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SUMMARY

The growing demand for energy worldwide has resulted in the exploration and
development of sustainable forms of energy, such as wind energy. Wind turbines
are typically used to extract power from the wind through the rotational motion
of blades, which are aeroelastic structures. Among other practical examples, air-
craft wings are also aeroelastic in nature. Aeroelastic structures suffer from in-
herent instabilities and fatigue, and hence their design process requires charac-
terisation of safe operating regimes in order to prevent failure. In this disserta-
tion, we present a methodology for predicting dynamic aeroelastic behaviour,
and additionally employing data from experiments to improve predictions. The
methodology is demonstrated on three test-cases: a 2-DoF airfoil, the Goland
wing and an experimental, downwind, wind turbine. The presented method is
generic in terms of applicability to any aeroelastic problem, however considering
the engineering and societal relevance, the wind turbine problem is extensively
investigated. The dissertation contributes to three broad scientific domains -
aeroelasticity, reduced order modelling and uncertainty quantification.

The first part of the dissertation presents the development of a high-fidelity
aeroelastic solver based on Reynolds-averaged-Navier-Stokes equations, em-
ploying turbulence models based on the Boussinesq hypothesis. The solver sim-
ulates an experimentally tested 3-bladed wind turbine, which is of downwind
orientation and the aeroelastic model considers all structural details of the tur-
bine, such as the blade, nacelle and tower. The aeroelastic characteristics are
validated by comparing the dynamic blade moment to experimental measure-
ments of the wind turbine. Experimental results for the wind turbine are avail-
able in terms of variation in blade moment with respect to azimuthal position
of the blade. The aeroelastic predictions of blade moment closely match the
trend observed in experiments, and quantitatively, the computational estimates
lie within the bounds of the experimental measurements at most azimuthal po-
sitions.

The second part of the dissertation concerns with the development of re-
duced order models (ROM) for predicting the aeroelastic characteristics. Since
the high fidelity computational models are expensive for most practical dynamic
problems, the ROM is intended to replace the fluid solver, which is responsible
for bulk of the computational costs. The data-driven ROMs are based on a recur-
rence relation, mapping input displacements to output force distribution, where
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xii SUMMARY

the data for training is obtained from forced-motion simulations. Two types of
models namely: Auto Regressive with eXogenous (ARX) model and Linear Pa-
rameter Varying (LPV) ARX model are developed. In order to train the model,
chirp signals are employed to estimate the expansion coefficients utilising the
data from the developed aeroelastic solver. For the wind turbine, the ARX model
is augmented with a localised forcing term in order to account for the forcing
introduced by the tower wake. The trained models are initially used to recon-
struct test signals, and thereafter employed for flutter boundary and blade mo-
ment predictions, which are verified with the full solver estimates. Accurate re-
constructions are obtained for all parametric investigations performed. These
results are obtained with significant gain in the computational costs with respect
to the full order solver.

The third part of this dissertation deals with the uncertainty quantification
problem. The presence of uncertainties may significantly change the stability
characteristics of the system. Also experimental measurements of the wind tur-
bine confirm that uncertainties exist in the rotational speed of the turbine. In
order to take into account effect of these parametric uncertainties on the dy-
namic aeroelastic behaviour, the most sensitive parameters are initially identi-
fied. Thereafter, these are propagated through the low-cost ROM, and a proba-
bilistic estimate of the flutter boundary or blade moment is obtained. It is ob-
served that the effect of the assumed uncertainties on the aeroelastic behaviour
is significant. Finally, Bayesian updating of the identified uncertain parameters
is performed. Experimental data from the wind turbine experiment is employed
for the parameter estimation, where both structural and rotational parameters
are considered. The parameter identification is able to clearly reveal correla-
tion between structural parameters after updating with data, while the rotational
parameter uncertainty is clearly reduced. The identified parameters are finally
propagated through the ROM again in order to reduce the uncertainties in the
aeroelastic characteristics. The framework is also tested for predicting transonic
aeroelasticity in Goland wing, where it is established that data recorded from pre-
flutter conditions can be utilised to reduce the uncertainty in the flutter density.
The research presented in the three parts can be utilised and implemented for
any industrial problem to obtain probabilistic aeroelastic predictions utilising
real world data.



SAMENVATTING

De wereldwijde groeiende vraag naar energie heeft geleid tot de exploratie en
ontwikkeling van duurzame vormen van energie, zoals windenergie. Windtur-
bines zijn ontworpen om energie uit de wind te onttrekken door de rotatio-
nele beweging van de bladen, wat aero-elastische constructies zijn. Een ander
voorbeeld zijn vliegtuigvleugels, welke van nature ook aero-elastisch zijn. Aero-
elastische constructies lijden aan inherente instabiliteit en vermoeidheid, waar-
door het genoodzaakt is dat het ontwerpproces een karakterisatie van veilige
operationele regimes bevat om storingen te voorkomen. In deze dissertatie pre-
senteren we een methodologie voor de voorspelling van dynamisch aeroelastisch
gedrag, en het gebruik van experimentele data ten behoeve van de verbetering
van de voorspellingen. De methodologie wordt gepresenteerd middels drie test-
gevallen: een vliegtuig profiel met twee vrijheidsgraden, de Goland vleugel, en
een experimentele benedenwindse windturbine. De gepresenteerde methode
is algemeen toepasbaar op elk aero-elastisch probleem, maar gezien de bouw-
kundige en sociale relevantie wordt het windturbine probleem intensief bestu-
deerd. De dissertatie voegt toe aan drie brede wetenschappelijke domeinen —
aero-elasticiteit, modellering van gereduceerde orde en de kwantificatie van on-
zekerheid.

Het eerste deel van deze dissertatie presenteert de ontwikkeling van een
aero-elastisch model van hoge betrouwbaarheid gebaseerd op de zogehe-
ten Reynolds-Averaged Navier-Stokes vergelijkingen, welke turbulentiemodellen
toepassen gebaseerd op de hypothese van Boussinesq. Het computermodel si-
muleert een experimenteel geteste benedenwindse windturbine met drie bla-
den, waarin een aero-elastische model alle structurele details van de turbine in
overweging neemt, zoals de bladen, gondel en de toren. Experimentele resulta-
ten voor de windturbine zijn beschikbaar in de vorm van de variatie van het blad-
moment ten opzichte van de azimuthale positie van het blad. De aero-elastische
voorspellingen van het bladmoment komen goed overeen met de trend van het
experiment, en kwantitatief liggen de computervoorspellingen tussen de gren-
zen van de experimentele onzekerheid bij de meeste azimuthale posities.

Het tweede deel van de dissertatie houdt zich bezig met de ontwikkeling
van Modellen van geReduceerde Orde (MRO) voor het voorspellen van aero-
elastische kenmerken. Aangezien de referentie computermodellen te duur zijn
voor de meeste praktische toepassingen, is het MRO bedoelt om het vloeistofmo-
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del te vervangen, welke verantwoordelijk is voor het merendeel van de computa-
tionele kosten. De door gegevensgestuurde MRO zijn gebaseerd op een recursie-
relatie welke invoerverplaatsingen naar een uitvoer krachtdistributie mappen,
waar de trainingsdata uit simulaties met geforceerde beweging komen. Twee
modellen worden ontwikkeld, namelijk een AutoRegressief model met eXogene
variabelen (ARX) en een Linear Parameter Variérend (LPV) model. Om het model
te trainen worden zogeheten ‘chirp’ signalen gebruikt om de expansiecoéfficién-
ten te schatten met behulp van data komende uit het onwikkelde aero-elastisch
model. Voor de windturbine, wordt het ARX model aangevuld met een geloka-
liseerde drijvingsterm om rekening te houden met drijving geintroduceerd door
het torenzog. De getrainde modellen worden in eerste plaats gebruikt om de
testsignalen te reproduceren, en daarna voor het voorspellen van de fluttergrens
en het bladmoment, welke geverifieerd worden met voorspellingen van het vol-
ledige computermodel. Nauwkeurige reconstructies zijn verkregen voor alle uit-
gevoerde parameterstudies. Deze resultaten zijn verkregen met een significante
winst in de computationele kosten ten opzichte van het volledige model.

Het derde deel van deze dissertatie heeft betrekking op het kwantificeren
van onzekerheid. De aanwezigheid van onzekerheden kan leiden tot een sig-
nificant andere stabiliteit van het systeem. De experimentele meetwaarden be-
vestigen ook dat er onzekerheden bestaan in de rotationele snelheid van de tur-
bine. Om het effect van deze parameteronzekerheden op het dynamisch aero-
elastisch gedrag in overweging te nemen, worden in eerste instantie de meest
gevoelige parameters geidentificeerd. Daarna worden deze gepropageerd door
het MRO, waarna een probabilistische schatting van het bladmoment wordt ver-
kregen. Het effect van de aangenomen parameteronzekerheid op het aeroelasti-
sche gedrag is significant. Tenslotte wordt Bayesiaanse inferentie van de geiden-
tificeerde parameters uitgevoerd. Experimentele data van het windturbine expe-
riment wordt gebruikt voor de parameter schatting, waarbij zowel de structurele
als de rotationele parameters in overweging worden genomen. De parameteri-
dentificatie is in staat om duidelijk de correlatie tussen structurele parameters te
duiden na het observeren van de data, en de rotationele parameteronzekerheid
is sterk verminderd. Daarna worden deze variabelen door het MRO gepropa-
geerd om ook de onzekerheid in het aero-elastisch gedrag te verminderen. Deze
methode is ook getest op de voorspellingen van transsone aero-elasticiteit in een
Goland vleugel, waarbij het vastgesteld wordt dat de data van pre-flutter condi-
ties gebruikt kan worden om de onzekerheid in de flutterdichtheid terug te bren-
gen. Het onderzoek gepresenteerd in de drie delen kan gebruikt en geimplemen-
teerd worden voor elk industrieel probleem om probabilistische aero-elastische
voorspellingen te verkrijgen middels reéle data.



INTRODUCTION

It is a truth very certain that when it is not in our power to determine what is true
we ought to follow what is most probable.

René Descartes - Discourse on the Method

1.1. BACKGROUND

Aeroelastic systems (e.g. aircraft and wind turbines), also known as fluid struc-
ture interaction (FSI) systems, suffer from inherent instabilities and structural
fatigue, which can lead to failure. For example, flutter is a form of dynamic in-
stability in aircraft occurring as a result of unfavourable coupling of structural
modes, which can ultimately lead to structural failure of the system. The insta-
bilities arise for certain values of bifurcation parameters - notably, Mach number
(ratio of speed of aircraft to speed of sound) and the altitude of flight. Thus an
aircraft during flight must be operated away from the unstable Mach number -
altitude regime. This prompts the requirement of characterising the stability of
aeroelastic systems for all possible operating conditions.

This process of characterisation can be performed experimentally as well as
numerically. Experimental techniques can provide accurate estimates, but may
incur large costs, and failure tests are potentially dangerous. As such, numerical
techniques are preferred, atleast in the preliminary design phase. Although there
have been substantial developments in simulation codes for complex aeroelastic
systems such as wind turbines [1-3], significant discrepancies still exist between
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numerical and experimental results. Thus there exists the challenge to numeri-
cally predict the behaviour of these systems with acceptable error. Numerical in-
vestigations also have errors for implementation in aeroelastic problems. Firstly,
the numerical codes of aeroelastic systems are generally very computationally
expensive. For example, the computation time for a converged simulation of the
NREL rotor [4] for 5 rotor revolutions using 128 CPUs and a RANS-based solver
(high fidelity) was about 1080 hours, dominated by the fluid component [5]. De-
sign/optimisation in these systems can be intractable without significant com-
putational resources. As such, industrial design procedures mostly employ sim-
pler low fidelity models, which result in significant differences with respect to ex-
perimental results and missing physics. In this dissertation, high-fidelity solvers
are employed to model the aerodynamics. The goal of this dissertation is cost-
reduction of the high fidelity solvers using reduced order models in a data-driven
framework.

One of the numerical solvers that will be developed in this dissertation is
for a wind turbine of downwind configuration, in which case the rotor is placed
on the lee side of the tower. Most popular industrial wind turbines are of up-
wind configuration, however the downwind orientation provides many advan-
tages. The blade-to-tower clearance is a major design consideration in upwind
turbines, which is completely eliminated in downwind configuration. This will
enable designers to use flexible blades, which provides opportunities to reduce
blade material and consequent reduction in transmitted loads to tower, hub and
gearbox. Also downwind configuration can utilise the centrifugal forces during
operation to reduce blade root bending moments. The reader is referred to [6] for
further details about the advantages of downwind configuration. However, a ma-
jor problem with downwind wind turbines is the tower shadow effect, which is
caused by the tower wake in the form of impulsive forcing on the blade at every
rotation. This phenomenon has not been extensively characterised with high-
fidelity aeroelastic solvers owing to the numerical complexity and high computa-
tional costs, hence most of the numerical developments are based on empirical
solvers to reduce the simulation time. Other disadvantages include identifica-
tion of proper control strategies, details of which can be accessed from [6]. In
this dissertation, the tower shadow effect of a downwind, wind turbine will be
characterised through a high-fidelity solver and then subsequently, reduced or-
der models will be trained to predict this effect.

A secondary, separate issue affecting the accuracy of simulations are the in-
herent parametric uncertainties in aeroelasticity. Important parameters are of-
ten imprecisely known such as the structural parameters, e.g. stiffness of wing
and the imposed boundary conditions, e.g. inlet Mach number. Wind turbines
specially suffer from varying flow conditions as a result of the intermittent nature
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of the wind [7, 8] and due to turbulence in the atmospheric boundary-layer. This
is mostly not taken into account during the blade design process as stochastic
analysis requires multiple runs of the expensive computational solver to obtain
acceptably accurate statistics. Thus there is a clear deficiency in current design
practice. Simultaneously, the increased amount of instrumentation associated
with modern wind turbines leads to the availability of large data-sets (of e.g. li-
dar/accelerometer/strain gauge data) from experimental systems. There is an
opportunity to use this information to update the computational models as well
as to reduce the associated uncertainties in the flow conditions using statistical
techniques [9, 10], which will be performed in this dissertation.

1.2. STATE-OF-THE-ART - WIND TURBINE AEROELASTICS

In order to obtain physically accurate solutions, a high fidelity computational
model is unavoidable for some complex aeroelastic systems. Specifically with re-
spect to downwind wind turbines, only Navier-Stokes provides solutions with ac-
ceptable error, including all physics of the rotor-tower interaction. A comprehen-
sive review of the development of aeroelastic studies of wind turbine blades has
been presented in [11]. For modelling the aerodynamics of wind turbines, four
types of models have been used: the BEM (blade element momentum) model,
vortex models, actuator type models and finite-difference or finite-volume based
high-fidelity CFD (computational fluid dynamics) models [11]. BEM is the most
extensively used in wind turbine engineering since it is fast and provides accu-
rate forces when reliable aerodynamic force data is available. However because
of quasi steady and 2D flow assumptions, it is not able to predict accurate blade
loads close to the boundaries of the operating regime. The vortex model on
the other hand, ignores viscous effects which limits its application. The actua-
tor model provides more information on wake dynamics, but is computation-
ally more expensive. Moreover, being reliant on the aerodynamic measurement
data, it does not generally predict more accurate load estimates, compared to
BEM. The “CFD" model considers the full Navier-Stokes equations, is capable
of modelling complex 3D flows and providing accurate estimates of blade mo-
ments, which is essential in order to predict instabilities. The high computational
costs of CFD simulations limits their use in industrial applications. However, in
some problems, e.g. downwind wind turbines, Navier-Stokes is the only one of
the above models that accurately accounts for tower-blade interactions.

In the published literature, 3D Navier-Stokes aerodynamic/aeroelastic simu-
lations for wind turbines with structural details of the wind turbine such as tower
and nacelle have been considered in only a few studies [12-16]. Multiple investi-
gations have been performed considering only the aerodynamics [17-20], while
structural analysis of rotor blades with complex geometry and material compo-




4 1. INTRODUCTION

sitions has also been performed [21-23]. The aerodynamic computations have
mostly been performed with some limitations, e.g. consideration of a simplified
geometric representation. One of the first 3-D simulations of wind turbine rotors
at full scale was reported in [24] for fluid structure interaction (FSI) modelling
of the NREL 5MW offshore rotor, however the effect of the tower and nacelle
was ignored. This study was followed up with a more detailed representation
of the rotor-tower interaction in [25] and then demonstrated in a Windspire Ver-
tical Axis Wind Turbine (VAWT) [15]. The type of coupling between the CFD and
structural solvers in aeroelastic simulations determines the consistency in forces
and accelerations. In this regard, there have been developments based on loose
coupling [26] and tightly coupled methods [5]. All these aeroelastic simulations
consider an upwind configuration of the wind turbine. In this dissertation, we
consider for the first time a downwind configuration, that has to deal with more
complex flow features, since the blades are subjected to the tower wake at each
rotation.

As already discussed, the other aspect that needs consideration is the proba-
bilistic treatment for design and development of wind turbines, in order to pre-
vent analyses and designs that are valid only at a single condition. One of the first
probabilistic treatments of parameters in wind energy was performed in [27, 28]
for estimating the uncertainty in wind turbine power output and annual energy
production using the Weibull distribution. The uncertainty in wind direction to
model wind speed was shown to be a major source of discrepancy in assessment
of wind farm power output obtained from numerical simulations, when com-
pared to experimental data-sets [29]. Monte-Carlo based approaches have been
used to sample the effect of multiple parameters on the wind power output [30-
32]. A reliability based design optimization of wind turbine blades under wind
load uncertainty was carried out in [33], based on 249 groups of wind data to
consider the variation in wind. Common UQ propagation techniques such as
polynomial chaos expansions and stochastic collocation methods have also been
used to propagate uncertainties in wind turbine applications [34, 35].

Most of the probabilistic studies in the field of wind turbine simulations have
been based on simplified aerodynamics. More recently in [36], an aerodynamic
shape optimization of wind turbine blades using a RANS-based fluid model and
an adjoint method was presented, however unsteady effects were not consid-
ered due to computational limitations. An aerodynamic design optimization
for a HAWT under geometric uncertainty was studied in [37] using the univari-
ate reduced quadrature (UEQ) approach, but the aerodynamics was based on
BEM and a single airfoil shape was employed for the entire length of the blade.
A stochastic analysis of flow-induced instabilities due to uncertainties in fluid
forces as well as structural properties was performed in [38], using a linear sta-
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bility analysis and modelling the aerodynamics based on Theodorsen’s theory.
The effect of this randomness on the onset of instability is clearly observed, in-
cluding observance of coupled-mode flutter at speeds below the designed oper-
ational speed. However, a detailed study considering high-fidelity aerodynamics
and incorporating all uncertainties is required.

As already mentioned, the computational expense of high-fidelity or Navier-
Stokes aeroelastic models makes uncertainty propagation intractable. As such,
data-driven techniques are being increasingly explored in order to obtain reli-
able estimates at low costs. Calibration of simpler models (RANS, Jensen wake
models) using LES data has been implemented to build physics-informed re-
duced order models [39, 40]. In [41], the model parameters of a simplified fi-
nite element based structural model are calibrated using Bayesian inference in
order to predict the blade dynamics. Modal decomposition methods have also
been applied to high fidelity simulation data in order to obtain simplified models
for studying wake dynamics [42]. Dynamic mode decomposition has been used
in [43] to build a reduced order model (ROM), which was then embedded in a
Kalman filter to produce a time-marching algorithm. This dynamic model could
also use new data to dynamically update the ROM to provide real-time estimates.
Building on the data-driven approach, in this dissertation, we explore the devel-
opment of aeroelastic reduced order models based on training data from high
fidelity solvers and employ them to propagate uncertainties.

In view of the gaps in current practise, a high fidelity solver for a downwind
configuration wind turbine is required. Once a good-enough model is achieved,
areduced order model of the computational system is required to build a cheap
solver, in order to alleviate the computational requirements and to propagate the
many uncertainties existing in the system cheaply. Further for parameter estima-
tion, we use stochastic tools, in particular a Bayesian framework. This framework
allows us to use experimental information (e.g. data-sets from sensors) in order
to reduce the uncertainties and reconstruct the likely behaviour of the entire sys-
tem. Within the scope of this approach, we are able to utilise the measurement
data obtained from a downwind wind turbine experiment.

1.3. AIM OF THE DISSERTATION
The overall aim of this dissertation is:

To develop a technique to predict — with uncertainties — the dy-
namic behaviour of a complex aeroelastic system (such as wind tur-
bines) undergoing instabilities or fatigue, based on unsteady RANS
simulations and data recorded from the real system.




