the Levenshtein distance
[3]. WER assesses the accuracy of a speech recognition sys-
tem by counting the errors—substitutions, deletions, and inser-
tions—normalised by the number of words in the reference text
[4]. WER can serve well to provide an indication of perfor-
mance on a word level however it can fail to accurately asses
ASR systems handling atypical speech because they do not con-
sider the severity or specific nature of errors [5, 6, 7]. For in-
stance, a person with moderate dysarthria might attempt to say
“Please turn on the light”, which could be inaccurately tran-
scribed as “Peas turn on light”. More severe dysarthric speech
might result in a transcription like “Pees turn on the lie”, which
introduces more phonetic distortions and significantly alters the
comprehensibility of the utterance. Both examples would have
the same WER score, yet they represent different levels of in-
telligibility and speech severity. Wang et al. [8] showed that
a lower WER doesn’t always mean improved accuracy in un-
derstanding spoken language. Their findings indicate that tran-
scripts with a reduced WER might align with higher under-
standing accuracy, highlighting the significance of focusing on
understanding as a goal rather than merely decreasing WER.

This gap in the effectiveness of WER highlights the importance
of adapting ASR technologies to better handle the variability
and challenges of atypical speech patterns, such as those pre-
sented by dysarthric speech.

Various evaluation metrics have been introduced in the past
to address the limitations of WER. Most similar is charac-
ter error rate (CER), which measures the minimum number of
character-level edits required to change the ASR output into the
reference text. CER can be particularly useful for languages
where character-level errors provide a finer granularity of error
analysis than word-level errors. CER is also most commonly
used in cases where ASR systems are being evaluated on single-
word prompts.

Another evaluation metric that is calcualted using the edit
distance of the text is the Jaro-Winkler distance [9]. Originally
designed for comparing short strings such as names, the Jaro-
Winkler distance is a measure that gives more favor to strings
with a common prefix, making it useful for assessing ASR accu-
racy in contexts where prefixes are predictive of overall speech
patterns. Similar to CER, Jaro-Winkler distance is most useful
as a metric for evaluating single-word prompts.

All edit distance and n-gram matching based evaluation
metrics can suffer from the same problem; they are limited be-
cause they only focus on the word/character level accuracy of
the hypothesis text. They lack the ability to consider how se-
mantically similar two phrases can be. A metric that does con-
sider semantic context is BERTscore [10]. This metric uses
the powerful capabilities of pretrained bidirectional encoder
representations from transformers (BERT) contextual embed-
dings. Unlike traditional metrics that rely on n-gram overlap,
which can fail to capture the richness of semantic equivalence,
BERTscore computes the similarity between sentences by sum-
ming the cosine similarities between their token embeddings.
This method allows for a more nuanced understanding of tex-
tual similarity by capturing paraphrases, lexical diversity, and
changes in syntactic structures, making it robust against tradi-
tional evaluation pitfalls and better aligned with human judge-
ment.

The significant variation in dysarthria severity necessitates
a nuanced approach to evaluating ASR systems. Current met-
rics like WER and CER, while effective for typical speech, do
not adequately account for the complexities of dysarthric speech
patterns, particularly in how they impact intelligibility and ar-
ticulation across different severities. This oversight presents a
critical research gap: there is limited understanding of how well
these metrics perform in assessing ASR accuracy for speakers
with varying levels of dysarthria. Furthermore, the differenti-
ation between single-word and sentence prompts in testing is
crucial. Single-word prompts can help isolate pronunciation
and articulation issues, while sentence prompts can better as-
sess the ability of ASR systems to handle linguistic context and
syntactic structure, which are often compromised in dysarthric
speech.

Addressing this gap, the aim of this paper is to determine
how do various alternative error analysis methods compare
in their effectiveness at evaluating ASR system performance
across different severities levels of atypical speech? To that
end, we identify which methods provide the most accurate re-
flections of user experience and comprehension, aligning ASR
technology more closely with the needs of individuals with
speech disorders. This approach will not only enhance the util-
ity of ASR systems in real-world applications but also con-
tribute to the development of more inclusive technology solu-
tions.



