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The objective of this work is to investigate the unexplored laminar-to-turbulent transition
of a heated flat-plate boundary layer with a fluid at supercritical pressure. Two temperature
ranges are considered: a subcritical case, where the fluid remains entirely in the liquid-like
regime, and a transcritical case, where the pseudo-critical (Widom) line is crossed and
pseudo-boiling occurs. Fully compressible direct numerical simulations are used to study
(i) the linear and nonlinear instabilities, (ii) the breakdown to turbulence, and (iii) the fully
developed turbulent boundary layer. In the transcritical regime, two-dimensional forcing
generates not only a train of billow-like structures around the Widom line, resembling
Kelvin–Helmholtz instability, but also near-wall travelling regions of flow reversal. These
spanwise-oriented billows dominate the early nonlinear stage. When high-amplitude sub-
harmonic three-dimensional forcing is applied, staggered Λ-vortices emerge more abrupt-
ly than in the subcritical case. However, unlike the classic H-type breakdown under zero
pressure gradient observed in ideal-gas and subcritical regimes, the H-type breakdown
is triggered by strong shear layers caused by flow reversals – similar to that observed in
adverse pressure gradient boundary layers. Without oblique wave forcing, transition is only
slightly delayed and follows a naturally selected fundamental breakdown (K-type) scenari-
o. Hence in the transcritical regime, it is possible to trigger nonlinearities and achieve tran-
sition to turbulence relatively early using only a single two-dimensional wave that strongly
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amplifies background noise. In the fully turbulent region, we demonstrate that variable-
property scaling accurately predicts turbulent skin-friction and heat-transfer coefficients.

Key words: boundary layer stability, compressible boundary layers, transition to turbulence

1. Introduction
Fluids at supercritical pressure have enabled the development of more efficient, compact
industrial processes and continue to offer promising opportunities for future energy-
conversion technologies (Guardone et al. 2024). Among different fluids, carbon dioxide
(CO2) has emerged as a promising working medium for power cycles in geothermal
and concentrated solar energy systems, as well as for heat pumps in industrial heating
applications. In the aerospace sector, supercritical fuel injection improves mixing and
combustion efficiency in both air-breathing and liquid rocket engines (Wang & Yang
2017). Supercritical fluids also occur in nature, e.g. the CO2/N2 mixture in the lower
atmosphere of Venus (Morellina, Bellan & Cutts 2020).

At supercritical conditions, i.e. above the thermodynamic critical point, the liquid–
vapour boundary vanishes, and strong variations in thermophysical properties occur within
a narrow temperature range around the pseudo-critical temperature Tpc, also referred to as
pseudo-boiling (Banuti 2015), at which the isobaric heat capacity reaches its maximum.
In this non-ideal, single-phase thermodynamic region, the ideal-gas assumption fails.

Supercritical fluids have been extensively investigated in fully developed turbulent flows.
Yoo (2013) highlighted the complexity of supercritical heat-transfer measurements, in
which thermophysical property variations may either enhance or deteriorate heat transfer.
Early computational studies on turbulent flows at supercritical pressure mainly focused on
open flow configurations, such as shear layers Okong’o & Bellan (2002), mixing layers
(Okong’o & Bellan 2010) and jets (Sharan & Bellan 2021), as well as on closed flow
configurations, such as pipes (Bae, Yoo & Choi 2005; Nemati et al. 2016; Cao et al. 2021;
He et al. 2021), channels (Patel, Boersma & Pecnik 2016; Ma, Yang & Ihme 2018; Kim,
Hickey & Scalo 2019; Guo, Yang & Ihme 2022; Li et al. 2023, 2024) and annular flows
(Peeters et al. 2016). These studies underlined the significant impact of local property
variations on large-scale structures, and the presence of relaminarisation mechanisms.
Semi-local scaling has been demonstrated to best characterise turbulence in variable-
property flows, assuming weak density and viscosity fluctuations. However, in turbulent
boundary layers with parahydrogen at supercritical pressure and transcritical temperature

conditions, large density fluctuations of order
√

ρ′ρ′/ρ ≈ 0.4−1.0 significantly alter near-
wall turbulence and its statistics (Kawai 2019). As a result, semi-local scaling was found
not to collapse the velocity transformation.

Conversely, many industrial applications operating at supercritical conditions frequently
involve flows that have not yet reached a fully turbulent state. Even under the ideal-gas
assumption, transition to turbulence remains of fundamental importance across subsonic,
supersonic and high-Mach-number flows (Saric, Reed & Kerschen 2002; Fedorov 2011).
In high-speed flows, real-gas effects have been studied extensively (Candler 2019),
yet they are often erroneously linked to non-ideal-gas effects (Guardone et al. 2024).
Unlike real-gas effects, non-ideal-gas effects near the thermodynamic critical point are
characterised by strong stratification (Govindarajan & Sahu 2014) and abrupt variations in
thermophysical properties.
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Transition to turbulence can follow different routes depending on the type of flow
disturbances (Morkovin 1969). In this work, we focus on the transitional sequence
typically observed under low levels of free-stream turbulence: (i) receptivity to external
disturbances, (ii) primary modal or non-modal disturbance growth, (iii) secondary
instability and nonlinear interactions, and (iv) eventual breakdown to turbulence. Only
recently, linear stability theory (LST) of boundary layers with fluids at supercritical
pressure has been investigated (Robinet & Gloerfelt 2019). The first such analysis by Ren,
Marxen & Pecnik (2019) for an adiabatic zero pressure gradient (ZPG) flat-plate boundary
layer with supercritical CO2 revealed strong sensitivity to the temperature profile relative
to the pseudo-critical temperature. As the flow crosses the pseudo-critical (Widom) line,
i.e. under transcritical temperature conditions, a new inviscid mode (Mode II) emerges,
exhibiting growth rates an order of magnitude greater than those of Mode I, which
corresponds to the Tollmien–Schlichting (TS) instability. It is worth noting that this dual-
mode instability occurs only when heating from a liquid-like free stream. Unlike Mack’s
second mode in hypersonics, Mode II is not of acoustic nature. Moreover, the Mode-II
instability is largest for two-dimensional (2-D) perturbations, as also confirmed for low-
Mach, diabatic boundary layers by Boldini et al. (2024b). Bugeat, Boldini & Pecnik (2022)
further showed that Mode II is associated with a minimum of kinematic viscosity at
the Widom line – a feature common to all non-polar supercritical fluids at transcritical
temperature conditions. Thus according to the generalised inflection point (GIP) criterion,
such boundary layers are inviscidly unstable. In plane Couette flow, Bugeat et al. (2024)
demonstrated that this inviscid instability arises from a localised maximum of density-
weighted vorticity and consists of two phase-locked vorticity waves induced by shear and
baroclinic effects around the kinematic-viscosity minimum.

Alongside previous modal stability analyses, Boldini et al. (2024b) investigated
transient growth with fluids at supercritical pressure. When heating beyond the Widom
line, where Mode II is unstable, optimal energy growth arises from an interplay between
lift-up and Orr mechanisms. Conversely, wall cooling was found to resemble the effect
of an adverse pressure gradient (APG) under the ideal-gas assumption. A similar trend
appeared in cross-flow dominated three-dimensional (3-D) boundary layers (Ren &
Kloker 2022), where the inviscid TS mode can be amplified far more than classical
cross-flow modes, effectively suppressing them, akin to imposing strong deceleration
under the ideal-gas assumption.

