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SUMMARY

The design of high-performing fluid and thermal devices is crucial for many aerospace
applications such as heat exchangers and flow manifolds. These systems often operate
under transient conditions, adding another layer of complexity to their design. Conven-
tional design principles have limitations as they depend on engineers to propose the
principal structure.

In this dissertation, topology optimization (TO) is investigated as a method to design
transient flow and thermal devices. To date, the use of TO for transient flow or thermal
problems remains limited to experts in the field. Performing successful optimization
heavily relies on the tuning of model and optimization parameters. By systematically
investigating and improving the algorithms, their parameters and their characteristics,
this thesis provides engineers with guidelines for their use.

For TO of flow problems, where fluid and solid are usually governed by the same
equation, the main challenge is the development of an appropriate approach to inhibit
flow in the solid. Penalization approaches are often used to sufficiently reduce the flow
in the solid, such that accurate flow solutions are found in the fluid. However, excessive
penalization can cause early convergence to inferior local optima. Therefore, a balance
between flow solution accuracy and design convergence has to be found. The models
used for TO of flow problems are investigated using the Volume-Averaged Navier-Stokes
(VANS) equations. This study shows that the commonly used Navier-Stokes with Darcy
Penalization (NSDP) equations are a simplification of the VANS equations.

To appropriately inhibit flow in the solid, an order analysis is performed on the mo-
mentum equations, such that the flow reduction in the solid can be predicted. When
using the Darcy penalization, a reliable prediction of the flow reduction is only possible
in areas where viscous forces are dominant. In areas with dominant inertial forces, the
Forchheimer penalization is needed. The novel Darcy with filtered Forchheimer penal-
ization, which relies on a filtered velocity field, is introduced. This new approach is able
to reliably find accurate flow solutions and predict the flow reduction in the solid.

Furthermore, two approaches are given to find accurate flow solutions without in-
creasing the tendency to converge to ill-performing local optima. Both approaches rely
on allowing for relatively large flow through porous areas in intermediate designs, while
strongly inhibiting the flow in solid areas in converged designs. When larger flow mag-
nitudes are allowed in porous areas, the flow solution is inaccurate but large design
changes are observed, conversely, when flow is significantly inhibited in solid areas, the
flow solution is accurate yet only small design changes are observed. The first approach
relies on the pressure penalization, which has a negligible effect on the flow reduction
in gray areas with intermediate design variables. In converged solid areas, the pressure
penalization reduces the effect of the pressure gradient on the flow, leading to improved
flow reduction. The second approach is a continuation on the flow penalization. A low
penalization with large flow through solid areas is used in the earlier stages of optimiza-
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vi SUMMARY

tion, while a large penalization with accurate flow is used in the later stages. The contin-
uation approach is made possible by the reliable and problem-independent prediction
of the flow reduction, which is used to define appropriate penalization magnitudes for
large/low flow reduction.

Lastly, for TO of transient problems, the sensitivity computation may have pro-
hibitively large memory requirements. To tackle this issue, we analyze two state-of-
the-art algorithms. The Checkpointing algorithm reduces memory requirements while
increasing the computational cost, and the Local-in-Time algorithm reduces memory
requirements while introducing sensitivity errors, but does not increase the computa-
tional cost. To achieve a better balance between computational cost and sensitivity er-
rors, a hybrid Checkpointing/Local-in-Time algorithm is proposed. To further reduce
the computational time, the Parallel-Local-in-Time algorithm is proposed to parallelize
computations in the temporal instead of the spatial domain. Finally, guidelines are given
to select an appropriate algorithm and find a good compromise between memory re-
quirements, computational cost, and sensitivity errors.

By analyzing approaches for TO of transient flow or thermal problems in detail, and
providing new methods and guidelines, this thesis contributes to improving the ease of
use of TO. Moreover, the presented approaches are expected to extend to TO problems
involving other types of physics.



SAMENVATTING

Het ontwerp van vloeistof- en thermische apparaten is van belang voor veel lucht- en
ruimtevaarttoepassingen, zoals warmtewisselaars en stromingssystemen. Deze syste-
men werken vaak onder transiënte omstandigheden, wat een extra laag complexiteit
toevoegt aan hun ontwerp. Conventionele ontwerpprincipes hebben beperkingen, aan-
gezien ze afhankelijk zijn van een ingenieur om het basisconcept te bepalen.

In dit proefschrift wordt topologie-optimalisatie (TO) onderzocht als een methode
voor het ontwerpen van transiënte stroming en thermische apparaten. Tot nu toe ge-
bruiken alleen experts TO voor transiënte (warmte)stromingsproblemen. Het succesvol
uitvoeren van optimalisatie is sterk afhankelijk van de afstelling van algoritmische para-
meters. Door de algoritmen, hun parameters en hun kenmerken systematisch te onder-
zoeken, biedt dit proefschrift richtlijnen voor het gebruik van de algoritmen.

Voor TO van stromingsproblemen, waar de vloeistof en het vaste materiaal vaak met
dezelfde vergelijking worden beschreven, is de belangrijkste uitdaging het ontwikkelen
van een geschikt model dat stroming in het vaste materiaal verhindert. Penalisatie-
technieken worden vaak gebruikt om de stroming in het vaste materiaal voldoende te
verhinderen, zodat nauwkeurige stromingsoplossingen in de vloeistof worden gevon-
den. Overmatige penalisatie kan echter leiden tot convergentie naar inferieure lokale
optima. Daarom moet een balans worden gevonden tussen de nauwkeurigheid van
de stromingsoplossing en de ontwerpconvergentie. De modellen voor TO van stro-
mingsproblemen worden onderzocht met behulp van de volume-gemiddelde Navier-
Stokes (VANS) vergelijkingen. Deze studie toont aan dat de veelgebruikte Navier-Stokes
met Darcy-Penalisatie (NSDP) vergelijkingen een vereenvoudiging zijn van de VANS-
vergelijkingen.

Om de stroming in het vaste materiaal op een gepaste manier te verhinderen wordt
een orde-analyse uitgevoerd op de momentum vergelijkingen, zodat de stromingsre-
ductie in het vaste materiaal kan worden voorspeld. Met alleen de Darcy-penalisatie
is een betrouwbare voorspelling van de stromingsreductie alleen mogelijk in gebieden
waar viskeuze krachten dominant zijn. In gebieden met dominante inertiële krachten
is de Forchheimer-penalisatie nodig. De nieuwe Darcy met gefilterde Forchheimer-
penalisatie, die afhankelijk is van een gefilterd stromingsveld, wordt geïntroduceerd.
Deze nieuwe benadering is in staat om betrouwbaar stromingsoplossingen te vinden,
en de stromingsreductie in het vaste materiaal te voorspellen.

Daarnaast worden twee technieken gepresenteerd om nauwkeurige stromingsoplos-
singen te vinden zonder dat de neiging om naar inferieure lokale optima te convergeren
vergroot wordt. Beide technieken zijn gebaseerd op relatief grote stroming door poreuze
gebieden in tussentijdse ontwerpen, terwijl de stroming in het vaste materiaal in ge-
convergeerde ontwerpen sterk wordt verhinderd. Wanneer veel stroming door poreuze
gebieden wordt toegestaan is de stromingsoplossing onnauwkeurig, maar verandert het
ontwerp gemakkelijk. Wanneer de stroming in het vaste materiaal aanzienlijk wordt ver-
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hinderd is de stromingsoplossing nauwkeurig, maar verandert het ontwerp niet gemak-
kelijk. De eerste techniek bereikt dit met behulp van een verminderde drukgradiënt, die
een verwaarloosbare bijdrage levert in grijze gebieden, terwijl de invloed van de drukgra-
diënt op de stroming in het vaste domein wordt verminderd. De tweede techniek is een
geleidelijk toenemende stromingspenalisatie: aan het begin van de optimalisatie wordt
weinig penalisatie met veel stroming door het vaste materiaal gebruikt, en aan het einde
een hoge penalisatie met nauwkeurige stromingsoplossing. Deze techniek wordt mo-
gelijk gemaakt door de betrouwbare en probleem-onafhankelijke voorspelling van stro-
mingsreductie, die wordt gebruikt om de penalisatiehoogte te definiëren voor hoge/lage
stromingsreductie.

Tot slot kunnen in TO van transiënte problemen de berekening van afgeleiden lei-
den tot belemmerend grote geheugeneisen. Om dit probleem aan te pakken analyseren
we twee state-of-the-art algoritmen. Het Checkpointing-algoritme vermindert de ge-
heugenbehoefte terwijl het de rekenkosten verhoogt, en het Local-in-Time-algoritme
vermindert de geheugeneisen terwijl het fouten in de afgeleiden introduceert, maar
de rekenkosten niet verhoogt. Om een beter evenwicht te bereiken tussen rekenkos-
ten en nauwkeurigheid van de afgeleiden, wordt een hybride Checkpointing/Local-in-
Time-algoritme voorgesteld. Om de rekentijd verder te verminderen, wordt het Parallel-
Local-in-Time-algoritme voorgesteld om berekeningen in het temporele in plaats van
het ruimtelijke domein te parallelliseren. Ten slotte worden richtlijnen gegeven om een
geschikt algoritme te selecteren en een goed evenwicht te vinden tussen geheugenbe-
hoefte, rekenkosten en nauwkeurigheid van de afgeleiden.

Door de methodes voor TO van transiënte (warmte)stromingsproblemen in detail te
analyseren en nieuwe methoden en richtlijnen aan te bieden, draagt dit proefschrift bij
aan de verbetering van het gebruiksgemak van TO. De verwachting is bovendien dat de
gepresenteerde benaderingen uitbreidbaar zijn naar TO-problemen waar andere soor-
ten fysica een rol spelen.
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1
INTRODUCTION

1.1. BACKGROUND
Flow and thermal phenomena play an important role in many engineering problems
found in aerospace applications. For instance, electrification of planes is presently an
important research direction for the reduction of carbon emissions in aviation indus-
try. During takeoff high electric loads cause significant heat generation in batteries and
well-designed heat exchangers are required to cool the system. Additionally, the heat
generation during takeoff is of a sudden nature and transient effects have to be taken
into account in designing an appropriate cooling system. Other examples are the aero-
dynamic heat generation in space vehicles during reentry, or drag minimization and lift
maximization of flying objects. Moreover, since additional weight also increases the en-
ergy required for aerospace vehicles to ascend, all these thermal and flow systems should
add a minimum amount of weight. In an industry as large as aerospace, it is of impor-
tance to find high-performing solutions to such transient fluidic and thermal problems.

Basic design principles for transient fluidic and thermal problems often suffice, but
have their limitations. The most common types of heat exchangers and heat sinks such
as double-pipe, shell-and-tube, plate heat exchangers, and pin or finned heat sinks are
easy and cheap to manufacture but show relatively low performance. Increasing the
performance is often done through sizing or shape optimization. Shape optimization is
also extensively used in designing airfoils for maximum lift and minimum drag. These
approaches are limited as they can only find the optimal shape for a given design. Al-
though these methods are useful, they are not able to generate novel design concepts
which remains the sole domain of the human engineer.

1.2. RESEARCH CHALLENGES
To improve the performance of transient fluidic and thermal devices and create inno-
vative designs, novel approaches are required. A well-known high-performing approach
to generate designs is density-based topology optimization (TO) (Bendsøe & Sigmund,
2004). Using TO, an optimal material distribution within a design domain can be deter-
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mined numerically, often leading to non-intuitive high-performance devices. Originally,
TO was introduced to design lightweight but stiff structures. However, the applications
of TO have branched out into many other fields, as shown by the review papers on fluid
flow TO by Alexandersen and Andreasen (2020) and on TO for heat transfer by Dbouk
(2017). TO is thus a promising tool for designing novel devices for transient fluidic and
thermal problems.

Although TO shows a lot of potential, its practical use in industry remains relatively
rare. In the author’s opinion, setting up the model and algorithm appropriately is one
of the major challenges of current methods for TO. Before a structure can be success-
fully optimized, model and optimization parameters often need to be tuned. First, the
engineer has to select interpolation functions for the material parameters and filters to
regularize the design. Secondly, the engineer selects appropriate parameters to control
the shape of these functions and filters. Parameters are often subject to continuation
approaches which ensure design flexibility in earlier stages of the optimization proce-
dure, and a crisp solid/fluid design in later stages. The tuning of these parameters and
strategies is often a time intensive process, that relies heavily on the experience of the
engineer. To spread the usage of TO, it is important to provide informed guidelines on
how to approach transient thermal and flow problems, and to develop formulations that
allow for a predictable, systematic approach.

Some areas of transient thermal and fluid TO remain underdeveloped. For density-
based TO of flow problems, the accuracy of the flow solution and numerical stability of
the optimization algorithm are often conflicting (Kreissl & Maute, 2012). Reliable models
which balance these properties are needed to find optimal topologies. Moreover, when
Reynolds numbers increase and inertia becomes dominant, finding reliable parameter
settings for flow TO becomes even more challenging. Although many real-life problems
are time dependent, transient TO is scarcely addressed for flow problems (Alexander-
sen & Andreasen, 2020). There are two main reasons behind the scarcity of work on this
topic. Firstly, frameworks for static TO are not readily extended to transient TO (Kris-
tiansen & Aage, 2022). Secondly, sensitivity analysis for transient TO drastically increases
time and memory requirements, which can be reduced to some extent using specialized
algorithms (Griewank, 1992; Yamaleev et al., 2010). However, reducing memory require-
ments comes at the cost of increased computational time or introducing errors in the
optimization procedure.

1.3. RESEARCH AIMS
The main goals of this thesis revolve around the aforementioned challenges in density-
based TO of transient flow or thermal problems. We address three specific obstacles that
hinder the use of TO for aerospace problems, and aim to:

• Improve the understanding of flow models for density-based TO: To improve
their usability, we examine models for solid/fluid TO in Chapter 2. The aim is to
derive a generalized model based on the Volume Averaged Navier-Stokes (VANS)
equations for porous flow, and inspect its adaptation for solid/fluid TO. In fact,
most common models used in density-based TO constitute a simplification of the
VANS model. By investigating the VANS model, we find new insight into its use for
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solid/fluid TO, which can be leveraged for our second aim.

• Construct a reliable approach for density-based TO of flow problems: Parameter
tuning is often a time consuming task in TO of flow problems. We aim to provide
users with an intuitive and informed parameter selection and continuation strat-
egy in Chapters 2 and 3. The strategy should be less likely to converge to inferior
local optima than the state of the art, while maintaining accuracy of the solution.
Moreover, the approach in Chapter 3 should be reliable for both viscous and iner-
tia dominated flows.

• Balance time and memory requirements in TO of transient thermal and flow
problems. Reducing memory requirements in TO of transient problems comes at
the cost of increased computational time or errors in the optimization procedure.
To find a trade-off, three state-of-the-art methods, and their extension into two
novel approaches, are investigated in Chapter 4. In one of the novel methods, we
parallelize by decomposing the time domain instead of the spatial domain. Se-
lecting the appropriate algorithm is problem dependent. We provide guidelines to
choose an appropriate algorithm for reducing time and/or memory requirements
in TO of transient problems.

Beside these specific contributions, we aim for this work to illustrate a more general
approach to reliably construct models for density-based TO. The approach should be
systematic and result in a predictable behavior of the optimization procedure. Moreover,
the approach should give insight into a TO problem, such that ease of use is improved.
In Chapter 5, we assess the achievement of the three challenges to improve the ease of
use, and reflect on the general approach presented in this work.





2
APPROACHES FOR LAMINAR FLOW

TOPOLOGY OPTIMIZATION
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In this chapter, methods to adapt the Navier-Stokes equations for TO
are critically examined. Volume averaging is used to construct a set of
flow equations for density-based TO. Insight is given into the balance
between model accuracy and optimization convergence behavior, re-
sulting in guidelines for appropriate parameter selection.

This chapter is based on the publication in Structural and Multidisciplinary Optimization 66(6), Theulings et
al. (2023).
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Towards improved porous models for
solid/fluid topology optimization
Abstract Modeling of fluid flows in density-based topology optimiza-
tion forms a longstanding challenge. Methods based on the Navier-
Stokes equations with Darcy penalization (NSDP equations) are widely
used in fluid topology optimization. These methods use porous materi-
als with low permeability to represent the solid domain. Consequently,
they suffer from flow leakage in certain areas. In this work, the gov-
erning equations for solid/fluid density-based topology optimization are
reevaluated and reinterpreted. The governing equations are constructed
using the volume averaged Navier-Stokes (VANS) equations, well known
in the field of porous flow modeling. Subsequently, we simplify, interpret
and discretize the VANS equations in the context of solid/fluid topology
optimization, and analytically derive lower bounds on the Darcy penal-
ization to sufficiently prevent flow leakage. Based on both the NSDP and
VANS equations, two flow solvers are constructed using the Finite Vol-
ume method. Their precision and the lower bound on the Darcy penal-
ization are investigated. Subsequently, the solvers are used to optimize
flow channels for minimal pressure drop, and the resulting designs and
convergence behavior are compared. The optimization procedure using
the VANS equations is found to show less tendency to converge to infe-
rior local optima for more precise flow solutions and is less sensitive to
its parameter selection.

2.1. INTRODUCTION
Optimization of flow related problems is a challenging yet highly relevant subject. Topol-
ogy optimization has been successfully applied to such problems as can be found in the
extensive literature survey by Alexandersen and Andreasen (2020). In fluidic topology
optimization, the two most popular approaches are density-based and level-set based
optimization. In the first work on density-based fluidic topology optimization by Bor-
rvall and Petersson (2003) the distinction between the fluid and solid parts of the design
domain is introduced using an inverse permeability. They optimize 2D channel flow
between two plates where in the solid domain the two plates are close to eachother, re-
sulting in low permeability and limited flow. Low permeability is modeled by adding
a high penalization on the flow. In the fluid domain the two plates are further apart,
permeability is high and only a low penalization on the flow is added. Design variables
control a penalization on the flow, and thus influencing permeability of the domain.
This approach leads to a set of governing equations that combines the Darcy flow prob-
lem with the Stokes equations and is only suitable for low Reynolds flow. Subsequently,
Gersborg-Hansen et al. (2005) extend this framework from Stokes to Navier-Stokes flow
by including inertia terms. Furthermore, they note that the reference to flow between
two plates can be dropped and replaced by flow through a porous medium modeled by
a Brinkman-type model (Brinkman, 1949). We will refer to the resulting set of equations
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as the Navier-Stokes equations with Darcy penalization (NSDP equations).

Kreissl and Maute (2012) found that density-based optimization using the NSDP
equations required specific stabilization procedures and solutions suffered from erro-
neous “pressure diffusion” trough the solid domains. Kreissl and Maute (2012) use pres-
sure diffusion to refer to pressure gradients in the solid domain which drive erroneous
flow in these domains. In this work we will refer to this effect as “flow leakage”, as we
will argue that fluid pressure gradients in the porous “solid” domain should be expected
and flow through this domain is representative of both flow and pressure field errors in
the fluid domain. As a solution to these density-based optimization problems, Kreissl
and Maute (2012) propose to use level-set based optimization using X-FEM. In contrast,
level-set based fluid optimization allows for crisp solid/fluid boundaries and rigorously
diminishes spurious flow through solid parts of the design domain. Provided, if com-
bined with a suitable modeling approach (Kreissl and Maute (2012) use X-FEM). There
is however no such thing as a free lunch as resulting designs may become more depen-
dent on the initial guess of the level-set function, as shown by Allaire et al. (2004). How-
ever, topological derivatives can be used to measure the effect of adding solid islands in
the fluid domains, alleviating the influence of the initial design on the optimum (Challis
& Guest, 2009; Guillaume & Idris, 2004). A disadvantage of current topological deriva-
tives is that only solid material can be added in the flow domain, but the effect of creat-
ing a channel between two separate flow domains cannot be assessed using topological
derivatives to the best of the authors’ knowledge. The pressure gradients and flow leak-
age in the solid design domain in density-based optimization can thus also be seen as an
advantage. They distribute sensitivities throughout the entire design domain and carry
information on the effect of creating a channel between two separate flow domains as
noted by Alexandersen and Andreasen (2020). However, similar to level set-based meth-
ods, density-based methods will also converge to local optima dependent on initial de-
sign and optimization parameters. Although the more restricted design modifications of
the level-set approach result in a stronger dependence on the initial design.

Methods which blend features of level set-based and density-based approaches are
proposed by H. Li et al. (2022), Picelli et al. (2022) and Behrou et al. (2019). To attain sen-
sitivity information in the solid domain H. Li et al. (2022) optimize a topology based on
a level set function while representing the solid domain as highly impermeable porous
material. They thus do not enforce no flow penetration through the solid/fluid inter-
face but inhibit solid domain flow using a penalization. The biggest advantage of this
method is the fact that a body-fitted mesh may be used to accurately capture surface
effects and no continuation approach is required for the flow penalization. However,
using the level set approach other optimization parameters are introduced which also
influence design convergence. Picelli et al. (2022) represent the topology using a crisp
interface and explicitly prescribe no-penetration conditions on the solid/fluid interface
such that no flow is present in the solid domain. Moreover, sensitivities in the fluid do-
main are computed by assuming porous material and a flow penalization may be intro-
duced in the fluid domain (but in practice porous regions are not present in the flow
computation). Subsequently, spatial filtering is used to populate the solid regions with
sensitivities. However, the extrapolation of sensitivities into the solid regions is depen-
dent on a spatial filtering radius and therefore parts of the solid domain will not contain
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any sensitivities. Similarly, Behrou et al. (2019) use a density based model and remove
flow in the solid domain by adaptive removal/addition of elements with a density below
a certain threshold value. Both these last two methods have the additional advantage
of reducing the computational cost of solving the physics. However, a disadvantage of
these methods is that sensitivity information is also removed in the large solid areas.
Consequently, the effect of adding channels in solid domains cannot be measured, cre-
ating difficulties for the optimizer to add these kind of design features. Both level-set and
density-based flow optimization thus have their advantages and disadvantages. In this
paper we use density-based fluidic topology optimization as we prefer its natural ability
to add islands to the fluid domain and create channels in the solid domain. Furthermore,
we aim to improve the flow model such that errors caused by flow leakage are reduced.

Several authors have already studied variations on the porous flow model to increase
its precision and reduce flow leakage. A mixed formulation of the Darcy-Stokes equa-
tions is implemented by Guest and Prévost (2006), and they note the similarity between
their flow model and the Brinkman equation for flow through multiple scale porous me-
dia. Contrary to Borrvall and Petersson (2003) who find some intermediate density ele-
ments at the solid/fluid boundaries of their optimal designs due to a density filter which
is applied to prevent convergence to inferior local optima, Guest and Prévost (2006) find
crisp solid/fluid optimal designs. They argue that their methods automatically converge
to discrete valued designs and apply a continuation strategy on the maximum flow pe-
nalization and a procedure of smoothing/projecting the design variables to prevent con-
vergence to inferior local optima. Furthermore, they note the possibility to use the new
method to optimize porous/fluid structures. However, the mixed Darcy-Stokes equa-
tions only consider Stokes flow in the fluid domain and do not include the inertial ef-
fects in the Navier-Stokes equations. Philippi and Jin (2015) and Alonso and Silva (2022)
extend the standard NSDP equations by including a Forchheimer permeability tensor
besides the Darcy penalization to penalize flows. The Forchheimer permeability tensor,
derived in detail by Whitaker (1996), adds a porous drag at higher Reynolds numbers
which scales quadratically with flow velocities. Alonso and Silva (2022) found improved
designs when the Forchheimer tensor was included.

Further extensions to the NSDP equations can be found in the optimization of per-
meable microstructures. Governing equations in these optimizations allow for flow
through the porous domain and are interesting to investigate from the perspective of
solid/fluid optimization where the porous domain approaches a solid. A unit cell within
a larger periodic porous medium is optimized in micro scale using a standard Brinkman
type model by Guest and Prévost (2007). Subsequently, a more refined Darcy penaliza-
tion is computed for the NSDP equations using homogenization techniques similar to
the techniques which will be used in this work. Takezawa et al. (2020) extend this work by
also computing the Forchheimer permeability tensor. Furthermore, Michaël et al. (2020)
use the method of volume averaging to derive state equations for the modeling and opti-
mization of spatially varying porous media. Volume averaging is a well-known technique
in the field of flow modeling, used to construct refined porous flow models. Moreover,
by including a high flow penalization in the porous domain, distinct solid/fluid designs
are found in the results computed by Michaël et al. (2020). Extended and more accurate
porous flow models have thus been investigated in the context of topology optimization.
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However, these techniques have not been applied to the construction and interpretation
of flow models particularly for solid/fluid topology optimization.

In most previous topology optimization studies, porous flow models based on the
Darcy or Brinkman equations were used to define solid/fluid parts in the design do-
main. Robustly decreasing flow leakage and finding correct interpolation functions for
material properties remains a challenge in fluidic topology optimization (Alexandersen
& Andreasen, 2020). However, as discussed in the previous paragraphs, more extensive
porous flow models exist and can be used in topology optimization (Alonso & Silva, 2022;
Michaël et al., 2020). To improve robustness of the optimization procedure and gain a
better understanding of the equations for fluidic topology optimization, we approach
the porous flow model from a more general viewpoint. An extended set of governing
equations is investigated which we interpret and discretize specifically for solid/fluid
topology optimization. Particularly, we will use the concept of volume averaging to
derive the volume averaged Navier-Stokes (VANS) equations following Whitaker (1969,
1996). By closely examining and interpreting the VANS equations, we aim to improve
two of the challenges set by Alexandersen and Andreasen (2020): improve “precision of
solution and/or optimality”, improve “parameter robustness and algorithmic stability”.

In topology optimization we want to divide a design domain into a fluid and solid
(impermeable porous) part using a single set of continuous governing equations to rep-
resent the flow everywhere within the design domain. The governing set of equations
should thus be able to accurately capture both flow near the solid/fluid interface as well
as in the solid and fluid domains. Accurately modeling of flows near porous/fluid in-
terfaces has long been a subject of research, and is relevant for optimized flow struc-
tures where the porous/fluid interface represents a solid/fluid interface. A boundary
condition was proposed by Beavers and Joseph (1967) to account for a jump in stress
at the interface and to couple the Stokes to Poiseuille flow in a porous/fluid chan-
nel. Ochoa-Tapia and Whitaker (1995) propose a momentum jump condition for the
interface based on the VANS equations to couple the Brinkman flow model to the
Stokes flow model. Many authors discussed the nature of the jump in stress at the
porous/fluid interface, continuity of stress, velocity and pressure, and appropriate gov-
erning equations/boundary condition (Goyeau et al., 2003; Nield, 1991; Vafai & Kim,
1995; Valdés-Parada et al., 2007). More recent studies by Breugem and Boersma (2005)
and Hernandez-Rodriguez et al. (2022) compared pore scale simulations with volume
averaged simulations and found matching results when the VANS equations were used.
Furthermore, Hernandez-Rodriguez et al. (2022) confirm the necessity to include the
Brinkman corrections to accurately model flow at the porous/fluid interface. In this work
we will draw inspiration from these papers to be able to accurately capture stresses at the
solid/fluid interface, and use volume averaged equations to improve solution precision.

Summarizing, the main contributions of this paper are the following:

1. For a solid/fluid topology optimization problem a refined flow model is con-
structed by investigating the limit case of the VANS equations where porous mate-
rial represents a solid. This method improves design convergence for optima with
similarly precise flow solutions as optima obtained using the NSDP equations.

2. Lower bounds on the Darcy penalization will be derived analytically such that flow
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leakage in the solid domain is limited, improving parameter robustness of the op-
timization problem.

This paper is structured as follows: Section 2.2 gives an introduction to volume averaging
techniques for self-containedness, shows the VANS equations and compares them to the
standard NSDP equations. Section 2.3 presents the discretization of the VANS equations,
and the interpolation function used to dicretize the Darcy penalization. Subsequently,
we derive lower bounds on the Darcy penalization in Section 2.4, and make an a priori
estimation of flow leakage. In Section 2.5 the optimization problem and a method for
adjoint sensitivity computations are presented. In Section 2.6 we compare precision of
the flow solution based on the VANS and NSDP equations for a range of Darcy penaliza-
tions and Reynolds numbers. Section 2.7 performs structural optimization using both
the VANS and NSDP equations and compares the resulting structures in terms of preci-
sion and objective. Finally, in Section 2.8, we draw conclusions on the use of the VANS
equations for topology optimization and identify subjects for further research.

2.2. THE VOLUME AVERAGED NAVIER-STOKES EQUATIONS
In this section a recap of the derivation of the VANS equations following Ochoa-Tapia
and Whitaker (1995) and Whitaker (1996) is given, such that we are able to appropriately
implement them in topology optimization. Subsequently, the limits of the VANS equa-
tions and their suitability for solid/fluid optimization are investigated. Moreover, the
VANS equations are simplified and used to derive the NSDP equations.

2.2.1. A SHORT INTRODUCTION TO THE VOLUME AVERAGE
The aim of fluidic topology optimization is to divide design domain Ω into a solid and
a fluid domain such that an optimal material layout is found for a certain objective and
set of constraints. For density-based solid/fluid optimization, we simulate the solid do-
main as an impermeable porous domain and simulate flow using the VANS equations.
The concept of a volume average is introduced using the porous and fluid domains Ωp

andΩ f respectively, as shown in Figure 2.1. The domains have interface Γ f p =Ω f ∩Ωp ,

where □ denotes the closure of a domain. For each xxx an averaging domain Ωa is de-
fined as depicted in Figure 2.2. The averaging domain is centered around xxx where vector
yyy points to locations within the averaging domain. Furthermore, it has volume V and
contains solid β and fluid φ. Consequently, the domain can be split into its fluid part
(Ωφ with volume Vφ) and solid part (Ωβ with volume Vβ) asΩa =Ωφ∪Ωβ, and the inter-

face between these domains is defined as Γφβ =Ωφ∩Ωβ. To find the average of property

Ψ in fluid phase φ at coordinates xxx the intrinsic (〈Ψ〉iφ
xxx ) and superficial (〈Ψ〉sφ

xxx ) volume
averages are defined as:

〈Ψ〉iφ = 1

Vφ

∫
Ωφ

Ψ(xxx + yyy)dΩ, 〈Ψ〉sφ = 1

V

∫
Ωφ

Ψ(xxx + yyy)dΩ, (2.1)

where yyy is used to integrate over fluid domainΩφ centered around xxx. Both the intrinsic
and superficial averages are thus field quantities dependent on coordinate xxx, for con-
venience the subscript xxx is omitted in the remainder of this work. Using the superficial
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u

Γ f p

u → 0

Ω f

Ωp

x

y xxx
Ωa

Figure 2.1: Design domain Ω divided into a fluid domain Ω f and a porous domain Ωp , both domains are

connected at boundary Γ f p =Ω f ∩Ωp . Centered around all xxx an averaging domainΩa is defined as illustrated
in Figure 2.2.

x

y

xxx
lφ

Ωa

β : Ωβ

nnnφ

φ : Ωφ

yyy

2r0

Γφβ

Figure 2.2: An averaging volume centered around xxx, containing solid phase β and fluid phaseφ. The averaging
domainΩa can be divided into two parts asΩa =Ωφ∪Ωβ, where the interface between the two parts is Γφβ =
Ωφ ∪Ωβ at which a normal nnnφ is defined pointing to phase β. The porous microstructure has characteristic
length lφ, and the averaging domain has characteristic length r0. Vector yyy is used to integrate over an averaging
domain fixed at location xxx.
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volume average the volume fraction of phase φ is defined as:

αφ = 〈1〉sφ = 1

V

∫
Ωφ

1dΩ= Vφ
V

, (2.2)

which is used to relate the two averages as 〈Ψ〉sφ =αφ〈Ψ〉iφ. The difference in interpre-
tation between the superficial and intrinsic averages can be explained using the volume
fraction. The superficial average represents the bulk average and should generally con-
verge to zero as αφ→ 0, whereas the intrinsic average represents the pore scale average
within the fluid domain and does not necessarily converge to zero as αφ→ 0. For exam-
ple, if within a certain averaging volume the fluid has constant pressure p = pc and the
volume fraction approaches zero, the intrinsic average will be 〈p〉iφ = pc , but the super-
ficial average will also approach zero 〈p〉sφ =αφ〈p〉iφ→ 0.

Subsequently, some useful mathematical relations are defined. The volume average
of a gradient can be simplified using the averaging theorem (Howes & Whitaker, 1985):

〈∇Ψ〉sφ =∇〈Ψ〉sφ+ 1

V

∫
Γφβ

ΨnnnφdΓφβ, (2.3)

where Γφβ is the interface between phases φ and β withinΩa and nnnφ is the unit normal
pointing outward of phase φ on this interface, as shown in Figure 2.2. Moreover, the
averaging theorem in combination with the definition of the volume fraction can be used
to prove that:

∇αφ =− 1

V

∫
Γφβ

nnnφdΓφβ. (2.4)

Finally, we assume that fluid field quantities can be split into their averaged and a devi-
ational part as:

Ψ= 〈Ψ〉iφ+ Ψ̃, (2.5)

where Ψ̃ is the deviation from the average which is small compared to 〈Ψ〉iφ. Further-
more, for the averages we assume that:

〈〈Ψ〉iφ〉iφ = 〈Ψ〉iφ,

〈〈Ψ〉iφ〉sφ = 〈1〉sφ〈Ψ〉iφ =αφ〈Ψ〉iφ.
(2.6)

For these approximations to be valid for the pressure or velocity of a fluid, separation of
scales is required (Whitaker, 1969). If lφ and r0 are the characteristic length of the porous
microstructure and averaging volume, respectively, as shown in Figure 2.2, separation of
scales for quantityΨ requires that:

lφ≪ r0 ≪ LΨ, (2.7)

where LΨ is a characteristic length of propertyΨ defined by:

O

(
∂2〈Ψ〉iφ

∂xi∂x j

)
=O

(
〈Ψ〉iφ

L2
Ψ

)
. (2.8)
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These conditions ensure that Equation 2.6 holds and may furthermore be used to define
the average of the deviation as:

〈Ψ̃〉iφ = 0. (2.9)

Using these tools and properties, the VANS equations can be defined in a meaningful
manner, where only relatively simple closure relations are required to solve the result-
ing equations. We furthermore note that the introduced concepts for volume averaging
show many similarities with the homogenization concepts for topology optimization by
Hassani and Hinton (1998), and the averaging concepts for turbulent flow as shown by
Alfonsi (2009).

2.2.2. DERIVATION OF THE VANS EQUATIONS
In this section, the general VANS equations are presented, such that they can be inter-
preted and simplified for topology optimization in the coming sections. Whitaker (1996)
and Ochoa-Tapia and Whitaker (1995) derive the VANS equations starting from the in-
compressible Navier-Stokes equations, consisting of the continuity equation and mo-
mentum equations respectively:

∇·vvv = 0,

ρ

(
∂vvv

∂t
+vvv ·∇vvv

)
=−∇p +µ∇2vvv,

(2.10)

where ρ and µ are the density and kinematic viscosity, p the fluid pressure and vvv⊺ =
[u, v, w] is the velocity field where u, v, w are the velocities in Cartesian coordinate di-
rections x, y, z, respectively. Subsequently, the VANS equations are derived by taking
the superficial volume average of the Navier-Stokes equations:

〈∇ ·vvv〉sφ = 〈0〉sφ = 0,

〈ρ
(
∂vvv

∂t
+vvv ·∇vvv

)
〉sφ = 〈−∇p +µ∇2vvv〉sφ.

(2.11)

A derivation of the averaged continuity equation is found in (Ochoa-Tapia & Whitaker,
1995) and shown in Appendix 2.A, resulting in:

∇· 〈vvv〉sφ = 0. (2.12)

The superficial velocity field is thus solenoidal and is divergence-free in contrast to the
intrinsic velocity field which has to satisfy:

∇· 〈vvv〉sφ =∇·
(
αφ〈vvv〉iφ

)
=∇·〈vvv〉iφαφ+〈vvv〉iφ ·∇αφ = 0, (2.13)

where we used the relation between superficial and intrinsic averages 〈vvv〉sφ =αφ〈vvv〉iφ.
We prefer to solve for the superficial flow field as this will simplify the required solution
procedure. Subsequently, we focus our attention on the averaging of the more complex
momentum equations. For the derivation of the left-hand side of the averaged momen-
tum equation we refer the reader to (Whitaker, 1996), and for the derivation of the right-
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hand side we refer to (Ochoa-Tapia & Whitaker, 1995), resulting in:

ρ

(
∂〈vvv〉sφ

∂t
+〈vvv〉sφ ·∇〈vvv〉sφ

αφ
+∇·〈ṽvvṽvv〉sφ

)
=−αφ∇〈p〉iφ+µ∇2〈vvv〉sφ−µ∇αφ ·∇〈vvv〉sφ

αφ
+ 1

V

∫
Γφβ

(−p̃ +µ∇ṽvv
) ·nnnφdΓφβ,

(2.14)

where separation of scales is already used to simplify the equations. Whereas the su-
perficial flow average is used, the VANS equations use the intrinsic pressure average for
reasons explained in Section 2.2.3. For the interested reader, an example of the deriva-
tion of the averaged continuity equation and viscous forces is given in Appendix 2.A. In
the coming section, an interpretation and simplification of the VANS equations will be
given. The simplification and interpretation will follow results from literature, and are
aimed at building a better understanding of the VANS equations in the context of topol-
ogy optimization.

2.2.3. INTERPRETATION OF THE VANS EQUATIONS FOR SOLID/FLUID

TOPOLOGY OPTIMIZATION
The VANS equations have many terms which have different physical origins. Closely
inspecting these terms helps in using the VANS equations for topology optimization.
Firstly, we focus on terms containing deviational velocities (ṽvv) and pressures (p̃), as we do
not want to solve for them and want to remove them from the equations. The boundary
integral in Equation 2.14 is investigated:

1

V

∫
Γφβ

(−p̃ +µ∇ṽvv
) ·nnnφdΓφβ. (2.15)

In (Whitaker, 1996) this term is referred to as the surface filter, as it filters information
from the microscale solid/fluid interface to the averaged scale. To form a closure relation
to interpret this term, Whitaker (1996) notes that at interface Γφβ the velocity vvv = 〈vvv〉iφ+
ṽvv =000 and thus:

ṽvv =−〈vvv〉iφ at Γφβ. (2.16)

Subsequently, Whitaker (1996) uses this idea to construct a relation between the devia-
tional and averaged quantities:

p̃ =µmmm · 〈vvv〉iφ,

ṽvv =MMM〈vvv〉iφ,
(2.17)

where mmm and MMM are a vector and matrix respectively, used to relate averaged to devia-
tional quantities and close the VANS equations. By inserting these approximations in
the surface filter, it may be simplified as:

1

V

∫
Γφβ

(−p̃ +µ∇ṽvv
) ·nnnφdΓφβ

= µ

V

∫
Γφβ

(−mmm +∇·MMM)nnn⊺
φ

dΓφβ · 〈vvv〉iφ =−µKKK 〈vvv〉iφ =−µκIII
〈vvv〉sφ

αφ
,

(2.18)



2.2. THE VOLUME AVERAGED NAVIER-STOKES EQUATIONS

2

15

where the intrinsically averaged velocity is substituted with the superficially averaged
velocity. Whitaker (1996) goes into great detail to define KKK , but for the purpose of this
work we recognize it as the Darcy’s law permeability tensor. Furthermore, the perme-
ability tensor is simplified as KKK = κIII by assuming isotropy of the porous medium and
the tensor is recognized as the penalization used in the NSDP equations for topology
optimization to inhibit flow through solid domains. Moreover, Whitaker (1996) defines
the order of magnitude for the Darcy permeability tensor as:

1

V

∫
Γφβ

(−mmm +∇·MMM)nnn⊺
φ

dΓφβ = κ=O

(
αφ

l 2
φ

)
+O

(
αφρ〈vvv〉iφ

µlφ

)
. (2.19)

Choosing the correct magnitude for κ, such that flow through the solid domain is inhib-
ited sufficiently in an optimization procedure, remains a challenge. However, in Section
2.4 an order analysis will be used to derive lower bounds on O (κ) which will result in
lower bounds of similar form as Equation 2.19.

Another interesting term in the momentum equation is the so called volume filter
(Whitaker, 1996):

ρ∇〈ṽvvṽvv〉sφ, (2.20)

which filters information from the flow on microscale to the macroscale. This is actually
similar to the Reynolds stress tensor used in the Reynolds Averaged Navier Stokes (RANS)
equations for turbulent flow modeling (Alfonsi, 2009). In this work we will neglect this
term as we assume the deviational velocities to be small, and remain within the laminar
flow regime:

ρ∇〈ṽvvṽvv〉sφ ≈ 0. (2.21)

Moreover, adding this term for RANS optimization might not be straightforward. In the
RANS equations velocity fluctuations ṽvv stem from local eddies which are filtered out via
a time average, whereas in the laminar VANS equations velocity fluctuations ṽvv stem from
flow interaction at the pore scale solid/fluid interface.

Subsequently, we investigate the viscous terms in the averaged momentum equa-
tions:

µ∇2〈vvv〉sφ−µ∇αφ ·∇〈vvv〉sφ

αφ
, (2.22)

where the first part is called the Brinkman correction and the second part the second
Brinkman correction (Brinkman, 1949; Ochoa-Tapia & Whitaker, 1995). In an optimized
solid/fluid design flow in “solid” porous regions is generally limited and ∇2〈vvv〉sφ → 0.
The Brinkman correction is thus mainly important in the fluid regions. In contrast, the
second Brinkman correction is mainly important in boundary regions where large gra-
dients in volume fraction ∇αφ are found. In solid/fluid topology optimization the aim is
to create crisp 0-1 designs where a porous “solid” region of low permeability (αφ→ 0) is
adjacent to a fluid region (αφ = 1). In the boundary regions the second Brinkman correc-
tion should thus be included. However, according to Whitaker (1986) a solid wall should
not be approximated using the second Brinkman correction as the length scale of the
averaging volume r0 becomes of the same order as the length scales of αφ and 〈vvv〉iφ and
we cannot adhere to the separation of scales. One of the solutions to this problem is to
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use a two domain approach in which separate governing equations are defined for the
homogeneous fluid and solid domains. Subsequently, these equations are coupled via
a jump condition on the solid/fluid interface concerning velocities and shear stresses
(Angot et al., 2017; Beavers & Joseph, 1967; Ochoa-Tapia & Whitaker, 1995). However,
Breugem and Boersma (2005) and Hernandez-Rodriguez et al. (2022) show that flow
along a porous wall can be accurately simulated using the VANS equations including the
second Brinkman correction by using a correct interpretation of the results and a cor-
rect definition of the permeability tensor. As we want to optimize the solid/fluid layout
within the design domain and do not know the solid/fluid domains a priori, we prefer to
use only the VANS equations and not use a two domain approach.

A physical interpretation of the second Brinkman correction for solid/fluid topol-
ogy optimization is given using Figure 2.3. In the derivation of the VANS equations in
Appendix 2.A the correction shows up as a simplification of a surface integral over the
microscale solid/fluid interface Γφβ:

µ

V

∫
Γφβ

∇〈vvv〉iφnnnφdΓ=−µ∇αφ ·∇〈vvv〉iφ =−µ∇αφ ·∇〈vvv〉sφ

αφ
. (2.23)

In Figure 2.3 we show an averaging volume on porous/fluid interface Γ f p where the
porous material approaches a solid lφ → 0. In the "solid" porous domain flow speeds
and gradients within the pores are negligible with respect to flow speeds within the fluid
domain. Within the averaging volume we may thus neglect the surface integral over
porous domain boundaries Γφβ \Γ f p and simplify the boundary integral as:

µ

V

∫
Γφβ

∇〈vvv〉iφnnnφdΓ= µ

V

∫
Γ f p∩Γφβ

∇〈vvv〉iφnnnφdΓ. (2.24)

Moreover, if the formulation is taken to its limits where the porous material is a solid and
lφ = 0, it is clear that Γφβ = Γ f p and Equation 2.24 holds. Furthermore, the momentum
equation (and its volume average) represent an equilibrium between mass flow acceler-
ation and stresses on an small domain of fluid. Subsequently, the boundary integral over
Γ f p ∩Γφβ is interpreted as an average of the viscous stresses (µ∇〈vvv〉iφ) on the solid/fluid
interface. Within the averaging domain, these stresses are supported by the solid ma-
terial at the interface. Supporting a part of these stresses by a rigid solid material thus
reduces mass flow acceleration and consequently flow. The second Brinkman correc-
tion thus represents the support of fluid domain viscous stresses by the solid material at
the porous/fluid interface. Moreover, if these fluid domain viscous stresses would not
be supported by the solid material, they would have to be be supported by the fluid in
the porous domain. The second Brinkman correction can thus be said to remove fluid
domain viscous forces from flow in the porous domain.

Subsequently, we interpret the inertial term on the left-hand side of Equation 2.14:

ρ〈vvv〉sφ ·∇〈vvv〉sφ

αφ
= 〈vvv〉sφ ·∇

(
ρ〈vvv〉iφ

)
, (2.25)

where we simplified 〈vvv〉sφ/αφ = 〈vvv〉iφ. The inertial term on the right-hand side repre-
sents the advection of microscale momentum ρ〈vvv〉iφ by bulk flow 〈vvv〉sφ. The supposed
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Figure 2.3: An illustration of the effect of the second Brinkman correction on porous/fluid interface Γ f p .
Within the pores flow magnitude is small with respect to flow magnitude in the fluid domain. Fluid domain
viscous forces are subsequently mainly supported by the solid material at Γ f p .

advantage of this term in topology optimization is illustrated on a converged solid/fluid
design. In topology optimization, the solid domain is defined by a low and constant vol-
ume fraction αφ =α≪ 1, resulting in:

ρ〈vvv〉sφ ·∇〈vvv〉sφ

αφ
= ρ

α
〈vvv〉sφ ·∇〈vvv〉sφ. (2.26)

Comparing the right-hand side of Equation 2.26 to the standard inertial term in the
Navier-Stokes equations ρvvv ·∇vvv (as in Equation 2.10), we notice that the density is di-
vided by α. The division by the volume fraction is interpreted as a scaling of density
in the solid domain ρs = ρ/α≫ ρ, where “density” thus increases relative to the fluid
domain where αφ = 1. As larger masses require higher forces to accelerate, this should
reduce flow in the solid domain. However, in Section 2.4 we will argue and in Section 2.6
we will find that the effect of this term on flow reduction is small when solid/fluid lami-
nar flow designs are evaluated. Nonetheless, we will keep this term in our optimization
model as the work by Alonso and Silva (2022) who added the Forchheimer penalization
besides the Darcy penalization suggests that a quadratic flow penalization improves de-
signs found at higher Reynolds numbers. In this sense, the inertia term is interpreted as
a quadratic flow penalization which passes information on inertial effects to the sensi-
tivities.

Finally, the new pressure term on the right-hand side of Equation 2.14 is interpreted:

−αφ∇〈p〉iφ. (2.27)

For the pressure field the intrinsic average is used, as the superficial pressure average
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(〈p〉iφ = 〈p〉sφ/αφ) leads to more complex equations:

−αφ∇〈p〉iφ =−αφ∇
( 〈p〉sφ

αφ

)
=−∇〈p〉sφ+ 〈p〉sφ

αφ
∇αφ. (2.28)

Furthermore, in the standard momentum equation (as shown in Equation 2.10), the
pressure gradient −∇p represents the volumetric pressure forces acting on a parcel of
fluid. However, in the VANS equations these forces are multiplied by the fluid volume
fraction −αφ∇〈p〉iφ. As the solid domain in topology optimization is defined as the do-
main whereαφ =α≪ 1, pressure forces on a fluid parcel in this domain are reduced and
α∇〈p〉iφ ≪ ∇〈p〉iφ. Consequently, flow leakage caused by large pressure gradients in
the solid domain is reduced. Moreover, if we assume that these pressure gradients are
the main cause of flow leakage, the pressure penalization directly inhibits these errors
in converged solid domains where αφ→ 0 while it does not add much penalization in
intermediate designs with a lot of “gray” material where αφ ≈ 0.5. In fact, the pressure
penalization will allow us to use a lower maximum Darcy penalization than the one re-
quired by the NSDP equations as will be shown in Section 2.6. The advantage of this
lowered penalization is that intermediate designs containing a lot of gray material will
be penalized less and the optimizer will be less restricted than when the NSDP equations
are used with a larger maximum penalization.

Implementing the simplifications in Equations 2.18 and 2.21, the VANS momentum
equation is simplified to:

ρ

(
∂〈vvv〉sφ

∂t
+〈vvv〉sφ ·∇〈vvv〉sφ

αφ

)
=−αφ∇〈p〉iφ+µ∇2〈vvv〉sφ−µ∇αφ ·∇〈vvv〉sφ

αφ
− µκ〈vvv〉sφ

αφ
, (2.29)

where we thus used superficial velocity averages and intrinsic pressure averages. Fur-
thermore, as might be obvious at this stage, we aim to use the VANS equations for topol-
ogy optimization where volume fraction αφ is used as a design variable.

2.2.4. COMPARISON TO STANDARD PRACTICE
The VANS equations show many similarities to the NSDP equations often used for fluid
topology optimization:

ρ

(
∂vvv

∂t
+vvv ·∇vvv

)
=−∇p +µ∇2vvv−µκvvv,

∇·vvv = 0,
(2.30)

where Darcy penalization κ is a function of the design variables. In the solid domain
flow is inhibited by setting a large κ resulting in a high flow penalization −µκvvv, while in
the fluid domain κ= 0 and Equation 2.30 collapses to the standard Navier-Stokes equa-
tion (Equation 2.10). If the NSDP equations are a simplification of the VANS equations,
we can deduce that superficial velocity averages are used in the NSDP equations as the
continuity equation is the same as the left-hand side of Equation 2.13. Differences be-
tween the VANS and NSDP equations are found in the momentum equations. Rewriting
the VANS (Equation 2.29) to the NSDP (Equation 2.30) equations can thus be done by
assuming the velocity and pressure in the NSDP equations to be the superficial and in-
trinsic averages respectively (〈vvv〉sφ =vvv, 〈p〉iφ = p), and:
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1. −�������: 0
µ∇αφ ·∇ 〈vvv〉sφ

αφ
= 0: The second Brinkman correction is not included in the

NSDP equations, and the support of fluid domain viscous stresses at the
solid/fluid interface is removed.

2. ρ〈vvv〉sφ ·∇ 〈vvv〉sφ

��>
1

αφ
= ρvvv ·∇vvv: Volume fraction αφ is removed from the inertia term, and

its flow leakage reducing effect as illustrated by Equation 2.26 and its influence on
the sensitivities are removed.

3. −��>
1

αφ ∇〈p〉iφ =∇〈p〉iφ: Flow leakage due to high pressure gradients in the solid
domain is worsened as the volume fraction is removed from the pressure term.

4. − µκ

��>
1

αφ
〈vvv〉sφ =µκvvv: In the Darcy penalization, the division by αφ is removed. How-

ever, in Section 2.3.1 we will show that using certain interpolation functions κ(αφ),
the Darcy penalization in the VANS and NSDP equations can be similar or the
same.

The NSDP equations are thus a simplification of the VANS equations where we hypothe-
size that the VANS equations will be able to more precisely describe flow in an optimized
solid/fluid topology. For the remainder of this work we will simplify notation by drop-
ping the brackets and superscripts from the averaged variables and assuming that vvv is
the superficial velocity average, p the intrinsic pressure average and α the fluid volume
fraction.

2.3. DISCRETIZATION OF THE VANS EQUATIONS
To use the VANS Equations in topology optimization, volume fractionα is used as design
variable. A well known method to solve and discretize computational fluid dynamics
(CFD) is the finite volume (FV) method, which is often preferred due to its natural ability
to conserve mass and momentum. As the topology optimization community originated
from the structural analysis community where the Finite Element Method (FEM) is the
standard, most fluidic optimization papers use FEM. However, the structured square
meshes often used in topology optimization are highly suited for discretization using
the FV method, and fast solution algorithms exist for these kind of problems.

2.3.1. DISCRETIZED MOMENTUM EQUATION
The VANS and NSDP equations are discretized using the FV method and solved using the
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm as described
by Versteeg and Malalasekera (2007). The NSDP equations are discretized following Ver-
steeg and Malalasekera (2007), with an exception for the Darcy penalization which is
discretized in Section 2.3.1. In this section we first show the VANS discretization as sev-
eral terms in the VANS equations are not standard in a CFD analysis. Furthermore, in
this work we only consider 2D problems where we neglected flow w in the z-direction.

The VANS equations are discretized on an equidistant staggered grid as shown in
Figure 2.4, where different control volumes are used for the continuity (p-control), u-
momentum and v-momentum equations. Subsequently, Equation 2.29 is split into u/v-



2

20 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

momentum equations as:

ρvvv ·∇u

α
=−αp,x +µ∇2u −µ∇α ·∇u

α
−µκu

α
,

ρvvv ·∇ v

α
=−αp,y +µ∇2v −µ∇α ·∇ v

α
−µκ v

α
,

(2.31)

where we assumed solutions to be static (∂u/∂t = ∂v/∂t = 0), and spatial derivatives are

∆x

∆y

v-control

p-control

u-control

α→ 0

Figure 2.4: The staggered equidistant grid used to discretize the VANS equations using the FV method. veloc-
ity DOFs (green arrows) are located at the cell faces, while pressure DOFs and design variables are located at
the cell centers (red dots). Design variables α are attached to the cell centers and represent a constant volume
fraction within the corresponding cell, as illustrated by the upper right cell which is solid and whereα→ 0. Dif-
ferent control volumes are defined for the u, v momentum equations, and the continuity (p) equation. At the
u-control volume all neighboring DOFS contributing to the momentum equation are depicted in Figure 2.5.

written as p,x = ∂p/∂x and p,y = ∂p/∂y . Only the discretization of the u-momentum
equations is described since the discretization of the v-momentum equation is analo-
gous. To discretize the u-momentum equation we use control volume (CV)Ωu , as shown
in Figure 2.5. The CV has boundary Γu =Ωu \Ωu = ΓN ∪ΓE ∪ΓS ∪ΓW , where the super-
scripts denote north, east, south and west boundaries. Design variables representing
volume fractions within the cells are attached to the red pressure nodes in Figure 2.5, we
however interpolate these variables on the north/south edges of the CV and at the center
of the CV (at DOF uP in Figure 2.5):

αC N = αE +αW +αN E +αNW

4
on ΓN ,

αC S = αE +αW +αSE +αSW

4
on ΓS ,

αP = αE +αW

2
at uP ,

(2.32)

where all design variables on the right-hand sides can be found in Figure 2.5. Further-
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uP

uN

ΓN

ΓS

uE

ΓE

uW

ΓW

uS

∆x

∆y
pE , αEpW , αW

αN EαNW

αSEαSW

v N Ev NW

vSEvSW

Figure 2.5: Control volumeΩu for the u-momentum equation. We denote the relevant DOFs and design vari-
abels with respect to the center DOF uP . The boundary of the control volume is divided into horizontal bound-
aries ΓN and ΓS with length ∆x, and vertical boundaries ΓE and ΓW with length ∆y .

more, v-velocities on the north/south edges are interpolated as:

v̄ N = v N E + v NW

2
on ΓN , v̄S = vSE + vSW

2
on ΓS . (2.33)

To discretize the u-momentum equation it is integrated over its control volume:∫
Ωu

ρvvv ·∇u

α
dΩ=

∫
Ωu

(
−αp,x +µ∇2u −µ∇α ·∇u

α
−µκu

α

)
dΩ. (2.34)

In the subsequent sections first the inertial pressure and viscous terms will be discretized
after which more attention is given to the second Brinkman correction and Darcy penal-
ization, finally the discretization is finished by discretizing the continuity equation.