2. Related Works
A recent study by Rugayan et al. [11] introduces and evaluates
the aligned semantic distance (ASD) as a metric for assessing
the performance of ASR systems. The introduction of ASD
marks a significant advancement over traditional metrics like
the WER, particularly in terms of measuring the semantic in-
tegrity of ASR outputs.

ASD uses dynamic programming to optimally align se-
quences of token embeddings, thereby calculating the seman-
tic closeness based on the accumulated distance of this align-
ment. This approach allows ASD to effectively handle varia-
tions in sentence length and maintain its robustness, providing
a more detailed and semantically meaningful evaluation of ASR
accuracy. The implementation of ASD addresses several limita-
tions of WER, including its inability to account for the semantic
severity of transcription errors. For instance, while WER would
treat all errors equally, ASD distinguishes between errors that
have a significant impact on the meaning of the sentence and
those that do not.

Rugayan et al.’s research into the ASD offers significant in-
sights for advancing the evaluation of ASR systems, particu-
larly for those dealing with dysarthric speech. The key take-
away from their approach is the emphasis on semantic integrity
and contextual understanding, which are critical when evaluat-
ing speech that may be highly variable or atypical due to the
underlying neurological conditions associated with dysarthria.
Their methodology demonstrates how semantic-based metrics
can more accurately reflect the real-world effectiveness of ASR
systems by focusing on the semantic closeness of the tran-
scribed text to the intended speech.

For our research, examining the efficacy of semantic eval-
uation metrics like BERTscore across different severities of
dysarthria can be particularly enlightening. BERTscore, simi-
lar to ASD, leverages the power of contextual embeddings to
assess semantic similarity, potentially offering a nuanced un-
derstanding of how well an ASR system captures the intended
meaning behind speech that might be unclear or distorted due
to dysarthria.

3. Methodology
3.1. ASR System

In this study, one of the ASR systems we employ is the Whisper
model, a state-of-the-art speech recognition system [12]. Whis-
per’s architecture is designed to be particularly resilient in han-
dling variations in speech, such as accents, dialects, and back-
ground noise, making it an exemplary choice for researching
ASR performance on atypical dysarthric speech. One of the
model’s significant advantages is its training on a vast, mul-
tilingual dataset, which enhances its capability to accurately
transcribe speech even when faced with the complexities of
dysarthric speech patterns. Whisper offers five model sizes:
tiny, base, small, medium and large. For this study large-v2,
the second iteration of the large model, was chosen. This model
size has the largest number of parameters at close to 1.5 billion.
The large model size is considered state-of-the-art and performs
with the greatest accuracy [12]. These attributes make Whisper
an ideal ASR system for our research, as it aligns with our goal
of exploring speech recognition technology’s inclusivity and re-
liability across a range of dysarthria severities.

Alongside the Whisper model, this study also incorporates
the use of wav2vec 2.0, another state-of-the-art ASR technology
[13]. The model utilizes a self-supervised learning approach,

where the system is trained on raw audio data without the need
for manual transcription. A distinctive feature of wav2vec 2.0 is
its architecture, which includes a convolutional feature encoder
that processes raw audio to produce latent representations, and
a transformer that predicts the contextualized representations.
These are then fine-tuned with a small amount of labeled data
to achieve high levels of accuracy. For our research, we employ
the large variant of wav2vec 2.0, which is particularly adept at
handling nuanced and complex speech patterns, such as those
associated with dysarthric speech. Unlike the Whisper large-v2
which is a multilingual model, the chosen wav2vec 2.0 model
is trained only on English language data. This choice is mo-
tivated by the model’s demonstrated proficiency in discerning
subtle differences in speech articulations, making it a valuable
asset in assessing ASR performance across different severities
of dysarthria.

3.2. Evaluation Metrics

In assessing the performance of ASR systems, especially in
handling dysarthric speech, it is crucial to employ metrics that
accurately reflect both the literal and contextual correctness of
the transcribed text. This section provides a detailed exami-
nation of four key evaluation metrics: word error rate (WER),
character error rate (CER), BERTscore, and Jaro-Winkler dis-
tance.

3.2.1. Word Error Rate

Definition and Calculation:
WER is the conventional metric used to evaluate ASR systems.
It quantifies the performance by calculating the ratio of the total
number of errors (substitutions, deletions, and insertions) to the
number of words in the reference text [4]. The formula for WER
is given by:

WER =
S +D + I

N
(1)

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions, and N is the number of
words in the reference.