In controlled transition, a linearly amplified 2-D wave grows to finite amplitude,
triggering secondary instabilities and nonlinear interactions that lead to the growth
of 3-D waves with subsequent breakdown. These mechanisms remain unexplored for
supercritical fluids, despite their importance for accurate transition prediction. Under the
ideal-gas assumption, two canonical breakdown paths, K-type and H-type, have been
studied extensively via experiments (Klebanoff, Tidstrom & Sargent 1962; Kachanov &
Levchenko 1984) and direct numerical simulations (DNS) (Fasel, Rist & Konzelmann
1990; Rist & Fasel 1995; Bake, Meyer & Rist 2002; Sayadi, Hamman & Moin 2013)
in incompressible boundary layers. These scenarios depend on the choice of initial
disturbance wavelengths and spanwise wavenumbers. In K-type fundamental resonance,
a primary 2-D TS wave and a steady longitudinal vortex mode, often forced, as in
Klebanoff’s experiment, nonlinearly generate a symmetric pair of oblique modes at
the same TS frequency. Alternatively, these oblique modes can be introduced directly,
inducing the steady vortex mode. Their 3-D development leads to aligned Λ-shaped
vortices, each consisting of two elongated legs of streamwise vorticity and a tip of
spanwise vorticity. In contrast, H-type subharmonic resonance, following Craik’s model
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(Craik 1971), involves forcing oblique modes at half the TS frequency, forming staggered
Λ-vortices without a steady vortex mode. In both scenarios, Λ-vortices develop into
hairpin structures with a localised high-shear layer atop their heads, eventually evolving
into Ω- or ring-like vortices that mark the onset of turbulence. The DNS studies of
K- and H-type breakdown have since been extended to APG flows (Kloker 1993; Kloker &
Fasel 1995) and to supersonic and hypersonic regimes in various geometries (Fezer &
Kloker 1999; Franko & Lele 2013; Sivasubramanian & Fasel 2015; Hader & Fasel 2019;
Unnikrishnan & Gaitonde 2020).

The DNS remain the most effective tool for isolating specific perturbation waves and
their effects on the transition routes (Zhong 1998). In the context of non-ideal-fluid flows,
high-order DNS have recently been employed to study the O-type breakdown in boundary
layers with dense vapours, such as PP11-vapour at M∞ = 2.25 and 6 (Sciacovelli et al.
2020), and Novec649-vapour at M∞ = 0.9 (Gloerfelt, Bienner & Cinnella 2023), which
exhibit negligible dissipation and heat conduction. In these studies, density fluctuations
remain small relative to the mean value. In contrast, under supercritical conditions near
the Widom line, the abrupt variation of thermodynamic properties induces large density
fluctuations and poses major numerical challenges for accurate and robust DNS analysis
(Kawai 2019).

The main objective of this work is to investigate the nonlinear interactions and transition
to turbulence in a boundary layer with a supercritical fluid, aiming to improve transition
prediction under non-ideal-gas conditions. Specifically, we focus on elucidating the role
of Mode-II instability in the nonlinear regime, examining the subsequent stages beyond
the linear stability analysis of Ren et al. (2019). The strongly nonlinear thermodynamics
and abrupt fluid-property variations are accounted for by combining (i) the Van der
Waals (VdW) cubic equation of state (EoS) in reduced form, based on the principle of
corresponding states to retain generality, and (ii) non-ideal transport-property models for
a generic supercritical fluid. To numerically investigate supercritical fluids and tackle the
related computational challenges, we employ the open-source solver CUBic Equation of
state Navier–Stokes (CUBENS) (Boldini et al. 2025). We perform DNS with controlled
transition scenarios using harmonic disturbance forcing to isolate the most critical
nonlinear mechanisms and limit modal interactions. To study the nonlinear regime, only a
single fundamental 2-D wave is excited in a 2-D DNS set-up, as Mode-II instability is most
unstable for 2-D perturbations. For the breakdown to turbulence, 3-D DNS are performed
with 3-D forcing, in line with the aforementioned ideal-gas transitional boundary layer
simulations. Building upon the 2-D nonlinear analysis, a pair of subharmonic oblique
waves is introduced alongside the large-amplitude 2-D wave. The amplitude of the oblique
waves is set to either finitely large or infinitesimally small. Finally, the fully turbulent
regime is analysed to evaluate the accuracy of mean velocity and enthalpy scaling laws.
A predictive tool for the turbulent skin friction and heat transfer in non-ideal fluids is
developed.

The work is organised as follows. Section 2 introduces the governing equations, with a
focus on non-ideal thermodynamic models and numerical methods. Section 3 presents two
flow cases at supercritical pressure (reduced pressure 1.10) and describes their respective
DNS set-ups. Two temperature profiles for a slightly heated wall are considered, one
below and one crossing the pseudo-critical temperature Tpc. Section 4 examines the 2-D
linear and nonlinear evolution of Mode-II instability. Selected 3-D transitional cases are
then presented and analysed in § 5, followed by an assessment of the resulting turbulent
boundary layers in § 6. Finally, the study is concluded in § 7.
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2. Methodology
This section presents the governing equations for supercritical fluid flows. For details
on the numerical methods, performance and validation of the flow solver, the reader is
referred to Boldini et al. (2025).

2.1. Flow-conservation equations
We consider single-phase, non-reacting flows of supercritical fluids, governed by the fully
compressible Navier–Stokes equations, expressed in both differential and dimensionless
form as

∂ρ

∂t
+ ∂(ρuj )

∂xj
= 0, (2.1a)

∂(ρui )

∂t
+ ∂(ρui uj )

∂xj
+ ∂p

∂xi
− 1

Re
∂τij

∂xj
= 0, (2.1b)

∂(ρe0)

∂t
+ ∂((ρe0 + p)uj )

∂xj
− 1

Re
∂(τijui )

∂xj
+ 1

Re Pr∞ Ec∞
∂q j

∂xj
= 0, (2.1c)

where xj = (x, y, z) are the Cartesian coordinates in the streamwise, wall-normal and
spanwise directions, respectively, t is the time, ρ is the density, uj = (u, v, w) are the
velocity components, p is the pressure, and e0 = e + uj uj/2 is the specific total energy,
with e as the specific internal energy. Under the Newtonian fluid assumption, the viscous
stress tensor τij is calculated as λδij ∂uk/∂xk + μ(∂ui/∂xj + ∂uj/∂xi ), where μ is the
dynamic viscosity, λ= −2/3μ is Lamé’s constant with zero bulk viscosity (Stokes’
hypothesis) in agreement with Sciacovelli, Cinnella & Gloerfelt (2017a) and Ren et al.
(2019), and δij is the Kronecker delta. Additionally, buoyancy effects are neglected. The
convective heat flux vector q j follows Fourier’s law as q j = −κ ∂T/∂xj , where κ is the
thermal conductivity, and T is the fluid temperature. The conservation equations in (2.1)
are non-dimensionalised by the following reference values:

t = t∗u∗∞
δ∗ , xj = x∗

j

δ∗ , ui = u∗
i

u∗∞
, ρ = ρ∗

ρ∗∞
, p = p∗

ρ∗∞u∗2
∞

, T = T ∗

T ∗∞
,

e = e∗

u∗2
∞

, h = h∗

u∗2
∞

, μ = μ∗

μ∗∞
, κ = κ∗

κ∗∞
, ν = ν∗

ν∗∞
, (2.2a–k)

where (·)∗ denotes dimensional quantities, and (·)∞ corresponds to free-stream flow
conditions. The corresponding characteristic parameters include

Re = ρ∗∞u∗∞δ∗

μ∗∞
, Ec∞ = u∗2∞

c∗
p,∞T ∗∞

, Pr∞ = c∗
p,∞μ∗∞
κ∗∞

, (2.3a–c)

where c∗
p,∞ is the specific isobaric heat capacity, and Re is the Reynolds number based

on the local Blasius length scale δ∗ =√
μ∗∞x∗/(ρ∗∞u∗∞). In (2.3a–c), Ec∞ is the Eckert

number, and Pr∞ is the Prandtl number (both based on free-stream conditions). The Mach
number M∞ = u∗∞/a∗∞, with a∗∞ being the speed of sound, can be obtained from Ec∞.