DISCRETIZED INERTIAL, PRESSURE AND VISCOUS TERMS

The inertial term is discretized by applying the divergence theorem on the CV:∫
Ωu

ρvvv ·∇u

α
dΩ=

∫
Ωu

ρ∇·
(
vvv

u

α

)
dΩu = ρ

∫
Γu

vvv
u

α
·nnnudΓu , (2.35)

where we used the continuity equation (∇·vvv = 0) to rewrite vvv ·∇u
α =∇· (vvv u

α

)
and nnnu is

the unit normal pointing outward of Ωu on Γu . We discretize the inertial terms using
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approximations on the north, south and east, west boundaries, respectively:

∫
Γu

ρvvv
u

α
·nnnudΓu = ρ∆x

( ΓN︷ ︸︸ ︷
v̄ N uN +uP

2αC N
−

ΓS︷ ︸︸ ︷
v̄S uS +uP

2αC S

)
+ρ∆y

( ΓE︷ ︸︸ ︷
(uE +uP )2

4αE
−

ΓW︷ ︸︸ ︷
(uW +uP )2

4αW

)
,

(2.36)
where ∆x and ∆y are the horizontal and vertical lengths of the control volume as in
Figure 2.5. In the discretized term, intrinsic momentum ρu/α is advected through the
boundaries by superficial flow average vvv. If momentum is to be conserved, advection of
inertial momentum through a CV boundary should be consistent for all adjacent CV’s.
The intrinsic momentum ρu/α and superficial flow vvv on a certain boundary should thus
be the same for both elements adjacent to the boundary. As vvv and u are already interpo-
lated consistently for all elements on the boundaries, volume fractions αC N and αC S are
also interpolated consistently in Equation 2.32 at the north and south boundaries.

The pressure term is discretized by approximating the gradient in pressure and α at
the center of the CV:∫

Ωu

αp,x dΩu =∆x∆yαP pE −pW

∆x
=∆yαP (

pE −pW )
. (2.37)

To discretize the first Brinkman correction, the divergence theorem is used:∫
Ωu

µ∇2udΩ=µ
∫
Ωu

∇· (∇u)dΩ=µ
∫
Γu

∇u ·nnnudΓ. (2.38)

Subsequently, flow gradients are approximated on the north, south and east, west
boundaries as:

µ

∫
Γu

(∇u) ·nnnudΓ=µ∆x

( ΓN︷ ︸︸ ︷
uN −uP

∆y
−

ΓS︷ ︸︸ ︷
uP −uS

∆y

)
+µ∆y

( ΓE︷ ︸︸ ︷
uE −uP

∆x
−

ΓW︷ ︸︸ ︷
uP −uW

∆x

)
. (2.39)

Most of the discretization techniques used until this point are fairly common and can
be found in (Versteeg & Malalasekera, 2007). However, in most common methods fluid
volume fractionα is not included, and in its inclusion and interpolation we deviate from
most standard discrete CFD solvers.

SECOND BRINKMAN CORRECTION ON A WALL ORTHOGONAL TO THE FLOW

Special attention is given to the second Brinkman correction as it is not common in a
standard FV discretization. The second Brinkman correction in Equation 2.22 depends
on the gradient in volume fraction∇α, and is used to support fluid domain viscous forces
as explained in Section 2.2.3. The second Brinkman correction is investigated for a con-
verged design where there are distinct regions of solid (α→ 0) and fluid (α= 1) mate-
rial. In such a solid/fluid design, the gradient ∇α = [α,x α,y ]⊺ is only present on the
porous/fluid interface (the solid wall), and is a vector normal to the interface pointing to
the fluid domain. The two parts of the gradient α,x and α,y are investigated separately.
In fact, the case where only α,y = 0 represents a vertical wall orthogonal to u as shown
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in Figure 2.6, and the case where only α,x = 0 represents a horizontal wall parallel to u
as shown in Figure 2.7. The correction is thus split into a vertical and horizontal compo-
nent:

B2 =−µ
∫
Ωu

∇α ·∇u

α
dΩ=−µ

∫
Ωu

(
α,x

( u

α

)
,x
+α,y

( u

α

)
,y

)
dΩ. (2.40)

Firstly, the correction is constructed for the vertical wall in Figure 2.6, orthogonal to

uP
uEuW

αE = 1αW → 0

Figure 2.6: The relevant DOFs and design variables for the discretization of the second Brinkman correction in
the CV for uP . In this example, the elements to the left are solid (αW → 0), the elements to the right are fluid
(αE = 1), and α,y = 0 resulting in a vertical wall.

flow u in x-direction. The volume fraction is only dependent on x and the gradient in
x-direction at the center of the CV is approximated as:

α,x = αE −αW

∆x
, (2.41)

where αE , αW are the east and west volume fractions as in Figure 2.6. Subsequently, the
gradient in u/α at the center of the CV is approximated as:( u

α

)
,x
= 1

α

(
u,x − u

α
α,x

)
= 1

αP

(uE −uW

2∆x
− uP

αP

αE −αW

∆x

)
, (2.42)

where αP is the volume fraction at uP as in Equation 2.32. Using Equations 2.41 and
2.42, the second Brinkman correction for a vertical wall orthogonal to the flow direction
is discretized as:

Bo =−µ
∫
Ωu

(
α,x

( u

α

)
,x
+��*0
α,y

( u

α

)
,y

)
dΩ

=−µ∆y

∆x

αE −αW

2αP
(uE −uW )+uPµ

∆y

∆x

(
αE −αW

αP

)2

.

(2.43)

The last term in the second Brinkman correction works in the opposite direction of the
Darcy penalization −µκu/α in Equation 2.34. This term will be neglected as it is as-
sumed to be small compared to the Darcy penalization which will be discretized in Equa-
tion 2.60 and whose lower bound will be defined in Section 2.4, resulting in:

Bo =−µ∆y

∆x

αE −αW

2αP
(uE −uW ). (2.44)
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We investigate the correction for the vertical wall in Figure 2.6 where αE = 1, αW → 0
resulting in αP ≈ 0.5 and:

B E
o ≈−µ∆y

∆x
(uE −uW ). (2.45)

If the correction is combined with the viscous forces on east boundary ΓE in Equa-
tion 2.39:

F E
µ =µ∆y

∆x
(uE −uW ), (2.46)

we find that the second Brinkman correction removes these forces from the control vol-
ume as B E

o +F E
µ ≈ 0. The second Brinkman correction thus removes the viscous forces

due to fluid flow to the east where no porous material is present (αE = 1). This is exactly
the goal of adding it as these forces are in fact supported by the solid material in the
porous domain as explained in Section 2.2.3.

SECOND BRINKMAN CORRECTION ON A WALL PARALLEL TO THE FLOW

In Section 2.3.1 the second Brinkman correction for flow orthogonal to a wall is investi-
gated and explicitly discretized. However, horizontal walls parallel to u also contribute
to the second Brinkman correction. As an example, we investigating the horizontal wall
in Figure 2.7 where αP = 1 and αP N → 0. A mismatch in the exact location of the wall is
found. If the wall is interpreted as the boundary where flow stagnates, this leads to an
interface at either y =∆y (uN → 0) or at y =∆y/2 (v N E → 0 and vSE → 0). Furthermore,
for approximating gradients u,y on ΓN in Equation 2.39, we approximated the velocity
profile as:

u(y) = uP + uN −uP

∆y
y, (2.47)

resulting in a flow of u(y =∆y/2) = uP+uN

2 at north edge ΓN , which coincides with the
wall where flow should be stagnant. In this case, a better approximation of the flow at

uN → 0

αP N → 0

v N E → 0vSE → 0

αP = 1

uP

x

yΓN

Figure 2.7: The relevant DOFs and design variables for the discretization of the second Brinkman correction in
the CV for uP . In this example, the elements to the north are solid (αP N → 0), the elements in the CV are fluid
(αP = 1), and α,x = 0 resulting in a horizontal wall which coincides with the north edge of the CV ΓN .
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ΓN would be uN as it should tend to zero. If opposed to Figure 2.7 αP → 0 and αP N = 1
and the porous domain is to the south of the wall at ΓN instead of to the north, it follows
that uP → 0 is a better approximation of the velocity at the wall at ΓN . Based on these

requirements a new velocity interpolation is constructed on 0 ≤ y < ∆y
2 :

u(y) = uP + (1+αP −αP N )
uN −uP

∆y
y. (2.48)

which has a complementary interpolation on ∆y
2 < y ≤∆y :

u(y) = uN + (1+αP N −αP )
uN −uP

∆y
(y −∆y). (2.49)

A plot of the resulting flow fields is shown in Figure 2.8. When αP =αP N no wall is
present at ΓN and Equations 2.48 and 2.49 collapse into Equation 2.47. Moreover, as
αP and αP N remain continuous variables, we are able to continuously introduce solid
walls in a topology optimization procedure. Furthermore, the new flow fields for walls at

αP N , uN

αP , uP

x

y

y

u

αP → 0,

αP = 1,

0

∆y
2

∆y

αP N = 1

αP N → 0

Figure 2.8: Two different flow fields for a vertical wall. Either the top elements are solid (αP N → 0) and the
flow at ∆y/2 is approximated as uN → 0, or the bottom elements are solid (αP → 0) and the flow at ∆y/2 is
approximated as uP → 0.

ΓN is accompanied with a flow field for walls at ΓS on 0 ≥ y >−∆y
2 :

u(y) = uP + (1+αP −αPS )
uP −uS

∆y
y. (2.50)
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Using these interpolation functions, the correct gradients at the boundaries are com-
puted as:

uc
,y = (1+αP −αP N )

uN −uP

∆y
, on ΓN ,

uc
,y = (1+αP −αPS )

uP −uS

∆y
, on ΓS .

(2.51)

The new gradient at the north edge contains a standard linear part (also found in Equa-
tion 2.39 at ΓN ):

ul
,y =

uN −uP

∆y
, on ΓN , (2.52)

as well as an update (found by subtracting the gradient in Equation 2.52 from the gradi-
ent in Equation 2.51):

∆u,y = uc
,y −ul

,y = (αP −αP N )
uN −uP

∆y
, on ΓN . (2.53)

Subsequently, we define the correct viscous force at the north edge in Equation 2.39 by
using uc

,y = ul
,y +∆u,y as:

µ

∫
ΓN

(∇u) ·nnnudΓ=µ
∫
ΓN

(ul
,y +∆u,y )dΓ

=µ∆x
uN −uP

∆y
+µ∆x(αP −αP N )

uN −uP

∆y
,

(2.54)

from which we extract an update to the standard viscous forces by subtracting the vis-
cous force at the north edge in Equation 2.39 from Equation 2.54:

B N
p =µ∆x(αP −αP N )

uN −uP

∆y
. (2.55)

Moreover, we find the update to have precisely the function of the Second Brinkman
correction as described in Section 2.2.3. When we are investigating flow in the porous
domain (αP → 0) with large viscous forces due to flow in a fluid domain above (αP N = 1),
the update becomes:

B N
p ≈−µ∆x

uN −uP

∆y
, (2.56)

which can be subtracted from the standard viscous force at ΓN in Equation 2.39 (which
is the viscous force due to ul

,y ):

F N
µ =µ∆x

uN −uP

∆y
, (2.57)

to find that for this porous control volume the viscous forces at the north edge become
B N

p +F N
µ ≈ 0. The function of the second Brinkman correction is to remove viscous forces



2.3. DISCRETIZATION OF THE VANS EQUATIONS

2

27

in the fluid domain from the solid domain which is exactly what the update does. Conse-
quently, we apply the second Brinkman correction for flow parallel to a wall using the up-
dated velocity gradients in Equation 2.51 instead of explicitly discretizing Equation 2.40.
Furthermore, the full correction for flow parallel to a wall is found by following a similar
procedure on the south edge as:

Bp =µ∆x(αP −αP N )
uN −uP

∆y
+µ∆x(αP −αPS )

uP −uS

∆y
. (2.58)

Subsequently, the complete second Brinkman correction can be defined by combining
Equations 2.44 and 2.58 as B2 = Bo +Bp .

DISCRETIZED DARCY PENALIZATION

The final term which is discretized in the volume averaged momentum equation is the
Darcy penalization:

−µκ(α)u

α
≡−K (α)u, (2.59)

where we introduce K (α) as the design dependent penalization interpolation which will
be used to compare different types of interpolation functions and maximum penaliza-
tion in the solid domain (K = K (α= 0)). The same discretization of the Darcy penal-
ization will be used for both the VANS as well as the NSDP equations. Lower and upper
bounds onκ are defined asκ≥ κ≥ κ= 0, which we relate to the volume fraction 0 <α< 1
via a linear interpolation as κ(α) = (1−α)κ. As one of the aims of the discretization is to
introduce the least amount of tunable parameters for optimization, a linear interpola-
tion is used to reduce complexities and parameters in the resulting discrete flow model.
Subsequently, we approximate the penalization at the center of the CV by discretizing as:

−
∫
Ωu

µ
κ(α)

α
udΩ=−∆x∆yµκ

1−αP

αP
uP . (2.60)

In the limit case where αP = 0, i.e. fully solid, this would result in an infinitely large
penalization which is computationally infeasible. To prevent this we add a lower bound
α≪ 1 on the volume fraction as α̃=α+ (1−α)α and use α̃ in the discretization such that
αP ≥α.

In the work by Borrvall and Petersson (2003) and many subsequent papers on fluid
topology optimization the Darcy penalization is interpolated as:

KDa(α) = K Da
q̃(1−α)

q̃ +α , (2.61)

where q̃ is a parameter which is used to control convexity, generally by setting it as 0 ≤
q̃ ≤ 1. This convex function ensures that the penalization on intermediate designs where
α≈ 0.5 is not too severe, as a severe penalization on intermediate designs generally tends
to pull the designs into local optima. In this work, no additional interpolation functions
or filters are applied to κ̃, besides the linear interpolation κ(α̃) = (1− α̃)κ. However, we
may examine the function in Equation 2.60 as an interpolation function:

KSu(α̃) =µκ̄1− α̃
α̃

, (2.62)
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which is in fact the same function as the one proposed by Evgrafov (2005). Furthermore,
when α̃=α+ (1−α)α is substituted into Equation 2.62, we find:

KSu (α̃(α)) =µκ̄1−α− (1−α)α

α+ (1−α)α
,

KSu(α) ≈µκ̄ 1−α
α+α ,

(2.63)

where we assumed α≪ 1 and 1−α≈ 1, and note that using this interpolation function
we find a maximum penalization in the solid domain of:

K Su = KSu(α= 0) ≈ µκ̄

α
. (2.64)

Moreover, comparing Equations 2.63 and 2.61 we note that they scale as
α ·KSu(α) = KDa(α) if α= q̃ ≪ 1 and µκ̄= K Da , as shown in Figure 2.9. Under these
assumptions, interpolation function KSu(α) thus has the same shape as KDa(α) but
increases the overall Darcy interpolation as KSu(α) = KDa(α)/α≫ KDa(α). A more
severe penalization on intermediate designs where α ≈ 0.5 is thus imposed using the
discretization in equation 2.60, which is however balanced by defining a precise lower
bound on κ̄ to sufficiently penalize flow in the solid domain in Section 2.4.
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Figure 2.9: Plot of the interpolation function KDa (α) in Equation 2.61 and scaled interpolation function
KSu (α) ·α in Equation 2.63 for µκ̄= K Da = 1.

2.3.2. DISCRETIZED CONTINUITY EQUATION
The continuity equation is needed to close the equations and is thus discretized on con-
trol volume Ωc

p in Figure 2.10 with boundary Γc
p = Ωc

p \Ωc
p = ΓN

p ∪ΓE
p ∪ΓS

p ∪ΓW
p . The

continuity equation is integrated over the control volume and the divergence theorem is
applied such that:

∫
Ωc

p

∇·vvvdΩ=
∫
Γc

p

vvv ·nnndΓ=
ΓN

p︷ ︸︸ ︷
∆xv N

p −
ΓS

p︷ ︸︸ ︷
∆xvS

p +
ΓE

p︷ ︸︸ ︷
∆yuE

p −
ΓW

p︷ ︸︸ ︷
∆yuW

p . (2.65)
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The continuity equation and its discretization are the same for both the VANS and NSDP
equations.

ΓN
p

ΓE
p

ΓS
p

ΓW
p

v N
p

uE
p

vS
p

uW
p

Figure 2.10: The control volume Ωc
p for the continuity equation with relevant DOFs, and boundary

Γc
p =Ωc

p \Ωc
p = ΓN

p ∪ΓE
p ∪ΓS

p ∪ΓW
p .

2.4. THE DARCY PENALIZATION
The question of choosing the correct κ̄ is often a difficult one: setting it too low re-
sults in spurious flow through the solid domain while setting it too high may cause ill-
convergence of the optimization procedure (Kreissl & Maute, 2012). As a guideline the
maximum penalization is often related to the Darcy number Da (Olesen et al., 2006):

Da = µ

K L2
, (2.66)

where L is a characteristic length scale of the system. In porous flow modeling, the Darcy
number represents the permeability of a porous medium and a low Darcy number is re-
lated to impermeable porous structures. Subsequently, it is stated that impermeable
“solids” have low Darcy numbers Da ≤ 10−5 which is used to define the inverse perme-
ability of the solid K =µL−2Da−1, and flow in the porous solid domain is penalized using
Darcy penalization:

−K ·vvv. (2.67)

However, this leaves the question which length scale L to use in a changing topology.
Using an inlet diameter may result in significantly lower K than using the diameter of
a narrow channel generated by the optimization procedure. Moreover, Darcy number
Da is often either not low enough causing much flow leakage or too low resulting in
inferior local optima and subsequently requires some tuning before optimization. We
thus aim to define a lower bound on κ̄ to penalize flow in the solid domain sufficiently.
In Sections 2.4.1 and 2.4.2 the bounds will be derived for the VANS and NSDP equations
respectively, after which Section 2.4.3 will give an overview and discussion of all derived
bounds.
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Γ f p

Ω f

Ωp

p

y

pΓ,y

p f
,y

∆

Figure 2.11: The intrinsic pressure field orthogonal to a horizontal wall which is at least C 1-continuous. For

∆→ 0 the pressure gradient in the fluid (p
f
,y ) will thus approach the pressure gradient at the porous interface

pΓ,y = p
f
,y at Γ f p

To define the lower bounds on the penalization, the horizontal solid/fluid interface
Γ f p in Figure 2.11 is investigated. Although a horizontal interface is used, the actual
orientation of the interface is irrelevant to the derivation. On the interface, the pres-
sure field is examined, where we remind the reader that we are actually dealing with the
intrinsic pressure average 〈p〉iφ. If we assume that 〈p〉iφ is a good representation and
substitute of the actual pore scale pressure ppor e , as stated by Equation 2.5, we may re-
late properties of the averaged and pore scale pressures. Of the pore scale pressure field,
we know that it is at least C 1-continuous, and assume this to also be the case for intrinsic
pressure average 〈p〉iφ. Subsequently, the pressure gradient orthogonal to the interface
(p,y for Γ f p in Figure 2.11) is assumed to be at least C 0-continuous. In the remaining
text we will return to the convention of writing intrinsic pressure average 〈p〉iφ as p, and
superscripts □Γ and □ f will be used to denote porous quantities on the interface and
quantities in the fluid domain respectively. Due to the continuity, the pressure gradient
at porous fluid interface Γ f p (pΓ,y ), and the gradient approaching Γ f p from the fluid do-

main (p f
,y ) should thus be continuous at the interface (pΓ,y = p f

,y at Γ f p ). Consequently,

the order of these terms at Γ f p should be equal O
(
p f

,y

)
=O

(
pΓ,y

)
. An order of magnitude

analysis will be performed on these terms to derive a lower bound on the order of mag-
nitude of κ̄. To derive the bound, we aim to ensure no flow penetration at the solid/fluid
interface Γ f p .

2.4.1. BOUNDS ON THE DARCY PENALIZATION FOR THE VANS EQUATIONS
To derive the VANS bounds, firstly the VANS v-momentum equation found in Equa-
tion 2.31 is used to define a general equation for p,y :

p,y =−ρ vvv

α
·∇ v

α
+ µ

α
∇2v − µ

α
∇α ·∇ v

α
− µκv

α2 , (2.68)

where Equation 2.31 is reordered and divided by α as it contains the pressure penaliza-
tion αp,y . Subsequently, we make the following assumptions to define pΓ,y :
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1. The penalization at the interface is interpolate as κΓ = κ̄(1−αΓ).

2. We assume the second Brinkman correction removes fluid domain viscous forces
from the interface as explained and shown in Sections 2.2.3, 2.3.1, and thus ne-
glect it and any contribution of fluid domain flow (v f ) to the viscous forces at the
interface.

Which results in a pressure gradient at the interface as:

pΓ,y =−ρ vvvΓ

αΓ
·∇ vΓ

αΓ
+ µ

αΓ
∇2vΓ− µκ̄(1−αΓ)vΓ

αΓ
2 , (2.69)

Subsequently, we make the following assumptions to define p f
,y :

1. No flow penalization is applied in the fluid domain and κ f = 0.

2. Fluid domain volume fraction α f = 1 is constant and thus ∇α f = 0.

Which results in a pressure gradient in the fluid domain as:

p f
,y =−ρvvv f ·∇v f +µ∇2v f , (2.70)

The magnitudes of the different terms in Equations 2.69 and 2.70 are related by per-
forming an order analysis on the discretized equations. In the order analysis we approx-
imate the magnitude of gradients as O (∇Ψ) =O

(
∆Ψ/∆x +∆Ψ/∆y

)=O (∆Ψ/h) where
h ≈∆x ≈∆y is the element size. The magnitude of the gradient in the inertial term in
Equation 2.69 is thus approximated as:

O

(
∇ vΓ

αΓ

)
=O

(∇(vΓ)

αΓ
− vΓ

αΓ
2 ∇αΓ

)
=O

(
∆vΓ

hαΓ
− vΓ

αΓ
2

∆αΓ

h

)
=O

(
vΓ

hαΓ

(
1− ∆α

Γ

αΓ

))
=O

(
vΓ

hαΓ

(
1− 1

αΓ

))
,

(2.71)

where we used ∆αΓ = 1 as we are investigating the porous/fluid (0/1) interface and ap-
proximate the flow magnitude using the flow itself O

(
∆vΓ

)=O
(
vΓ

)
. Subsequently, the

magnitude of the flow velocity is approximated as O
(
vvvΓ

)=O
(|vvvΓ |)≈O

(
uΓ+ vΓ

)
, such

that the magnitude of the inertial term in Equation 2.69 can be approximated as:

O

(
ρ

vvvΓ

αΓ
·∇vΓ

α

)
=O

(
ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

))
. (2.72)

Moreover, as there are no difficult terms present in the Darcy penalization in Equa-
tion 2.69, its order is estimated as:

O

(
µκ̄(1−αΓ)vΓ

αΓ
2

)
. (2.73)
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Diffusive terms are approximated as O
(∇2Ψ

)=O
(
∆Ψ/∆x2 +∆Ψ/∆y2

)=O
(
∆Ψ/h2

)
such that the magnitudes of the viscous terms in Equations 2.69 and 2.70 are approxi-
mated as:

O
( µ
αΓ

∇2vΓ
)
=O

(
µvΓ

αΓh2

)
, O

(
µ∇2v f

)
=O

(
µv f

h2

)
, (2.74)

where we used O
(
∆vΓ

)=O
(
vΓ

)
. Lastly, the inertial term in Equation 2.70 is estimated

along the same lines as Equation 2.72:

O
(
ρvvv f ∇v f

)
=O

(
ρ |vvv f | v f

h

)
, (2.75)

where O
(|vvv f |)≈O

(
u f + v f

)
. The magnitudes of the flow at the porous interface/in the

fluid domain are thus related by approximating the order of the pressure gradients using
Equations 2.72, 2.73, 2.74, 2.75:

O
(
pΓ,y

)
=O

(
− ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

)
+ µvΓ

αΓh2
− µκ̄(1−αΓ)vΓ

αΓ
2

)
,

O
(
p f

,y

)
=O

(
−ρ |vvv f | v f

h
+ µv f

h2

)
,

(2.76)

and by using continuity requirement O
(
p f

,y

)
=O

(
pΓ,y

)
:

O

(
− ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

)
+ µvΓ

αΓh2
− µκ̄(1−αΓ)vΓ

αΓ
2

)
=O

(
−ρ |vvv f | v f

h
+ µv f

h2

)
. (2.77)

To extract bounds on the penalization, an elemental Reynolds number is introduced
to measure the respective relevance of the inertial and viscous forces as:

Ree = ρ |vvv f | h

µ
, (2.78)

where we make the important note that it is dependent on mesh size h and not on char-
acteristic length L. Two main cases are examined based on whether element scale vis-
cous (Ree ≪ 1) or inertial (Ree ≫ 1) forces are dominant. Subsequently, bounds on the
penalization will be constructed by aiming to stop flow from penetrating into the solid
domain through the solid/fluid interface. We will quantify flow penetrating the interface
relative to the flow in the fluid domain via flow reduction vΓ/v f . If a relatively small
amount of flow penetrates the interface, the order of the flow reduction becomes:

O

(
vΓ

v f

)
< 1, (2.79)

which will be used to derive bounds on O (κ̄).
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VANS BOUNDS: DOMINANT VISCOUS FORCES

If the viscous term is dominant (Ree ≪ 1), the inertial terms are neglected and Equation
2.77 is simplified as:

O

(
µvΓ

αΓh2
− µκ̄(1−αΓ)vΓ

αΓ
2

)
=O

(
µv f

h2

)
, (2.80)

where either the first or the second term on the left-hand side is dominant. If the first
term (µvΓ)/(αΓh2) is dominant the main mechanism for flow reduction is the pres-
sure penalization which causes the division by αΓ in Equation 2.68. If the second term

(µκ̄(1−αΓ)vΓ)/(αΓ
2

) is dominant the main mechanism for flow reduction is the Darcy
penalization. We measure the relative dominance by dividing the first term with the sec-
ond term:

r l
V =

∣∣∣∣∣ µvΓ

αΓh2

αΓ
2

µκ̄(1−αΓ)vΓ

∣∣∣∣∣=
∣∣∣∣ αΓ

h2κ̄(1−αΓ)

∣∣∣∣ , (2.81)

and examine the two scenarios where either r l
V > 1 or r l

V < 1:

• Dominant Darcy penalization (r l
V < 1):

If the second term on the left-hand side of Equation 2.80 is dominant, the order
analysis reduces to:

O

(
µκ̄(1−αΓ)vΓ

αΓ
2

)
=O

(
µv f

h2

)
, (2.82)

which is rewritten to find the flow reduction at the interface:

O

(
vΓ

v f

)
=O

(
αΓ

2

h2κ̄(1−αΓ)

)
< 1. (2.83)

The bound on the flow reduction is subsequently rewritten to find a lower bound
on κ̄ for Ree ≪ 1 and r l

V < 1:

O (κ̄) >O

(
αΓ

2

h2(1−αΓ)

)
. (2.84)

• Dominant pressure penalization (r l
V > 1):

If the first term on the right-hand side of Equation 2.80 is dominant, the order
analysis reduces to:

O

(
µvΓ

αΓh2

)
=O

(
µv f

h2

)
, (2.85)

which can be rewritten to find the flow reduction as:

O

(
vΓ

v f

)
=O

(
αΓ

)
. (2.86)

Flow is thus automatically reduced for αΓ≪ 1 (O
(
αΓ

) < 1) if the first term on the
left-hand side of Equation 2.80 is dominant.
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VANS BOUNDS: DOMINANT INERTIAL FORCES

In the second case, inertial terms are dominant (Ree ≫ 1) and the viscous forces can be
neglected, resulting in:

O

(
ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

)
+ µκ̄(1−αΓ)vΓ

αΓ
2

)
=O

(
ρ |vvv f | v f

h

)
, (2.87)

where either the first or second term on the left-hand side is dominant. If the first term:

ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

)
(2.88)

is dominant, the main mechanisms for flow reduction are the pressure penalization
which causes the first division by αΓ in Equation 2.68 and the inertial penalization
which results in the (1−1/αΓ) term as can be seen in Equation 2.71. If the second term

(µκ̄(1−αΓ)vΓ)/(αΓ
2

) is dominant, the main mechanism for flow reduction is again the
Darcy penalization. We measure the relative dominance by dividing the first term with
the second term:

r h
V =

∣∣∣∣∣ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

)
αΓ

2

µκ̄(1−αΓ)vΓ

∣∣∣∣∣=
∣∣∣∣ρ |vvvΓ |

hµκ̄

∣∣∣∣ . (2.89)

and again examine two scenarios where either r h
V > 1 or r h

V < 1:

• Dominant Darcy penalization (r h
V < 1):

If the second term is dominant the order analysis reduces to:

O

(
µκ̄(1−αΓ)vΓ

αΓ
2

)
=O

(
ρ |vvv f | v f

h

)
, (2.90)

which can be rewritten to find the flow reduction at the interface:

O

(
vΓ

v f

)
=O

(
ρ |vvv f |αΓ2

hµκ̄(1−αΓ)

)
=O

(
ReeαΓ

2

h2κ̄(1−αΓ)

)
< 1, (2.91)

from which we can extract a bound on the penalization for Ree ≫ 1 and r h
V < 1 as:

O (κ̄) >O

(
ReeαΓ

2

h2(1−αΓ)

)
. (2.92)

• Dominant pressure and inertial penalizations (r h
V > 1):

If however the first term on the left-hand side of Equation 2.87 is dominant the
order analysis reduces to:

O

(
ρ |vvvΓ | vΓ

αΓh

(
1− 1

αΓ

))
=O

(
ρ |vvv f | v f

h

)
. (2.93)
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The equation is subsequently rewritten to find that forαΓ≪ 1 flow at the interface
is automatically lower than flow in the fluid domain:

O

( |vvvΓ | vΓ

|vvv f | v f

)
≈O

(
vΓ

2

v f 2

)
=O

(
αΓ

1− 1
αΓ

)
< 1. (2.94)

For both Equations 2.86 and 2.94 we assumed that αΓ≪ 1 to achieve some flow reduc-
tion. In practice however, we use αΓ = αP ≈ 0.5 which is just below 1. We will examine
these assumptions and resulting errors in Section 2.4.4.

2.4.2. BOUNDS ON THE DARCY PENALIZATION FOR THE NSDP EQUATIONS
For the NSDP equations we can follow a similar procedure as for the VANS equations. In

the fluid domain p f
,y is defined as in Equation 2.70. In the porous domain pΓ,y is defined

using Equation 2.30 as:

pΓ,y =−ρvvvΓ ·∇vΓ+µ∇2vΓ− µκ̄(1−αΓ)vΓ

αΓ
, (2.95)

where κΓ is interpolated using KSu(αΓ) in Equation 2.62. The orthogonal pressure gradi-
ent p,y is again assumed to be continuous, and an order analysis is performed resulting
in an equation similar to Equation 2.77:

O

(
−ρ |vvvΓ | vΓ

h
+ µvΓ

h2 − µκ̄(1−αΓ)vΓ

αΓ

)
=O

(
−ρ |vvv f | v f

h
+ µv f

h2

)
. (2.96)

NSDP BOUNDS: DOMINANT VISCOUS FORCES

If Ree ≪ 1 and viscous forces are dominant inertial forces are neglected such that Equa-
tion 2.96 reduces to:

O

(
µvΓ

h2 − µκ̄(1−αΓ)vΓ

αΓ

)
=O

(
µv f

h2

)
. (2.97)

We first examine the case where the first term on the left-hand side is dominant, resulting
in:

O

(
µvΓ

h2

)
=O

(
µv f

h2

)
, (2.98)

which can be rewritten to find that no flow reduction takes place:

O

(
vΓ

v f

)
=O (1) . (2.99)

The only mechanism for flow reduction in the NSDP equations is thus the Darcy pe-
nalization and we assume that when an effective Darcy penalization is applied O

(
vΓ

)<
O

(
v f

)
and we may neglect the first term on the left-hand side of Equation 2.97:

O

(
−µκ̄(1−αΓ)vΓ

αΓ

)
=O

(
µv f

h2

)
. (2.100)
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After which the flow reduction:

O

(
vΓ

v f

)
=O

(
αΓ

h2κ̄(1−αΓ)

)
< 1, (2.101)

is used to derive a lower bound on the penalization as:

O (κ̄) >O

(
αΓ

h2(1−αΓ)

)
. (2.102)

NSDP BOUNDS: DOMINANT INERTIAL FORCES

If Ree ≫ 1 and inertial forces are dominant, the order analysis reduces to:

O

(
−ρ |vvvΓ | vΓ

h
− µκ̄(1−αΓ)vΓ

αΓ

)
=O

(
−ρ |vvv f | v f

h

)
, (2.103)

As was the case for low Ree , the only mechanism for flow reduction is the Darcy penal-
ization and we neglect the first term on the left-hand side by assuming that O

(|vvvΓ | vΓ
)<

O
(|vvv f | v f

)
, such that the inertial term at the interface can be neglected:

O

(
µκ̄(1−αΓ)vΓ

αΓ

)
=O

(
ρ |vvv f | v f

h

)
. (2.104)

Subsequently, the analysis is again rewritten to find the order of flow reduction:

O

(
vΓ

v f

)
=O

(
ρ |vvv f |αΓ

hµκ̄(1−αΓ)

)
=O

(
ReeαΓ

κ̄h2(1−αΓ)

)
< 1. (2.105)

After which a lower bound on the Darcy penalization is defined as:

O (κ̄) >O

(
ReeαΓ

h2(1−αΓ)

)
. (2.106)

For the NSDP equations we thus derive bounds on the penalization under the as-
sumption that flow reduction is a fact (O

(
vΓ

) < O
(
v f

)
and O

(|vvvΓ | vΓ
) < O

(|vvv f | v f
)
).

These assumptions however only hold when the appropriate penalization’s from Equa-
tions 2.105 and 2.102 are used. If these appropriate penalizations are not used there is
no other mechanism for flow reduction and errors due to flow leakage will become large.

2.4.3. OVERVIEW AND DISCUSSION OF BOUNDS ON THE PENALIZATION
Both the VANS and NSDP equations thus have bounds on the penalization dependent
on the elemental Reynolds number as defined in Equation 2.78. Moreover, the VANS
equations may have an additional dependence on measurements r l

V and r h
V defined in

Equations 2.81 and 2.89 which measure the dominant mechanism for flow reduction.
We will first define bounds on the penalization assuming that the Darcy penalization
is the dominant mechanism for flow reduction (r l

V < 1 and r h
V < 1) resulting in the VANS

bounds in Equations 2.84 and 2.92. In Section 2.4.4 we will come back to this assumption
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and show that although although the Darcy penalization is dominant the pressure penal-
ization also plays a significant role in flow reduction. Subsequently, the VANS bounds in
Equations 2.84 and 2.92 and NSDP bounds in Equations 2.102 and 2.106 are simplified by
using the elemental Reynolds number Ree and defining inverse elemental surface area:

H e = 1

h2 , (2.107)

resulting in the lower bounds on O (κ̄) as summarized in Table 2.1. In practice for ele-

Ree ≪ 1 Ree ≫ 1

NSDP O
(

αΓ

1−αΓ H e
)

O
(

αΓ

1−αΓ H e Ree
)

VANS O
(
αΓ

2

1−αΓ H e
)

O
(
αΓ

2

1−αΓ H e Ree
)

Table 2.1: The lower bounds on O (κ̄) at boundary Γ f p defined using an inverse elemental surface area and
elemental Reynolds number.

ments at the interface volume fractionαΓ =αP ≈ 0.5 is used. In Table 2.1 the magnitudes

depend on αΓ = 0.5 as αΓ/(1−αΓ) = 1 or αΓ
2

/(1−αΓ) = 0.5. For the order of magnitude
the dependence on αΓ can thus be neglected resulting in the same penalization for the
VANS and NSDP equations. Moreover, we require κ̄ to be an order of magnitude higher
than the values in Table 2.1, and specify the increase in magnitude using 10q , where q is
a small whole number (generally q = 0, q = 1 or q = 2). The resulting values which we
implement for κ̄ can be found in Table 2.2.

Ree ≤ 1 Ree > 1

VANS/NSDP 10q H e 10q H e Ree

Table 2.2: Definition for κ̄ in a practical application defined using inverse elemental surface area He and el-
emental Reynolds number Ree . The power q is used to increase the magnitude of the penalization, and is
generally set as q = 0, q = 1 or q = 2.

To relate the maximum Darcy penalization found in this work to common practice
we rewrite it as:

−µκ(α)

α
·vvv =−Kh(α) ·vvv (2.108)

The maximum penalization in the solid domain at α=α and κ= κ̄ for Ree ≤ 1 is subse-
quently found as:

K h =µ κ̄
α

=µ10q H e

α
=µ 10q

h2α
≫ µ

h2 , (2.109)
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and for Ree > 1 as:

K h =µ κ̄
α

=µ10q H e Ree

α
=µ 10q

h2α

ρ |vvv f | h

µ

= 10qρ |vvv f |
hα

≫ ρ |vvv f |
h

,

(2.110)

where we treat 10q /α as a factor which scales the maximum penalization similar to the
factor 1/Da ≫ 1 which scales the commonly used maximum penalization by Olesen et
al. (2006):

K = µ

L2Da
≫ µ

L2 . (2.111)

Comparing the maximum penalization for Ree ≤ 1 in Equation 2.109 to the common pe-
nalization in Equation 2.111 they seem similar. However, whereas the common penaliza-
tion is dependent on characteristic length L which may change for changing topologies,
our new penalization is dependent on mesh size h which allows us to accurately pre-
dict errors as will be discussed in Section 2.4.4 and shown in Section 2.6. Moreover, the
bounds for the Darcy penalization are also dependent on an elemental Reynolds num-
ber. This is not completely new as Kondoh et al. (2012) and Alexandersen et al. (2013) al-
ready implement a Reynolds dependent penalization. However, contrary to those works,
the penalization in this work is dependent on an elemental Reynolds number and h in-
stead of the global Reynolds number:

Re = ρV L

µ
. (2.112)

Whereas a global Reynolds number is computed using reference length L, the elemental
Reynolds number in Equation 2.78 is dependent on h which is often much lower (h ≪ L)
resulting in much lower elemental Reynolds numbers (Ree ≪ Re). Moreover, the penal-
ization definitions by Kondoh et al. (2012) and Alexandersen et al. (2013) are defined for
non-dimensional Navier-Stokes equations which impacts their interpretation and com-
parision to common practice as discussed in Appendix 2.B.

We note that the elemental Reynolds number and thus the Darcy penalization re-
main dependent on an a priori estimate of | vvv f | which may cause problems in chang-
ing topologies when this estimate is erroneous. A solution to this problem could be a
penalization dependent on actual local flow magnitude | vvv |. However, as this requires
the absolute flow magnitude this would introduce discontinuities in the gradients of the
model used. Furthermore, this approach would be similar to the Forchheimer penal-
ization introduced by Alonso and Silva (2022) who deal with discontinuous gradients by
using automatic differentiation.

2.4.4. A PRIORI ERROR ESTIMATION

Using the bounds on the penalization as provided in the previous section, we may esti-
mate flow leakage in the porous domain for low and high Reynolds flow. For low Ree ≤ 1
we set κ̄= 10q H e = 10q h−2, which can be substituted into the estimated flow reduction
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at the interface in Equations 2.101 and 2.83, respectively:

O

(
vΓ

v f

)
NSDP

=O

(
αΓ

1−αΓ 10−q
)
=O

(
10−q )

,

O

(
vΓ

v f

)
VANS

=O

(
αΓ

2

1−αΓ 10−q

)
=O

(
0.5 ·10−q )

,

(2.113)

when αΓ ≈ 0.5 at the solid/fluid interface. For the same value of q , flow at the interface
should thus be reduced by a similar factor in the VANS as well as the NSDP equations.
However, we speculate that the same flow reduction may also be used in the solid do-
main where α≈α≪ 1:

O

(
v s

v f

)
NSDP

=O

(
α

1−α10−q
)
=O

(
α ·10−q )

,

O

(
v s

v f

)
VANS

=O

(
α2

1−α10−q
)
=O

(
α2 ·10−q )

,

(2.114)

for the NSDP and VANS equations, respectively, where v s represents the flow in the solid
domain. Flow in the solid domain computed using the VANS equations may thus be
decreased by an additional factorαwith respect to the NSDP equations for low Reynolds
flow. This stronger suppression of flow leakage originates from the penalization of the
pressure gradient α∇p in the VANS equations which added an extra division by α in
the definition of pΓ,y in Equation 2.68. Furthermore, the estimates for flow reduction
at the interface have been derived in Sections 2.4.1 and 2.4.2, while the estimates in the
porous domain are a speculation on the extensibility of Equation 2.113. The extensibility
of flow reduction in the porous domain is based on the idea that the pressure gradient
should not only be continuous across the fluid domain and porous/fluid interface, but
also across the porous/fluid interface and porous domain. Moreover, for high Ree > 1 we
set κ̄= 10q H e Ree = 10q Ree h−2, which can be substituted into Equations 2.91 and 2.105
respectively resulting in the exact same flow reductions as in Equations 2.113 and 2.114.

If an insufficient penalization is chosen for the NSDP equations (q < 0) flow leakage
may introduce significant errors. However, for the VANS equations, there is still the pos-
sibility that r l

V > 1 or r h
V > 1 resulting in the Darcy penalization not being the dominant

mechanism for flow reduction. The dominant mechanism for flow reduction is investi-
gated by substituting αΓ ≈ 0.5 and κ̄ in Equations 2.81 and 2.89:

r l
V =

∣∣∣∣ αΓ

h2κ̄(1−αΓ)

∣∣∣∣≈ ∣∣∣∣ 0.5

h210q h−20.5

∣∣∣∣= 10−q ,

r h
V =

∣∣∣∣ρ |vvvΓ |
hµκ̄

∣∣∣∣= ∣∣∣∣ρ |vvvΓ |
hµ

hµ

10qρ |vvv f |

∣∣∣∣= ∣∣∣∣ |vvvΓ |
|vvv f |10−q

∣∣∣∣ ,

(2.115)

for Ree < 1 (κ̄= 10q h−2) and Ree > 1 (κ̄= 10q Ree H e = 10qρ
∣∣vvv f

∣∣h−1µ−1) respectively. In
the low elemental Reynolds case, the dominant mechanism for flow reduction is thus
completely determined by q . If q < 0 and as a result r l

V > 1 we do not satisfy the condition
for flow reduction through the Darcy penalization in Equation 2.102, but still manage



2

40 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

some flow reduction through the condition in Equation 2.86:

O

(
vΓ

v f

)
=O

(
αΓ

)
. (2.116)

This will not result in much flow reduction at the solid/fluid interface where αΓ ≈ 0.5.
However, within the solid domain whereα=α≪ 1 this flow reduction mechanism might
have significant effects. To ensure sufficient flow penalization, in this work we will use
q ≥ 0. If Ree > 1, the problem is more complicated as the dominant mechanism for flow
reduction depends on the flow reduction itself. However, if we substitute the flow re-
duction (

∣∣vvvΓ∣∣/
∣∣vvv f

∣∣≈ vΓ/v f ) due to the Darcy penalization in Equations 2.113 into r h
V in

Equation 2.115 we find:

r h
V =

∣∣∣∣ |vvvΓ |
|vvv f |10−q

∣∣∣∣= 0.5 ·10−2q . (2.117)

Similar to the low Reynolds case, if q < 0 it thus follows that the Darcy penalization is
not the dominant flow reducing mechanism as r h

V > 1. Moreover, flow at the interface is

not reduced as substituting αΓ ≈ 0.5 into the flow reduction for r h
V > 1 in Equation 2.94

results in:

O

(
vΓ

2

v f 2

)
=O

(
αΓ

1− 1
αΓ

)
=O (1) . (2.118)

However, if we again speculate on the extensibility of these formulations to the porous
domain where α=α≪ 1, we find a significant solid domain flow reduction of:

O

(
v s 2

v f 2

)
=O

(
α

1− 1
α

)
≈O

(
α2) . (2.119)

Finally, we make a note on the error in pressure, which is more difficult to estimate.
In the solid domain, a non-zero pressure field will be present. However, the intrinsic
average of the pressure field (〈p〉iφ) is computed while the superficial average of the
velocity field (〈vvv〉sφ) is computed. When no fluid is pumped into the porous domain
where α→ 0, velocity 〈vvv〉sφ naturally converges to zero, while 〈p〉iφ does not necessarily
converge to zero as it represents the pore scale average as explained in Section 2.2. Non-
zero intrinsic pressure fields in the solid domain should thus be expected and should
not be treated as erroneous. Furthermore, for both the VANS and NSDP momentum
equations, the pressure gradient at every point within the fluid domain can be written
as solely a function of velocity: ∇p = f (vvv), if material properties ρ, µ, κ̄ and α = 1 are
taken as constant. If the correct velocity field is found in the fluid domain, it follows that
the correct pressure field is also computed, respective to a reference pressure in the fluid
domain. As pressure gradients in the solid domain are expected, and errors in pressure
are harder to quantify, we mainly focus on flow leakage as a representation of precision
of the solution.
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2.5. OPTIMIZATION PROBLEM AND ADJOINT SENSITIVITY

ANALYSIS
Using the discretization and bounds on the Brinkman penalization the optimization
problem is defined as:

minimize
ααα

f (uuu,vvv ,ppp,ααα)

subject to RRR(uuu,vvv ,ppp,ααα) = 0,∑N
i=1αi

N
−V f ≤ 0,

where N is the number of discrete design DOFs αi , RRR(uuu,vvv ,ppp,ααα) is a column containing
all discretized equilibrium equations, uuu, vvv , ppp, ααα contain the discrete velocities pressures
and design variables, the desired maximum fluid volume fraction is V f and f (uuu,vvv ,ppp,ααα)
is the objective to be minimized. No additional filters such as a blurring filter or Heavi-
side projection are applied to the design as they are not necessary to regularize the opti-
mization problems in this paper. The MMA algorithm by Svanberg (1987, 2004) is used
to perform the optimization. Computing the sensitivities required by the MMA algo-
rithm can be a cumbersome task in non-linear fluid problems. The main problem lies in
the computation of the Jacobian matrix for the solution of the adjoint equations. In this
work we use the (MATLAB, 2019) symbolic toolbox to construct discrete momentum and
continuity equations, such that we are able to create functions for the Jacobian matrices
before running the optimization. In essence, a similar approach as by Dilgen et al. (2018)
is implemented, where automatic differentiation is used to compute the Jacobian of the
residuals.

To construct the adjoint sensitivities, columns containing discrete functions for the
u, v-momentum and continuity equations are defined as RRRu(uuu,vvv ,ppp,ααα), RRRv (uuu,vvv ,ppp,ααα),
RRRp (uuu,vvv ,ααα) respectively. An element of RRRu(uuu,vvv ,ppp,ααα) is thus associated with DOF uP and
the stencil as in Figure 2.5, where both uP and the stencil are mapped to the global mesh
in Figure 2.4. Boundary conditions are applied via ghost nodes as described by Versteeg
and Malalasekera (2007) and are added to the columns containing the discrete equa-
tions. All equations are gathered as RRR⊺ = [RRR⊺

u ,RRR⊺
v ,RRR⊺

p ] and UUU = [uuu⊺,vvv⊺,ppp⊺]. Furthermore,
objective f (uuu,vvv,ppp,ααα) is defined and used to construct the augmented objective:

F = f +λλλ⊺RRR, (2.120)

whereλλλ contains the adjoint multipliers. The sensitivities are subsequently defined as:

dF

dααα
= ∂ f

∂ααα
+λλλ⊺ ∂RRR

∂ααα
+

(
∂ f

∂UUU
+λλλ⊺ ∂RRR

∂UUU

)
∂UUU

∂ααα
, (2.121)

where first, the adjoint equations are solved:

λλλ⊺ =− ∂ f

∂UUU

∂RRR

∂UUU

−1

, (2.122)

after which the sensitivities are computed as:

dF

dααα
= ∂ f

∂ααα
+λλλ⊺ ∂RRR

∂ααα
. (2.123)
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The difficult part in solving the adjoint equations is to define ∂RRR/∂ααα and the Jacobian:

∂RRR

∂UUU
=


∂RRRu
∂uuu

∂RRRu
∂vvv

∂RRRu
∂ppp

∂RRRv
∂uuu

∂RRRv
∂vvv

∂RRRv
∂ppp

∂RRRp

∂uuu
∂RRRp

∂vvv 0

 , (2.124)

as it is never explicitly formed in the SIMPLE solution algorithm. We are however
able to assemble the Jacobian after solving for flow and pressure fields, by using a
symbolic coding toolbox. For example, element R i

u of RRRu contains the discretized u-
momentum equation in terms of the symbolic stencil variables in Figure 2.5 UUU s =
[uP ,uN , ..., v N E , ...αE , ...]⊺, and derivatives can be computed using symbolic differenti-
ation ∂R i

u/∂UUU s . As the derivatives for one stencil are the same for every element R i
u , we

only perform the symbolic differentiation for one stencil and let the symbolic coding
toolbox automatically construct a vector function from ∂R i

u/∂UUU s which takes vectors of
DOFs UUU s and returns vectors of ∂R i

u/∂UUU s . Both UUU s and ∂R i
u/∂UUU s can be mapped to the

global mesh. The subsequent assembly procedure into ∂RRR/∂UUU is coded by hand and the
same procedure is performed for ∂RRR/∂ααα. For this particular implementation, a symbolic
toolbox which can compute derivatives and construct vector functions from symbolic
equations is thus required. To confirm the adjoint sensitivities used in this work they are
verified using complex step finite difference sensitivities in Appendix 2.C.

2.6. PRECISION OF THE VANS AND NSDP EQUATIONS
A precise flow solution is essential for finding precise optima when optimizing fluid
problems. The precision of the NSDP and VANS solvers is therefore investigated for sev-
eral flow problems, Reynolds numbers, minimal volume fraction α and penalizations κ̄.
As precision is of most importance in the optimal black/white designs, only these de-
signs are investigated. In Appendix 2.D we examine the effect of the second Brinkman
correction and argue that flow leakage is a good measure for overall solution accuracy.
Consequently, we will use flow leakage to asses solution precision in this section and
the remainder of this work. To confirm the lower bound on κ̄ derived in Section 2.4 a
sweep on power q is performed for low elemental Reynolds numbers (Ree ≤ 1) in Sec-
tion 2.6.1 and moderate elemental Reynolds flow (Ree > 1) in Section 2.6.2. The results
in these sections will be used to choose optimization settings for q and α such that flow
is sufficiently penalized in the optimization problems in Section 2.7. Flow is sufficiently
penalized when we expect errors evvv ≈ 10−1 and ul < 10−2. Error evvv ≈ 10−1 is chosen
relatively high on purpose as it represents a flow error in two cases and influences con-
vergence behavior of the optimization procedure. The error is mainly caused by flow at
those locations in the design where αP ≈ 0.5, which are found at either the solid/fluid
interface, or in the intermediate gray design during optimization where α ≈ 0.5. If flow
in the intermediate gray design is penalized too much, the optimizer can be pushed into
an inferior local optimum from which it may be hard to escape. Moreover, when choos-
ing the optimization settings we put more emphasis on ul < 10−2 as in Appendix 2.D
flow leakage is shown to correlate to errors in pressure drop (which we will optimize for
in Section 2.7). Furthermore, in Section 2.6.3 the penalization for a range of Reynolds
numbers is investigated.
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2.6.1. LOW ELEMENTAL REYNOLDS NUMBERS
Firstly, a sweep on the penalization is performed for low Ree (and low Re) using the
problem depicted in Figure 2.12 and the parameters given in Table 2.3. We examine a

Γw

Lw all

umax

Lx

2LL

0.5L

2∆x

pout

Figure 2.12: A 2D channel with parabolic inflow applied at the left inlet and constant pressure applied at the
right outlet. At Lw all two small porous solid walls of thickness 2∆x are inserted to inhibit flow. For different
mesh sizes the problem will thus slightly vary as the wall thickness changes. For low Reynolds flow the wall
affects the pressure distribution to the left and is placed at the center, while for moderate Reynolds flow the
wall has large wakes to the right and is placed closer to the inlet.

µ ρ umax pout L Lw all Lx

1 [Pas] 1 [kgm−3] 1 [ms−1] 1 [Pa] 1 [m] 4L 8L

Table 2.3: The material and problem parameters for the flow problem in Figure 2.13, where low Reynolds flow
is investigated for low Ree and varying q , α.

channel of height 2L where flow is obstructed by two solid porous walls of two elements
thick. A parabolic flow profile with maximum velocity umax is prescribed at the inlet
and pressure at the outlet is fixed at pout . Furthermore, as equidistant meshes are used
where ∆x =∆y = h and four mesh refinements are examined where h = 0.1L, h = 0.05L,
h = 0.025L, h = 0.0125L, the elemental Reynolds number can be computed as:

Ree = ρ
∣∣vvv f

∣∣h

µ
= ρumax h

µ
= h, (2.125)

where Ree = h < 1 and we approximate
∣∣vvv f

∣∣≈ umax . Since Ree = h < 1, the maximum κ̄

is computed following Table 2.2 as:

κ̄= 10q H e = 10q

h2 , (2.126)

Furthermore, using the parameters in Table 2.3, the Reynolds number is computed as

Re = ρumax L

µ
= 1. (2.127)

To investigate the a priori error estimates in Section 2.4.4 the precision of the model
is measured using a spurious flow error:

evvv = 1

umax

√ ∑
i∈I p

u2
i +

∑
i∈I p

v2
i , (2.128)



2

44 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

where I p = {i | (xi , yi ) ∈Ωp } denotes the indices i of all DOFs ui , vi in Ωp and in this
example the porous domainΩp consists of the two obstructing walls. Error evvv measures
the norm of flow in the porous domain and at the porous/fluid interface, and normalizes
it using a measure for flow in the fluid domain (umax ). We expect flow at the porous/fluid
interface to be dominant in the norm, and evvv can thus be seen as a measure for flow
reduction vΓ/v f . Besides error evvv an error which represents the flow leakage in the solid
domain is defined as:

ul =
1

Lumax

∫
Γw

| u | dΓ, (2.129)

where Γw is the center line in the two walls as shown in Figure 2.12. As ul represents the
leakage in the porous wall where α=α and is normalized by umax , we use it as a mea-
sure of flow reduction in the solid domain v s /v f . Both evvv and ul can thus be compared
against the error estimates in Section 2.4.4.

LOW ELEMENTAL REYNOLDS RESULTS

0 2 4 6 8

x

2

1

0

y

(a) The flow solution.