Applications and Limitations:
WER provides a straightforward quantitative assessment but
treats all errors equally, lacking sensitivity to the contextual
severity of errors. This makes it less ideal for nuanced linguistic
analyses, such as in dysarthric speech where different types of
errors may impact intelligibility differently.

3.2.2. Character Error Rate

Definition and Calculation:
CER extends the concept of WER to the character level, which
can be particularly useful for languages where character-level
precision is more indicative of speech recognition accuracy [4].
The CER is defined as:

CER =
Cs + Cd + Ci

Cn
(2)

where Cs, Cd, and Ci represent the numbers of character sub-
stitutions, deletions, and insertions, respectively, and Cn is the
total number of characters in the reference.

Applications and Limitations:
CER offers an analysis at the character level, which can be par-
ticularly beneficial for assessing dysarthric speech where slight
character changes can significantly impact intelligibility. This



metric can capture the nuances in pronunciation and articula-
tion that are often lost in broader word-level metrics. However,
while CER provides finer granularity, it still does not account
for semantic changes. This can be a critical oversight in mod-
erate to severe dysarthria, where misrecognitions might lead to
completely different meanings, despite minimal character alter-
ations.

3.2.3. BERTscore

Definition and Calculation:
BERTscore leverages the contextual embeddings generated by
BERT, a pre-trained deep learning model known for its powerful
language understanding capabilities [10]. This metric evaluates
the quality of text by computing the cosine similarity between
the token embeddings of the hypothesis text generated by the
ASR system and the reference text. This method reflects the
context of each token in the hypothesis and reference texts, tak-
ing into account their semantic and syntactic environment.

The calculation of BERTscore involves the following steps:
1. Tokenization of both the hypothesis and reference texts using

BERT’s tokenizer.
2. Generation of contextual embeddings for each token in both

texts by passing them through a pre-trained BERT model.
3. Calculation of the cosine similarity for each token in the hy-

pothesis with every token in the reference.
4. Identification of the maximum similarity score for each token

in the hypothesis, which represents the best semantic match
in the reference.

5. Averaging these maximum similarity scores across all tokens
in the hypothesis to compute the overall BERTscore.

The formula for BERTscore is formally expressed as:

BERTscore =
1

|H|
∑
h∈H

max
r∈R

cos(h, r) (3)

where H and R are the sets of token embeddings for the hy-
pothesis and reference, respectively.

Applications and Limitations:
BERTscore can be advantageous in evaluating dysarthric
speech because it assesses semantic similarity between the
transcribed and reference texts. This approach is crucial for
dysarthria, where speech may be phonetically distorted but still
contextually correct. BERTscore’s focus on semantic content
aligns well with the needs of speakers with varying dysarthria
severities, as it can more accurately reflect the intelligibility and
clarity of the intended communication. However, the computa-
tional intensity of BERTscore and the potential biases inherent
in the pre-trained models it relies on can be limitations. More-
over, in cases of severe dysarthria, where speech may be sig-
nificantly distorted, the semantic analysis might not fully cap-
ture the extent of the speech comprehension challenges faced
by these individuals.

3.2.4. Jaro-Winkler Distance

Definition and Calculation:
The Jaro-Winkler distance is a string metric for measuring the
similarity between two sequences, with an adjustment for com-
mon prefixes [9]. The formula is:

Jaro-Winkler = Jaro + l × p× (1− Jaro) (4)

where l is the length of the common prefix (up to a maximum
of 4) and p is a constant scaling factor.