2.2. Equation of state and transport properties
To close the conservation equations, thermal and caloric equations of state (EoS) must be
defined by satisfying the compatibility condition defined as
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e = eref +
∫ T

Tref

cυ,∞(Ť ) dŤ −
∫ ρ

ρref

(
T

∂p

∂T

∣∣∣∣
ρ

− p

ρ̌2

)
dρ̌, (2.4)

where (·)ref denotes a reference state, cυ,∞ is the ideal-gas specific heat capacity at
constant volume, and ˇ(·) indicates an integration variable. In the present study, the
VdW cubic EoS (Van der Waals 1873) in reduced form is chosen to balance accuracy
and computational efficiency (Boldini et al. 2025). This choice is motivated by the
principle of corresponding states (Van der Waals 1873), which renders the reduced
formulation independent of the specific fluid. Notably, Bugeat et al. (2022) found that
the modal behaviour with the VdW EoS qualitatively resembles that obtained using the
NIST REFPROP library (Lemmon, Huber & Mclinden 2013). The thermodynamic EoS
expressed in reduced form are denoted by the subscript r , with dimensional quantities at
the critical point indicated by (·)∗c . The thermal and caloric EoS are given as

pr = 8ρr Tr

3 − ρr
− 3ρ2

r , er = cυ,r Tr

Zc
− 3ρr , (2.5a,b)

respectively, where pr = p∗/p∗
c , Tr = T ∗/T ∗

c , ρr = ρ∗/ρ∗
c and er = e∗ρ∗

c /p∗
c are the

reduced pressure, temperature, density and internal energy, respectively. The reduced
isochoric and isobaric heat capacity cυ,r and cp,r are defined as

cυ,r = c∗
υ

R∗
g

= f

2
, cp,r = c∗

p

R∗
g

= cυ,r +
[

1 − ρr (3 − ρr )
2

4Tr

]−1

, (2.6a,b)

where f is the number of degrees of freedom (Anderson 2006). The VdW compressibility
factor at the critical point, Zc = p∗

c /(R∗
gρ∗

c T ∗
c ), with R∗

g as the specific gas constant, is
equal to 3/8.

The analytical expressions of Jossi, Stiel & Thodos (1962) and Stiel & Thodos (1964)
(hereafter denoted as JST) for the dynamic viscosity and thermal conductivity are
employed for the transport-property models. These correlations, which depend on reduced
quantities, are applicable to non-polar fluids at supercritical conditions, and provide a
general representation of thermodynamics near the critical point. They are detailed in
Boldini et al. (2025).

The thermophysical properties for the VdW EoS with JST, and for the perfect-gas law
with Sutherland’s law, are presented in figure 1 for reduced pressure pr = p∗/p∗

c = 1.10,
where p∗

c is the critical pressure, in agreement with the flow cases in § 3. The choice
of this supercritical pressure is consistent with previous studies (Kawai 2019; Ren et al.
2019; Boldini et al. 2024b), where reduced pressures ranged between 1.083 and 1.56. At
the pseudo-critical temperature Tr,pc = T ∗

pc/T ∗
c , or pseudo-critical point, the isobaric heat

capacity reaches a maximum, with the dense liquid-like (Tr < Tr,pc) and the low-density
vapour-like (Tr > Tr,pc) regions undergoing a sharp, yet continuous transition. The largest
variations in fluid properties occur within a narrow temperature range around Tr,pc, where
deviations from the ideal-gas behaviour are most pronounced.

2.3. Linear stability analysis
The linear stability analysis is performed within the framework of LST for non-ideal fluids
(see Ren et al. 2019; Boldini et al. 2024b). The one-dimensional (1-D) base flow is based
on the self-similar solution of the compressible boundary-layer equations with non-ideal
thermophysical properties and either an adiabatic wall (Ren et al. 2019) or a diabatic
wall (Boldini et al. 2024b); see § 3.1. The perturbation vector q ′ = (p′, u′, v′, w′, T ′)T
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1.21.11.0

Tr = T∗/Tc
∗

ρ
r =

 ρ
∗ /

ρ
∗ c

μ
pc

 =
 μ

∗ /
μ

∗ pc

c p
,r

 =
 c

∗ p/
R∗ g

Tr = T∗/Tc
∗ Tr = T∗/Tc

∗
0.90.8 1.21.11.00.90.8 1.21.11.00.90.8

2.5

2.0

1.5

1.0

0.5

0

50
VdW EoS
Ideal gas

VdW EoS

Ideal gas

VdW EoS + JST
Ideal gas

25

3

2

1

0

(a) (b) (c)

Figure 1. Reduced thermodynamic and transport properties at pr = 1.10 for VdW EoS and ideal-gas
law (perfect gas ρ = p/(Rg T ) and cp = γ Rg/(γ − 1), with heat capacity ratio γ = 1.4; Sutherland’s law
μ = T 3/2(1 + T ∗

ref/273.15 K)/(T + T ∗
ref/273.15 K), with reference temperature T ∗

ref = 110.4 K): (a) density,
(b) isobaric heat capacity, and (c) dynamic viscosity (reduced by the value at the pseudo-critical point μ∗

pc).
The location of max{cp(T )}, i.e. the pseudo-critical point, is marked by a star symbol. Note that the number of
degrees of freedom is f = 9.

is expressed in the form of normal modes as

q ′(x, y, z, t) = q̂(y) exp[i(αx + βz − ωt)] + c.c., (2.7)

where q̂ is the 1-D eigenfunction vector in the wall-normal direction, and c.c. stands for
complex conjugate. The linearised stability equations are recast into a compact matrix
form, resulting in a nonlinear eigenvalue problem with Dirichlet boundary conditions,
solved using a pseudo-spectral collocation method with Chebyshev collocation points
and near-wall grid clustering (Schmid & Henningson 2001). The spatial framework is
adopted by prescribing spanwise wavenumber β and angular frequency ω. The streamwise
wavenumber is complex (α = αr + iαi ), where αi represents the local spatial growth rate.
Modal amplification occurs for αi < 0.

2.4. Flow solver
The DNS are performed using the CUBENS solver (Boldini et al. 2025), a parallel GPU-
accelerated code that incorporates nonlinear thermodynamic and transport properties in
the non-ideal thermodynamic region. The fully compressible Navier–Stokes equations
in (2.1) are integrated on a Cartesian coordinate system. A sixth-order central finite
difference method is employed, combined with the non-dissipative kinetic energy and
entropy preserving (KEEP) scheme for the convective fluxes (Kuya & Kawai 2021),
while the diffusion fluxes are discretised using a fourth-order central finite difference
scheme. Enhanced numerical stability is achieved through a split convective form, and
the pressure equilibrium discretisation (Shima et al. 2021) is applied to mitigate spurious
grid-to-grid oscillations. Time integration is performed using a three-stage low-storage
Runge–Kutta scheme. The time step �t is defined based on the frequency of the primary-
wave disturbance, ω2-D, as �t = 2π/(ω2-D LP), where LP is a multiple of the number
of samples saved per forcing period (Ren et al. 2019). The parameter LP is chosen such
that the maximum Courant–Friedrichs–Lewy number remains below 0.8 in all directions.
Non-reflecting boundary conditions for single-phase, non-ideal fluid flows (Okong’o &
Bellan 2002), along with numerical sponge zones (Mani 2012), are applied at the domain
boundaries. At the isothermal or adiabatic wall, no-slip and no-penetration conditions are
imposed, while periodic boundary conditions are applied in the spanwise (z) direction.
For post-processing, spectral analysis is performed in time and, for 3-D simulations, in the
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Figure 2. Reduced temperature–pressure (Tr –pr ) diagram with isolines of reduced density ρr : isobar at
pr,∞ = 1.10 with cases at supercritical pressure of table 1, i.e. Tw095 (orange arrow) and Tw110 (red arrow).
The saturation line and pseudo-critical (Widom) line, i.e. locus of the maxima of the specific isobaric heat
capacity, follow the approximate generalised equation pr = exp{(Tr − 1)AVdW/ min(Tr , 1)}, with AVdW = 4
(Banuti 2015).

spanwise z-direction. Fourier components are denoted as (ω/ω2-D, β/β0), where ω2-D and
β0 are the fundamental frequency and spanwise wavenumber of the disturbance strip (see
§ 3.2), respectively. In the streamwise direction, the wall-normal maximum amplitudes
of the mass-flux perturbation (ρu)′ = ρ̄u′ + ūρ′ + ρ′u′, with ρ̄ and ū from the steady
base-flow solution in § 3.1, are used for quantification. For a quantitative analysis of
the transitional (§ 5.3) and turbulent (§ 6) boundary layers, time- and spanwise-averaged
quantities are sampled every 50 time steps over approximately ten periods of the primary
2-D wave.