0 0.25 0.5

y

4x

0.005 0.01 0.015 0.02 0.025

(b) The magnitude of the erroneous flow in the bottom wall rotated 90 degrees to the right. Note the large
contribution to the flow error at the wall tip to the right which causes the large errors evvv.

Figure 2.13: A flow solution for the problem in Figure 2.12, computed using the VANS equations and the pa-
rameters in Table 2.3 and an erroneous flow plot. For this particular solution q = 1, h = 0.025 and α = 10−1

were used.

Using these parameters the errors in Figure 2.14 and the flow field in Figure 2.13 are
found. As shown in Figures 2.14a and 2.14b, we generally find that O

(
evvv

)=O
(
10−q

)
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when q ≥ 0 which confirms the bounds on κ̄ in Section 2.4 and expected flow reduc-
tion vΓ/v f in Equation 2.113. Furthermore, for the NSDP equations in Figure 2.14d
O (ul ) =O

(
α10−q

)
and for the VANS equations in Figure 2.14c O (ul ) =O

(
α210−q

)
, which

confirms the estimated flow reduction for us /u f in Equation 2.114. When q < 0 the con-
straints derived in Section 2.4 are not satisfied, and relatively large errors evvv are found as
predicted in Equation 2.116. As expected, larger errors evvv than ul are found. The larger
evvv is mainly caused by spurious flow through the tips of the walls as shown in Figure 2.13.
Since the spurious flow mainly crosses the corners of the walls but not Γw , it only shows
up in the computation of evvv and not in the computation of ul . Furthermore, as the wall is
two elements thick, the different h lead to slightly different problems with slightly differ-
ent solutions, but no qualitatively different behavior between the solutions is observed
for h < 0.1. For h = 0.1 the mesh is too coarse and is not able to facilitate the vortices
at the base of the walls as observed in Figure 2.13. We note that for q ≤ 0 the solution
procedure becomes less stable and shows longer convergence times.

LOW ELEMENTAL REYNOLDS OPTIMIZATION PARAMETER SELECTION

Subsequently, the errors in Figure 2.14 are used to select appropriate optimization values
for q and α such that evvv ≈ 10−1 and ul < 10−2. For the VANS equations we use q = 1 as
for this setting evvv ≈ 10−1 in Figure 2.14a. We note that the errors are actually slightly
higher but choose q = 1 as q = 2 would result in evvv ≈ 10−2 and possibly a too severe
penalization on the intermediate design where α≈ 0.5 and convergence to inferior local
optima. Moreover, for the selection ofαwe note that whenα< 10−2 design convergence
of the optimization problems in Section 2.7 was often ill behaved for both the VANS and
NSDP equations. In Figure 2.14c for q = 1 we find ul ≈ 10−3 < 10−2 when α = 10−1 for
the VANS equations. To select q for the NSDP equation both q = 1 and q = 2 are viable
options for evvv ≈ 10−1 in Figure 2.14b. If we select q = 1, we require α = 10−2 to achieve
ul ≈ 10−3 < 10−2 for the NSDP equations in Figure 2.14d. However, if we select q = 2,
α= 10−1 is sufficient to achieve ul ≈ 10−3 < 10−2 for the NSDP equations in Figure 2.14d.
For the NSDP equations there are thus two options for appropriate parameter settings
although we suspect the parameters using q = 2 might put a too severe penalization on
intermediate designs. All parameter setting are summarized in Table 2.4 where we use a
superscript to denote the parameter setting of a certain model.

VANS(a) NSDP(a) NSDP(b)

q 1 1 2

α 10−1 10−2 10−1

Table 2.4: Parameter settings to achieve sufficient flow penalization such that evvv ≈ 10−1 and ul < 10−2 during
low Reynolds optimization for the VANS and NSDP equations. Two options (NSDP(a) and NSDP(b)) are viable
for the NSDP equations.

The selected penalization parameters can be compared against common practice.
Using the definition of the maximum Darcy penalization in Equation 2.111 we find:

K = µ

L2Da
= 105, (2.130)
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h = 0.1L, α= 10−1, h = 0.025L, α= 10−1, h = 0.05L, α= 10−2

h = 0.05L, α= 10−1, h = 0.0125L, α= 10−1, h = 0.05L, α= 10−3

−1 0 1 2 310−3

10−2

10−1

100

q

evv v

(a) Error evvv representative of flow reduction vΓ/v f ,
computed using the VANS equations.

−1 0 1 2 310−3

10−2

10−1

100

q

evv v

(b) Error evvv representative of flow reduction vΓ/v f ,
computed using the NSDP equations.
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(c) Error ul representative of flow reduction v s /v f ,
computed using the VANS equations.
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(d) Error ul representative of flow reduction v s /v f ,
computed using the NSDP equations.

Figure 2.14: The errors evvv and ul for low Ree in the problem as illustrated in Figure 2.12 using the parame-
ters from Table 2.3 computed using varying h and α. The horizontal solid black lines indicate the maximum
allowable errors evvv ≈ 10−1 and ul < 10−2 for optimization, and are used to select appropriate optimization
parameters q and α.

where we used Da = 10−5 as recommended by Olesen et al. (2006), a parameter which of-
ten requires a lot of tuning. On the contrary, since we use κ̄ as defined in Equation 2.126
a maximum penalization is found using Equation 2.109 as:

K h =µ 10q

h2α
. (2.131)

Consequently, using the optimization parameters in Table 2.4 we find the maximum pe-
nalizations:

K
V AN S
h =µ 10q

h2α
= 102 µ

h2 ,

K
N SDP
h =µ 10q

h2α
= 103 µ

h2 ,

(2.132)
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where the parameters for NSDP(a) and NSDP(b) result in the same maximum penaliza-

tion K
N SDP
h and the resulting penalization values for the four different mesh sizes can

be found in Table 2.5. Even though the maximum penalization values for each model in
Table 2.5 span two (almost three) orders of magnitude for varying h, similar error magni-
tudes are found for the same settings of q and α in Figure 2.14. Moreover, whereas using
the common penalization definition in Equation 2.130 (K = 105) some tuning would be
required to find the appropriate setting for the NSDP equations, using our new defini-
tion we are able to precisely define K h = 6.4 ·106 to achieve the desired error magnitude
for h = 0.0125.

h [m] 0.1 0.05 0.025 0.0125

K
V AN S
h [ N s

m4 ] 104 4 ·104 1.6 ·105 6.4 ·105

K
N SDP
h [ N s

m4 ] 105 4 ·105 1.6 ·106 6.4 ·106

Table 2.5: The Darcy penalization from Equation 2.132 computed using the material parameters in Table 2.3
and optimization parameters in Table 2.4. Both optimization parameter setting for NSDP(a) and NSDP(b) in

Table 2.4 result in the same maximum penalization K
N SDP
h .

2.6.2. MODERATE ELEMENTAL REYNOLDS NUMBERS
Secondly, a sweep on the penalization is performed for moderate Ree (and moderate Re)
using the new parameters given in Table 2.6. The walls are shifted to the left (Lw all = L)
to account for large wakes. Using these parameters, the Reynolds number is computed

µ ρ umax pout L Lw all Lx

5 ·10−3 [Pas] 1 [kgm−3] 1 [ms−1] 1 [Pa] 1 [m] L 8L

Table 2.6: The material and problem parameters for the flow problem in Figure 2.15, when moderate Reynolds
flow is investigated for varying q and α.

as:

Re = ρumax L

µ
= 2 ·102. (2.133)

Furthermore, as the elemental Reynolds number is directly proportional to the mesh
size Ree ∝ h only the relatively large mesh sizes of h = 0.1L, h = 0.05L and h = 0.025L
are investigated. Subsequently, the elemental Reynolds number is computed by approx-
imating

∣∣vvv f
∣∣≈ umax as:

Ree = ρumax h

µ
= 2h ·102, (2.134)

resulting in Ree = 20, Ree = 10 and Ree = 5 for the decreasing element sizes respectively.
As Ree > 1 the definition of κ̄ changes following Table 2.2 as:

κ̄= 10q H e Ree = 10q ρumax

hµ
. (2.135)
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MODERATE ELEMENTAL REYNOLDS RESULTS

0 2 4 6 8

x

2
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y

Figure 2.15: The resulting flow field for the problem in Figure 2.12, computed using the VANS equations and
the parameters in Table 2.6. For the computation of this particular flow field q = 3 and α = 10−2 were used,
and for all other settings (VANS and NSDP) similar flow fields were found.

Using these parameters, the errors in Figure 2.16 and flow profile in Figure 2.15 are
found. For q =−1, flow in the porous walls showed a tendency to oscillate and not
stabilize and for q <−1 flow in the porous walls does not stabilize. This problem is
more prominently present in the VANS equations than in the NSDP equations. In Fig-
ures 2.16a and 2.16b we generally find O

(
evvv

)=O
(
10−q

)
for both the VANS and NSDP

equations, confirming the bounds on κ̄ derived in Section 2.4 and expected flow reduc-
tion vΓ/v f in Equation 2.113. Furthermore, in Figure 2.16d we find O (ul ) =O

(
α10−q

)
for the NSDP equations as expected in Equation 2.114. Contrarily, for the VANS equa-
tions ul in Figure 2.16c behaves less regular. For α= 10−1, the error behaves regular as
O (ul ) =O

(
α210−q

)
as predicted by Equation 2.114. However, for α< 10−1 errors behave

less regular and are bounded from above as O (ul ) ≤O
(
α10−q

)
. Nonetheless, the error

follows the prediction of O (ul ) =O
(
α210−q

)
, but only for q > 1 when α= 10−2 and for

q > 2 when α= 10−3. However, comparing errors between the VANS and NSDP equa-
tions in Figure 2.16, we find that the VANS equations generally result in errors of lower
or similar magnitude.

MODERATE ELEMENTAL REYNOLDS OPTIMIZATION PARAMETER SELECTION

Subsequently, the errors in Figure 2.16 are used to find appropriate setting for q and α

such that evvv ≈ 10−1 and ul < 10−2. For the VANS equations we use q = 1 as for this set-
ting evvv ≈ 10−1 in Figure 2.16a. Moreover, in Figure 2.16c we find ul ≈ 10−3 < 10−2 for
q = 1 and α = 10−1 which we will thus use for optimization using the VANS equations.
For the NSDP equations we also use q = 1 as for this setting evvv ≈ 10−1 in Figure 2.16b.
Contrary to the low Reynolds NSDP optimization, the moderate Reynolds NSDP opti-
mization has only one appropriate setting for q . Furthermore, for q = 1 and α= 10−2 we
find ul ≈ 10−3 < 10−2 in Figure 2.16d which we will thus adopt for optimization using the
NSDP equations. Parameter settings for moderate Reynolds optimization can be found
in Table 2.7.

Furthermore, using κ̄ as in Equation 2.135 results in the maximum Darcy penaliza-
tion in Equation 2.110 of:

K h = 10qρ
∣∣vvv f

∣∣
hα

= 10qρumax

hα
. (2.136)
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h = 0.1L, α= 10−1, Ree = 20, h = 0.05L, α= 10−2, Ree = 10

h = 0.05L, α= 10−1, Ree = 10, h = 0.05L, α= 10−3, Ree = 10

h = 0.025L, α= 10−1, Ree = 5,
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(a) Error evvv representative of flow reduction vΓ/v f ,
computed using the VANS equations.
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(b) Error evvv representative of flow reduction vΓ/v f ,
computed using the NSDP equations.
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(c) Error ul representative of flow reduction v s /v f ,
computed using the VANS equations.
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(d) Error ul representative of flow reduction v s /v f ,
computed using the NSDP equations.

Figure 2.16: The errors evvv and ul for the moderate Reynolds problem as illustrated in Figure 2.12 using the
parameters from Table 2.3 computed using varying h and α. The horizontal solid black lines indicate the
maximum allowable errors evvv ≈ 10−1 and ul < 10−2 for optimization, and are used to select appropriate opti-
mization parameters q and α.

Consequently, using the optimization parameters in Table 2.7 we find the maximum pe-
nalizations of:

K
V AN S
h = 10qρumax

hα
= 102 ρumax

h
,

K
N SDP
h = 10qρumax

hα
= 103 ρumax

h
,

(2.137)

resulting in the penalization values for varying h in Table 2.8. Using the common penal-
ization definition in Equation 2.111 (with Da = 10−5):

K = µ

L2Da
= 5 ·102, (2.138)

would thus result in under penalization for the NSDP equations.



2

50 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

VANS(a) NSDP(a)

q 1 1

α 10−1 10−2

Table 2.7: Parameter settings to achieve sufficient flow penalization such that evvv ≈ 10−1 and ul < 10−2 during
moderate Reynolds optimization for the VANS and NSDP equations.

h [m] 0.1 0.05 0.025

K
V AN S
h [ N s

m4 ] 103 2 ·103 4 ·103

K
N SDP
h [ N s

m4 ] 104 2 ·104 4 ·104

Table 2.8: The Darcy penalization from Equation 2.137 computed using the parameters in Table 2.6 and opti-
mization parameters in table 2.7.

2.6.3. SWEEP ON THE ELEMENTAL REYNOLDS NUMBER
Comparing overall performance of the VANS and NSDP error convergence both sets of
equations are found to reduce errors satisfactory for increasing q and decreasing α and
can thus be used to find precise optima in topology optimization. However, for higher
Reynolds numbers an estimation of Ree has to be made which depends on an a priori
estimated flow velocity

∣∣vvv f
∣∣. Subsequently, when Ree > 1 this estimation is used to set

the appropriate κ̄ as found in Table 2.2. In a changing topology Reynolds numbers may
change and this estimate may be incorrect. The Reynolds dependence of the errors in
the VANS and NSDP equations is thus investigated using the parameters in Table 2.9
where in contrast to Sections 2.6.1 and 2.6.2 we fix q = 1 and h = 0.1 ·L but investigate for
varying Reynolds number:

Re = ρumax L

µ
, (2.139)

by changing the density as:

ρ = Reµ

umax L
= Re, (2.140)

Moreover, using the density and fixed mesh size h = 0.1 ·L the elemental Reynolds num-
ber can be approximated as:

Ree ≈ ρumax h

µ
= Reµ

umax L

umax 0.1 ·L

µ
= 0.1 ·Re. (2.141)

Using the bounds on κ̄ as found in Table 2.2, maximum penalization values are found in
Equations 2.109 and 2.110 as:

K h =µ10q H e

α
= 103

α
for Ree ≤ 1,

K h = 10q H e Ree

α
= 103Ree

α
for Ree > 1.

(2.142)
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µ umax pout L Lw all Lx q h

1 [Pas] 1 [ms−1] 1 [Pa] 1 [m] L 20L 1 0.1L

Table 2.9: The material and problem parameters for the flow problem in Figure 2.15, for varying Reynolds
numbers (and thus varying ρ).

Furthermore, we also investigate the case where the elemental Reynolds number is un-
derestimated and we use the penalization for Ree ≤ 1 in Equation 2.142 (κ̄= 10q H e ) to
compute errors for the cases where Ree > 1. Using the resulting penalization values

10−3 10−2 10−1 100 101 102
104

105

106

107

Ree

K
h

α= 10−1, κ̄= 10q H e Ree for Ree > 1

α= 10−2, κ̄= 10q H e Ree for Ree > 1

α= 10−1, κ̄= 10q H e for Ree > 1

α= 10−2, κ̄= 10q H e for Ree > 1

Figure 2.17: Maximum penalization values K h computed using the Equation 2.142 and used in the computa-
tions for Figure 2.18. For Ree ≤ 1 we use κ̄= 10q He , while for Ree > 1 we use two different definitions κ̄.

found in Figure 2.17 leads to the errors shown in Figure 2.18. No Reynolds numbers
larger than Re = 103 (Ree = 0.1 ·Re = 102) were investigated as this would be within the
turbulent flow regime which the flow solver is not suited for. When we use κ̄= 10q H e Ree

for Ree > 1 both evvv and ul decrease in Figure 2.18 but remain close to the expected order
of magnitude as predicted in Section 2.4.4. However, when we divert from the penaliza-
tion bounds derived in Section 2.4 and use a fixed κ̄= 10q H e for Ree > 1, the order of
magnitude of ul in Figure 2.18 increases significantly for increasing Ree . For Ree > 1 a
correct penalization is thus coupled to the elemental Reynolds number.

2.7. TOPOLOGY OPTIMIZATION EXAMPLES USING THE VANS
AND NSDP EQUATIONS

To verify the applicability of the VANS equations to topology optimization firstly a flow
problem is optimized for low and moderate Reynolds flow, after which we investigate
optimization under moderate Reynolds flow in more detail. The problems are inspired
by the flow around a bend problem as defined by Kreissl and Maute (2012), and the two
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VANS, α= 10−1, κ̄= 10q H e Ree for Ree > 1, VANS, α= 10−2, κ̄= 10q H e Ree for Ree > 1

NSDP, α= 10−1, κ̄= 10q H e Ree for Ree > 1, NSDP, α= 10−2, κ̄= 10q H e Ree for Ree > 1

VANS, α= 10−1, κ̄= 10q H e for Ree > 1, VANS, α= 10−2, κ̄= 10q H e for Ree > 1

NSDP, α= 10−1, κ̄= 10q H e for Ree > 1, NSDP, α= 10−2, κ̄= 10q H e for Ree > 1
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(a) Error evvv representative of flow reduction vΓ/v f

computed using q = 1 for a range of Reynolds numbe
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(b) Error ul representative of flow reduction v s /v f

computed using q = 1 for a range of Reynolds num-
bers.

Figure 2.18: The errors evvv and ul for a range of Reynolds numbers computed using the parameters from Ta-
ble 2.9 resulting in the penalization values in Figure 2.17.

channel flow problem as defined by Olesen et al. (2006).

2.7.1. INITIAL OPTIMIZATION INVESTIGATION
To push the flow penalization within an optimization to its limits a flow around a two el-
ement thick porous solid wall as shown in Figure 2.19 is optimized. The inlet and outlet
are separated from the design domain by short pipes to allow for an accurate description
of the boundary conditions. On inlet Γi n a parabolic velocity profile with maximum ve-
locity umax is prescribed and on outlet Γout static reference pressure pout is prescribed.
The objective of the optimization procedure is to minimize pressure drop:

f =
∫
Γi n

pdΓ−
∫
Γout

pdΓ, (2.143)

under a volume constraint of V f = 0.5. In fact, minimizing pressure drop is equivalent
to minimizing fluid energy dissipation. The optimization problem is initialized using a
completely fluid design domain (α= 1) and the optimizer thus determines where to in-
troduce solid material. Given the pressure drop objective, adding material will generally
increase pressure drop and the first few design iterations objective values will increase.
Furthermore, viscosity µ is determined using the Reynolds number as:

µ= ρumax L

Re
, (2.144)

and the structure is optimized for Re = 0.2 and Re = 200 resulting in Ree = 0.01 and
Ree = 10 respectively using the parameters in Table 2.10. Subsequently, maximum pe-
nalization κ̄ is determined using q , H e and Ree as in Table 2.2, and we select q and α

following Tables 2.4 and 2.7 for low (Ree = 0.01) and moderate (Ree = 10) Reynolds opti-
mization respectively. In Table 2.10 we show the penalization in the intermediate design
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6L

10L

5∆x

2∆x

2L
umax

pout

Γw all

LL

5.5L

Γi n Γout

Figure 2.19: An optimization problem which minimizes pressure drop for flow around a thin wall of two ele-
ments thick. The thin wall (dark gray) is modeled using a porous formulation and its density is fixed at α, to
challenge the flow model the thin wall is surrounded by a fluid non design domain (white) of five elements
thick. A parabolic flow is prescribed on inlet Γi n and a constant pressure on outlet Γout . The inlet/outlet are
separated from the design domain by fluid pipes (white) surrounded by solid material where no flow is present
(black). The optimization procedure is initialized using a completely fluid design domain (light gray).

where α≈ 0.5 and thus −µκ̄(1−α)/α ≈ −µκ̄ and the penalization in the solid domain
K h . It can be observed that the selected parameters result in a maximal penalization K h

which spans two orders of magnitude for both the VANS and NSDP equations respec-
tively. Kreissl and Maute (2012) find appropriate maximum penalization values for the
problem on which our problem is inspired of K = 2.5 ·106 for Re = 0.1 and K = 2.5 ·104

for Re = 10. We thus use similar order of magnitude penalizations for the low and mod-
erate Reynolds NSDP equations. However, our moderate Reynolds penalization could be
expected to be one order higher than the one by Kreissl and Maute (2012) as our moder-
ate Reynolds number is one order higher (Re = 200 instead of Re = 10) and the elemen-
tal Reynolds number should therefore also be one order higher. Since our penalization
scales with elemental Reynolds number, the penalization by Kreissl and Maute (2012)
could be extrapolated to Re = 200 to find a penalization of magnitude 105 which is one
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ρ umax pout L h H e V f

1 [kgm−3] 1 [ms−1] 1 [Pa] 1 [m] 0.05 400 [m−2] 0.5 [m]

Re, Ree q α µκ̄ K h

NSDP(a) 0.2, 0.01 1 10−2 2 ·104 2 ·106

NSDP(b) 0.2, 0.01 2 10−1 2 ·105 2 ·106

NSDP(a) 200, 10 1 10−2 2 ·102 2 ·104

VANS(a) 0.2, 0.01 1 10−1 2 ·104 2 ·105

VANS(a) 200, 10 1 10−1 2 ·102 2 ·103

Table 2.10: The material and problem parameters for the optimization problem in Figure 2.19. The structure
is optimized for low and moderate Reynolds flow, resulting in two different Ree . For Ree = 0.01 and Ree = 10
values for q and α are selected following Tables 2.4 and 2.7 respectively and κ̄ is computed following Table 2.2,
resulting the maximal penalizations K h computed using Equations 2.131 and 2.136. We show µκ̄ as this is the
term used to penalize intermediate designs where α≈ 0.5.

order higher than the one in Table 2.10 for Re = 200 NSDP optimization.

Optimized designs can be found in Figures 2.20 and 2.21. Furthermore, error evvv is
computed by constructing porous domain Ωp using all elements where α < 0.5, and ul

as defined in Equation 2.129 is computed using Γw all as defined in Figure 2.19. Both
errors and the optimized objectives f ∗ can be found in Table 2.11. The VANS equations

VANS(a) NSDP(a) NSDP(b) VANS(a) NSDP(a)

Re = 0.2 Re = 0.2 Re = 0.2 Re = 200 Re = 200

q = 1 q = 1 q = 2 q = 1 q = 1

α= 10−1 α= 10−2 α= 10−1 α= 10−1 α= 10−2

evvv 7.70 ·10−2 8.70 ·10−2 2.28 ·10−2 2.56 ·10−2 3.07 ·10−2

ul 3.60 ·10−3 3.28 ·10−3 3.59 ·10−3 9.24 ·10−4 8.62 ·10−4

f ∗ 278.2 274.0 293.4 0.4177 0.4529

VANSR VANSR VANSR VANSR VANSR

evvv 8.29 ·10−8 8.52 ·10−8 1.10 ·10−8 1.98 ·10−8 2.46 ·10−8

ul 3.40 ·10−13 3.56 ·10−13 4.08 ·10−14 8.43 ·10−14 9.00 ·10−14

f ∗ 280.6 282.8 302.4 0.4209 0.4676

Table 2.11: The optimized objectives and errors for the problem defined in Figure 2.19 and Table 2.10 with
optimized designs in Figures 2.20 and 2.21. VANSR solutions are computed using α= 10−3 and q = 7.
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(a) VANS(a), Re = 0.2, q = 1, α= 10−1 (b) NSDP(a), Re = 0.2, q = 1, α= 10−2
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(c) VANS(a), Re = 200, q = 1, α= 10−1 (d) NSDP(a), Re = 200, q = 1, α= 10−2

Figure 2.20: The optimal design and flow fields for the problem in Figure 2.19 using the parameters in Ta-
ble 2.10. Although flow through the solid (gray) material is plotted, spurious solid flow remains low as shown
by the errors in Table 2.11.

are used to compute reference flow and pressure solutions (VANSR solutions), objectives
and errors. To achieve accurate reference results we set α = 10−3 and q = 7, and post
process the designs into crisp solid fluid distributions where α is set to zero for α < 0.5
and to one for α≥ 0.5. The convergence of the objectives is shown in Figure 2.22 where
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the objective is normalized using the objective value at the first design iteration f1. In
principle, all optimization procedures ran for 300 iterations. However, if the design did
not stabilize after 300 iterations the optimizer is allowed to optimize for an additional
200 or 400 iterations depending on the convergence behavior resulting in a total of 500
or 700 optimization iterations respectively. In general errors for the VANS and NSDP

Figure 2.21: The inferior local optimum for the problem in Figure 2.19, computed using the NSDP(b) parameter
set from Table 2.10 for Re = 0.2. spurious flow and objective values can be found in Table 2.11.

optimized designs in Table 2.11 are comparable. However, reference objectives of the
VANS based optimal designs are generally lower than those of the NSDP based optimal
designs.

ANALYSIS OF THE RESULTS

A noticeably different topology is found for Re = 0.2 when using the NSDP(b) model in
Figure 2.21 than using the VANS(a) or NSDP(a) models in Figures 2.20a and 2.20b. More-
over, the NSDP(b) based optimization shows a longer and less regular convergence in
Figure 2.22a and finds the worst performing optimum as shown in Table 2.11. This con-
vergence behavior is tied to the two solid islands beside the inner wall in Figure 2.21
and the fact that q = 2 for NSDP(b) instead of q = 1 for NSDP(a), causing a greater µκ̄ for
the NSDP(b) model as can be found in Table 2.10. In the fist few design iterations, the
optimizer adds gray material (α≈ 0.5) to the fluid design domain to improve the design.
However, using q = 2 this gray material is over-penalized as flow is reduced as O

(
10−q

)
as

derived in Equation 2.113. Over-penalizing flow causes much energy dissipation in the
gray domain which is inefficient for minimizing pressure drop, as a consequence these
gray areas are quickly converted to solid domains (α→ 0) such that flow through them
and thus fluid energy dissipation is minimized. Moreover, in Figures 2.23a and 2.23b
intermediate designs for the VANS(a) and NSDP(a), Re = 0.2 optimization can be found
which also show some intermediate material islands beside the wall. However, as the
VANS(a) and NSDP(a) based optimizations use q = 1 they do not over-penalize these in-
termediate designs and are able to escape this inferior local optimum. Furthermore,
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Figure 2.22: The convergence of the designs in Figures 2.20 and 2.21 with errors and objectives in Table 2.11.
Objective values are normalized using the objective in the first design iteration f1. During the first few design
iterations objective values drastically increase by the addition of solid material to the fluid design domain,
however normalized objective values are cut of at 2 to be able to inspect the convergence behavior

the convergence plot for the NSDP(b) parameter set in Figure 2.22a shows a large bump
starting around iteration 250. This bump is caused by the optimization process decreas-
ing the islands by pushing the boundaries inward during iterations 250-400. When the
boundaries are pushed inward elements are not instantly switched from solid to fluid but
move through some grayscale values α ≈ 0.5. In these grayscale areas flow speeds and
thus fluid energy dissipation are increased and sensitivities change due to the non-linear
nature of the Navier-Stokes equations. Due to the increased fluid energy dissipation the
pressure drop objective increases, and due to the changed sensitivity information the
design is further disturbed. The small oscillations around iterations 200-400 in objective
for the VANS(a) and NSDP(a) convergence in Figure 2.22a are caused by a similar effect.
During these iterations the designs and objective are quite close to the optimal design
and objective, but small tweaks to the boundaries continue to be made which causes
some boundary elements to become gray increasing fluid energy dissipation and pres-
sure drop. A final remark is made on the fact that for Re = 0.2 the optimized pressure
drop f ∗ is close to the reference VANSR pressure drop for the VANS equations but large
differences are observed between the NSDP and VANSR pressure drop in Table 2.11. As
shown in Section 2.3.1 for flow parallel to a wall the interpretation of the solid/fluid inter-
face is off by h/2, causing lowered pressure drop through a channel for the NSDP model
as confirmed in Appendix 2.D. However, the VANS equations correct for this error via the
second Brinkman correction.

Comparing the optimal designs for Re = 200 in Figures 2.20c and 2.20d and refer-
ence objectives in Table 2.11, the moderate Reynolds NSDP(a) based optimization also
seems to converge to an inferior local optimum. Convergence to the inferior local op-
timum may be caused by an overestimation of the Reynolds and consequently elemen-
tal Reynolds numbers. Both Re and Ree are computed using the maximum velocity at
the inlet umax . However, within the design domain flow channels generally widen and
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(a) VANS(a), iteration 4, Re = 0.2,
q = 1, α= 10−1.

(b) NSDP(a), iteration 4, Re = 0.2,
q = 1, α= 10−2.

(c) VANS(a), iteration 150,
Re = 200, q = 1, α= 10−1.
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(d) NSDP(a), iteration 80, Re = 200,
q = 1, α= 10−2, a small solid island
can be found at the arrow tip.

Figure 2.23: Intermediate designs and flow fields for the optimal design and flow fields found in Figure 2.20.

flow speed is decreased resulting in an overestimation of elemental Reynolds number
and thus penalization κ̄= 10q H e Ree . For similar reasons as for the Re = 0.2 NSDP(b)

convergence, this over-penalization causes the Re = 200 NSDP(a) optimization to con-
verge to an inferior local optimum. However, the Re = 200 VANS(a) optimization uses the
same κ̄ as can be seen in Table 2.10 and finds an optimum containing similar error evvv as
the Re = 200 NSDP(a) optimization as can be seen in Table 2.11. For similar errors the
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VANS(a) model thus shows improved convergence behavior over the NSDP(a) case. Fur-
thermore, the NSDP(a) Re = 200 convergence in Figure 2.22b shows oscillations and an
increase in objective value starting around iteration 80. These disturbances are caused
by the small solid island to the left of the wall as shown in Figure 2.23d disappearing. The
small solid island itself increases pressure drop locally as flow moves around it. However,
removing it causes a non-linear reaction of the flow in the remainder of the channel and
consequently total pressure drop to increase. Moreover, the VANS(a) convergence in Fig-
ure 2.22b shows a longer range of oscillations and increasing objective during iterations
80-200, which is caused by the porous material in the intermediate designs as shown
in Figure 2.23c and the non-linearity of the Navier-Stokes equations. While the design
changes it evolves through some gray material states where flow is less penalized caus-
ing more flow through the porous domain which increases power dissipation and thus
pressure drop, similar to the convergence for the NSDP(b) based optimization. Further-
more while small changes at the boundaries may seem to benefit the objective looking
at the linear sensitivities, non-linear effects on the flow actually increase the objective.

Penalizing intermediate designs too much by setting q > 1 resulting in large κ̄ may
thus cause convergence to inferior local optima as shown in Figure 2.21. However, if an
appropriate penalization is used (q = 1) low Reynolds optimization problems converge
nicely using both the VANS(a) (withα= 10−1) and NSDP(a) (withα= 10−2) models. How-
ever, for moderate Reynolds optimization estimating the elemental Reynolds number
introduces uncertainties in the parameter settings which may again cause convergence
to inferior local optima, a property which will be examined in more detail in the next
section.

TUNING THE NSDP PARAMETERS FOR MODERATE REYNOLDS OPTIMIZATION

For the Re = 0.2 NSDP(a) based optimization, lower q (and thus lower κ̄) resulted in an
improved design. As the Re = 200 NSDP(a) based optimization also converges to a local
optimum, lowering the maximum penalization may cause improved convergence be-
havior. We thus investigate optimal designs and convergence for lower q (lowering κ̄ and
K ), increased α (keeping κ̄ constant but lowering K ) or both, resulting in the optimiza-
tion parameters as in Table 2.12 (the same material parameters as in Table 2.10 are used).
Using α= 10−2 and lowered q = 0 (NSDP(c)) results in the inferior local optimum in Fig-

Re, Ree q α µκ̄ K h

NSDP(c) 200, 10 0 10−2 2 ·101 2 ·103

NSDP(d) 200, 10 1 10−1 2 ·102 2 ·103

NSDP(e) 200, 10 0 10−1 2 ·101 2 ·102

Table 2.12: The tweaked optimization parameters for the problem in Figure 2.19. Optimized designs can be
found in Figure 2.24 and the resulting objective values and errors in Table 2.13.

ure 2.24a. Although it converged to a distinct solid/fluid design and the reference objec-
tive value decreased to f ∗ = 0.4699 as found in Table 2.13, it still performed worse than
the VANS optimum in Table 2.11 with f ∗ = 0.4209. Furthermore, we note that the VANSR
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NSDP(c) NSDP(d) NSDP(e)

q = 0 q = 1 q = 0

α= 10−2 α= 10−1 α= 10−1

evvv 3.85 ·10−1 4.39 ·10−2 2.63 ·10−1

ul 4.51 ·10−3 7.84 ·10−3 4.53 ·10−2

f ∗ 0.4514 0.4525 0.4166

VANSR VANSR VANSR

evvv 1.045 ·10−1 2.40 ·10−8 1.96 ·10−7

ul 5.20 ·10−13 9.13 ·10−14 6.21 ·10−13

f ∗ 0.4699 0.4678 0.4312

Table 2.13: The optimized objectives and errors for the problem defined in Figure 2.19 using the material pa-
rameters in Table 2.10 and optimization parameters in Table 2.12. Optimized designs can be found in Fig-
ure 2.20.

reference error for the NSDP(c) based design in Table 2.13 is evvv = 1.045 ·10−1 which is
caused by the small tip on the left of the solid island in Figure 2.24a on which flow im-
pinges at high speeds. Subsequently, using q = 1 and increased α= 10−1 (NSDP(d)) re-
sults in the design found in Figure 2.24b which suffers from the same problems as the ini-
tially optimized design in Figure 2.20d and is an inferior local optimum with f ∗ = 0.4678
as found in Table 2.13. However, lowering q = 0 and increasingα= 10−1 (NSDP(e)) results
in the converged discrete solid/fluid design in Figure 2.24c with a reference objective of
f ∗ = 0.4312 which is only 2.45% worse than the VANS(a) based reference objective in Ta-
ble 2.11. Improved convergence behavior however came at the cost of increased errors as
evvv increased by one order to evvv = 2.63 ·10−1 and ul increased by two orders to 4.53 ·10−2

compared to the Re = 200 errors in Table 2.11. Furthermore, convergence of the objec-
tives can be found in Figure 2.25 where the NSDP(e) based optimization shows the most
stable convergence behavior. Solution precision is thus traded for convergence behav-
ior when using the NSDP equations, whereas the VANS model is able to attain precise
solutions and good objective convergence for moderate Reynolds optimization.

2.7.2. SOLUTION PRECISION VERSUS DESIGN CONVERGENCE

In the previous section we have shown that by reducing the Darcy penalization and in-
creasing errors design convergence can be improved for the NSDP equations. In this
sections we study the balance between solution precision and design convergence and
establish that the VANS equations attain better convergence behavior for lower errors
than the NSDP equations. We optimize the problem as shown in Figure 2.26, which is
inspired by one of the problems by Olesen et al. (2006) and use the material and prob-
lem parameters as shown in Table 2.14. For the NSDP equations all parameter settings
except those in NSDP(b) (with q = 2) are investigated. Furthermore, beside the VANS(a)
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(a) NSDP(c), q = 0, α= 10−2
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(b) NSDP(d), q = 1, α= 10−1 (c) NSDP(e), q = 0, α= 10−1

Figure 2.24: Optimal designs for Re = 200 computed using the NSDP equations, the optimization parameters
in Table 2.12 and material parameters in Table 2.10.
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NSDP(c), q = 0, α= 10−2

NSDP(d), q = 1, α= 10−1

NSDP(e), q = 0, α= 10−1

Figure 2.25: The convergence of the designs in Figure 2.24 with errors and objectives in Table 2.13. Objective
values are normalized using the objective at the first design iteration f1. During the first few design iterations
objective values drastically increase by the addition of solid material to the fluid design domain, however nor-
malized objective values are cut of at 2 to be able to inspect the convergence behavior.

parameters which are the same as used in the previous sections, we also use the VANS(b)

parameters with lowered q = 0 to investigate if this also leads to improved designs for
the VANS equations. We minimize pressure drop for flow through two channels which
flow in opposite direction using maximum fluid volume fraction V f = 0.4. Inspecting
the optimized results in Olesen et al. (2006), the optimum is expected to consists of two
separate channels of constant height L which would result in a pressure drop of:

∆p =
∫
Γi n

pdΓ−
∫
Γout

pdΓ= 112
µumax

L
, (2.145)
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Γi n

Γi n

Γout

Γout

umax

umax

umax

umax

2L 3L 2L

2.5L

2.5L

L

L
2h

Figure 2.26: An optimization problem which minimizes pressure drop for flow through 2 channels. On the
black thin wall at the inlet/outlet no slip and no penetration conditions are explicitly applied. Parabolic flow
profiles are applied at all inlets Γi n and outlets Γout . The optimization procedure is initialized using a com-
pletely fluid design domain (light gray).

ρ µ umax L h H e Re, Ree V f

1 [kgm−3] 1/180 [Pas] 1 [ms−1] 1 [m] 0.05 [m] 400 [m−2] 180, 9 0.4

q α µκ̄ K h

NSDP(a) 1 10−2 2 ·102 2 ·104

NSDP(d) 1 10−1 2 ·102 2 ·103

NSDP(c) 0 10−2 2 ·101 2 ·103

NSDP(e) 0 10−1 2 ·101 2 ·102

VANS(a) 1 10−1 2 ·102 2 ·103

VANS(b) 0 10−1 2 ·101 2 ·102

Table 2.14: The material and problem parameters for the optimization problem in Figure 2.26. for the NSDP
equations all previously used parameter sets except for NSDP(b) are investigated. For the VANS equations we
use the standard parameter set (VANS(a)) but also investigate the case where q = 0 resulting in the VANS(b)

parameter set.

where we assumed constant parabolic flow throughout the two channels. We thus nor-
malize the pressure drop objective as:

f =
(∫
Γi n

pdΓ−
∫
Γout

pdΓ

)
/∆p. (2.146)

However, for this objective to be achieved the design would have to include a two ele-
ment thick horizontal wall through the center of the domain. Excessive flow leakage and
consequent errors in pressure drop as found in Appendix 2.D might thus be a problem
for this optimization problem, and this may lead to alternative solutions.
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ANALYSIS OF THE RESULTS

Inspecting the optimized designs in Figure 2.27 we find that none of the optimization
procedures converged to the theoretical optimum which is confirmed by the objective
values in Table 2.15 for which f ∗ > 1. However, the VANS(b) based design in Figure 2.27f
comes close to the theoretical optimum and finds a reference objective of f ∗ = 1.028 as
found in Table 2.15. Increasing q = 1 for the VANS(a) based design however pushes the
optimizer in a local optimum which splits the flow of all four inlets/outlets and subse-
quently finds an inferior local optimum which performs worse as f ∗ = 1.269. The spu-
rious flow errors are however quite similar with evvv = 2.59 ·10−1 for the VANS(b) based
design and only slightly lower evvv = 1.00 ·10−1 for the VANS(a) design. Nonetheless, flow
errors of evvv =O

(−q
)=O (−1) are expected for the VANS(a) design as predicted in Equa-

tions 2.113, and in this particular design are mainly caused by the thin features at the
upper right and lower left of the center island. Moreover, as these kind of thin features
which guide the flow require sufficient penalization to be found by the optimizer, the
VANS(a) based design is unlikely to be found by the VANS(b) based optimization pro-
cedure. In addition flow error evvv for the VANS(b) based design is quite low due to the
objective of pressure drop minimization. If spurious flow is large, much energy is dissi-
pated by flow through the solid domain and the optimizer thus tends to reduce spurious
flow if possible. Furthermore, the convergence behavior for both VANS based designs in
Figure 2.29 shows both designs converge relatively smoothly.

NSDP(a) NSDP(d) NSDP(c) NSDP(e) VANS(a) VANS(b)

q = 1 q = 1 q = 0 q = 0 q = 1 q = 0

α= 10−2 α= 10−1 α= 10−2 α= 10−1 α= 10−1 α= 10−1

evvv 1.20 ·10−1 1.54 ·10−1 3.70 ·10−1 2.74 ·100 1.00 ·10−1 2.59 ·10−1

f ∗ 1.295 1.376 1.059 2.045 1.274 1.020

VANSR VANSR VANSR VANSR VANSR VANSR

evvv 7.98 ·10−8 8.64 ·10−8 3.705 ·10−8 1.97 ·10−6 7.62 ·10−8 2.99 ·10−8

f ∗ 1.363 1.445 1.130 2.493 1.269 1.028

Table 2.15: The optimized objectives and errors for the problem defined in Figure 2.26 using the parameters in
Table 2.14. Optimized designs can be found in Figure 2.27.

Subsequently, we investigate the NSDP(a) and NSDP(d) based designs which use
q = 1. Both designs in Figures 2.27a and 2.27b are similar to the VANS(a) design in Fig-
ure 2.27e, although they perform worse in terms of objective as shown in Table 2.15. The
decreased objective is mainly caused by the small solid islands at the tip of the thin walls
separating the inlets and outlets. Similar small solid islands can be found in the design at
design iteration 20 of the VANS(a) optimization procedure as shown in Figure 2.28. How-
ever, whereas the NSDP(a) and NSDP(d) based designs solidify the solid islands, using
the VANS(a) model the islands are slowly removed over iterations 20-40 resulting in the
design in Figure 2.27e.
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(a) NSDP(a), q = 1, α= 10−2 (b) NSDP(d), q = 1, α= 10−1
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(c) NSDP(c), q = 0, α= 10−2
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(d) NSDP(e), q = 0, α= 10−1

(e) VANS(a), q = 1, α= 10−1
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(f) VANS(b), q = 0, α= 10−1

Figure 2.27: The optimal design and flow fields for the problem in Figure 2.26 using the parameters in Ta-
ble 2.14. Although flow through the solid (red) material is plotted, spurious solid flow remains low as shown by
the errors in Table 2.15.

Comparing the NSDP based designs which use q = 0, the NSDP(c) based design in
Figure 2.27c seems an intermediate design between the VANS(a) and VANS(b) based de-
signs in Figures 2.27e and 2.27f which is confirmed by the reference objective value of
f ∗ = 1.130 in Table 2.15. The NSDP(c) based design seems to get stuck in an inferior lo-
cal optimum and is found to contain less thin features than the VANS(a) based design
in Figure 2.27e as it is unable to sufficiently penalize flow in these features. Moreover,
the NSDP(e) based design in Figure 2.27d shows a completely different topology and
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Figure 2.28: The intermediate design at iteration 20 for the problem in Figure 2.26 computed using the VANS(a)

model. Note the two solid islands at the arrow tips which are slowly removed over design iterations 20-40
resulting in the optimal design in Figure 2.27e.

performs the worst with a reference objective of f ∗ = 2.493 as found in Table 2.15. Ad-
ditionally, a large difference between optimized ( f ∗ = 2.045) and reference objective is
found, which is caused by the small porous islands in the fluid channels. These porous
islands slow down the flow right before it bends around the thin wall, and thus smooth
the change in direction of the flow but also increase error evvv = 2.74. As the maximum pe-
nalization is low for the NSDP(e) based model it prefers to smooth the flow at the start of
the bend even if more energy is dissipated and pressure drop is increased by flow through
the porous material. However, post processing the design and computing the objective
using a more accurate model increases the objective value by 21.9% from f ∗ = 2.045 to
f ∗ = 2.493. Using the NSDP(e) based optimization procedure thus leads to the worst de-
sign containing the biggest errors for the problem in this section while it resulted in the
best design attainable by the NSDP equations in Section 2.7.1 as seen in Figure 2.24c.
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NSDP(a), q = 1, α= 10−2

NSDP(d), q = 1, α= 10−1

NSDP(c), q = 0, α= 10−2

NSDP(e), q = 0, α= 10−1
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Figure 2.29: The convergence of the designs in Figure 2.27 with errors and objectives in Table 2.15. During
the first few design iterations objective values drastically increase by the addition of solid material to the fluid
design domain, however objective values are cut of at 5 and 3 to be able to inspect the convergence behavior.



2

66 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

FINDINGS

The preceding numerical experiments indicate that increasing solution precision
(higher q and lower α) may lead to convergence to inferior local optima for both VANS
and NSDP based moderate Reynolds optimization procedures. However, the VANS
equations generally show better design convergence for higher flow penalization and
solution precision and require less tuning of the optimization parameters. For low
Reynolds optimization both VANS and NSDP based optimization procedures show good
convergence behavior for equally precise flow solutions when appropriate optimization
parameters are selected (NSDP(a) and VANS(a)). Furthermore, in our framework pa-
rameter q is used to select an appropriate penalization at intermediate designs where
α ≈ 0.5, and α is used to increase flow inhibition and solution precision in the solid
domain where α = α as shown in Section 2.4.4. Moreover, as shown in Section 2.3.1
parameter α can be compared to parameter q̃ which is often tuned to set convexity of
the Darcy interpolation and lower penalization in intermediate designs as discussed by
Borrvall and Petersson (2003). However, in our approach we precisely define the penal-
ization in intermediate designs κ̄ using the derivations in Section 2.4. The approach thus
differs slightly as we precisely set the penalization in intermediate density areas using q
and increase maximum penalization K by loweringα, instead of setting the penalization
in solid density areas and lowering the penalization in intermediate density areas using
a convex interpolation.

2.8. CONCLUSIONS AND RECOMMENDATIONS
In this work we have introduced the VANS (Volume Averaged Navier-Stokes) equations
for solid/fluid topology optimization and shown their applicability and advantages. Us-
ing volume averaging we were able to create a theoretically consistent framework for
introducing design variables in the Navier-Stokes equations. The NSDP (Navier-Stokes
with Darcy Penalization) equations often used in topology optimization are shown to
be a simplification of the VANS equations. Moreover, two main improvements for
solid/fluid topology optimization are found:

1. Lower bounds on the Darcy penalization are theoretically derived such that for
both the VANS and NSDP equations flow is sufficiently penalized in the solid do-
main while keeping flow penalization in intermediate gray designs at a minimum
to prevent convergence to inferior local optima.

2. Compared to the NSDP equations, the VANS equations are shown to require less
parameter tuning and display improved design convergence for similarly accurate
flow solutions.

Furthermore, instead of relating the appropriate Darcy penalization to problem specific
parameters, it is related to the mesh size and an elemental Reynolds number, reducing
the amount of required parameter tuning. However, the lower bounds are not exact, and
for changing topologies (and mainly for changing elemental Reynolds numbers) flow
leakage may remain hard to estimate a priori. A solution to this problem might be the ad-
dition of the Forchheimer penalization which scales quadratically with flow speeds and
thus may not require an estimate of flow speeds and elemental Reynolds number to find
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an appropriate magnitude for flow reduction. Moreover, viability of the lower bounds
in other computational frameworks (such as the Finite Element Method instead of FV)
remains an open question. We thus recommend performing a representative study on a
range of mesh sizes and elemental Reynolds numbers as shown in Section 2.6 for imple-
mentation of the lower bounds in other computational frameworks. However, when the
bounds are confirmed no representative studies should be required for individual op-
timization problems containing different mesh sizes and/or elemental Reynolds num-
bers.

Another opportunity for further research is to apply volume averaging techniques to
other physics. A logical next step would be their application to turbulent flow optimiza-
tion as the Reynolds average often used for turbulence modeling shows many similarities
to the volume average. Besides turbulent optimization thermal and even mechanical op-
timization models could be investigated using volume averaging techniques, such that
physically consistent models and interpretations can be constructed. Furthermore, in
this work the second Brinkman correction is interpreted as the forces in the solid mate-
rial which support the fluid domain viscous stresses at the solid/fluid interface. It could
thus be included in solid/fluid interaction optimization to more accurately couple the
fluid domain forces to the solid domain. Another field which could benefit from the av-
eraging techniques in this paper could be the pseudo-3D topography optimization as
discussed by Alexandersen (2022). In this work a slowly varying distance between two
plates is optimized and an augmentation of the conservation equation needs to be intro-
duced to attain accurate solutions. We note the possibility of approaching this problem
using superficially averaged flow between the plates such that the continuity equation
does not need to be changed, as was the case in this work.

2.A. DERIVATION OF THE VANS EQUATIONS
To give some more insight into the derivation of the VANS equations the volume aver-
aged continuity equations and viscous terms will be derived in this appendix. For a more
detailed and complete derivation of the VANS equations we refer the reader to the works
of Whitaker (1996), and Ochoa-Tapia and Whitaker (1995). Firstly, we derive the volume
averaged continuity equation by applying the averaging theorem from Equation 2.3 to
pull the divergence operator out of the average:

〈∇ ·vvv〉sφ =∇·〈vvv〉sφ+ 1

V

∫
Γφβ

vvv ·nnnφdΓ= 0. (2.147)

Using the no-penetration condition (vvv ·nnnφ = 0) at the solid/fluid boundary Γφβ, the
boundary integral can be removed:

∇·〈vvv〉sφ+ 1

V

∫
Γφβ

���:0vvv ·nnnφ dΓ=∇·〈vvv〉sφ = 0, (2.148)

resulting in the averaged continuity equation.
The derivation of the averaged viscous term (〈µ∇2vvv〉sφ = 〈µ∇·∇vvv〉sφ) is slightly more

complex and will result in the first/second Brinkman corrections and a part of the Darcy
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penalization. Firstly, the averaging theorem from Equation 2.3 is used to pull the diver-
gence operator out of the average:

〈µ∇·∇vvv〉sφ =µ∇· 〈∇vvv〉sφ+ µ

V

∫
φβ

∇vvv ·nnnφdΓ, (2.149)

where we assumed µ to be constant and pulled it out of the averaging operators. The
first term on the right-hand side of Equation 2.149 can again be simplified using the
averaging theorem resulting in the first Brinkman correction:

µ∇·〈∇vvv〉sφ =µ∇·∇〈vvv〉sφ+∇· 1

V

∫
φβ

���
000

vvv nnn⊺
φ

dΓ=µ∇·∇〈vvv〉sφ, (2.150)

where we used the no-slip and no-penetration conditions at soid/fluid boundary Γφβ to
assume that vvv =000. Subsequently, for the second term on the right-hand side of Equa-
tion 2.149 we assume separation of scales as shown in Equation 2.5 and assume the ve-
locity can be split into its intrinsic volume average (〈vvv〉iφ) and deviational part (ṽvv). The
divergence of the velocity within an averaging volume can thus be rewritten as:

∇vvv =∇
(
〈vvv〉iφ+ ṽvv

)
=∇〈vvv〉iφ+∇ṽvv. (2.151)

Furthermore, by assuming the averaged divergence ∇〈vvv〉iφ to be constant within the av-
eraging domain, it can be removed from the boundary integral:

µ

V

∫
φβ

∇vvv ·nnnφdΓ= µ

V

∫
φβ

(
∇〈vvv〉iφ+∇ṽvv

)
·nnnφdΓ

= µ

V
∇〈vvv〉iφ ·

∫
φβ

nnnφdΓ+ µ

V

∫
φβ

∇ṽvv ·nnnφdΓ.
(2.152)

Subsequently, we use the fact that the gradient of the volume fraction can be rewritten
using Equation 2.4 as ∇αφ =− 1

V

∫
Γφβ

nnnφdΓ, and simplify the boundary integral as:

µ

V
∇〈vvv〉iφ ·

∫
φβ

nnnφdΓ+ µ

V

∫
φβ

∇ṽvv ·nnnφdΓ=−µ∇〈vvv〉iφ ·∇αφ+ µ

V

∫
φβ

∇ṽvv ·nnnφdΓ

=−µ∇αφ · 〈v
vv〉sφ

αφ
+ µ

V

∫
φβ

∇ṽvv ·nnnφ,

(2.153)

where the superficial volume average is introduced (〈vvv〉iφ = 〈vvv〉sφ/αφ) as this is used in
the final VANS equations. Gathering all terms in Equations 2.150 and 2.153, the volume
averaged viscous stresses are found as:

〈µ∇·∇vvv〉sφ =µ∇·∇〈vvv〉sφ−µ∇αφ · 〈v
vv〉sφ

αφ
+ µ

V

∫
φβ

∇ṽvv ·nnnφ, (2.154)

where the first term is the first Brinkman correction, the second term is the second
Brinkman correction and the third term (in combination with a term containing devo-
tional pressures) will be simplified as the Darcy penalization.
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2.B. COMPARISON OF MAXIMUM PENALIZATION VALUES
In literature, different interpolation functions for Darcy interpolation −K (α) ·vvv and dif-
ferent definitions for a maximum penalization K can be found. Similar to the maxi-
mum penalization for Ree > 1 in this work, Reynolds dependent penalization values
have been used. However, these different forms of penalization are often argued from
non-dimensional Navier-Stokes equations and remain similar to the commonly used
maximum penalization by Olesen et al. (2006):

K = µ

L2Da
≫ µ

L2 , (2.155)

where Da ≪ 1 is the Darcy number used to scale the penalization, and which is based
on the Navier-Stokes Equations:

ρvvv ·∇vvv−µ∇(∇vvv+∇vvv⊺
)+∇p +K A(α) ·vvv = sss. (2.156)

We examine the maximum penalization by Alexandersen et al. (2013):

K A = 1

ReDa
≫ 1

Re
, (2.157)

where Da ≪ 1 and the maximum penalization by Kondoh et al. (2012):

K K =
(
1+ 1

Re

)
χ≫

(
1+ 1

Re

)
(2.158)

where χ≫ 1. Both penalizations in Equations 2.157 and 2.158 are based on the non-
dimensional Navier-Stokes equations:

ṽvv · ∇̃ṽvv− 1

Re
∇̃(∇̃ṽvv+∇̃ṽvv⊺

)−∇̃p̃ +K (α) · ṽvv = sss, (2.159)

where:

ṽvv = vvv

U
,

p̃ = p

ρU 2 ,

x̃xx = xxx

L
,

∇̃ = L∇,

(2.160)

are the non-dimensional velocity, pressure, coordinate vector and gradient operator re-
spectively, based on characteristic length L and velocity U . We may however rewrite the
non-dimensional Navier-Stokes equation into a form similar to Equation 2.156:

ρ∗ṽvv · ∇̃ṽvv−µ∗∇̃(∇̃ṽvv+∇̃ṽvv⊺
)−∇̃p̃ +K (α) · ṽvv = sss, (2.161)

where ρ∗ ≡ 1 and µ∗ ≡ 1/Re can be regarded as a non-dimensional density and viscosity
respectively and the problem has characteristic length and velocity L∗ ≡ 1 and U∗ ≡ 1
respectively. Subsequently, we rewrite the penalization by Alexandersen et al. (2013) as:

K A = 1

ReDa
= µ∗

Da
≫µ∗ = µ∗

L∗2 , (2.162)
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since 1/L∗2 = 1 and we note that this form is the same as the one in Equation 2.155,
which is a logical consequence of the fact that Alexandersen et al. (2013) argue their pe-
nalization from the dimensional Navier-Stokes equations. Moreover, the penalization by
Kondoh et al. (2012) can be rewritten using the formulation in Equation 2.161 as:

K K =
(
1+ 1

Re

)
χ=

(
ρ∗U∗

L∗ + µ∗

L∗2

)
χ

≫
(
ρ∗U∗

L∗ + µ∗

L∗2

)
.