6 1. INTRODUCTION

Based on the state-of-the-art in this field, it is evident that there are many
significant gaps with regard to treatment of uncertainties in the design, devel-
opment and characterisation of the aeroelastic behaviour of wind turbines. The
Bayesian framework can be applied in this regard to utilise information available
from experimental measurements. The available data, although rich in volume,
is mostly limited to stable conditions. This dissertation will explore these chal-
lenges and develop methods which are general in the sense that they can be ap-
plied to any aeroelastic problem. The downwind wind turbine test case will be
explored in detail, primarily because of availability of experimental data and the
inherent complexity necessitating RANS solvers. Also this problem has engineer-
ing relevance and societal significance.

In order to obtain a solution, the first numerical challenge is to build an FSI
model of the full wind turbine taking into account the blades, nacelle and the
tower, that reproduces the experiment. The next challenge is to obtain a time-
domain ROM, which is valid for varying operating conditions (aeroelastic dy-
namics across a wide spectrum of operating conditions) and also for varying
input parameters (e.g the uncertain structure). Finally, we require a Bayesian
framework in order to assimilate the information obtained from experiments
into the ROM in order to provide a holistic estimate of the behaviour of the sys-
tem.

1.4. NOVELTY AND APPROACH

The contribution of this dissertation is in terms of development of a technique
to predict unsteady characteristics - with uncertainties - of a computationally
expensive aeroelastic system - cheaply, based on limited data or information. In
terms of aeroelastic simulation of wind turbines, this is among the few simula-
tions of a complete wind turbine considering all structural components in the
fluid model. To the knowledge of the author, a downwind configuration wind
turbine has been considered here for the first time. The aeroelastic solver is vali-
dated by findings of the wind turbine experiment, and accurate estimates of the
blade moment variation with azimuthal position is provided by the solver. For
the ROM, the work utilises ideas from the domain of system identification in
order to build cheap time-domain aeroelastic models. The distinguishing ap-
proach, compared to the developments in the control community in developing
ROMs for aeroelastics, is in decoupling the aerodynamic and structural solvers,
where the ROM is trained only to predict the aerodynamics. Finally, a framework
to use this model in the Bayesian setting is proposed, in order to predict and then
reduce uncertainties of the system. We successfully demonstrate the application
of this methodology across multiple test cases for inviscid as well as viscous flow
solvers.
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For the aeroelastic simulation, a RANS-based fluid structure interaction
solver is built and a sliding mesh scheme is implemented to simulate the inter-
face conditions between the moving and stationary domains. For the experi-
mental wind turbine system, structural components such as the blade, nacelle
and tower are considered. For the ROM, a system identification based model
is developed which provides a recurrence relation between input and output
data of the system obtained from high fidelity simulations. This model is fur-
ther parametrised based on the operating condition (e.g. Mach number in wind
turbines) in order to obtain a ROM valid over the entire flow regime, which is
known as a parameter varying framework used e.g. in gain scheduling. The ROM
is extensively verified for aeroelastic predictions, first for deterministic condi-
tions and then under uncertainty. For the Bayesian identification, experimental
data is used to update the uncertainties, and the posteriors are sampled using a
Markov Chain Monte Carlo (MCMC) algorithm.

1.5. OUTLINE

The dissertation is laid out as follows: In Chapter 2, theoretical background
of aeroelastic solvers, ROMs and UQ techniques are discussed along with their
mathematical framework. A brief review of the methods existing in the literature
is provided. Chapter 3 details the development of the aeroelastic solver for the
experimental wind turbine model. Also two other test cases: a 2-D airfoil sys-
tem and the 3-D Goland wing, are discussed. In Chapter 4, development of the
ROMs for the aeroelastic solver is discussed, namely a linear AutoRegressive with
eXogenous (ARX)-based ROM and a linear parameter varying (LPV) model. The
stability bounds of the underlying systems are obtained employing the ROMs in
state-space form and they are verified with either experimental or numerical es-
timates. Also the ROM for predicting wind turbine blade forcing is developed.
In Chapter 5, the uncertainty quantification part of the thesis is explored. The
ROMs are used to propagate the uncertainties and the details about the Bayesian
framework are discussed. Finally Chapter 6 concludes the dissertation with a
summary of the achieved results and list of recommendations and directions for
future research.
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BACKGROUND - AEROELASTICITY
AND UNCERTAINTY

Throughout this dissertation, three scientific domains are explored: aeroelas-
ticity, reduced order modelling and uncertainty quantification. In this chapter, a
brief overview of the theoretical and mathematical background of these domains
is presented. Only the theory relevant to this dissertation is provided; further de-
tails can be accessed from the references. Section 2.1 outlines the mathematical
framework of the fluid and structural solvers for development of the aeroelas-
tic model, along with a discussion of the common instabilities occurring in such
systems. In Section 2.2, instabilities occurring in aircraft and wind turbines are
discussed. In Section 2.3, a review of different reduced-order models that have
been applied to aeroelastic predictions is provided. Finally, uncertainty quan-
tification methods along with basic theory on Bayesian data assimilation is dis-
cussed in Section 2.4.

2.1. AEROELASTICITY

Aeroelasticity is a physical phenomena arising out of mutual interaction of in-
ertial, elastic and aerodynamic forces [1]. This interaction can lead to instabili-
ties in aeroelastic systems, and safe operating regimes of aircraft in terms of pa-
rameters such as altitude and Mach number, have to be obtained during design.
Aeroelastic behaviour is schematically depicted through the Collar triangle [2],
shown in Figure 2.1, where a linear instability known as flutter is shown. The
three types of forces are represented by the three vertices of the triangle, so called
as the ‘triangle of forces. The instabilities occur as a result of the interaction of
these forces and flutter is influenced by all the three types of forces and hence it is

13
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E

Figure 2.1: Collar triangle depicting aeroelastic interactions [2]; A: aerodynamic forces, E: elastic
forces, I: inertial forces, F: flutter.

positioned within this triangle. Other forms of instability, such as control rever-
sal, lie outside the triangle, since they does not involve inertial forces. The reader
is referred to [2] for further details. Flutter occurs as a result of unfavourable cou-
pling of modes and is observed in bridges, aircraft wings and wind turbines.

In order to predict instabilities such as flutter, both experimental as well as
numerical methods exist. However, experiments are generally very expensive
and also potentially dangerous, in case of flutter. In practise, it is convenient to
estimate the instability limits numerically and then perform verification exper-
iments for a reduced and non-destructive set of operating conditions. Robust
aeroelastic solvers are required in order to provide reliable predictions. In the
computational setting, these solvers generally involve coupling of separate fluid
and structural solvers. A brief theoretical discussion of the governing equations
is provided here.

2.1.1. NAVIER-STOKES EQUATIONS

The dynamics of a fluid are described by the Navier-Stokes equations, indepen-
dently derived by Claude-Louis Navier in 1822 and George Gabriel Stokes in 1845.
The flow equations are derived based on the conservation of three quantities -
mass, momentum and energy in fluid parcels, which lead to the continuity, mo-
mentum and energy equations respectively. For a compressible fluid with veloc-
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ity u(x,t) and density p(x, t) in a domain Q c R3, they are given by:

0¢(p) +div(pu) =0 (2.1a)
0¢(pu) +div(pu®u) + Vp = pf+ div.# (u) (2.1b)
0(E + div((E + p)u) = div(# (wu) + div(x V) + (pf) -u+ pQ, (2.10)

where f is a body forcing term such as gravity, Q is the intensity of the external
energy flux and . is the viscous stress tensor. E is the energy density, « is the
heat conduction coefficient, while p and 9 are the pressure and temperature of
the fluid respectively. A detailed derivation of these equations can be found in
e.g. [3].

In many flows of interest and for the test-cases to be investigated in this
dissertation, turbulent flow conditions must be simulated. The numerical so-
lution of (2.1) can be performed by employing different modelling techniques:
with Direct Numerical Simulation (DNS) where all scales of turbulence are re-
solved; or using Large Eddy Simulation (LES) where only large scales are resolved,
and a filter is used to remove the smallest scales, which are then typically mod-
elled with a subgrid-scale model; or using the Reynolds-averaged Navier-Stokes
(RANS) equations, which are obtained by time-averaging the governing equa-
tions. DNS results are accurate, but computational costs scale by Re3, where
Re is the Reynolds number and is mostly computationally intractable for engi-
neering problems. LES is being increasingly used with the growth in computing
power, however it is also impractically expensive for many industrial problems,
especially when uncertainty quantification is needed. The RANS equations are
by far the most commonly used due to the acceptable accuracy for many inter-
esting flows and relatively cheap computational costs. RANS equations are de-
rived by the Reynolds decomposition, while for the compressible case, a density
weighted time-averaging is performed known as Favre decomposition. An in-
stantaneous flow variable ¢ is decomposed into a mean ¢ and fluctuating com-
ponent ¢” as given by:

Pp=G+¢". 2.2)

Favre averaging leads to:

pp=pp+¢") =pP, (2.3)

where p¢” = 0. Following the decomposition and averaging, the Navier-Stokes
equations are reduced to Reynolds-averaged-Navier-Stokes (technically, Favre-
averaged) equations: a detailed derivation can be found in e.g. [4]. Averaging re-

sults in almost identical equations with additional terms, notably 7;; = —pu/ u;’ ,
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known as the Reynolds stresses, which need to be approximated with a turbu-
lence model to close the system of the RANS equations. This tensor is commonly
modelled with the use of so-called eddy-viscosity models, which originate from
a hypothesis provided by Boussinesq in 1877 [5]. The hypothesis assumes that
7;j is proportional to the mean strain rate tensor S; j, which can be written as:

2
r,-j:ZMtSij—gpchij, (2.4)

where, u; is the eddy viscosity and §;; is the Kronecker delta. Here k is the tur-
bulent kinetic energy, which is used as a transported variable in the turbulence
models. Two-equation models are most commonly used, in which case k is the
one of the variables. The other transported variable depends on the turbulence
model being used and could be the rate of dissipation of turbulence energy, € or
the specific dissipation rate, w leading to k — e and k —w models. Accuracy of dif-
ferent turbulence models depends on the specific flow conditions existing in the
test cases.

In this dissertation, unsteady flows are investigated for rotating bodies -
downwind wind turbines. For time-dependent flows, unsteady RANS (URANS)
equations are employed, where time derivatives in the governing equations are
retained and the time-stepping should be sufficient to capture the unsteady ef-
fects, e.g. vortex shedding frequency can be used as a measure for minimum
time-step employed. URANS requires separation between unsteady time-scales
and turbulent time-scales. Moreover, for rotating bodies such as wind turbines,
the flow equations must be described in the rotating frame of reference. If v is
the velocity field relative to the system rotating at angular velocity w and posi-
tion vector r from the axis of rotation, the velocity field in the absolute frame of
reference is given by:

u=v+wXxr. (2.5)

The equations are expressed in the rotating frame of reference. The entrainment
velocity w x r does not add mass to the system, hence the continuity equation is
unchanged:

0:(p) +div(pv) =0. (2.6)

However, for the momentum equations, two terms representing the Coriolis
forces per unit mass F;, and the centrifugal force F., are to be added, which
are given by:

Foo=-2wxv Fee=—wx (wxr). 2.7
The momentum conservation equation then becomes:

0¢(pv) +div(pvev) +Vp = pf—2p(w x V) — pw x (w x r) + div.F (V). (2.8)
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For the energy conservation, the work done by the centrifugal force is added to
the energy equation, which results in:

0.E, +div((Ey + p)v) = div(# (v)v) + div(k VI) + (oD - v+ pQ, (2.9)
where energy density E, is now defined in the rotating frame of reference.

2.1.2. STRUCTURAL EQUATIONS - VIBRATION THEORY

Structural analysis is required in order to predict the dynamic behaviour of the
system under external loading. The dynamics of the structure are analysed based
on the theory of vibration under free or forced loading condition. Free vibra-
tion is the natural response of a system due to an initial disturbance, resulting
in vibration of the system in its natural frequencies. Under forced vibration, the
system is subjected to an external loading, which can be periodic, transient or
random.

Vibrating systems are also classified based on their linear or nonlinear be-
haviour. The classification can be based on the nature of the governing differen-
tial equation, but typically, it is governed by the range of operation of the system.
For example, in case of a pendulum with an amplitude 6, the restoring torque is
proportional to sinf, where for small amplitudes, sinf = 8, while for large am-
plitudes, this reduction is not possible. In the context of this dissertation, linear
stability analysis is of interest, hence structural nonlinearity is not explored due
to the assumption of small deformations of the structure. However for limit-cycle
oscillations, large deformations are possible, but in the context of this research,
only aerodynamic nonlinearities are considered, which will be justified in sub-
sequent chapters. The reader is referred to [6] and [7] for further details about
structural analysis for both linear and nonlinear systems.

The governing equations can be typically represented in the form:

Miu(x, 1) + Ku(x, 1) = Fs(x, 1), (2.10)

where u is the displacement of the system and F; is the external loading, while M
and K are the mass and stiffness matrices. In the absence of analytical solutions,
the response of the structure is estimated computationally, where various dis-
cretisations of the governing equations are possible, such as the finite difference
or finite element method. The numerical techniques involve discretisation of the
system into elements and formation of elemental M and K matrices. Equation
(2.10) is analogous to that of a spring-mass system and the problems discussed
in this dissertation (for example, wind turbine blade) can all be reduced to this
form. Additionally a damping term is used for some problems, which will be dis-
cussed in more detail in Section 4.5.
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Under the assumption of a linear system, the mass and stiffness matrices in
(2.10) are constant under any dynamic load F;, and then a modal form can be
used. For deriving the modal form of equations of motion, the natural modes of
the system X; (x) are determined. The deformation of the system is then defined
by:

ulx, 0 =) fi(0X;x), (2.11)
i=1

where f;(t) are the modal amplitudes, which are functions of time. In the con-
text of the reduced-order model developed in this dissertation, these modal am-
plitudes are utilised for temporal updating of the structure, while keeping the
original modes of the system unchanged, which will be explained in more detail
later. In the dynamic modal equation, the first N << m modes are considered,
where m is the (finite) number of degrees of freedom of the system after discreti-
sation. These N modes are selected such that they approximately represent the
dynamic behaviour of the system by containing most of the energy. The mode
shapes X; (x) are determined by solving an eigenvalue problem and they are gen-
erally orthogonal. The mode shapes can be scaled in various ways - commonly
mass normalisation is performed in modal analysis such that:

X] MX; =6, (2.12)

where §; ; is a delta function. Substitution of (2.11) into (2.10) and multiplication
of resulting equation by X]T gives:

N . N
3 X0 MX; (0 fi (0 + Y. X; (0 KX; (x) f; (1) = X (0 Fs (x, ). (2.13)
i=1 i=1

Due to (2.12), (2.13) is reduced to N decoupled modal equations given by:
i+ @2 fi(t) = Fy(0), i=1,---N, (2.14)

where F, (1) is the modal force and a)? are the modal frequencies of the system.
The system of equations (2.14) are uncoupled and each of these differential equa-
tions can be solved independently. Further details about incorporation of non-
uniform material properties in this framework with a 1-D finite difference model
will be discussed in Section 3.1.3, where an additional term for rotating wind tur-
bine blade will be introduced in the governing equations.

2.1.3. AEROELASTIC SOLVER
Numerical estimation of aeroelasticity involves coupling of CFD and structural
dynamics equations. Broadly speaking, there are two methods for solving the
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coupled FSI problem - the monolithic and partitioned approaches. In the mono-
lithic approach, both fluid and structural equations are solved simultaneously at
each time-step, requiring a reformulation of the governing equations. As such,
the monolithic approach is intrusive, since redevelopment of numerical code
of the system is required. In the partitioned approach, the fluid and structural
equations are solved independently, and the two solvers are coupled by exchang-
ing information at the interface. The distinct solvers allow the use of customised
iterative methods for the fluid and structural equations, however development
of stable and robust coupling techniques at the interface requires special con-
sideration.

At the interface, the structural mesh displacements are transferred onto the
fluid mesh, while the fluid loads are transformed into equivalent structural loads.
Typically, the fluid and structural grids differ in resolution and hence the meshes
will be non-conforming at the interface. The structural model usually is relatively
simple and is often represented by a geometries such as plate, 1-D beam or box.
Hence it is computationally cheap due to lower number of degrees-of-freedom
and requires few operations if linearity is assumed. On the other hand, the fluid
model requires more resolution, for example a wind turbine model would have
the blade surface as the interface, which normally requires very fine resolution
in order to estimate the blade loads accurately, e.g. in the wind turbine blade
considered in this dissertation, each blade has ~ 18000 mesh nodes, which is
much higher than the structural mesh. Due to this non-conformity, interpola-
tion techniques involving projection or extrapolation are required. This is typi-
cally achieved by construction of a transformation operator; a discussion on the
existing techniques can be found in 8, 9].

The complexity of the aeroelastic model is an important consideration in or-
der to obtain realisable models in terms of computational expense. It is common
practise in aeroelasticity to replace the structural model with a modal solver, as
introduced in the previous section. The computational challenge in the aeroe-
lastic model arises entirely due to the fluid solver. To alleviate the computational
challenge, time-linearised models have been developed, which are based on the
principle of obtaining a steady-flow field known as the base-flow, about which
small perturbations are considered for estimating the dynamic behaviour. For
mathematical simplicity, only linear terms in the perturbation analysis are in-
cluded in the final model and as such these class of models are known as time-
linearised. For the base flow, fully nonlinear steady-state solutions of the Navier-
Stokes equations are obtained. The steady flow solution hence has a spatial
structure and can also include complex features such as shock waves, if present.
The linear perturbation for the dynamic solution thus assumes that the shock
wave or other flow quantities vary linearly about this nonlinear field. Time-
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linearisation reduces computational costs significantly and is also sufficient to
estimate interesting flow features.

Typically, industrial designers perform optimisation of the structural model
parameters, in which case the full nonlinear model is computationally expen-
sive. As aresult, time-linearisation is employed extensively both for research and
industrial practise. The time-linearised model also provides a framework for in-
corporating reduced order models in the aeroelastic solver. This idea is however
limited to steady base flows. It has been employed for the test cases of airfoil
and Goland wing in this dissertation and a detailed discussion will follow in the
subsequent chapters.

To develop a mathematical notation for coupled solvers, the equations can
be written on the basis of aeroelastic operators, for details see [10]. In aeroelas-
ticity, displacements and forces are commonly expressed in a generalised form.
The relationship between generalised force F; and displacement u, can be writ-
ten as:

Fg=2(uy), (2.15)

where Z is the structural operator. The inverse of £ is assumed to exist and can
also be represented in a functional form as:

ug=<L"1F,. (2.16)

As introduced in Figure 2.1, forces in aeroelastic systems could be aerodynamic
Fagq, inertial F,4 or elastic Fgg. Combination of these forces lead to different
aeroelastic instabilities, and (2.15) can be decomposed as:

Faq+Fig+Fpg =2 (ug). (2.17)

Elastic forces depend on the material properties of the structure and hence can
be estimated from the structural characterisation alone. The aerodynamic forces
F a4 change with the movement of the structure and conversely, the orientation
of the structure changes due to the aerodynamic forcing. This mutual interaction
can be represented by:

Fag =l (ug) ug =" (Faq) (2.18)

where « is the aerodynamic operator. In dynamic aeroelasticity, inertial forces
arise as a result of the change in displacement, which can be expressed with the
inertial operator .# as:

Frq=5(uq) ug=9""1(Fry). (2.19)
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(2.18) and (2.19) can be substituted in (2.17) to give:

A (ug) + I (ug) + Fpqg = L(ug), (2.20)
which gives the generalised displacement as:

ug =$_1(d(uq)+f(uq)+FEq). (2.21)

Equations (2.20) and (2.21) provide the interaction between the fluid and struc-
ture in aeroelastic problems. The operators could be linear or nonlinear, as was
discussed in the earlier section. The mutual interaction of these forces results in
different instabilities; a few of these are discussed in the next section.

2.2, INSTABILITIES IN AEROELASTICITY
Aeroelastic instabilities can be broadly classified as static or dynamic. A brief
discussion on some instabilities in provided here.

2.2.1. FLIGHT INSTABILITIES

Divergence is a static aeroelastic phenomena, that occurs when the twisting mo-
ment of a structure is unable to sustain the moment generated by the aerody-
namic lifting force. At speeds below the divergence speed, a static equilibrium is
reached, hence this limit has to be characterised for aeroelastic structures.

Control surface reversal is the condition when the trailing-edge control sur-
face of an aircraft becomes ineffective due to excessive elastic twist of the wing.
The condition results in a zero or negative lift or roll rate at large ratio of dynamic
pressure to the stiffness of wing.