3. Flow cases and computational set-up
The flow and computational parameters for the ZPG transitional boundary-layer flows in
this study are presented below. Mach number 0.2, following Sayadi et al. (2013), and free-
stream reduced pressure pr,∞ = 1.10 for the cases at supercritical pressure are selected. To
illustrate the considered thermodynamic regimes, figure 2 shows the reduced temperature–
pressure (Tr –pr ) diagram with selected isolines of reduced density ρr = ρ∗/ρ∗

c . Two
thermodynamic regimes at supercritical pressure are considered, relative to the reduced
pseudo-critical temperature Tr,pc = 1.024, both with free-stream reduced temperature
Tr,∞ = 0.90 and a weakly heated isothermal wall (subscript w). In the subcritical (liquid-
like) temperature case (hereafter denoted as Tw095), the wall temperature is Tr,w = 0.95,
such that the boundary-layer temperature remains below Tr,pc. It is important to note that
the term ‘subcritical’ here refers solely to the thermodynamic regime and should not be
confused with subcritical growth below the critical Reynolds number in hydrodynamic
stability theory (Schmid & Henningson 2001). In the transcritical temperature case
(hereafter denoted as Tw110), i.e. under pseudo-boiling conditions (Banuti 2015), the
wall temperature reaches Tr,w = 1.10, causing the boundary-layer temperature to cross
the Widom line near the wall, which in turn triggers Mode-II instability. Note that while
the Widom line is formally defined in the temperature–pressure phase diagram (as shown
in figure 2), it is used hereafter as a convenient reference in spatial coordinates, where
it corresponds to the local pseudo-critical point at a given supercritical pressure. In both
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Non-ideal fluid at supercritical pressure Ideal gas

Case Tw095 Tw110 TadIG
Regime Subcritical temperature Transcritical temperature —
Wall Isotherm Isotherm Adiabatic
T ∗

w/T ∗
c 0.95 1.10 —

T ∗
w/T ∗∞ 1.056 1.222 1.007

Line style

Table 1. Thermodynamic conditions for the three flow cases. For the supercritical pressure cases, the common
flow parameters are the free-stream reduced pressure p∗∞/p∗

c = 1.10 and reduced temperature T ∗∞/T ∗
c = 0.90.

For all cases, the Mach number is M∞ = 0.2. The wall temperature is denoted by T ∗
w . The non-ideal fluid flow

cases at supercritical pressure are represented in the reduced temperature–pressure (Tr –pr ) diagram in figure 2.

cases, the free-stream compressibility factor Z∞ = Zc pr,∞/(ρr,∞Tr,∞) is equal to 0.254.
For the ideal-gas reference case of Sayadi et al. (2013) (hereafter denoted as TadIG), a free-
stream temperature T ∗∞ = 300 K with Z∞ = 1.0 (ideal-gas assumption) and an adiabatic
wall are considered. All relevant flow parameters are listed in table 1. For cases Tw095
and Tw110, the free-stream parameters are set as follows: Eckert number Ec∞ = 0.0159,
Prandtl number Pr∞ = 1.0, reduced speed of sound ar,∞ =√

a∗2∞/(p∗
c υ∗

c ) = 2.766 (υ∗ =
1/ρ∗, specific volume), reduced specific heat at constant pressure cp,r,∞ = 8.024, and
reduced specific heat at constant volume cυ,r,∞ = 9/2. In contrast, for case TadIG, the
free-stream Eckert number, Prandtl number and heat capacity ratio are Ec∞ = 0.016,
Pr∞ = 0.75 and c∗

p/c∗
υ = 1.4, respectively.

The computational domain is a rectangular box on top of the flat plate. The inlet
boundary-layer thickness δ99,0 is used as the reference length scale and is set to unity
at the inlet location x0 = x∗

0/δ∗
99,0. The inlet Reynolds number is defined based on the

distance from the leading edge, Rex,0. The domain extends to xe and is initialised with the
self-similar boundary-layer laminar solution described in § 3.1. The spanwise domain size
corresponds to the disturbance spanwise wavelength λz , with 0 < z/δ99,0 < λz . Further
details on the DNS set-up, including a sensitivity analysis of the grid resolution, are
provided in Appendix A.

3.1. Initial conditions
The computational domain is initialised using the self-similar boundary-layer profiles
based on Lees–Dorodnitsyn variables (Ren et al. 2019; Boldini et al. 2024b). The initial
flow profiles for all cases listed in table 1 are plotted over the wall-normal coordinate
dη = ρ∗u∗∞/

√
2ξ dy∗ in figure 3. As temperature increases from liquid-like to vapour-like

conditions (figure 3a), the largest gradients in thermodynamic and transport properties,
particularly in density (figure 3c), occur at the pseudo-critical point (green dashed line).
This gives rise to an inflectional base-flow profile in case Tw110, as defined by the
GIP criterion, i.e. d(ρ̄ dū/dy)/dy = 0. As shown in figure 3(d), the GIP coincides with
the minimum of kinematic viscosity near the pseudo-critical point, and occurs for non-
polar fluids at supercritical pressure and transcritical temperature (Bugeat et al. 2022,
2024). The streamwise velocity (figure 3b) highlights the more pronounced profile of
case Tw110, which resembles that of a transitional boundary-layer profile. Appendix B
presents a comparison between the unperturbed 2-D DNS solutions, which have reached a
steady-state solution, and the initial self-similar solutions for cases Tw095 and Tw110.
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Figure 3. Laminar profiles for the considered cases: (a) temperature T ∗/T ∗∞, (b) streamwise velocity
u∗/u∗∞, (c) density ρ∗/ρ∗∞, and (d) kinematic viscosity ν∗/ν∗∞, as functions of the self-similar wall-normal
coordinate η. The line legend is in agreement with table 1 for cases TadIG, Tw095 and Tw110. The dashed
green line indicates the pseudo-critical point, i.e. at the pseudo-critical temperature T ∗ = T ∗

pc. The location of
the GIP for the transcritical case Tw110 is marked by the circle symbols in (b–d).

3.2. Disturbance strip
Disturbances are introduced via a blowing and suction disturbance strip on the flat-plate
surface. Once the laminar base flow reaches a steady-state solution, the localised 3-D
disturbance (Sayadi et al. 2013) is activated as

v(x, y = 0, z, t) = f (x)
[
A2-D sin(ω2-Dt) + A3-D sin(ω3-Dt) cos(β0z)

]
, (3.1)

where A2-D = A∗
2-D/u∗∞ and A3-D = A∗

3-D/u∗∞ are the wave amplitudes for the primary
2-D and z-symmetric 3-D waves, respectively, and ω2-D = ω∗

2-Dδ∗
99,0/u∗∞ and ω3-D =

ω∗
3-Dδ∗

99,0/u∗∞ are the corresponding angular frequencies. The spanwise wavenumber β0 =
β∗

0 δ∗
99,0 = 2π/λz equals the spanwise size ze of the computational domain (see Table 3).