(2.163)

For high Reynolds numbers µ∗ = 1/Re ≪ 1 and thus K K ≈ χ(ρ∗U∗)/L∗ ≫ (ρ∗U∗)/L∗,
which shows similarities to our penalization for Ree > 1 as defined in Equation 2.110:

K h = 10qρ |vvv f |
hα

≫ ρ |vvv f |
h

. (2.164)

However, K h differs significantly from K K in the fact that it scales with h instead of L∗.
For low Reynolds numbers µ∗ = 1/Re ≫ 1 and thus K K ≈ χµ∗/L∗2 ≫ µ∗/L∗2, and we
again retrieve a similar maximum penalization as in Equations 2.155 and 2.162

2.C. FINITE DIFFERENCE SENSITIVITY VERIFICATION
To investigate the validity of the adjoint sensitivity computation as presented in Sec-
tion 2.5 a Finite Difference (FD) sensitivity verification is performed on the problem in
Figure 2.30 using the parameters in Table 2.16. Two cases are examined, one where the
porous “solid” domain consists of volume fraction α= 0.1 and one where it consists of
α= 0.5. Sensitivities are thus verified for converged designs containing solid domains of
volume fraction α = 0.1 and for intermediate designs containing gray areas of volume
fraction α= 0.5. Furthermore, the (elemental) Reynolds number can be computed as:

Re = ρuL

µ
= 10,

Ree = ρuh

µ
= 1,

(2.165)

and we expect both viscous and inertial effects to be relevant for the sensitivity compu-
tation. The adjoint and FD sensitivities are compared using the objective of minimal

µ ρ u po L h q α e

10−1 [Pas] 1 [kgm−3] 1 [ms−1] 1 [Pa] 1 [m] 0.1 [m] 1 0.1, 0.5 10−5

Table 2.16: The material and problem parameters for the flow problem in Figure 2.30, when the adjoint sensi-
tivity analysis is compared to a Finite Difference sensitivity analysis.

pressure drop:

f =
∫
Γi n

pdΓ−
∫
Γout

pdΓ, (2.166)
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Figure 2.30: A 2D channel with parabolic inflow applied at the left inletΓi n and constant pressure applied at the
right outlet Γout . At x = L two small porous solid walls of thickness 2h (∆x =∆y = h) and volume fractionα are
inserted to inhibit flow. Sensitivity values are computed in the wall elements to the right of Γw at x = L+h/2.

where Γi n is the flow inlet boundary and Γout is the pressure outlet in Figure 2.30. To
verify the adjoint sensitivities complex step finite difference (CSFD) sensitivities (Mar-
tins et al., 2003) are computed. For the CSFD analysis the design variable for which the
sensitivity is computed (sk ) is perturbed as:

s̃k = sk +e · i , (2.167)

where s̃k is the perturbed design variable, e is an offset as found in Table 2.16 and i 2 =−1
the imaginary number. Consequently, using the perturbed design variable the objective
is computed as:

f̃ = fRe + f Im · i , (2.168)

and if the offset is small enough (e ≪ 1) the CSFD sensitivity can be computed as:

∂ f̃

∂sk
= Im( f̃ )

e
+O

(
e2)= f Im

e
+O

(
e2) , (2.169)

where the FD sensitivity is thus accurate to the order O
(
e2

)
and we approximate

∂ f /∂sk ≈ ∂ f̃ /∂sk . Using the problem shown in Figure 2.30, the adjoint and CSFD sen-
sitivities are computed for all elements at x = L+h/2 such that sensitivities in the porous
wall and in the fluid domain are computed, resulting in the sensitivities in Figures 2.31a
and 2.31b. Moreover, relative errors in sensitivity are computed as:

e f =
∂ f̃
∂sk

− ∂ f
∂sk∣∣∣ ∂ f̃

∂sk

∣∣∣ , (2.170)

where ∂ f /∂sk is the adjoint sensitivity and the errors can be found in Figures 2.31c and
2.31d. Visually the sensitivities in Figures 2.31a and 2.31b are the same, but a small rela-
tive error of magnitude 10−3 can be found in Figures 2.31c and 2.31d. The small error is
caused by the numerical accuracy of the solution procedure as the velocity and pressure
fields are updated until the relative change in fields is lower than 10−4. Lowering this
value also lowers the error in sensitivity.
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(a) The adjoint (∂ f /∂sk ) and CSFD (∂ f̃ /∂sk ) sensi-
tivities for α= 0.1.

0 0.5 1 1.5 2
−4

−3

−2

−1

0

y

∂
f

∂
s k

(b) The adjoint (∂ f /∂sk ) and CSFD (∂ f̃ /∂sk ) sensi-
tivities for α= 0.5.
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(c) The error in adjoint sensitivity relative to the
CSFD sensitivity computed using Equation 2.170 for
α= 0.1.
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(d) The error in adjoint sensitivity relative to the
CSFD sensitivity computed using Equation 2.170 for
α= 0.5.

Figure 2.31: The adjoint/CSFD sensitivities and resulting errors computed using Figure 2.30 and the parame-
ters from Table 2.16.

2.D. FLOW LEAKAGE AND THE EFFECT OF THE SECOND

BRINKMAN CORRECTION

To investigate flow leakage and the effect of the second Brinkman correction a simple
channel of height L = 2r as in Figure 2.32 is investigated. On the inlet and outlet respec-
tively velocity vvvi n = [ui n ,0]⊺ and relative pressure pout are prescribed. A porous “solid”
wall of two elements thick is inserted at y = r and y = −r . Close to the inlet and out-
let no-slip and no penetration conditions are prescribed on the wall to ensure a correct
application of the boundary conditions. Some spurious flow through the porous walls is
expected as we prescribe a constant relative pressure of −10·pout on the upper and lower
boundaries and leave them open. Consequently, flow should develop into a parabolic
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Figure 2.32: A 2D channel with constant inflow applied at the inlet and constant pressure applied at the outlet.
Upper and lower walls at y = ±r are made of highly impermeable solids (gray) except for small solid walls
(black) at the inlet/outlet on which no-slip and no penetration conditions are explicitly prescribed to ensure
a correct application of the boundary conditions. The upper and lower boundaries are open and a constant
relative pressure of −10 ·pout is applied on them.

µ ρ ui n pout L ∆x,∆y q α

10−1 [Pas] 1 [kgm−3] 1 [ms−1] 1 [Pa] 1 [m] L/40 1,2 10−1

Table 2.17: The material and problem parameters for the flow problem in Figure 2.32, where q is used to com-
pute κ̄ using the equations from Table 2.2.

profile as:

ur (y) =
(
1− y2

r 2

)
umax , (2.171)

where the maximum flow velocity can be computed from continuity as umax = 6ui n/4.
At x = 5L reference solution ur (y) is used to compute flow error:

eu
5L =

√∑
i∈I5L (ur (yi )−ui )2∑

i∈I5L (ur (yi ))2 ·100%, (2.172)

where index i is related to discrete DOF ui at coordinates (xi , yi ), and
I5L = {i | xi = 5L∪ r > yi >−r }. Furthermore, exact pressure drop pR

,x = −2µumax /r 2 is
computed and used to define an error in pressure drop at (x,0):

e∆p
x =

√√√√ (pR
,x −px,x )2

pR
,x

2 ·100%, (2.173)

where px,x is the pressure drop computed using finite difference on the discrete solution
at (x,0). Finally, flow leakage through porous walls is computed by numerical integration
of the flow through the wall:

vl =
1

Lui n

∫ 6L

0
| v | d x ·100%, (2.174)



2

74 2. APPROACHES FOR LAMINAR FLOW TOPOLOGY OPTIMIZATION

at y = r +∆y . Subsequently, the parameters in Table 2.17 are used and the elemental
Reynolds number is estimated as:

Ree = ρ |vvv f | h

µ
= ρui nh

µ
= 0.25 ≤ 1, (2.175)

where h =∆x =∆y , and we approximate |vvv f |≈ ui n using the inlet velocity. For both the
NSDP and VANS equations the penalization was thus computed following Table 2.2 as:

κ̄= 10q

h2 . (2.176)

eu
5L e∆p

4L e∆p
5L vl

VANS, q = 1 4.34% 3.53% 4.07% 4.56%

NSDP, q = 1 32.8% 36.3% 40.2% 36.6%

NSDP, q = 2 5.64% 9.43% 9.86% 3.93%

Table 2.18: The errors in flow profile and pressure drop for the problem in Figure 2.32 with results in Figure 2.33.

0 2 4 6

1.5

0

-1.5

Figure 2.33: The flow solution using the NSDP equations for the problem in Figure 2.32 where q = 1 was used.
The illustration shows flow lines at the inlet/outlet and top/bottom pressure boundaries, in gray the porous
walls are shown.

In Table 2.18 the errors computed using this problem setup are presented. Major
flow leakage is observed for the NSDP equations when q = 1, as illustrated in Figure 2.33
and by the error vl = 36.6%. However, flow leakage is significantly reduced to 3.93%
using q = 2. Furthermore, as expected in Equation 2.114, flow leakage is reduced by
a factor α using the VANS equations (from vl = 36.6% to vl = 4.56%). Another notable

difference in error between the NSDP and VANS equations is the difference in e∆p
x , which

has two causes. Firstly, in section 2.3.1 it was observed that for flow parallel to a wall
the interpretation of the solid/fluid interface might be off by h/2. The VANS equations
correct for this error via the second Brinkman correction while the NSDP equations do
not. In the NSDP discretization, the upper and lower wall are thus shifted by h/2 and
the channel has erroneous height L +h = 2r̃ . As r̃ > r increased, we find an erroneous
decreased pressure drop p,x = −2µumax r̃ 2. Secondly, we notice that more flow leakage
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vl causes larger errors in pressure drop e∆p
x . For larger vl , more flow is lost through

the lower and upper walls. Consequently, the parabolic flow profile in the pipe flattens
which reduces viscous forces and pressure drop. Furthermore, as flow is moving to the
right, more flow is lost through the upper and lower wall and the parabolic profile flattens
even more. Consequently, pressure drop is erroneously reduced when moving to the

right and we find e∆p
5L > e∆p

4L in all examples. Errors in pressure distribution are thus
correlated to flow leakage, and for the remainder of this work we will mainly focus on
flow leakage as a representation of precision of the solution.





3
MODERATE REYNOLDS FLOW

TOPOLOGY OPTIMIZATION

In this chapter, methods for density-based TO of flow problems with
moderate Reynolds numbers are critically examined. While the Darcy
penalization inhibits viscous dominated flow, the Forchheimer penal-
ization is used to inhibit inertia dominated flow. A reliable parameter
selection strategy and a continuation approach, which balance accu-
racy of the flow solution and optimization convergence, are derived.

This chapter is based on the publication in Computer Methods in Applied Mechanics and Engineering 443,
118027, Theulings et al. (2025).
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Reducing parameter tuning in topology
optimization of flow problems using a
Darcy and Forchheimer penalization

Abstract In density-based topology optimization of flow problems, flow
in the solid domain is generally inhibited using a penalization ap-
proach. Setting an appropriate maximum magnitude for the penaliza-
tion traditionally requires manual tuning to find an acceptable com-
promise between flow solution accuracy and design convergence. In this
work, three penalization approaches are examined, the Darcy (D), the
Darcy with Forchheimer (DF), and the newly proposed Darcy with fil-
tered Forchheimer (DFF) approach. Parameter tuning is reduced by an-
alytically deriving an appropriate penalization magnitude for accuracy
of the flow solution. The state-of-the-art D and DF approaches are im-
proved by developing the novel DFF approach, based on a spatial aver-
age of the velocity magnitude. In comparison, the parameter selection
in the DFF approach is more reliable, as accuracy of the flow solution
and objective convexity are more predictable. Moreover, a continuation
approach on the maximum penalization magnitude is derived by nu-
merical inspection of the convexity of the pressure drop response. Using
two-dimensional optimization benchmarks, the DFF approach reliably
finds accurate flow solutions and is less prone to converge to inferior lo-
cal optima.

3.1. INTRODUCTION
Designing flow structures is of importance for many engineering problems, see for ex-
ample, the design of tesla-type turbine devices (Alonso & Silva, 2022), microfluidic mix-
ers (Andreasen et al., 2009), or drag minimization and lift maximization (Kondoh et al.,
2012). Such problems often involve moderate to high Reynolds flow, which is difficult
to design for due to the highly nonlinear flow equations. A tool to design flow struc-
tures is density-based Topology Optimization (TO). In flow TO, we intend to find an op-
timal phase distribution to separate a design domain into distinct solid and fluid parts.
This is commonly accomplished by introducing the Darcy penalization to inhibit flow
in the solid domain (Borrvall & Petersson, 2003; Gersborg-Hansen et al., 2005; Olesen
et al., 2006). High penalizations are present in the solid domain, low or no penalizations
are used in the fluid domain. A continuous penalization interpolation is used between
the solid and the fluid domain, such that gradient-based optimizers can be used. This
approach can be seen as an optimization by penalty method (Bruns, 2007), where the
zero velocity constraint in the solid domain is enforced using a penalty term. In this
approach, a proper selection of the magnitude of the penalization is crucial. It is well
known that the penalization should be high enough to sufficiently inhibit flow in the
solid domain, but small enough to ensure numerical stability. Often, finding the cor-
rect penalty requires manual tuning (Kreissl & Maute, 2012), which is time consuming
and requires experience with TO. In this work we focus on the flow penalization in TO of
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moderate Reynolds flow problems, and aim to improve parameter robustness and algo-
rithmic stability.

The most common approach to select an appropriate magnitude for the Darcy pe-
nalization is presented by Olesen et al. (2006). The maximum penalization is determined
based on a Darcy number and a characteristic length L. As a characteristic length the
inlet diameter is often used, and in porous flow modeling, the Darcy number relates vis-
cous and porous friction forces. However, parameter tuning remains necessary to select
a Darcy number, such that flow is sufficiently reduced in the solid domain. On top of a
user-defined Darcy number, Kondoh et al. (2012) include the Reynolds number to select
the maximum penalty magnitude, and recent work confirms that the relation between
flow reduction and penalization depends on the Reynolds number for inertia dominated
flows (Alexandersen, 2023). However, complex geometries with locally varying flow ve-
locities, length scales, and Reynolds numbers may be found using TO. A Darcy penaliza-
tion based on a single estimation of the Reynolds number is thus unable to appropriately
penalize flow in all parts of a design.

As the Darcy penalization is linearly dependent on the velocity magnitude, includ-
ing the Reynolds number in the penalization results in a penalization which depends
quadratically on velocity magnitude. A direct way to include a quadratic dependency on
the flow magnitude in the penalty is through the Forchheimer penalization (Whitaker,
1996). Alonso and Silva (2022) find improved designs when using the Forchheimer pe-
nalization in addition to the Darcy penalization. However, selecting the appropriate
magnitude for the Forchheimer penalization also requires manual tuning. Often, the
maximum penalization magnitude is selected based on the physical interpretation of
the Forchheimer term as a friction term for flow through porous media (X. Li et al., 2024;
Philippi & Jin, 2015; Tian et al., 2024). So far, no critical analysis on the relation between
Forchheimer penalization and accuracy of the flow solution has been performed.

Flow solutions are obtained using discretization. Bruns (2007) selects a penalty
which is a couple of magnitudes larger than the largest diagonal stiffness matrix value,
which suggests a relation between discretization and penalization magnitude. Recent
work by Theulings et al. (2023) and by Abdelhamid and Czekanski (2023) suggests that
the penalization should depend on the mesh size. This is supported by Jensen (2018),
who finds increasingly thin features using mesh adaptation for increasingly high penal-
ization magnitudes.

Another problem generally associated with the penalty approach is the convergence
to ill-performing local optima. Design convergence is influenced by the maximum pe-
nalization, the penalty interpolation, and the initial design. Borrvall and Petersson
(2003) show that a linear interpolation of the Darcy penalization results in optimal dis-
crete solid/fluid designs without intermediate gray areas for Stokes flow problems. How-
ever, to escape ill-performing local optima, a penalization interpolation function which
lowers the penalty for intermediate gray design variables is used in the earlier design iter-
ations. Gersborg-Hansen et al. (2005) note that a lower penalization for gray design vari-
ables increases the convexity of the objective response, but also increases the amount
of gray in the optimal design. A continuation approach which starts with a low penal-
ization for gray design variables to escape ill-performing local optima, and ends with a
higher penalization for gray design variables is recommended. Olesen et al. (2006) im-
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prove the convergence behavior of the design by first optimizing using a low maximum
flow penalization, allowing the optimizer to escape ill-performing local optima but find-
ing designs with inaccurate flow solutions. Subsequently, the design is further optimized
using a higher maximum penalization, resulting in designs with accurate flow solutions.
Moreover, initial designs, dominated by flow penalization, are found to show a larger
tendency to converge to ill-performing local optima. The relation between the choice of
interpolation function and the objective behavior is analyzed on a simplified problem
where a solid/fluid boundary is slightly modified for a fluid structure interaction prob-
lem in (Lundgaard et al., 2018). Results suggest that the objective should respond mono-
tonically to design updates for the problem to be well-posed. Besides the convergence of
the design, the convergence of the flow solution should be taken into account. While us-
ing a high flow penalization increases the accuracy of the flow solution, it can affect the
stability of the flow solver (Kreissl et al., 2011). The penalization approach should thus
be included in the stabilization approach of the flow solver (Alexandersen et al., 2014).

In this work, we aim to formulate a reliable approach for moderate Reynolds flow TO,
which exhibits four desirable traits:

1. Parameter tuning is reduced.

2. The flow solution in the optimized design is accurate.

3. The optimization procedure does not show a tendency to converge to inferior local
optima.

4. The flow solver remains stable over changing designs during the optimization pro-
cess.

To reduce parameter tuning, we closely inspect three different penalization approaches
in Section 3.2, and derive appropriate parameters for the magnitude of the flow penal-
ization. We inspect the common approach using the Darcy penalization, and introduce
two new approaches which additionally include the Forchheimer penalization. In Sec-
tion 3.3, we discuss the implementation and the stabilization approach for the flow solu-
tion. Numerical analyses are performed using the finite element method implemented
in COMSOL Multiphysics® v.6.1. (n.d.), as the necessary capabilities are readily avail-
able and as the use of a commercial software will further promote the use of presented
techniques outside academia. In Section 3.4, we investigate the accuracy of the flow
solution and the robustness of our parameter definition for varying Reynolds numbers.
Subsequently, in Section 3.4.2, we inspect the convexity of the pressure drop objective,
and derive a novel continuation strategy. In Section 3.5, the different approaches are
compared in terms of accuracy of the optimized solution and of tendency to converge to
inferior local optima for two different TO problems. We evaluate our novel method with
respect to the proposed four traits identified for a reliable approach in the discussion in
Section 3.6 and conclude in Section 3.7.
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3.2. PENALIZATION IN LAMINAR FLOW TOPOLOGY OPTIMIZA-
TION

In this section, we introduce the incompressible Navier-Stokes equations used to model
laminar flows. To make them suitable for density-based TO and represent fluid and solid,
we add penalization terms. Several approaches including Darcy and/or Forchheimer
penalizations are explored. To derive an appropriate penalization magnitude, we use a
dimensional analysis similar to Theulings et al. (2023). In Section 3.2.2, the novel ap-
proach to the dimensional analysis will lead to the same results found by Theulings et al.
(2023), confirming its validity. In Section 3.2.3, we introduce the Forchheimer penaliza-
tion similar to Alonso and Silva (2022) and use our method to derive novel settings for
the penalization magnitudes of this term. Finally, in Section 3.2.4, we introduce a novel
approach based on the Forchheimer penalization and a filtered velocity magnitude and
derive the associated appropriate penalization magnitudes.

3.2.1. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS FOR DENSITY-BASED

TO
For laminar flow problems, the steady-state incompressible Navier-Stokes equations
consist of: i) the momentum equation, which represents the forces acting on an in-
finitesimal volume of fluid, and ii) the continuity equation, which ensures that no fluid
mass is created or destroyed. They are given in residual form as:

RRRvvv(vvv, p) =−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))=000,

Rp (vvv) =∇·vvv = 0,
(3.1)

where vvv⊤ = [u, v] is the velocity vector with u and v , the velocities in x and y direction,
p the pressure field, ρ the fluid density, and µ the dynamic viscosity. In the momentum
equation, we find the inertial force ρ∇vvv ·vvv, the pressure force −∇p, and the viscous force
∇· (µ(∇vvv+∇vvv⊤

))
.

For density-based TO, a design variable α, representing the fluid volume fraction, is
used to distinguish between solid and fluid parts of the design domain. We continuously
interpolate between the solid domain,α= 0, and the fluid domain,α= 1. In the solid do-
main, we aim to inhibit the flow by counteracting the forces in the momentum equation.
The most common approach to adapt the Navier-Stokes equations to density-based TO
is through the Darcy penalization (Borrvall & Petersson, 2003; Gersborg-Hansen et al.,
2005; Olesen et al., 2006), here referred to as the D approach, which adds a force propor-
tional to and in the opposite direction of the velocity to the momentum equation:

RRRvvv(vvv, p) =−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))Darcy penalization︷ ︸︸ ︷

−D1(α)vvv =000. (3.2)

where D1(α) is a design dependent interpolation which inhibits flow in the solid domain
using a high penalization D1(α= 0) = D1. The flow is governed by the standard momen-
tum equation and D1(α= 1) = 0 in the fluid domain. The challenge in this adaptation lies
in the selection of an appropriate maximum value D1 and of an adequate interpolation
function D1(α). The maximum penalization D1 should be large enough to sufficiently
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penalize the flow in the solid domain. However, it should not be chosen too large, as
such a choice would lead to a deterioration of the convergence of the forward solution
due to ill-conditioning of the system equations, as well as a premature convergence to
ill-performing local optima.

To define an appropriate magnitude for the penalization, we follow a similar ap-
proach to our earlier work (Theulings et al., 2023) and investigate the local flow reduc-
tion. Flow reduction is defined as the ratio v s /v f between v s and v f , the flow mag-
nitudes in neighboring solid and fluid domains, respectively. We intend to define the
maximum penalization D1 such that we can accurately predict v s /v f = 10−q , where the
user-defined parameter q indicates the order of magnitude by which the velocity in the
solid and fluid domain differ. Subsequently, we can select the parameter q and the inter-
polation function D1(α) to achieve a compromise between accuracy and convergence.

P

ΩsΩ f

∥vvv∥

x

v f

v s

Γ ΓP

h

Figure 3.1: A four element domainΩP , with two fluid elements (α= 1) to the left inΩ f (white) and two solid el-

ements (α= 0) to the right inΩs (gray), such thatΩP =Ω f ∪Ωs with boundary ΓP =ΩP \ΩP . At the solid/fluid
interface Γ = Ω f ∩Ωs , node P is selected for the analysis of flow leakage. On top the behavior of the flow
magnitude over the elements is illustrated. In the fluid domain Ω f we find a flow magnitude ∥vvv∥ = v f which
decreases towards ∥vvv∥ = v s at the solid/fluid interface Γ after which it stagnates at a magnitude v s in the solid
domainΩs . We assume a regular mesh with elements of size h.

The flow reduction should be appropriate in the smallest scale represented by our
model, i.e., the expected flow reduction is achieved in the thinnest design features. In
this work, we use the finite element method to discretize the Navier-Stokes equations.
We derive penalization magnitudes in the context of this discretization, although the
proposed derivation is not limited to the finite element method and can be applied for
other weighted residual methods, such as the finite volume method. To estimate the
flow reduction, we consider a small part of the design domain ΩP , discretized with four
square elements of size h, as shown in Figure 3.1. We define a fluid domain Ω f , made
of two fluid elements, and a solid domainΩs , made of two solid elements. The interface
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between fluid and solid is defined as Γ=Ω f ∩Ωs . We aim to define a penalization such
that v s /v f = 10−q , where the velocity magnitude v f represents the maximum magnitude
in fluid elements neighboring solid elements with a velocity magnitude v s .

The discretized residual is used to compare the velocity magnitudes v s and v f . From
the discretization in Figure 3.1, we select the center Node P on the interface to which
test functionφP (xxx) is attached, with xxx⊤ = [x, y] the spatial coordinate vector. In the finite
element discretization, the test function spans only the four elements in ΩP =Ω f ∪Ωs

which are attached to Node P and are zero outside of ΩP and on the boundary ΓP =
ΩP \ΩP . The weighted residuals attached to Node P in domain ΩP , are subsequently
defined using the discretized velocity and pressure fields vvvh(xxx) and ph(xxx):[

RP
u

RP
v

]
=

∫
ΩP
φPRRRvvv(vvvh , ph)dΩ=

∫
Ω f
φPRRRvvv(vvvh , ph)dΩ+

∫
Ωs
φPRRRvvv(vvvh , ph)dΩ=000, (3.3)

where we defined the discretized residuals RP
u and RP

v , in x and y direction respectively,
using the same scalar test function φP . In the finite element method, weighted resid-
uals of the momentum equation are commonly defined per element and subsequently
assembled in the complete residual RRRh

vvv = 000, discretized on the Nd nodes in the mesh.
For this analysis, we investigate all contributions to Node P at once, associated with the

complete residual as RRRh
vvv
⊤ = [R1

u ,R1
v , ...,RP

u ,Rp
v , ...,RNd

u ,RNd
v ] =000.

Equation 3.3 presents the weighted residual of the momentum equation at Node P
in the solid/fluid domain ΩP . For the discretized residual to be zero, we require the
discretized solid and fluid domain terms to be in equilibrium. Using Equation 3.3, we
will be able to compare the velocity magnitudes v f and v s in the neighboring fluid and
solid elements.

We use the fact that for Equation 3.3 to hold, the fluid and solid domain terms on the
right-hand side are equal in magnitude and opposite in direction:∣∣∣∣∫

Ωs
φPRRRvvv(vvvh , ph)dΩ

∣∣∣∣
2
=

∣∣∣∣∫
Ω f
φPRRRvvv(vvvh , ph)dΩ

∣∣∣∣
2

, (3.4)

where |□|2 is the L2-norm. We proceed to approximate the terms in Equation 3.4 using
approximate fluid and solid domain velocity magnitudes v f and v s . First, we simplify
the required analysis. If

∣∣RRRvvv(vvvh , ph)
∣∣
2 = C is constant, the left- and right-hand side in

Equation 3.4 become
∣∣∫
Ωs φP dΩ

∣∣
2 C and

∣∣∫
Ω f φP dΩ

∣∣
2 C , respectively. We use the test

function φP to inspect the residual at Node P , but do not want to approximate its value
and aim for the derivation to be general and independent on a specific test function. We
thus normalize Equation 3.4 as:∣∣∫

Ωs φPRRRvvv(vvvh , ph)dΩ
∣∣
2∣∣∫

Ωs φP dΩ
∣∣
2

=
∣∣∫
Ω f φPRRR(vvvh , ph)vvvdΩ

∣∣
2∣∣∫

Ω f φP dΩ
∣∣
2

. (3.5)

We note that due to the symmetry of φP over Γ and the structured square mesh,∣∣∫
Ωs φP dΩ

∣∣
2 =

∣∣∫
Ω f φP dΩ

∣∣
2. If a different unstructured mesh is used, this normalization

does not hold and the difference in element size and shape in the fluid and solid domains
has to be taken into account. Subsequently, we define a notation for approximating the
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orders of magnitude of the residuals as:

O s
(
RRRvvv

)
≈

∣∣∫
Ωs φPRRRvvv(vvvh , ph)dΩ

∣∣
2∣∣∫

Ωs φP dΩ
∣∣
2

, O f
(
RRRvvv

)
≈

∣∣∫
Ω f φPRRRvvv(vvvh , ph)dΩ

∣∣
2∣∣∫

Ω f φP dΩ
∣∣
2

, (3.6)

which can be approximated and compared as O f
(
RRRvvv

)
≈O s

(
RRRvvv

)
.

In this paper, we use the following rules for computing approximate orders of mag-
nitude O s (•) and O f (•). For an arbitrary vector fieldΨΨΨ(xxx) inΩ f andΩs , we define:

O s
(
ΨΨΨ

)
=Ψs , O f

(
ΨΨΨ

)
=Ψ f , (3.7)

where we approximate Ψs ≈ |ΨΨΨ|2 ∈ Ωs and Ψ f ≈ |ΨΨΨ|2 ∈ Ω f . The largest gradient is as-
sumed to be dependent on the element size h such that:

O s
(
∇ΨΨΨ

)
≈∆Ψs /h, O f

(
∇ΨΨΨ

)
≈∆Ψ f /h, (3.8)

where ∆Ψs , ∆Ψ f are estimates of the maximum change of |ΨΨΨ|2 in Ωs and Ω f , respec-
tively. We emphasize that this assumption on the magnitude of gradients is essential,
and can only be made because we investigate the discretized residual in Equation 3.3.
Using an analysis of the residual in Equation 3.2, gradients would be related to an overall
length scale L related to the design, which would lead to the common approach relating
the penalization magnitude to a Darcy number Da and L (Olesen et al., 2006), which has
limitations as shown by Theulings et al., 2023. Finally, we assume that only one term in
either the fluid and solid domain is dominant:

O s
(
AAA+BBB

)
≈ max

(
O s

(
AAA

)
,O s

(
BBB

))
, O f

(
AAA+BBB

)
≈ max

(
O f

(
AAA

)
,O f

(
BBB

))
. (3.9)

To summarize, we use an estimation of O f
(
RRRvvv

)
≈O s

(
RRRvvv

)
to derive an approximation for

v s /v f . This is done by examining each term in RRRvvv(vvvh , ph), as presented in Equation 3.2,
individually. Subsequently, the approximation is used to define a penalization such that
we achieve a desired flow reduction v s /v f = 10−q .

3.2.2. THE DARCY APPROACH

First, we examine how to appropriately use the D approach and study its limitations. We
start by investigating the magnitude of the terms in the fluid domainΩ f . The magnitude
of the velocity gradient is approximated using the plot in Figure 3.1. We find a velocity
magnitude of

∣∣vvvh
∣∣
2 = v f on the left edge of Ω f and of

∣∣vvvh
∣∣
2 = v s ≪ v f on the right edge

of Ω f at the solid/fluid interface Γ. In Ω f we assume that any change in velocity mag-
nitude between neighboring nodes in the fluid domain is lower than between fluid and
neighboring solid/fluid interface nodes. Consequenlty, the maximum change in veloc-
ity magnitude is approximated as ∆v f = v f − v s ≈ v f . As square elements are used, the
maximum velocity gradient is found in the direction normal to the fluid/solid interface

Γ, and is approximated as O f
(
∇vvvh

)
≈∆v f /h ≈ v f /h. We note that for distorted elements
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with high aspect ratios, this assumption may not hold. The magnitude of the inertial and
viscous terms are consequently approximated as:

O f
(
−ρ∇vvvh ·vvvh +∇·

(
µ

(
∇vvvh +∇vvvh⊤)))

≈ max

(
ρ

v f 2

h
,µ

v f

h2

)
. (3.10)

Subsequently, the magnitude of the pressure term is approximated as:

O f
(
∇ph

)
≈ ∆p f

h
, (3.11)

where∆p f is an estimate of the maximum change in pressure inΩ f . In the fluid domain
the magnitude of the Darcy penalization is zero, D1(α= 1) = 0. Finally, the magnitude of
the terms in the fluid domain can be estimated as:

O f
(
RRRvvv

)
≈ max

(
ρ

v f 2

h
, µ

v f

h2 ,
∆p f

h

)
. (3.12)

The magnitude of the velocity gradient in the solid domain is estimated using the

change in velocity ∆v s as O s
(
∇vvvh

)
≈ ∆v s /h, which is used to approximate the inertial

and viscous terms:

O s
(
−ρ∇vvvh ·vvvh +∇·

(
µ

(
∇vvvh +∇vvvh⊤)))

≈ max

(
ρ

v s∆v s

h
,µ
∆v s

h2

)
. (3.13)

Similar to the fluid domain, we approximate the pressure term as:

O s
(
∇ph

)
≈ ∆p s

h
, (3.14)

In the solid domain, the magnitude of the Darcy penalization is maximal, D1(α = 0) =
D1, and is estimated as:

O s
(
D1(α)vvvh

)
≈ D1v s . (3.15)

Gathering terms from Equations 3.13, 3.14, 3.15, the magnitude of the terms in the solid
domain is estimated as:

O s
(
RRRvvv

)
≈ max

(
ρ

v s∆v s

h
,
∆p s

h
,µ
∆v s

h2 ,D1v s
)

. (3.16)

As we assume that the terms in the fluid and solid domain are in equilibrium

O f
(
RRRvvv

)
≈O s

(
RRRvvv

)
:

max

(
ρ

v f 2

h
,
∆p f

h
,µ

v f

h2

)
≈ max

(
ρ

v s∆v s

h
,
∆p s

h
,µ
∆v s

h2 ,D1v s
)

. (3.17)

Our approach is to investigate each term on the left-hand side assuming it is dominant.
Subsequently, we investigate how the right-hand side counteracts these terms and how
the velocity magnitudes are related. A first working assumption is that if an appropriate
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penalization is applied then v f ≫ v s > ∆v s . Since the inertial and viscous terms scale
the same with respect to ρ, µ and h in the fluid and solid domains, we neglect the solid
domain inertial and viscous terms as they cannot counteract the fluid domain terms.
Reducing Equation 3.17 to:

max

(
ρ

v f 2

h
,
∆p f

h
,µ

v f

h2

)
≈ max

(
∆p s

h
,D1v s

)
. (3.18)

Moreover, in (Theulings et al., 2023) we derived an appropriate penalization based on

the assumption that the pressure field is C 1-continuous and O s
(
∇ph

)
≈ O f

(
∇ph

)
. In

(C. Wu & Zhang, 2024) and from experience, we find this assumption to hold across a
solid/fluid interface. Assuming that if dominant, the pressure gradients are in equilib-
rium, we neglect them in the order analysis:

max

(
ρ

v f 2

h
,µ

v f

h2

)
≈ D1v s . (3.19)

In Equation 3.19, two terms might be dominant in the fluid domain. We need to
determine which one to select an appropriate maximum penalization D1. Following
(Theulings et al., 2023), we select the dominant term based on the elemental Reynolds
number, the ratio between elemental inertial and viscous term magnitudes:

Re f
e = ρ v f 2

h

µ v f

h2

= ρv f h

µ
. (3.20)

The fluid domain velocity magnitude v f varies throughout the design domain and is not
known when selecting D1. An estimation of the magnitude ṽ f ≈ v f is thus needed to
evaluate the elemental Reynolds number:

R̃e
f
e ≈ ρṽ f h

µ
(3.21)

Generally, we estimate ṽ f using the maximum velocity magnitude at the inlet or outlet.

For low elemental Reynolds number, R̃e
f
e ≤ 1, viscous terms are dominant and Equa-

tion 3.19 reduces to µv f /h2 ≈ D1v s , such that we can compute the flow reduction as:

v s

v f
≈ µ

h2D1
≈ 10−q . (3.22)

Subsequently, we find a maximum penalization for the desired flow reduction:

D1 = 10q µ

h2 . (3.23)

To summarize, we first used the fact that O f
(
RRRvvv

)
≈ O s

(
RRRvvv

)
to find an expression for the

ratio of velocity magnitudes v s /v f . Subsequently, D1 is defined to ensure that this ratio
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approximately takes a desired value, i.e., v s /v f ≈ 10−q . A similar method will be used to
define all other penalization magnitudes.

For low elemental Reynolds numbers, R̃e
f
e ≤ 1, the definition of the maximum Darcy

penalization is straightforward. However, for larger elemental Reynolds numbers, R̃e
f
e >

1, the inertial term is dominant and Equation 3.19 reduces to ρv f 2
/h ≈ D1v s , such that

flow reduction is computed as:

v s

v f
≈ ρv f

hD1
≈ 10−q , (3.24)

which holds for:

D1 = 10q ρv f

h
≈ 10q ρṽ f

h
= 10q µ

h2 R̃e
f
e . (3.25)

The estimation of the velocity magnitude ṽ f influences the selection of D1 in two ways:

first in selecting whether inertial or viscous terms are dominant in R̃e
f
e , and second when

inertial terms are dominant in selecting the penalization D1. An inaccurate estimation of
the velocity ṽ f influences the flow reduction, as shown by Theulings et al., 2023. There-
fore, in this work, we aim to construct a penalization that does not require an a priori
estimation of the velocity.

3.2.3. THE DARCY WITH FORCHHEIMER APPROACH

To circumvent the estimation of the velocity magnitude ṽ f , we add the Forchheimer
penalization (Whitaker, 1996) to the momentum equation, resulting in the Darcy with
Forchheimer (DF) approach. The Forchheimer penalization depends quadratically on
the velocity and is introduced beside the Darcy penalization as:

RRRvvv(vvv, p) =−ρ∇vvv·vvv−∇p+∇·(µ(∇vvv+∇vvv⊤
))Darcy penalization︷ ︸︸ ︷

−D2(α)vvv −F2(α) |vvv|2 vvv︸ ︷︷ ︸
Forchheimer penalization

=000. (3.26)

Both penalizations are set to zero D2(α = 1) = F2(α = 1) = 0 in the fluid domain and
to their maximum value D2(α = 0) = D2, F2(α = 0) = F 2 in the solid domain. To add
the Forchheimer term to the order analysis performed in Section 3.2.2, we estimate its
magnitude in the solid domain as:

O s
(
F2(α)

∣∣∣vvvh
∣∣∣
2

vvvh
)
≈ F 2

(
v s)2 , (3.27)

whereas its magnitude is set to zero in the fluid domain. Subsequently, we introduce the
magnitude of the Forchheimer penalization to the right-hand side of Equation 3.19:

max

(
ρ

v f 2

h
,µ

v f

h2

)
≈ max

(
D2v s ,F 2

(
v s)2

)
. (3.28)

We aim for the Forchheimer penalization to counteract inertial terms, as both scale
quadratically with velocity, and for the Darcy penalization to counteract viscous terms,
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as both scale linearly with velocity. Neglecting the viscous (Re f
e ≥ 1) or inertial (Re f

e < 1)
terms, we find:

Re f
e ≥ 1 : ρ

v f 2

h
≈ F 2

(
v s)2 , (3.29)

Re f
e < 1 : µ

v f

h2 ≈ D2v s , (3.30)

from which we derive the desired flow reduction and consequent maximum penaliza-
tion magnitude as:

Re f
e ≥ 1 :

v s

v f
≈

√
ρ

hF 2
≈ 10−q , F 2 = 102q ρ

h
, (3.31)

Re f
e < 1 :

v s

v f
≈ µ

h2D2
≈ 10−q , D2 = 10q µ

h2 . (3.32)

We find that the Forchheimer magnitude scales similarly to the Darcy magnitude in the D

approach when inertial terms are dominant R̃e
f
e ≥ 1 in Equation 3.25, but with a factor

102q instead of 10q . Moreover, we emphasize that, contrary to the D approach, both
terms in Equations 3.31 and 3.32 do not require an a priori velocity estimation.

3.2.4. THE DARCY WITH FILTERED FORCHHEIMER APPROACH

The DF approach solves the problem of estimating ṽ f , but we find inconsistencies when
performing numerical analysis in the assumptions made in the derivation of F 2 and D2.
We assumed that when inertial (resp. viscous) terms are dominant in the fluid, the Forch-
heimer (resp. Darcy) term is dominant in the solid. However, this assumption might not
hold. To compare dominant terms, we define a solid domain elemental Reynolds num-

ber Re s
e by inspecting the definition of Re f

e . The fluid domain element Reynolds number
in Equation 3.20 was defined as the ratio between inertial and viscous term magnitudes,
which is equivalent to dividing the Equation 3.29 by Equation 3.30:

Re f
e = ρv f h

µ
≈ F 2v s

D2
. (3.33)

Subsequently, we define the solid domain elemental Reynolds number by substituting
the maximum values for the Forchheimer/Darcy penalization in Equation 3.33:

Re s
e =

F 2v s

D2
= 10q ρv s h

µ
, (3.34)

Using this definition, it should hold that Re f
e ≈ Re s

e , i.e., the elemental Reynolds number
should be continuous as it is of similar magnitude in neighboring solid and fluid do-
mains. In the ideal case when v s = v f 10−q this holds as Re s

e = 10q (ρv s h)/µ= (ρv f h)/µ.

However, it might happen that Re s
e ≥ 1, while Re f

e < 1, or vice versa. This mainly oc-
curs during the convergence of the state solution when we have not yet converged to
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a solution where v s /v f = 10−q . When this occurs, Re s
e and penalizations may abruptly

change, resulting in unstable convergence behavior. Consequently, in our numerical
analysis in Section 3.4, we find the DF approach to have less predictable solutions and
a less predictable objective convexity. Moreover, in Appendix 3.C jumps in the elemen-
tal Reynolds number are shown to lead to convergence problems of the forward solu-
tion. An alternative penalization approach, which ensures a more continuous elemental
Reynolds number, is needed.

To solve this issue, we aim to define penalizations such that Re s
e = Re f

e = ρv f h/µ,
and Re s

e should thus be dependent on the fluid domain velocities v f . However, no field
containing information on fluid domain velocities is present in the solid domain. To pull
information from the fluid domain to the solid domain, we define the filtered velocity
magnitude U by applying the PDE filter, as described for the design field by Lazarov and
Sigmund (2011), to the velocity magnitude:

−R2∇2U +U = |vvv|2 . (3.35)

Information about the local flow velocity is distributed over a domain with a radius of N

elements using R = N h/(2
p

3), such that we may estimate O s
(
U h

)
≈ v f . Although the fil-

tered velocity magnitude U will have a significant magnitude in the solid domain, which
does not appropriately represent the physics, it can be used to appropriately penalize
and decrease the actual magnitude of vvv = [u, v]⊤ in the solid domain. The filtered ve-
locity magnitude U thus exists in conjunction with the actual velocity and its magnitude
|vvv|2, i.e., no additional flow is introduced in the solid domain. We introduce a filtered
Forchheimer penalization, resulting in the Darcy with filtered Forchheimer (DFF) ap-
proach:

RRRvvv(vvv, p) =−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))Darcy penalization︷ ︸︸ ︷

−D3(α)vvv −F3(α)Uvvv︸ ︷︷ ︸
filtered Forchheimer penalization

=000.

(3.36)
The magnitude of the filtered Forchheimer penalization is estimated as

O s
(
F3(α)U hvvvh

)
≈ F 3v f v s , which is introduced in Equation 3.19, to find:

max

(
ρ

v f 2

h
,µ

v f

h2

)
≈ max

(
D3v s ,F 3v f v s

)
. (3.37)

The Darcy penalization remains unchanged with respect to the DF approach and the

maximum penalization D3 = 10qµ/h2 found in Equation 3.32 is used. When Re f
e ≥ 1

and inertial terms are dominant, we aim for the filtered Forchheimer penalization to

inhibit the flow. We find ρ v f 2

h ≈ F 3v f v s , and a flow reduction with resulting maximum
penalization:

v s

v f
≈ ρ

hF 3
≈ 10−q , F 3 = 10q ρ

h
, (3.38)
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which is a factor 10q lower than the maximum F 2 for the DF approach in Equation 3.31.
Moreover, computing the solid domain elemental Reynolds number using the filtered
Forchheimer penalization, we find:

Re s
e =

F 3v f v s

D3v s
= ρv f h

µ
= Re f

e . (3.39)

Using the filtered Forchheimer penalization, we ensure a continuous elemental
Reynolds number and appropriate penalization magnitudes for viscous and inertial
terms.

3.2.5. OVERVIEW OF PENALIZATION APPROACHES
Three approaches for penalizing the flow in the solid domain are discussed in this pa-
per: the Darcy, the Darcy with Forchheimer, and the Darcy with filtered Forchheimer
approach, defined respectively as:

D:−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))−D1(α)vvv =000 (3.40)

DF:−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))−D2(α)vvv−F2(α) |vvv|2 vvv =000, (3.41)

DFF:−ρ∇vvv ·vvv−∇p +∇· (µ(∇vvv+∇vvv⊤
))−D3(α)vvv−F3(α)Uvvv =000. (3.42)

Subsequently, maximum penalizations are defined such that the flow reduction at the
fluid/solid interface can be approximated as v s /v f = 10−q . For the D approach, an
appropriate penalization depends on an estimate of the fluid velocity magnitude and
consequent elemental Reynolds number in Equation 3.21. The maximum penalization
values derived in previous sections can be found in Table 3.1.

D: R̃e
f
e ≤ 1 D: R̃e

f
e > 1 DF DFF

Darcy D1 = 10q µ

h2 D1 = 10q µ

h2 R̃e
f
e D2 = 10q µ

h2 D3 = 10q µ

h2

Forchheimer - - F 2 = 102q ρ
h F 3 = 10q ρ

h

Table 3.1: The derived appropriate settings for the maximum penalization in the solid domain at α = 0 such
that the flow reduction can be estimated as v s /v f = 10−q .

3.2.6. INTERPOLATION FUNCTION AND POST-PROCESSING APPROACH
So far, this section has mainly focused on the flow reduction at crisp fluid/solid inter-
faces. However, since gradient-based optimization with continuous design variables is
used, we interpolate the penalization D(α) and F (α) for 0 ≤α≤ 1, and fluid/solid inter-
faces generally exhibit intermediate values of α. In this work, we use the interpolation
function presented by Borrvall and Petersson (2003) and shown in Figure 3.2:

D(α) = D
p̂(1−α)

p̂ +α , (3.43)

where the parameter p̂ was originally introduced in a two-step continuation approach
to control the level of gray in the optimized designs. The layout is first optimized using
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p̂ = 0.01 to make the response surface of the objective more convex and allow the opti-
mizer to escape ill-performing local optima. Secondly, the resulting designs are further
optimized using p̂ = 0.1 to obtain a discrete valued solution. In Section 3.4.2, the relation
between the interpolation function and convexity of the pressure drop objective will be
further investigated.

p̂ = 10−1, p̂ = 10−2, p̂ = 10−3, p̂ = 10−4,
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)

Figure 3.2: The interpolation function presented in Equation 3.2 in linear and logarithmic scales.

Our approach for finding appropriate interpolation functions is to examine a
fluid/solid interface, where the solid domain in Figure 3.1 is replaced by a porous do-
main with α ≈ 0.5. We note that Gersborg-Hansen et al. (2005) already interpret the in-
terpolation as a function which decreases the penalization in the gray areas to improve
the convexity of the objective response. However, using our prediction of the flow re-
duction, a more reliable derivation of the required parameter p̂ can be obtained. We
investigate the penalization achieved for these interface areas by observing that the in-
terpolation lowers the magnitude of the penalization determined by 10q in Table 3.1, and
consequently increases the predicted flow. In all approaches, the Darcy penalization is
interpolated by using p̂ = 10−q̂ in Equation 3.43, as:

D(α) = D
10−q̂ (1−α)

10−q̂ +α , (3.44)

such that D(α= 0.5) ≈ 10−q̂ D , decreasing the Darcy penalization by 10−q̂ as shown in the
logarithmic plot in Figure 3.2, resulting in more porous domain flow as v s /v f = 10q̂−q .

For the Forchheimer penalization, a different interpolation function is used for the
DF and the DFF approach where we substitute p̂ = 10−2q̂ and p̂ = 10−q̂ , respectively:

F2(α) = F 2
10−2q̂ (1−α)

10−2q̂ +α , F3(α) = F 3
10−q̂ (1−α)

10−q̂ +α , (3.45)

such that at the fluid/solid interface F2(α= 0.5) ≈ 10−2q̂ F 2 and F3(α= 0.5) ≈ 10−q̂ F 3, de-
creasing the penalization by 10−2q̂ and 10−q̂ , respectively. In Table 3.1, the penalizations
for the DF and DFF approach scale respectively with 102q and 10q , both resulting in a
flow reduction of v s /v f = 10−q . The lower parameter p̂ = 10−2q̂ for the DF approach is
thus needed to ensure that the flow in the porous domain scales similarly for the DF and
DFF approaches as v s /v f = 10q̂−q .
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Using the predicted flow reduction in porous areas, we derive an improved thresh-
old on α for the post-processing of optimized results. Common approaches for post-
processing define the solid domain as the areas where α<αt = 0.5. However, using our
prediction of the flow reduction, we define the solid domain as the domain where a spe-
cific flow reduction is achieved and derive a specific value αt dependent on both q and
q̂ . For a specific flow reduction of 10−r , we require an interpolated Darcy magnitude of
D(αt ) = D10r−q , and the solid domain is defined as those areas where:

10−q̂ (1−α)

10−q̂ +α > 10r−q , (3.46)

which can be used to threshold the design using the interpolation function itself, or be
rewritten as a threshold for α in the solid domain:

αt < 1−10r−q

1+10r−q+q̂
. (3.47)

The same threshold for αt is found using the interpolation function in Equation 3.45 for
the Forchheimer penalization in the DF approach. For the remainder of this work, we
threshold the designs using r = 1 such that the solid domain is defined as those areas
where v s /v f < 0.1.

3.3. NUMERICAL IMPLEMENTATION
For the analysis and optimization of the flow problems, we use COMSOL Multiphysics®
v.6.1. (n.d.). Since the implementation is done by the multiphysics software, we take a
birds-eye view of the model. However, it remains important to make informed choices
of the settings within the software.

3.3.1. DISCRETIZATION AND OPTIMIZATION APPROACH
Shape functions, stabilization approaches, and solution procedures have to be specified
for the flow field, pressure field, and filtered flow field. All fields are discretized using the
finite element method on the same quadrilateral mesh with square elements of size h.
For the flow field we use quadratic while for the pressure field we use linear interpola-
tion functions. The filtered velocity field is handled similarly to the velocity field with
quadratic interpolation functions. Streamline diffusion (Hauke, 2001; Hauke & Hughes,
1994) is used to stabilize the solution when convection is dominating the flow. In our
changing topology, small islands or sharp corners may appear, therefore, to stabilize the
solution around these features, additional diffusion is added by applying crosswind dif-
fusion (Hauke & Hughes, 1994; Hughes & Mallet, 1986). We note that streamline and
crosswind diffusion slightly lower the accuracy of the flow solution, although not sig-
nificantly in comparison to errors related to flow leakage. However, the use of these
stabilization terms promote a smooth convergence of the flow solution.

Finally, the design is represented using a constant volume fractionα in each element
in the mesh, and no filter is applied on the design variables. Furthermore, we use the
Method of Moving Asymptotes (MMA) approach with an optimality tolerance of 10−3

and a constraint penalty factor of 102. The relatively low penalty factor allows for more
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design flexibility while satisfying the constraints within an acceptable tolerance. To com-
pute sensitivities, the adjoint approach is used.

3.3.2. STABILIZATION OF THE STATE SOLUTION

To solve the state equations reliably for moderate Reynolds numbers, a pseudo time-
stepping scheme is used (CFD Module User’s Guide v. 6.1. 2022), and a transient problem
is solved until steady state is reached:

RRRv =−ρvvvn −vvvn−1

∆t̃
−ρ∇vvvn ·vvvn −∇pn +∇·

(
µ

(
∇vvvn +∇vvvn⊤))

− fff (vvvn) =000, (3.48)

where the superscript n denotes the iteration in the pseudo time-stepping scheme and
fff represents the selected penalization. Time steps are computed based on the local
Courant–Friedrichs–Lewy (CFL) number as ∆t̃ = C F Ll oc∆t̃r , where the reference time
step is defined as:

∆t̃r = h

|vvvn |2
. (3.49)

The local CFL number C F Lloc is determined by a PID regulator, and |vvvn |2 the local veloc-
ity magnitude. This approach assumes that inertial terms are dominant on the element
scale and are the limiting factor for a stable time step. However, using this approach,
some solutions diverge in the forward solve during optimization. Upon close inspec-
tion, divergence happens for higher q ≥ 2 and when an update in the design causes a
new solid element to appear in the fluid domain. To speed up computations, we ini-
tialize the flow solution in the current design using the flow solution from the previous
design. We found this may cause large non realistic flow speeds and consequently di-
verging flow solutions in the newly introduced solid elements.

We solve the stability issue by investigating the assumption of dominant inertia in
penalized elements. In Section 3.2.2, we assumed that when inertia is dominant in the
fluid domain, the penalization terms are dominant in the solid domain. As a conse-
quence, the penalization term in should be dominant over the inertia terms in the solid
domain. An appropriate time step in the solid domain should thus be dependent on the
penalization magnitude.

To define an appropriate time step, we investigate the order of magnitude of the tran-
sient and the penalization term in the solid domain:

O s
(
ρ

vvvn −vvvn−1

∆t̃

)
= ρ v s

∆t̃ f
, O s

(
fff
)
= ∣∣fff

∣∣
2 = f s , (3.50)

where we compute v s = |vvvn |2 at each time step, and define the magnitude of the penal-
ization in the differing approaches as:

D: f s = D1(α)v s (3.51)

DF: f s = (
D2(α)+F2(α)v s)v s , (3.52)

DFF: f s = (D3(α)+F3(α)U ) v s . (3.53)
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We use interpolated values D(α) and F (α) as instabilities may already occur in gray ele-
ments with relatively high penalization values. Subsequently, we assume the penaliza-
tion is dominant and limits the maximum time step (ρv s )/∆t̃ f = f s :

D: ∆t̃ f =
ρ

D1(α)
(3.54)

DF: ∆t̃ f =
ρ

D2(α)+F2(α)v s , (3.55)

DFF: ∆t̃ f =
ρ

D3(α)+F3(α)U
. (3.56)

In the fluid domain where α = 1 and fff = 000, the inertial term remains dominant. Since
the time step is computed per element and inversely proportional to either the inertia or
penalization term, we use the smallest computed time step in our solution procedure.

∆t̃ =C F Lloc min
(
∆t̃r ,∆t̃ f

)
. (3.57)

To regularize the time step and speed up the computation the local CFL number is in-
cluded in the time step definition. Using this approach, we found the state solutions to
converge more reliably as shown in Sections 3.4 and 3.5.

We note that computational time is generally reduced when a direct steady-state
solver is used instead of the pseudo time-stepping scheme. However, when Reynolds
numbers increase, the presented pseudo time-stepping approach is often necessary for
the state-solution to converge. Pseudo time-stepping performs more gradual updates
of the flow and pressure fields, and generally needs more iterations to converge. This
results in a larger computational cost, but a more smooth and reliable convergence be-
havior.

3.4. MODEL INVESTIGATION
In Section 3.2, we described three penalization approaches that should lead to a flow
reduction of v s /v f = 10−q . In Section 3.4.1, we verify the predicted flow reduction. We
expect the D approach to be less predictable due to the estimation of the fluid domain
velocity magnitude and the DF and DFF approaches to achieve a more predictable flow
reduction. Additionally, in Appendix 3.A we investigate the effect of element size h on
flow reduction. In Section 3.4.2, we examine the convergence behavior of the optimiza-
tion by investigating the convexity of the objective function, here chosen as the pressure
drop.