Table 1: TORGO speakers with their severity level and data
about utterance distribution

Subject Severity
Word
Utterance
Count

Sentence
Utterance
Count

M01 Severe 280 (186) 89 (67)
M02 Severe 293 (107) 92 (40)
M04 Severe 296 (164) 86 (61)
M05 Severe 358 (230) 117 (103)
F01 Severe 94 (78) 20 (16)
M03 Mild 306 (163) 95 (80)
F04 Mild 323 (147) 100 (66)
F03 Moderate 402 (111) 139 (50)
MC01 Typical 786 (220) 284 (105)
MC02 Typical 332 (189) 112 (79)
MC03 Typical 592 (163) 201 (80)
MC04 Typical 725 (188) 262 (100)
FC01 Typical 121 (104) 26 (24)
FC02 Typical 897 (505) 316 (253)
FC03 Typical 695 (108) 261 (58)

Applications and Limitations:
The Jaro-Winkler distance is particularly valuable for its em-
phasis on phonetic similarities and common prefixes, making it
especially useful for single-word analysis in dysarthric speech
assessments. This metric enhances the ability to recognize and
accurately evaluate words that may start similarly but diverge
phonetically due to speech impairments, a common occurrence
in dysarthria where motor control deteriorates as the utterance
progresses. While highly effective for single-word prompts,
which isolate specific pronunciation challenges crucial for tai-
lored therapy and ASR system training, Jaro-Winkler’s design
focus on short strings limits its applicability to full-sentence
evaluations, necessary for understanding contextual ASR per-
formance.

4. Experiments
4.1. Data Description

For this research, we selected the TORGO dysarthric dataset
[14] which contains recordings from individuals affected by
cerebral palsy and ALS. TORGO includes a balanced cohort of
male (M01 - M05) and female (F01, F03, F04) subjects, along-
side age- and gender-matched control subjects with typical
speech (MC01 - MC04, FC01 - FC03). Importantly, TORGO
subjects can be classified in severity levels of atypical speech.
Each subject in the database has been evaluated by professional
speech-language pathologists, providing detailed assessments
of speech-motor functions and labeled data reflecting differ-
ent severity levels of speech impairment [15]. In Table 1 all
TORGO subjects and their severities are listed. This precise la-
beling is vital for our study, enabling an examination of ASR
performance as it relates to the gradations of speech atypicality.

Additionally, the TORGO dataset has a variety of utter-
ances. It includes single-word utterances and sentence utter-
ances. Single-word utterances are crucial for testing phonetic
accuracy, while sentence utterances test semantic accuracy, i.e.,
whether the words together convey the intended meaning. This
dual approach helps getting a better understanding of the ASR
system’s sound recognition and the preservation of meaning,



Table 2: Pearson correlation between speech severity levels and
evaluation metrics of single-word utterances. Bold value is the
highest absolute correlation coefficient.

Metric Correlation Coeff. P-Value

WER 0.927 <0.001
CER 0.830 <0.001
BERTscore -0.928 <0.001
Jaro-Winkler -0.942 <0.001

which are often challenged in dysarthric speech. Subjects also
repeat the same prompt multiple times to reduce variability.
Summarised in Table 1, are each subjects’ word and sentence
utterance count. The number in parenthesis indicates how many
of those utterances come from unique prompts. The distribution
across different utterance types and severities found within the
dataset allows for a comprehensive analysis of ASR system per-
formance.

4.2. Experimental Setup

In our study, we examined the performance of two evaluation
metrics, BERTscore and Jaro-Winkler, specifically focusing on
their effectiveness across different severity levels of dysarthric
speech. We used WER and CER as baselines to determine
how well these newer metrics correlate with traditional mea-
sures when assessing ASR system accuracy. We hypothesize
that BERTscore, a semantic-based metric, will exhibit greater
consistency across varying severity levels compared to WER
and CER, which do not account for semantic meaning.

The original TORGO dataset is publicly available [14] and
includes a rich array of continuous dysarthric speech. In or-
der to improve the quality of data, we used a cleaned TORGO
dataset that excludes recordings that are shorter than 25 ms and
have incorrectly annotated audio [16]. In addition non-language
prompts—such as sounds not forming part of any spoken lan-
guage—were excluded from the dataset. More details about
how the Whisper and wav2vec 2.0 output were matched to the
TORGO prompts can be found in the code 1.

The transcription experiment involved running the entire
cleaned and preprocessed TORGO dataset through both ASR
models, with each audio file individually processed and the out-
put transcriptions collected for further error analysis. For this
study we processed all of the TORGO data without using any
split since it was not necessary. The experiment was run us-
ing the default parameters with the notable exception of the
parameter: device=’mps’. This is due to the fact that the ex-
periments were executed on an Apple M2 Pro processor with
10 CPU cores and 16 GPU cores. Once the ASR system gener-
ated the transcriptions from the dataset we calculated the errors
using the selected evaluation metrics.