Flutter is a dynamic instability, which is one of the most important aeroelas-
tic phenomena investigated for avoiding catastrophic events. It is a self-excited
oscillation in which the structure extracts energy from the fluid. There are vari-
ous forms of flutter: Classical binary flutter occurs out of unfavourable coupling
of two modes from the associated aerodynamic forces. It can however also occur
by coupling of multiple modes. Flutter is characterised by a flutter speed and for
an entire flight regime, a flutter boundary is defined, which separates the stable
and unstable regimes. For systems assumed to be linear, the oscillations damp
out below the flutter speed, sustain at the interface and grow above the flutter
point.

For nonlinear systems, the diverging oscillations are bounded due to the
nonlinearity of the system and sustained oscillations of potentially large ampli-
tude are maintained, which are known as Limit Cycle Oscillations (LCO). These
oscillations can lead to significant reduction in aircraft performance, increase in
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airframe fatigue and also cause discomfort to the passengers in a commercial
aircraft.

In this dissertation, we will be exploring and predicting the phenomena of
flutter more extensively.

2.2.2. WIND TURBINE AEROELASTIC FAILURE

Wind turbines are increasingly prone to instabilities and fatigue with growing
size and flexibility of blades. A review of instabilities in helicopters and wind
turbines can be found in [11, 12]. The instabilities can occur in blades from single
or multiple degrees of freedom or due to rotor-tower interaction.

Blade edgewise or flapwise vibrations have been reported [13, 14] in stall-
regulated turbines, and are experienced more often in larger blades. These vi-
brations are caused by negative damping of edgewise or flapwise mode and the
shape of the eigenmode has a strong influence on this instability. Further exten-
sive details about examples of such instabilities in wind turbines can be found in
[12].

Stall flutter, also known as stall-induced vibration may occur in wind tur-
bines operating under stall or in separated flow conditions [13, 15]. These vi-
brations are characterised by the blade airfoil characteristics, effective direction
of blade vibration and damping. The mechanism for these vibrations in the dy-
namic case is based on the effective reduction in lift at high angles of attack, and
then a subsequent reduction in the torsional deformation of the blade (if aero-
dynamic centre is infront of centre of twist) due to smaller forces, which in turn
reduces the angle of attack. The smaller angle of attack again results in an in-
crease in lift, which eventually results in a limit-cycle instability.

The other form of instability is classical flutter, which can be related to pitch-
regulated wind turbines. This form of instability arises out of coupling of modes
and is identified with different names depending on the participating modes. For
example, the torsional and flapping modes may couple unfavourably through
the aerodynamic forces with a negative damping. Besides other conditions, this
instability can arise due to low frequency ratio between the flapping and tor-
sional modes, high rotor speed, low stiffness and for centre of mass being close
to the aft of the blade cross section [16, 17].

Fatigue is another failure phenomena that has to be investigated in order to
correctly assess the unique load spectrum during the design of wind turbines
[18]. The spectrum of fatigue loads is characterised by the operating conditions
of the turbine. Further details on the theory of fatigue can be found in [18]. Other
instabilities can arise out of coupling of tower and rotor modes. Lead-lag and
Sideways Tower Instability and Whirl Flutter are few examples, further details can
be found in [12].
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2.3. REDUCED ORDER MODELLING IN AEROELASTICITY
Application of aeroelasticity for industrial applications has been largely impaired
due to the computational expense of the underlying system [19]. As such, Re-
duced Order Models (ROMs) have been emerging as a useful alternative for both
the academic community as well as for industry. The ROMs can be broadly di-
vided into projection-based and system identification-based. The reader is re-
ferred to [1] for a detailed review of the ROMs that have been used in fluid-
structure interaction applications. A short discussion on a few particularly rel-
evant ROMs is provided here.

One technique for model reduction is the Harmonic balance method [20, 21],
which can be applied to time-periodic problems to determine the stability char-
acteristics of dynamical systems. In this method, the unsteady solution is rep-
resented by a Fourier series in time domain, for example, density p is expressed
as:

px, ) =) Gp(x)expliont), (2.22)

where only the first few of the n harmonics are retained. (2.22) is substituted into
the governing equations, which are solved for the Fourier coefficients G;,. In the
absence of a priori knowledge of the fundamental frequency w of the system, the
frequency also needs to be estimated [22]. Use of single harmonics [23] has been
shown to be sufficient for capturing instabilities in airfoils, while in [21], multi-
ple harmonics are considered for application to turbo-machinery flows. More
recently, a high-order formulation with the Euler equations has been applied for
nonlinear aeroelasticity [24].

Projection-based methods have been used extensively for building ROMs,
using various techniques such as the balanced truncation method [25], classical
model truncation, Krylov subspaces [26], or bases obtained from snapshots [27]
and Proper Orthogonal Decomposition (POD) [28, 29]. The latter method, POD
is based on expansions obtained from bases ¢; : j = 1,2,...,m, also known as
Karhunen-Loeve (KL) basis, constructed from snapshots q" : r =1,2,..., n which
are essentially multiple (n) instantaneous flow fields. The POD basis ¢; is a re-
duced set of vectors (m << n), which is the best linear basis to represent the flow
field (in a least-squares sense), and they are obtained by solving an eigenvalue
problem. Thus, the idea is representation of flow field as a small set of modes,
and in turn reduce the degrees of freedom of the system. The magnitude of the
eigenvalues attached to the modes is used to choose a sufficient number of POD
modes to represent the flow accurately. The solution estimate from the POD can
be written as:

u(x, ) =Y cj()p;x), (2.23)
j=1




24 2. BACKGROUND - AEROELASTICITY AND UNCERTAINTY

where ¢;(¢) is the magnitude attached to the mode, and is the temporal term
in the equation. POD was initially applied in fluid dynamics to study turbulence
properties, in particular to study the coherent turbulent structures in experimen-
tal data. POD has since been used in many aeroelastic applications, including
prediction of limit-cycle oscillations [30]. However, POD modes are not neces-
sarily optimal for time-evolved or dynamic data. This has seen the development
of Dynamic Mode Decomposition (DMD) [31, 32] to analyse the temporal dynam-
ics of nonlinearly evolving flows.

The other class of ROMs are based on system identification. One of them
is Volterra theory-based ROM. They have been applied to Euler and Navier-
Stokes models of linear and nonlinear aeroelastic systems [33-35]. The model is
based on construction of Volterra kernels identified from aerodynamic impulse
responses. Thereafter, a convolution scheme is employed to create linear and
nonlinear aerodynamic responses to arbitrary inputs. For a time-invariant, non-
linear system subjected to an arbitrary input u(¢), the system response obtained
from Volterra theory is given by:

N N N
yO =ho+ ) ME-Du@+ Y, Y ho(t—T1,t—-T2)u(r)u(r)

7=0 71=07,=0
N N

+ ) e Y Rt =Ty, =T U . u(Ty),  (2.24)
7,=0 7,=0

where hy is the steady state term satisfying the initial condition, h; is the first-
order kernel or the linear impulse response and h; are the higher order kernels,
which are impulse responses obtained at t number of time instances. The num-
ber of kernels retained in the model determines the complexity of the model,
with inclusion of only the first kernel h; implying assumption of linearity, while
full nonlinear behaviour can be retained if all kernels are considered. High or-
der Volterra kernels are however expensive to compute since they are multi-
dimensional convolution integrals, hence most of the applications are limited
to lower-order kernels.

Another class of system identification-based ROMs are the input/output
models, which are data-driven ROMs and are non-intrusive in nature. As men-
tioned in case of time-linearised models, the idea of a base nonlinear model as
a steady-state solution is implemented in these models. The ROM thus provides
the dynamic response of the system only. These methods are based on the gener-
ation of training data in order to identify a mapping function between the input
and output. Both linear and nonlinear functions can be developed for predicting
aeroelastic responses. One example of this class of models is the eigensystem re-
alisation algorithm (ERA) employed by [35] to predict flutter, through models in
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state-space form using modal impulse responses. A discrete time-domain linear
ROM based on an autoregressive-moving-average (ARMA) model was proposed
by [36] for aerodynamic estimations. Among others, a discrete-time state space
model was used by [37] for modelling unsteady aerodynamics. Also, ROMs based
on ARX model have been implemented to predict flutter [38], flutter suppression
[39] and for aeroservoelastic analysis [40]. There have been developments in or-
der to generalise such ROMs with a parameter-varying framework for applica-
tions in aerospace [41] and wind energy [42, 43] among others.

There have been many contributions towards building LPV models, partic-
ularly in the control community. LPV models originated from the idea of gain
scheduling, where local linear control systems are interpolated to obtain a global
solution in the entire operating regime [44]. The operating regime can be charac-
terised by one or multiple scheduling parameters, depending on the dynamical
system. LPV system can be represented in the input-output (IO) or a state-space
(SS) form. Depending on the representation, the approaches for identification
of the LPV system can be classified based on LPV-10 or LPV-SS models. In case
of LPV-1I0 models, this could be based on interpolation [45], regression [46], set
membership [47] or nonlinear optimisation [48]. While for LPV-SS models, some
of the identification methods are based on gradient [49], multiple-model [50],
full-measurement [51], set-membership [52] and subspace [53] approaches. The
reader is referred to [54] for a detailed review of these methods.

The subspace-based approaches are advantageous in the sense that an in-
terpolation or identification of local models is not required. During estimation,
a generalised data equation of the LPV-SS model is obtained to estimate the
state and state-matrices. An overview of closed-loop subspace-methods can be
found in [55]. A global predictor based subspace identification algorithm for an
LPV system is presented in [56, 57] for both closed-loop and open-loop systems.
However this method suffers from the curse of dimensionality, the size of the
state matrices increase exponentially with the dimension of the past window. To
circumvent this, a kernel-based regularisation approach is proposed by the au-
thors. It was observed that the length of the past-window influences a trade-off
between bias and variance of the estimates, and hence, a smaller past window
is preferable. In terms of flutter prediction, global and local identification tech-
niques have been compared for a two degree-of-freedom airfoil assuming steady
aerodynamics in [58], which showed a trade-off between bias and variance in dif-
ferent methods. More recently, a nuclear norm based recursive subspace iden-
tification method has been developed for flutter detection of a scaled upwind
wind turbine [59]. The method is demonstrated to track the system behaviour
accurately for slowly varying dynamics of the experimental turbine that is inves-
tigated, but it is observed that the method may not be optimal for highly nonlin-
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ear systems due to higher computational complexity.

In this dissertation, considering the applicability of the LPV framework for
varying operating conditions, it is implemented for prediction of aeroelastic
characteristics such as instabilities or fatigue, and they will be discussed in fur-
ther detail in Chapter 4. Contrary to the identification approaches commonly
implemented in the control community, the aerodynamic and structural solvers
are decoupled during training and a decoupled LPV-ARX model is obtained only
for estimating the aerodynamics. This framework enables consideration of struc-
tural uncertainties without modifying the fluid model. For obtaining the model,
decoupled ARX models are initially constructed at different operating condi-
tions, and coefficient interpolation is performed. In view of the conciseness in
notation, these decoupled models would be referred as ARX and LPV-ARX mod-
els in this dissertation, as they are known in the research community. In the
current investigation, the scheduling parameter remains constant during each
experiment or when individual LTT models are identified. The stability of the
resulting LPV system is defined in a frozen sense, which is discussed in further
detail in Section 4.2. In future investigations, the identification approach could
be modified to incorporate other global methods such as the subspace approach,
however owing to the higher complexity in the latter case, the interpolation ap-
proach is chosen here.

All the aforementioned models can be used for predicting linear dynamic re-
sponses such as flutter. However nonlinear dynamics may arise in aeroelastic
systems out of large amplitude deformations or nonlinear movement of shock
waves, leading to phenomena such as LCO. Prediction of such dynamics re-
quires training of models with nonlinear architecture. Multiple strategies have
been employed in order to identify the nonlinear network mapping the inputs
to the outputs. One of the most frequently used techniques for identifying non-
linear terms are Neural Networks (NN). A neural network is basically an inter-
connection of weighted nodes for mapping inputs to outputs. A node sums the
weighted inputs and passes it to the next layer. There may be many layers of
nodes, referred to as hidden layers, and the intermediate connections may result
in very complex networks, which are generally treated as a black-box by the user.
In terms of use of neural networks in fluid mechanics, a recurrent-multi-layer-
perceptron neural network was proposed by [60] to identify aerodynamic coeffi-
cients. Further, a radial-basis-function neural network (RBF-NN) was employed
by [61] in order to analyse LCO with large shock motion in transonic flow. Other
aeroelastic applications include use of Discrete-Time-Recurrent NN (DTRNN),
Nonlinear-ARX (NARX) NN [62] and Continuous-Time-Recurrent NN (CTRNN)
[63] models.

The NN approach with an implicit nonlinear function can introduce difficul-
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ties in estimation of the linear stability point. Instead, the nonlinear model can
be formulated such that the system response can be computed as a summation
of alinear and a nonlinear part. In the case of aeroelastic stability prediction, the
linear part can be used to predict the flutter point, while the nonlinear part can
provide the LCO amplitude and response. In [64], this methodology has been
applied using a Levenberg-Marquardt (LM) algorithm for identifying the nonlin-
ear coefficients in the model. The method is more physically intuitive compared
to a fully nonlinear approach and also lead to generation of ROMs in a shorter
time, with good level of accuracy [64]. Other developments in this approach in-
clude use of a Polynomial Nonlinear State Space (PNLSS) model, proposed in
[65] and successfully applied to two physical systems. PNLSS is also based on
the estimation of the system state based on sum of linear and nonlinear terms
in a state-space framework. The nonlinear functions are chosen from a family of
monomials upto a certain degree with all distinct combinations. This approach
could provide a mathematical understanding in the final optimised model. In
aeroelasticity, PNLSS has been applied to perform nonlinear model reduction
[66], by choosing the monomials based on a iterative, greedy algorithm. All these
methods involve an extensive training procedure, which can significantly affect
the quality of predictions.

2.4. UNCERTAINTIES IN AEROELASTICITY

UQ and aeroelasticity are significantly mature domains in terms of scientific de-
velopments within their respective communities. However literature is scarce
when the two disciplines are considered together. In the regulatory commu-
nities such as aircraft certification, aeroelasticity has been treated determinis-
tically until now. Among others, the reasons for non-incorporation could be the
high computational costs for aeroelastic systems and large number of unknown
structural parameters that might need to be considered as stochastic. Notwith-
standing these difficulties, the opportunities for coupling the two disciplines are
multitudinous, with the development of efficient UQ techniques, ROMs for esti-
mating aeroelastic behaviour and also availability of computing resources. The
primary facets of UQ are discussed here.

UQ is the study of behaviour of systems under uncertainties. Uncertainty
can represent unknown parameters affecting the system dynamics, the inherent
uncertainty in a physical process, modelling discrepancies and assumptions and
many more. The theoretical foundation of UQ is in probability and statistics, but
application connects strongly to disciplines of numerical analysis such as op-
timization and simulation, model reduction. Initial developments were mostly
confined to the mathematical community, but subsequently, there have been ap-
plications in other disciplines [67, 68] with dedicated literature emerging for UQ
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Figure 2.2: Uncertainty propagation, representative parameters from a problem in fluid mechan-
ics.

[69, 70], in addition to journals for UQ.

Uncertainties are broadly classified into two categories: aleatoric and epis-
temic. Aleatoric uncertainty is an irreducible form of uncertainty that arises from
natural random variations of a process. For example, the outcome of a flip of a
coin is an aleatoric uncertainty, since more data or improved models cannot in-
crease our knowledge about the outcome as it is part of the natural process of the
system. On the other hand, epistemic uncertainty arises from lack of knowledge
about the process, e.g. about the value of an input parameter. This uncertainty
is reducible, e.g. by measuring some aspect of the system, the uncertainty in
the parameter can be updated. In this dissertation, epistemic uncertainty is in-
vestigated and reduced in a Bayesian framework, where these uncertainties are
represented in the probability framework.

UQ can also be categorised into two types - forward uncertainty propagation
and inverse uncertainty quantification. In the forward problem, known prob-
ability distributions of uncertain input parameters are propagated through the
simulation code to ascertain their effect on the output quantities, specifically
to provide probabilistic estimates of the quantities of interest in terms of distri-
bution or statistical moments. This process is shown in Figure 2.2, where the
uncertain input parameters such as stiffness and Mach number are propagated
through the CFD model to obtain stochastic estimates of quantities of interest
such as surface pressure on the wing. On the other hand, the inverse UQ frame-
work involves updating probability distribution of input parameters given mea-
surement data (can be experimental or from high fidelity simulations) of the out-
put. This process, also known as calibration, can be used to reduce uncertainties
in the input parameters, which in turn can again be employed in the forward
problem to provide informed predictions.
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2.4.1. UNCERTAINTY PROPAGATION

In forward propagation, sensitivity analysis is a useful mathematical tool in or-
der to determine a subset of input parameters that primarily influence the output
quantity. Due to model complexity, uncertainty propagation must be numerical
and can be performed using various numerical methods, a few important meth-
ods are briefly described in this short review:

* Monte Carlo-based methods: Monte Carlo methods denote a broad class of
methods based on random sampling from the input probability distribu-
tions and evaluating the simulation code at each sample. These methods
are versatile in the sense that their convergence is independent of the di-
mensionality and regularity of the problem. However they are computa-
tionally expensive due to the slow convergence rate, which is proportional
to 1/v/N, where N is the number of sampling points.

* Polynomial-based methods - Polynomial chaos (PC): This method was orig-
inally developed by [71], where Hermite polynomials were used to repre-
sent the uncertainty of a normal random variable. In a PC expansion (PCE)
[72], an arbitrary random vector (quantities of interest) is represented as
a function of input random field. The polynomial is uni- or multivariate
depending on the dimension of the random field. The input random pa-
rameter is represented by a probability distribution, which is associated to
a set of orthogonal polynomials, for example Legendre polynomials corre-
spond to a uniform distribution. Also there are non-intrusive PC methods
such as Probabilistic Collocation, based on Lagrangian polynomials which
is essentially polynomial interpolation/quadrature with optimally chosen
nodes based on input distribution. It has been shown to be efficient for a
flow problem over an airfoil [73].

Other methods for uncertainty propagation such as multi-level Monte Carlo,
Kriging, first-order reliability method and interval analysis can also be employed.
The reader is referred to [70] for details about other propagation techniques.

2.4.2. INVERSE UQ - BAYESIAN PERSPECTIVE

The category of methods that are implemented in this dissertation are based on
the Bayesian framework [74], which can be applied to infer information about
unknown parameters through a calibration procedure using experimental data.
In order to define the procedure, let 8 denote the parameter about which infer-
ence is to be made and y be the observed data or experimental measurements. It
is of interest to provide probability statements about 8 given y, for which a joint
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Figure 2.3: Bayesian calibration (marked in red) where measurement data on flutter boundary
used to obtain posteriors on input parameters such as stiffness.

probability distribution for 8 and y is written as:
P®©,y) =PO)P(y10), (2.25)

where P(0) is known as the prior probability and P(y | 0) is the likelihood func-
tion. Bayes’ rule can be used here in order to obtain:

PO,y) _POPYI0)
P(y) P(y)

POy = ) (2.26)

where P(8 | y) is the posterior distribution, which provides the update on the
unknown parameter 6. In most cases, the evidence P(y) is considered a constant
as itis independent of 8, which simplifies (2.26) to give the posterior density as:

P@|y) x P@OP(yI6). (2.27)

The posterior distribution can then be employed in the forward problem in or-
der to provide posterior predictions of the quantities of interest. The method is
demonstrated in Figure 2.3. However statistics of the posterior are not known
explicitly in the form of a probability density, and hence sampling must be per-
formed using techniques such as Markov Chain Monte Carlo MCMC) [75]. A
short review of the literature on UQ in aeroelasticity, specifically with respect to
wind turbines is provided in subsequent chapters.

2.5. SUMMARY OF METHODS

From the discussion of the literature on different methods, the mod-
els/techniques that are developed/implemented in this dissertation are sum-
marised here. The details will be further provided in the relevant chapters.
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* Aeroelastic solver and instabilities: For the structural part, a modal solver is
selected, which is based on consideration of non-uniform material prop-
erties for the case of the wind turbine. The fluid solver is based on RANS-
based Navier-Stokes formulation considering compressible flow condi-
tions. A partitioned solver is used for the aeroelastic solution, with inter-
face treatment based on infinite-plate spline technique. In terms of in-
stabilities, flutter is investigated in case of aircraft test case and structural
fatigue is a potential application for wind turbines.

* Reduced Order Model: Data-driven time-domain ROMs based on in-
put/output map-identification is implemented. While training the ROMs,
the inputs are the prescribed deformation (modal displacements), while
the outputs are the force/pressure distribution on the wing/blade surface.
The ROM is only trained for the fluid component, and the structural solver
is then coupled to the trained ROM. These ROMs are generalised across an
operating regime by parametrising the training parameters. Further, for
the case of reconstructing wind turbine loads, a Gaussian forcing term is
included in the formulation to take into account the forcing from the tower
wake.