3.4.1. MODEL ACCURACY AND FLOW LEAKAGE
To investigate the flow leakage, we use the setup in Figure 3.3 and the geometry and
material parameters in Table 3.2. Different inlet Reynolds numbers Rei n are investigated
and we define the fluid density as:

ρ = Rei nµ

vL
, (3.58)

where v is the maximum inlet velocity and L the inlet diameter. For the D approach, we
estimate the fluid domain flow speed using the maximum inlet velocity v . For the DFF
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approach, we filter the velocity over N = 10 elements, i.e., R = N h/(2
p

3) , based on the
findings from Appendix 3.B on the effect of the filter radius on flow leakage. The choice
of N = 10 is based on the maximum filter radius for which overpenalization does not
occur.

To check the predictability of the flow leakage, we place solid obstacles with α = 0
either in the center (Ωc

i ) or towards the edge (Ωe
i ) of all i ∈ {1 : 6} channels. The de-

sign is constructed such that different elemental Reynolds numbers occur naturally in
different parts of the domain. In Channel 6, low flow velocities lead to low elemental
Reynolds numbers, while in Channel 1, larger flow velocities lead to relatively high ele-
mental Reynolds numbers. Additionally, flow speeds and elemental Reynolds numbers
near the channel walls are significantly lower than in the center of the channels. A unique

estimation ṽ f and thus R̃e
f
e for the penalization in the D approach does not exist as the

velocity varies throughout the domain, a situation that often occurs during topology op-
timization.

v
po = 0

1

2

3

4

5

6
Ωc

6
Γc

6

Ωe
6 Γ

e
6

L
2

2L

3
2 L

L
2

L
4

D f

D f

D f

D f

D f

4L

4h

Figure 3.3: The setup to measure the accuracy of the predicted flow leakage. The design is symmetric over the
dashed boundary. In Channel 1 to 6, obstacles with volume fraction α= 0 are placed. We either add the green
obstacles Ωe

i at the edge or the red obstacles Ωc
i in the center of the channels. Obstacles consist of a four by

four element domain. To measure the flow leakage relative to the local flow magnitude, we define fluid edges
Γe

i and Γc
i as the edges one element away fromΩe

i andΩc
i , respectively.

L D f h µ v ṽ f N

1 [m] 7L
20

L
80 1[Pas] 10[ms−1] v 10

Table 3.2: The parameters used to verify the predicted flow leakage using the setup in Figure 3.3.

We compute the flow leakage by comparing the average flow magnitude within ob-
stacles Ωe

i or Ωc
i to the average flow speed on Γe

i or Γc
i , the fluid edges located one ele-

ment away from the obstacles. Superscripts c and e denote center and edge obstacles,
respectively. To average the flow speeds, we use the surface area for the obstacles AΩ,
and length of the center or edge boundaries LΓc or LΓe , respectively. The flow leakage is
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computed as:

ϵe
i =

v s

v f
≈

∫
Ωe

i
|vvv|2 dΩ∫

Γe
i
|vvv|2 dΓ

LΓe

AΩ
, ϵc

i =
v s

v f
≈

∫
Ωc

i
|vvv|2 dΩ∫

Γc
i
|vvv|2 dΓ

LΓc

AΩ
(3.59)

After computing the flow leakage from our solution, we check it against our prediction
of v s /v f = 10−q . The order of the flow reduction q̃ in the i -th channel can be computed
when solving with a different q ∈ 0,1,2,3, as:

q̃e
q,i =− log10

(
ϵe

i

)
, q̃c

q,i =− log10

(
ϵc

i

)
, (3.60)

where subscript q denotes the user-defined parameter for the solution. The measured
magnitude of the flow reduction is subsequently used to compute a mean error with
respect to our prediction:

ξe =
∑3

q=1
∑6

i=1

∣∣∣q − q̃e
q,i

∣∣∣
2

18
, ξc =

∑3
q=1

∑6
i=1

∣∣∣q − q̃c
q,i

∣∣∣
2

18
. (3.61)

We do not include results for q < 1 in the verification as the flow reduction associated to
such values is too low to be accurate and all approaches show similar results. The analy-
sis will be performed for moderate and relatively high inlet Reynolds numbers Re = 100
and Re = 1000 such that low (Ree

f < 1) and high (Ree
f > 1) elemental Reynolds numbers

are present.
In Figure 3.4, the measured flow leakage for varying q can be found. We present only

errors in Channels 1 and 6 as in these channels, the highest and lowest flow magnitudes
and elemental Reynolds numbers are found, as shown in Figure 3.5. The first observa-
tion is that for Re = 100, the D approach is in good agreement with the prediction, while
for Re = 1000, it overpenalizes flow leading to an increased flow reduction. This is caused
by an erroneous estimation ṽ f of the velocity magnitude. For Re = 100, the approximate

elemental Reynolds number is low R̃e
f
e = 1.25 and the estimation of ṽ f does not signif-

icantly influence the penalization. For Re = 1000, the approximate elemental Reynolds

number is larger, R̃e
f
e = 12.5, and the magnitude of the penalization is largely dependent

on the estimation of ṽ f . The estimation of the flow velocity is only valid in the center of

Channel 1 where R̃e
f
e ≈ Re f

e . For all other obstacles, the flow velocity is overestimated
leading to excessive flow reduction.

ξe , Re = 100 ξe , Re = 1000 ξc , Re = 100 ξc , Re = 1000
D 0.159 0.627 0.280 0.462
DF 0.142 0.086 0.217 0.102
DFF 0.188 0.137 0.299 0.176

Table 3.3: The error in flow reduction for the center obstacles (ξc ), edge obstacles (ξe ) for moderate (Rei n =
100, Re

f
e ≤ 1) and relatively high (Rei n = 1000, Re

f
e > 1) Reynolds numbers. Examining the errors, the DF

approach is found to be the most accurate followed by the DFF and D approaches.

As reported in Table 3.3 by the errors in prediction ξ, both the DF and DFF ap-
proaches produce more predictable errors, whereas errors in the D approach spike for
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Channel 1, D, Channel 1, DF, Channel 1, DFF
Channel 6, D, Channel 6, DF, Channel 6, DFF
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Figure 3.4: Trend in the flow leakage for increasing q in the problem in Figure 3.3 with parameters in Table 3.2.
Errors for Channel 1 and 6 are shown as these channels present the highest and lowest flow magnitudes. Both
the DF and DFF approaches predict errors well as 10−q . The D approach predicts errors well for low but not
for high Reynolds numbers.

Re
e

f

0

0.2

0.4

0.6

0.8

1

(a) Re = 100, q = 3.

Re
e

f

0

2

4

6

8

10

12

(b) Re = 1000, q = 3.

Figure 3.5: Elemental Reynolds number Re
f
e , computed using the D approach. Only edge obstacles Ωe

i are

introduced. Using ṽ f = v , we obtain an approximate elemental Reynolds number of R̃e
f
e = 1.25 (Re = 100)

and R̃e
f
e = 12.5 (Re = 1000).

Re = 1000. In all cases, the DF approach is found to be the most accurate. However,
the DF approach shows convergence problems, even with the stabilization procedure in
Section 3.3.2 and generally takes more iterations to converge. For high Reynolds num-
bers, the D approach does not predict flow leakage accurately which will cause problems
for the optimization procedure as examined in Section 3.4.2 and 3.5.
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3.4.2. OBJECTIVE CONVEXITY AND CONTINUATION APPROACH
To use the D, DF, or DFF approach for TO effectively, a continuation strategy is derived by
investigating the effect of design changes on the objective. In particular, we study how
the magnitude of the flow reduction and the shape of the interpolation function for the
Darcy and the Forchheimer penalization affect an objective function, here chosen as the
pressure drop:

gp =
∫
Γo

pdΓ−
∫
Γi

pdΓ, (3.62)

where Γo and Γi are the flow outlets and inlets, respectively. To examine the interaction
between objective and penalization, we use the problems described in Figure 3.6 with
parameters in Table 3.4, and a Reynolds-dependent density:

ρ = Rei nµ

vLc
, (3.63)

where Lc is the inlet diameter. To study the convexity of the objective response, we per-

Γi

Γo Γi

Γo

α= 1−αd
α=αd

Lc

2L

3L

4L

2h

(a) The viscous dominated design change.

Γi

Γo Γi

Γo

α= 1−αd
α=αd

1.5L−2h
1.5L−2h

L
2 −h

L
2 −h

(b) The inertia dominated design change.

Figure 3.6: The two-channel problems used to investigate the convexity of the objective. On the inlets Γi ,
a parabolic inflow is applied and on the outlets Γo , a parabolic outflow is applied. Both parabolic in- and
outflows have maximum velocity v . In the red and blue areas, the design is changed. While the light gray is
fluid (α = 1) and the dark gray solid (α = 0), the red and blue areas are changed through gray (α ≈ 0.5) from
solid to fluid or vice versa.

form a similar analysis as Lundgaard et al. (2018), who inspect the monotonicity of the
objective response for fluid structure interaction problems. We impose a change in de-
sign variable from solid, α = 0, through gray, α ≈ 0.5, to fluid, α = 1, for certain areas
of the design. A convex response presents lower values for gray than for crisp designs,
while a concave response takes lower values for crisp than for gray designs. Therefore, a
convex response leads to designs that more freely change than for a concave response.
Based on this information, a continuation approach can be derived to allow for large
design updates in the early optimization stages and to ensure a crisp 0/1 design in later
stages.

Two design changes, regulated by parameter 0 ≥ αd ≥ 1, are examined as shown in
Figure 3.6. In Figure 3.6a, the channel walls are perturbed over one element to exam-
ine viscous dominated design changes. For αd = 1, the upper channel is straight while
the lower channel is curved, and vice versa for αd = 0. In Figure 3.6b, a four-by-two-
element-island is introduced in the center of the channel to examine inertia dominated
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L Lc h µ v ṽ f

1 [m] L L
20 1[Pas] 1[ms−1] v

Table 3.4: Parameters for the analysis of the objective convexity for the problem in Figure 3.6.

design changes. For αd = 1, an island is present only in the top channel, and for αd = 0,
only in the bottom channel. The design changes are symmetric to ensure the overall vol-
ume fraction in the design domain remains constant, as most optimization procedures
involve an active volume fraction constraint. Additionally, as the designs for αd = 0 and
αd = 1 are the same when mirrored over the center wall, we find the same objective val-
ues for these designs, which allow us to visually observe whether the response is concave
or convex.

We present the pressure drop objective gp for different values ofαd in the two designs
defined by Figures 3.6a and 3.6b using either Rei n = 10 or Rei n = 500 for, respectively, the
DFF , DF, and D approach in Figures 3.7, 3.8, and 3.11. The penalization in the gray areas
is lowered using the penalization interpolation approach described in Section 3.2.6 using
q̂ ∈ {1,2} and the maximum penalization magnitude is defined by by q ∈ {0,1,2,3}, which
should lead to a flow reduction at the gray/fluid interface of v s /v f = 10q̂−q .

q = 0, q̂ = 1, q = 1, q̂ = 1, q = 2, q̂ = 1, q = 3, q̂ = 1
q = 0, q̂ = 2, q = 1, q̂ = 2, q = 2, q̂ = 2, q = 3, q̂ = 2

Viscous dominated design change Inertia dominated design change
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Figure 3.7: Convexity of the pressure drop for the DFF approach using a viscosity dominated (Figure 3.6a) or
an inertia dominated design change (Figure 3.6b) at Reynolds number Rei n = 10,500.

First, we analyze the convexity of the objective using the DFF approach in Figure 3.7
and find a clear switch between convex and concave behavior. When the predicted flow
reduction is v s /v f = 10−q+q̂ > 1 (q<q̂), the response is convex, when it is v s /v f < 1 (q>q̂),
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the response is concave, and when it is exactly v s /v f = 1 (q = q̂), the response differs be-
tween the sub-figures and is undetermined. We note that for a predicted v s /v f ≥ 1, the
penalization is is not active and we measure v s /v f ≈ 1. This behavior can be explained
by the constant fluid volume associated to the design changes in Figure 3.6. When the
average volume fraction remains constant and gray areas emerge in the design, two sce-
narios may occur. If the penalization in the gray areas is low enough such that they can
be seen as a fluid domain. The total "fluid" domain is increased, which is generally asso-
ciated with less pressure drop. If the penalization is high enough such that the gray areas
can be seen as a solid domain. The "solid" domain is increased which generally leads to
an increase in pressure drop.

Secondly, we analyze the convexity of the objective using the DF approach in Fig-
ure 3.8. We emphasize that following Section 3.2.6, a steeper interpolation is used for
the Forchheimer than for the Darcy penalization. The DF approach does not present a
consistent behavior as the DFF approach. For Rei n = 10, we find convex behavior for
q < q̂ and concave for q > q̂ , the same as the DFF approach. The response is thus convex
for lower q and concave for higher q . However, for Rei n = 500 in the viscous dominated
design change, we find different behavior. The response is concave for q = 0, convex for
q = 1, and concave again for q = 2 and q = 3.

q = 0, q̂ = 1, q = 1, q̂ = 1, q = 2, q̂ = 1, q = 3, q̂ = 1
q = 0, q̂ = 2, q = 1, q̂ = 2, q = 2, q̂ = 2, q = 3, q̂ = 2

Viscous dominated design change Inertia dominated design change
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Figure 3.8: Convexity of the pressure drop for the DF approach using a viscosity dominated (Figure 3.6a) or an
inertia dominated design change (Figure 3.6b) at Reynolds number Rei n = 10,500.

The difference in behavior between DF and DFF approaches can be understood from
the flow profiles in Figures 3.9a and 3.9b. For q = 0, larger flow leakage through the center
wall is observed for the DF approach compared to the DFF approach. Subsequently,
the leakage causes the flow path to curve resulting in more pressure drop for the DF
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approach. Consequently, when gray elements are introduced 0 < αd < 1 at the center

|v|
2

0

0.2

0.4

0.6

0.8

1

(a) DF flow profile (b) DFF flow profile

Figure 3.9: Flow profiles for viscous dominated design change (Figure 3.6a) for q = 0, q̂ = 1, αd = 0, and at
Rei n = 500.

wall, the resulting penalization lowers results in more flow leaking through the wall. This
further deteriorates the objective, causing the DF response to be concave. However, for
q = 1, the flow profile for the DF approach is similar to the profile for the DFF approach,
and the response becomes convex.

To explain why the DF approach does not reproduce a flow solution similar to the
DFF approach for q = 0, we further examine the DFF flow solution. In Section 3.2.4,
we predicted that a difference in elemental Reynolds numbers in the solid and fluid do-
mains may cause an abrupt change in penalization in the DF approach. In Figure 3.10,
the elemental Reynolds numbers are shown for the solution using q = 0 and αd = 0.
The solid domain elemental Reynolds numbers are computed following Equation 3.34
for the DF approach in Figure 3.10a, and using Equation 3.39 for the DFF approach
in Figure 3.10b. In both figures, the elemental Reynolds numbers are computed using
the DFF flow solution. The DFF elemental Reynolds numbers in Figure 3.10b are of the
same order of magnitude in the solid wall and in the channels. However, the DF elemen-
tal Reynolds numbers in Figure 3.10a are at least one order of magnitude lower in the
solid wall than in the channels. Moreover, in the solid domain the elemental Reynolds
numbers are smaller than 1, Re s

e < 1, while in the fluid domain, they are larger than

one, Re f
e > 1. In the solid domain, the Darcy penalization, which should inhibit viscous

forces, is dominant, while in the fluid, inertial forces are dominant. For this reason, the
flow solution found using the DFF approach cannot be obtained using the DF approach.

It is important to note that the DF approach is not less accurate nor that the flow
leakage is less predictable. The examined results are computed for q = 0, which results
in less predictable flow leakage for all approaches. Additionally, due to the curved flow
path through the center wall in the DF flow solution in Figure 3.9a, flow speeds close to
the wall (v f ) are higher resulting in a similar flow leakage (v s /v f ) for both approaches.
In fact, these results illustrate that the response computed using the DF approach is less
predictable than the one computed with the DFF approach.

Finally, we examine the convexity of the pressure drop for the D approach in Fig-
ure 3.11. Generally, the results are similar to those using the DFF approach, i.e., the
response is convex for q < q̂ and concave for q > q̂ . However, for Rei n = 500, q = 0,
q̂ = 1 in the viscous dominated change and for Rei n = 500, q = 1, q̂ = 2 in the inertia
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(a) Elemental Reynolds numbers computed us-
ing the definition for the DF approach (Ree

s =
10q ρ|vvv|2h

µ ) in the solid domain.

(b) Elemental Reynolds numbers computed us-
ing the definition for the DFF approach (Ree

s =
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µ ) in the solid domain.

Figure 3.10: Elemental Reynolds numbers for the viscous design change (Figure 3.6a) for q = 0, q̂ = 1, αd = 0,
and Rei n = 500. All elemental Reynolds numbers are computed using the DFF flow solution in Figure 3.9b.

q = 0, q̂ = 1, q = 1, q̂ = 1, q = 2, q̂ = 1, q = 3, q̂ = 1
q = 0, q̂ = 2, q = 1, q̂ = 2, q = 2, q̂ = 2, q = 3, q̂ = 2

Viscous dominated design change Inertia dominated design change

R
e i

n
=

10

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

α

g
p

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

α

g
p

R
e i

n
=

50
0

0 0.2 0.4 0.6 0.8 1

0.95
1

1.05
1.1

α

g
p

0 0.2 0.4 0.6 0.8 1
1

1.5

2

α

g
p

Figure 3.11: Convexity of the pressure drop for the D approach using a viscosity dominated (Figure 3.6a) or an
inertia dominated design change (Figure 3.6b) at Reynolds number Rei n = 10,500.

dominated change, the response is neither completely concave or convex. This results
from the estimation of the flow velocity, which leads to an elemental Reynolds number

R̃e
f
e > 1 and consequently to an overestimation of the required penalization in those

areas where Re f
e < 1. As we will show in Section 3.5, overpenalization can make the re-

sponses concave and leads to convergence to inferior local optima.
Using the results in this section, we create an informed continuation approach for

optimization. In the initial stage of optimization, we are interested in the flexibility of
the design while the accuracy is less important. In the later stage of optimization, we
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want to guide the design to a solid/fluid 0/1 solution which accurately describes the flow
and thus the objective and constraint functions. We therefore use a continuation on q
and optimize using low q in the initial stage and high q in the later stages. Another ap-
proach to add more convexity in the response is to use larger q̂ , as seen in Figures 3.7, 3.8,
and 3.11. However, in the authors’ experience, adding a steeper slope to the interpo-
lation function using q̂ > 2 generally deteriorates the convergence of the optimization
procedure.

3.5. TOPOLOGY OPTIMIZATION
In this section, we compare the penalization approaches using optimization examples.
Section 3.5.1 focuses on the ability of the approaches to escape ill-performing local op-
tima. In Section 3.5.2, we investigate the relation between design convergence and con-
tinuation, and show the limitations of the D approach under varying estimations of ve-
locity magnitude ṽ f .

Beside accuracy and convexity, another important property is the stability of an ap-
proach. Stability with respect to the convergence of the flow solution, and with respect
to the convergence of the optimization process. In our experience with the DF approach,
design updates were often larger and less stable. Moreover, the solution procedure for
the flow and pressure fields suffers from convergence issues, even using the stabilization
approach described in Section 3.3.2. We found that the initial flow conditions were more
important for the flow/pressure fields to converge in the DF approach than in the D or
DFF approaches. Using the D and the DFF approach, we could use the flow/pressure so-
lution of the previous design as initial solution for the current design, resulting in much
lower computational cost. Using the DF approach, we were often forced to reinitialize
the flow/pressure fields resulting in large computational efforts. In Appendix 3.C, we
further investigate instabilities in the DF approach. Although the DFF approach is less
predictable with respect to flow leakage than the DF approach, it is preferred for its sta-
bility. For the remainder of this chapter we do not consider the DF approach.

3.5.1. DEALING WITH ILL-PERFORMING LOCAL OPTIMA

To examine the ability of the D and DFF approaches to escape inferior local optima, we
use the problem introduced for the convexity analysis in Figure 3.6. The parameters are
provided in Table 3.5 for Rei n = 500 using the Reynolds dependent density defined in
Equation 3.63. The design domain is limited to the gray center areas and the inlet/outlet
channels remain unchanged during the optimization. We expect optimized designs to
consist of two straight channels with a parabolic flow profile. Using an inlet Reynolds
number Rei n = 500, we expect the elemental Reynolds number Ree

f to be larger than

one in the center of the parabolic flow, and lower than one toward the channel walls.

L h µ v ṽ f Ni qmi n qmax ∆q q̂ V f

1 [m] L
20 1[ms] 1[ms−1] v 50 0 3 1 1, 2 2Lc /4L

Table 3.5: Parameters for the optimization of the problem in Figure 3.6.
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In Section 3.4.2 we defined a general continuation approach which starts the op-
timization using a low q and ends using a high q . Specifically, we partition the opti-
mization procedure into four stages of maximum Ni = 50 design iterations. Each part
is terminated after the Ni = 50 iterations or when the largest change in a single design
variable is less than 10−3. We start the optimization using q = qmi n = 0, and increase q
after each stage by ∆q = 1 until qmax = 3.

To examine the different approaches, we use a problem with a predictable optimum,
i.e., two straight channels. This design would use 2Lc /4L of the design space and we set
a volume constraint to:

gv (ααα) =
∑Nα

i=1αi

Nα
−V f ≤ 0, (3.64)

where we have Nα design variables αi in the design domain Ωd and V f = 2Lc /4L. Two
different inlet diameters and consequent volume constraints will be considered, Lc =
L and Lc = L/2. We normalize the pressure drop objective in Equation 3.62 with the
pressure drop associated to the two straight channel design, i.e., gp0 = 112µvL/Lc .

Another important choice is the initial design α = α0 ∈Ωd . We use two approaches
and either start with a fully fluid (α0 = 1) or gray (α0 = V f ) design. Starting from a fully
fluid design, largely violating the volume constraint, leads to large design updates that
tend to deteriorate the convergence of the forward problem. We found this effect to
be worsened by increasing q̂ . A gray design initially inhibits the flow, decreasing the
inertia effects, and favoring convergence towards designs with reduced viscous energy
dissipation.

Optimal designs, raw (g∗
p ), and post-processed (g∗

p,r e f ) objective values for the prob-

lem using Lc = L are shown in Figure 3.12, convergence history can be found in Fig-
ure 3.13. It is noticeable that using q̂ = 1 inferior local optima with curved channels are
found. For the D approach, both initial designs lead to the inferior optimum, while for
the DFF approach, the inferior optimum is only found using α0 = 1 and the superior
straight channel optimum is found using α0 = V f . Increasing q̂ to 2 improves the con-
vexity of the objective response and allows the optimizer to escape the local optimum.

In the convergence history in Figure 3.13, we find an increased convergence insta-
bility caused by using q̂ = 2 and α0 = 1. The objective of both the D and DFF approach
show a large increase at iteration 4 caused by large design changes. When initializing us-
ing α0 = 1, the design violates the volume constraint resulting in relatively large design
changes and objective fluctuations. Moreover, a spike in objective for the DFF approach
using q̂ = 2 andα0 = 1 is observed at iteration 35. The volume fraction in the center wall,
and the associated penalization, become too low, and flow leaks through the wall. As the
volume fraction in the center wall, and consequently the penalization, is increased, the
flow profile and objective stabilize. It should be noted that the DFF approach using q̂ = 1
and α0 = V f requires relatively few optimization iterations, see Figure 3.13, and gener-
ates the desired topology quickly. Later increase in q do not lead to topology changes
but help improve the accuracy of state solution.

Although improved design convergence is found for the D approach when using
a more convex interpolation function with q̂ = 2, this cannot be generalized to other
optimization problems. The same problem is investigated but with an inlet diame-
ter Lc = L/2, a maximum volume fraction V f = 2Lc /4L, and an estimated elemental
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D DFF
q̂ = 1, αt = 0.9 q̂ = 2, αt = 0.495 q̂ = 1, αt = 0.9 q̂ = 2, αt = 0.495

α
0
=

1

g∗
p = 1.042

g∗
p,r e f = 1.042

g∗
p = 1.000

g∗
p,r e f = 1.000

g∗
p = 1.021

g∗
p,r e f = 1.021

g∗
p = 1.000

g∗
p,r e f = 1.000

α
0
=V

f

g∗
p = 1.067

g∗
p,r e f = 1.067

g∗
p = 1.000

g∗
p,r e f = 1.000

g∗
p = 1.000

g∗
p,r e f = 1.000

g∗
p = 1.000

g∗
p,r e f = 1.000

Figure 3.12: Optimized designs computed using Lc = L and associated raw objective value g∗
p and post-

processed objective value g∗
p,r e f following Section 3.2.6 using αt . Only the solution in the gray design domain

in Figure 3.6 is shown.

D, q̂ = 1, α0 = 1, D, q̂ = 2, α0 = 1, DFF, q̂ = 1, α0 = 1 DFF, q̂ = 2, α0 = 1
D, q̂ = 1, α0 =V f , D, q̂ = 2, α0 =V f , DFF, q̂ = 1, α0 =V f DFF, q̂ = 2, α0 =V f
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Figure 3.13: The convergence history for the problem in Figure 3.6 using Lc = L.

Reynolds number R̃e
f
e = 50. Resulting designs, raw (g∗

p ), and post-processed (g∗
p,r e f )

objective values are given in Figure 3.14, convergence history in Figure 3.15. For this
slight variation of the problem, the D approach converges to significantly different and

inferior optima. The larger R̃e
f
e = 50 results in a large maximum Darcy penalization D1.
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D DFF
q̂ = 1, αt = 0.9 q̂ = 2, αt = 0.495 q̂ = 1, αt = 0.9 q̂ = 2, αt = 0.495
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Figure 3.14: Optimized designs computed using Lc = L/2 and associated raw objective value g∗
p and post-

processed objective value g∗
p,r e f following Section 3.2.6 using αt . Only the solution in the gray design domain

in Figure 3.6 is shown. Relative errors in objective are defined as Er rg = (g∗
p,r e f − g∗

p )/g∗
p,r e f .

As predicted in Section 3.4.2, the penalization is overestimated for the straight channel
optimum which is dominated by viscous effects. Consequently, the objective response
becomes concave and the optimization process converges to an inferior local optimum
dominated by inertial effects. Moreover, the D approach designs do not converge to fully
solid/fluid designs and present larger gray areas which lower the accuracy of the raw
objective values with respect to the post-processed ones, as shown by the large errors
Er rg = (g∗

p,r e f − g∗
p )/g∗

p,r e f in Figure 3.14.

Comparing the DFF against the D results, it should be noted that while the DFF ap-
proach performs better, optimized designs still present bent channels which are sub-
optimal. As can be seen in Figure 3.15, the convergence behavior of the DFF approach
using q̂ = 1 is more stable and converges faster than the D approach. Large jumps and
fluctuations are observed in the D objective after iteration 50 when we q is updated from
0 to 1. They are caused by the increase in q , which disturbs the objective by reducing
the flow leakage through the solid domain, increasing the flow in the fluid domain and,
consequently the pressure drop. To limit such disturbances a more gentle update of q is
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Figure 3.15: The convergence history for the problem in Figure 3.6 using Lc = L/2. Large fluctuations in objec-
tive are observed for the D approach after iteration 50 where we update q from 0 to 1.

used in Section 3.5.2. Large objective fluctuations are only present in the DFF approach
for q̂ = 2 during the initial convergence when using q = 0 in the first 25 design iterations.

In this section, we compared the D and DFF approaches with respect to their ability
to escape ill-performing local optima. Optimization methods should balance accuracy
of the solution, design flexibility, and convergence. The main issue of the D approach is
a conflict between accuracy and design flexibility. As shown by the relatively large errors
in objective Er rg found using the D approach in Figure 3.14, a large Darcy penalization is
needed for accuracy. However, a large penalization also results in the design converging
to ill-performing local optima. This effect is less prevalent in the DFF approach which
generally converges to better performing optima.

Another issue in both approaches is a conflict between design flexibility and conver-
gence behavior. To avoid premature convergence to inferior local optima and promote
design flexibility, the objective response is made more convex by lowering the penal-
ization for gray design variables and using the higher q̂ = 2. However, the resulting in-
terpolation function has a steep slope towards the maximum penalization, which often
results in large design updates causing large changes in the flow solution and jumps in
objective. Using a less steep interpolation function with q̂ = 1 results in smaller design
updates, but a larger tendency to end up in ill-performing local optima.

3.5.2. FLOW INVERTER

In more practical optimization problems, design domains may be larger and flow veloc-
ities may vary more drastically. For example, a heat exchanger may present large veloc-
ities at the inlet, and relatively low velocities in many branching channels. To illustrate
the benefits of achieving a predictable flow reduction in the DFF approach regardless of

the local Re f
e , we tackle a problem with inherently differing elemental Reynolds num-

bers. The problem is inspired by the flow inverter introduced by Gersborg-Hansen et al.
(2005) and revisited recently by Alexandersen (2023). It is assumed that by inverting the
flow, velocities locally increase, causing elemental Reynolds numbers to increase and
vary throughout the design domain. In the problem shown in Figure 3.16, fluid generally
flows from the inlet Γi , where a parabolic inflow with maximum velocity v is applied,
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to the outlet Γo , where a constant static pressure (po = 0) is applied. However, we opti-
mize for the maximum amount of inverted flow in x-direction −up at the center of the
domain, and minimize:

gv = 1+ up

up,max
, (3.65)

where up,max is set to ten times the inlet velocity up,max = 10v . We add the volume
constraint in Equation 3.64 and a constraint on the inlet pressure:

gp =
1
L

∫
Γi

pdΓ

p(β)
−1 ≤ 0, (3.66)

where p is the maximum allowed pressure drop, dependent on the user-defined param-
eter β. We define the reference pressure drop p assuming a parabolic flow profile as:

p = 8µv

L2 (1+β)5L, (3.67)

where the pressure gradient defined as ∂p/∂x = 8µv/L2 is multiplied by the length of
inlet and outlet channel and we allow for β times the pressure drop in the gray design
area of length 5L. This pressure drop constraint is consistent with Alexandersen (2023).
We use the parameters in Table 3.6 and a Reynolds dependent viscosity:

µ= ρvL

Rei n
. (3.68)

As in this problem, a symmetric initial design tends to converge to an ill-performing local
optimum (Alexandersen, 2023), the design is initialized using the non-symmetric design
with a thin wall on the bottom of the channel in Figure 3.16. We first use Rei n = 100, β=
30, h = L/50 to compare the results to (Alexandersen, 2023) and investigate the relation
between design evolution and continuation approach. In a second application, we will
use Rei n = 200, β= 60, h = L/40 to examine the effect of different estimations of velocity
magnitude ṽ f in the D approach.

L

2.5L

2.5L

5L 2.5L

Γi Γo
−up

L
2

0.4L2hα0 = 0.1
α0 =V f

Figure 3.16: The flow inverter optimization problem.

L ρ v ṽ f Ni qmi n qmax ∆q q̂ V f

1 [m] 1[kgm−3] 1[ms−1] v 20 0 2 1
3 1, 2 0.6

Table 3.6: Material and optimization parametersfor the flow inverter in Figure 3.16.



3.5. TOPOLOGY OPTIMIZATION

3

109

DESIGN EVOLUTION AND CONTINUATION

At the optimum, the pressure drop constraint is generally active and a change in q may
drastically perturb it. We thus use a more gradual continuation scheme for q and in-
crease its value from qmi n = 0 to qmax = 2 by small increments of ∆q = 1/3 triggered
every Ni = 20 design updates, as shown in Table 3.6. It should be noted that a maxi-
mum value qmax = 2 is selected for this problem, as increasing q further leads to more
accuracy of the flow solution, but no significant design changes. For higher q , the pres-
sure response becomes concave and the design does not change much compared to the
one found using lower values of q . Moreover, for the D approach and to a lesser extent
the DFF approach, using q = 3 often causes the flow solution to become unstable and
design updates more erratic. Once the maximum value for q = qmax is set after 120 it-
erations, the optimization process is allowed to take 80 extra iterations to perform final
shape changes to the design.

D, q̂ = 1 DFF , q̂ = 1

q = 0

q = 1
3

q = 2
3

q = 1

q = 4
3

q = 5
3

q = 2
u∗

p =−4.608, p∗
i n = 12.40

u∗
p,r e f =−4.685, p∗

i n,r e f = 12.95

Er ru = 1.64%, Er rp =−4.25%

u∗
p =−4.824, p∗

i n = 12.40
u∗

p,r e f =−4.856, p∗
i n,r e f = 12.84

Er ru = 0.659%, Er rp =−3.55%

Figure 3.17: The flow inverter designs including streamlines for Rei n = 100, h = L/50 and β= 30 at the end of
each continuation step for q optimized using q̂ = 1. Only the solution in the gray design domain in Figure 3.16
is shown. Inverted flow velocity and inlet pressure u∗

p /p∗
i n at the optimum and their post-processed reference

values u∗
p,r e f /p∗

i n,r e f , computed using αt = 0.45 following Section 3.2.6, are given. Inlet pressures are con-

strained using p = 12.4.

We inspect the optimized designs and their convergence behavior. The designs, in-
verted flow magnitudes and inlet pressures in the optimized density-based design (u∗

p ,
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p∗
i n), and their reference values (u∗

p,r e f , p∗
i n,r e f ) computed using a post-processed de-

sign as described in Section 3.2.6, can be found in Figure 3.17 for q̂ = 1 and Figure 3.18
for q̂ = 2. We compute errors with respect to the post-processed reference designs as:

Er ru =
u∗

p,r e f −u∗
p

u∗
p,r e f

Er rp =
p∗

i n −p∗
i n,r e f

p∗
i n,r e f

,

where a negative (resp. positive) error deteriorates (resp. improves) the design. Using
q̂ = 1, the D and DFF approaches find similar performing optima with low errors Er ru ,
Er rp . Comparing our designs to Alexandersen (2023), both the D and DFF approach find
a similar topology. We note that our problem and continuation setup are different and
we optimize using a higher maximum penalization than the one used in Alexandersen
(2023).

D, q̂ = 2 DFF , q̂ = 2

q = 0

q = 1
3

q = 2
3

q = 1

q = 4
3

q = 5
3

q = 2
u∗

p =−4.672, p∗
i n = 12.49

u∗
p,r e f =−4.732, p∗

i n,r e f = 12.81

Er ru = 1.27%, Er rp =−2.50%

u∗
p =−4.771, p∗

i n = 12.41
u∗

p,r e f =−4.475, p∗
i n,r e f = 11.88

Er ru =−6.61%, Er rp = 4.46%

Figure 3.18: The flow inverter designs including streamlines for Rei n = 100, h = L/50 and β= 30 at the end of
each continuation step for q optimized using q̂ = 2. Only the solution in the gray design domain in Figure 3.16
is shown. Inverted flow velocity and inlet pressure u∗

p /p∗
i n at the optimum and their post-processed reference

values u∗
p,r e f /p∗

i n,r e f , computed using αt = 0.082 folowing Section 3.2.6, are given. Inlet pressures are con-

strained using p = 12.4.

To examine the relation between the continuation and design evolution, we show the
final design for each continuation step on q in Figure 3.17 for q̂ = 1 and in Figure 3.18 for
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q̂ = 2. Both approaches find a final topology for lower q after which only shape changes
occur for higher q . However, for q̂ = 1 respectively q̂ = 2, the D approach generates the
distinct fluid/solid topology for q = 2

3 respectively q = 1, and the DFF approach for q = 4
3

respectively q = 5
3 . The DFF approach settles to its final topology for designs with higher

penalization and thus more accurate flow solutions. Using the higher q̂ = 2 allows the
optimizer to keep changing the topology at higher penalization values. However, the
final designs in Figure 3.18 for q̂ = 2 contain more intermediate volume fraction ele-
ments at the boundaries. Porous solid/fluid interfaces are caused by the convexity of
the pressure drop response, which was found in Section 3.4.2 to be undetermined for
v s /v f = 10q̂−q = 1. We note that the optimal design found using the DFF approach with
q̂ = 1 performs best.

Another distinction in design convergence is the fact that the DFF approach is able
to introduce a fluid channel within a solid domain at later stages of the optimization
procedure. For q = 1

3 , a solid domain is constructed in the top left half of the design,
although significant flow is present in this porous solid domain. Over the subsequent
iterations, the flow through the porous solid domain is inhibited, forcing the creation of
new channels through these areas. The final topology is found at q = 1 and q = 4

3 for
q̂ = 1 and q̂ = 2, respectively. A rationale behind the evolving channels can be found by
inspecting the pressure drop constraint in Figure 3.19. At each increase in q , less flow
is allowed in the porous solid domain and forced back into the fluid domain, resulting
in an increase in the inverted flow magnitude and pressure drop. To counter this effect,
side channels bypassing the flow inversion are introduced in areas of large flow leakage
in the porous solid domain. For the D approach, the design evolution is straightforward.
After finding its first distinct fluid/solid topology, only shape and no topology changes
are performed. We note that in Figure 3.18 for q̂ = 2, the D approach attempts to form
a channel through the solid domain in the bottom left half of the design at q = 5

3 . How-
ever, the design change is too slow and increasing the penalization using q = 2 removes
the channel from the design. The DFF approach is more flexible in the sense that even
when the penalization and the consequent flow solution accuracy are increased, topol-
ogy changes are more likely to occur.

D, q̂ = 1, D, q̂ = 2, DFF, q̂ = 1, DFF, q̂ = 2,
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Figure 3.19: The objective and the inlet pressure constraint for the flow inverter design computed with Rei n =
100 and h = L/50. We observe fluctuations in objective and constraint at each increase of q in our continuation.
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DESIGN CONVERGENCE FOR DIFFERING ESTIMATIONS OF THE ELEMENTAL REYNOLDS

NUMBER

Although elemental Reynolds numbers were varying over the design domain in the pre-
vious example, they remained generally low. Using the maximum inlet velocity v f = v =
1 or the inverted flow magnitude v f = up ≈ 5, we find elemental Reynolds numbers of

Re f
e = 2 or Re f

e = 10, respectively. To investigate the design convergence for higher el-
emental Reynolds numbers, we optimize the flow inverter for Rei n = 200 and h = L

40 ,
which leads to an increase in pressure drop for similar inverted flow magnitudes. While

the elemental Reynolds number at the inlet remain low, Re f
e = 5, we allow for larger pres-

sure by increasing β from 30 to 60, which should result in a higher elemental Reynolds

number at the flow inversion of Re f
e ≈ 25.

D− D D+

ṽ f 0.1v v 10v

R̃e
f
e 0.5 5 50

D1 ·10−q 10q µ

h2 = 8 10q µ

h2 Re f
e = 40 10q µ

h2 Re f
e = 400

Table 3.7: The estimations for ṽ f and consequent elemental Reynolds numbers and penalization magnitudes.
Values are computed for the flow inverter using Re = 200 and h = L

40 .

To investigate the effect of the penalization on local features where flow speeds
and thus elemental Reynolds number vary, we examine the effect of selecting differ-

ent estimations of ṽ f and associated elemental Reynolds number R̃e
f
e . Varying the

estimated flow velocity allows us to investigate the effect of an erroneous estimation,
as could be encountered in more complex optimization problems. As shown in Ta-
ble 3.7, we study the D approach for ṽ f = 0.1v , v , and 10v , referred to as the D−, D,

and D+ approaches, respectively. Using ṽ f = 0.1v and R̃e
f
e = 0.5, the dominant forces

are expected to be viscous, and we penalize using D1 = 10qµ/h2. Using ṽ f = 10v and

R̃e
f
e = 50, the penalization magnitude dependends linearly on the elemental Reynolds

number as D1 = 10q R̃e
f
e µ/h2 and is two times larger than a penalization computed us-

ing ṽ f = up ≈ 5 and R̃e
f
e = 25. The D+ approach thus uses a fair approximation when

the actual maximum velocity magnitude in the design domain is taken into account. To
illustrate the advantage of the DFF approach which does not rely on ṽ f , we compare de-
signs optimized using the DFF approach against those optimized using the D−, D, and
D+ approaches.

We compare the optimized designs, objective, and constraint in Figure 3.20. The
D and the DFF approaches show the best performance and find a similar design. The
D− and D+ approaches yield ill-performing local optima associated with large errors
Er ru and Er rp . In the D− design, a volume fraction α ≈ 0.95 is found for q = 2 in the
area shown by the green circle. In this area with flow magnitudes around v f ≈ 1.5, the
penalization is too low to force the channel to become completely fluid. Moreover, due
to the high amount of flow leaking through the solid domains, objective and constraint
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D−, αt = 0.45 D+, αt = 0.45
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Figure 3.20: The flow inverter designs including streamlines for Rei n = 200, h = L/40 and β = 60 at the end
of continuation steps for q optimized using q̂ = 1. Only the solution in the gray design domain in Figure 3.16
is shown. In the D− q = 2 design, porous elements of volume fraction α ≈ 0.95 are found in the area denoted
by the green circle. Inverted flow velocity and inlet pressure u∗

p /p∗
i n at the optimum and their post-processed

reference values u∗
p,r e f /p∗

i n,r e f are given. For the D− and D+ results, we additionally post-process using up-

dated threshold values α̃t , based on a compensation of the erroneous penalization magnitude. Inlet pressures
are constrained using p = 12.2.

values have large errors with respect to the reference simulation, computed using the
post-processed design as described in Section 3.2.6. The cause of the excessive flow leak-
age is examined in Figure 3.21 using the elemental Reynolds number in the optimized
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D− D+

D DFF

0 10 20 >30

Re
e

Figure 3.21: Elemental Reynolds numbers in the designs for q = 2 from Figure 3.20. In the fluid domain we

plot Re
f
e = (ρ |vvv|2 h)/µ. For the DFF approach we plot Re

f
e = (ρUh)/µ in the solid domain. For the D, D− ,

and D+ approaches, we approximate and plot the constant R̃e
f
e as found in Table 3.7 in the solid domain. For

D+ approach, the solid domain elemental Reynolds number is R̃e
f
e = 50, but the color-scale is limited to 30 for

enhanced readability.

designs. For the D− approach, the elemental Reynolds numbers abruptly decrease at the
solid/fluid interface, and the solid domain significantly underestimates the fluid domain

elemental Reynolds numbers. Consequently, the penalization based on R̃e
f
e < 1 assumes

viscous terms are dominant, whereas the higher inertial terms are actually dominant in

the fluid domain where Re f
e > 1.

The D+ designs in Figure 3.20 quickly converge to an inferior local optimum. Due
to the high penalization, the design topology is identified using q = 0, and does not
undergo any large modifications over subsequent continuation steps. The elemental
Reynolds number is significantly overestimated in the solid domain as shown in Fig-
ure 3.21. Moreover, with respect to the post-processed design, the D+ design presents
large errors Er ru and Er rp , which have two origins. Firstly, the design contains small,
but crucial, features of only one element in size, which are gray (α ≈ 0.5) but have a
relatively large impact on the flow. The optimizer is thus misusing the high penaliza-
tion in intermediate density elements to improve the objective. Secondly, when post-
processing using the approach in Section 3.2.6, we assume that a correct penalization
is used, such that v s /v f < 10−1 in the solid domain where α < αt . However, due to the
overestimation of the elemental Reynolds number and consequent over-penalization,
the prediction of v s /v f becomes inaccurate. Consequently, we are not able to threshold
the design appropriately. In general, issues related to the under- or over-estimation of
the velocity become more significant when considering designs with many branching
flow channels and differing flow magnitudes.

As we expect post-processing to be inaccurate due to erroneous estimations of R̃e
f
e ,

an adapted post-processing approach for the D− and D+ designs is examined. In Equa-
tion 3.47, we determine the threshold value as αt = (1− 10r−q )/(1+ 10r−q+q̂ ), using a
flow reduction in the solid domain of v s /v f < 10−r . This value is based on an appropri-

ate penalization magnitude and estimation of R̃e
f
e . In all designs, we find up ≈ 5 and we
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assume an appropriate estimation to be R̃e
f
e = 5. For the D− approach, the penalization

is thus five times too low. To compensate for this underpenalization, the threshold value
should be chosen at a penalization value which is five times higher than the one found at
αt . This is found using r = 1 at a threshold of α̃t = (1−5 ·10r−q )/(1+5 ·10r−q+q̂ ) = 0.083.
For the D+ design, a similar analysis results in a threshold of α̃t = 0.9. Using these thresh-
old values, we find the errors with respect to the post-processed design to decrease in
Figure 3.20. This poses a challenge to post processing larger designs with many branch-
ing channels as an appropriate threshold value depends on a local elemental Reynolds
number, and a unique threshold αt may not exist.

The flexibility and stability of the design convergence are investigated by inspecting
the objective and constraint histories in Figure 3.22. For the D− approach, we find the
objective to converge slowly over the first iterations. This is caused by the fact that the
penalization is not high enough to sufficiently guide the flow and impact the design. For
the D+ approach, the objective decreases relatively quickly. After the q = 1

3 continuation
step, no large design changes happen and the main reduction in objective is caused by
a reduction of the flow through the porous solid areas. Moreover, due to the high penal-
ization, we observe oscillatory behavior of the pressure constraint, especially in the first
30 iterations. The D and DFF approaches both converge smoothly, except at iterations
where q is increased. The D− approach is unable to accurately resolve the physics to rep-
resent the design and the D+ approach prematurely converges towards an ill-performing
local optimum. This demonstrates that the tuning of the penalization in the D approach
is both crucial and sensitive. Conversely, the DFF approach requires no velocity estimate
and shows design flexibility while the optimal design remains accurate.

D− D D+ DFF
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0.8
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g
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Figure 3.22: The objective and the inlet pressure constraint for the flow inverter design computed with Rei n =
200 and h = L/40.

DESIGN CONVERGENCE FOR VARYING MESH SIZES

One of the main findings in Section 3.2 is that an appropriate magnitude for both
the Darcy and Forchheimer penalization is dependent on the element size h. In Sec-
tion 3.4.1, we found the mesh dependent penalization to result in reliable predictions for
the flow leakage and in Appendix 3.A we confirm these findings for further mesh refine-
ment. In this section, we examine the effect of the mesh size on optimization. Kreissl
and Maute (2012) find that increasing the penalization magnitude for improved accu-
racy may result in the optimizer to converge to inferior local optima. In Table 3.1, we
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find the penalization to increase with decreasing element size h. We examine whether
the behavior of the penalization with mesh refinement leads to a stronger tendency to
converge to inferior local optima.

D DFF

h = L
10 h = L

40 h = L
150 h = L

10 h = L
40 h = L

150

R̃e
f
e 10 2.5 0.66 - - -

D ·10−q 10 40 225 1 16 225

F ·10−q - - - 10 40 150

Table 3.8: The approximate elemental Reynolds number R̃e
f
e , and Darcy/Forchheimer penalization magni-

tudes D/F for the differing mesh sizes used to optimize the flow inverter.

To examine the effect of the penalization, we optimize the flow inverter using Re =
100, β = 30, and q̂ = 1, such that the results in Figure 3.17 are reproduced. A coarser
mesh with h = L/10 and a finer mesh with h = L/150 are examined, which results in the
approximated elemental Reynolds numbers and penalization magnitudes shown in Ta-
ble 3.8. Refining the mesh for the D approach, the Darcy penalization varies one order of
magnitude. However, for the DFF approach, the Darcy penalization varies two orders of
magnitude, whereas the Forchheimer penalization varies only one order of magnitude.
We find significantly higher penalizations to be applied when using a smaller element
size.

D, h = L
10 D, h = L

150 DFF, h = L
10 DFF, h = L

150
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Figure 3.23: The objective and the inlet pressure constraint for the flow inverter design computed with Rei n =
100 for h = L/10 and h = L/150.

In Figure 3.24, we plot the design history for h = L/10 and h = L/150. For q = 0, large
gray areas are present in the designs. Increasing q , these gray areas converge to either
solid or fluid. The convergence history in Figure 3.23 shows more change in objective
and constraint for low values of q in the earlier stages of optimization than for high val-
ues of q in the later stages. Using the coarser and finer mesh in Figures 3.24 and 3.23,
the design convergence behaves similar to the convergence using h = L/40 as shown in
Figures 3.17 and 3.19. Using the continuation approach presented in this chapter, the
increased penalization due to mesh refinement thus does not significantly impact con-
vergence behavior.
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Figure 3.24: The flow inverter designs including streamlines for Rei n = 100 and β = 60 at the end of con-
tinuation steps for q optimized using q̂ = 1. Only the solution in the gray design domain in Figure 3.16 is
shown. Solutions are computed for h = L

10 and h = L
150 . Inverted flow velocity and inlet pressure u∗

p /p∗
i n at

the optimum and their post-processed reference values u∗
p,r e f /p∗

i n,r e f computed using αt = 0.45 following

Section 3.2.6, are given. are given. Inlet pressures are constrained using p = 12.4.

3.6. DISCUSSION
One of the main advantages of the Darcy with Filtered Forchheimer (DFF) approach is
the reduced parameter tuning. While common approaches require trial-and-error to
find an appropriate penalization magnitude, we select a penalization magnitude for a
desired flow reduction of v s /v f = 10−q using Table 3.1. Moreover, we control convex-
ity of the pressure drop response using both the penalization magnitude with q , and
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the penalization interpolation with q̂ . The DFF approach does not require tuning based
on simulation results, but allows engineers to make an informed selection of the ap-
propriate penalization based on a desired balance between flow solution accuracy and
objective convexity. In practice, we recommend using q̂ = 1 and control convexity of
the pressure drop response using q . Subsequently, a continuation on q can be derived
starting with q < q̂ , to create a convex pressure drop response, and ending with q > q̂ , to
create a concave pressure drop response. We recommend to initialize the optimization
using q = 0 and finalize using q = 2. While choosing q > 2 decreases the flow leakage, we
generally found the pressure drop response to become too concave for effective design
updates. The update on q should be done in small increments to avoid destabilizing the
design process. We found that increasing q by ∆q = 1/3 every Ni = 20 design iterations
performed well for the relatively unstable flow inverter design. However, more efficient
continuation strategies are suggested as a subject for future research.

As discussed in Appendix 3.B, the filter radius is defined in terms of number of ele-
ments N , which should not change for a different element size. Although an appropriate
penalization can also be defined for a different number of elements N , tuning this pa-
rameter is not recommended. The main parameter determining the order of magnitude
of the penalization is q . As a continuation on q is proposed, the required accuracy of the
filtered velocity field is relaxed. A radius within 6 ≤ N ≤ 12 elements will have enough
accuracy for the continuation approach to work and the final design to be accurate.

The most common continuation strategy in flow TO is to start the optimization pro-
cedure with a highly convex penalization interpolation, i.e., equivalent to high q̂ in this
paper, and to finalize the optimization process using a less convex interpolation func-
tion, i.e., low q̂ in this paper. We verified that the convexity of the pressure drop objective
depends on the penalization magnitude in the gray areas of intermediate volume frac-
tion. A highly convex interpolation function with a steep slope towards the maximum
penalization has the same effect as the low maximum penalization used in this work, as
both reduce the penalization in gray areas. However, using a steep slope in the penaliza-
tion interpolation often causes design updates to become more erratic. A small change
in design variable may have a large effect on the flow solution due to a sudden high pe-
nalization, which can drastically change the flow solution over design iterations due to
the non-linear nature of the Navier-Stokes equations. For this reason, we prefer to use
a continuation on the penalization magnitude instead of on the penalization interpo-
lation. However, hybrid methods which apply a continuation on both the penalization
interpolation and magnitude may be derived using the convexity analysis and the pre-
diction of flow reduction in this paper.

As a first attempt at using the Forchheimer penalization previously introduced
by Alonso and Silva (2022), the Darcy with Forchheimer (DF) approach was introduced
which improves on previous work by using an order analysis for the appropriate penal-
ization magnitude. Although the DF approach is found to more reliably predict the flow
reduction than the DFF approach, it also suffers from unstable flow solutions. Unstable
flow solutions are mainly caused by reusing the state solution over subsequent design it-
erations, as reusing the state solution significantly decreases the computational effort. In
the authors’ experience, when attempting optimization using the DF approach, more er-
ratic design updates are encountered, increasing the tendency to find diverging flow so-
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lutions when reusing the state solution. Furthermore, we note that the DF approach can
be seen as a special case of the DFF approach where the velocity is averaged over a radius
R = 0, and the penalization magnitude is increased. A hybrid between the DF and DFF
approaches could thus be derived. Using a smaller filter radius R, the averaged flow mag-
nitude will underestimate the fluid domain flow magnitude U < v f , which may be com-
pensated by using a higher maximum Forchheimer penalization 10qρ/h < F < 102qρ/h.
Using this approach, a novel method may be derived which is as stable as the DFF ap-
proach and finds accurate flow reductions as the DF approach.

The presented study on laminar moderate Reynolds flow TO is a first step towards
improved understanding of turbulent high Reynolds flow TO. For future work, we rec-
ommend a similar procedure to derive an appropriate penalization strategy for turbu-
lent flow TO using Reynolds Averaged Navier-Stokes (RANS) equations. The procedure
should follow three steps: 1) A dimensional analysis on the discretized physics, similar
to the one presented in Section 3.2. 2) The flow reduction and other turbulent bound-
ary conditions at the solid/fluid interface are verified using an analysis similar to Sec-
tion 3.4.1. 3) The convexity of the objective response is inspected using a method similar
to Section 3.4.2. As turbulent flow inherently contains high Reynolds numbers, we ex-
pect the DFF approach to be required to appropriate penalize the RANS momentum
equation. Moreover, a similar procedure to derive a robust TO approach may be per-
formed for other problems. An example is TO problems involving thermo-fluid equa-
tions which often require tuning to find appropriate material interpolation functions. To
this end, we introduced a more general analysis approach in Section 3.2.1 than the one
presented in Theulings et al., 2023. While the analysis in Theulings et al., 2023 is specific
for flow physics and relies on the continuous pressure gradient, the analysis in this work
can be extended to penalization or interpolation approaches for different physics.

3.7. CONCLUSION
To derive a reliable penalization approach for moderate Reynolds flow TO, the Forch-
heimer penalization is crucial. While the flow in areas where viscosity is dominant, is
inhibited using the Darcy penalization, to penalize the flow in areas where inertia is
dominant, the Forchheimer penalization is used. The Darcy penalization alone cannot
simultaneously penalize the flow in both areas appropriately.

A reliable penalization and continuation approach for density-based TO of laminar
moderate Reynolds flow problems has been introduced and compared to the state-of-
the-art. The novel DFF approach is based on a Forchheimer penalization dependent on
a filtered velocity, and a continuation strategy with a predictable flow reduction in the
solid domain. Moreover, the approach does not depend on a specific problem setup,
as it can be used without additional tuning to optimize different inlet/outlet configura-
tions with different Reynolds numbers, and different mesh sizes. We improve all four
conditions, stated in Section 3.1, for a reliable approach as follows: 1) Continuing our
previous work in Theulings et al. (2023), parameter tuning is reduced by deriving appro-
priate penalization magnitudes for a predictable flow reduction. 2) As the flow reduction
is predictable in the DFF approach, we can guarantee its value and that the flow solution
is accurate in the optimal design. 3) By analyzing the convexity of the pressure drop re-
sponse, a continuation strategy is derived for both the D and the DFF approach which
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mitigates the tendency to converge to ill-performing local optima. By starting the opti-
mization procedure with a low penalization, the pressure drop response is convex and
the design easily changes. Subsequently, the maximum penalization is increased mak-
ing the pressure drop response concave and forcing the design into a discrete solid/fluid
solution. 4) Although no thorough analysis is performed on the stability of the flow so-
lution, we found relatively quickly and reliably converging flow solutions for both the D
and the DFF approach.