5. Results and Discussion
5.1. Coefficients

The Pearson correlation coefficient between the severity level
and the evaluation metric values are shown in Tables 2 and 3.
The data was divided into utterances of a single-word and sen-
tences, which Table 2 and 3 show respectively. The four severity
levels (typical, mild, moderate, severe) were given a numerical

1https://github.com/notfilip/research-project

Table 3: Pearson correlation between speech severity levels and
evaluation metrics of sentence utterances. Bold value is the
highest absolute correlation coefficient.

Metric Correlation Coeff. P-Value

WER 0.865 <0.001
CER 0.851 <0.001
BERTscore -0.866 <0.001
Jaro-Winkler -0.864 <0.001

value (1 - 4) for the correlation calculations. It is important to
recognize that higher accuracy in ASR hypotheses leads to in-
creased BERTscore and Jaro-Winkler values. Because of this
inverse relationship, the correlation coefficients are negative.

The coefficients outlined in Tables 2 and 3 provide a clear
illustration of how different evaluation metrics relate to the
severity levels of speech impairments across both single-word
and sentence utterances. The differences in correlation be-
tween single-word and sentence utterances suggest that ASR
systems’ challenge levels vary with the utterance complexity.
Sentence utterances, which are inherently more complex due
to longer phrases and increased contextual variability, exhibit
statistically significant weaker correlations in all metrics com-
pared to single-word utterances. This distinction highlights the
nuanced challenges faced by ASR systems in handling more
complex speech patterns under varying levels of impairment.

As can been seen in the bold text of Table 2, the speech
severity levels for single-word utterances is most correlated
with the Jaro-Winkler distance. This suggests that the met-
ric is particularly sensitive to the phonetic accuracy affected
by dysarthric speech impairments. Dysarthric speech often in-
volves distortions, slurring, and other articulation errors that af-
fect phonetic accuracy. Jaro-Winkler, which emphasizes pho-
netic similarities and differences, particularly in the beginnings
of words (through its adjustment for common prefixes), can cap-
ture these nuances effectively. Jaro-Winkler distance may there-
fore provide a more detailed reflection of how speech impair-
ments impact the intelligibility and accuracy of spoken words.

Indicated by the analysis in Table 3, BERTscore exhibits
the highest correlation with speech severity levels in sentence-
level utterances. This highlights its sensitivity to the semantic
integrity of speech. Sentence-level utterances involve syntac-
tic structures and context that is significantly impacted by the
articulation of dysarthric speech. BERTscore, leveraging deep
learning models to assess semantic similarity, effectively cap-
tures the contextual and syntactic nuances, even when phonetic
details are compromised. Thus, BERTscore can provide a nu-
anced reflection of the semantic coherence and comprehensibil-
ity of spoken sentences, making it a valuable metric for eval-
uating ASR systems’ performance in maintaining semantic in-
tegrity in the presence of speech impairments.

5.2. Utterance Scatter Plots

The relationship between CER and Jaro-Winkler distance for
word utterances is shown in Figure 1. The data points clus-
ter distinctly by severity, with ‘typical’ and ‘mild’ categories
showing higher Jaro-Winkler scores at lower CER values. This
clustering indicates better performance in cases with less pro-
nounced speech impairments. For severe dysarthria, the spread
of CER and Jaro-Winkler scores is broader, reflecting the vari-
ability in how character errors impact word similarity. This



Figure 1: CER vs. Jaro-Winkler of all word utterances grouped
by severity

Figure 2: WER vs. BERTscore of all sentence utterances
grouped by severity

spread suggests a higher unpredictability in speech articula-
tion due to severe dysarthria, affecting character-based recog-
nition accuracy. As CER increases, Jaro-Winkler scores gener-
ally decrease, although the relationship is less linear compared
to WER vs BERTscore. This pattern suggests that the impact
of character errors on perceived word similarity can vary sig-
nificantly depending on the error’s nature and position within
words.