* UQ and Bayesian updating: The standard Monte Carlo method is used for
sampling in the forward propagation, since development of ROM makes
this operation cheap. Experimental data is employed for identification of
parameters and a Markov Chain Monte Carlo algorithm is used for sam-
pling from the posterior.
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DEVELOPMENT OF AN
AEROELASTIC SOLVER

This dissertation considers multiple aeroelastic systems and the computational
models for each of them are inherently complex. In particular, the downwind
wind turbine system, including all the structural components (namely blade,
nacelle and tower), demonstrates complicated flow physics - e.g. interaction of
tower wake and blades. In order to model the aeroelastic behaviour accurately,
a high-fidelity unsteady fluid-structure interaction solver is required. This chap-
ter discusses the development of such a solver. The aeroelastic solver requires
coupling of structural and aerodynamic models. For the structural part, a modal
solver is developed, discussed in Section 3.1. Details about the mesh and treat-
ment of mesh interfaces are in Section 3.2. The basic aeroelastic equations and
the coupling method that is implemented is mentioned in Section 3.3. Finally
the solver is used to obtain aeroelastic predictions, including flutter boundary
reconstructions for airfoil and wing and wind turbine unsteady characteristics in
Section 3.4. The developed solver will be used to train Reduced Order Models
(ROM) in Chapter 4.

3.1. STRUCTURAL SOLVER

The three test cases that are investigated in this dissertation are: a two-Degree-
of-Freedom NACA 0012 airfoil, the Goland Wing and a downwind wind turbine
system. The airfoil and wing are widely investigated aeroelastic problems and
details about them are plentiful in the literature. Therefore few details are men-
tioned here, whereas the wind turbine model is explained in more detail.
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Figure 3.1: NACA 0012 airfoil with pitch and plunge degrees of freedom.

3.1.1. SENSITIVITY ANALYSIS

The structural model is described by many geometrical and physical parame-
ters. In order to perform operations such as structural uncertainty propagation,
it may be unnecessary to consider all the structural parameters as the aeroelastic
response of interest may not be influenced by the change in certain parameters.
Sensitivity analysis can be a useful preprocessing step to identify the parameters
which most influence the aeroelastic response.

The idea for the sensitivity analysis is adopted from [1], where the most in-
fluential structural parameters for flutter in the Goland wing problem are iden-
tified. The methodology includes identification of a function relating the un-
certain structural parameters and the output quantity of interest (aeroelastic re-
sponse such as flutter). Thereafter, a sensitivity vector (gradient) and a Hessian
matrix are estimated by differentiating the aeroelastic response function with re-
spect to the structural paramaters. The method returns these sensitivity values,
which are used to identify the parameters that influence the output quantity of
interest. For example, in case of the Goland wing, 7 out of 32 structural parame-
ters were identified to be responsible for 99.5% of the response in the sensitivity
analysis.

3.1.2. NACA 0012 AIRFOIL AND GOLAND WING

The NACA 0012 airfoil is a well-investigated test case, both experimentally as
well as numerically, with plentiful information on the flutter boundary. The geo-
metrical parameters are based on experiments performed by the Structural Dy-
namics Division at NASA Langley Research Center, referred to as the Benchmark
Models Program (BMP) [2, 3]. A three-dimensional rigid semi-span wing model
with a constant-chord NACA 0012 section was used in the experiment. The tests
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Figure 3.2: Geometry of Goland wing (left) and structural model of the Goland wing with dots
representing the structural grid points (right).

were performed on a flexible mount system, referred to as the pitch and plunge
apparatus, allowing the 2-DOF movement of the system. The governing equa-
tions for the plunge and pitch degrees of freedom of the structural system (shown
in Figure 3.1) in non-dimensional form considering damping are given by:

. X 4Ly wy, - 2 wp\2 2
h+—“oz+@—’lh+(—_—h) h="1c, 3.1)
2 U wq U wgy um
2 2 2
. T 2CqT 2r 4
Xoh+ i+ C”ﬁ i+ —Lag=—C, (3.2)
2 U U? U

where & and «a are the plunge-displacement and pitch-rotation respectively, {},
and (, are the damping coefficients in plunge and pitch directions, U = Uy, / bwq
is the non-dimensional free stream velocity, where b is the half chord length
of the airfoil. The structural parameters of the airfoil are mass m, = 87.067
kg, non-dimensional distance from elastic axis to the centre of gravity x, = 0,
length or span of blade / = 0.8128 m, chord length ¢ = 0.4064 m, radius of gy-
ration r, = 1.012, ratio of plunge to pitch natural frequencies wy/w, = 0.646.
Stiffness k, = mw? and kq = I3, where I, is the moment of inertia, are non-
dimensionalised. The inverse mass ratio is defined by p_l =npl (c®/4)/my, Cr
and Cy, are the lift and moment coefficients, obtained from the aerodynamic so-
lution. The fourth-order Runge Kutta algorithm is used to advance the solution
forward in time, with the force coefficients updated with the change in flow field.

The Goland wing is a three-dimensional numerical test case (experiments
don't exist), which is a rectangular and cantilevered beam, shown in Figure 3.2.
It is a widely studied aeroelastic test case, also with respect to structural uncer-
tainty [4]. In this dissertation, the clean configuration of the Goland wing is con-
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sidered, that is, without tip store (which is intended to model missile mounted
to wing-tip). The Goland wing has a chord length of 6 feet with a span of 20 feet,
and the wing cross section is bounded with 4%-thick parabolic arcs, defined by
z = +0.08x(1 — x/c) for 0 < x < ¢, where c is the chord length. The structural
model of the wing is box-type, as shown in Figure 3.2. All the elements have a
Young’s modulus of 1.4976 x 10% slugs/ft?, shear modulus of 5.616 x 10® slugs/ft
and density of 0.0001 slugs/ft>. It is made up of upper and lower skins, 3 spars, 11
ribs and 33 posts. Lumped masses are placed at each grid point of the model with
rotational inertia centred at centre of gravity of each section. At internal rib loca-
tions, masses of 22.496 slugs were used, with rotational inertia of 50.3396 slug-ft2.
At the external rib locations, these masses were halved. The reader is referred to
[5] for further details about the structural parameters.

As mentioned in the discussion on sensitivity analysis, the Goland wing is
defined by 32 structural parameters; however, based on a sensitivity analysis, 7
parameters were identified as responsible for ~ 99.5% of the sensitivity in the sta-
bility eigenvalue. The identified parameters were thicknesses of the upper and
lower skin elements; leading- and trailing-edge spars; and the areas of leading-,
center-, and trailing-edge spar caps, which are considered uncertain in this pa-
per. The structural solver to be used in the aeroelastic analysis is a modal solver,
as introduced in Chapter 2, which requires the estimation of the mode shapes
and frequencies. This is obtained using a normal mode analysis with the com-
merical finite element package NASTRAN [6]. Figure 3.3 shows the first four
structural modes of the Goland wing clean configuration. These mode shapes
are used in the structural equation to formulate the modal solver.

Figure 3.3: First four modes of the Goland wing with frequencies 1.98, 4.05, 9.68 and 13.28 Hz.

3.1.3. WIND TURBINE BLADE

The wind turbine model is a 3-bladed experimental wind turbine of downwind
orientation developed by Verelst [7]. The experiments were performed at the
Open Jet Facility of the Delft University of Technology, shown in Figure 3.4. The
blade tip radius was 0.8 m with NREL S823 and S822 airfoils at inboard and out-
board sections respectively. There were 2 blade-types: flexible and stiff. This
is based on the number of layers of glass fibre of which the blades were con-
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Figure 3.4: Schematic of the open jet facility.

structed, which was two and eight layers in the flexible and stiff set respectively.
The reader is referred to [7] for further details. Due to the internal glass fibre and
foam based structure, in addition to the twist and chord variation along the span
of the blade, there is a non-uniform distribution of mass and stiffness properties.

The structural model of the blade must take into account the non-uniform
structural properties s of the blade, which will be treated as uncertain in Chapter
5. Amodal structural solver is developed using an ODE model of the wind turbine
blade undergoing rotation. Approximate sectional mass and stiffness properties
are obtained from the experimental measurements, which were based on an op-
timisation procedure with the measured eigenfrequencies as objective function
[71.

VERIFICATION OF STRUCTURAL SOLVER

The equation of motion of a rotating beam (assembly shown in Figure 3.5) with
non-uniform sectional properties is given by [8]:

2

L
dz2 (u+ ryw)/ mz)Q*(R+z)dz

E(Z)Iy(Z)d 2] dz[dz

d2 d?y
= m(z) > +tm(2)ry—=- 12 (3.3)
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P2 TR
G(z)f(z)—]+ry - [ sy f MmO R+ 2)dz]
| — 2
+rxdz[dz(v+rx1//)fz m(z)Q (R+z)dz]
d’u 2 a2y
= —m@ry—g —m@r_—g ~ (&=, (6.5

where, u and v are the edgewise and flapwise displacements in x and y respec-
tively, while  is the torsional deflection about z-axis. E and G are the Young’s
modulus and shear modulus, I, and I, are the moments of inertia, J is the po-
lar moment of area. ry and ry are the distances between centre of flexure and
centre of gravity in x and y, m is the mass per unit length of the beam, while R
is the distance from centre of rotation to the root of blade and and Q is the ro-
tational speed of blade. The reader is referred to [9] for further details about the
derivation of (3.3 - 3.5).

Flapwise, edgewise and torsional modal frequencies and mode shapes are
obtained from (3.3 - 3.5) for the wind turbine blades. The frequencies of vibration
w are validated with the experimentally obtained natural frequencies, see Table
3.1. It can be seen that the first (w;) and second frequencies (w») are close to
the experimental values. However, for the flexible blades, the third frequency
w3 does not correspond to the experimental observations. This is attributed to
the fact that the third frequency in the simulation is from an edgewise mode,
which is not reported in the experiment. Note that on the other hand, w, is a
good match with the experimental ws. Based on this, we consider the structural
model validated and the estimated modes are used to build the modal structural
solver.

NORMAL MODES SOLVER

The structural equations (3.3 - 3.5) are expressed in modal form to reduce di-
mensionality of model. Assuming zero offset between the centre of flexure and
gravity and with an external forcing F(z, t), (3.3) can be written as:

@ ean@ 2”]—d d”.@( )| = m() d’u L+ F(zD 3.6)
T2 z yzdzz e z z z, 1), .
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Figure 3.5: Schematic of the 3-bladed downwind wind turbine with nacelle and tower of [7].

w1 w2 w3 w4
Blades Expt Code Expt Code Expt Code Expt Code
Stiff1  17.0 169 74.0 809 91.0 86.3 184.0 200.7
Stiff2 170 167 720 778 89.0 86.0 182.0 194.2
Flex1 11.0 11.0 54.0 55.1 135.0 56.9 - 136.1
Flex2 12.0 121 540 56.5 1350 61.9 - 136.5

Table 3.1: Comparison of experimental [7] and numerical structural frequencies (in Hz) for two
flexible and two stiff blades.



46 3. DEVELOPMENT OF AN AEROELASTIC SOLVER

where Z(z) = f ZL m(z)Q?(R + z)dz. The solution of (3.6) is assumed to be given
by:

u(z, 1) =Y Un(2) fn(1). 3.7
n=1

If we assume that the basis f}, () is harmonic and orthonormal, the characteristic
functions satisfy the differential equation:

dZUn(z)] d 1dUy(z)

d2
— | E2)I
dzz[ DL =~ 2z az

0 %z )] — (2w’ Un(2), (3.8)

where, w, is the natural frequency of vibration of the system. Now substituting
(3.7) in (3.6), we obtain:

,21 = [E@1y (2 & Un(2) U”(Z)] - [dU”(z)%(z) £alD)
i zf"( )Un(z)+F(z n. (3.9)
Equation (3.8) is substituted in (3.9) to obtain:
i dzf L f 2 Un(2) f(D) = ——F(z, 0. (3.10)

Now both sides of (3.10) are multiplied by U,,(z) and integrated between 0 and
L, the length of the beam.
By orthonormality of U, (2), (3.10) reduces to:

d? fu(1)
dt?

+ w2 fu(1) = Qn(1), (3.11)

where Q(1) is given by:

L
Qu(t) = —L[ F(x,t)U,(2)dz. (3.12)
my Jo

Equation (3.11) is the modal structural equation, where the modal forcing Q,,(t)
is the aerodynamic forcing term, to be interpolated from the fluid to the struc-
tural mesh.

3.2. MESH GENERATION AND FLUID SOLVER
For the NACA 0012 airfoil, a structured C-mesh is used, while in case of Goland
wing, a fully unstructured mesh is employed. In the case of the wind turbine,
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(a) Full mesh of the computational domain - only rotating part.
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(b) Boundary layer resolution of tower and nacelle.

Figure 3.6: Mesh generation in downwind wind turbine system including all structural compo-

nents - nacelle, tower and blade.
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Table 3.2: Computational domain in millions of cells and CPU hours consumed per rotation of the
wind turbine.

Meshsize At(@) CPUs (hours)
13 M 1.12° 80 (362 h)

we use a standard hybrid mesh with a structured mesh for resolving the bound-
ary layer and an unstructured mesh for the rest of the domain as shown in Fig-
ures 3.6a and 3.6b. Such hybrid meshes are known to be able to provide accu-
rate results for wind turbine flows [10, 11]. The unsteady compressible Navier-
Stokes equations are discretised using cell-centered finite volume method. A
second-order upwind scheme [12] is used for spatial discretisation and tempo-
ral terms are discretised with a second-order implicit time-stepping scheme with
dual time formulation. The solver employs a low-Mach number time-derivative
unsteady preconditioner, where physical time-derivatives march the unsteady
terms, while the preconditioned time-derivatives are used for numerical discreti-
sation and iterative solution [13, 14]. For the rotating domain, the Navier Stokes
equations are written in the moving frame of reference in the relative velocity for-
mulation, with addition of a Coriolis and a centrifugal force term [15]. The details
of the mesh and computational resources are mentioned in Table 3.2, where the
time step At is stated in terms of the rotation angle 6 of the wind turbine blades.

For the airfoil and wing problems, the RANS turbulence closure, Launder-
Spalding k—e model [16] is employed. In case of the wind turbine, we use the SST
k —w model [17], which has been previously employed for wind turbine applica-
tions [18-20]. The boundary layer is resolved on the walls of the blades, nacelle,
tower and all the blade attachments, ensuring y* < 1. For the near wall treatment
in the standard k — e model [21], the solver implements a two-layer approach
for enhanced wall treatment, dividing the domain into a viscosity-affected near
wall and fully turbulent region, which is demarcated by a wall-distance based
turbulent Reynolds number. In the near-wall region, the one-equation model
of Wolfshtein [22] is used, where momentum and k equations are retained as
per the standard model, while turbulent viscosity has a two-layer formulation.
A blending function is used to smoothly blend the turbulent viscosities in the
two regions [23]. Due to the presence of the tower, the computational domain
consists of a rotating and a non-rotating zones. A sliding mesh technique based
on virtual polygon approach, is employed for the interface treatment between
the two zones. In most problems, the mesh in the stationary and rotating zones
are non-conforming. In order to compute the flux across the interface of these
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zones, the solver forms an interior zone at the intersection of these zones, using
a periodic repeats option. This interior zone is dynamically updated according
to the relative movement between the stationary and rotating zones.

3.3. AEROELASTIC EQUATIONS

The aeroelastic codes are developed by coupling a linear modal structural solver
with Euler/Navier-Stokes flow solver. The coupled solver deforms the fluid mesh
according to the structural displacement at every time-step. The full order cou-
pled discrete system can be solved for estimation of stability characteristics by
integration of the system forward in time. The coupled system can be also ex-
pressed as:

du, r

ar +Ry(uy; Tug, M) =0, (3.13)
du

dts +Rs(ug TTF),s) =0, (3.14)

where R, and R; are residuals from fluid and structural discretisation, including
all boundary conditions; u, € RN« and u; € R™s are the fluid and structural de-
grees of freedom, while ul, € RNa and ul e RM: are restricted to the fluid-structure
interface I'. Here M, € R* denotes the Mach number, which plays the role of the
scheduling parameter (terminology explained in Section 4.2), s € R’ are struc-
tural parameters (such as stiffness of individual elements), and T € RNe x RNs
is the transformation matrix mapping the structural boundary displacements to
the fluid boundary. The flutter point for every Mach number is obtained by per-
forming time-integration of the coupled system.

The fluid and the structural mesh are generally non-conforming, hence the
need for the interpolation operator T. Here, we use the Infinite Plate Spline (IPS)
method (derived in Appendix B) developed by Harder and Desmarais [24]. IPS
identifies a linear map to transform the structural mesh displacement to the fluid
mesh. The principle of virtual work implies use of the operator T'” to transform
forces from fluid to structural mesh, ensuring conservation of energy. In order to
avoid instability due to sudden forcing at the beginning of simulation in (3.11),
an initial damping term is introduced for about quarter revolution of the turbine
through a damping coefficient, which is gradually reduced to zero. Computation
of (3.14) (given w,) is inexpensive and involves solution of low-degree of freedom
(~ 6) 1st-order ODEs. However the fluid force F := F(w,) must be obtained from
the fluid solver at every time step. The flow solution of (3.13), dominates the
overall computational cost of the aeroelastic solution. This problem is alleviated
in the next chapter with the use of ROMs to approximate the aerodynamic forces.
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3.4. AEROELASTIC PREDICTIONS

In this section, the aeroelastic solver introduced in the earlier sections is used
to predict dynamic aeroelastic characteristics in the three test cases. In case of
airfoil and wing, the flutter boundary is estimated, while blade moment history
is the quantity of interest for wind turbine as relevant for fatigue. The flutter
point calculation is based on recursive bisection with a tolerance of 10~ on the
predicted flutter density.

3.4.1. FLUTTER BOUNDARY - NACA(QO012 AIRFOIL AND GOLAND WING
Figure 3.7 shows the aeroelastic estimates and a comparison to experimental/
numerical measurements/ estimates is presented. For the Goland wing, exper-
imental data is not available since it is a numerical test case. Hence the aeroe-
lastic Euler/ Navier-Stokes solvers in case of the wing are validated by compar-
ing the stability bounds obtained in [5], where the flutter boundary is plotted on
the Voo — M, plane. CAPTSDv [25, 26] couples boundary layer equations with
the CAPTSD code [27, 28], which solves the three-dimensional, transonic, small-
disturbance, potential-flow equations. The solver was employed to estimate sta-
bility boundary of the Goland wing [5].

Figure 3.7a shows the flutter boundary for the NACA 0012 airfoil compared
to the Benchmark Models Program (BMP) experimental results [2]. The flutter
boundary is plotted in terms of the change in the inverse mass ratio at flutter
with the Mach number. It can be seen that the results are in close agreement
throughout the Mach number range that is investigated. The flutter boundary
for the Goland wing is plotted in Figure 3.7b with both Euler and Navier-Stokes
solvers. It is observed that the aeroelastic solvers are able to predict the trend
of the transonic dip well. The Navier-Stokes predictions are close to the Euler
values with a maximum relative error of less that 3%. In comparison to CAPTSDyv,
the predictions have a maximum relative error of less than 5%, and hence we
consider our model validated.

3.4.2. VALIDATION OF WIND TURBINE DYNAMICS BY THE AEROELASTIC
CODE
The aeroelastic characterisation of the wind turbine model is now presented.
The experiment of the downwind system that is investigated was performed at
varying operating conditions - wind speed, Tip Speed ratio (TSR) of the turbine,
temperature and pressure of incoming wind. Additionally for each experiment,
the RPM was fluctuating slightly for each revolution. In order to obtain better
match between experiments and aeroelastic approximations, we select data with
minimal variation in rotation speed, which remains ~ 3% for the investigated
cases. Motivated by this, this rotation parameter will be treated as uncertain in
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Figure 3.7: Comparison of flutter boundary predicted by aeroelastic code to BMP experiment (left)
and CAPTSDv code [5] (right).

Chapter 5. In this section, we provide a detailed analysis of the performance
of the aeroelastic solver in estimating the flow physics for a downwind turbine.
Parametric effects on the wind turbine performance are also assessed and agree-
ment of the aeroelastic code with experimental data is established.

AGREEMENT WITH EXPERIMENT

In the experiment [7], strain gauges were fixed to the glass fibre-reinforced beam
on the blade at the root and at 30%-radial position. They were calibrated by stati-
cally loading the beam at different radial positions, and a linear function relating
the output of the strain gauge to the bending moment in the blade was defined.
In this regard, we can represent the blade moment in two forms:

(1) Instantaneous aerodynamic moment derived from the blade pressure dis-
tribution and,

(2) Structural moment derived from blade deformation, which is smoother
due to the inertia of blade.