3.A. MODEL ACCURACY FOR VARYING ELEMENT SIZE
In Section 3.4.1, we examined the accuracy of the predicted flow leakage. In this ap-
pendix, we further analyze the flow leakage for varying element size h. Since all penal-
ization magnitudes in Table 3.1 scale with 1/h or 1/h2, significantly higher penalization
magnitudes are required when using a smaller element size. A higher penalization mag-
nitude is expected to result in lower overall velocity magnitudes in the solid domain.
However, flow leakage is defined as the ratio of velocity magnitudes in neighboring fluid
and solid elements. Decreasing the mesh size, we expect the flow leakage in solid ele-
ments neighboring fluid elements to remain v f /v s = 10−q . We thus examine the inter-
play between element size, flow leakage, and velocity magnitude in the solid domain.

Γi
Γo

9L
3.5L L

2 −h
L

Ω1

Ωc

P

Figure 3.25: Benchmark design for testing the effect of different element sizes h on the flow leakage and abso-
lute flow magnitude in the solid domain. The design consists of a straight flow channel with a solid island Ωc

introduced in the center of the domain. The island is 4h0 wide and 2h0 high, where h0 = L/12 is the largest el-
ement size used. Flow leakage in the front column of elements at the left edge ofΩc is measured using the one
element thick blue domain Ω1 and blue boundary Γ1. Overall flow leakage is measured using the full island
domainΩc (red and blue domains) with boundary Γc (red and blue boundary). The boundaries are separated
by one fluid element from their associated domains. Moreover, to measure the absolute velocity magnitude,
Point P at the center of the island is introduced.

L µ v ṽ f

1 [m] 1[Pas] 1[ms−1] v

Table 3.9: The parameters used in Figure 3.25 to examine the relation between element size, flow leakage, and
absolute flow magnitude.

For the analysis of flow leakage, we use the design in Figure 3.25 with the parameters
in Table 3.9 and the Reynolds dependent density in Equation 3.58. We introduce a solid
obstacleΩc in the center of the flow channel. The island has a width of 4h0 and a height



3.A. MODEL ACCURACY FOR VARYING ELEMENT SIZE

3

121

of 2h0, where h0 = L/12 is the largest element size. When the mesh is refined and the
size of the elements decreases, the island remains the same size and consists of more
elements. Flow leakage ϵ is defined using Equation 3.59 and measured over the whole
island as ϵc usingΩc and Γc , or only in the front column of elements as ϵ1 usingΩ1 and
Γ1. Additionally, we measure the velocity magnitude |vvv(xxxP )|2 in the center of the island
at Point P . Three different element sizes h = L/12, L/48, L/192 are examined for two
Reynolds numbers Rei n = 50, 500, leading to the penalization magnitudes in Table 3.10.
We observe that the appropriate penalization magnitudes increase at least an order of
magnitude for decreasing h.

Re = 50

D DFF

h = L
12 h = L

48 h = L
192 h = L

12 h = L
48 h = L

192

R̃e
f
e 4.2 1.0 0.26 - - -

D10−q 6 ·102 2.4 ·103 3.7 ·104 1.4 ·102 2.3 ·103 3.7 ·104

F 10−q - - - 6 ·102 2.4 ·103 9.6 ·103

Re = 500

D DFF

h = L
12 h = L

48 h = L
192 h = L

12 h = L
48 h = L

192

R̃e
f
e 42 10 2.6 - - -

D10−q 6 ·103 2.4 ·104 9.6 ·104 1.4 ·102 2.3 ·103 3.7 ·104

F 10−q - - - 6 ·103 2.4 ·104 9.6 ·104

Table 3.10: The penalization magnitudes for differing elements sizes h used for the problem in Figure 3.25.

Since the island is at the center of the domain, the approximation of v f ≈ v is ex-
pected to be appropriate and the D approach to be accurate. Figure 3.26 provides the
flow leakage for q = 0,1,2,3 and shows ϵ1 ≈ v s /v f = 10−q for both the D and DFF ap-
proach. The leakage in the solid elements neighboring fluid elements at the front of
the island thus behaves as expected. When velocity magnitudes are compared between
neighboring solid and fluid elements, an appropriate penalization is dependent on ele-
ment size.

Although the expected leakage is recovered for ϵ1, the overall leakage ϵc behaves dif-
ferently. For smaller h, the overall leakage in Figure 3.26, is found to be too strict as
ϵc ≪ 10−q . For h = L/192, the island is 32 elements high and 64 elements wide and
ϵc does not measure the leakage between neighboring fluid and solid elements. Flow
leakage as defined in this chapter can only be appropriately examined when comparing
velocity magnitudes in solid elements and neighbouring fluid elements.

At Point P , the velocity magnitude |vvv(xxxP )|2 in Figure 3.26 drastically decreases for
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Figure 3.26: Trends in flow leakage and velocity magnitude for increasing q in the problem in Figure 3.25. For
the front leakage, we find the expected error ϵ1 = 10−q . We note that using Rei n = 500 and h = L/48, both
the D and the DFF approach find a center velocity |vvv(xxxP )|2 of the same magnitude for q = 2 and q = 3. This
is caused by the fact that |vvv(xxxP )|2 measures the magnitude at a discrete point. Although the averaged velocity
magnitude around Point P decreases, at the Point it remains the same.

decreasing h. Several elements away from the fluid domain, the fluid forces can be ne-
glected and the momentum equation can be simplified to −∇p = (D + FU )vvv. As the
pressure gradient has the same magnitude in the solid domain for different values of
q and h, the velocity magnitude decreases with the magnitude of D + FU . For the

D approach, the magnitude scales as |vvv(xxxP )|2 ∝ D
−1

, while for the DFF approach as
|vvv(xxxP )|2 ∝ (D +FU )−1. For Rei n = 50 and h = L/192, in both the D and DFF approach,
the Darcy penalization is the same and is dominant for the DFF approach, resulting in
the same |vvv(xxxP )|2. However, for Rei n = 500, the Darcy penalization is lower for the DFF
approach and the flow in the solid domain is less restricted. To conclude, in both the
D and DFF approach, the velocity magnitude in the solid domain, several elements re-
moved from the fluid domain, may significantly decrease. However, when comparing
neighboring fluid and solid domain elements, the flow reduction remains predictable
for differing values of h.
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3.B. FILTER SIZE FOR THE DFF APPROACH
We investigate the effect of the filter size R on the flow reduction in the DFF approach.
A predictable flow reduction is desirable as the continuation approach in Section 3.5 al-
lows for more leakage and design flexibility in the first design iterations, and less leakage
resulting in accurate and crisp but less flexible designs in the final design iterations. We
require the filter to be large enough such that the filtered velocity magnitude U in solid
elements accurately represents the velocity magnitude in neighboring fluid elements,

i.e., U ≈ v f . For Re f
e > 1, underestimating the fluid velocity magnitude U ≪ v f , leads

to an underestimated Forchheimer magnitude and results in increased flow leakage,
v s /v f > 10−q . Overestimation U ≫ v f leads to an overestimated Forchheimer magni-
tude, resulting in reduced flow leakage, v s /v f < 10−q . We intend to find the appropriate
filter radius R = N h/(2

p
3), which determines the distance over over which information

is distributed. The radius is defined using N , the number of elements of size h in radius
R (Lazarov & Sigmund, 2011).

4L

Ωc
1

Γc
1

Ωe
1

Γe
1

L
L
2

3L

2h

Channel 1

Channel 2

2L

v2 = 0.02v

v1 = v

L
4

p0 = 0

Figure 3.27: Design for testing the effect of different filter radii R on the predictability of the flow reduction in
the DFF approach. The design is split into Channel 1 at the bottom with relatively large velocity magnitudes,
and Channel 2 at the top with relatively low velocity magnitudes. The separating wall consists of a solid part
(black), where velocity is fixed as vvv = 000, and a density-based part (gray), where flow is inhibited such that
v s ≪ v f . At the midpoint of both channels, density-based obstacles of size 2h by 2h are placed at the edge (Ωe

i
in green) and in the center (Ωc

i in red). Separated by one element from the obstacles, boundaries Γc
i and Γe

i are
defined to measure the velocity magnitudes in neighboring fluid elements.

The design in Figure 3.27 is used to inspect flow leakage for several filter radii. Two
channels separated by a two-element thick porous wall are investigated. In Channel 1 at
the bottom, flow speeds are high with a maximum inlet velocity of v1 = v , in Channel 2 at
the top, they are low with v2 = 0.02v . We expect U to overestimate v f in the top channel
when the filter radius is too large, as U will be influenced by the large flow magnitude in
the bottom channel. The parameters in Table 3.11 are used and we inspect two different
mesh sizes, h = L

40 and L
80 . A Reynolds dependent density ρ, in Equation 3.58, is used. We

emphasize that the different mesh size influences the filter radius as it is dependent on
a number of elements N . We thus compute the flow solution for varying N , and expect
to find the appropriate N , independent of the mesh size h.
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L Rei n µ v

1 [m] 4000 1[Nsm−2] 10[ms−1]

Table 3.11: Parameters used to measure the effect of the filter radius in flow leakage for the design in Figure 3.27.

To inspect the flow leakage, we introduce obstacles in the flow at the edges and in the
centers of the channels. Flow leakage is computed using Equation 3.59. Edge and center
obstacle have domains Ωe

i and Ωc
i , both with area AΩ, and boundary Γe

i and Γc
i with

length Le
Γ and Lc

Γ, respectively. Beside the leakage, we inspect the accuracy in filtered
flow magnitude U with respect to the measured fluid velocity magnitude:

Ũ e
i = U

v f
≈

∫
Ωe

i
UdΩ∫

Γe
i
|vvv|2 dΩ

Le
Γ

AΩ
, Ũ c

i = U

v f
≈

∫
Ωc

i
UdΩ∫

Γc
i
|vvv|2 dΩ

Lc
Γ

AΩ
(3.69)

For accuracy close to 1, the filtered velocity magnitude U accurately represents the fluid
velocity magnitude v f and the filtered Forchheimer penalization should lead to the ex-
pected flow leakage of v s /v f = 10−q .

To measure the effect of the filter radius on the filtered Forchheimer penalization, we

require it to be dominant and thus Re f
e ≈ Re s

e > 1. In Figure 3.28, we show elemental
Reynolds numbers in the channels for the most accurate flow solution computed using
q = 3, N = 16, and h = L/80. In the fluid (α= 1) and the solid (α= 0) domain, elemental
Reynolds numbers are computed as:

Re f
e = ρ |vvv|2 h

µ
, Re s

e =
ρUh

µ
. (3.70)

Consequently, in Channel 1 we find elemental Reynolds numbers of Re f
e ≈ 34 at the cen-

ter and Re f
e ≈ 7.4 at the edge obstacles, and in Channel 2, of Re f

e ≈ 0.60 and Re f
e ≈ 0.39,

respectively. In bottom Channel 1, erroneous estimations of U ≈ v f cause an inappro-
priate penalization and less predictable flow leakage. In top Channel 2, underestimating

U < v f , resulting in Re s
e < Re f

e < 1, renders the Darcy penalization dominant, which
should accurately penalize the dominant viscosity in the fluid domain. However, over-
estimating U > v f may cause Re s

e > 1, resulting in a dominant Forchheimer penalization
with a larger magnitude than the appropriate Darcy penalization.

In Figure 3.29, the measured leakage and filtered velocity accuracy for the center
obstacles can be found. At the center island in Channel 1, the accuracy Ũ c

1 tends to 1
for filter radii containing more elements, which leads to a predictable flow reduction
v s /v f = 10−q . In Channel 2, the accuracy in filtered flow magnitude is overestimated for
N > 8. The filter radius is too large and the flow velocity in bottom Channel 1 starts to
influence the filtered velocity magnitude in top Channel 2. The overestimation of local
flow speeds subsequently causes the flow leakage to decrease. The overestimation in the
filtered velocity magnitude is more pronounced for h = L/40. This is caused by the fact
that the center island is six elements away from the bottom channel for h = L/40 and
11 elements for h = L/80. A filter radius with less elements N thus results in the filter
penetrating the bottom channel earlier for h = L/40 than h = L/80.
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Figure 3.28: Elemental Reynolds numbers in the fluid and solid domains for q = 3, N = 16, and h = L/80.
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Figure 3.29: The flow leakage and filtered velocity magnitude accuracy for the center obstaclesΩc
i .

For the edge obstacles, overestimation of fluid flow velocities due to large filter radii
poses a larger problem, as shown in Figure 3.30. For the obstacle next to the solid bottom
wall in Channel 1, increasing the filter radius past N = 8 elements results in an overesti-
mation of the fluid flow velocity Ũ e

1 > 1. This causes the flow leakage to decrease below
the expected value v s /v f < 10−q . In top Channel 2, Ũ e

2 increases even more drastically,
but this does not cause a significantly larger flow reduction. When velocity magnitudes
in the bottom channel dominate the filtered velocity in the top channel edge obstacle,
the filtered velocity largely overestimates the local fluid velocity magnitude. However,
flow in the edge obstacle is influenced by the bottom channel as flow passes through
the porous wall into the edge obstacle. For the parabolic flow profile over the bottom
inlet with maximum velocity v1 = 10 ms−1, the velocity magnitude at a distance h from
the wall is theoretically 1.38 or 0.678 for h = L/40 or h = L/80, respectively. However,
when we compute the average velocity magnitude around the edge obstacle in the top
channel for q = 3, we find 0.29 > v f > 0.19 and 0.088 > v f > 0.077 for h = L/40 and
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Figure 3.30: The flow leakage and filtered velocity magnitude accuracy for the edge obstaclesΩe
i .

h = L/80, respectively. Forces in the Navier-Stokes equations scale with velocity magni-
tude. Fluid domain forces below the wall will thus be larger than those above the wall.
Consequently, the flow through the wall and in the edge obstacle next to the wall will be
mostly dependent on the velocity magnitude below the wall.

To determine the appropriate number of elements N in the filter, we compare the dif-
ferent flow leakage results. A larger N is expected to distribute sensitivities more equally
between the fluid and solid domain and to improve design convergence. Small changes
may drastically alter the nonlinear flow solution and objective, smoothing out sensitivi-
ties and making design changes more gradual can improve design convergence. We thus
choose the largest N for which no significant overpenalization occurs. Moreover, in the
choice of filter radius, the results in Figure 3.30 in top Channel 2 are neglected. The veloc-
ity magnitude in a solid domain is always determined by the largest velocity magnitude
in the adjacent fluid domain. Consequently, overestimation of U only matters compared
to the largest fluid domain velocity magnitude. Which is one of the major drawbacks of
all penalization approaches presented in this paper. In two fluid areas separated by a
thin solid domain, flow leaking from an area with high flow velocity to an area with low
flow velocity significantly disturbs the flow in the latter area. In bottom Channel 1 in
Figure 3.30, a small amount of overpenalization occurs for N = 10, in Figure 3.29, N = 10
results in an appropriate penalization. In this work, we thus use N = 10 to determine the
filter radius for averaging the velocities.

3.C. INSTABILITY OF THE DARCY WITH FORCHHEIMER AP-
PROACH

During optimization, we often found the DF approach to become unstable due to large
fluctuations in design and the forward solution diverging. In this section, we investigate
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the cause of this instability in the DF approach and motivate our preference for the DFF
approach.

The forward solve is a computationally expensive and time consuming part of the
optimization process. The overall optimization time can be significantly reduced by de-
creasing the time spent on the forward solve. In this work, we use the forward solution
in the previous design as the initial guess for the solution in the current design. How-
ever, reusing the previous flow solution may lead to instabilities, particularly in the DF
approach. When solid material is introduced in areas previously filled with fluid, the ini-
tial guess based on this previous design significantly overestimates the flow magnitude
in the current design, which may lead to instabilities in the forward solve. Consequently,
instabilities are amplified by the larger design fluctuations more often found when opti-
mizing using the DF approach than using the DFF approach. Moreover, as shown in this
section, for the DFF approach this does not lead to diverging flow solutions, contrary to
the DF approach.

p0
v

10L

L
L

2L
2L
10
4L
10

Figure 3.31: The fin in a channel used to investigate forward solve instabilities. In the fluid domain (white), no
penalization is present and in the solid domain (dark gray), the maximum penalization is present. At the tip of
the fin, we change the fluid volume fraction α and thus the penalization in the two-by-two element sized light
gray domain.

To examine the effect of reusing the flow solution when sudden changes in design
happen, we use the problem in Figure 3.31. A thin solid fin is inserted in the middle
of a flow channel with parabolic flow inlet and constant pressure outlet. We use the
parameters in Table 3.12 and the Reynolds-dependent density from Equation 3.58. The
design is changed by extending the solid fin upstream, such that solid material is added
in an area with large velocity magnitudes. We first solve the problem using the short
fin, and subsequently reuse this flow solution to solve for the extended fin. We expect
instabilities to be mainly caused by large elemental Reynolds numbers. A large Rei n =
1000 is thus used to ensure the large Re s

e found in Figure 3.33a for the DF approach.

L µ v p0 Rei n q h

1 [m] 1 [Nsm−2] 1 [ms−1] 0 [Pa] 1000 2 L
10

Table 3.12: Parameters used to investigate the instability of the DF approach using the problem in Figure 3.31.

While the forward solution of the extended fin in Figure 3.32 converges using the DFF
approach, it diverges using the DF approach. When initializing using the flow solution
of the problem without extended tip, the elemental Reynolds number for the DF ap-
proach in the extended tip is high relative to the elemental Reynolds number in the sur-
rounding fluid, as shown in Figure 3.33. For the DFF approach the elemental Reynolds
number varies more smoothly. As described in Section 3.2.4, the fluid domain elemental



3

128 3. MODERATE REYNOLDS FLOW TOPOLOGY OPTIMIZATION

0 0.25 0.5 0.75 1 1.25

|v|
2

(a) Without extended fin. (b) With extended fin.

Figure 3.32: The flow magnitude |vvv|2 and flow lines found using the DFF approach in the first half of the chan-
nel.
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Figure 3.33: Flow lines and elemental Reynolds number in the first forward iteration of the extended fin prob-

lem. In the fluid domain we plot Re
f
e = (ρ |vvv|2 h)/µ, while in the solid domain we plot Res

e = 10q (ρ |vvv|2 h)/µ for
the DF approach and Res

e = (ρUh)/µ for the DFF approach.
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(a) DF solution. (b) DFF solution.

Figure 3.34: Velocity magnitude |vvv|2 and flow lines in the extended fin problem after performing one nonlinear
solution iteration. Instead of decreasing the relatively high flow in the tip, the flow around the tip is significantly
increased.

Reynolds number Re f
e = (ρv f h)/µ should be similar to neighboring solid domain ele-

mental Reynolds number Re s
e = 10q (ρv s h)/µ. To compensate for the jump in elemental

Reynolds number in the DF approach, the fluid domain elemental Reynolds number is
increased by increasing the fluid domain velocity magnitude v f in the first forward iter-
ation, as shown in Figure 3.34a. Subsequently, the flow solution does not stabilize. The
abrupt change in elemental Reynolds number, caused by reusing the state solution after
a sudden design change, destabilizes the forward solution in the DF approach. Contrar-
ily, using the DFF approach, the velocity magnitude is significantly decreased in the solid
tip after the first forward iteration and velocity magnitudes in the surrounding fluid area
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are not drastically increased, as shown in Figure 3.34b. This results in convergence of
the forward solution even when initializing using an inaccurate initial guess in the DFF
approach.
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The limitations caused by memory requirements in gradient-based TO
of transient problems are examined for thermal and flow problems. In
addition, as TO of transient problems is time consuming, a novel ap-
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Reducing time and memory requirements
in topology optimization of transient

problems
Abstract In topology optimization of transient problems, memory re-
quirements and computational costs often become prohibitively large
due to the backward-in-time adjoint equations. Common approaches
such as the Checkpointing (CP) and Local-in-Time (LT) algorithms re-
duce memory requirements by dividing the temporal domain into in-
tervals and by computing sensitivities on one interval at a time. The
CP algorithm reduces memory by recomputing state solutions instead of
storing them. This leads to a significant increase in computational cost.
The LT algorithm introduces approximations in the adjoint solution to
reduce memory requirements and leads to a minimal increase in com-
putational effort. However, we show that convergence can be hampered
using the LT algorithm due to errors in approximate adjoints.

To reduce memory and/or computational time, we present two novel
algorithms. The Checkpointing/Local-in-Time (CP/LT) algorithm im-
proves the convergence behavior of the LT algorithm at the cost of an in-
creased computational time but remains more efficient than the CP al-
gorithm. The Parallel-Local-in-Time (PLT) algorithm reduces the com-
putational time through a temporal parallelization in which state and
adjoint equations are solved simultaneously on multiple intervals. State
and adjoint fields converge concurrently with the design. The effec-
tiveness of each approach is illustrated with two-dimensional density-
based topology optimization problems involving transient thermal or
flow physics. Compared to the other discussed algorithms, we found a
significant decrease in computational time for the PLT algorithm. More-
over, we show that under certain conditions, due to the use of approxi-
mations in the LT and PLT algorithms, they exhibit a bias towards de-
signs with short characteristic times. Finally, based on the required
memory reduction, computational cost, and convergence behavior of
optimization problems, guidelines are provided for selecting the appro-
priate algorithms.

4.1. INTRODUCTION
Topology optimization is used to find the optimal material distribution for problems in-
volving various types of physics such as mechanics, thermal, fluidics, magnetics, and
many more. In the work by Alexandersen and Andreasen (2020), they found that much
attention is given to static problems within the vast literature on topology optimization,
while few works focus on solving transient optimization problems. However, there is
often a need for considering transient effects, e.g., when designing thermally actuated
compliant mechanisms (Y. Li et al., 2004), transient heat conducting devices (S. Wu et
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al., 2019), or fluid pumps (Nørgaard et al., 2016).

Gradient-based algorithms such as the method of moving asymptotes (MMA) by
Svanberg (1987) are often used to solve optimization problems such as topology opti-
mization. To compute the required gradients, adjoint sensitivity calculations are com-
monly used due to their computational efficiency for problems with many design vari-
ables. For static problems, first the state equations pertaining to the optimization prob-
lems physics are solved. Secondly, the adjoint equations are solved resulting in the ad-
joint variables which are combined with the state solution to compute the sensitivities.
A transient adjoint sensitivity computation follows the same procedure but has a larger
computational cost and requires more memory because the state solutions are required
to compute the sensitivities. During the forward-in-time solve of the state equations the
solutions are thus stored for every discrete time step. Subsequently, the adjoint equa-
tions are solved and the adjoint solution is combined with the state solution to compute
the sensitivities. However, as discussed by Haftka (1981), the adjoint equations are a ter-
minal value problem and need to be solved backward-in-time. A transient adjoint sensi-
tivity analysis may lead to prohibitively large memory requirements as the state solution
needs to be stored for every time step, and to large computational cost since solving the
transient adjoint equations is often as expensive as solving the transient state equations.
The described algorithm for transient adjoint sensitivity computation will be referred to
as the Global-in-Time (GT) algorithm as it solves the adjoint and state equations in the
whole (global) time domain at once. In this paper we investigate algorithms to reduce
memory requirements while keeping computational cost low.

A relatively straightforward method to reduce memory requirements for transient
optimization problems is the method of equivalent static loads (ESLs). Experienced de-
signers are able to make heuristic approximations or create simple computations of dy-
namic peak loads and consequently optimize dynamic structures using ESLs represent-
ing these peak loads (Kang et al., 2001). Advancements on these ad-hoc design practices
have been made by Choi and Park (2002) by computing the ESLs of every displacement
field computed in a transient analysis, where the ESLs at each time step is constructed
such that it results in the exact displacement at that time step. Subsequently, these ESLs
are used in a static optimization containing many loads. Memory requirements may
become substantial computing and storing an ESL of the same size as the state vector
at each time step. Transient problems with quickly decaying transient state solutions,
referred to as stiff problems, may be optimized using ESLs as the transient part of the
state response may be neglected. An example of such a problem would be the dynamic
optimization of a system which is subject to high stiffness and relatively low inertia ef-
fects. Although ESLs are useful for many simple linear design applications, transient
effects are ignored and when a complex transient system is optimized the ESL approach
may become inaccurate. In these optimization problems the transient response can-
not be neglected but due to a regularity of the input and linearity of the state equations,
model order reduction techniques may be used to reduce memory and/or computa-
tional cost. Methods based on model order reduction, such as those examined by Hooi-
jkamp and Keulen (2018), are able to circumvent the backward-in-time computation of
the adjoint equations or reduce the amount of required storage (Qian, 2022). Frequency
based modal reduction techniques have been used to reduce the amount of storage in
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transient topology optimization but are limited by the computational cost of solving the
eigenvalue problem (Q. Li et al., 2021), and have been shown by Zhao and Wang (2016)
to become computationally worthwhile only when when many time steps are consid-
ered. However, when complex boundary conditions which change drastically over time
or nonlinear systems are considered, constructing an accurate modal or proper orthog-
onal decomposition may prove cumbersome. For these systems, solving the complete
state and adjoint solutions as in the GT algorithm is recommended. Characterizing the
system to be optimized is crucial for the selection of the appropriate method for topology
optimization of transient problems. In this work we focus on methods for topology op-
timization of transient problems which are nonlinear and/or subject to complex loads.

Several approaches tackling the large memory requirements of the GT algorithm
have been proposed in literature. A well-known method to reduce data storage is the
Checkpointing (CP) algorithm (Griewank, 1992; Griewank & Walther, 2000) in which the
temporal domain is subdivided into multiple intervals. The algorithm consists of two
steps. First, the forward state solution is computed but only stored at the interfaces be-
tween the intervals, i.e., the so-called checkpoints. Second, the state solution is com-
puted and stored only for the final interval and the adjoint equation is propagated back-
ward on this interval. Subsequently, the state solution on the final interval is removed
from memory, the state solution on the second-to-last interval is computed again and
stored on each time step and the adjoint variables are propagated further backward, and
so on. Although the CP algorithm reduces memory requirements, it increases computa-
tional cost as the state equations are evaluated twice: for the computation of solutions
on the checkpoints and for the backward propagation of the adjoint variables. The CP
scheme was originally introduced by Griewank (1992) to find the sensitivity of iterative
functions using automatic differentiation, where a binomial distribution of checkpoints
was proposed which was proven to be optimal with respect to memory requirements
by Grimm et al. (1996). Further developments of the CP algorithm by Heuveline and
Walther (2006) and Q. Wang et al. (2009) have focused on problems where the number of
time steps is not known a priori.

Another method to reduce memory requirements is the Local-in-Time (LT) algo-
rithm proposed by Yamaleev et al. (2010). Similar to the CP algorithm, the LT algorithm
divides the temporal domain into intervals but stores approximate adjoint solutions on
the checkpoints instead of exact state solutions. The LT algorithm computes the sensi-
tivity contribution of one interval at a time. To compute the sensitivity contribution of an
interval, first the state equations on the interval are solved forward-in-time starting with
an exact initial condition. Subsequently, the adjoint equations are solved backward-in-
time starting from an approximate terminal adjoint solution for the interval. The sen-
sitivity contribution is computed by combining adjoint and state solutions. Starting at
the exact terminal state solution for the current interval the exact state solution can be
computed in the next interval. Using an approximate terminal adjoint in the next inter-
val, adjoint solutions can be evaluated and combined with the state solution to compute
the sensitivities. To perform the sensitivity analysis, the full state solution needs to be
stored for only one interval at a given time. Moreover, by updating the approximate ad-
joint solutions at the checkpoints in each design iteration, the LT algorithm is able to
converge to an optimum while simultaneously converging the approximate adjoints to
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the exact adjoints. However, since approximate solutions are used for the adjoint equa-
tions, the LT algorithm computes approximate sensitivities in contrast to the GT and CP
algorithms which compute exact sensitivities. The main advantage of the LT algorithm
is its computational cost. As the LT algorithm only solves the state equations once on
every interval, it has a computational cost comparable to the GT algorithm and lower
than the CP algorithm. Three dimensional topology optimization problems have been
successfully tackled using the LT algorithm by Chen et al. (2017) and Yaji et al. (2018) but
further research on the effect of approximate adjoint fields on the convergence behavior
of the optimization process and the obtained optimal solution is needed.

Simultaneously reducing the error on approximate adjoint variables and converging
to the optimal design share similarities with multiple shooting algorithms for optimal
control (Carraro & Geiger, 2015). Such algorithms split the temporal domain into in-
tervals to which are attached both approximate terminal adjoint and approximate ini-
tial state solutions. Subsequently, control problems are optimized by simultaneously
solving for the control variables, approximate state, and approximate adjoint variables.
Moreover, using approximate state and adjoint solutions, all temporal intervals can be
decoupled and parallelized in time (Fang et al., 2022). In comparison, common practice
for parallel speedup in topology optimization is to parallelize via domain decomposi-
tion (Borrvall & Petersson, 2002; Kristiansen & Aage, 2022). In domain decomposition,
state equations are solved by splitting the spatial domain into several subdomains and
performing computations on these domains in parallel (Mahdavi et al., 2006). A limita-
tion in these methods is that adjacent domains share certain degrees of freedom (DOFs)
and thus need to communicate with each other. If many subdomains and processors
are used, a substantial amount of time is spent on communication, as shown by Aage
et al. (2008) and Mahdavi et al. (2006). However, when parallelization via domain de-
composition saturates, parallel-in-time algorithms often offer opportunities for further
parallelization (Gander, 2015).

In this work we focus on methods which balance memory requirements and com-
putational cost for topology optimization of transient problems which are nonlinear or
subject to complex loads. We investigate the limitations of the CP and LT algorithms
in terms of computational cost and convergence behavior, and propose two novel algo-
rithms:

• the hybrid Checkpointing/Local-in-Time (CP/LT) algorithm which introduces an
error measure and corrections for the LT algorithm,

• the Parallel-Local-in-Time (PLT) algorithm which parallelizes the optimization
process by decomposing the time domain.

The new CP/LT algorithm addresses errors in the LT algorithm while keeping computa-
tional cost to a minimum. The PLT algorithm divides the temporal domain into paral-
lel intervals and performs the computations on all these intervals at once while keep-
ing computational overhead to a minimum by carrying out all parallel communication
at once and only communicating between adjacent intervals. The computational cost,
memory requirements, and limitations of the proposed algorithms are evaluated and
compared to the state of the art on two-dimensional density-based topology optimiza-
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tion problems: a transient heat conductor and a transient fluid pump. Both are dis-
cretized using the finite volume method (Versteeg & Malalasekera, 2007).

The remainder of this article is organized as follows. In Section 4.2, the exact meth-
ods for transient sensitivity analysis are introduced. A general approach for solving the
transient state/adjoint equations and combining the solutions into the sensitivity com-
putations is given and the CP algorithm is introduced. In Section 4.3, approximate algo-
rithms for transient sensitivity analysis are introduced. Subsequently, in Section 4.3.1,
we derive the LT algorithm from these general equations and identify some issues con-
cerning stability and convergence. In Section 4.3.2, the novel CP/LT algorithm is pro-
posed to address these stability and convergence issues. The final novel PLT algorithm
which efficiently parallelizes the transient problem is developed in Section 4.3.3. The
theoretical memory requirements and computational cost of the GT, CP, LT, CP/LT, and
PLT algorithms are analyzed in Section 4.4, after which the algorithms are compared and
evaluated using actual optimization examples in Section 4.5. Stability and convergence
of the approximate algorithms are investigated in Section 4.5.1 using a thermal transient
optimization problem and computational time is compared in Section 4.5.2 using a tran-
sient flow optimization problem. Finally, guidelines for algorithm selection are given in
Section 4.6 and a discussion and conclusion on the results and algorithms for transient
sensitivity analysis are provided in Section 4.7.

4.2. EXACT METHODS FOR SENSITIVITY ANALYSIS OF TRAN-
SIENT PROBLEMS

In this work we focus on methods for topology optimization of transient problems which
are nonlinear or subject to complex transient loads. Optimization is performed us-
ing gradient-based algorithms which require the sensitivities of the objective and con-
straints with respect to the design variables. We are thus interested in methods which
aim to compute discrete adjoint sensitivities such as the GT, CP, and LT algorithms. In
this section we investigate the GT and CP algorithms which compute exact discrete sen-
sitivities.

4.2.1. DISCRETE TRANSIENT SENSITIVITIES AND THE GLOBAL-IN-TIME AL-
GORITHM

A generic topology optimization problem for transient physics on spatial domain x⃗ ∈Ω
with boundary Γ=Ω\Ω, whereΩ is the closure ofΩ, is defined as:

minimize
s (⃗x)

F =
∫ t=tt

t=0

∫
Ω

f (u (⃗x, t ), s (⃗x))dΩd t

subject to R (u (⃗x, t ), s (⃗x), t ) = 0, t ∈ [0, tt ], x⃗ ∈Ω,

RΓ(u (⃗x, t ),∂u (⃗x, t )/∂x⃗, s (⃗x), x⃗, t ) = 0, t ∈ [0, tt ], x⃗ ∈ Γ,

u (⃗x, t = 0) = û (⃗x), x⃗ ∈Ω,

gi (s (⃗x)) ≤ 0, i ∈ I , x⃗ ∈Ω,

(4.1)
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where tt is the terminal time, u (⃗x, t ) is the time dependent state solution with û (⃗x) as ini-
tial condition, s (⃗x) is the design field, R(u (⃗x, t ), s (⃗x), t ) is the Partial Differential Equation
(PDE) constraint with boundary conditions RΓ(u,∂u/∂x⃗, s, x⃗, t ) defined on boundary Γ,
and gi (s (⃗x)) is the i th inequality constraint in set I . Subsequently the continuous opti-
mization problem is discretized in space and time as:

minimize
sss

F ≈
N∑

n=0
Fn(uuun ,sss)∆t

subject to Rn(uuun−1,uuun ,sss, tn) = 0, n ∈ {1,2 . . . N },

R0(uuu0,sss, t0) = 0,

gi (sss) ≤ 0, i ∈ I

(4.2)

where the full temporal domain t ∈ [0, tt ] is divided into N time steps of length∆t = tt /N ,
uuun is the column containing discretized state variables at time tn , all discrete design
variables are gathered in column sss, the continuous integral objective is discretized at
time step n using Fn∆t , the column Rn(uuun−1,uuun ,sss) contains all discretized PDE con-
straints and boundary conditions at time tn , R0(uuu0,sss, t0) contains the initial conditions,
and gi (sss) is the i th inequality constraints on sss. Furthermore, the discretized time step
Rn(uuun−1,uuun ,sss, tn) accounts for several discrete integration techniques such as back-
ward/forward Euler, Crank-Nicolson, and several of the Runge-Kutta methods. The
equations derived in this work are thus valid for these methods which can be described
using Rn(uuun−1,uuun ,sss, tn). To compute the sensitivities of the PDE constrained objective,
an augmented objective F∗ is constructed,

F∗ = F0(uuu0,sss)∆t +λλλ⊺
0R0(uuu0,sss, t0)+

N∑
n=1

(
Fn(uuun ,sss)∆t +λλλ⊺

nRn(uuun−1,uuun ,sss, tn)
)

, (4.3)

where the constraints are introduced using adjoint variablesλλλn at time tn . Subsequently,
to construct the adjoint equations, the sensitivities are derived as:

dF∗

dsss
=

N−1∑
n=0

(
∂Fn

∂sss
∆t +λλλ⊺

n
∂Rn

∂sss
+

(
∂Fn

∂uuun
∆t +λλλ⊺

n
∂Rn

∂uuun
+λλλ⊺

n+1

∂Rn+1

∂uuun

)
∂uuun

∂sss

)
+ ∂FN

∂sss
∆t +λλλ⊺

N

∂RN

∂sss
+

(
∂FN

∂uuuN
∆t +λλλ⊺

N

∂RN

∂uuuN

)
∂uuuN

∂sss
,

(4.4)

where we drop the dependencies of Rn on uuun−1, uuun , sss, and tn for brevity. To avoid the
computation of matrix ∂uuun/∂sss, we set all sums multiplied by ∂uuun/∂sss to zero, resulting in
the adjoint equations:

n = N :λλλN =−∂RN

∂uuuN

−⊺ ∂FN

∂uuuN

⊺
∆t , (4.5a)

n ∈ {N −1, N −2, . . .0} :λλλn =−∂Rn

∂uuun

−⊺ (
∂Fn

∂uuun

⊺
∆t + ∂Rn+1

∂uuun

⊺
λλλn+1

)
. (4.5b)

Since the adjoint equations only have a terminal condition for λλλN , they can only be
solved backward-in-time starting at tN = tt taking backward steps until t0 = 0. A no-
table property of the backward-in-time adjoint equations is the fact that they resemble
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the forward-in-time state equations. If we assume that Rn is a linear equation with re-
spect to uuun−1 and uuun , the forward-in-time state equations may be written as the solution
of:

n = 0 :uuu0 = ûuu0, (4.6a)

n ∈ {1,2, . . . N } :uuun =−∂Rn

∂uuun

−1 (
qqqn + ∂Rn

∂uuun−1
uuun−1

)
, (4.6b)

where ûuu0 are the discretized initial conditions and qqqn is the part of Rn independent of
the state variables. Since the backward-in-time adjoint equations mirror the forward-
in-time state equations, we can assume that the same stability and convergence criteria
hold for both equations. However, for nonlinear Rn(uuun−1,uuun ,sss, tn) there is an impor-
tant difference between the state and adjoint equations. As the adjoint equations are a
linearized version of the state equations, solving the adjoint equations may take signifi-
cantly less computational work and time than solving nonlinear state equations. At best
both the state and adjoint equations are linear and require the same amount of compu-
tational work.

After solving the adjoint equations backward-in-time, the adjoint variables can be
combined with the stored state equations to compute the sensitivities:

dF

dsss
=

N∑
n=0

(
∂Fn

∂sss
∆t +λλλ⊺

n
∂Rn

∂sss

)
. (4.7)

To compute the sensitivities, two types of equations need to be solved; the state equa-
tions pertaining to the physics, and the adjoint equations. The most straightforward
method to solve these equations is the GT algorithm which first solves the state equa-
tions forward-in-time and stores the state solution at every time step. Subsequently,
the adjoint equations are solved backward-in-time using Equation 4.5 while simulta-
neously updating the sensitivities using Equation 4.7. As the sensitivities depend on
∂Rn/∂sss which in turn is dependent on uuun and uuun−1, the state solution is thus required
while propagating the adjoint solution backward to computed the sensitivities. The full
state solution is thus stored during the forward solve and the main restriction in using
the GT algorithm is the large memory requirement. For a problem with a state solution
uuun of size m and involving N time steps, memory requirements M scale proportionally
as M ∝ mN . To compare the computational cost of the following algorithms in Sec-
tions 4.2.2 and 4.3 we evaluate the cost of the GT algorithm. We define the cost of solving
one state step Rn(uuun−1,uuun ,sss, tn) as cs and the cost of solving one adjoint step using Equa-
tion 4.5 and consequently updating sensitivities using Equation 4.7 as ca . The cost of the
adjoint step and updating sensitivities is combined as this is a practical implementation
in code. For highly nonlinear systems the cost of solving an adjoint step is much cheaper
and we define ratio rc = ca/cs . As the GT algorithm solves a state/adjoint step only once
for all N time steps, the computational cost C scales proportionally as C ∝ N cs (1+ rc ).

4.2.2. THE CHECKPOINTING ALGORITHM
To reduce memory requirements the CP algorithm (Griewank, 1992; Griewank &
Walther, 2000) may be used. The algorithm subdivides the temporal domain into K dis-
crete intervals of length ∆θ = tt /K , resulting in K +1 checkpoints θk , where each θk is
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assumed to correspond to one of the discrete times tn but not all tn have a correspond-
ing θk . The K intervals are thus defined asΘk = [θk ,θk+1], and contain all discrete times
{n|tn ∈ [θk ,θk+1]}, as illustrated in Figure 4.1. The Subscript k is used to denote check-
points and intervals. Furthermore, we use state/adjoint variablesUUU k /ΛΛΛk as the variables
at checkpoint k where UUU k =uuun andΛΛΛk =λλλn at θk = tn , respectively. These variables and
subscript k are introduced to clearly describe and visualize the algorithms presented in
this paper as will be shown for the CP algorithm in Figure 4.2. To compute sensitivi-

t

t

θ0

θ0 = t0

θ1

θ1 = t6

θ2 θ3 θ4

t1 t2 t3 t4 t5

Θ0 = [t0, t6]

Figure 4.1: A temporal domain discretized using N = 24 time steps, and subdivided into K = 4 in-
tervals Θk = [θk ,θk+1], where θk are the temporal checkpoints. Each interval Θk contains time steps
{n|tn ∈ [θk ,θk+1]}. For instance, the first interval Θ0 is defined as Θ0 = [t0, t6], and contains discrete time
steps n ∈ {0,1,2,3,4,5,6}.

ties, the CP algorithm first computes the full forward state solution and stores onlyUUU k at
checkpoints θk . The full state solution is only stored for the last intervalΘK−1 and adjoint
equations are subsequently solved and used to update the sensitivities, after which the
state solution on the terminal interval can be removed from memory. Next, the adjoint
solution is propagated further backward by recomputing and storing the state solution
at the final to last interval ΘK−2 from the stored state solution UUU K−2 at checkpoint θK−2.
Thus by continuously recomputing the state solution on the previous interval, and re-
moving used state solutions from memory, exact sensitivities can be computed while
reducing the memory requirements. A schematic of the CP algorithm can be found in
Figure 4.2.

Depending on the number of intervals K , memory may be greatly reduced. If an
initial state solution UUU k of size m is stored for each of the K intervals except the first
where it is found by solving R0(uuu0,sss, t0), this requires the storage of m(K − 1) discrete
state variables. Additionally, on each of the intervals we require the storage of the full
state solution which requires a memory of mN /K discrete state variables. Memory re-
quirements thus scale as M ∝ m(K −1)+mN /K , and are reduced with respect to the GT
algorithm. To reduce the computational overhead, we recommend to use the minimal
number of intervals allowed by the memory limitations. Other approaches for optimal
memory reduction such as the binomial distribution of checkpoints are also proposed
in literature by Grimm et al. (1996).

The reduced memory in the CP algorithm comes at a higher computational cost as
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UUU 0 UUU 1 UUU 2 UUU 3 UUU 4

ΛΛΛ3 ΛΛΛ4

9 7

5

3

8 6 4 2

ΛΛΛ2ΛΛΛ1

1

t

Figure 4.2: A schematic of the CP algorithm. The numbers represent the order of operations. The dashed green
line represents the solving of the full forward state solution while only storing it at the checkpoints. A green
arrow represents the computation and storage of state solutions on a complete interval. A blue arrow repre-
sents the backward computation of adjoint variables and update of sensitivities using the adjoint variables and
stored state variables.

state solutions are recomputed on the first K −1 intervals of length N /K . Recomputation
of the state solutions is associated to an additional cost proportional to cs (N /K )(K −1) =
N cs (1− 1/K ). The computational cost of the CP algorithm is thus the cost of the GT
algorithm (C ∝ N cs (1 + rc )) with the addition of the recomputed state solutions, i.e.,
C ∝ N cs (2+ rc −1/K ).

4.3. APPROXIMATE METHODS FOR SENSITIVITY ANALYSIS OF

TRANSIENT PROBLEMS

Other approaches for the reduction of memory requirements and computational time
are based on approximations of the state and/or adjoint variables. Generally, these
methods rely on an iterative procedure to update approximate state and/or adjoint vari-
ables and the design until convergence. In a standard optimization procedure, design
variables sss j at optimization iteration j are iteratively improved by computing sensitiv-
ities dF∗/dsss j and using a gradient-based optimizer. Exact solutions for all state and
adjoint variables are computed. In the proposed approximate methods, state and/or

adjoint equations are not satisfied at every iteration j . Approximate states ŨUU
j
k ≈ UUU j

k

and/or adjoint variables Λ̃ΛΛ
j
k ≈ΛΛΛ j

k at checkpoints θk are updated using fixed point itera-
tions. The idea is to let these variables converge to exact solutions simultaneously with
the convergence of the design to the optimum, with the purpose of reducing memory
requirements and/or computational time. Examples of such algorithms are the LT and
multiple shooting type algorithms. In this section, we first introduce the LT algorithm
and discuss its limitations. Subsequently, we propose some modifications to the LT al-
gorithm to increase stability and introduce a novel multiple shooting type algorithm for
topology optimization of transient problems.
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4.3.1. THE LOCAL-IN-TIME ALGORITHM
To reduce memory requirements, the LT algorithm by Yamaleev et al. (2010) can be used.
In the LT algorithm, adjoint variables are approximated and solved for iteratively. The
algorithm computes the sensitivities successively on each interval Θk moving forward-
in-time. Memory is reduced as the state solution is only stored on a single intervalΘk at a

time. However, errors are introduced as we approximate Λ̃ΛΛ
j
k ≈ΛΛΛ j

k and solve for the exact
adjoint over design iterations j . Furthermore, to initialize the LT algorithm approximate

adjoint variables Λ̃ΛΛ
j=0
k are required and are set to Λ̃ΛΛ

j=0
k = 000 as suggested by Yamaleev

et al. (2010). The process to perform the complete sensitivity analysis is illustrated in
Figure 4.3. The contribution of one intervalΘk is computed following three steps:

1. Computation and storage of the state solution Firstly, the initial state solu-

tion uuu j
n = UUU j

k at time tn = θk is retrieved, which is either the initial value from

R0(UUU j
0,sss, t0) = 000 at k = 0 or the terminal value UUU j

k at time θk on the previous in-
terval Θk−1. Starting from this initial state solution, the complete state solution is

evaluated and stored forward-in-time until UUU j
k+1 at time θk+1 is reached.

2. Computation of approximate adjoint solution and sensitivities We retrieve an

approximate terminal adjoint variable λ̃λλ
j
n = Λ̃ΛΛ j

k+1 at time tn = θk+1 from memory,
or when the terminal interval ΘK−1 is being investigated we compute the exact

terminal adjoint λλλ j
N =ΛΛΛ j

K by solving Equation 4.5a. Subsequently, Equation 4.5b

and the stored state solution uuu j
n are used to propagate the approximate adjoint

backward as:

λ̃λλ
j
n =−

(
∂Rn

∂uuun

)−⊺ (
∂Fn

∂uuun
∆t + ∂Rn+1

∂uuun

⊺
λ̃λλ

j
n+1

)
, for n ∈ {n|θk +∆t ≤ tn < θk+1}, (4.8)

while simultaneously updating the sensitivities using Equation 4.7.

3. Update and storage of approximate adjoint variables After computing the sen-
sitivities on the interval, we solve Equation 4.5b one final time to compute the
approximate adjoint at the checkpoint at time tn = θk for the next design iteration
j +1, as:

λ̃λλ
j+1
n ≈−

(
∂Rn

∂uuun

)−⊺ (
∂Fn

∂uuun
∆t + ∂Rn+1

∂uuun

⊺
λ̃λλ

j
n+1

)
, for n|tn = θk . (4.9)

The approximate adjoint Λ̃ΛΛ
j+1
k = λ̃λλ j+1

n from Equation 4.9 is stored to be used as a
terminal value at tn = θk for interval Θk−1 in the next design iteration j + 1. We

emphasize that within iteration j , adjoint vector λ̃λλ
j
n = Λ̃ΛΛ j

k and not λ̃λλ
j+1
n = Λ̃ΛΛ j+1

k at
time tn = θk is used to update the sensitivities using Equation 4.7.

After the evaluation of sensitivity contributions on intervalΘk , the state solutions on the

interval are removed from memory. Starting from the solution uuu j
n =UUU j

k+1, the sensitivi-
ties in domain Θk+1 are computed as shown in the LT schematic in Figure 4.3. In the LT

algorithm, approximate adjoint variables λ̃λλ
j
n = Λ̃ΛΛ j

k+1 are used to compute sensitivities on

interval Θk . They are propagated backward-in-time and used to update Λ̃ΛΛ
j+1
k =G(Λ̃ΛΛ

j
k+1)
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using Equations 4.8 and 4.9. Here, we define G(Λ̃ΛΛ
j
k+1) as an operator which propagates

adjoint variables backward-in-time over an interval as used in Figure 4.3, which we find
to be a linear operator by inspecting Equations 4.8 and 4.9.

UUU 0 UUU 1 UUU 2 UUU 3

Λ̃̃Λ̃Λ
j
3

ΛΛΛ
j
4

2

Λ̃̃Λ̃Λ
j+1
1 =G(Λ̃̃Λ̃Λ j

2) Λ̃̃Λ̃Λ
j+1
2 =G(Λ̃̃Λ̃Λ j

3) Λ̃̃Λ̃Λ
j+1
3 =G(ΛΛΛ j

4)

45

7

8
10

11

1 3 6 9

Λ̃̃Λ̃Λ
j
2Λ̃̃Λ̃Λ

j
1

Figure 4.3: A schematic of the LT algorithm. The numbers represent the order of operations. A green arrow
represents the computation and storage of state solutions on a certain interval. The blue arrow represents
the computation of adjoint variables and update of sensitivities using the stored state and computed adjoint
variables. Finally, the red arrow represents the update of the approximate adjoint variable.

It should be noted that the adjoint variables at time tn = tN are always exact as
they are computed using Equation 4.5a, and all adjoint solutions on terminal interval

ΘK−1 are thus exact. Consequently, when adjoint variables have stabilized (Λ̃ΛΛ
j
k = Λ̃ΛΛ j+1

k =
G(Λ̃ΛΛ

j
k+1)), the exact variables from the terminal interval propagate backward and the ap-

proximate adjoint variables have converged to the exact variables found in the GT al-

gorithm (Λ̃ΛΛ
j
k =ΛΛΛ j

k ). The idea behind the LT algorithm is thus that approximate adjoint

variables are improved by Λ̃ΛΛ
j+1
k =G(Λ̃ΛΛ

j
k+1) and converge to the exact values as the design

converges to the optimum and stabilizes.

Memory requirements may be significantly reduced using the LT algorithm. Since
the adjoint vector Λ̃ΛΛk and state vectorUUU k both have the same size m and the LT algorithm
stores the approximate terminal adjoint variables on each of the K intervals except the
last, m(K −1) discrete approximate adjoint variables need to be stored. In addition, the
complete state solution on one of the intervals at a time is stored which requires the
storage of mN /K discrete state variables. The memory requirement of the LT algorithm
thus scales as M ∝ m(K −1)+mN /K , which is identical to the CP algorithm.

Whereas the CP algorithm reduces memory at the cost of increased computational
time compared to the GT algorithm, the LT algorithm decreases memory requirements
with no significant increase in computational time. As the state and adjoint solutions
are solved only once per interval, the computational cost of the LT algorithm is exactly
the same as the cost of the GT algorithm: C ∝ N cs (1+ rc ). However, this does assume
that the convergence of the optimization process using the LT algorithm is not negatively
affected by the use of approximate adjoint solutions and sensitivity information.
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STABILITY AND CONVERGENCE OF THE LOCAL-IN-TIME ALGORITHM

In the LT algorithm, it is assumed that as a design converges over multiple design itera-
tions, the adjoint field will also converge to the exact adjoint field resulting in accurate
sensitivities. Using these sensitivities, we ensure an accurate local minimum is found.
The assumption is thus that upon stabilization of the design, the adjoint field stabilizes

andΛΛΛ j
k = Λ̃ΛΛ j

k = G(Λ̃ΛΛ
j
k+1). To allow for both the design and adjoint fields to stabilize, two

types of convergence are necessary: local convergence and global convergence. Local
convergence relates to the decrease in the error of the approximate adjoint field on

subdomain Θk . Assuming that, by backward-in-time propagation of Λ̃ΛΛ
j+1
k = G(Λ̃ΛΛ

j
k+1),

the error in Λ̃ΛΛ
j+1
k decreases with respect to the error in Λ̃ΛΛ

j
k+1 on every interval Θk , we

are able to deduce that upon a stable non-changing design sss j all approximation errors
will reduce to zero. Global convergence relates to the simultaneous convergence of the
design and approximate adjoint field.

Local convergence
Using a modal analysis of the backward-in-time adjoint equations, local convergence is
investigated. We assume that the exact adjoint variables λλλn at time tn can be expressed
as the sum of the approximate adjoint variables and a correction ∆λλλn :

λλλn = λ̃̃λ̃λn +∆λλλn . (4.10)

Furthermore, we assume that the approximate adjoint variables approach the exact ad-
joint variables as found in the GT algorithm in a stable optimum such that λ̃λλn ≈ λλλn

and the adjoint correction approaches zero ∆λλλn → 000. We thus investigate the evo-
lution of the corrections by constructing a time stepping scheme for the corrections.
In Equation 4.11a, the exact adjoint equation is repeated from Equation 4.5. The im-

proved approximation λλλ
j
n = λ̃λλ

j
n +∆λλλ j

n is substituted into Equation 4.11a resulting in
Equation 4.11b:

λλλ
j
n =−

(
∂Rn

∂uuu j
n

)−⊺ (
∂Fn

∂uuu j
n

∆t + ∂Rn+1

∂uuu j
n

⊺
λλλ

j
n+1

)
, (4.11a)

λ̃λλ
j
n +∆λλλ j

n =−
(
∂Rn

∂uuu j
n

)−⊺ (
∂Fn

∂uuu j
n

∆t + ∂Rn+1

∂uuu j
n

⊺
λ̃λλ

j
n+1 +

∂Rn+1

∂uuu j
n

⊺
∆λλλ

j
n+1

)
. (4.11b)

To form the update of the adjoint correction over one time step we subtract the update
of the approximate adjoint in Equation 4.8 from Equation 4.11b, resulting in:

∆λλλ
j
n =−

(
∂Rn

∂uuu j
n

)−⊺
∂Rn+1

∂uuu j
n

⊺
∆λλλ

j
n+1, (4.12)

which propagates the correction one step backward. Subsequently, the adjoint correc-
tion can be propagated over an entire interval from time step n = nk+1 at terminal time
tnk+1 = θk+1 until time step n = nk at initial time tnk = θk :

∆ΛΛΛk =
(

nk+1∏
n=nk+1

−
(
∂Rn−1

∂uuu j
n−1

)−⊺
∂Rn

∂uuu j
n−1

⊺)
∆ΛΛΛk+1 =Gc (∆ΛΛΛk+1), (4.13)
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for which we used∆ΛΛΛk =∆λλλn at θk = tn and we define operator Gc which propagates the
adjoint correction backward over an interval as in Equation 4.13. Operator Gc thus dif-
fers from operator G in the fact that G propagates an adjoint variable using Equations 4.8
and 4.9, and Gc propagates an adjoint correction using Equations 4.12 and 4.13. Further
analysis of local stability is performed by assuming the state equations Rn(uuun ,uuun−1,sss, tn)
to be linear with respect to uuun and uuun−1. Although stability criteria can be derived for
nonlinear state equations, proving local stability for nonlinear systems is out of the scope
of this work. We assume linear state equations R l i n , which are used to represent any lin-
ear time stepping scheme:

R l i n
n (uuun ,uuun−1,sss, tn) =uuun −AAAn(sss)uuun−1 −qqqn(sss, tn) =000, (4.14)

where the state update matrix AAAn(sss) and the external load vector qqqn(sss, tn) are both inde-
pendent of uuun and uuun−1. We note that any linear time stepping scheme (such as Forward
Euler, backward Euler or Crank-Nicolson) can be transformed into R l i n by simple matrix
manipulations. Consequently, the state variables are updated following the linear time
stepping scheme:

uuun = AAAn(sss)uuun−1 +qqqn(sss, tn). (4.15)

This linear time stepping scheme is only stable if all eigenvalues φi of matrix AAAn(sss) are
bounded as |φi (KKK n) | < 1. Returning to the propagation of the adjoint correction we
substitute derivatives:

∂R l i n
n−1

∂uuu j
n−1

= III ,
∂R l i n

n

∂uuu j
n−1

=−AAAn , (4.16)

into the correction update in Equation 4.13, and find:

∆ΛΛΛk =
(

nk+1∏
n=nk+1

AAA⊺
n

)
∆ΛΛΛk+1. (4.17)

Consequently, the eigenvalues with which the adjoint errors are propagated back-
ward are also smaller than one |φi

(
AAA⊺

n
) | = |φi (AAAn) | < 1. We may conclude that if the

discrete state equations for a linear transient problem are stable then the discrete
adjoint equations will also be stable and the adjoint error ∆ΛΛΛk will decrease over an
interval. Furthermore, for a larger decrease in error, the number of steps in an interval
nk+1 − nk ≫ 1 should be large or the absolute eigenvalues |φi (AAAn) | ≪ 1 should be
smaller. However, a fine spatial mesh and thus a large size of the state solution m may
cause large memory usage and thus require a user with limited memory to use many
short intervals K > 1, which is prohibitive for the local convergence of the LT algorithm.