The streamwise variation in (3.1) is governed by the function f (x) = 15.1875ξ5 −
35.4375ξ4 + 20.25ξ3, with ξ = (x − x1)/(xmid − x1) for x1 < x < xmid, and ξ = (x2 −
x)/(x2 − xmid) for xmid < x < x2, where xmid = (x1 + x2)/2 corresponds to Rex,mid (see
table 2). The disturbance strip is positioned upstream of branch I (see figure 4). Since
no experimental studies on controlled transition with supercritical fluids are currently
available, the ideal-gas H-type breakdown scenario from Sayadi et al. (2013), validated
by Boldini et al. (2025), is used as a reference, with F2-D = 124 × 10−6 and λz = 9.63.
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Parameter TadIG Tw095-LA Tw095-IA Tw110-LA Tw110-IA

A3-D 8.5 × 10−5 8.5 × 10−5 1.0 × 10−8 8.5 × 10−5 1.0 × 10−8

Table 2. Forcing set-up: ‘LA’ and ‘IA’ denote finite 3-D amplitude forcing and infinitesimally small 3-
D amplitude forcing, respectively. Others parameters are fixed: A2-D = 7.5 × 10−3 at F2-D = 124 × 10−6,
z-symmetric 3-D wave at F3-D = 62 × 10−6, with Rex,mid = 1.72 × 105 (cases TadIG and Tw095) or Rex,mid =
9.61 × 104 (case Tw110).

(a) (b) (c)
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Figure 4. Growth-rate (−αi ) contours in the Re–F stability diagram: (a) TadIG, (b) Tw095, and (c) Tw110
(Modes I and II). The dotted blue lines in (b,c) represent the ideal-gas neutral stability at equal T ∗

w/T ∗∞ ratios.
In the inset of (c), the wide frequency band of Modes I and II is displayed. The locations of the DNS domain
and perturbation strip for subharmonic breakdown, i.e. F3-D = 0.5F2-D = 62 × 10−6, are marked by white and
cyan bars, respectively, as described in § 3.2.

In §§ 4 and 5, 2-D and 3-D simulations are performed, respectively. In the 2-D simulations,
a 2-D wave (β0 = 0) with frequency F2-D is forced, with amplitude A2-D = 1.0 × 10−8

in the linear regime, and increased to either 7.5 × 10−4 or 7.5 × 10−3 in the nonlinear
regime. The latter corresponds to the amplitude used in the ideal-gas H-type breakdown
reference simulation from Boldini et al. (2025). For the 3-D simulations, A2-D is set
to 7.5 × 10−3, while two amplitude levels for the z-symmetric 3-D wave with F3-D =
62 × 10−6 are considered: infinitesimally small (denoted as ‘IA’) or finite (denoted as
‘LA’). The differences in forcing parameters for all simulations are summarised in table 2.
The non-dimensional angular frequency ω and the frequency parameter F are related by
ω = F Re0, with F = ω∗μ∗∞/(ρ∗∞u∗2∞) and local Reynolds number Re0 =√

Rex,0.

4. Two-dimensional analysis: linear and nonlinear regimes
This section focuses on the behaviour of Mode-II instability and its evolution from
the linear regime (§ 4.1) to the nonlinear regime (§ 4.2), highlighting the role of the
Widom line (pseudo-boiling). This 2-D investigation serves as a precursor to the fully
3-D breakdown scenarios in § 5.

4.1. Linear evolution
Starting from the base-flow profiles in § 3.1, linear stability analysis is performed for the
cases listed in table 1. Figure 4 displays the growth rate −αi in the Re–F stability diagram,
where Re = √

Rex . In figure 4(b), increasing the wall temperature towards Tr,pc stabilises
the flow. This trend is reversed under ideal-gas conditions, where a higher T ∗

w/T ∗∞ ratio
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leads to destabilisation (dotted blue line). In figure 4(c), upon crossing the pseudo-critical
point from the liquid-like free stream, Mode II appears (Ren et al. 2019), becoming highly
unstable even at low Reynolds numbers. Simultaneously, Mode I, exhibiting growth rates
an order of magnitude lower, becomes unstable over a much broader frequency band,
extending up to F ≈ 2 × 10−3. This modal behaviour shifts the critical Reynolds number
Recr , i.e. αi = 0, towards lower values. The DNS domain, indicated by rectangular bars in
figure 4, is placed inside the linearly unstable region, with the disturbance strip (coloured
in cyan) positioned somewhat upstream of, or close to, Recr at the selected frequency F .
As shown in figure 4(c) for case Tw110, the DNS domain spans nearly the entire linearly
unstable region of Mode II at F2-D = 124 × 10−6, consistent with our aim of investigating
transition to turbulence triggered by Mode-II instability.

In the context of the 2-D DNS, a steady laminar solution is first obtained (see § 3.1),
and LST-DNS comparisons of growth rate and phase speed are provided in Appendix C.
The eigenfunctions, normalised by max{|û|}, are successfully compared in figure 5(a,c)
at Re = 500 for case Tw095, and at Re = 650 for case Tw110. In the subcritical regime,
u′ shows a phase jump near y/δ99,0 ≈ 1, and ρ′ is confined near the wall around the
critical layer y = yc, defined by ū(yc) = cr , resembling the ideal-gas case TadIG (not
shown here). For Tw110, Mode II is affected by the pseudo-critical point (dashed green
line at y = ypc in figure 5c), with max{|û|} located in the vapour-like regime. Figure 5(b,d)
provide an overview of the modal instability in Tw095 and Tw110 via contours of ρ′. In
the latter case, the density fluctuations form ‘rope-shaped’ patterns around the pseudo-
critical point, where gradients in transport and thermodynamic properties are largest (see
figure 3), near the GIP (horizontal grey line), in agreement with Ren et al. (2019). While
similar density patterns occur for the second-mode instability in a hypersonic boundary
layer (Unnikrishnan & Gaitonde 2020), two key distinctions apply here: (i) transcritical
Mode II is not linked to Mack’s second mode (Ren et al. 2019), and (ii) at M∞ = 0.2,
pressure perturbations are predominantly of hydrodynamic nature. Note that, contrary to
Ren et al. (2019), the wall-normal distribution of the pressure eigenfunction p̂ peaks at the
wall rather than at the pseudo-critical point (see figure 5c).

A key question concerning Mode-II instability, as it manifests under transcritical heating
conditions, concerns its physical linear mechanism. Bugeat et al. (2024) demonstrated in
a plane Couette flow that shear and baroclinic effects interact to generate two vorticity
waves around the central layer, coinciding with the location of the minimum of kinematic
viscosity and the critical layer. Similarly, the present 2-D boundary-layer flow is analysed
using the linearised vorticity equation, where Ω̄ = ∂v̄/∂x − ∂ ū/∂y is the base-flow
vorticity, for the disturbance vorticity ξ = ∂v′/∂x − ∂u′/∂y as

Dξ

Dt︸︷︷︸
LHS

≈ v′ ∂2ū

∂y2︸ ︷︷ ︸
Sξ

+ ∂ ū

∂y

(
∂u′

∂x
+ ∂v′

∂y

)
︸ ︷︷ ︸

Cξ

− 1
ρ̄2

∂ρ̄

∂y

∂p′

∂x︸ ︷︷ ︸
Bξ

+O(μ). (4.1)