It can be said that (2) is a filtered version of (1), where the forcing from the tower
wake is represented with a smoother curve without large spikes. In the experi-
ment [7], the blade moments are reported in the form (2). Furthermore, [7] re-
ports significant reservations with respect to the reliability of the absolute values
of strain gauge measurements, whereas the moment trend with change in az-
imuthal angle is expected to be meaningful [7]. With this background, we present
the validation of the aeroelastic code in terms of (2) above.
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Figure 3.8: Comparison of structural moment estimated at 30%-span location by aeroelastic code
to experimental measurement.

Firstly, we record the blade deformations at the root and 30%-locations,
which provides us with a parameter closely resembling the strain gauge. Sec-
ondly, as an analogous step to the linear function introduced in the calibration
step of the experiment, we scale the bending moment estimated by the aeroelas-
tic code. We record these for multiple blade rotations. Typically, the data from
the first 5 revolutions of the blade is not considered, and a mean blade moment
history for each azimuthal position for the remaining data-set is obtained. The
azimuthal position is established by recording the initial blade positions (leading
edge orientation) in the static position with respect to the tower.

In Figure 3.8, the structural moment variation with azimuthal position is
shown for two different experimental data-sets at varying inlet wind velocity V
and speed of rotation of the turbine N. Both the experiments were conducted at
a low value of Tip Speed Ratio, TSR = 1.5 given by,

Rotor tip speed wR
TSR ———=—, (3.15)
Wind speed 1%

where, w and R are the angular velocity and blade tip radius respectively. How-
ever, both were conducted at a fixed yaw angle and flexible set of blades were
used. The motivation for this choice is the simplification of the flow condition
with a fixed yaw angle and also flexible blade measurements are more interest-
ing for this research, since we are investigating aeroelastic effects. In both cases,
the experimental structural moment measurements for each rotation of the rotor
is plotted, ignoring the data from the first few rotations, shown by the grey area



3.4. AEROELASTIC PREDICTIONS 53

in Figure 3.8. As is clearly evident, the spread in the measurements is consider-
able with more than 50% variation for certain azimuthal positions. In particular
there is large spread in the moment when the blade is in front of the tower, which
is near the 1.5z azimuthal position (marked by red line in figure), which is likely
due to dependence on phase of shedding. However, a trend can clearly be ob-
served for both the cases. The mean aeroelastic estimate follows the trend quite
well, with domain frequencies and amplitudes being reproduced. Significantly,
the influence of the tower can clearly be observed in both cases.

ROTOR AND TOWER WAKE VISUALISATION

The interaction of tower wake with blades leads to peaks in the generated mo-
ment as seen in Figure 3.8, which could lead to structural fatigue. This inter-
action leads to complex flow features as shown in Figures 3.9-3.11, where inlet
flow velocity and speed of rotation are adjusted to obtain a TSR = 6.3 in Figure
3.11a. The experiments with low rotational fluctuations were conducted at lower
TSR values, which results in wind turbine operating in stalled regime. At a higher
TSR, the tip vortices are more compactly arranged, which can be captured more
effectively due to higher mesh resolution in the near wake region. Figures 3.9a
and 3.10a are vortex visualisations at TSR = 0.7 and 1.7 respectively, which are
experimental test conditions. The isosurfaces are plotted with Q-criterion [29] of
55.

For the higher TSR = 6.3, the tip vortices are distinct and are preserved up to
1.5 revolutions, after which the resolution in the mesh is not sufficient to cap-
ture the wake clearly further downstream. Aeroelastic influences are captured
due to the higher resolutions in the near wake. While in case of TSR = 0.7, the
tip vortices disintegrate quickly and cannot be clearly identified. This was also
observed in [19, 30] and was attributed to the large pitch in the later case, which
results in the vortex reaching the coarser mesh region earlier. However in the
present investigation, the wind turbine is of downwind orientation, in which case
the interaction of the tower wake with tip vortices in even more significant. For
TSR = 6.3, it can be seen that the tower wake influences the disintegration of tip
vortices in the lower half of the blade sweep area (below the nacelle), resulting in
weakening of vortices in the region. The tower wake growth is not entirely evi-
dent in this region at this value of Q, and is attributed to the lower inlet velocity,
as a result tower vortices are much weaker than tip.

On the other hand, the tower wake in case of Figure 3.9a can be clearly ob-
served. In Figure 3.10a, the inlet flow velocity is close to that in case of TSR = 0.7.
It can be seen that the tower wake in Figure 3.10a is prominent and is in agree-
ment with Figure 3.9a. It can be concluded from these observations that the
tower vortices are much more influential at lower TSRs. Another interesting ob-
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(a) Vortex shedding - plotted with Q-criterion of 55.
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(b) Contours of vorticity magnitude (1/s).

Figure 3.9: Vortex from blade tip, root and nacelle of wind turbine at TSR =~ 0.7.
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(a) Vortex shedding - plotted with Q-criterion of 55..
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(b) Contours of vorticity magnitude (1/s).

Figure 3.10: Vortex from blade tip, root and nacelle of wind turbine at TSR = 1.6.
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servation from the vortex visualisation in Figure 3.11a is the production of large-
scale vortices from multiple locations in the mid-span of the blade. This was also
observed in [31] and is attributed to the large change in angle of attack in the
trailing edge at that location. Also there are large vortices developed from the
nacelle and a strong interaction with the root vortex in the downstream of the
axis of the turbine is observed.

The difference in the growth of the vortices in the three test conditions can
clearly be observed in Figures 3.9-3.11, where the vorticity magnitude contour is
plotted in a plane parallel to the flow direction and bisecting the tower along its
length. For TSR = 6.3, the shedding of the tip vortices can be observed distinctly
for approximately 2 (two) revolutions, after which it disintegrates. The root vor-
tex, nacelle and mid-span blade shedding are also clearly visible. Close to the
tower, a strong circulation is observed, and the interaction of tower wake with
the tip and root vortices can be clearly seen. In Figure 3.9b, the lowest TSR = 0.7
is plotted, where stronger tower vortices are observed, and as observed with the
3-D visualisation, the tip vortices are not distinct. Similarly, for TSR = 1.6, strong
tower vortices are clearly observed, with a comparable inlet flow velocity. How-
ever in this case, it is interesting to note that the tip vortex shedding can be seen
for about 1 (one) revolution. Due to the higher rotational speed of the blade, the
pitch of the tip vortices is smaller compared to TSR = 0.7, due to which the mesh
resolution is still fine enough to capture the wake.

LOW FREQUENCY VARIATIONS IN BLADE MOMENT

For further investigations, we consider TSR = 1.6 and 6.3 to compare the flow
field characteristics, since they demonstrated significantly different wake re-
gions. In Figure 3.12, the aerodynamic moment at 30%-span location is plotted
for 12 rotations of the turbine at these two TSR values. The peaks in the mo-
ment history correspond to the instants when the blade is in front of the tower.
At TSR = 6.3, the blade is subjected to slightly higher mean moment (that is the
moment when it is not in front of the tower). An interesting observation is identi-
fication of a low-frequency unsteadiness in the moment peaks for both the cases.
For the lower TSR = 1.6, the amplitude of this low-frequency unsteadiness is ob-
served to be significantly higher with a lower frequency of about 0.37 Hz com-
pared to 1.22 Hz at TSR = 6.3.

Spontaneous low-frequency modes are not uncommon in fluid dynamics,
even in simple geometries, for example in flat plate [32] and circular cylinder [33],
where they are attributed to the shrinkage and enlargement of the recirculation
region. Both these studies classify the wake formation temporal history into a
high-energy mode H and alow-energy mode L, which are characterised by higher
and weaker fluctuations in the shear layer respectively. In [32], the modulation in
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(a) Vortex shedding - plotted with Q-criterion of 55.
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(b) Contours of vorticity magnitude (1/s).

Figure 3.11: Vortex from blade tip, root and nacelle of wind turbine at TSR = 6.3.
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Figure 3.12: Comparison of aerodynamic moment histories at TSR =~ 1.6 and 6.3.

the amplitude is associated with the compact spanwise vortices close to the wall,
resulting in shorter recirculation region. This can be associated to the difference
in the low-frequency characteristics at the two TSRs. Stronger vortex strength is
observed at TSR = 1.6 compared to TSR = 6.3, which may be attributed to the
formation of an analogous H regime as in [32]. This complex phenomena can
also be influenced by the rotation speed of the turbine, as the low-frequency in
both the TSR cases are also different. Since the objective of this investigation is
not to characterise this low-frequency behaviour, it is not pursued further here.

EFFECT OF BLADE ELASTICITY

The change in the blade forcing due to inclusion of blade aeroelasticity is in-
teresting since the nature of the forcing could lead to structural fatigue. Mul-
tiple simulations are carried out considering rigid, rotating blades (referred as
rigid) and then with flexible rotating blade (referred as aeroelastic). The simu-
lations are allowed to run for around 5 rotor revolutions in order to eliminate
effects of the initial condition. In Figure 3.13, comparison of aerodynamic mo-
ments obtained at 30%-span location with rigid and aeroelastic codes is shown
for TSR = 1.6 and 6.3. The aeroelastic effect slightly varies for each rotation cycle,
and hence a dominant pattern is not explicitly observable. This is possible since
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Figure 3.13: Comparison of aerodynamic moment histories from rigid and aeroelastic calculations
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Figure 3.14: Blade tip displacement in flapping direction for three different cycles of rotation in
terms of percentage of chord length at (a) TSR ~ 1.6 and (b) TSR ~6.3.

the aeroelastic interaction with the wake of the blade can give rise to compli-
cated flow structures and also depends on the phase of the aeroelastic mode and
the direction of the tower vortex. In Figure 3.13, we choose three different rota-
tion instances to show the variation in the aeroelastic effect. It can be observed
that aeroelasticity introduces a slight delay in the onset of the aerodynamic mo-
ment peak due to the tower wake. Also the peaks and range of aerodynamic mo-
ment are reduced especially in Figure 3.13a, while the smaller peaks introduced
after the blade passes the tower is observed to be higher. In general, it can be
said blade flexibility results in smoother variation in the aerodynamic moment,
which is more physically intuitive. However the aeroelastic effect for the inves-
tigated cases in not very large, as the effect of the structural oscillations on the
blade forcing is not significant in comparison to the effect of the tower wake.

In the discussion of Figure 3.8, we mentioned the use of the scaled blade mo-
ment in order to obtain comparisons with experimental measurements. It is now
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interesting to observe the displacement history of the blades at which the mo-
ments are plotted in Figure 3.13. This is shown in Figure 3.14, where the flap-
ping displacement of the blade is plotted, which is normalised with respect to
the chord length at the tip of the blade. It can be seen that response in blade dis-
placement around 1.57-azimuthal position corresponding to the moment peak
in Figure 3.13, is not linearly proportional. In case of blade displacement, there
is a change in the trend of the curve in both the cases, however the structure
does not respond abruptly corresponding to the change in forcing. In case of
TSR = 1.6, the effect of the tower wake on the blade displacement is seen to be
more pronounced compared to the higher TSR; the change is however not lin-
early scalable with respect to the change in the blade forcing. It is also interest-
ing to note the blade displacement is either increased or decreased, when it is
in front of the tower. Physically, this can be attributed to the difference in phase
between the aeroelastic mode and the shedding vortex.

3.5. SUMMARY

The developed aeroelastic solver is able to provide accurate reconstructions in
the flutter boundary for airfoil and Goland wing. For the wind turbine model,
the aeroelastic investigations provided many interesting insights into the com-
plex dynamic behaviour. The aeroelastic code is able to reconstruct complex flow
features and we have demonstrated the ability of the code to match experimen-
tal measurements reasonably well. However owing to the high computational
costs as elaborated in Table 3.2, this technique is impractical for performing un-
certainty quantification and data assimilation. In the next chapter, we employ
the code in a data-driven framework to develop reduced order models in order
to perform uncertainty quantification.
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AEROELASTIC PREDICTIONS WITH
ROMS

In Chapter 3, a high fidelity aeroelastic solver has been developed and applied
to the three test cases - the NACA 0012 airfoil, the Goland wing and a wind tur-
bine system. However, such solvers are computationally expensive and require
long simulation times for predicting aeroelastic behaviour, for example, the wind
turbine system considered here requires 362 CPU hours for each rotation of the
turbine. As such, the solver cannot be used for applications such as design op-
timization and uncertainty quantification, since they require hundreds to thou-
sands of runs of the simulation code, depending on the dimension of the system.
To alleviate this problem, this chapter discusses the development of Reduced
Order Models (ROM) to replace the expensive aerodynamic solver, which is then
used to predict dynamic aeroelastic phenomena such as instabilities in aeroe-
lastic systems. The single ROM derived to replace the aerodynamic solver can
then be used for propagating uncertainties in the structural parameters. In this
chapter, we discuss the development of ROMs - an ARX model and an LPV - ARX
model in Sections 4.1 and 4.2. The aeroelastic solvers developed in Chapter 3 are
used to generate data used to train the models, employing forced motion signals.
Initially the ROMs are validated against the full CFD solver by reconstructing test
signals. Further, the ROMs are expressed in the linear stability framework (Sec-
tion 4.3) in order to obtain flutter boundary reconstructions (Section 4.4). Verifi-
cation of the ROMs with test signals is also shown in Section 4.4. The wind tur-
bine problem requires specific treatment for building accurate ROMs, hence the
theoretical part and the results for wind turbine reconstructions are discussed
separately in Section 4.5. These linear ROMs will be further employed in Chap-
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ter 5 to propagate uncertainties and perform identification of the structural and
rotational parameters of the wind turbine.

4.1. ARX MODEL

The ARX model is a time-marching method to predict the output of a system
given observations and inputs affecting the system response, represented in the
form of a recurrence relation. Details about the implementation of the algo-
rithm are given in Appendix C. A Multi-Input-Multiple-Output (MIMO) system
in terms of a generalized ARX model for an output quantity F; and exogenous
inputs q1, g2,..., qn, at time ¢ € N can be written as:

m m

(@) p=i p(1=1) (i,0) p—i (e-1) (i,]) p—i (-1

Za {F) +;)a2 {7'F, +---+Z{)aNF l Fy.
1= 1=

i=0 i=0

Vje{l,..., Nr}, where a, b are model coefficients to be trained. The lag operator
¢ is introduced to time-shift the quantities, defined such that g\ = ¢"q*=" for
any time-dependent quantity. For all Nr output quantities, the system can be
written in the vector form:

FO = ofp ()R 1 o7,(0)q", (4.2)

where F € RV and q € RN are the Ny outputs and Ny inputs respectively. The
operators «/r(¢), «/4(¢) define the recurrence relation; their coefficient tensors
Ar and A, are defined by:

[Aplije=al”,  i€(0,...m), jkefl,...Ng,

(i.j) . . (4.3)
[Aglijk=b,"", i€{0,...,n}, jefl,...,.Ng}, ke{l,...,Ng},

and are chosen by training the model against reference time-series data. The
model orders m, n correspond to the number of past outputs and inputs con-
sidered. Under the assumption that the outputs are mutually independent, then
many terms in Ar are zero, in particular:

all=0, it j#k

The model is entirely determined by the coefficient tensors Ar and A, which are
estimated by training against input-output data obtained from CFD solver. Geo-
metric motion is prescribed as qﬂ” € RNq (exogenous inputs), and aerodynamic
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forces FT() € RNr (outputs) are obtained. The t terms represent the training data,
which should be sufficiently plentiful and diverse to identify Ar, Ag4. Training is
based on the statistical model:

+(1)

£ = o (OF " 4 oty (g + €, (4.4)

where F(Y € RM is the predicted output at time instant ¢. A Gaussian error term
e € RNF is introduced, assuming a white noise model and a least-squares prob-
lem is formulated to minimize e:

N 2
Ap, Ag =argmin ) ("0 - )", 4.5)
AF,Aq t

The training signal q" should excite a broad frequency range of the system. Here
we employ chirp signals for training the dARX model - a representative chirp is
shown in Figure 4.1, given by:

a = apsin(w(1)7), (4.6)

where 7 = A¢- ¢ (the symbol ¢ in this chapter is always used as an index). Parame-
ter ag is the amplitude, and w(t) = wlA_ ;U 21, is known as the chirp rate with w1, wg
and At as the final frequency, initial frequency and time-step respectively. The
excitation frequency is based on the dominant structural frequencies obtained
from a modal analysis. Thereafter, independent modal excitations for each mode
are performed to obtain generalized aerodynamic forces.

The stability of the ARX system is based on the stability theory for recurrence
relations. Equation (4.2) can be rearranged in terms of F¥ to give the transfer
function form:

FO = 4 (0) q(t)
1-¢071otr(0) 4.7)
FY =4(0)q".

If and only if the poles of the transfer function ¥ (¢) lie within a unit circle in the
z-plane, the system is stable. Once the stability of individual ARX models is as-
sessed, the ARX theory can be used for defining a LPV model considering time
varying coefficients. The stability of the LPV-ARX system is discussed further af-
ter introduction of the method in Section 4.2.

4.2. LPV-ARX MODEL FORMULATION

The ARX model is valid for the scheduling parameter at which it is trained. The
scheduling parameter here refers to any operating parameter that may influ-
ence the response of the system, for example, Mach number can be considered
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Figure 4.1: Two different chirp signals with their Fourier Transforms; power spectral density is
checked to excite wide frequencies.
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as scheduling parameter in case of flow problems. Due to change in this pa-
rameter, a new model has to be trained. This is particularly inconvenient for
performing UQ on this parameter. The concept of LPV is utilized in this con-
text, which originated from on older technique called gain-scheduling [1]. The
method consists of an ARX model trained at each value of scheduling parameter,
whose coefficients Ar, A, are then interpolated to form an LPV model. The LPV
model is thereby parametrised by the scheduling parameter M., which governs
the dynamics relating the input and the output. We choose the Mach number as
scheduling parameter for the current investigation.

The identification of the LPV-ARX system can be done in a local or a global
manner. Global identification involves performing a single, long-running experi-
ment with varying scheduling parameters. Local identification is based on inter-
polation of local linear-time-invariant (ARX) models, obtained at fixed schedul-
ing parameters. In this work, a local identification approach based on [2-5] is
employed. The local perspective is chosen for our aeroelastic application, pri-
marily because the flow characteristics change significantly with Mach number.
The coefficient tensors of ARX models are now expressed:

Ar(Mej), Aq(Meoj) Vjell,..., Ny},

i.e. they are functions of Mach number estimated at N, operating points
(Moo,15-++» Moo,N,,), which provide the interpolation conditions.

The location of the interpolation points in LPV can be critical for the accu-
racy of the identified model as observed in [4], where an optimization procedure
based on a ‘true’ LPV system is performed to select these points. This proce-
dure can improve accuracy significantly [4] and make the identification optimal
in terms of computational costs. In this work, though an initial estimate of the
shape of the flutter boundary is known beforehand, the interpolation points are
chosen uniformly. Considering the higher complexity in the transonic range and
relatively smoother profile in the subsonic range, the points could be accordingly
chosen, with more points in transonic range and comparatively coarser spac-
ing in the subsonic range. However, another critical consideration is the degree
and stability of the interpolating polynomial, suggesting such a sampling strat-
egy should be combined with a piecewise polynomial approximation, e.g. cubic
splines. Since the current investigation is focused on the use of the LPV frame-
work in UQ, we defer such details for future research.

A Lagrange basis is introduced to approximate the expansion coefficients
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Ap(My) and Ag(M) in the form:

A Np

Ap(Moo) = Y Ap(Moo, ) Lj(Moo)
j=1

A Np

Ag(Ms) = ) Aq(Moo,j)Lj(Moo)
j=1

(4.8)

where, L;j(My) are the Lagrange polynomials of degree N, —1 such that
Li(Mw,j) = 6, where §;; is the Kronecker delta. The interpolated coefficients
for any operating point can then be used in (4.2) to estimate forces for any Mach
number.

Stability for LPV systems can be defined in a global sense (stability for ar-
bitrarily varying scheduling parameter) or in a frozen sense (fixed scheduling
parameter) [1]. Certain interpolation methods [6] are able to guarantee global
stability. On the other hand, frozen stability has been widely used in the control
community, also with assumption of a slowly varying scheduling parameter [7].
In control applications, the scheduling parameter is expected to vary depending
on the operational conditions. And such assumptions of slow variation is depen-
dent on the specific problem being addressed. In the current investigation, the
LPV-ARX coefficients are obtained by interpolating individual ARX models. Dur-
ing estimation of the stability of the aeroelastic system, the interpolated LPV-ARX
model would in practise behave as an ARX model since the coefficients remain
constant. This allows us to assess the stability of the LPV-ARX system as in (4.7).
The concept of stability preserving interpolation methods as in [6] can as well be
considered. However we do not pursue this further in this work and defer it for
future investigations.