In Figure 2 we visualise the the WER and BERTscore val-
ues for all sentence utterances. The correlation between WER
and BERTscore across four severity categories (typical, mild,
moderate, severe) for sentence utterances reveals a clear nega-
tive correlation, indicating that higher transcription errors lead
to poorer semantic matching. This trend presents the inverse
relationship between transcription accuracy and semantic align-
ment in ASR outputs. The regression lines for each severity cat-
egory demonstrate variations in slopes and intercepts, with the
‘severe’ category exhibiting a less steep slope than ‘mild’ and
‘moderate’. This suggests that the impact of increasing WER
on BERTscore is less pronounced in severe dysarthric speech,
possibly due to the already reduced intelligibility in these cases,
which may limit how additional transcription errors affect se-
mantic alignment. The R² values, indicating the strength of
correlation, are robust across all categories, with ‘moderate’
severity showing the highest (0.83). This strong correlation
highlights the predictiveness of this model in assessing the rela-
tionship between transcription accuracy and semantic alignment

Figure 3: Results of Evaluation Metrics grouped by subject
severity and ASR model for single-word utterances

Figure 4: Results of Evaluation Metrics grouped by subject
severity and ASR model for sentence utterances

across different levels of speech clarity.

5.3. Severity Bar Charts

In Figure 3, we present the metrics for word utterances. Both
WER and CER again show that error rates escalate with the
severity of speech impairment, with the increase in error rates
being more pronounced, especially in the wav2vec 2.0 model
which outperforms Whisper. A possible explanation for the
lower errors rates of wav2vec 2.0 is that it was trained solely
on English language data, while Whisper large-v2 used a multi-
lingual training set.

Comparing BERTscore values across Tables 3 and 4, there
is a noticeable drop for severe cases. This indicates that single-
word accuracy is crucial for maintaining semantic integrity,
more so than in sentences where contextual clues might of-
fer compensatory support. Jaro-Winkler scores also decrease
significantly with increased severity in word utterances, with
wav2vec 2.0 experiencing a steeper decline compared to Whis-
per. This highlights greater challenges in maintaining word sim-
ilarity at higher levels of dysarthria.

In the analysis of sentence utterances shown in Figure 4,
both WER and CER metrics exhibit an increase in error rates as
the severity of dysarthria intensifies. Notably, the Whisper sys-
tem consistently shows better performance, indicated by lower
error rates, compared to wav2vec 2.0 across all severity levels
for both metrics. This suggests that Whisper might be more
adept at handling the complexities associated with sentence-
level dysarthric speech. The BERTscore across different severi-
ties and between the two systems remains relatively stable, with
Whisper marginally outperforming wav2vec 2.0. This stability
in BERTscore suggests that despite variations in word and char-
acter accuracy, the overall semantic content of the sentences is
maintained relatively intact. However, the Jaro-Winkler dis-



tance demonstrates a noticeable decline as severity increases,
particularly in the wav2vec 2.0 model, with a less pronounced
decline observed in Whisper, indicating that it maintains closer
word-level similarity across severities.

The comparative data from these charts suggests that Whis-
per generally outperforms wav2vec 2.0 in handling sentence ut-
terances across all evaluated metrics and severity levels, while
wav2vec 2.0 outperforms Whisper is most of the metrics for
single-word utterances. The relatively stable performance of
BERTscore in sentence utterances across both ASR systems
indicates that the contextual information present in sentences
helps ASR systems preserve semantic meaning even when pho-
netic or character-level errors are present. However, the signif-
icant variation in Jaro-Winkler scores, especially in word utter-
ances, highlights the difficulty ASR systems face in accurately
capturing the phonetic content of speech as severity increases.

These findings demonstrate the importance of incorporat-
ing robust models into ASR technologies that not only focus
on transcription accuracy but also enhance the ability to inter-
pret and reconstruct speech semantically, especially in contexts
involving severe speech impairments. The performance differ-
ences between Whisper and wav2vec 2.0 further suggest that
the choice of ASR model can significantly influence the effec-
tiveness of speech recognition technology in accommodating
the variable and often challenging nature of dysarthric speech.
This analysis highlights the necessity for ongoing development
and refinement of ASR systems to improve their utility and ac-
cessibility for individuals with speech disorders.