Here, Sξ , Cξ and Bξ denote the shear, compressible stretching and baroclinic terms,
respectively. The viscous term is represented by O(μ). The term (1/ρ̄2)(∂ρ′/∂x)(∂ p̄/∂y),
which belongs to Bξ , is negligible (see Appendix B). Figure 6 evaluates (4.1) for case
Tw110. For case Tw095, the only significant term of (4.1) far from the wall is the
shear contribution Sξ , where |∂2ū/∂y2| is maximal. In the spectral domain at Re = 650,
figure 6(a) confirms that both Sξ and Bξ reach a maximum near the pseudo-critical point,
where the minimum of ν̄ is located. At the GIP, where the density-weighted vorticity
Φ = ρ̄Ω̄ is maximal (figure 6b), the compressible stretching term Cξ also peaks and
remains large in the vapour-like region. The viscous term O(μ) exhibits a local maximum
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Figure 5. Cases (a,b) Tw095 and (c,d) Tw110: (a,c) wall-normal eigenfunctions (lines DNS data, circles LST)
of u′, v′, T ′, ρ′ and p′ normalised by max{|û|} at Re = 500 (Tw095) and Re = 650 (Tw110); (b,d) contours ρ′
normalised by their respective maxima. The locations of the pseudo-critical point y = ypc, i.e. where T̄ ∗ = T ∗

pc,
the GIP y = yGIP, and the critical layer y = yc are indicated in dashed green, dashed grey and dashed brown,
respectively.

at the pseudo-critical point due to its direct dependence on |∂2ū/∂y2|, which is largest
at ypc. In figure 6(c), the sum of Sξ and Bξ exhibits two out-of-phase waves with
phase difference π (not shown), located around ypc and exhibiting asymmetry due to the
structure of Bξ . When the out-of-phase Cξ term is included, as shown in figure 6(e), the
two vorticity waves shift around the critical layer at y = yc. This behaviour is consistent
with Bugeat et al. (2024), where Cξ was absent and the critical layer coincided with the
GIP, i.e. the centreline of the plane Couette flow under the parallel flow assumption. In
other words, the misalignment between the critical layer and the GIP in the boundary layer
results in a corresponding shift of the two vorticity waves. With the addition of the viscous
O(μ) term, the vorticity perturbation ξ in figure 6( f ) is further amplified near the wall,
tilting the near-wall vorticity wave in the upstream direction.

4.2. Nonlinear evolution
We now focus on the nonlinear response of the boundary layer to a finite-amplitude
perturbation, with the blowing–suction amplitude increased to A2-D = 7.5 × 10−3,
compared to the infinitesimal amplitude used in § 4.1. Fourier modes are denoted using
the double-spectral notation (ω/ω2-D, 0), where ω2-D is the fundamental frequency.
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Figure 6. Case Tw110. Terms of the vorticity perturbation (4.1): (a) spectral domain at Re = 650 (all
terms are normalised by max{|Dξ/Dt |}); (b) normalised density-weighted vorticity |Φ| = |ρ̄Ω̄|; (c) Sξ + Bξ ;
(d) Cξ ; (e) Sξ + Bξ + Cξ ; and ( f ) ξ . The locations of the pseudo-critical point y = ypc, i.e. where T̄ ∗ = T ∗

pc,
the GIP y = yGIP, and the critical layer y = yc are indicated in dashed green, dashed grey and dashed brown,
respectively.

Figure 7(a) shows the downstream modal evolution for case Tw095. Once the 1 %
threshold is crossed at Re ≈ 600, the primary (1, 0) mode decays. Higher harmonics (2, 0),
(3, 0) and beyond are slaved to the primary wave through weakly nonlinear effects in the
receptivity region. Despite being linearly stable, they follow the streamwise growth, and
subsequent stabilisation, of the forced (1, 0), with amplitudes approximately two orders of
magnitude lower. Wall-normal profiles of streamwise velocity and density at Re = 500
and 700 (figure 7b,c) reveal only minor nonlinear effects, with the boundary-layer
receptivity resembling the incompressible TadIG case.

In contrast to the subcritical regime, nonlinearity significantly influences the 2-D modal
evolution in case Tw110. To highlight this, A2-D is increased from 7.5 × 10−4 in figure 8(a)
to 7.5 × 10−3 in figure 8(b). In the low-amplitude case, modes (1, 0) and (2, 0) follow the
LST prediction up to Re ≈ 700, and as shown in figure 4(c), linear instability also arises
at 2F2-D, with a larger growth rate than that of (1, 0). Higher harmonics (ω/ω2-D ≥ 3)
deviate from their linear evolution, growing rapidly to high amplitudes – unlike in the
subcritical regime (figure 7a). This behaviour resembles the Kelvin–Helmholtz (KH)
instability in a mixing layer (Babucke, Kloker & Rist 2008). In the high-amplitude case in
figure 8(b), higher harmonics exceed the 0.1 % amplitude threshold at lower values of Re.
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Figure 7. Case Tw095 with A(1,0)
2-D = 7.5 × 10−3: (a) maximum wall-normal mass-flux amplitude for mode

(1, 0) (solid line), (2, 0) (dash-dotted line), and (3, 0) (dashed line); (b) streamwise velocity and (c) density
perturbations as functions of the wall-normal coordinate y/δ99,0 at Re = 500 (solid line) and Re = 700 (dash-
dotted line), normalised by their respective max{|û(1,0)|}. In (b,c), the scaled LST solution is represented with
circle symbols at Re = 500, and with square symbols at Re = 700.
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Figure 8. Case Tw110, with (a,c) A(1,0)
2-D = 7.5 × 10−4 and (b,d) A(1,0)

2-D = 7.5 × 10−3, for: (a,b) maximum wall-
normal mass-flux amplitude for mode (1, 0) (solid line), (2, 0) (dash-dotted line), (3, 0) (dashed line), (4, 0)

(dotted line), (5, 0) (solid line with triangles), and (6, 0) (solid line with diamonds); (c,d) phase speed cr for
modes (1, 0) (solid line) and (2, 0) (dash-dotted line). In (b), the mean-flow distortion (MFD) (0, 0) is indicated
with a black solid line. The LST solution is represented with circle symbols for mode (1, 0), square symbols
for mode (2, 0), and asterisk symbols for mode (3, 0).

Mode (2, 0), which is more unstable than mode (1, 0) in the linear regime, surpasses (1, 0)

at Re ≈ 600, before nonlinearly saturating after reaching the 2 % amplitude threshold. As
it peaks at Re ≈ 700, a subharmonic resonance mechanism with its subharmonic mode
(1, 0), typically observed as vortex pairing in mixing layers (Monkewitz 1988), emerges,
destabilising the latter. Thus mode (1, 0) undergoes strong destabilisation and becomes the
most dominant mode again further downstream. At this streamwise location, the MFD,
i.e. mode (0, 0), reaches up to 5 %, and all higher harmonics are fully nonlinear. It is
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worth noting that, contrary to the conclusions of Kachanov (1994) – who reported that a
threshold amplitude of the 2-D fundamental TS wave of the order of 29 % of the mean flow
was required to amplify 2-D subharmonics – the amplitude of mode (2, 0) reaches only
5 % in the present case under transcritical conditions. The resonant interaction between
modes (1, 0) and (2, 0) is further evidenced by their phase speeds cr in figure 8(c,d). For
the low-amplitude case (A(1,0)

2-D = 7.5 × 10−4), the phase speeds are sufficiently close near
Re ≈ 800. In contrast, for the high-amplitude case, c(1,0)

r and c(2,0)
r remain nearly identical

across the entire computational domain, triggering subharmonic resonance at Re ≈ 700.
Notably, at Re ≈ 730, c(2,0)

r increases sharply, deviating from its linear evolution (in grey)
and indicating strong nonlinear stabilisation (figure 8b).