4.3. STABILITY ANALYSIS OF THE AEROELASTIC SYSTEM

The LPV-ARX model is analysed to approximate the linear stability boundary of
the system, specifically the flutter boundary. Time-domain responses can be
predicted to check the stability at an operating point - but this is unnecessary.
Rather, we employ an eigenvalue-based approach [8]. The structural equation
can be written in the form:

[M]g+[Clq+[Klq-F;=0, 4.9)
where Fy := TTF is the generalized aerodynamic load vector acting on the struc-

tural mesh, [M] is the generalized mass matrix, [C] is the damping matrix, [K]
is the stiffness matrix and q represents the displacement vector. The state space
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form of (4.9) is written as:

I 0][q 0 I q 0 ~
N
~ -~ N~ =
Ay Xs Bs
or
Xs = AgXs + BgF;. (4.11)

The corresponding output equation can be written as:
ys = CsXs + DFy (4.12)

where, in this case C; =1, D = 0, y; is the output vector. These continuous time
equations are converted to the discrete form:

) = Gx( + HFY (4.13)

v =Ccx{” + DY, (4.14)

where,  is the time index, ng) is the state vector and ygt) is the output vector. The
delay operators in aerodynamic equation (4.2) in the state space form:

FO = ofp(O)F" Y + o7, (0)q" (4.15)

are used to time-shift the output and input in order to define a discrete state
vector X, at time index ¢ given by:

x( = [BU-D  pl-mqt=D  qt=m) T (4.16)

The state space form of the aerodynamic equation can then be written as:
xD = Gx® + H,q® (4.17)
FO = Cix® 4+ Do, (4.18)

where, G4, H,, C, and D, are the coefficient matrices with terms from the ten-
sors Ar and Ay, given by:

[Arlijk [AFl2jk - [AFlgn-njk [AFlmjk [Aqlijk [Aql2jk - [Agqln-njk [Aglmji

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

C - 0 0 I 0 0 0 0 0
“= 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0
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Ha=[[Aglojx 0 0 ... 0 I 0 0 ... 0], Da=I[Aglojks
Ca=[lApljk [AFl2jk - [AFRlm-njk [AFlmjk [Aghjk [Agl2jk - [Adm-njk [Aglnjk]-
Now the output ys of the structural equation (4.14) is fed as input to the aero-

dynamic equation after performing the transformation T given by IPS [9], which
can be expressed as:

q?” = Ty, Fl = 7Tp", (4.19)

The coupled structural and flow equations in state space form are required for
the aeroelastic analysis to form a coupled matrix to ascertain the stability of the
system. The aerodynamic equation in terms of the structural output can be writ-
ten as:

x*D = G x4+ H, TCxY (4.20)
FY = Cx\" + D, TCx\". (4.21)

Now the aerodynamic force is applied to the structural equation to obtain the
displacements for the next time step. The forces also require transformation as
given by (4.19) and are to be multiplied with the density p. Putting (4.20) and
(4.21)in (4.13) and (4.14):

xgm) _ Gsxgn + HsTTPCan) i HSTT.ODa TCsxgt),

= (Gs+ H,TTpD,TC)x + H,TT pCyx'?. (4.22)
The coupled form of equations is expressed in matrix form as:
"V G+ H,TTpD,TCs H,TTpC,] [x!”
XD = H,TC, G, ROIE (4.23)
- _

The stability of this system is given by the stability theory for discrete linear sys-
tems. If A is an eigenvalue of the matrix J, then the system is stable if and only if
all| A |<1.

4.4. VERIFICATION OF ROM AND AEROELASTIC ESTIMATES
Training (chirp) signals generated from the solver are used to train the LPV-ARX
model. The training signals are forced motion signals prescribed to the structure
which are expected to excite a broad frequency range of the system. The inputs
(forced motion or generalised displacement) and the outputs (resulting force on
the structure or generalised force) are used in developing the ROM. The trained
model is then verified against sinusoidal test signals for aerodynamic reconstruc-
tions. Finally, the LPV-ARX model is coupled with the modal structural solver to
compare the reconstruction of the flutter boundary against the CFD-obtained
and experimental (airfoil)/numerical (Goland) findings.
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4.4.1. TWO-DEGREE-OF-FREEDOM NACA 0012 AIRFOIL

VERIFICATION OF ARX ON SINUSOIDAL TEST SIGNALS (AERODYNAMICS ONLY)

For the airfoil, reference flutter frequencies are known from the experiment.
Hence during the training phase, it is ensured that the training signal is able to
excite at least these frequencies. In a more general test case where such informa-
tion is not available, the excitation frequency domain has to be broad enough to
encompass possible flutter frequencies. Figure 4.2a shows a typical arrangement
of distribution of frequency content of chirp signals (up to 9Hz) and the test sig-
nals which lie within this bound (multiple signals at unit interval). Both single-
mode and multi-mode excitations are performed. Depending on the obtained
structural frequency per mode, the frequency range of the chirp signals are ac-
cordingly adjusted. The models trained by chirp signals are employed to repro-
duce sinusoidal test signals within the training frequency range. A Normalised
Root Mean Square Error (NRMSE) [10] given by:

_IE-F
|F—EF]|

is used, where ||-| is the 2-norm of a vector, F and F are the predicted and true
output respectively and EF is the mean value of the output. This estimate varies
between —oco and 1, where a value of 1 corresponds to a perfect fit. Figure
4.2b shows engps in reconstruction of lift coefficient (Cr) and moment coeffi-
cient (C,,) with sinusoidal test frequency under single-mode excitation (pitch
and plunge separately), where the excited frequencies in the training signal are
shown. It is observed that eypprs = 0.92 is obtained for test signals up to 9Hz,
after which the predictions are inaccurate. This is very much in agreement with
the frequencies excited by the chirp signals. A multi-mode excitation is also per-
formed to assess the validity of the ARX models for multiple inputs. The con-
tours in Figure 4.3 show the distribution of eygpss under the excitation of pitch
and plunge modes simultaneously. It is observed that e ygrprs = 0.93 is obtained
for frequencies upto 9Hz. The frequency range agrees well with the single-mode
excitation case. It can be concluded that the trained models provide good recon-
structions of C; and C,, in the frequency range of interest (flutter is expected to
be in the range of 4—5H z from the BMP experiment). It should also be noted that
the training frequency range is selected pertaining to the frequencies at which
flutter is expected to occur. Hence the data used here for training is limited to
these frequencies.

€ENrRMS =1 (4.24)

VERIFICATION OF LPV-ARX MODEL
We are interested in predicting the linear stability characteristics of the system
especially the flutter boundary. The aeroelastic solver was earlier validated with
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Figure 4.4: Flutter boundary prediction for NACA0012 airfoil.

the findings in the BMP experiment (Figure 3.7a). The flutter boundary predicted
by the LPV-ARX model is now added for comparing to the experimental and CFD
estimations, which is shown in Figure 4.4a. The ARX models are first constructed
at individual Mach numbers (inverse mass ratio at the unstable point), LPV-ARX
model is interpolated from local ARX models, which is then used to predict the
aeroelastic characteristics (inverse mass ratio at unstable point) of the airfoil. In
terms of accuracy of the ROM, the estimations closely match the CFD results,
with a maximum absolute percentage error of 7.27% within the Mach number
range. The error trend of the CFD solver with the experiment is examined in
Figure 4.4b, with low values of absolute errors predicted throughout the Mach
number range. It is also interesting to note that absolute error between ROM
and CFD is lower in comparison to that between the experiment and CFD, which
show that our estimations are close to the CFD-predicted results. This validates
the use of the ROM in lieu of the full CFD solver for prediction of instabilities.

4.4.2. GOLAND WING

VERIFICATION OF ARX (AERODYNAMICS ONLY)

As in the 2-DoF system, the individual modes of the Goland wing are trained
independently. A normal mode decomposition of the structural model is per-
formed to obtain the dominant modal frequencies and shapes. The first 4 struc-
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tural modes of the Goland Wing clean configuration were shown in Figure 3.3.
The training of each of these modes is performed with chirp signals across a
range of frequencies identified by the structural model.

The trained models are tested against sinusoidal test signals at overlapping
frequencies with respect to the frequency content in the training (chirp) signal.
All the aeroelastic results in case of Goland wing are obtained by considering the
first 6 fundamental frequencies. We again report the model accuracy in terms of
€engrMs given by (4.24). Figure 4.5 show the errors in the reconstruction of the test
signals at frequencies excited by the training signal, for example F,; (m2) denotes
the generalised force in mode 1 due to an excitation (forcing in terms of displace-
ment) applied to mode 2. The first two generalized forces F;; and Fy» as a result
of excitation of modes m1 and m2 are shown. It is observed that the engas = 0.9
is obtained throughout the range of tested frequencies 2-14 Hz. Since flutter in-
stability involves coupling of modes, the behaviour of the ROM under multiple-
modal inputs should be estimated. Hence, reconstruction of modal forces due to
multi-mode excitation is also investigated. Here, we discuss the first two modal
forces F; and Fg, obtained due to excitation of first 2 modes. The sinusoidal
test signals are excited at different frequency combinations in modes 1 and 2.
These are plotted in the form of error contours in Figure 4.6. Normalised error
enrMms > 0.97 is obtained throughout the training range in the reconstruction of
first two modal forces Fg; and Fy,. The dynamic performance of the ROM for re-
construction of aerodynamic forces under multi-modal excitation is reasonably
accurate. We now employ the model for estimating stability characteristics of
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Goland wing.

VERIFICATION OF LPV-ARX MODEL
The verification of the developed aeroelastic solver for estimating the flutter
boundary of Goland wing is shown in Figure 3.7b by comparing to the predic-
tions by the inviscid CAPTSDv solver used in Beran et. al. [11]. In Figure 3.7b,
the flutter boundary is plotted on the V., — M, plane. However for the current
application, this would mean training the LPV-ARX for multiple scheduling pa-
rameters, namely V,, and M, thus necessitating more training points. Since
the primary objective of the current investigation is to assess the reliability of the
ROM for instability predictions, we use the ROM to predict the flutter boundary
in the poo — Mo, plane. This allows the use of a single scheduling parameter M.
Two versions of aeroelastic solvers are developed for the Goland wing prob-
lem - Euler-based and Navier-Stokes solvers. These are used to train two versions
of ARX models to reconstruct the flutter boundary in the po, — M plane. The
ARX models at discrete Mach numbers are interpolated to obtain LPV-ARX model
for the entire operating regime as shown in Figure 4.7a. Four versions of the flut-
ter boundary in terms of CFD and ROM solvers based on Euler and Navier-Stokes
equations are shown. It can be observed that good agreement of the flutter den-
sity is obtained with respect to the CFD-predicted results for both the solvers.
The relative errors in prediction are estimated for the Euler and viscous solver,
which are shown in Figure 4.7b. The maximum relative error for both the cases is
about 6%. Since the model is able to reconstruct aeroelastic behaviour reliably,
the gain achieved in the computational costs is now assessed in the next section.
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4.4.3. COMPUTATIONAL GAIN WITH LPV-ARX

The LPV-ARX model is computationally almost free once trained. The training
time is responsible for bulk of the computational expense in such models. Ta-
ble 4.1 compares two approaches on the same machine. As already mentioned,
the flutter point calculation with the CFD-based aeroelastic solvers is through
a recursive bisection with a tolerance of 10™* on the predicted flutter density.
While a time integration upto 5s is performed for the CFD solver, the LPV-ARX
estimation is based on an eigenvalue analysis (Section 4.3). As can be seen, the
prediction phase of the LPV-ARX model is incredibly fast, since it is only based on
estimation of eigenvalues. The bulk of the total expense in the presented method
is attributed to the training signal generation, which is a critical phase in order
to obtain reliable estimates from the ROM. With the presented methodology, the
ROM needs to be trained only once for a certain Mach number, which allows us
to propagate structural uncertainties cheaply. The use of the LPV-ARX frame-
work utilises the interpolation procedure which further validates the ROM for a
range of Mach numbers. We leverage this ability of the ROM in order to propa-
gate structural/aerodynamic uncertainties in a subsequent chapter.

4.5. WIND TURBINE AEROELASTIC RECONSTRUCTIONS

The framework for the reduced order model (ROM) in the wind turbine problem
isbased on the same formulation as the NACA 0012 airfoil and Goland wing given
by (4.2). However it is observed that the ROM used in airfoil and the Goland
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Table 4.1: Computational time (in CPU-hours) required for prediction of a single flutter point for
a given Mach number with Euler solver for Goland wing.

CFD LPV-ARX

Training signal generation (with 6 modes) 0 6
Training time 0 0.001
Prediction of flutter point 40 0.0002
Total time 40 6.0012

wing is not able to reconstruct the aeroelastic response accurately. Specifically,
the mean response is reconstructed by (4.2), but the model is unable to predict
the jump in moment introduced by the tower wake. This is expected since the
tower wake introduces nonlinearity in the response, which is not predicted by
the linear model. In order to improve the predictions, we introduce a localised
forcing term G in (4.2) to form the model:

FO = ofp(OF"™V + o£,(0)q" + 6(0)GY. (4.25)

The localised forcing is in a Gaussian shape, which consists of alocation parame-
ter g, which locates the tower wake position. In order to parametrise the rotation
speed of the turbine, g will be employed and incorporated in the UQ analysis
in Chapter 5. For training the model as in the other two test cases, the blade
is prescribed a motion given by q'” € RNv (exogenous inputs) and correspond-
ing aerodynamic forces F') € RV* (outputs) are obtained from the flow solver.
The t terms represent the training data, and as usual the data should be infor-
mative and plentiful in terms of frequencies and amplitudes-of-interest in order
to identify Ap, A4, Ag. One obvious choice is to employ chirp signals for train-
ing, given by (4.6). The excitation frequency for a particular system can be esti-
mated based on the natural frequencies of vibration of the wind turbine blade,
which can be obtained from the modal decomposition of the structure explained
in Section 3.1.3. For each mode, independent modal excitations are performed
to obtain corresponding generalized aerodynamic forces. A statistical model is
constructed given by:

+(0)

£ = ot (OF" TV + 1, (00" + 606G 46, (4.26)

where F¥ € RMF is the predicted output at time instant . The Gaussian error
term €Y € RV accounts for the discrepancy in prediction. A least-squares prob-
lem can be formulated to minimize e'”, given by:

2

A, Ag, Ag = argmin ¥ (' - ) (4.27)

Ap,Aq,AG t
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4.5.1. VERIFICATION OF ARX - RECONSTRUCTION OF FORCED MOTION
Verification of the ARX model for reconstruction of forced motion is performed,
where sinusoidal test signals are used to specify the structural motion of the
blades. In the coupled aeroelastic solver, the modal force, also known as the gen-
eralised force Q,(f) shownin (3.11), is used. This force is obtained by integration
of the pressure throughout the blade surface, and then multiplying it with the
modal matrix. During the training phase, Q,(#) is normalised as a pre-processing
step. In Figure 4.8, the normalised generalised forces in blade 1 obtained from
the full CFD solver and the ARX model are compared. The force reconstruction
at TSR = 1.6 and 6.3 for all the blades of the 3-bladed turbine is shown. The 7/3
shift in the azimuthal position of the peak experienced in front of the tower can
be observed in the three sets of estimations obtained from the three blades. It
can be observed that the ARX solver is able to reconstruct the forces accurately
close to the CFD predictions. The localised forcing term is also able to generate
the trend in the peak encountered due to the tower wake. As explained in Figure
3.12, the change in TSR causes a change in the frequency and amplitude modu-
lation of the low-frequency unsteadiness. It is seen that the localised forcing is
able to reconstruct this behaviour with some discrepancy in the absolute value
of the peaks, however the trend is clearly estimated.

4.5.2. VERFICATION OF ARX FOR AEROELASTICS - ESTIMATION OF BLADE
FORCING

After the verification of ARX through reconstruction of forced motion, we now

employ the model to reconstruct unsteady aeroelastic forces. Several ARX mod-

els are built at fixed values of TSR and inflow conditions such as fixed velocity

and air density. The ARX model is coupled to the modal structural solver and

aeroelastic loads on the blades are predicted.

Figure 4.9 shows the estimation of the blade forcing at the two values of TSR
and for each of the 3 blades. They are compared to the CFD-based aeroelastic
results. It can be seen that the ARX model is able to reconstruct the trend of
the aeroelastic forcing accurately. For the lower TSR = 1.6, we observe an offset
in the absolute value of the mean forcing after the blade passes in front of the
tower. However, at TSR = 6.3 the offset is comparatively lower. This may be due
to the introduction of the relatively stronger vortices from the tower wake (Fig-
ure 3.10b) at the reduced TSR, resulting in higher mean forcing in the CFD solver.
This effect is not captured by the ARX model, since the training phase involves
forced motion of the blades, which is hence unable to capture this effect which
occurs only in the aeroelastic case. For an absolute agreement, the training of
ARX has to be tailored by taking into account the phase shift between the forc-
ing signal and the vortex generated by the tower. However, the model is able to
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estimate the forcing introduced by the tower accurately.

4.6. SUMMARY

ROMs based on ideas of system identification have been developed for the three
test cases that are investigated in this dissertation. The ROMs provide accurate
unsteady aeroelastic characteristics and they have been verified based on CFD-
obtained estimates. Utilising the computationally cheap estimations, in the next
chapter we use this ROM in order to propagate uncertainties in the input param-
eters.
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REDUCTION OF UNCERTAINTIES
EMPLOYING BAYES’ THEOREM

The final part of this dissertation deals with the uncertainty quantification prob-
lem. In Chapter 3, we developed high fidelity aeroelastic solvers, which provide
accurate estimates for the three test cases that have been investigated. In order
to alleviate the computational burden of these solvers, we developed Reduced
Order Models (ROM) in Chapter 4. These cheap models will now be utilized for
performing uncertainty quantification.

The aim of this chapter is to provide probabilistic estimates on aeroelastic
characteristics and then use Bayesian techniques and experimental data in or-
der to reduce the uncertainties. Linear instabilities or dynamic aeroelastic be-
haviour is estimated and the linear ROMs developed in Chapter 4 will be used for
two aeroelastic systems — Goland wing and the experimental wind turbine. Ini-
tially, uncertainties are assumed for defining priors and (artificial/experimental)
data is generated/used to identify the input parameters. Section 5.1 provides
the methodology for the propagation problem and the framework for applying
Bayesian inference. Application to the test case of Goland Wing is provided in
Section 5.2, while the wind turbine problem is discussed in Section 5.3 along with
identification of structural and rotational parameters using experimental data.

5.1. UNCERTAINTY PROPAGATION AND BAYESIAN UPDATING

We investigate the effect of epistemic uncertainty in structural and aerody-
namic parameters on aeroelastic characteristics such as the location of the flutter
boundary or the blade bending moment. Two test cases are considered - Goland
wing and the experimental wind turbine. For the Goland wing, structural param-

85
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eters s are uncertain and the probabilistic flutter boundary is located by checking
for the unstable eigenvalue at the corresponding density. While in case of wind
turbine, the effect of s and localised forcing terms g on the generated structural
moment is investigated. This framework uses Bayes’ theorem [1]:

P(s, gl A) ox P(As,g) - Pols)-Po(g),

where A is the experimental data (aeroelastic measurements (eigenvalues) for
the Goland wing and experimental structural moment measurements for the
wind turbine), and parameters s and g are to be identified. Py(s) and Py(g) are
the prior distributions, chosen based on any previously available information
and expert opinion. PP(A | s,g) is the likelihood derived from a statistical model
describing the relationship of the simulation predictions to the experimental ob-
servations and it represents the difference between the experimental data and
simulation model. At least experimental noise should be accounted for here,
whose magnitude is known from the experimental data in case of the wind tur-
bine. Finally P(s,g | A) is the posterior, which in this framework is the answer to
the question: What is known about the values of's, g?

In the absence of experimental data for the Goland wing, we use numerical
data from the Navier-Stokes solver with artificially introduced noise. The data
in the current investigation always refers to stability eigenvalues at sub-critical
conditions (i.e. densities/Mach numbers without flutter). Finally a posterior pre-
dictive distribution (ppd) of the flutter density is obtained from the propagated
posteriors.