6. Conclusions and Future Work
This research explored the relationship between various speech
impairment severity levels and the performance of ASR sys-
tems, examining metrics such as the BERTscore and Jaro-
Winkler distance across different speech utterances. The find-
ings indicate that ASR systems encounter distinct challenges
when transcribing speech with varying degrees of dysarthria,
particularly when it comes to maintaining phonetic accuracy
and semantic integrity.

The analysis demonstrated that single-word utterances ex-
hibit stronger correlations with phonetic-based metrics such as
Jaro-Winkler, which proved sensitive to articulation errors typi-
cal of dysarthric speech. This sensitivity is crucial for recogniz-
ing and evaluating the phonetic discrepancies caused by speech
impairments, suggesting that Jaro-Winkler is an effective metric
for gauging phonetic accuracy in simpler speech forms.

In contrast, sentence-level utterances, which incorporate
more complex syntactic structures and contextual variability,
showed a higher correlation with semantic-based metrics like
BERTscore. This metric effectively captured the semantic co-
herence of sentences, even when phonetic details were compro-
mised, underscoring its utility in assessing semantic content in
more complex speech outputs.

The comparative analysis of ASR models—Whisper and
wav2vec 2.0—revealed that while wav2vec 2.0 generally per-
formed better on single-word utterances, Whisper was more
effective in handling the complexities of sentence-level utter-
ances. This suggests that the choice of ASR model is critical
in achieving optimal performance, particularly in applications
involving severe speech impairments.

The findings from this study provide a strong foundation for
further research into ASR systems tailored for speech impair-
ments. Several avenues for future work can be outlined based
on the insights gained:

1. Exploring Additional Datasets: The use of the TORGO
database in this research has provided valuable insights into
the challenges and potentials of ASR systems in handling
dysarthric speech. Future studies could benefit from incor-
porating other dysarthric speech datasets to verify the gen-
eralizability of the findings across different speech impair-
ments and demographics. Datasets such as the UA-Speech
and Nemours could offer new perspectives and more diverse
data, potentially revealing unique challenges and opportuni-
ties for ASR system refinement.

2. Incorporating More Evaluation Metrics: This study primarily
focused on the BERTscore and Jaro-Winkler distance met-
rics to evaluate semantic integrity and phonetic accuracy. Fu-
ture research could expand on this by including additional
semantic-based and edit distance metrics that assess other as-
pects of speech recognition quality.

3. Cross-Linguistic Analysis: Investigating the performance of
ASR systems on dysarthric speech in different languages
could provide insights into linguistic variables affecting
speech recognition. Cross-linguistic studies could help in
designing more robust ASR systems that are adaptable to a
variety of phonetic and syntactic structures present in diverse
languages.

7. Responsible Research
In the context of conducting responsible research, it is essen-
tial to address several key aspects: data transparency and avail-
ability, ethical considerations, and repeatability. Each of these
facets contributes to the integrity and impact of the research,
especially when dealing with sensitive areas such as speech im-
pairments.

The TORGO database [14], used extensively in this study,
is a benchmark in data transparency and availability in research
on dysarthric speech. It is publicly accessible, allowing re-
searchers to examine and replicate findings in the realm of
speech recognition technologies for individuals with speech dis-
abilities. This transparency not only facilitates broader valida-
tion and testing of new ASR systems but also encourages a col-
laborative approach to advancements in this field.

Using the TORGO dataset adheres to high ethical stan-
dards, primarily because the data collection involved compre-
hensive consent processes, anonymization, and ethical over-
sight. The dataset includes speech recordings from individu-
als with cerebral palsy and amyotrophic lateral sclerosis (ALS),
alongside data from age- and gender-matched controls. These
recordings were obtained under strict ethical guidelines to en-
sure the dignity and privacy of all participants, making it a safe
and respectful resource for conducting speech recognition re-
search.

Repeatability is a cornerstone of robust scientific research.
In this study, we have ensured that all experiments are repeat-
able by making all code used in the analysis and processing of
data publicly available 2. This includes scripts for data cleaning,
preprocessing, running the Whisper ASR model, and analyzing
the output. By sharing these resources, we aim to enable other
researchers to replicate our work, verify our claims, and build
upon the foundations we have laid. This open approach not
only strengthens the validity of our findings but also enhances
the collective capability to develop more inclusive and effective
ASR systems for people with speech impairments.

2https://github.com/notfilip/research-project
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