To qualitatively assess the nonlinear evolution of Mode II, selected perturbation
contours for A(1,0)

2-D = 7.5 × 10−3 are shown in figure 9(a,b). The region corresponding
to highest specific heat at constant pressure, between 98 % max{cp} and max{cp},
is shaded in green. At this high disturbance level, the constant-pressure assumption
for a laminar boundary layer breaks down, and max{cp} depends on both reduced
pressure and temperature. It is estimated using the analytical Widom-line relation Tr,pc =
1/AVdW ln(pr ) + 1, where the Widom line, defined as the locus of pseudo-critical
points at supercritical pressure (figure 2), is characterised by the critical slope AVdW =
Tc/pc(dp/dT )c = 4 (Banuti 2015). Unlike in the linear regime (figure 5c,d), where the
pseudo-critical point height grows with

√
x , the nonlinear disturbance wave propagation

leads to increasing distortion of the Widom line, proportional to the perturbation
magnitude (figure 9a,b). The large harmonic mode (2, 0), prominent between Re ≈ 600
and Re ≈ 720, halves the streamwise wavelength of the perturbation wave ((1, 0) as
the fundamental), thereby doubling the oscillation frequency of the Widom line. As
shown in the inset of figure 9(a), the crests and troughs of the Widom line align with
regions of positive and negative wall-normal velocity perturbation v′. Since v′ and the
pressure perturbation p′ are out of phase (Luhar, Sharma & McKeon 2014; Bugeat et
al. 2024), the upward and downward displacements of the Widom line correspond to
local pressure decreases and increases, respectively. Density perturbations in figure 9(b),
initially confined near the Widom line in the linear regime (figure 5d), now reach up to
20 % of the free-stream value in regions where p′

r is negative, i.e. closer to the critical
point. These perturbations mirror the billowing behaviour of the Widom line, with ρ′ < 0
around the Widom-line crests, and ρ′ > 0 around the troughs.

The term ‘billowing’ is used by analogy with classical shear-layer flows, where a
periodic train of large, rolling wave-like structures forms as the KH instability evolves
nonlinearly (Klaassen & Peltier 1985; Liu, Kaminski & Smyth 2023). Here, a train of
streamwise-growing density billows arises (see inset of figure 9b). In both shear layers
and the present case, billowing arises from an excess of vorticity concentrated in a
localised flow region (see figure 6b). Although the train of billowing flow patterns is
caused by the transcritical Mode-II instability rather than by the KH instability, Bugeat
et al. (2024) proved that the resulting vorticity fields are identical in the linear regime.
Thus it is not surprising that in the nonlinear regime, the billowing patterns observed here
resemble those seen in classical KH-type roll-ups, despite the absence of a true shear-layer
mechanism.

Figure 9(b,c) highlight the nonlinear evolution of these billows via contours of ρ′ and
vorticity Ω = ∂v/∂x − ∂u/∂y. Their deformation and streamwise growth progressively
narrow the near-wall vapour-like region, which shifts significantly closer to the wall at
Re ≈ 800 compared to the linear regime. Simultaneously, the upper vapour-like fluid is
lifted up by the rolling billows. Peaks in Ω , which were previously aligned with the Widom
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Figure 9. Case Tw110. Instantaneous contours at T/T0 = 0, where T0 = 2π/ω0 (fundamental frequency ω0),
with A(1,0)

2-D = 7.5 × 10−3: (a) reduced pressure fluctuation p′
r = p∗′/p∗

c , (b) density fluctuation ρ′, (c) vorticity
Ω , (d) streamwise velocity u, with boundary-layer thickness δ99 and displacement thickness δ1 indicated by
dotted and dashed lines, respectively, and (e) Mach number M = u/a. The Widom line y = yWL lies within
the green region, i.e. between 98 % max{cp} and max{cp}. Note that the Widom line is used here as a spatial
reference for the local pseudo-critical point at supercritical pressure. Insets in (a–c) show the wall-normal
velocity fluctuation v′, density ρ, and vorticity fluctuation ξ , respectively. The inset in (d) highlights separation
zones (u < 0) in blue and includes velocity vectors |V | = √

u2 + v2. A supplementary movie of the billow
roll-ups is available in the supplementary material is available at https://doi.org/10.1017/jfm.2025.10993.

line in the laminar regime, now appear below the Widom-line troughs in the near-wall
region and at the wall. Starting from Re ≈ 780, and recurring periodically downstream,
the Ω-peaks strengthen (high-shear regions), and their magnitude scales with their
fluctuation ξ (inset of figure 9c). The contours of streamwise velocity in figure 9(d)
reveal the emergence of near-wall flow reversal regions (u < 0), located just beneath the
near-wall Ω-peaks at the Widom-line troughs, indicating the formation of a developing
shear layer near the wall. In the vicinity of these flow reversal zones, a region of low
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Figure 10. Case Tw110 for A(1,0)
2-D = 7.5 × 10−3. Wall-normal slice at Re = 802 showing: (a,b) instantaneous

streamwise velocity u and reduced specific heat at constant pressure cp,r /cp,r,∞ at time periods t/T0 =
0, 0.25, 0.5, 0.95, where T0 = 2π/ω0 is the fundamental forcing period; (c,d) time-averaged streamwise
velocity 〈u〉 and density 〈ρ〉 profiles. In (c,d), the r.m.s. of u′ and ρ′, respectively, and higher harmonics (modes
(1, 0), (2, 0) and (3, 0)) are shown. The locations of the GIP and inflection point at t/T0 = 0 are marked in
(a,b) by grey circle and purple star symbols, respectively.

streamwise velocity forms, leading to the reduction of the boundary-layer thickness δ99
by approximately 10 % relative to the unperturbed profile. At Re ≈ 800, the near-wall
separation zone reaches a height of approximately 2 % of δ99, while the billow crest
extends beyond y/δ99,0 = 1. Here, the local Mach number reaches its maximum, as shown
in figure 9(e). This behaviour results from both the boundary-layer displacement effect
and the reduction in the local speed of sound at the Widom line. Downstream of the crest,
the Mach number rapidly returns to its laminar value.

To further investigate the near-wall high-shear region during billow roll-up, wall-
normal profiles are extracted at Re = 802, corresponding to the first flow reversal found in
figure 9(d). Figure 10(a,b) show the streamwise velocity u and the reduced specific heat at
constant pressure cp,r/cp,r,∞, respectively, at four time instants within one forcing period
T0 = 2π/ω0. Between t/T0 = 0.95 and t/T0 = 0, the billow roll-up induces two distinct
kinks in the u profile: one at the billow crest at y/δ99,0 ≈ 1.0, and another at the trough
near y/δ99,0 ≈ 0.3. These locations coincide with sharp peaks in cp (figure 10b), with the
highest values occurring at t/T0 = 0, linked to a local pressure drop p′

r < 0 (see figure 9a).
Beneath the near-wall kink in the vapour-like region, flow reversal at the wall is observed
(inset of figure 10a), along with a GIP, where the density-weighted vorticity Φ = ρΩ
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is maximal (grey circle). Here, the vorticity experiences a maximum, with an inviscid
instability found according to the generalised Fjørtoft’s criterion (Bugeat et al. 2024). By
t/T0 = 0.25, no further GIP or flow reversal is observed, confirming the periodic nature
of the billows generation. At t/T0 = 0.50, the profiles resemble those of the unperturbed
boundary layer (figure 3). The large near-wall shift in the instantaneous u observed over
one T0 is caused by strong near-wall velocity fluctuations, reaching up to 5 % of the root
mean square (r.m.s.) value, (figure 10c), sustained by both the primary mode (1, 0) and its
first harmonic (2, 0). A secondary peak in u′

rms at y/δ99,0 ≈ 0.7 is primarily attributed to
mode (1, 0). Density fluctuations (figure 10d) are dominant in the high-cp region, with the
ρ′

rms-peak located at the height of the far-wall u kink.
In conclusion, under transcritical conditions, we observe localised flow reversal beneath

the billow roll-up at Re = 802, along with the formation of a shear layer just above it.
This behaviour is linked to the sharp near-wall increase in cp, which amplifies near-wall u
disturbances and destabilises the local mean flow. In other words, this effect is tied to the
upward and downward displacements of the Widom line, which correspond to decreases
and increases in reduced pressure pr , respectively. As pr decreases, steep gradients in
thermodynamic properties intensify. Ultimately, the initial assumption of a ZPG laminar
boundary layer breaks down. When the billow rolls up, a net dp/dx < 0 (APG) forms.
Simultaneously, the MFD is insufficient to counteract the large near-wall (Mode II) u
fluctuations, leading to a travelling region of flow reversal. While Taylor (1936) attributed
transition in incompressible flows to unsteady pressure gradients caused by ‘external’
disturbances leading to separation (see note by Kloker 2024), similar localised separation
zones, such as those in figure 9(d), were found under strong APG in the K-type breakdown
of an ideal-gas boundary layer (Kloker 1993; Kloker & Fasel 1995) and in the laminar-
to-turbulent transition experiments of Kosorygin (1994). In the current study, however,
the disturbance is ‘internal’, originating from the displacement of the Widom line, and is
absent under weakly non-ideal-gas conditions at the same forcing amplitude.