Global convergence
One of the most important assumptions of the LT method is that the design stabilizes and
converges, which allows for the adjoint field to converge to the exact adjoint solution
over multiple design iterations. This is caused by local convergence and the terminal

adjointΛΛΛ j
K =λλλ j

N which is exact by definition. When the design sss j and the approximate

adjoints Λ̃ΛΛ
j
k stabilize, the correct terminal adjointΛΛΛ j

K propagates backward-in-time to all
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other Λ̃ΛΛ
j
k , which must also be exact due to local convergence. Stable design and adjoints

thus lead to exact adjoints and consequently an exact optimum where the objective is
stationary dF∗/dsss = 0.

If the design does not stabilize, the adjoint field will not converge to the exact field
resulting in erroneous sensitivities, which in turn, can cause the design to destabilize.
This type of stability is referred to as global stability in this paper. By changing the ad-
joint equations, state equations and resulting state solutions, a design update changes
the adjoint solutions. The update of the design as sss j+1 = sss j +δsss j is thus associated with

a change in exact adjoint variablesΛΛΛ j+1
k =ΛΛΛ j

k +δΛΛΛ j
k . If we assume local convergence is

satisfied, we expect the backward propagation of the approximate adjoint over an inter-

val to result in the exact adjoint G(Λ̃ΛΛ
j
k+1) = Λ̃ΛΛ j+1

k ≈ ΛΛΛ j
k , but only for the current design

sss j . By updating the design, we change the exact adjoint solution by δΛΛΛ j
k , which in turn,

introduces an error in the approximate adjoints estimated using the exact adjoints in the
previous design iteration:

Λ̃ΛΛ
j+1
k ≈ΛΛΛ j

k =ΛΛΛ j+1
k −δΛΛΛ j

k . (4.18)

Conversely, as the sensitivities are dependent on the approximate adjoint variables and

as we aim to use gradient-based design updates, δsss j+1 is dependent on Λ̃ΛΛ
j+1
k ≈ΛΛΛ j+1

k −
δΛΛΛ

j
k and thus on δΛΛΛ

j
k . For the optimization procedure to stabilize, we require the effect

of δΛΛΛ j
k on δsss j+1 and subsequently the effect of δsss j+1 on δΛΛΛ

j+1
k to decrease the change

in adjoint variables, such that |δΛΛΛ j+1
k | < |δΛΛΛ j

k |. We call instabilities due to this feedback
loop of adjoint and design changes strong global convergence issues. A formal proof of
strong global convergence is out of the scope of this paper and is not further discussed.

Beside strong global convergence, we can make some observations using the simi-
larity between state and adjoint equations leading to weak global convergence issues. As
shown in Section 4.2.1, the state equations resemble the adjoint equations and we ex-
pect features with large characteristic times in the state equations to also be associated
with large characteristic times in the adjoint equations. Large approximate character-
istic times (Picioreanu et al., 2000) are associated with large eigenvalues and relatively
large settling times (Åström & Murray, 2020) over which state solutions stabilize. Con-
sequently, adjoint errors decay relatively slow in these features. Further examples of
these features and the computation of characteristic times will be given in Sections 4.5.1
and 4.5.2. Features with short characteristic times will have faster settling times and
eigenvalues leading to a stronger local convergence. Essentially, we expect that the cor-
rect sensitivities for features with short characteristic times will be quickly found, while
features with long characteristic times will have inaccurate sensitivities and may not be
found by the optimizer. This introduces a bias towards features associated with short
characteristic times. The LT algorithm may converge to inferior local optima containing
features with shorter characteristic times than the local optima found by the GT algo-
rithm which contains features with longer characteristic times.

We thus identified two types of stability which can be enforced in the following ways.
For local stability we require the absolute eigenvalues to be smaller than one. To promote
local convergence, we either require the maximum absolute eigenvalues to be much
smaller than one, or the interval lengths to be relatively long. A global stability criterion
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is harder to define. In the authors experience, by enforcing local stability and using op-
timization methods which limit large changes in design such as MMA (Svanberg, 1987),
global stability issues can be overcome. Since the MMA employs adaptive move limits,

design changes are restrained which restricts the associated changes in adjoint δΛΛΛ j
k . We

will illustrate this fact using the examples in Section 4.5 and particularly the example
in Figure 4.10b where we will find global stability issues which resolve themselves after
additional design iterations. Furthermore, in this section, we only discuss the character-
istic time in broad terms, and do not give strict criteria for the adjoint equations to be
stable leading to consistent sensitivities. However, in Section 4.5, we examine the sta-
bility requirements using practical examples. In Sections 4.5.1 and 4.5.2 we study the
characteristic times in more detail for a thermal and a flow problem. Subsequently, in
Section 4.5.1 we will find a weak global convergence criterion which is verified in Sec-
tion 4.5.2.

4.3.2. THE HYBRID CHECKPOINTING/LOCAL-IN-TIME ALGORITHM
As the LT algorithm is faster than the CP algorithm but contains errors due to the adjoint
approximations, we would like to combine these two algorithms to attain a more accu-
rate and computationally efficient algorithm. We call this novel algorithm the hybrid
Checkpointing/Local-in-Time (CP/LT) algorithm. In principle, the CP/LT algorithm is
based on the LT algorithm. However, when errors in the approximate adjoints become
too large, corrections are performed using the CP algorithm. In Figure 4.4, we illustrate
that the CP/LT algorithm is based on the LT algorithms in phase A, and adaptively per-
forms corrections in phase B.

To measure the accuracy of the adjoint approximation in the LT algorithm in phase
A, an approximate adjoint error in design iteration j at checkpoint k is defined as:

ε
j
λk

=
∥Λ̃̃Λ̃Λ j+1

k − Λ̃̃Λ̃Λ j
k∥2

∥Λ̃̃Λ̃Λ j+1
k ∥2

=
∥∆Λ̃̃Λ̃Λ j

k∥2

∥Λ̃̃Λ̃Λ j+1
k ∥2

, (4.19)

where we denote the L2-norm as ∥□∥2. Moreover, the correction in adjoint at checkpoint

k is approximated as ∆Λ̃̃Λ̃Λ j
k = Λ̃̃Λ̃Λ j+1

k − Λ̃̃Λ̃Λ j
k ≈ΛΛΛ j

k − Λ̃̃Λ̃Λ
j
k =∆ΛΛΛ j

k , where we assume Λ̃̃Λ̃Λ j+1
k ≈ ΛΛΛ j

k
due to local convergence. Because the sensitivity in Equation 4.7 is dependent on the

adjoint, the error is used as a measure of accuracy of the sensitivity. If the error ε j
λk

is

higher than a user-defined threshold εmax
λ

, the adjoint solution and sensitivity update
on domain Θk−1 are deemed inaccurate and need to be corrected. It should be noted
that the error ε j

λk
is dependent on Λ̃̃Λ̃Λ j+1

k =G(Λ̃̃Λ̃Λ j
k+1) which is only known after evaluating

the adjoint solution on domain Θk in the LT algorithm. As domain Θk needs to be eval-
uated before considering correcting domain Θk−1, we do not have the state solution on
domain Θk−1 in memory to perform a correction. The state solution thus needs to be

recomputed on domainΘk−1 starting from a stored state UUU j
k−1.

Making use of the linearity of both the adjoint and sensitivity equations, the sensi-
tivity correction may be simplified to reduce additional computational effort. In Sec-
tion 4.3.1, we found that the adjoint correction can be propagated backward over an
interval using∆ΛΛΛk =Gc (∆ΛΛΛk+1) as defined in Equations 4.12 and 4.13. This propagation
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can also be performed for approximate ∆λ̃̃λ̃λ j
n , which is propagated over one time step as:

∆λ̃̃λ̃λ
j
n =−

(
∂Rn

∂uuu j
n

)−⊺
∂Rn+1

∂uuu j
n

⊺
∆λ̃̃λ̃λ

j
n+1. (4.20)

Moreover, a correction for the sensitivities is defined by substituting the improved ap-

proximationλλλ j
n ≈ λ̃λλ j

n +∆λ̃λλ j
n into the exact sensitivity formulation (Equation 4.7, for clar-

ity repeated in Equation 4.21a) resulting in Equation 4.21b:

dF

dsss
=

N∑
n=0

(
∂Fn

∂sss
∆t +λλλ⊺

n
∂Rn

∂sss

)
, (4.21a)

dF

dsss
=

N∑
n=0

(
∂Fn

∂sss
∆t +λ̃λλ j⊺

n
∂Rn

∂sss
+∆λ̃λλ j⊺

n
∂Rn

∂sss

)
, (4.21b)

for which the first two terms have already been computed in the LT algorithm and a
correction for the sensitivities can be build as:

∆
dF

dsss
=

N∑
n=0

∆λ̃λλ
j⊺
n
∂Rn

∂sss
. (4.22)

Consequently, when adjoint errors for interval Θk−1 are too high (ε j
λk

> εmax
λ

), we prop-

agate the approximate adjoint correction backward using Equations 4.20 while simulta-
neously updating the sensitivities using Equation 4.22.

Adjoint correction ∆λ̃λλ
j
n is used to correct the sensitivities as it is an easier operation

than updating the sensitivities using a new and improved adjoint field. Generally, we im-
mediately write contributions to the sensitivity vector dF /dsss to memory. To update the
sensitivity using an improved adjoint field, we would have to remove the contributions
added using the old adjoint field first. Using the adjoint correction we can update the
sensitivity vector when necessary. Moreover, we found that updates for the adjoint cor-
rection using Equation 4.20 are computationally cheaper than updates in the full adjoint
using Equation 4.8. Inspecting these equations, we find that propagating the adjoint in-
volves a matrix vector multiplication, a vector addition, and a linear system solve, while
propagating the adjoint correction only requires the matrix vector multiplication and the
linear system solve. Nonetheless, the computational cost of the full process is increased
compared to the LT algorithm as we need to recompute the full state solution on a do-
main which is being corrected to compute the sensitivity corrections in Equation 4.22.
Furthermore, we note that after propagating the adjoint correction backward over an in-
terval, the propagated correction may be used to improve the approximate adjoint at the

checkpoint, i.e., Λ̃ΛΛ
j
k =G(Λ̃ΛΛ

j
k+1)+Gc (∆Λ̃ΛΛ

j
k+1). Finally, whether or not to apply this correc-

tion on an interval depends on the chosen adjoint error threshold εmax
λ

. Based on the
experience of the authors, a relatively high threshold of εmax

λ
= 0.1 can be chosen. Using

this threshold we will find errors in sensitivity to remain below 10%.
Based on these developments, the CP/LT algorithm as shown in Figure 4.4 consists

of two phases, and can be described as follows.
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j
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∆Λ̃ΛΛ
j
3

Λ̃ΛΛ
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Figure 4.4: A schematic of the CP/LT algorithm. The numbers represent the order of operations. First the LT

algorithm is executed in phase A resulting in approximate sensitivities dF̃∗/dsss. Additionally, UUU k and ∆Λ̃̃Λ̃Λ
j
k

are

stored on the checkpoints besides Λ̃ΛΛ
j+1
k

. In phase B, starting at the final to last interval and moving one interval
backward at a time, the adjoint error is evaluated and a correction on the interval is performed if necessary.
The dashed blue arrows represent the solving of the adjoint correction using Equation 4.20 and update of
sensitivities using Equation 4.22. After propagating the adjoint correction backward from k+1 to k, the adjoint
correction and adjoint approximation are both updated.

(A) LT algorithm The sensitivities are computed using the LT algorithm. However, be-

sides the approximate adjoint variables Λ̃ΛΛ
j+1
k , the adjoint correction ∆Λ̃ΛΛ

j
k , and state

solution UUU k are also stored at the checkpoints as shown in Figure 4.4.

(B) Checkpointing corrections Starting at the second to last interval Θk =ΘK−2 using

the stored Λ̃ΛΛ
j+1
k+1 and ∆Λ̃ΛΛ

j
k+1, the error ε j

λk+1
is computed. If the error is larger than

the fixed threshold εmax
λ

, the state solution is recomputed and correction ∆Λ̃ΛΛ
j
k+1 is

propagated backwards over the interval using Equation 4.20, while simultaneously
updating the sensitivity using Equation 4.22. The backward propagation of the cor-
rection from k +1 to k is used to update the correction and adjoint variables at k as

∆Λ̃ΛΛ
j
k ←∆Λ̃ΛΛ

j
k +Gc (∆Λ̃ΛΛ

j
k+1) and Λ̃ΛΛ

j+1
k ← Λ̃ΛΛ

j+1
k +Gc (∆Λ̃ΛΛ

j
k+1). Subsequently, a sensitivity

correction is performed at intervalΘk−1 if necessary, and so on.

The CP/LT algorithm requires more memory than the LT and CP algorithms since the

state solution UUU k , the adjoint field Λ̃ΛΛ
j+1
k+1, and the adjoint correction ∆Λ̃ΛΛ

j+1
k+1 are stored on

the checkpoints. On each interval except the first, the initial states are stored m(K −1)
discrete state variables, and on each interval except the last, the terminal adjoint and
the terminal adjoint correction are stored 2m(K −1) discrete adjoint variables, resulting
in the storage of 3m(K − 1) discrete variables. Combining this with the storage of the
state solution on an interval of mN /K discrete state variables, the CP/LT algorithm has
a memory requirement which scales as M ∝ 3m(K −1)+mN /K .

The computational cost of the CP/LT algorithm is not known a priori but a lower and
upper bound can be derived. If the adjoint errors are negligible at all checkpoints and
the sensitivities are thus reliable, no corrections are performed and the CP/LT algorithm
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performs as the LT algorithm in phase A. The lower bound on the computational cost
is thus the cost of the LT algorithm, i.e., C ∝ N cs (1+ rc ). However, if the adjoint errors
are large at all checkpoints, a correction is performed at the first K − 1 intervals which
includes the solution of the state equations at a cost proportional to cs N /K . Moreover,
on each corrected domain, an adjoint correction is performed for which we estimate the
computational cost as similar to the cost of the normal adjoint propagation cs rc N /K ,
although in practice the adjoint correction is a cheaper operation. The cost of the adjoint
corrections is thus proportional to (K −1)(cs N /K +cs rc N /K ) = N cs (1+rc )(1−1/K ), and
an upper bound of the computational cost is derived as C ∝ C +N cs (1+ rc )(1−1/K ) =
N cs (1+ rc )(2−1/K ).

4.3.3. PARALLEL-LOCAL-IN-TIME ALGORITHM
Parallelization is a useful method to speed up computations. To parallelize the com-
putations, spatial domain decomposition is often used. However, this technique may
suffer from communication overhead, limiting the maximum speedup. To efficiently re-
duce such communication, a novel Parallel-Local-in-Time algorithm is proposed in this
work. The PLT algorithm is an extension of the LT algorithm and is similar to the direct
multiple shooting algorithm as discussed by Carraro and Geiger (2015). For the temporal
parallelization, we discretize the temporal domain into intervals Θk . These intervals are
however decoupled and we will solve iteratively for both the approximate state and ad-
joint solutions. Beside the approximation of the adjoint variables as in the LT algorithm
we approximate and update the initial state variables on an interval as:

UUU j
k ≈ Ũ̃ŨU j

k =U (Ũ̃ŨU j−1
k−1), (4.23)

where U (Ũ̃ŨU j−1
k−1) is an operator which propagates initial state Ũ̃ŨU j−1

k−1 over interval Θk−1 in

design iteration j −1 to terminal state Ũ̃ŨU j−1
k . Terminal state solutions on interval k −1

at design iteration j −1 are thus used as initial states for interval Θk at design iteration
j . Starting from the approximate initial state, the state equations can be solved on each

interval in parallel. Subsequently, using approximate terminal adjoints Λ̃̃Λ̃Λ j
k+1, the com-

plete sensitivity computation can be done in parallel for each interval Θk as illustrated
in Figure 4.5. We extract the sensitivity contribution for intervalΘk from Equation 4.7 as
all contributions from time step n = nk +1 at initial time tnk = θk until time step n = nk+1

at terminal time tnk+1 = θk+1:

dF∗
k

dsss
=

nk+1∑
n=nk+1

(
λ̃λλ

j⊺
n

∂Rn(ũuu j
n−1,ũuu j

n ,sss, tn)

∂sss
+ ∂Fn(ũuu j

n ,sss)

∂sss
∆t

)
, (4.24)

where we approximated all state variables as ũuu j
n ≈uuu j

n and used approximate adjoint vari-

ables λ̃λλ
j
n . To initialize the PLT algorithm, approximate adjoints and an acceptable guess

for the state variables are required at the checkpoints. In the first design iteration, we
compute the sensitivities using the LT algorithm and store the resulting state and ad-

joint variables Ũ̃ŨU j=0
k /Λ̃̃Λ̃Λ j=0

k at the checkpoints θk . Subsequently, the algorithm consists of
the following three steps:
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1. Send information to computational nodes To initialize the design evaluation, we
assume there are as much computational nodes as there are intervals K , though
this is not essential to the algorithm. Furthermore, we associate interval Θk to

node k and send it an approximate initial state condition Ũ̃ŨU j
k (exact state solution

uuu j
0 for the first interval), an approximate terminal adjoint condition Λ̃̃Λ̃Λ j

k+1 (exact

adjoint solutionλλλ j
N for the final interval), and the design sss j .

2. Design evaluation On each of the intervalsΘk , the design is evaluated. Starting at

approximate Ũ̃ŨU j
k , the state solution is propagated forward to Ũ̃ŨU j+1

k+1 by solving the
state equations. Moreover, the state solution is stored for each time step within the

interval. Subsequently, adjoint variable Λ̃̃Λ̃Λ j
k+1 is propagated backward to Λ̃̃Λ̃Λ j

k using
Equations 4.8 and 4.9 and used to update the interval sensitivities using Equa-
tion 4.24.

3. Receive information from computational nodes From each computational node

k, we receive the terminal state solution Ũ̃ŨU j
k+1, the initial adjoint solution Λ̃̃Λ̃Λ j

k , and
domain sensitivities dF∗

k /dsss. Subsequently, the global sensitivity is computed by
gathering the contributions of all intervals:

dF∗

dsss
=

K∑
k=1

dF∗
k

dsss
. (4.25)

To improve approximate state and adjoint solutions, we update them using the
propagated solutions on the neighboring intervals as:

UUU j+1
k+1 ≈U (Ũ̃ŨU j

k ),

ΛΛΛ
j+1
k ≈G(Λ̃(Λ̃(Λ̃ j

k+1),
(4.26)

where we assume that UUU j+1
k+1 ≈ U (Ũ̃ŨU j

k ) decreases the error in state, similar to the

decreased error in adjoint byΛΛΛ j+1
k ≈G(Λ̃(Λ̃(Λ̃ j

k+1) as discussed in Section 4.3.1.

As was the case in the LT algorithm, we use approximate adjoint variables and there-
fore expect some inaccuracies due to local and global convergence issues in the PLT al-
gorithm. Moreover, in the PLT algorithm we have also introduced approximate state so-
lutions which may cause additional inaccuracies. However, following a similar reasoning
as in Section 4.3.1 for the stability of the approximate adjoints, the errors in approximate
state solutions are expected to reduce over an interval if local convergence is satisfied. If
we describe the state solution asUUU n =ŨUU n+∆UUU n , where∆UUU n is the error in state solution,
we expect the error to behave the same as a disturbance of an initial state solution. For
stable transient systems, a disturbance of the initial state solution is known to dampen
out over time. These disturbances can generally be said to dampen out on a similar
timescale as it takes the system to reach a stable steady state solution. To enforce local
stability, we thus require relatively long intervals with respect to the characteristic time of
the system. Consequently, as discussed for the LT algorithm in Section 4.3.1, we expect
weak global convergence issues. The PLT algorithm is expected to favor convergence
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Figure 4.5: A schematic of the PLT algorithm. The numbers represent the order of operations. In the first step,
we distribute all required state and adjoint fields to the intervals. In the second step, for each interval Θk ,

we evaluate and store the state solution starting from the distributed Ũ̃ŨU
j
k

, and subsequently we evaluate the

adjoint solution starting from distributed Λ̃̃Λ̃Λ
j
k+1

while simultaneously computing domain sensitivity dF∗
k /dsss

as defined in Equation 4.24. Solving the state solutions and the adjoint solutions are labeled step 2.1 and 2.2,
respectively. This does not imply that all intervals wait until all state solutions are solved. Some intervals might
in fact be working on the adjoint solutions while others are working on the state solution but in general all
intervals will be working on the state or adjoint solution at the same time. Finally, in the third step, all state
and adjoint updates are gathered in addition to the sensitivity contributions dF∗

k /dsss which are combined into
the total sensitivity using Equation 4.25.

to local optima with features of shorter characteristic times as for these features accu-
rate adjoints and states, and thus sensitivities, are found much quicker. Additionally,
this bias may be enhanced by the PLT algorithm due to the approximate state solutions
Ũ̃ŨU k . Strong global convergence issues might also pose a problem for the PLT algorithm.
However, in the authors experience the algorithm behaves similar to the LT algorithm.
By enforcing local stability and using optimization methods which limit large changes in
design, the PLT algorithm is found to avoid strong global convergence issues, and con-
verges to stable optima with accurate sensitivities as will be shown in Section 4.5.

For the PLT algorithm to converge, we thus require errors in state solution to dampen
out over successive design iterations. This may not always be the case. If the physics
show chaotic behavior, small differences in initial state may cause large differences in
later states. It is clear that for these types of systems, errors in state solution do not
dampen out over successive design iterations. Moreover, under certain conditions the
adjoint solutions of chaotic problems may grow exponentially, and the adjoint sensitiv-
ities may be inaccurate (Lea et al., 2000; Q. Wang et al., 2014). For chaotic systems even
the CP and GT algorithms which compute exact sensitivities may also be inaccurate.
Algorithms presented in this paper should therefore not be applied to chaotic systems
without a careful consideration.

Since the PLT algorithm performs all computations simultaneously, the full state so-
lution at all intervals (and thus the whole temporal domain) needs to be stored. Memory
requirements thus scale as M ∝ N m. However, an increase in computational nodes of-
ten comes with an increase in memory alleviating this problem. When memory becomes
a limiting factor, the parallel intervals can be subdivided once more into local subinter-
vals where the LT or CP algorithm is employed. On these subintervals, we thus use differ-
ent approximations for initial state and terminal adjoint equations. Another solution is
to divide the domain into shorter intervals and evaluate some intervals sequentially in-
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stead of in parallel, but still use approximate initial state and terminal adjoint solutions
on each of these shorter intervals. Doing so, the full state solution does not need to be
stored but only the state solutions on the intervals being evaluated.

As all state and adjoint solutions are solved once per interval, the computational cost
of the PLT algorithm is the same as for GT algorithm, C ∝ N cs (1+ rc ). Due to the par-
allelization, the computational time may be reduced. We investigate a theoretical 2D
optimization problem for illustration purpose, though a similar investigation holds for
3D problems. Solving a transient 2D problem we might conceptualize as solving the dis-
crete solution on a 3D cuboid where two of its axis represent the spatial axis and one
represents the temporal axis as can be seen in Figure 4.6. Implementing a spatial do-
main decomposition, we cut the domain along its length and generate interface area
across which the nodes have to communicate. If a time stepping algorithm is used this
communication happens every time step leading to increased idle time. Moreover, the
communication overhead might become even worse when nonlinear systems are solved
as they may require many subsolves per time step. If a temporal parallelization can be
used, the cuboid can be cut across its width generating less interface area and less com-
munication overhead. We note that for this analysis we used a problem with more time
steps than elements in the x or y direction. A problem with more elements in x or y di-
rection than time steps may have less interface area and be more efficiently parallelized
when using spatial domain decomposition techniques.

x

y

t x

y

tx

y

t

A B C

Figure 4.6: An example of the two options for paralellizing a 2D transient computation, where A is the non-
parallelized domain, B is a parallelization via spatial domain decomposition, and C is a parallelization via
temporal domain decomposition.

4.4. MEMORY AND COMPUTATIONAL COST
All presented sensitivity computation algorithms have their advantages and limitations
and are suited for different kind of optimization problems. Based on a combination of
memory requirements, computational cost, and convergence, different algorithms are
recommended for different problems.

4.4.1. MEMORY REQUIREMENTS
When memory requirements are not a limiting factor, the full state solution may be
stored and the GT or PLT algorithms can be used. Moreover, if the parallel algorithms
are preferred for their speedup but memory is a limiting factor, a hierarchical structure
of the algorithms may be used. In this paper, the CP, LT, and CP/LT algorithms were used
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to reduce memory requirements as summarized in Table 4.1. However, for local stability,
we require the intervals to be as long as possible and we thus use the least amount of
intervals K as possible. Subsequently, it can be argued that for optimization problems
where N ≫ K the differences in memory reduction between the algorithms are negligi-
ble, as the largest memory burden is spent on storing the complete state solution on an
interval and not on storing the additional information at the checkpoints.

GT, PLT CP LT CP/LT

Memory
requirements

mN m
( N

K +K −1
)

m
( N

K +K −1
)

m
( N

K +3(K −1)
)

K ≪ N mN m N
K m N

K m N
K

Table 4.1: Memory requirements M of the sequential algorithms for a problem containing K intervals, N time
steps, and adjoint/state fields of size m. For problems where K ≪ N , memory requirements are identical for
all algorithms.

Under this assumption all sequential algorithms thus perform similarly with respect
to memory reduction. However, if a small number of time steps is used and memory
limits are reached due to m, the size of the solution at one time step, these assumptions
do not hold anymore and the CP or LT algorithms should be used for the largest memory
reduction.

4.4.2. COMPUTATIONAL COST

To make a comparison in terms of computational cost, an overview is given in Table 4.2.
The CP/LT algorithm does not have a fixed computational cost but rather a range of pos-
sible costs with a lower bound at the cost of the GT, PLT, and LT algorithms and an upper
bound above all other algorithms. However, when the state equations are highly nonlin-
ear and rc → 0, we find the upper bound of the cost of the CP/LT algorithm in Table 4.2 to
be the same as the cost of the CP algorithm. Another simplification can be made for lin-
ear implicit state equations. When the state equations are linear, adjoint equations are
linear and have a similar computational cost. The resulting implicit adjoint equations
involve a relatively expensive inverse matrix problem, while the sensitivity update only
involves cheap matrix/vector multiplications. The computational cost ca consisting of
the adjoint and sensitivity update can thus be assumed to be dominated by the adjoint
update which is similar to the state update: ca = cs = c and rc = 1. This particular case is
shown in the bottom row of Table 4.2. However, when the state and consequently adjoint
equations are linear explicit, both the adjoint and state equations consist only of matrix
vector multiplications. In this case adjoint, state, and sensitivity updates have a similar
computational cost. The cost of solving adjoint and updating sensitivity ca will thus be
larger than cs and rc > 1. This case is further investigated in Section 4.5.1.

Selecting an appropriate algorithm for a problem may depend on the computational
cost and we further analyze the cost of the CP and CP/LT algorithms. Firstly, we examine
the relative computational cost of the CP and GT algorithms by dividing the computa-
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GT, LT, PLT CP/LT CP

C cs N (1+ rc ) [cs N (1+ rc ),cs N (1+ rc ) (2−1/K )] cs N (2+ rc −1/K )

C , rc → 0 cs N [cs N ,cs N (2−1/K )] cs N (2−1/K )

C , rc = 1 2cN [2cN ,cN (4−2/K )] cN (3−1/K )

Table 4.2: Computational costs C of the sequential algorithms for problems containing K intervals and N time
steps. Solving one state step has a computational cost of cs while solving one adjoint step while simultaneously
updating the sensitivities has a cost of ca , relative cost is defined as rc = ca /cs . Contrary to the GT, PLT, LT, and
CP algorithms, the CP/LT algorithm has a lower and upper bound on its computational cost. The lower bound
is equal to the cost of the GT, PLT, and LT algorithms while the upper bound is higher than the cost of the
CP algorithm as in the CP/LT algorithm state and adjoint solutions may be recomputed whereas in the CP
algorithm only state solutions are recomputed. A simplification is shown for problems with highly nonlinear
state equations where rc → 0 and for problems with linear explicit state equations where rc = 1 and ca = cs = c.

tional cost of the CP algorithm CC P by the cost of the GT algorithm CGT :

CC P

CGT
= cs N (2+ rc −1/K )

cs N (1+ rc )
= 2+ rc −1/K

1+ rc
. (4.27)

As expected, we find the computational cost of the GT and CP algorithms with K = 1 to
be equal. Moreover, smaller K make the ration drop and have a diminishing effect on the
increased computational cost of the CP algorithm. We thus advise for the CP algorithm to
keep K as low as possible. For K ≫ 1, the relative computational cost only depends on rc .
The biggest increase in computational cost is found for nonlinear systems where rc → 0
and CC P /CGT → 2. Therefore, we advise to disregard the CP algorithm for nonlinear
systems based on the required computational cost.

As corrections, even if only a few, are always performed for the CP/LT algorithm, not
only the CP but also the CP/LT algorithm turns out to be more expensive than the GT,
LT, and PLT algorithms. An informed choice between the CP/LT and CP algorithms thus
depends on the number of corrections required by the CP/LT algorithm and the resulting
relative computational cost. Comparing computational cost is not straightforward as the
cost of the CP/LT algorithm is undefined a priori. We adaptively correct intervals only
when errors are high and do not correct all intervals, as shown in Figure 4.4. Relative
computational cost thus depends on the fraction of corrected intervals, and the relative
cost of CP/LT and CP intervals. The computational cost of the terminal interval ΘK−1

is the same for both the CP/LT and CP algorithms as the state and adjoint equations are
evaluated only once on this interval. On the other K−1 intervals which contain N /K time
steps each, computational costs differ. In the CP algorithm, the state equations on these
intervals are solved twice and the adjoint equations once, at a cost ∝ cs (N /K )(2+rc ) per
interval. On a corrected CP/LT interval, the state equations are solved twice and both the
adjoint and adjoint correction are solved once at a cost ∝ cs (N /K )(2+2rc ), and on an
uncorrected interval state and adjoint are solved only once at a cost ∝ cs (N /K )(1+rc ). A
corrected and uncorrected interval thus have a cost relative to a CP interval, respectively
as:

cs (N /K )(2+2rc )

cs (N /K )(2+ rc )
= 2

1+ rc

2+ rc
,

cs (N /K )(1+ rc )

cs (N /K )(2+ rc )
= 1+ rc

2+ rc
. (4.28)
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To compare the overall computational cost, we define the fraction of corrected intervals
fc . Since the terminal interval has the same computational cost for both CP and CP/LT,
the fraction only considered the first K −1 intervals. Subsequently, fc is defined as the
number of corrected intervals in the whole optimization process, divided by the product
of K − 1 and the number of design iterations. It is thus the fraction of corrected inter-
vals, averaged over all design iterations. The relative computational cost of the CP/LT
algorithm to the CP algorithm can be computed as:

CC P/LT

CC P
= K −1

K

(
fc 2

1+ rc

2+ rc
+ (1− fc )

1+ rc

2+ rc

)
+ 1

K
= K −1

K
( fc +1)

1+ rc

2+ rc
+ 1

K
, (4.29)

where for the first K −1 intervals, we have differing computational cost at (K −1)/K % of
the computations, and at the last interval we have the same computational cost at 1/K %
of the computations.

In practice we need to approximate fc to choose whether the CP/LT or the CP algo-
rithm is cheaper. However, in Section 4.5 we find that corrections are only performed
during the first part of the optimization process where large design changes are present.
Experienced designers can thus use their knowledge of the convergence behavior of the
problem to estimate fc and select the computationally most advantageous algorithm, as
further discussed in the guidelines in Section 4.6.

4.5. RESULTS
In this section we investigate and compare the GT, CP, LT, CP/LT, and PLT algorithms.
We investigate stability by optimizing a transient thermal problem in Section 4.5.1 and
computational cost by optimizing a flow problem in Section 4.5.2. The thermal problem
will minimize the temperature in heat generating components and the flow problem will
optimize a piston pump. Both problems are optimized using density-based topology op-
timization (Bendsøe & Sigmund, 2004). In density-based topology optimization, we aim
to find an optimal material distribution in a given design domain. The design domain is
divided into grid cells to which design variables are attached. Subsequently, the design
variables are used to interpolate continuously between phases, solid and void for the
thermal problem, solid and fluid for the flow problem. As we interpolate continuously
between phases, the gradient-based MMA (Svanberg, 1987) algorithm can be used. To
compute the gradients in our transient thermal and flow problems, the algorithms pre-
sented in this paper will be used.

For the gradient computation, the adjoint equations need to be solved. To solve the
adjoint equations, Jacobians ∂Rn/∂uuun and ∂Rn/∂uuun−1 need to be constructed. We as-
sume that uuun either contains discrete temperatures or velocities and pressures. The Ja-
cobians will be constructed using the same approach as used by Theulings et al. (2023).
For completeness, it is summarized here. The finite volume method will be used to dis-
cretize the PDE equations into a column Rn . Each i th component R i

n of the column may
be associated with small subsets uuui

n and uuui
n−1 of the complete sets of DOFs uuun and uuun−1.

To construct the Jacobians we use the (MATLAB, 2019) symbolic toolbox and construct
symbolic equations for R i

n(uuui
n ,uuui

n−1) in terms of the symbolic variables in uuui
n and uuui

n−1.
Subsequently, we use symbolic differentiation to compute ∂R i

n/∂uuui
n , ∂R i

n/∂uuui
n−1 and use

MATLAB to automatically construct a function which takes DOFs uuui
n , uuui

n−1 and returns
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∂R i
n/∂uuui

n , ∂R i
n/∂uuui

n−1. This function is used to compute all derivatives after which they
are assembled into ∂Rn/∂uuun and ∂Rn/∂uuun−1. Moreover, derivatives ∂Rn/∂sss are com-
puted following a similar approach.

4.5.1. STABILITY INVESTIGATION THROUGH THERMAL OPTIMIZATION

In this section we investigate the stability of the approximate LT, PLT, and CP/LT algo-
rithms by optimizing a thermal problem. Weak global convergence is investigated by
examining characteristic times and comparing it against the interval lengths. As dis-
cussed in Section 4.3.1, we expect the optimizer to be biased towards features with short
characteristic times. Specifically, we expect a stronger bias for features with a long char-
acteristic time relative to interval length ∆θ. Additionally, we examine the predicted and
measured computational cost of the algorithms for problems with linear explicit state
equations. The thermal problem is chosen for its simplicity as we can estimate relatively
easily how fast errors in approximate adjoint decay and thus how fast we converge to
accurate solutions.

TRANSIENT THERMAL MODEL

Before describing the optimization problem, we introduce the thermal physic and nu-
merical model. The characteristic timescales related to the physics and discretization
are investigated as they play an important role in the stability of the algorithms and set
up of the optimization problem. First, we discretize the transient equations in space
and time. A two-dimensional transient thermal problem is considered and is defined on
temporal domain t ∈ [0, tt ] and spatial domain x⃗ ∈ Ω with boundary Γ= Γd ∪Γn . The
thermal problem is governed by:

αsρs cps Ṫ −∇· (αsκs∇T )−αsQ = 0, onΩ,

T = TΓ, on Γd ,

αsκs∇T ·nnn =qqqT ·nnn, on Γn ,

T = T̂ , onΩ at t = 0,

(4.30)

where the subscript □s denotes solid material properties, T (⃗x, t ) is the temperature field
with time derivative Ṫ = ∂T /∂t , the solid density, specific heat capacity, and thermal
conductivity are ρs , cps , and κs , respectively, Q (⃗x, t ) is an externally applied heat load,
TΓ (⃗x, t ) is the fixed temperature on boundary Γd , qqqT (⃗x, t ) is an applied heat flux on
boundary Γn with outward normal nnn, and T̂ (⃗x) is the initial temperature distribution.
The solid volume fractionαs (⃗x) is used as design variable. The solid domain is defined by
αs (⃗x) = 1 and the void domain by αs (⃗x) =αs which is a lower bound on the volume frac-
tion for which 0 <αs ≪ 1. The transient thermal equations are discretized on a Cartesian
mesh illustrated in Figure 4.7 using the finite volume techniques as described by Versteeg
and Malalasekera (2007). Specifically, we use the same techniques as used by Gersborg-
Hansen et al. (2006), where the arithmetic average is used to interpolate discrete design
variables at the interface between mesh elements. Moreover, we discretize in time using
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a forward Euler scheme such that we find discretized equations of the form:

Rn(TTT n−1,TTT n ,sss, tn) =MMM(sss)
TTT n −TTT n−1

∆t
−KKK (sss)TTT n−1 −QQQn(sss),

R0(TTT 0) =TTT 0 −T̂TT ,
(4.31)

where TTT n and QQQn are the vectors of discrete nodal temperatures and heat loads at time
tn , T̂TT is the vector of discrete initial temperatures, and sss is the vector of discrete design
variables. The advantage of using the explicit forward Euler updating scheme is the rel-
atively small computational cost attributed to performing one time step.

h

h

x

y

αs = 1

αs → 0

Ti , j

Figure 4.7: The equidistant uniform mesh used to discretize the thermal problem. Red dots are the temperature
nodes with DOFs Ti , j and densities are defined per element where αs = 1 is a solid element and αs → 0 a void
element.

To inspect stability, we approximate the characteristic times of the physics and dis-
cretization scheme. Although performing a forward Euler update is inexpensive, the
scheme for transient thermal equations has a relatively strict stability constraint on the
time step defined as:

∆t < h2

2D
, (4.32)

where h is the mesh size and D = κs /(ρs cps ) is the thermal diffusivity. Thermal dif-
fusivity in both the solid (αs = 1) and void domains (αs → 0) will stay the same as in
Equation 4.30 both the conductivity κs and the density ρs are multiplied with αs and
D =αsκs /(αsρs cps ) = κs /(ρs cps ). The strict time step constraint leads to the need for
many updates to be performed which increases computational time. However, we find
that this small time step may be required to accurately represent the physics. The charac-
teristic timescale for a thermal diffusion problem (Picioreanu et al., 2000) can be defined
as:

τ= L2

D
, (4.33)
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where L is the characteristic lengthscale of the problem. The characteristic timescale
indicates a time over which a transient response settles. If we are interested in a design
with a feature size of a few elements (L ≈ h) we find that these features have a charac-
teristic timescale of τh ≈ h2/D , and thus need the relatively small time step defined in
Equation 4.32 to accurately model such features. A disadvantage of using a small time
step is that it will cause large memory requirements. However, the methods presented
in this paper can be used to keep these memory requirements to a minimum. Since this
is a linear system, the local stability analysis in Section 4.3.1 holds. The adjoint equa-
tions are stable if the state equations are stable when we satisfy Equation 4.32. More-
over, as discussed in Section 4.3.1, the adjoint equations react and stabilize over similar
timescales as the state equations. We can thus use the estimate for characteristic time in
Equation 4.33 to estimate over which timescales adjoint errors converge to zero.

TRANSIENT THERMAL OPTIMIZATION PROBLEM

The problem in Figure 4.8 is designed to investigate the limitations of the approximate
algorithms. The problem consists of a plate on which three heat generating components
are attached. Material and problem specific parameters are given in Table 4.3, and result
in a diffusivity of D = 10−3. The characteristic timescale of the plate is estimated as

L h tt ∆t ρs cps κs

0.1 10−2

12 10 1
5760 100 10 1

Table 4.3: The parameters used for the thermal optimization scenario as shown in Figure 4.8 with results shown
in Section 4.5.1.

τ = 10, which is used as final time tt = τ = 10. The bottom boundary of the plate is
cooled and has fixed temperature T = 0 while all other boundaries are isolated. Three
time dependent heat sources Q1, Q2, and Q3 are added to the plate:

Q1 = 103, Q2 =
{

3
4 ·103, if t > tt

3

0, otherwise
, Q3 =

{
6 ·103, if t > 2tt

3

0, otherwise
(4.34)

The objective of the optimization procedure is to minimize the average temperature at
the heat sources:

F =
∫ tt

0

∫
ΩQ

T dΩ d t , (4.35)

whereΩQ is the gray domain in Figure 4.8 where heat loads are applied.
Furthermore, to prevent checkerboarding and regularize the optimization proce-

dure, a smoothing and continuous Heaviside projection filter are needed. First all i th

design variables si of sss are smoothed using the filter as presented by Bruns and Tor-
torelli (2001) using the design variables within a distance r to the center of si , resulting
in smoothed variables si . Subsequently, the continuous Heaviside function as presented
by F. Wang et al. (2011) is applied to the smoothed design variables si which projects
them to a 0/1 solution as:

s̃i = tanh(βη)+ tanh(β(si −η))

tanh(βη)+ tanh(β(1−η))
, (4.36)
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L
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3 L

1
4 L

1
4 L

1
4 L

1
3 L

2
15 L

1
15 L

Q1

Q2

Q3

T = 0

Figure 4.8: The thermal optimization problem with parameters in Tables 4.3, 4.4. On the gray areas, time
dependent heat loads are applied as defined in Equation 4.34. The heat loads are defined such that Q2 delivers
half as much and Q3 twice as much energy to the system as Q1. On the bottom boundary, a heat sink is applied
which fixes the temperature to T = 0 and all other boundaries are isolated.

where s̃i is the design variable after the projection filter is applied, η is the threshold
value, and β indicates the slope and sharpness of the projection filter. Generally, β is
increased during an optimization procedure through a continuation scheme such that
in the earlier design iteration the continuous Heaviside projection does not restrict the
convergence and in the later iterations the design is pushed to a 0/1 solution. In this
work we set the slope to β in the first ten design iterations after which we increase it

with ∆β each iteration until it reaches its upper bound β = β. Subsequently, a volume
constraint is applied on the smoothed and projected design variables s̃ss. The constraint
imposes an upper limit V f on the solid volume fraction:

gv (s̃ss) =
∑Nd

i=1 s̃i

Nd
−V f ≤ 0, (4.37)

where Nd is the number of discrete design variables s̃i in s̃ss. Moreover, the Solid Isotropic
Material with Penalization (SIMP) material interpolation (Bendsøe & Sigmund, 1999) is
used which defines a relation between design variables and material properties. We use
SIMP to interpolate the solid volume fraction as:

αs (s̃i ) =αs + (1−αs )s̃p
i , (4.38)
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where αs is the lower bound on the solid volume fraction and p regulates the convexity
of the interpolation function. All optimization parameters can be found in Table 4.4.

Finally, using the discrete thermal model in Equation 4.31, the discrete optimization

r β ∆β β p V f αs εmax
λ

3h 2 0.1 8 3 0.3 10−3 0.1

Table 4.4: The optimization parameters for the thermal problem in Figure 4.8. We smooth the design over a
radius of three elements (r = 3h), increase the Heaviside projection slope from β to β by ∆β over iterations 10
to 70 and apply the SIMP interpolation to the volume fraction αs using factor p. Furthermore, a maximum
allowable adjoint error of εmax

λ
is set for the CP/LT algorithm.

problem is defined as:

minimize
sss

F ≈
N−1∑
n=0

Fn(TTT n ,sss)∆t ,

subject to Rn(TTT n−1,TTT n ,sss, tn) = 0 n ∈ {1,2, . . . N },

R0(TTT 0) = 0,

gv (s̃ss) ≤ 0,

(4.39)

We examine the characteristic times of the heat generating components to compare
them to the interval lengths and make predictions about the designs that will result from
the optimization procedure. We expect the optimal design to connect all heated do-
mains to the heat sink at the bottom boundary. The heat sources are defined such that
Q2 delivers half as much and Q3 twice as much heat to the system as Q1. Connecting the
top domain directly to the heat sink might be disadvantageous as this allows for a direct
flow of thermal energy from the top domain through the center and bottom domains. As
the top source is located further away from the heat sink, we expect it to have a larger
characteristic time, leading to a slower decay of errors in adjoint. We estimate the char-
acteristic timescales of the heat sources using their respective distances to the heat sink:
L1 = 3

4 L, L2 = 1
2 L, and L3 = 1

4 L. Subsequently, the characteristic timescales are estimated
following Equation 4.33:

τ1 =
L2

1

D
=

( 3
4 L

)2

D
= 9

16

L2

D
= 9

16
τ, τ2 = 1

4
τ, τ3 = 1

16
τ. (4.40)

The characteristic timescale of the bottom source is thus almost an order of magnitude
smaller than the characteristic timescale of the top source. Moreover, the distance be-
tween the top two heat sources is L1,2 = 1

4 L = L3, and the characteristic timescale of
interaction between these two sources is thus also τ1,2 = τ3 = 1

16τ. Erroneous adjoints
carrying information about the interaction between the two top domains may thus con-
verge to the correct adjoint much quicker than erroneous adjoints carrying information
about the interaction between the top influx and heat sink. We thus expect the approxi-
mate algorithms to experience problems around the top influx domain.
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To estimate the memory requirements of this optimization problem we compute the
number of DOFs in x and y-direction respectively as Nx = 81 and Ny = 121. Subse-
quently, by using the fact that each DOF is stored as a double containing 8 bytes the size
of one state solution is computed as m = 8Nx Ny ≈ 78 kB. Since the number of time steps
is N = tt /∆t = 57.6 ·103, we estimate the memory requirements assuming that K ≪ N .
Following Table 4.1, the GT and PLT algorithms require a memory of M = mN ≈ 4.5 GB
and the CP, LT, and CP/LT algorithms require a memory of M ≈ mN /K ≈ 4.5/K GB. With
these reasonable memory requirements, no large K is needed. However, if a similar
problem is solved in 3D with a resolution of Nz = Nx = 81 in z-direction, this would
increase the size of the state solution to m = 8Nx Ny Nz ≈ 6.4 MB. The memory require-
ments would thus increase as M ≈ mN ≈ 368 GB for the GT and PLT algorithms. We thus
argue that the relatively high number of intervals K = 20 should be used to reduce the
theoretical memory in 3D to M ≈ mN /K ≈ 17.8 GB for the CP, LT, and CP/LT algorithms.

REFERENCE RESULTS

Using the thermal optimization problem, we analyze the stability of the approximate
LT, PLT, and CP/LT algorithms. We expect the adjoint errors in the approximate algo-
rithms to dampen out over multiple design iterations. However, due to the large errors
in the first few design iterations, the optimization procedure may experience weak global
convergence issues discussed in Section 4.3.1. The approximate LT, CP/LT, and PLT al-
gorithms might take a different convergence path than the exact GT and CP algorithms
and end up in different local optima with a bias towards design features with short char-
acteristic times.

Figure 4.9: The bowling pin like design found by the GT and CP (K = 20) algorithms characterized by an objec-
tive value f ∗GT = 1.0263. The design connects all influx domains to the lower heat sink. The hat on top of the
pin is an artifact of the optimization procedure.

As a reference we optimize the problem using the GT and CP (K = 20) algorithms
which both lead to the same optimum shown in Figure 4.9. The optimal bowling pin
like design connects all source domains to the bottom heat sink. We expect to find weak
global convergence issues in the designs around the top source using the approximate
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algorithms. To analyze these errors we measure the characteristic time of the top in-
flux domain in the GT and CP design in Figure 4.9. To measure the characteristic time,
a constant heat flux is applied only to the top interval (Q1(t ) = 103, Q2(t ) = Q3(t ) = 0).
Under these conditions, the characteristic time is defined as the time it takes for the
transient response to reach a solution with 5% error compared to the steady state solu-
tion. The characteristic time of the upper domain in the GT and CP design is measured
as τ1 = 6.12.

Moreover, to measure the accuracy of the approximate sensitivities computed using
the LT, CP/LT, and PLT algorithms, we compare them with sensitivities obtained with the
GT algorithm. For each design and sensitivity dF̃ /dsss found by the approximate algo-
rithms, an error is defined by comparing with exact sensitivities dF /dsss computed by the
GT algorithm on the same design:

ε′ = ∥dF̃
dsss − dF

dsss ∥2

∥dF
dsss ∥2

. (4.41)

Furthermore, a deviation in objective value ∆ f ∗ from the GT optimum characterized by
f ∗

GT is computed as:

∆ f ∗ = f ∗− f ∗
GT

f ∗
GT

, (4.42)

where a positive ∆ f ∗ is a deteriorated objective and a negative ∆ f ∗ is an improved ob-
jective.

APPROXIMATE ALGORITHM DESIGNS AND STABILITY

We compare the baseline design to the designs found by the approximate algorithms.
To investigate the influence of the number of intervals K , we optimize for K = 2, 5, and
20. Optimal designs for the LT, CP/LT, and PLT algorithms can be found in Table 4.5,
objective histories in Figure 4.10, and sensitivity error histories in Figure 4.11. The most
striking difference in design is found for K = 20 using the LT and PLT algorithms in Ta-
bles 4.5a and 4.5b. These designs contain a large island around the upper influx domain
which is disconnected from the heat sink. As can be seen by the increased objective
values, this is an inferior local optimum with ∆ f ∗ = 14% for both the LT and PLT algo-
rithms. The optimizer finds this inferior optimum due to the weak global convergence
issues as discussed in Section 4.3.1. Whereas the intervals with K = 20 have a length of
∆θ = tt /K = 0.5, the characteristic time of the upper domain in the GT design was found
as τ1 = 6.12. The interval length is thus an order of magnitude smaller than the charac-
teristic time. In fact, if we assume a static unchanging design, the adjoint error should
propagate over τ1/∆θ ≈ 12 intervals. As adjoint errors can only reduce over one interval
each design iteration, it would take 12 design iterations for adjoint errors around the top
influx to reduce sufficiently. Moreover, as can be seen in the convergence plots of the
objective in Figure 4.10, it takes around ten iterations for the design to stabilize. The LT
and PLT designs thus stabilize into an inferior local optimum before adjoint errors suffi-
ciently reduce. These results suggest that to prevent weak global convergence, the length
of an interval should not be an order smaller than the characteristic time:

∆θ = tt

K
> τ

10
, (4.43)
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which we defined as the weak global convergence requirement.
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(a) GT and CP objective convergence.

25 50 75 100 120

0.2
0.4
0.6
0.8

1

iteration

f/
f1 G

T

K = 20
K = 5
K = 2

(b) LT objective convergence.
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(c) CP/LT objective convergence.
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(d) PLT objective convergence.

Figure 4.10: The objective convergence for designs in Figure 4.9 and Table 4.5. Objective values are normal-
ized using the objective in the first design iteration computed using the GT algorithm f 1

GT . The GT and CP
algorithms both compute exact sensitivities and show the same convergence behavior. Additionally, as the
CP/LT algorithm corrects erroneous sensitivities and computes fairly accurate sensitivities as can be seen in
Figure 4.11, it also shows similar convergence behavior to the GT and CP algorithms. The objective conver-
gence of the LT algorithm using K = 2 shows large fluctuations towards the end. These fluctuations are caused
by global instabilities in the design. However, the global instabilities dampen out and the design again con-
verges to a stable optimum. The PLT convergence plot shows that when more intervals are used, the objective
converges slower over more design iterations. This is caused by the approximations in state variables which
leads to larger changes in objective.

Other significant deviations from the reference are found in the K = 5 and K = 2 LT
designs in Tables 4.5d and 4.5g and convergence in Figure 4.10b. Firstly, the LT K = 2
convergence plot shows some large instabilities during iterations 80 to 100. These errors
are caused by global instabilities as discussed in Section 4.3.1. Small changes in design
lead to large changes in adjoints and consequently in sensitivities. Subsequently, these
sensitivity changes lead to larger changes in design and so forth. In Figure 4.11a, we
compare the LT sensitivities to the ones computed using the GT algorithm on the same
design. We verify the increase in sensitivity error over design iterations 80 to 100. More-
over, we find that sensitivity errors do not reduce monotonically, and increase in parts
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LT PLT CP/LT

K = 20

(a) f ∗ = 1.1671,
∆ f ∗ = 14%.

(b) f ∗ = 1.1727,
∆ f ∗ = 14%.

(c) f ∗ = 1.0266,
∆ f ∗ =−0.03%.

K = 5

(d) f ∗ = 1.0290,
∆ f ∗ = 0.26%.

(e) f ∗ = 1.0303,
∆ f ∗ = 0.40%.

(f) f ∗ = 1.0266,
∆ f ∗ =−0.03%.

K = 2

(g) f ∗ = 1.0299,
∆ f ∗ = 0.35%.

(h) f ∗ = 1.0247,
∆ f ∗ =−0.16%.

(i) f ∗ = 1.0250,
∆ f ∗ =−0.13%.

Table 4.5: The designs, objective values f ∗, and relative changes in objective∆ f ∗ found using the approximate
sensitivity computation algorithms. The change in objective ∆ f ∗ is relative to the objective found using the
GT and CP algorithms, where a positive ∆ f ∗ increases and a negative ∆ f ∗ deteriorates the objective. Both the
LT and PLT algorithms disconnect the upper heat source from the heat sink for K = 20 leading to an inferior
optimized design. These errors emerge as the adjoint errors do not converge quickly enough and the design
gets stuck in an inferior local optimum. The CP/LT designs do not suffer from this problem as they correct the
largest errors in adjoint.
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of the convergence history. This is also the case for the sensitivity error in the PLT and
CP/LT algorithms in Figure 4.11. Due to the stability of MMA, the design is able to revert
back to a stable design and converges after 20 additional iterations. We can conclude
that an increase in sensitivity errors leading to global instabilities is difficult to predict
but may happen and is a risk inherent to the LT and PLT algorithms.
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(a) LT sensitivity error convergence.
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(b) CP/LT sensitivity error convergence.
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(c) PLT sensitivity error convergence.