During the uncertainty propagation, we also take into account the effect of
change in the structural modal matrix with change in structural parameters.
The initial ARX model (4.2) is based on training with the mode shapes ¢;, ob-
tained from the deterministic structural parameter values s. However these
mode shapes will vary for each sample § that is drawn from the probability space,
which will change both the generalized displacements y; and the generalized
aerodynamic load vector Fs. We incorporate this effect by constructing a new
modal matrix ¢ for §, which is then used to find the modal deformations in
terms of ¢; to be used in the ARX model. Explicitly, if y; denotes the general-
ized displacement for §, we solve the minimization problem ¢y = ¢y for y; to
be used in the aerodynamic equation. Similarly, the generalized force F for § is
obtained from (¢£)‘1F = ((ﬁaT)‘lf’, where ¢, is the modal matrix for the aero-
dynamic mesh. In this manner, the trained ARX model based on the baseline
model can still be used for estimating the aerodynamic forces; hence efficiency
of the ROM is not affected. The steps for the uncertainty analysis are detailed in
following sections.
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5.1.1. DEFINING AND PROPAGATING PRIORS ON THE STRUCTURE

In defining structural uncertainty, our goal is to obtain a probabilistic estimate
on the aeroelastic characteristics of the system. In case of the Goland wing,
based on the high sensitivity of this stability boundary to the structural parame-
ters [2] and lack of knowledge of the deterministic values of these parameters, we
achieve bounds on the boundary by uncertainty propagation through the cheap
LPV-ARX model. In the preliminary UQ problem for the Goland wing, also aero-
dynamic (Mach number M) uncertainty is considered. Let § be the mean (also
deterministic/nominal) values of the structural parameter vector. Additionally
for the wind turbine, let g be the mean of the the localised forcing term. In the
absence of more specific information, we assume uniform probability densities,
for example with £10% and +1% variation about § and g, we get:

s ~%(0.95,1.15), g ~%(0.998,1.01g).

The assumption of a uniform prior could be replaced with uncertainty based
on expert opinion obtained via Bayesian elicitation [3]. Incorporation of other
density functions is straightforward within this methodology, as the cheap ARX
model allows us to use Monte Carlo in the input probability space. For the
Goland wing, we obtain eigenvalues of the matrix J in (4.23) for each sample from
the prior distribution and r largest eigenvalues are stored in A € C". While in case
of wind turbine, the structural moment history with respect to the azimuthal po-
sition of the blade is obtained. The numerical approximation of eigenvalues of
J as obtained from (4.23) or the structural moment from (4.25) can be written in
the form:

i {f\(s; p) for Goland wing G.1)

A(s,g) forwind turbine.

The density at free-stream conditions p is related to My, by My, = L,
V7YPoo! poo

where ¥ is the specific heat ratio and P is the pressure. The LPV-ARX/numerical
estimate of flutter density pguter € R is the solution of:

max| Ai(s; pautter) 1= 1. (5.2)

This provides us probabilistic estimates on the flutter density or the structural
moment history and we will see later that for these priors and the cases consid-
ered, the estimated uncertainty is significant. The Bayesian framework is now
introduced in order to identify the input parameters from data, and thereby re-
duce this uncertainty.
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5.1.2. BAYESIAN UNCERTAINTY REDUCTION USING DATA

Let A* € C" be a measured value of the eigenvalue vector at density p* or the
structural moment vector. Eigenvalues A* are related to the structural model
employing (5.1) and an additive random variable ¢, specified as an unbiased
normal distribution assuming independent noise X = O'if is used to account for
noise in the measurements. In case of the wind turbine, the full covariance ma-
trix X is obtained from the experimental data (due to the moments reported for
repeated runs or rotations of the turbine), which is used in the likelihood estima-
tion. We neglect systematic modelling errors for the current investigation as in
[4]. This gives the statistical model:

A" =A(s;ph) +e (5.3)
e~ N(0,0%), (5.4)
which gives the probability of observing A™ given s, also known as the likelihood

as:
P(A* |s,0"):=P(A* = A(s; p™)). (5.5)

For the wind turbine, the likelihood can be written as:
P(A*|s,8) :=Pc (A" - Als,g)). (5.6)

5.1.3. EXPLICIT EXPRESSION FOR POSTERIOR OF FLUTTER DENSITY
The prior Py(s) defined initially on the structural parameters can be now updated
with the likelihood given by (5.5) with Bayes’ theorem to obtain the posterior:

P(s| AT, p") o P(AT |s,p7)P(s), (5.7)
1 X0 (AT = Ai(s; ph))?
x exp|—= Py(s). (5.8)
2 o2
A

Similarly an expression for the posterior considering the covariance matrix
can be written down for the wind turbine. The distribution is sampled using
Metropolis-Hastings (MH) Markov Chain Monte-Carlo (MCMC) algorithm [5].
The MH algorithm samples the posterior distribution, using a reversible Markov
random-walk, with each step selected from a proposal distribution. The particu-
lar implementation used here cycles through each component of s and g, chang-
ing only one at a time, with a normal proposal distribution, whose variance is
tuned during the run. The total number of steps in the chain is 10000, wherein
the first 1000 samples were discarded in a burn-in period, and the remaining
samples thinned by a factor of 2 to improve the independence of consecutive
samples. Standard checks of MCMC convergence were applied [5, 6].
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5.2. UQ AND BAYESIAN UPDATING - GOLAND WING

The viscous version of the LPV-ARX model is used in this section. In the prelimi-
nary UQ problem, the 7-parameter structural input s € R? and the Mach number
M, are assumed to be distributed uniformly +10% about the nominal values §
and M. Figure 5.1 shows the variation of the magnitude of the dominant eigen-
value with density at Mach number 0.9. The lines correspond to the probability
of the eigenvalue exceeding the corresponding line at fixed p. Thus under the as-
sumed uncertainties, there will never be flutter if p < 0.2219 and there will always
be flutter if p = 0.3008, which represents a large uncertainty in flutter altitude of
~2000m.
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Figure 5.1: Change in the dominant eigenvalue with density at Mach 0.9 with structural uncertain-
ties, where A j | P(A > Aj) = j. The uncertainty in the flutter density (| A |= 1.0) is shown in the pdf
below.

To reduce this uncertainty, experimental data is used to identify the struc-
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tural parameters through Bayesian updating. For this, a twin problem is set-up
to generate data in the absence of real experimental data. A random sample Sy
is drawn from P(s). The artificial measurement data are then obtained from the
CFD solver as:

A" = Astum; p7) +&. (5.9)

e

S

o

o b

& L

s S4

N

o b

Rl L L . n . . !
Al 0.95, 54 115,

Figure 5.2: Posterior distributions with 1-d histograms of each parameter s and 2-d scatter plots
for each parameter-pair for p* = 0.27 and o 5 = 0.0001 for Goland wing. Black lines and squares
show mean value of parameters § and red lines and circles show true value of the parameters sy;th

The additive noise is sampled from an unbiased normal distribution with
known variance given by € ~ A (O,Gi). Figure 5.2 shows 1-d marginal posterior



5.3. UQ AND BAYESIAN UPDATING - WIND TURBINE 91

histograms for each parameter, and 2-d marginal histograms for each param-
eter pair. The 1-d marginals indicate the specificity of posterior knowledge of
each parameter in isolation. We can see that the parameters s; and s, have been
somewhat identified as they are skewed towards their maximum values (we as-
sumed uniform distributions initially). The 2-d marginal plots provide correla-
tion information - where we can see that s; and s, are strongly correlated with a
negative gradient. This suggests that the experimental observations can be ob-
tained by either increasing the thickness of s; (leading/trailing edge spar) or s
(upper/lower skin element) , or some combination of the two. In contrast pa-
rameter s3 (area of leading/trailing edge spar) and s, (area of center edge spar)
have not been identified at all - the posterior is almost indistinguishable from
the prior. This is not surprising given that only (scalar) measurement is used
in the calibration, leading to a highly underdetermined inverse problem. How-
ever, even then the flutter uncertainty has been substantially reduced as seen in
Figure 5.3, thus implying that the measurements are informative about this and
identification of correlation between parameters s; and s, is able to reduce the
uncertainty in flutter density.

A parametric study is also performed on the effect of the location of the mea-
sured data (given by p*) and o 5, shown in Figure 5.3. It is observed that as mea-
surement density p* moves closer to the true flutter density, there is a reduction
in the variance of the ppd of the flutter density and the predicted mean density
moves closer to the true density. Similarly a smaller variance on the measure-
ment noise o, results in denser estimates on the flutter density. A measurement
pointat p* =0.27 and o = 0.0001 gives a ppd estimate on flutter density almost
identical to the true density. This method can be used to utilize flutter test data
to update the probability bounds on the instability boundary.

5.3. UQ AND BAYESIAN UPDATING - WIND TURBINE

5.3.1. PROPAGATION OF INPUT UNCERTAINTIES

The structural parameters of the wind turbine that are considered uncertain are
the distribution of mass, Young’s modulus and moments of inertia in two direc-
tions. In the experimental data of the wind turbine, these properties are specified
at different chord locations of the blade. During uncertainty propagation, the
structural parameters at these locations are considered as uncertain employing
multivariate distributions with a covariance operator. Since the use of the ROM
enables computationally cheap aeroelastic estimations, these uncertainties can
be propagated with brute-force Monte Carlo method.

Besides structural uncertainty, the rotational speed of the wind turbine is
also found to be uncertain from the experimental measurements, as already dis-
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cussed in Chapter 3. This uncertainty is introduced through the location of the
tower forcing terms g. We first investigate the effect of the structural uncertainty
on the structural moment of the turbine. Thereafter, the effect of uncertain tower
forcing is ascertained, and finally all the uncertainties are combined to form a re-
alistic prior for the Bayesian identification problem.

Figures 5.4-5.6 show the confidence intervals for the two output quantities of
interest - normalised generalised force and structural moment at 30%-span loca-
tion. For the structural uncertainty cases, the generalised forces are also plotted
in order to demonstrate the relative effect on the two output quantities. The con-
fidence intervals are plotted for 1, 2 and 5% variation (shown by the gray shaded
area) in the structural parameters with respect to the mean (deterministic) val-
ues (shown by the black solid line). For other blades, the confidence intervals of
the two output quantities are shown in Appendix A. One common observation
from all the propagations is the difference between the response surfaces of the
structural moment (captioned as (a) to the left) and the generalised force (cap-
tioned as (b) to the right) under the same variation in the input parameters. In
case of generalised force in the blade, the variability introduced by uncertain in-
put is relatively less, since the forcing introduced by the tower wake dominates
the response. Also there is a direct effect of the uncertain structural input on the
structural moment, while the effect is indirect on the generalised force.

The variation of the structural moment is due to the change in aeroelastic fre-
quency of vibration of the blade, introduced by the change in the structural prop-
erties of the blade. This effect is however neutralised as the blade approaches
the tower and is subjected to the wake forcing. This can be clearly observed in
responses from higher variability in the input forcing, such as Figure 5.5a for 2%
variability in input parameters. The tower forcing is introduced at around 1.5z
azimuthal position. The uncertain response has a staggered distribution around
the mean, which can be observed from the crests and troughs of the harmonic
response. The shaded area (uncertain response) in the crest after the 1.5z az-
imuthal position is symmetric about the mean in terms of the frequency, while
the variation is only in terms of difference in amplitude. The effect of the tower
wake thus collapses the frequency change introduced by the uncertain inputs.
For the case with 5%- variation (Figure 5.6), the uncertain response for structural
moment has a significant spread due to the larger change in structural frequency.
This large uncertain response with 5%- variation is considered to be large for the
current investigation.

In the next step, rotational uncertainty is introduced by considering the lo-
cation of the localised forcing term to be uncertain. Figures 5.7a and 5.7b show
the uncertain response in the structural moment for 1% and 2%- variation in
the localised forcing term respectively. It is observed that the localised forcing
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Figure 5.4: Confidence intervals for blade 1 at TSR = 1.55 assuming uniformly distributed input

parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and I,
with 1% variation.
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uncertainty introduces larger spread in the response of the blade moment af-
ter the 1.5 azimuthal position. This is expected since the localised forcing term
takes into account the forcing from the tower wake and the rotational uncertainty
would in turn result in a phase shift in the incidence of the tower wake. When 2%
variation is considered (Figure 5.7b), the spread is comparatively large leading to
significant difference with respect to the experimentally observed uncertainties.

In the final propagation problem, both the structural and localised forc-
ing uncertainties are considered, the corresponding blade moment response is
shown in Figure 5.8. As already discussed, for the localised forcing term, 1% vari-
ation is considered. For the structural parameters, both 1% and 2% variations are
considered. The structural moment response is found to be symmetrical about
the mean location. This uncertain response is in agreement with the experimen-
tally observed uncertainties - hence the considered uncertainties in this inves-
tigation are close to physically observed response. In order to consider for the
higher spread in the response around the 1.57 azimuthal position, we consider
2% and 1% variation in the structural and tower forcing terms respectively in the
Bayesian identification problem.

5.3.2. REDUCTION OF UNCERTAINTIES

Experimental data (shown in Figure 3.8b) is now introduced in (5.8) in order to
identify the input parameters of the wind turbine, introduced in the previous sec-
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tion. As already discussed, in this section, we consider 2% and 1% variation in s
and g respectively. It may be noted here that the localised forcing vector is com-
posed of the multiple locations, where localised forcing terms are introduced in
the ARX model, thus referring to the different azimuthal locations. Figure 5.9
shows the comparison of the considered uncertainty with respect to the mean of
the experimental measurements. In the Bayesian reduction problem, there are
two considerations in the analysis presented here. First, the aeroelastic uncer-
tain response has significant overlaps with respect to the experimental mean at
most azimuthal positions, except near the 1.5z azimuthal position. Around this
point when the blade is in front of the tower, the discrepancy is large. Secondly,
there is large variance in the experimental measurements, as shown in Figure
3.8b. Thus, three different scenarios with respect to the data used for identifica-
tion are considered, which are identified with acronyms:

e FT OV: Full time or azimuthal position history is considered, with the orig-
inal variance reported in the experiment

e FT RV: Full time or azimuthal position history is considered, with a reduced
variance (of 1% with respect to original).

* RT OV: Reduced time or truncated azimuthal position history is consid-
ered, where the data near the 1.57 azimuthal position is ignored, and the
original experimental variance is assumed. The truncated time history
avoids the time instances where there is large discrepancy, which is around
the 1.5 position.
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Figure 5.10: Posterior distributions with 1-D marginals of structural parameters s; and s, localised
forcing parameters g1 -g4 and 2-D scatter plots for each parameter pair with data FT OV.

The posteriors for the two structural parameters s; and s, (which are dis-
tributions of mass and Young’s modulus of the blade respectively) and the four
localised forcing parameters are presented with respect to these acronyms in
Figures 5.10 - 5.12. Other parameters are not presented for conciseness. The
density of samples in the 2-D marginals is represented in the legend, indicating
increasing data density from 0 to 1. In Figure 5.10 for data scenario FT OV, the
1-D marginals indicate that the structural parameters are not identified, while lo-
calised forcing parameters g1, gs and g4 are somewhat identified with the mean
moment tending towards the extreme range. Similarly, the 2-D marginals show
that certain localised forcing terms are correlated. For example, g3 and g4 are
tending towards a positive correlation with a positive offset for g4, while g» and
g4 resemble a negative correlation.
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In the next data scenario FT RV, we reduce the variance to 1% of the original
value reported in the experiment, which is shown in Figure 5.11. The reduction
of variance clearly identifies the localised forcing parameters g; and g4, as can
be seen in the 1-D histograms. The 2-D marginals reveal the parameter depen-
dencies much clearly. Localised forcing parameters g; and g4 are concentrated
towards the edge of the prior range assumed. Parameters s; and g4 also show a
concentration towards the upper edge of the prior uncertain domain. In both the
cases with the full azimuthal position history, the structural parameters are not
clearly identified. On the other hand, the localised forcing parameters g; and g
defining the location of the tower wake forcing is identified.

In order to investigate the poor identification of the structural parameters,
we select a truncated azimuthal position history from the experimental data. Ex-
plicitly, data between n and 1.37 azimuthal positions (Figure 5.9) are chosen,
which is motivated by the phase of the harmonic response of the structural mo-
ment being constant with respect to the experimental data during the half cycle.
Figure 5.12 shows the posteriors identified with the truncated azimuthal posi-
tion data. We observe that in this case, both the structural parameters s; and s
are somewhat identified compared to scenarios FT OV and FT RV. Also g3 and
g4 demonstrate skewed posteriors, they show a clear negative correlation in the
2-D histogram. Similarly, s; and g4 is also scattered towards the lower edge of the
prior uncertain domain.

The improved identification of the structural parameters with truncated az-
imuthal position data can be explained from the phase of the structural moment
response of the uncertain parameters with respect to the experimental mean.
The change in the structural parameters of the wind turbine blade results in a
change in the aeroelastic frequency, which induces a phase shift. Consequently,
the sum of differences between the structural moments with respect to the ex-
perimental data in the likelihood function is large, when summed across differ-
ent harmonic cycles for the full rotation cycle. On the other hand, consideration
of half cycle of the harmonic response (scenario RT OV) results in samples that
are clearly identified with respect to the experimental data. In the next step, we
propagate the posterior distributions to predict the ppd of the structural mo-
ment.

Figure 5.13a shows the confidence intervals under prior distribution for the
assumed uncertainty. The confidence intervals using the posteriors under the
three data scenarios are shown in Figures 5.13b - 5.13d. The reduction in un-
certainty is clearly observed in all the three cases. With the full azimuthal po-
sition data (Figures 5.13b and 5.13c¢), qualitative comparison between the two
variances considered in the data is almost identical. In case of RT OV, it can be
observed that there is a larger reduction in uncertainties at all azimuthal loca-
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tions. In order to obtain a quantitative comparison, we select time or azimuthal
position instances and plot the probability density estimates at these locations.

The time instances are marked t; - g, which are selected such that structural
moments at crests, troughs and between them are obtained, with more time lo-
cations considered around the 1.57 azimuthal position. From Figure 5.15, it is
observed that there is reduction in the variance with respect to the prior at all
locations. However, comparisons of scenarios FT OV and FT RV reveal that the
reduction in variance of the experimental data does not reduce the uncertainty
in blade moment significantly. This is attributed to the experimental data being
not informative enough to reduce the uncertainty in structural moment due to
change in structural parameters of the blade. This validates our earlier discus-
sion on the choice of a truncated azimuthal position history of structural mo-
ment. It can be seen for scenario RT OV, there is a reduction in uncertainty at
locations f1, f3 and ;. All these time instances correspond to azimuthal posi-
tions located between the crest and trough, at which the identification data was
used in the likelihood. However use of this scenario RT OV also leads to change
in the mean of the posterior predictive structural moment at locations #, fs,
and fg. Since the data only corresponds to a half cycle of the experimental data
without any information from the tower forcing location, it provides estimates
which can be biased.

To summarise, it can be said that the experimental data is not informative
enough to identify the structural parameters of the system. The uncertainty due
to the forcing from the tower wake can lead to large uncertainties in the structural
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moment. However, due to the complex nature of the wake dynamics, the discrep-
ancy between the experimental uncertainties and aeroelastic responses is large
at these locations. As a result, the reduction in uncertainties of the structural
moment after identification is not large. However, uncertainties have reduced at
all azimuthal positions as evident from Figure 5.13. Also, it has been established
that the localised forcing terms, which take into account the tower wake, can be
identified with this methodology (Figure 5.11). This uncertainty can be critical in
terms of evaluating the fatigue behaviour of a wind turbine blade under uncer-
tain operational conditions.
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CONCLUSION

This dissertation explores three main scientific challenges as outlined in Sec-
tion 1.3. In this chapter, the findings of this dissertation, challenges and future
research directions with respect to these three domains are summarised. Sec-
tion 6.1 outlines the contributions in these three domains, while Section 6.2 pro-
vides recommendations for further research in aeroelasticity for wind turbines,
reduced order modelling in aeroelasticity and Bayesian data assimilation per-
taining to aeroelastic problems. Finally section 6.3 summarises the chapter and
the dissertation.

6.1. CONTRIBUTIONS OF THE DISSERTATION

6.1.1. AEROELASTIC MODELLING

Aeroelastic models for three test cases — a two-Degree-of-Freedom NACA 0012
airfoil, the Goland wing and wind turbine have been developed and validated.
The wind turbine is based on an experimental 3-bladed model. A detailed aeroe-
lastic model of the downwind wind turbine is considered, including all the struc-
tural details namely blade, nacelle and tower. The structural model is based on
a normal modes solver, while the fluid model is based on a 3D Navier-Stokes
solver, employing the RANS turbulence closure, Launder-Spalding k — e model
for airfoil and Goland wing, while the SST k —w model is employed for the wind
turbine.

For the airfoil and Goland wing, the output quantity of interest is the flutter
boundary. Depending on the availability of validation data, the flutter boundary
is plotted in the respective coordinate system. For the airfoil, the flutter bound-
ary is plotted in terms of the change in the inverse mass ratio at flutter with the
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Mach number. For the Goland wing, the change in free stream velocity at flut-
ter is plotted with respect to the Mach number. The aeroelastic solver for the
airfoil is validated with experimental findings, while the numerical test case of
Goland wing is verified by comparing the solver estimates to other numerical
solvers available in literature. For the wind turbine, structural moment at a span-
wise location is the quantity of interest, which is validated against experimental
results.

Chapter 3 shows the validation results for the three test cases. The aeroelastic
estimates from the developed solver closely match the experimental or numeri-
cally obtained flutter boundary, both for the airfoil and Goland wing. The flutter
boundary for the airfoil is in close quantitative agreement with the BMP experi-
ment throughout the Mach number range. Both Euler and Navier-Stokes solvers
are developed for the Goland wing and the solvers are able to obtain a good quali-
tative agreement, with an accurate representation of the transonic dip. The error
analysis shows that the maximum discrepancy or relative error is less than 5%,
and hence the solver is considered to be validated.

As mentioned, the aeroelastic solver for the downwind wind turbine consid-
ers all structural details, and hence the mesh generation requires detailed con-
sideration in order to resolve the boundary layer and capture the tower and blade
vortices. A hybrid mesh has been employed in this dissertation. For assessing the
accuracy of the aeroelastic solver for the wind turbine, the experimental struc-
tural moments for each rotation of the turbine are obtained with respect to the
azimuthal position. The range of the measurements is found to be large for all
azimuthal positions with larger spread when the blade is in front of the tower.
The mean structural moment from the aeroelastic solver is able to reconstruct
the trend in both the experiments conducted at two values of TSR. The aeroelas-
tic frequencies and the effect of the tower wake on the blade moments are clearly
visible.

The wind turbine solver is further investigated extensively for assessing the
ability of the solver to reconstruct tower and blade vortices. The dependence of
the vortex structures on the TSR is analysed and it is observed that higher TSR
at a low inlet air velocity leads to distinct tip vortices, while at a low TSR and a
high inlet velocity, the blade vortices are distinct. Furthermore, a low-frequency
unsteadiness is observed in the blade moment and an amplitude and frequency
modulation dependence on the TSR has been established.

Based on the aeroelastic investigations for all the test cases, it is established
that the solvers are able to provide accurate representation of the aeroelastic
characteristics with agreement to experimental or numerical benchmarks, which
concludes the first numerical challenge of this dissertation. Owing to the com-
putational expense, these validated solvers cannot be employed to provide dy-
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namic aeroelastic predictions. The high-fidelity solvers are used to generate data
in order to train reduced order models, which are presented in Chapter 4.

6.1.2. DATA-DRIVEN ROMS

In this dissertation, data-driven ROMs are developed employing ideas of sys-
tem identification. Three different ROMs are developed - an ARX model, LPV
- ARX model and ARX model with local (Gaussian) forcing term. The ARX model
is based on time-marching recurrence relation, mapping input data to output
quantities of interest. Throughout this dissertation, the input parameters are the
modal displacements of the wing/blade, while the output parameter is the modal
force or moment on the wing/blade surface. Coefficients defining the model are
first trained using high-fidelity training data. In the LPV-ARX model, the coef-
ficients are parametrised based on the operating conditions. The LPV-ARX im-
plementation enables the use of the ARX model at multiple conditions, which is
convenient for performing uncertainty quantification.

The ARX and LPV-ARX models are initially employed to reconstruct test sig-
nals in the frequency range of interest. Both single and multi-mode excitation
test signals are employed to ascertain the robustness of the ROMs. An error anal-
ysis shows that the models are able to reconstruct signals in the frequency range
of interest at which the instability or the flutter point is expected. Once verifica-
tion with test signals is acceptable, the models are employed to predict the flutter
boundary of the airfoil and the Goland wing. In both the cases, the ROM is able to
predict the flutter boundary accurately with respect to the full solver predictions
with significant reduction in the computational costs.

Finally, for the wind turbine, the ARX model is modified by inclusion of a lo-
calised forcing term in order to account for the jump in the blade moment due
to the tower wake. The local forcing is the form of a Gaussian shape, which cor-
responds to the effect of the tower wake on the blade moment. As in the other
test cases, test (forced) signals are initially reconstructed and then the model is
employed to predict blade moment. The model is employed for moment predic-
tion at two values of TSR of the turbine and it is evident that the model is able to
predict blade moment accurately. Also the local forcing term is able to represent
the modulation in the low-frequency unsteadiness.

The ROMs developed in this dissertation are able to provide accurate pre-
dictions of aeroelastic characteristics. This has been achieved with considerable
reduction in the computational expense of the solver. The development and ver-
ification of the ROM concludes the second numerical challenge of this disserta-
tion. The ROMs are then employed to propagate uncertainties in the input and
operational parameters of the system.
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6.1.3. UNCERTAINTY REDUCTION

Chapter 5 discusses the uncertainty propagation and reduction section of this
dissertation. The methodology for this section is based on prior identification
of uncertain input parameters, generation and inclusion of data in a statistical
model in order to perform parameter estimation and finally propagation of the
identified parameters to reduce the output uncertainty. The test cases of Goland
wing and wind turbine are analysed. For the Goland wing, based on a sensitivity
analysis, seven structural parameters and the Mach number are considered as
uncertain. The input uncertainties resulted in a significant spread in the flutter
altitude. Since the Goland wing is a numerical test case and hence in the absence
of experimental data, synthetic data from higher fidelity numerical experiments
are used to form the likelihood. The posteriors of the structural parameters re-
veal clear identification of two structural parameters. The propagated posteriors
are able to reduce the flutter density significantly. A parametric investigation
is also performed based on the location of identification data and the assumed
variance in the Gaussian error. It is established that the data from pre-flutter
conditions can be used to reduce uncertainties, which establishes the relevance
of this dissertation for real-world applications.

For the wind turbine system, the uncertain parameters are: distribution of
four structural parameters - mass, Young’s modulus, and moments of inertia in
two directions. Additionally, based on the experimental observations, rotational
uncertainty is also considered. The localised forcing term in the ROM enables
implementation of the rotational uncertainty. In the wind turbine, experimental
data is employed in the parameter estimation step. It is observed that structural
parameters are not clearly identified, while the localised forcing terms defining
the rotation are somewhat identified. This is attributed to the large discrepancy
between experimental measurements and model predictions at the azimuthal
position when the blade is in front of the tower. In order to obtain better identi-
fication, a modified data scenario is implemented, which ignores the data where
the discrepancy is large. This resulted in better identification of the parameters
and reduction in the blade moment uncertainty.

The incorporation of the ROM in the Bayesian framework and the demon-
stration of the methodology for both numerical and experimental data con-
cludes the third and final numerical challenge of this dissertation. This tech-
nique has been demonstrated to be viable for practical applications, both in
terms of providing accurate predictions with cheap computational resources and
utilisation of experimental data for parameter estimation to improve model pre-
dictions. However, the non-conformity between the experimental and model
predictions in the wind turbine problem is found to be an issue for the identifi-
cation. Due to the inadequacy of the model to reconstruct the solution behind
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the tower, the uncertainties could not be reduced substantially, which is eventu-
ally improved by ignoring the data around azimuthal locations behind the tower.
In view of these limitations and other possible developments, future research di-
rections are summarised in the next section.

6.2. DIRECTIONS FOR FUTURE RESEARCH

6.2.1. AEROELASTIC MODELLING

In section 3.4.2, production of large scale vortices from the mid span of the blade
is demonstrated, which is attributed to the large change in angle of attack at that
location. During the blade design process, these can be avoided by designing
the airfoil such that discontinuities along the leading or trailing edge profiles are
avoided. This will mitigate the production of large scale vortices, which can neg-
atively impact the power production.

The forcing introduced by the tower vortices on the blade results in sudden
jump in the generated blade moment at every rotation of the blade. This effect
can result in fatigue of the blade structure. Future research can be directed to-
wards prediction of structural fatigue in downwind turbines utilising the reduced
order models developed in this dissertation. The dependence of frequency of the
low-frequency unsteadiness of the blade moment and the Tip Speed Ratio of the
turbine on development of structural fatigue can be a design consideration in
the blade design process.

In terms of increasing the complexity of the computational model, the
boundary conditions of the model can be modified to take into account the at-
mospheric boundary layer (ABL) at the inlet of the domain. The impact of the
turbulent nature of the ABL on the wind turbine performance has already been
investigated. The topography of the land and variation in the land surface fluxes
can significantly impact the wind-farm-atmosphere interactions. Consideration
of these factors for the design and optimisation of wind farms is still an ongo-
ing development. In this context, the performance of the aeroelastic model with
the presence of the ABL is an interesting area for research. Additionally, pres-
ence of ABL can lead to other aeroelastic characteristics with respect to the low-
frequency unsteadiness and instabilities, which can be investigated in detail.

Future developments in the computational model could be to incorporate
variable rotational speed of the turbine based on integration of pressure field on
blade surface. The current model is based on prescribing a fixed rotating speed
in the rotating domain of the computational mesh. Variation in rotational speed
outside design conditions can be encountered at start-up or shut-down of a tur-
bine or during operation of the turbine due to change in inflow conditions, which
was also observed in the reported experiment in this dissertation. The operation
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of the turbine and the resulting aeroelastic characteristics on the blade surface
can be considered in the extended model.

Furthermore, the structural model for the wind turbine can be improved by
taking into account shear deformation, which can be important for low-aspect
ratio blades. Additionally, coupling between flapwise bending, edgewise bend-
ing and torsional modes can be included to take into account the effect of ge-
ometrical twist of the blade. Also, the bend-twist coupling can be considered,
which is known to affect the stability characteristics of aeroelastic systems [1].

6.2.2. DATA-DRIVEN ROMS

As mentioned in Chapter 4, the stability of the LPV-ARX model can be defined in
a global or a frozen sense (Reference for these are provided in Section 4.2). The
frozen method can be applied based on the behaviour of the scheduling param-
eter. Under the assumption that the scheduling parameter changes slowly, the
stability of the global LPV-ARX model can be based on the local identified ARX
models. However, future developments in the LPV-ARX model could explore use
of stability preserving interpolation methods which guarantee global stability. If
the scheduling parameter is expected to change rapidly, extension of the global
stability preserving methods can be useful for robustness of the model.

The identification approach of the LPV-ARX model could be further investi-
gated. In Section 2.3, the contributions for global identification methods such
as subspace-methods are summarised. Owing to the recent developments in
closed-loop systems [2], these could be employed for identifying the dynamical
system. The closed-loop approach could also be used for investigating feedback
control, which can be crucial component of the aeroelastic system. This would
involve a control system in the physical system and the identification data has to
be obtained from this closed loop. Considering that the real systems would op-
erate under the influence of a control system, the feedback control system could
be integrated in generating the training data.

The choice of interpolation points in LPV-ARX identification is crucial in de-
termining the accuracy of the global model. As mentioned in Chapter 4, ear-
lier investigations have explored optimisation procedures for choice of interpo-
lation points, which resulted in optimal models with respect to computational
costs. Future investigations can be directed towards incorporation of a greedy
approach for choice of interpolation points based on gradient of the response
function with each additional point. Additionally, prior knowledge of the be-
haviour of the response function with change in operating conditions can be
employed for better identification. For example, the flutter boundary is known
is develop a transonic dip around the range of Mach numbers near the transonic
regime, thus requiring finer resolution of interpolation points in that regime.
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Further LPV-ARX implementations may require use of multiple scheduling
parameters. In this regard, incorporation of multiple parameters would require
mutlivariate interpolation methods. One of the challenges expected is the choice
of the interpolation or the training points for the local ARX models. Use of fine
grids can increase computational costs significantly. In this regard, techniques
to improve the choice of sampling points to obtain optimality in terms of com-
putational costs can be explored as mentioned above.

As shown in Chapter 4, the ROM developed for the wind turbine includes a
localised forcing term to take into account the forcing introduced by the tower
wake on the blade. This term is based on the rotational speed of the turbine and
also reconstructs the low-frequency unsteadiness of the tower wake. If the low-
frequency behaviour of the wind turbine is characterised with respect to an op-
erating parameter of the turbine such as the Tip Speed Ratio, the localised forc-
ing term could be trained based on the obtained parameter dependence. This
would further generalise the ROM with better understanding of the training re-
quirements.

Other research directions can be towards development of nonlinear ROMs
for predicting nonlinear instabilities such as Limit Cycle Oscillations. Part of the
research effort of the author was directed towards developing such models. Rec-
ommended directions for further investigations can include, among others: in-
vestigation of basis functions used in the ROM expansions and design of training
signals. From the experience of the author, extensive investigation for obtaining
a correct training signal is required.

6.2.3. UNCERTAINTY REDUCTION

The modelling uncertainty for the case of the wind turbine can be included in or-
der to improve the identification of the uncertain parameters. Since the model is
unable to obtain quantitative agreement with respect to the experimental mea-
surements near the tower, the modelling uncertainty may provide better agree-
ments with respect to the truth.

The uncertain structural parameters in the wind turbine uncertainty analysis
can be chosen based on a sensitivity analysis. This would allow reduction of the
uncertain parameter space and in absence of the ROM, the computational costs
of the full model can be reduced.

In the localised forcing term for the wind turbine, the variance of the forc-
ing term can be employed as an additional uncertain parameter. If the low-
frequency behaviour is characterised, this term can be useful to incorporate the
parameter dependence.
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6.3. SUMMARY

The contributions of the dissertation have been summarised with respect to the
three numerical challenges introduced in Chapter 1. Within each domain, suit-
able models, mathematical formulations and techniques for solving the prob-
lem has been developed and they have been successfully implemented in all the
three test cases that are explored in this dissertation. The implementations are
demonstrated to be accurate with respect to experimental or other numerical
findings. Based on the three disciplines, this dissertation has presented a tech-
nique to predict the stochastic nature of a dynamic aeroelastic characteristic of a
system, which can lead to instabilities or fatigue. This method is demonstrated to
work on experimental or real world data recorded during the experiment, which
is the aim of the dissertation. The entire methodology can be implemented for
practical applications in the future. The gaps or future research directions within
these disciplines have also been summarised.
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CONFIDENCE INTERVALS OF BLADE
MOMENT

The confidence intervals of structural moment and generalised forces for blades
#2 and #3 considering uncertainty in structural parameters in shown here for
completeness. Corresponding results for blade #1 are in Section 5.3.1. The four
structural parameters that are considered uncertain are - Sectional distributions
of Mass, Young’s modulus, moments of inertia I, and I,,. Variations of 1%, 2% and
5% on the bounds of the uniform distributions are assumed. The large variation
of structural moment with increase in structural uncertainty (e.g. with 5%) is
observed to be significant. The structural moment variation provides an idea on
the amount of uncertainty that is employed to define the uncertainty problem
for the Bayesian identification problem.

The difference in response for structural moment and generalised force is
also observed for blades 2 and 3. It is interesting to observe the difference in
uncertainty introduced in structural moment and generalised force by 5% vari-
ation in the parameters. The impact of the tower wake observed in the gener-
alised force in much higher compared to the structural uncertainty. On the other
hand, the variation introduced in the structural moment is significant. This is
attributed to the difference in response to the tower wake for structural moment
and generalised force. Due to inertia, the structure does not respond abruptly as
compared to the corresponding change in the generalised force.
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Figure A.1: Confidence intervals for blade 2 at TSR =~ 1.55 assuming uniformly distributed input
parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and I,
with 1% variation on uniform distribution bounds.
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Figure A.2: Confidence intervals for blade 3 at TSR = 1.55 assuming uniformly distributed input
parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and I,
with 1% variation on uniform distribution bounds.
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Figure A.3: Confidence intervals for blade 2 at TSR =~ 1.55 assuming uniformly distributed input
parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and Iy,
with 2% variation on uniform distribution bounds.
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Figure A.5: Confidence intervals for blade 2 at TSR =~ 1.55 assuming uniformly distributed input
parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and Iy,
with 5% variation on uniform distribution bounds.
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Figure A.6: Confidence intervals for blade 3 at TSR = 1.55 assuming uniformly distributed input
parameters - Blade sectional distribution of Mass, Young’s modulus, moments of inertia I and I,
with 5% variation on uniform distribution bounds.



INFINITE PLATE SPLINE

The aeroelastic system consists of the fluid and the structural meshes. The nodes
used for defining the structural mesh, (x;, y;) in aeroelastic simulations are sig-
nificantly fewer than those of the fluid mesh, (x4, ;). Hence the structural and
fluid meshes are not conforming, which requires an interpolation technique.
The Infinite Plate Spline method is implemented in this dissertation, which is
explained in more detail here.

The Infinite Plate Spline was developed by Harder and Desmarais in 1972.
The method is based on the superposition of solutions obtained from the par-
tial differential equations of an infinite plate. Point loads are applied at known
data points and the corresponding deflections are calculated. A smooth surface
passing through the structural points is obtained by substituting these loads back
into the solution. The surface obtained can then be used to estimate the deflec-
tion of the fluid mesh. The differential equation relating the deflection and loads
applied to a plate is given by:

IVi6z=q. (B.1)
Here 2 is the plate flexibility, 6z is the deflection of the plate and g is the dis-

tributed load. The solution of this problem is given by

N
0z(x,y)=ap+ax+ a2y+ZF,-ri21n rl.z, (B.2)
i=1

where r; is the distance from point (x, y) to the structural point (xs ;, ys,;). The N+
3 unknowns ay and F; are calculated by applying force and moment equilibrium,
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given by:
) F;i=0,
Y xiF; =0, (B.3)
Y ViFi=0,

and the N known deflections dz;. Equation (B.2) can be written in matrix form
as: o
ao
a
az

Sz(x,y)=[1 x y Kixy ... Kn(xy)] ? , (B.4)
2

| F |
where K;(x,y) = r21n ri. Applying the equilibrium conditions with the surface
passing through the structural mesh, the system of equations becomes:

0 [0 0 0 1 ... 1 ]T[a)

0 0 0 0 Xs1  .ee X5 N a

0 0 0 0 Vs,1 ... Ys,N as

bzg1 | = |1 %1 ys1 0 .. Kyl | B | =g, (B.5)
6Z372 1 Xs,2 Vs,2 Kzs’l eee KZSN Fg
[6zsn] |1 xsn YN Ky, ... 0 | LFn]

where K?  is the function K evaluated at the i—th structural point. The equation
canbe solved for the unknown vector F. The displacements at M fluid nodes can
be evaluated as:

r 0 h [ 0
0 0
0 1 Xa1 Yan Kﬁl Kla,N 0
1 Xa,2 2 K2 K4
Ozgr = | PP TR BN g oza | @)
0zg,2 : : : : . : 0z
1 xa,M ya,M KIL\l/I,l KZ@I,N
L5Za,MJ .6ZS,N.

Alinear relationship between the structural and fluid node points is obtained by
taking the product of the terms on the right hand side of equation (B.6), which is
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known as the transformation matrix 7,
0z4=TOoz;. (B.7)

The forces from the fluid mesh f, to the structural mesh f; can be transferred
by application of the principle of virtual work, which ensures conservation of
energy. The virtual work is given by:

W =6zl fi =6z fa. (B.8)

Putting equation (B.7) in equation (B.8), the relationship between the forces can
be obtained as:

fs: TTfa' (B.9)

Relations (B.7) and (B.9) are employed in the transformations between fluid and
structural meshes of the aeroelastic system.







IMPLEMENTATION OF ARX

The ARX model is obtained by solving for unknown coefficients, which is esti-
mated based on training the model with data generated from forced motion sig-
nals. A summary of the steps involved in the model generation for an aeroelastic
test case is provided here.

1.

Develop modal solver for the structure, for example as shown in Section
3.1.3 for wind turbine blades. The modal solution provides the natural fre-
quencies of vibration and mode shapes of the structure. The modal matrix
¢ is formed by including a finite number of mode shapes.

Based on the natural frequencies identified, training signals q'? are de-
signed. For example, chirp signals are used in this dissertation and an
overlap of training frequency and operating frequency has to be ensured
as shown in Figure 4.3.

. Steady state solution of the Euler/Navier-Stokes solver is obtained.

Forced motion aerodynamic simulations are performed in order to gener-
ate training inputs q'? (modal displacements), and outputs F'¥ (modal
forces) as given by (4.4). It is to be noted that the displacement is pre-
scribed based on the modal displacement, from which the mesh displace-
ment is obtained by multiplying with ¢.

A least squares solution for the coefficients Ar, A; of the ARX model is
formulated, such as given by (4.5).

The order of Af, A, is optimised such that the error in reconstruction of
the training signal is minimised.
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7. The steady state solution is used to obtain the initial solution, when ARX is
used for prediction.

8. The model is coupled to a structural solver and is used to predict aeroelas-
tic characteristics, such as flutter point is predicted by (4.23).

For other versions of the ARX solver, namely LPV-ARX and ARX with Gaussian
forcing, the primary steps remain the same as above, except with additional
terms.
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