Figure 4.11: The convergence of the sensitivity er-
ror ε′ for all design iterations. In Figure 4.11a a clear
correlation can be found between increasing sensi-
tivity errors for LT, K = 2 and the global instabilities
found in Figure 4.10b. Moreover, none of the fig-
ures show a monotonously decreasing sensitivity er-
ror as they all show some error fluctuations. These
fluctuations are caused by global instabilities, but
when they remain small have no noticeable effect on
the objective convergence and design updates. The
sensitivity errors in the CP/LT algorithms are of nu-
merical precision in the first few design iterations
where all intervals are corrected. However, as the
algrotihm stops correcting all intervals, errors shoot
up to about ε′ ≈ 10−2.

The aim of the CP/LT algorithm is to correct the errors in the LT algorithm, and we
expect it to be less prone to global stability issues. Table 4.5c shows that the CP/LT al-
gorithm is able to find the bowling pin design for K = 20 and did not suffer from weak
global stability issues. Moreover, no global convergence issues are found for the CP/LT
algorithms in Figure 4.10c. In Figure 4.11b, the sensitivity error ε′ for the CP/LT algo-
rithm is shown. During the first seven iterations, all domains are corrected and the error
in sensitivity is close to numerical accuracy. When corrections stop in the eighth design
iteration, an error in sensitivities is introduced and reduces over the subsequent iter-
ations. Furthermore, the CP/LT results illustrate that the approximate algorithms find
optima which are slightly different but not necessarily inferior to the ones found using
exact algorithms. The designs found by the CP/LT algorithm for K = 5 and K = 2 per-
form slightly better than the GT and CP design, as can be seen by the negative ∆ f ∗. To
summarize, global convergence problems are alleviated by the CP/LT algorithm, and the
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algorithm generally shows a more stable convergence behavior than the LT algorithm.
Finally, we compare the designs and convergence behavior of the PLT algorithm

to the other algorithms. As previously discussed, the PLT algorithm suffers from weak
global convergence issues for K = 20. Moreover, the convergence of the objective for the
PLT algorithm is much slower than for the other algorithms, see Figure 4.10d, even when
few intervals are used. This issue is caused by the errors in state variable which require
more iterations to converge together with the adjoint variables. It should be noted that
the PLT algorithm only requires more time to reach a stable topology and objective value
during the start of the optimization procedure. Subsequently, the PLT algorithm only
slightly adapts the topology and improves the objective value. Whereas other algorithms
take about ten iterations, the PLT algorithm with K = 20 takes 20 to find an adequate
topology. As the optimizer runs for at least 100 design iterations, this does not have a
large influence on the overall design convergence.

COMPUTATIONAL COST OF THE THERMAL RESULTS

Although the thermal problem is specifically designed to investigate stability, we also
analyze the computational wall times found in Table 4.6. We show the wall time to com-
pute sensitivities summed over all design iterations tsol v = tst ate + tad j , which consists
of the time required to solve the state solution tst ate and the time to update the adjoint
and sensitivity tad j . We note that for the measured wall time we summed the times for
all design iterations in the optimization process. The serial algorithms were all run on
one CPU, while the PLT algorithm was run on the same number of CPUs as intervals K .

GT CP LT LT LT

K = 20 K = 20 K = 5 K = 2

tsol v (min) 117.0 150.3 118.9 114.6 138.0

CP/LT CP/LT CP/LT PLT PLT PLT

K = 20 K = 5 K = 2 K = 20 K = 5 K = 2

tsol v (min) 132.8 127.3 127.0 7.698 25.66 64.99

Table 4.6: The computational time tsol v = tst ate + tad j is the sum over all design iteration and consists of the
time to solve the state equations tst ate and the time to solve adjoint equations while simultaneously updating
sensitivities tad j .

Among the serial algorithms, the GT and LT K = 20 and K = 5 are the fastest. How-
ever, as the LT algorithm using K = 2 required 20 additional design iterations due to the
strong global stability issues, it required more computational time. Compared to the
increased computational time in the CP/LT algorithms, the LT algorithm with K = 2 per-
formed worse due to the additional iterations, even though computational time for the
CP/LT algorithm is increased by performing the adjoint corrections. The worst perform-
ing algorithm was the CP algorithm due to the recomputation of the state solutions. The
parallel PLT algorithm was run using the same number of CPUs as there were intervals
K . Each interval was thus attributed to one CPU. We observed a large decrease in com-
putational time using more intervals as for K = 20 the PLT algorithm took about one
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fifteenth of the time of the GT algorithm. A perfect scaling of one twentieth of the time
is not achieved here and will be further investigated in Section 4.5.2.

We verify the relative computational costs predicted in Section 4.4.2. By assuming
that the measured wall times are proportional to the computational cost (tst ate ∝ cs ,
tad j ∝ ca), relative computational cost rc = ca/cs = tsate /tad j is approximated using the
computational times of GT: rc = tGT

ad j /tGT
st ate = 84.19/32.83 ≈ 2.56. Since both state and

adjoint updates are simple matrix vector multiplications, they have the same cost. Be-
cause the sensitivity computation is also a matrix vector multiplication, it has a similar
cost. This leads to a larger ca which contains both adjoint solve and sensitivity compu-
tation, compared to cs which contains only the state solve. Subsequently, we compare
the analytical relative computational cost of the CP algorithm in Equation 4.27, to the
measured computational cost, respectively as:

CC P

CGT
≈ 2+ rc −1/K

1+ rc
= 1.27,

CC P

CGT
=

tC P
sol v

tGT
sol v

= 150.3

117.0
= 1.28, (4.44)

which is in agreement with our predictions in Equation 4.27.
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Figure 4.12: The intervals Θk , that require corrections for the CP/LT algorithm are flagged in red. The sen-
sitivities are corrected only during the first part of the procedure. when more intervals are used, we require
corrections in more design iterations, leading to increased computational times as shown in Table 4.6. More-
over, we find that starting from the terminal interval less and less intervals are corrected. This is caused by the
fact that the terminal adjoint value is exact and this correction slowly propagates throughout the system.

A disadvantage of the corrections performed by the CP/LT algorithm is that they in-
crease computational cost. In Table 4.6, we find that the GT algorithm takes 117.0 min-
utes to compute sensitivities, while the CP/LT algorithm takes at least 10 minutes more.
The more intervals are used, the more computational time is increased. The increase
in computational time for more intervals is caused by the additional time spent in ad-
joint corrections. This remark is supported by the number of intervals in each design
iteration for which a correction is carried out as illustrated in Figure 4.12. For K = 20, 5,
and 2, corrections are only performed in the first 12, 9, and 8 design iterations, respec-
tively. All intervals except the last are corrected the first seven iterations for each K . At
the eight iteration, the design stabilizes and the number of corrected intervals reduces.
As the correct terminal adjoint propagates backward-in-time, fewer intervals need to be
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corrected. Intervals which are not corrected start at the terminal interval and propagate
backward-in-time. Since the correct terminal adjoint can only propagate one interval at
a time, using more intervals leads to a slower decrease in adjoint error, a larger number
of performed corrections, and an increased computational time.

The observation that corrections are performed only in the first iterations can be
used to analyze the relative computational cost of CP/LT a priori. A designer with some
knowledge of their optimization problem can estimate how many iterations are required
for the design to stabilize. Subsequently, the percentage of corrected intervals fc , as de-
fined in Section 4.4.2, can be estimated as the percentage of unstable to stable design
iterations. Equation 4.29 is then used to compare the CP/LT and CP performance. We
verify Equation 4.29 for CP/LT K = 20. First, we compute the average percentage of cor-
rected intervals over all design iterations, as shown in Figure 4.12a, as fc = 0.112. Using
Equation 4.29 and comparing it to the measured relative computational cost, we find
respectively:

CC P/LT

CC P
≈ K −1

K
( fc +1)

1+ rc

2+ rc
+ 1

K
= 0.875,

CC P/LT
comp

CC P
comp

=
tC P/LT

sol v

tC P
sol v

= 132.8

150.3
= 0.884, (4.45)

which is in agreement with our predictions in Equation 4.29.

4.5.2. COMPUTATIONAL COST INVESTIGATION THROUGH FLOW OPTIMIZA-
TION

In this section, we compare the computational cost and the computational wall time
of the presented algorithms. A transient flow problem is optimized as the nonlinear
flow physics increase the complexity and consequently the computational effort. Fur-
thermore, the problem is used to emphasize the difference between adjoint updates
which are linear by nature and state updates which may be linear or nonlinear. Subse-
quently, the speedup of the PLT algorithm using multiple computational nodes is inves-
tigated. Additionally, we examine local/global stability and design convergence. In the
PLT speedup investigation, we verify the weak global convergence requirement found in
Equation 4.43.

TRANSIENT FLOW MODEL

To ensure stability of the approximate algorithms, we investigate the characteristic
timescale of the flow model, its discretization, and solution scheme. We discretize the
transient equations in space and time. A two-dimensional transient flow problem is ex-
amined and is defined on temporal domain t ∈ [0, tt ] and spatial domain x⃗ ∈ Ω with
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boundary Γ. The flow problem is governed by the Navier-Stokes equations:

ρ f v̇vv+ρ f ∇· (vvvvvv⊺
)=−∇p +µ f ∇2vvv− k f (α f )

α f
vvv, onΩ,

∇·vvv = 0, onΩ,

vvv =vvvΓ, on Γv
d ,

p = pΓ, on Γp
d ,

vvv = 0, on Γw ,

vvv = v̂vv, p, = p̂, at t = 0,

(4.46)

where the subscript □ f denotes fluid material properties, vvv(⃗x, t ) = [u, v]⊺ is the velocity
field with time derivative v̇vv = ∂vvv/∂t and component u in x-direction and v in y-direction,
p (⃗x, t ) is the pressure field, α f (⃗x) is the design field which represents the fluid volume
fraction and is thus set to α f = 1 in the fluid domain. Furthermore, ρ f and µ f are the
fluid density and dynamic viscosity, respectively, and k f (α f ) is the Darcy impermeability
used to inhibit flow in the solid domain where the fluid volume fraction tends to zero
α f → 0. Furthermore, vvvΓ (⃗x) and pΓ (⃗x) are the fixed flow and pressure on boundary Γv

d
and Γp

d , respectively, the flow at the solid/fluid interface Γw is prescribed as vvv = 000, and
v̂vv(⃗x) and p̂ (⃗x) are the initial flow and pressure distributions. The Navier-Stokes equations
are discretized using the finite volume method as described by Theulings et al. (2023) on
a staggered grid as shown in Figure 4.13. Moreover, they are solved using the SIMPLE

h

h

α f → 0

α f = 1

Figure 4.13: The equidistant uniform mesh used to discretize the flow problem. Green circles are the pressure
nodes and densities are defined per element where α f = 1 is a fluid element and α f → 0 is a solid element.
Horizontal red arrows are the u-velocity DOFs while vertical red arrows represent the v-velocity DOFs.

algorithm as described by Versteeg and Malalasekera (2007). As the SIMPLE algorithm is
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an implicit algorithm, the equations take the form:

Rm
n (vvvn−1,vvvn ,pppn ,sss, tn) =MMM t vvvn −vvvn−1

∆t
+MMM c (vvvn)vvvn +CCC ppppn −DDDvvvn +KKK (sss)vvvn ,

Rc
n(vvvn) =CCC cvvvn ,

Rv
0(vvv0) =vvv0 − v̂vv,

Rp
0 (ppp0) =ppp0 − p̂pp,

(4.47)

where Rm
n and Rc

n are the discretized momentum and continuity equations, respectively,
and vvvn , pppn are vectors of discrete nodal velocities and pressures at time step tn with
initial condition v̂vv and p̂pp, respectively. As can be seen by the dependence of the con-
vective matrix MMM c on vvvn , the momentum equations are nonlinear and several subsolves
are required to advance one time step in the SIMPLE algorithm. Each subsolve includes
the assembly of the pressure correction matrix and subsequent solution of the pressure
correction which involves a linear matrix solve. However, a backward adjoint step only
involves one matrix assembly and one solve as the adjoint equations are linear by nature.
Solving a backward adjoint step is thus cheaper than solving a forward state step.

To ensure stability of the approximate algorithms and the time stepping scheme, we
estimate the characteristic timescale of the physics and discretization scheme. For the
SIMPLE algorithm to converge, the time step is constrained by the Courant-Friedrichs-
Lewy (CFL) condition as:

∆t < h

u
, (4.48)

where u is the maximum flow magnitude. Furthermore, the bound on the time step
is related to a characteristic timescale. If we imagine a parcel of fluid flowing over a
distance L with velocity u, it travels this distance in:

τρ = L

u
. (4.49)

The characteristic timescale for flow can be estimated by τρ , which is in fact the charac-
teristic timescale of inertia (Picioreanu et al., 2000). However, in the Navier-Stokes equa-
tions, another characteristic time is defined by the viscous dissipation in Equation 4.46:

τµ = L2

ν f
, (4.50)

where ν f =µ f /ρ f is the diffusivity of momentum, more commonly called the kinematic
viscosity. Whereas τρ is related to the characteristics of the flow, τµ is related to the
characteristics of the viscous energy dissipation. Although no local stability criterion for
nonlinear state equations was derived in Section 4.3.1, we generally found the adjoint
equations to be stable when the constraint in Equation 4.48 was applied. Furthermore,
for strong/weak global stability, the characteristic timescale in Equations 4.49 and 4.50
will be considered in the problem setup.

For the thermal problem in Section 4.5.1, the time step constraint and characteris-
tic times at the element scale were similar. However, they are not necessarily directly
related for the flow problem. We thus investigate the possible length scales of features
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in the design, and use it to find the characteristic times of these features. In topology
optimization, we may design features of a few elements L ≈ h and are interested in char-
acteristic times of:

τ
ρ

h ≈ h

u
, τ

µ

h ≈ h2

ν f
, (4.51)

where τρh is already satisfied by the stability condition in Equation 4.48. However, τµh may

be smaller than τρh , and in design components of a few elements long viscous effects may
dominate. A smaller time step may thus be needed to accurately represent the transient
effects in these design features. One could think of a design with many narrow channels
with low flow speeds and low Reynolds numbers. It is left to the user to make an a priori
estimation of the type of design resulting from the optimization procedure and select
the appropriate time steps.

TRANSIENT FLOW OPTIMIZATION PROBLEM

The problem in Figure 4.14 with parameters in Table 4.7 is designed such that nonlinear
flow effects are of importance for the optimized designs. We design a piston pump with-
out moving parts. A piston pumps fluid up and down at the top boundary Γpump , where
an oscillating flow is applied as:

vp (t ) = v sin(4πt ),

up (t ) = 0,
(4.52)

with v the maximum inlet velocity in y-direction over time as found in Table 4.7. We
optimize the mass flow to the right from inlet Γi n to outlet Γout , and apply a constant
pressure on both the inlet and outlet pΓ = 0. During the downstroke of the piston, we

L

ΓoutΓi n

L
3

L
3

L
3

L
2

vp (t )

pΓ = 0 pΓ = 0

Γpump

L
2

L
2

L
3

Figure 4.14: The piston pump optimization problem. At the top inlet/outlet, a fluctuating velocity is prescribed
and at the red inlet and blue outlet only reference pressures are prescribed. The white domains are non-design
areas, and in the gray domain, the material layout is optimized.
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L h tt ∆t ρ f µ f v

1 1
42 5 1

42 1 1
60 1

Table 4.7: The discretization and material parameters used for the flow optimization problem in Figure 4.14.

expect fluid to be pushed out of the system through Γout ; while during the upstroke, we
expect fluid to be pulled into the systems through Γi n . Subsequently, we maximize the
volumetric flow through the system from inlet Γi n to outlet Γout :

F =
∫ tt

0

(
−

∫
Γi n

vvv ·nnndΓ+
∫
Γout

vvv ·nnndΓ

)
d t , (4.53)

where nnn is the outward normal on the boundaries. To normalize the problem, we define
a theoretical maximum of a piston pump with moving parts which closes off the inlet
during the downstroke and closes off the outlet during the upstroke. In such a pump,
the volumetric flow to the right through the in- and outlet is the same as the absolute
volumetric flow through Γpump :

F =
∫ tt

0

∫
Γpump

|v sin(4πt )|dΓd t = v
L

3

10

π
. (4.54)

Subsequently, we use the theoretical optimum and minimize for the normalized objec-
tive Fp = (F −F )/F = 1−F /F . The normalized objective can be interpreted as the de-
crease in efficiency of the pump without moving parts compared to a pump with moving
parts. Furthermore, using the material parameters in Table 4.7, the Reynolds number is
estimated as:

Re = ρ f vL

µ f
= 60. (4.55)

The optimal design is expected to use the nonlinearity of moderate Reynolds flow.

r β ∆β β V f q α f εmax
λ

3h 1 0.14 8 0.6 2 10−1 0.1

Table 4.8: The optimization parameters used for the flow problem in Figure 4.14. We smooth the design over a
radius of three elements (r = 3h) and increase the Heaviside projection slope from β to β by ∆β over iterations

10 to 60. Furthermore, a maximum allowable adjoint error of εmax
λ

is set for the CP/LT algorithm.

To regularize the optimization procedure, filters and interpolation functions are
used. Firstly, design variables si are smoothed (Bruns & Tortorelli, 2001) and projected
(F. Wang et al., 2011) following the approach described in Section 4.5.1 resulting in s̃i .
The volume constraint gv (s̃ss) is applied using Equation 4.37. The interpolation of the
fluid volume fraction α f , the Darcy impermeability k f (α f ) and the maximum imper-

meability k f are defined following Theulings et al. (2023). For both α f and k f , a linear
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interpolation is used:

α f (s̃i ) =α f + (1−α f )s̃i ,

k f (α f ) = k f (1−α f ),
(4.56)

such that in the fluid domain (α f = 1), no penalization (k f = 0) is imposed and in the

solid domain (α f =α f → 0), the maximum penalization (k f (1−α f ) ≈ k f ) is prescribed.

Moreover, the maximum penalization k f is set using parameter H e = h−2 and the ele-
mental Reynolds number Ree = ρ f vh/µ:

k f = 10q

{
µH e , Ree ≤ 1,

µH e Ree , Ree > 1.
(4.57)

Parameter q is used to set the magnitude of the flow penalization. All optimization pa-
rameters can be found in Table 4.8. Furthermore, using the material parameters in Ta-
ble 4.7, the elemental Reynolds number is computed as:

Ree = 60

42
, (4.58)

resulting in a maximum penalization of:

k f = 10qµ f H e Ree = 4200. (4.59)

Finally, using the discrete model in Equation 4.47, the discrete optimization problem is
stated as:

minimize
sss

Fp ≈
N−1∑
n=0

Fn(vvvn ,sss)∆t

subject to Rm
n (vvvn−1,vvvn ,pppn ,sss) = 0 n ∈ {1,2, . . . N },

Rc
n(vvvn) = 0 n ∈ {1,2, . . . N },

Rv
0(vvv0),

Rp
0 (ppp0),

gv (sss) ≤ 0,

(4.60)

Characteristic times are inspected to investigate the weak global convergence re-
quirement in Equation 4.43. First, we compare the characteristic time of the flow and
of the viscous diffusion:

τρ = L

v
= 1,

τµ = L2

ν f
= 60,

(4.61)

where we estimated the maximum flow speed as the maximum flow at the inlet v , and
substituted ν f =µ f /ρ f using the values in Table 4.7. Since the characteristic time of the
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viscous diffusion is an order of magnitude higher than that of the inertia, and we exam-
ine a problem with terminal time tt = 5τρ , we expect transient effects of inertia to be
dominant. Furthermore, weak global convergence issues emerged in Section 4.5.1 when
Equation 4.43 was not satisfied. We thus expect that they may occur in this problem
when the interval length ∆θ = tt /K is an order of magnitude smaller than τρ and thus:

K > 10tt

τρ
= 50. (4.62)

In this section, we will use PLT with K = 48 and may thus find weak global convergence
issues. Strong global convergence issues are harder to predict and may occur. In the
authors experience, convergence is generally achieved when sufficient design iterations
are used.

Similar to the analysis in Section 4.5.1, we estimate the memory requirements of
the problem and select the appropriate number of intervals K . As the CFL condition
in Equation 4.48 defines an upper bound on the time step dependent on h, the number
of time steps and memory requirements are dependent on the spatial resolution. The
number of flow and pressure DOFs in this problem is approximately Nd ≈ 7500. As each
DOF is stored as a double, the size of the state solution at a time step is m = 8Nd ≈ 60 kB.
Furthermore, using the parameters in Table 4.7, we store the state solution at N = tt /∆t =
210 time steps. Assuming that K ≪ N , memory requirements following Table 4.1 scale
as M = mN ≈ 0.13 GB for the GT and PLT algorithms and as M = mN /K ≈ 0.13/K GB
for the CP, LT, and CP/LT algorithms. Although for this relatively small two-dimensional
problem, there is no need for memory reducing algorithms, memory requirements scale
up quickly when three-dimensional problems are investigated and the mesh is refined.
For the analysis of the computational cost, we will use K = 8 intervals.

COMPUTATIONAL COST COMPARISON

In Section 4.4.2 Table 4.2, we made a theoretical approximation of the computational
cost of the algorithms. In this section, we compare these theoretical approximations
with measured computational costs. All computations of the serial algorithms are car-
ried out on the same type of CPU. Moreover, to quantify computational cost, we measure
wall time. Since the same type of CPUs with similar computational power are used, we
expect wall time to be a sufficiently accurate measure of computational cost. However,
for the PLT algorithm the same number of CPUs as there are intervals is used, contrary
to the serial algorithms which use only one CPU. As the PLT algorithm uses more com-
putational power, we expect a significant speedup.

Different designs lead to different flow solutions which require a different compu-
tational effort to solve. To compare speedup, we would like the resulting designs to be
similar. As K = 8 intervals are used and since we expect global convergence issues to
start at K = 50 intervals as shown in Equation 4.62, we expect similar designs to be found
by all algorithms. This is confirmed by the designs in Figure 4.15. However, as shown
in Figure 4.16a, the different algorithms take a different convergence path to their local
optima. During the design convergence, the computational cost of solving the nonlin-
ear state equations may differ at any given design iteration. This effect is responsible for
some small deviations between expected and measured wall times.
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(a) GT and CP,

f ∗ = 0.6645,

∆ f ∗ = 0%.

(b) LT,

f ∗ = 0.6752,

∆ f ∗ = 1.61%.

(c) CP/LT,

f ∗ = 0.6643,

∆ f ∗ =−0.03%.

(d) PLT,

f ∗ = 0.6584,

∆ f ∗ =−0.92%.

Figure 4.15: The optimal designs, objectives f ∗, and relative changes in objective ∆ f ∗ for the flow problem
found using the GT, CP, LT, CP/LT, and PLT algorithms. For K = 8 intervals, no weak global stability problems
are encountered and all designs and objective values are similar.

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

iteration

f

GT, CP
LT

CP/LT
PLT

(a) The objective convergence.
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(b) The sensitivity error convergence.

Figure 4.16: The objective and sensitivity error convergence of the flow designs in Figure 4.15. The GT and
CP algorithms both compute exact sensitivities and show the same convergence behavior. After the initial
fluctuations in design and objective during the first 30 iterations, the design stabilizes and the sensitivity errors
reduce.

To verify stability and convergence, we further analyze the objective and sensitivity
error convergence in Figure 4.16. We note that the objective is increased over iterations
55 to 60 for the GT and CP algorithms. This is caused by the nonlinearity of the flow
solution leading to an increase in the objective. Moreover, as the CP/LT algorithm cor-
rects erroneous sensitivities and computes exact sensitivities in the first 34 iterations
as can be seen in Figure 4.16b, it follows the same convergence path as the GT and CP
algorithms during these iterations. Furthermore, during the first 20 to 30 iterations, the
design is subject to significant change and sensitivity errors remain high as shown in Fig-
ure 4.16b. This coincides with the relatively high and fluctuating objective values found
in Figure 4.16a. Once the topology stabilizes and only the shape of the design changes,
the objective and sensitivity errors start to decrease. Due to the nonlinearity of the equa-
tions, the objective and sensitivity errors do not decrease monotonically and may fluc-
tuate significantly for both exact and approximate algorithms. However, given sufficient
design iterations, the objective generally stabilizes and sensitivity errors reduce.
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Subsequently, we examine and compare the computational cost of the algorithms.
Firstly, the relative computational cost of the CP algorithm in Equation 4.27 is investi-
gated. In Figure 4.17, we show three wall times: the time to solve the state equations
tst ate , the time to update the adjoint while simultaneously updating sensitivities tad j ,
and tsol v = tst ate + tad j . We note that for tst ate and tad j we summed the wall times
for each of the 100 design iterations in the optimization process. Wall times tst ate ∝ cs

or tad j ∝ ca are used as measures of the computational cost of solving state or solv-
ing adjoint and computing sensitivities, respectively. Using the measured wall time
of the GT algorithm in Figure 4.17b, we compute the relative computational cost as:
rc = tGT

ad j /tGT
st ate = 14.81/149.0 ≈ 0.10. Solving the state equations is more expensive than

solving the adjoint equations as shown in Figure 4.17a. We compare the derived relative
cost of the CP algorithm in Equation 4.27 to the measured relative cost, respectively as:

CC P

CGT
≈ 2+ rc −1/K

1+ rc
= 1.80,

CC P
comp

CGT
comp

=
tC P

sol v

tGT
sol v

= 308.4

163.8
= 1.88, (4.63)

which shows a relatively low error of 8% between our approximation and the measure
relative cost. Furthermore, tsol v is mainly increased by a growing tst ate as shown in Fig-
ure 4.17a. Reducing the memory by using more intervals significantly increases the com-
putational time required for the CP algorithm.

Secondly, we compare the computational cost of the LT algorithm to the GT and CP
algorithms. Notably, the LT algorithm performed similarly to the GT algorithm. The
LT algorithm is even slightly faster than the GT algorithm. This may be attributed to
the fact that a different convergence path is followed by the LT algorithm as shown in
Figure 4.16a with the objective convergence graph and in Figure 4.15b with the slightly
different design layout. Different designs have different flow solutions which may take
more or less time to solve.

Thirdly, the computational cost of the CP/LT algorithm is analyzed. We expected the
CP/LT algorithm to have a cost between the GT and CP algorithms. Figure 4.18 depicts
the corrected intervals during the CP/LT run. During the first 34 design iterations, all
intervals except the last are corrected. Hereafter, the number of corrected intervals re-
duced and after 39 design iterations, no intervals were corrected. Even though for 39
of the 100 design iterations corrections are performed and fc = 0.38, the computational
cost remains lower than the cost of the CP algorithm, as the cost of computing the state
solution is dominant and the cost of performing the adjoint corrections is relatively low
(rc ≈ 0.10). We verify the relative computational cost of CP/LT to CP in Equation 4.29 to
the measured cost, respectively as:

CC P/LT

CC P
≈ K −1

K
( fc +1)

1+ rc

2+ rc
+ 1

K
= 0.78,

CC P/LT
comp

CC P
comp

=
tC P/LT

sol v

tC P
sol v

= 220.9

308.4
= 0.72, (4.64)

which show that our measurements are in agreement with our approximations. As ex-
pected, although the CP/LT algorithm is more expensive than the LT algorithm, it out-
performs the CP algorithm.

Finally, we compare the PLT algorithm to the other algorithms. While all other algo-
rithms are run on one CPU, the PLT algorithm is run on eight CPUs. Furthermore, for
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(a) A visualization of the wall times.

GT CP LT CP/LT PLT
tsol v [min] 163.8 308.4 160.3 220.9 24.07
tst ate [min] 149.0 293.0 145.8 201.1 -
tad j [min] 14.81 15.37 14.54 19.77 -

(b) The measured wall times.

Figure 4.17: The wall times tsol v , tst ate and tad j for the designs in Figure 4.15. The PLT algorithm was ran on
8 CPUs instead of 1 and consequently has a much lower tsol v . For the PLT algorithm some workers might still
be working on the state solution while others are already working on the adjoint and we thus measure tsol v as
the time from the start until the end of the sensitivity computation.
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Figure 4.18: The intervalsΘk , that require corrections for the CP/LT algorithm are flagged in red. Compared to
the corrected intervals for the thermal problem in Figure 4.12, more corrections are performed. This is caused
by a slower stabilization of the design and more significant changes in design over the first 30 iterations. After
a stable topology is found, errors in adjoint reduce over design iterations 30 to 39. Since more corrections
are performed in the 37th and 38th designs than in the 35th and 36th designs, adaptively correcting intervals
helps in maintaining low sensitivity errors when design changes are large and disturb sensitivities.

the PLT algorithm some workers may still be working on the state solution while others
are already working on the adjoint solution. Consequently, we do not measure tst ate or
tad j separately. For the PLT algorithm we measure wall time tsol v starting when sending
initial states and terminal adjoint to all intervals, and ending after retrieving terminal
states, initial adjoints, and partial sensitivities dF∗

k /dsss, which are combined into total
sensitivities dF∗/dsss. Each of the K = 8 intervals is attributed to one CPU. Since the PLT
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algorithm was allowed to use more computational power, the measured wall times are
not a fair comparison of computational cost. Moreover, comparing the speedup with
respect to the GT algorithm, we find it to be tGT

sol v /t PLT
sol v ≈ 6.8. The speedup does not scale

linearly with the computational power, which will be further examined. However, as il-
lustrated in Figure 4.17a, the increased computational power resulted in a large decrease
in computational time.

PLT SPEEDUP

In the previous section, we found that the speedup of the PLT algorithm does not scale
linearly with the number of intervals and computational workers K . In this section, we
will further examine the computational speedup and causes of slowdown for the PLT
algorithm. There are two main causes for computational slowdown: communication
overhead and load balancing. Communication overhead is defined as the idle time of
computational workers waiting for data transfer. Load balancing issues are caused by an
unequal distribution of tasks over computational workers, resulting in idle times on the
workers with cheap computational tasks.

The speedup is examined for K = 2,4,8,16,32,48 intervals. We investigate the de-
signs and objectives to verify if the results can be used for a fair comparison of speedup.
Two designs significantly differ in shape and objective value from the GT design. The
K = 2 and K = 48 designs, as shown in Figure 4.19, display a more than 10% lower perfor-
mance compared to the GT design. Moreover, the different designs have different flow
solutions which lead to different computational costs. We measure the average com-
putational time over five state solves in the optimal GT and PLT K = 2, K = 48 designs
as t st ate = 86.0, t st ate = 84.6, and t st ate = 92.5 seconds, respectively. The K = 48 de-
sign requires significantly more time than the GT design. Moreover, the K = 48 design
needs 20 additional iterations to converge due to global stability issues as we approach
the predicted stability limit in Equation 4.62 of K = 50 intervals. Comparing the speedup
between two different designs is inherently unfair and is a limitation of our methods to
measure speedup. However, since the K = 4,8,16,32 designs are similar in shape and
objective to the GT design, a comparison is carried out based on these results.

K 1 (GT) 2 4 8 16 32 48
tsol v (min) 163.8 90.60 43.87 24.00 13.07 7.68 6.90
tov /tsol v - 0.162% 0.269% 0.574% 1.65% 3.48% 4.52%
LBS - 0.560% 1.95% 8.23% 11.5% 23.7% 29.2%

Table 4.9: The wall time tsol v , and percentage of slowdown caused by overhead (tov /tsol v ) and load balancing
(LBS) for using an increasing number of CPUs. All CPUs are of the same type and are attributed one of the
K intervals used in the PLT algorithm. Moreover, after measuring the communication overhead as in Equa-
tion 4.65, we find it to have a relatively small contribution to slowdown compared to the LBS.

First, we examine the slowdown due to communication overhead. We measure tsol v

starting when sending initial states and terminal adjoints to the intervals and ending
when the final sensitivities dF∗/dsss are found, and t̂sol v the wall time on the slowest
worker to solve the state and adjoint equations and combine them into partial sensitiv-
ities dF∗

k /dsss. On the slowest worker, we start the time measurement after initial states
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(a) K = 2,

f ∗ = 0.7461

∆ f ∗ = 10.94%.

(b) K = 4,

f ∗ = 0.6782

∆ f ∗ = 2.02%.

(c) K = 8,

f ∗ = 0.6584

∆ f ∗ =−0.93%.

(d) K = 16,

f ∗ = 0.6672

∆ f ∗ = 0.40%.

(e) K = 32,

f ∗ = 0.6649

∆ f ∗ = 0.06%.

(f) K = 48,

f ∗ = 0.7532

∆ f ∗ = 11.78%.

Figure 4.19: The designs, optimized objectives f ∗, and relative changes in objective ∆ f ∗ computed using the
PLT algorithm with varying number of intervals K . Two different designs are found for K = 2 and K = 48
compared to the designs for K = 4,8,16,32 which are similar to the GT design in Figure 4.15a. Since different
designs have different nonlinear flow solutions, computational times differ.

and terminal adjoint are received and end before sending terminal states, initial adjoints,
and partial sensitivities. We note that tsol v and t̂sol v are summations of the wall times
over all design iterations j . Subsequently, the overhead time is defined as the difference
in wall times between the complete computation and the computation on the slowest
worker:

tov = tsol v − t̂sol v . (4.65)

Table 4.9 provides the percentage of slowdown tov /tsol v caused by communication over-
head and shows that communication overhead is negligible for low number of inter-
vals and increases with the number of intervals. For K = 48, 4.52% of the time is spent
on communication. The increased communication overhead is caused by the relatively
short interval lengths of only four or five time steps for K = 48. The PLT algorithm suffers
from similar problems as common parallel domain decomposition with small computa-
tional domains leading to large communication overhead.

Second, we investigate the slowdown due to load balancing. In Figure 4.20, we plot
the relative speedup tGT

sol v /t PLT
sol v . Additionally, we compute a theoretical best speedup
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which does not scale linearly due to the first load balancing issue. Dividing the N =
tt /∆t = 210 time steps computed using Table 4.7 by the K = 48 intervals, we find that
the intervals either contain four or five time steps. The theoretical best speedup we can
achieve is thus 210/5 = 42 and not 48. Similar limits on the speedup are computed for
K = 4,8,16,32. The first load balancing issue is caused by discrete interval lengths.
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Figure 4.20: The speedup tGT
sol v

/t PLT
sol v of the PLT algorithm. The theoretical best speedup does not scale linearly

with the number of intervals K due to the discrete interval lengths. Moreover, solving nonlinear equations find-
ing the solution on some intervals requires more computational work as shown in Figure 4.21, which causes
the slowdown found in Table 4.9. We note that the additional 20 design iterations were taken into account to
compute the speedup for K = 48 by averaging the time for sensitivity computation and computing the speedup
as (120 · tGT

sol v
)/(100 · t PLT

sol v ).

In Figure 4.20 we find a lower performance than the theoretical best speedup, which
cannot be fully explained by communication overhead. The additional decrease in
speedup is caused by the nonlinear flow solution being more expensive on some inter-
vals than on others. To measure the cost of solving the state equations on interval Θk in

design iteration j , we measure the wall time for the state computation t k, j
st ate locally on

each CPU. Subsequently, we measure the average time for solving the state equations on
an interval at a given design as:

t
j
st ate =

∑K
k=1 t k, j

st ate

K
. (4.66)

In the optimal scenario, each interval would have the same computational work and

would spend the same time (t
j
st ate ) on the state solution. Figure 4.21 shows a map of

the relative computational cost of the intervals, compared to the average computational

cost of the intervals (t k, j
st ate − t

j
st ate )/t

j
st ate for K = 16. The more expensive intervals take

20% longer than the cheaper ones, leading to a large decrease in speedup. We note that
this measured increase may also result from the load balancing issues due to discrete
intervals beside the issues due to expensive time steps. Subsequently, we measure load
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balancing slowdown (LBS) by comparing the optimal wall time t
j
st ate with the wall time

spend on solving the state solution on the slowest worker t̂ j
st ate , and average over design

iterations j as:

LBS =
∑

j (t̂ j
st ate − t

j
st ate )∑

j t
j
st ate

. (4.67)

In Table 4.9, the LBS can be found to be relatively large compared to the communication
overhead. Load balancing issues are thus the main obstacle preventing speedup in the
PLT algorithm for this example. When dealing with simulations that show less variation
between intervals, this problem is expected to vanish.
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Figure 4.21: The relative cost of solving the state solution on an interval for K = 16. For each design iteration

j we measure the time to solve the state equations on Θk as t
k, j
st ate and compute the average t k

st ate follow-
ing Equation 4.66. Subsequently, we normalize the time required to solve the state equations on an interval

(t
k, j
st ate − t

j
st ate )/t

j
st ate . We find that certain intervals are more expensive to solve than others throughout the

optimization procedure. Similar observations were made for different values of K .

4.6. GUIDELINES FOR ALGORITHM SELECTION
Five algorithms for adjoint sensitivity computation are examined in this paper and their
advantages and limitations are discussed. Using our results and experience, we formu-
late guidelines for the selection of an appropriate algorithm based on the characteristics
of the transient optimization problem to be solved. A topic not discussed in the main
body of this paper was implementation. All algorithms consist of sensitivity computa-
tions on intervals. The GT algorithm computes the complete sensitivity on the complete
time interval at once. All other algorithms compute partial sensitivities on subintervals
separately. To compute the sensitivity on any interval, an initial state, terminal adjoint,
design, and (time dependent) boundary conditions are required. A piece of code that
can compute partial sensitivities on an interval can thus be used for all algorithms. Even
the adjoint correction in the CP/LT algorithm is a simplified version of the sensitivity
computation on an interval. Following this approach implementing all the CP, LT, CP/LT
and PLT algorithms should not take more time than implementing the GT algorithm.
Implementation time is thus not included in the guidelines for algorithm selection.

As discussed in Section 4.1, only when boundary condition are complex and change
drastically over time, or when nonlinear physics are considered should the algorithms
in this work be used. Subsequently, algorithms should be compared on three proper-
ties discussed in this paper: 1) memory requirements, 2) computational cost, and 3)
convergence behavior. A decision tree taking into account these properties is given in
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Figure 4.22 and is discussed in the remainder of this section.

nonlinear problem N
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Simplifying method

memory limitationsN Y

large computational cost
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parallel architecture available
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Figure 4.22: A decision tree for selecting the correct transient sensitivity computation algorithm. Decisions
are based on memory requirements, computational cost and algorithmic stability. To analyze stability, char-
acteristic time τ needs to be estimated. To compare computational cost of the CP/LT and CP algorithms, an
estimation of the number of corrected intervals fc , and relative computational cost rc needs to be made.

When memory requirements are not an issue and the complete state equations may
be stored, we recommend to choose between the GT and PLT algorithms and move to
the left part of the decision tree in Figure 4.22. To select an algorithm, the computa-
tional cost and availability of a parallel architecture are considered. When the overall
computational cost is low, resulting in short computational times, the GT algorithm is
the safest choice as it does not suffer from global stability problems. If computational
cost is high and a parallel computation architecture is available, we can consider the PLT
algorithm. However, the PLT algorithm should only be used if weak global convergence,
as discussed in Section 4.3.1, is satisfied. For this we found a weak global convergence
requirement in Equation 4.43, the length of an interval∆θ = tt /K is required to be longer
than one tenth of the characteristic time tt /K > τ/10. If weak global convergence is not
satisfied, we take the risk of ending up in an inferior local optimum with features of rel-
atively short characteristic times, as illustrated in Section 4.5. It is up to the user to ap-
proximate characteristic times and to weigh the speedup of the PLT algorithm against
the possibility of inferior local optima. Moreover, if the user upgrades their computa-
tional system to a parallel system for speedup when setting up the optimization prob-
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lem, available memory is also increased. Subsequently, the user should reevaluate the
question of memory limitations, and the possibility of using the PLT algorithm, which
has the authors’ preference for its low computational time.

If memory limitations are constraining, the user should turn to the right part of the
decision tree in Figure 4.22 and choose between the CP, LT, and CP/LT algorithms. We as-
sume the smallest number of intervals K to satisfy the memory constraints are used. For
the LT and CP/LT algorithms, we use the lowest K possible as this improves convergence
behavior, for the CP algorithm the lowest K reduces computational cost. Selecting the
appropriate algorithm depends on both computational cost and convergence behavior.
As predicted in Section 4.4.2 and shown in Section 4.5, the LT algorithm is generally the
fastest followed by the CP/LT or CP algorithm. The exception is the convergence of the
thermal problem using LT with K = 2 in Section 4.5.1. However, we included exactly
these results as they illustrate this exception, but did not generally find this type of be-
havior for the LT algorithm. If weak global convergence is satisfied (tt /K > τ/10) we use
the LT algorithm.

If memory requirements impose limitations and weak global convergence is not
guaranteed, we need to choose between the CP/LT and CP algorithms. Selecting the
appropriate algorithm depends on computational cost. In Equation 4.29 we show the
relative computational cost of the CP/LT algorithm to the CP algorithm. The relative
cost is dependent on the number of intervals K , the relative cost of the adjoint and sen-
sitivity computation ca to the state computation cs : rc = ca/cs , and an estimate for the
percentage of corrected intervals fc . To compare the computational cost of the CP/LT
and CP algorithms, we thus need to compute at what percentage of corrected intervals
the CP/LT algorithm becomes more expensive than the CP algorithm. Subsequently, the
choice of algorithm is based on a prediction of fc . We use the CP/LT algorithm when the
ratio CC P/LT /CC P from Equation 4.29 is lower than one, resulting in:

fc < 1

1+ rc
, (4.68)

which allows us to decide between the CP and CP/LT algorithm in Figure 4.22. Rela-
tive cost rc can be easily approximated by running the optimization procedure for only
one iteration and measuring the time spent on adjoint and state equations. However,
for estimating fc some insight into the problem is required. As shown in Figures 4.12
and 4.18, only during the first design iterations when design changes are large are cor-
rections necessary. An experienced designer may thus estimate the number of design
iterations associated with large design changes and the number of iterations required
to converge. Subsequently, an estimation of fc can be made a priori, and an informed
choice between the CP/LT and CP can be made. Furthermore, we note that for highly
nonlinear systems where rc → 0, we find fc < 1 and may thus always use the CP/LT algo-
rithm.

4.7. DISCUSSION AND CONCLUSION
In this work we thoroughly examined five algorithms for transient sensitivity compu-
tation in topology optimization. Two of these algorithms are new, and proposed for the
first time in this paper. This has been motivated by the fact that in topology optimization
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of transient problems, memory- and time-efficient adjoint sensitivity analysis is crucial.
The algorithms have been compared in terms of memory requirements, computational
cost, and stability. Firstly, we examined the state-of-the-art GT, CP, and LT algorithms.
The GT algorithm serves as the reference and suffers from severe memory limitations
which motivates the development of new algorithms. To overcome these memory lim-
itations, the most common approach is the CP algorithm. Although the CP algorithm
reduces memory usage, it significantly increases the required computational time due to
recomputation of the state solutions, as shown in Section 4.5.2. To avoid recomputation
of the state solutions, the LT algorithm may be used. However, due to the approximations
of adjoints and consequent stability and convergence issues described in Section 4.3.1
and illustrated in Section 4.5.1, using the LT algorithm may compromise the optimiza-
tion outcome. To solve these stability issues, we introduced the hybrid CP/LT algorithm
which does not show the convergence issues of the LT algorithm at the cost of an in-
creased computational time. However, the hybrid algorithm showed a clear reduction in
computational time compared to the CP algorithm.

We point out the importance of understanding the physics and characteristic times
of the optimization problem for selecting an appropriate optimization approach. First of
all, only when the characteristic timescale is long enough compared to the optimization
time horizon or when sufficiently complex physics/load cases are examined do we ben-
efit from the algorithms examined in this work. If the characteristic timescale is short
compared to the time horizon of the optimization problem, equivalent static load algo-
rithms can be used, and when the physics/load cases are simple enough, model order
reduction techniques can be considered. Secondly, comparing the characteristic time to
the interval lengths associated to the LT algorithm, it can be determined whether stabil-
ity and convergence issues arise and the hybrid CP/LT algorithm is required. When in-
terval lengths are an order of magnitude smaller than the estimated characteristic time
of the optimization problem, convergence issues can arise in the (P)LT algorithms.

To address the challenge of computational time in transient optimization, the novel
PLT algorithm was proposed. In essence, the PLT algorithm is an extension of the LT
algorithm where not only adjoints, but also states are approximated during optimiza-
tion. Consequently, the PLT algorithm also suffers from similar stability and conver-
gence problems as the LT algorithm. However, by inspecting the characteristic time of
the optimization problem, stability and convergence issues may be identified a priori.
This results in an upper limit on the number of intervals K . Although the PLT algorithm
reduces computational time, it does not reduce memory requirements. However, when
computational power is scaled up, the total available memory is also often increased.

For future research, we note the possibility to apply spatial domain decomposition
techniques for further acceleration when speedup using the PLT algorithm is limited by
stability and convergence constraints. A comparison between domain decomposition
techniques and the PLT algorithm was not included in this work and is recommended.
Similar to domain decomposition techniques, the PLT algorithm suffers from commu-
nication overhead when the decomposition becomes too fine. In addition, for prob-
lems with a varying cost per time step (e.g., nonlinear problems), the efficiency of the
PLT algorithm is affected by load balancing issues. This presents an opportunity for the
development of algorithms which address these load balancing issues by adaptively in-



4.7. DISCUSSION AND CONCLUSION

4

185

creasing the interval length of cheap intervals and decreasing the length of expensive
intervals. Furthermore, another subject for further research is the implementation of
a hierarchical approach to reduce the memory requirements of the PLT algorithm. In
such an approach, the intervals used by the PLT algorithm can be further divided into
subintervals which are used to locally apply the LT, CP, or CP/LT algorithm.





5
CONCLUSIONS AND

RECOMMENDATIONS

The main goal of this thesis is to improve the ease of use of Topology Optimization (TO)
for transient flow and thermal problems, such that the benefits of TO can be leveraged
in the aerospace industry. Using simple but goal-oriented examples, the characteristics
of state-of-the-art and novel methods for TO of flow problems and for transient sensitiv-
ity analysis have been examined in detail. Consequently, recommendations and guide-
lines for these methods have been given, such that engineers can make informed choices
when using them for TO of transient flow and thermal problems.

5.1. CONCLUSIONS
To improve the ease of use of TO for aerospace problems, three challenges were defined
in Section 1.3 and are addressed throughout this thesis. To conclude, we achieved:

• A better understanding of flow models for density-based TO

By inspecting the VANS equations for porous flow, this thesis provides new insights
into the adaptation of flow models for TO in Chapter 2. Exploring the literature on
VANS models, three novel options to distinguish solid and fluid areas in TO are
identified: the pressure penalization, the updated inertia term, and the second
Brinkman correction. We conclude that the pressure penalization is able to im-
prove the accuracy of the flow solution, without a large tendency to converge to
inferior local optima, often associated with highly accurate designs and large flow
penalization. Moreover, current penalization approaches are unable to appropri-
ately penalize the flow for both dominant inertia and viscous forces, and require
tuning to balance accuracy of the flow solution and convergence behavior of the
optimization process.

187



5

188 5. CONCLUSIONS AND RECOMMENDATIONS

• A reliable approach for density-based TO of flow problems

In Chapter 3, a continuation approach for TO of flow problems is constructed,
which decreases the tendency to converge to inferior local optima, while main-
taining the accuracy of the flow solution at the optimum. The continuation relies
on a predictable flow reduction in the solid domain and its relation to the con-
vexity of the pressure drop objective. The pressure drop objective is convex when
the flow reduction in gray areas found in intermediate designs is low, and concave
when the flow reduction is high. In the earlier stages of optimization, we allow for
low flow reduction, resulting in a convex objective response and large design up-
dates, in the later stages, we use a large flow reduction, resulting in accurate flow
solutions but a concave objective response and consequent small design updates.

Flow reduction is only predictable when a Darcy penalization is present to in-
hibit flow with dominant viscous terms, and a Forchheimer penalization to in-
hibit flow with dominant inertia terms. We conclusively show that when using
only the Darcy penalization, flow cannot be appropriately inhibited in both sce-
narios. Moreover, in the Darcy with Forchheimer (DF) approach, unstable flow so-
lutions are found when the flow field in an updated design is initialized using the
flow field from the previous design to speed up computations. Flow solutions are
stable in the novel Darcy with filtered Forchheimer (DFF) approach, which adds a
penalization based on a filtered velocity field and reliably reduces the flow in the
solid domain to a predefined magnitude. To conclude, using the predictable flow
reduction in the DFF approach and its relation to convexity of the pressure drop
objective, an informed parameter selection and continuation strategy for TO of
flow problems is achieved.

• A reduction of time and/or memory requirements in TO of transient thermal
and flow problems

By investigating algorithms for memory reduction in transient sensitivity analy-
sis, time and/or memory requirements are reduced in Chapter 4. State-of-the-
art algorithms to reduce computational cost are (i) the Checkpointing (CP) algo-
rithm, which increases the computational time, and (ii) the Local-in-Time (LT) al-
gorithm, which introduces approximations of the adjoint variables. All methods,
which reduce time or memory requirements, are based on splitting the temporal
domain into intervals. When approximations of the adjoint are used, the inter-
val size may define a limit on the maximum characteristic time in the optimized
designs. To remove this limit while maintaining a computationally efficient algo-
rithm, the novel hybrid Checkpointing/Local-in-Time (CP/LT) algorithm is intro-
duced. Additionally, the novel Parallel-Local-in-Time (PLT) algorithm computes
the sensitivity contributions on the intervals in parallel. Numerical examples on
a piston pump design showed significant speedups up to a factor 28. However, as
this approach uses approximations of the initial conditions on the intervals, it may
limit the maximum characteristic time.

To choose an appropriate algorithm, two characteristics of the optimization prob-
lems need to be examined. Firstly, the maximum characteristic time may be lim-
ited by the interval length. Secondly, to select a computationally efficient algo-
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rithm, the relative computational cost of the state and adjoint solve needs to be
determined. Clear guidelines to select an appropriate algorithm are provided in
this thesis. In conclusion, both through these guidelines and the two novel algo-
rithms, the practical applicability of TO for transient thermal and flow problems is
improved.

From a global perspective, using the specific contributions on TO for flow problems
from this thesis, a more general approach to reliably adapt physics for density-based TO
is provided. The approach consists of two main steps:

1. To explore the possibilities for adapting a physics model to density-based TO, the
physics are investigated in a homogenized sense. Similar to the original work
by Bendsøe (1989), where homogenized stress-strain relations are adapted for
solid/void TO, we adapt the porous flow VANS equations for solid/fluid TO. By
inspecting the homogenized equations, insight into the behavior of the physics,
objectives, and constraints in the different phases is gained, facilitated by the vast
body of literature available on homogenized or volume averaged equations. These
insights can be used to define an appropriate approach to distinguish between the
different phases, but not to define the exact interpolation functions and parame-
ters.

2. An order analysis is performed to define the exact interpolation functions and pa-
rameters which ensure that the physics are appropriately interpolated between
the different phases. In this work, the discretized forces in fluid and solid areas are
balanced when the flow in the solid domain is much lower than the fluid domain
flow.

To conclude, using this general approach, appropriate models with a systematic choice
of parameters for density-based TO can be derived, which improve the ease of use for
engineers.

5.2. RECOMMENDATIONS
Firstly, it is strongly recommended to apply the interpolation, penalization, and param-
eter selection proposed in this thesis to flow TO problems in the future. As shown, this
alleviates the need for manual parameter tuning and provides a methodical approach to
perform flow TO. Furthermore, for the sake of reproducibility and systematic advance-
ment in research, it is recommended that flow TO publications provide full details on
interpolation and parameter choices.

Beyond the content of this thesis, several directions for future research can be recom-
mended. Generalizing the approach to adapt physics to TO, as presented in this conclu-
sion, we recommend the investigation of two problems in particular: TO of thermo-fluid
problems, and TO of turbulent flow problems.

To design high-performance heat exchangers, tackling TO of thermo-fluid problems
starts by using the DFF approach for flow TO presented in this thesis. As parameter tun-
ing is often required, additional research is needed to adapt the thermal convection-
diffusion equations to density-based TO. Moreover, by applying the volume average
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and by inspecting the literature on thermal convection-diffusion through porous me-
dia, a physically consistent interpolation can be derived. A straightforward approach
to thermo-fluid TO interpolates the thermal capacity of the solid and fluid phases in
the convective term. However, the solid does not convect thermal energy. Interpolating
solid and fluid properties in the convection term may result in nonphysical behavior.
Secondly, an order analysis for the convection-diffusion equation is advised. The order
analysis should inform a parameter interpolation and continuation strategy, such that
solid conduction is dominant in the solid domain and fluid convection or conduction
in the fluid domain. As flow velocities are not zero in the solid domain, some convec-
tion will always be present. However, using the prediction of flow reduction presented
in this thesis, it is possible to make an estimation of the convective heat flux and use it to
appropriately reduce the convection in the solid domain.

To investigate TO of high Reynolds flow problems, we propose to extend the meth-
ods in this work to turbulent flow TO. Turbulence can be modeled using a Large Eddy
Simulation or Direct Numerical Simulation, transient by nature, which thus require the
techniques for TO of transient problems presented in this thesis. However, sensitivities
of such chaotic phenomena may be unstable which needs additional investigation.
Additionally, these simulations often have excessive computational cost inhibiting their
use for TO altogether. A more common approach is to use the Reynolds-Averaged
Navier-Stokes (RANS) equations to model turbulent flow in TO. As the filtered Forch-
heimer penalization is already required for TO of moderate Reynolds problems, we
expect it to be crucial for TO of high Reynolds flow problems. Additionally, the RANS
equations include closure relations to model turbulent field properties. To apply the
solid/fluid boundary conditions on these turbulent fields continuously, a penalty
approach similar to the one in the momentum equation is often used, see Dilgen et al.
(2018). To select an appropriate penalty magnitude, an order analysis on the closure
equations should be performed. This approach is recommended to achieve a reliable
method for TO of turbulent flow problems.

Furthermore, TO of nonlinear path-dependent problems may suffer from the same
memory limitations as TO of transient problems. The algorithms to balance time
and memory requirements for TO of transient problems can likely be adapted to find a
compromise between these requirements in TO of nonlinear path-dependent problems.
However, further analysis of the characteristics of these nonlinear problems is required
to appropriately adapt the schemes for transient sensitivity analysis. In transient sensi-
tivity analysis, the interval length imposes a limitation on the maximum characteristic
time found in the optimized design. For optimization of nonlinear path-dependent
problems, it is interesting to examine which design properties are influenced by splitting
the nonlinear iteration procedure into multiple parts. Consequently, an adaptation of
the PLT algorithm may be used to speed up TO of nonlinear path-dependent problems.

Finally, the inhibition of flow in the solid domain through the Darcy penalization is
generalized as a penalty approach by Bruns (2007). In this type of approach, constraints
in the design domain are enforced through penalties. The penalization approach pre-
sented in this thesis shows similarities to, for example, methods for changing the sup-
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port location in TO of structural compliance problems (Buhl, 2002). Instead of velocities
in the solid areas inhibited by the Darcy penalization, displacements in support areas
can be inhibited using a penalty approach. A similar method to the one presented in
this thesis can be used to select the appropriate penalty magnitude and continuation
approach for such problems.
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