5. Three-dimensional breakdown to turbulence
Building on the 2-D nonlinear analysis of the Mode-II instability, we perform 3-D DNS to
assess the complete breakdown to turbulence. A z-symmetric oblique wave with spanwise
wavenumber β0 and half the frequency of the primary wave is introduced alongside the
2-D wave. The oblique wave is imposed with either an infinitesimal amplitude (‘IA’) or
a finite amplitude (‘LA’). The 2-D wave amplitude A2-D = 7.5 × 10−3 is consistent with
§ 4.2. In the subcritical regime, case Tw095-IA is reported in § 5.1 for comparison but
ultimately excluded from further analysis, as it does not trigger transition.

5.1. Modal analysis
Figure 11 presents the relevant modes for the subcritical cases with infinitesimal and finite
amplitude, Tw095-IA and Tw095-LA, and the transcritical cases with infinitesimal and
finite amplitude, Tw110-IA and Tw110-LA. All share the same fundamental frequency and
spanwise wavenumber; the ‘LA’ cases in figure 11(b,c) use the same 2-D and 3-D forcing
amplitudes, while the ‘IA’ cases in figure 11(a,d) have infinitesimal 3-D forcing amplitude
A3-D = 1.33 × 10−6 A2-D (see table 2).

In case Tw095-IA (figure 11a), no transition occurs. Although the oblique mode (1/2, 1)

undergoes secondary subharmonic growth starting at Rex/105 ≈ 3, its amplitude remains
insufficient to trigger nonlinear interactions. The primary 2-D mode (1, 0) decays in line
with figure 7(a), while mode (0, 2) continues to grow due to transient growth (Boldini
et al. 2024b).
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Figure 11. Streamwise evolution of the y-maximum of (ρu)′ for the most relevant modes (ω/ω2-D, β/β0) for
cases (a) Tw095-IA, (b) Tw095-LA, (c) Tw110-LA, and (d) Tw110-IA. The minimum and maximum values
of the time- and spanwise-averaged skin-friction coefficient are indicated as Cf,min = min{Cf } and Cf,max =
max{Cf }, respectively. Insets in (c) and (d) highlight the relevant modes in the breakdown region. Note the
different Rex -axis limits between the subcritical (a,b) and (c,d) transcritical cases.
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In contrast, case Tw095-LA (figure 11b) transitions to turbulence via the subharmonic
instability, which rapidly induces three-dimensionality. Its modal evolution closely
resembles that of case TadIG (not shown). At the disturbance strip, higher harmonics
such as (2, 0) and (3/2, 1) are also triggered but remain only moderately amplified. When
the primary wave (1, 0) reaches ∼1 % at Rex/105 ≈ 2.9, subharmonic resonance sets
in, and the forced subharmonic oblique mode (1/2, 1), absent in the 2-D DNS set-up
in figure 7(a), grows rapidly, surpassing (1, 0) near Rex/105 ≈ 4. Compared to TadIG,
this process is delayed due to the slower destabilisation of (1, 0) as the wall temperature
is increased towards the Widom line. During the secondary instability growth, higher
modes experience strong nonlinear amplification, contributing to the increase of the MFD
(0, 0) near Cf,min = min{Cf }. Later, all modes saturate except for (1/2, 3), which matches
the amplitude of (1/2, 1) at Rex/105 ≈ 5.3. Hereafter, a wave–vortex triad typical of the
oblique breakdown (Chang & Malik 1994) forms between the strongly nonlinear (1/2, 3)

and steady vortex mode (0, 2), further destabilising (1/2, 1) (see inset of figure 11b).
Further downstream where nonlinear saturation sets in, mode (0, 0) reaches its maximum,
marking the onset of turbulence at Cf,max = max{Cf }.

For case Tw110-LA in figure 11(c), although the evolution of the fundamental wave
and its higher harmonics closely follows the 2-D development in figure 8(b) up to
Rex/105 ≈ 6.5, the subharmonic resonance is significantly delayed due to the strong 2-D
nonlinearity of the higher harmonics. The oblique mode (1/2, 1) is initially strongly
damped between Rex/105 ≈ 1.0 and 2.0, and maintains a low amplitude level, along with
(3/2, 1), up to Rex/105 ≈ 4.7. Before mode (1, 0) undergoes subharmonic resonance with
(2, 0) (see § 4.2), it saturates and a phase-speed-locking process (cf. Hader & Fasel 2019)
occurs between mode (1, 0) and its secondary wave (1/2, 1), triggering the growth of
(1/2, 1) via the secondary-instability mechanism (Herbert 1988). Mode (1/2, 1) and its
higher harmonics grow to nonlinear amplitude levels and saturate at Rex/105 ≈ 6.0. On the
contrary, modes with spanwise-wavenumber parameter β/β0 = 1 briefly grow near Cf,min
due to nonlinear interaction, but do not contribute to the later breakdown stage. When
the amplitudes of subharmonic modes (ω/ω0 = 1/2) approach those of the primary wave
and higher harmonics, additional higher modes with β/β0 ≥ 2 are nonlinearly amplified,
rapidly growing downstream and enhancing both the destabilisation of (1, 0) and the MFD.
In the early breakdown stage, following the saturation of mode (1, 0) at Rex/105 ≈ 7.1,
mode (1/2, 1) grows nonlinearly, surpassing mode (1, 0) at Rex/105 ≈ 7.35, while the
MFD (0, 0) exceeds the 20 % amplitude threshold. In the late transitional stage, before
Cf,max at Rex/105 ≈ 8.5, mode (1/2, 1) remains dominant, eventually followed by the
abrupt growth of (1/2, 3) at Rex/105 ≈ 9.0.

Figure 11(d) illustrates the modal evolution of case Tw110 with infinitesimal 3-D forcing
(‘IA’). As expected, up to min{Cf }, the evolution of modes (h, 0), with h ≥ 0, matches
that of case Tw110-LA in figure 11(c). No subharmonic resonance of (1/2, 1) occurs
further downstream in this case, as no phase-speed locking mechanism between the
primary wave and its subharmonic is present. In contrast, fundamental resonance with
(1, 1) sets in at Rex/105 ≈ 6.2, along with the amplification of 3-D harmonic modes with
spanwise-wavenumber parameter β/β0 = 2, before mode (1/2, 1) grows nonlinearly only
from Rex/105 ≈ 6.5 onwards. Around Rex/105 ≈ 7.2, the spectrum rapidly fills up with all
other nonlinearly amplified 3-D modes, contributing to a significant increase in the MFD
(0, 0). Note that mode (1, 1) arises initially due to numerical background noise, and the
forcing of (1/2, 1) remains likewise at the noise level; therefore, both are insignificant and
not representative of classical boundary-layer modes in the early nonlinear stage. Further
downstream around Rex/105 ≈ 6.0, both modes (1, 1) and (0, 1) (forming a wave–vortex
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triad with (1, 0)) begin to behave as discrete boundary-layer wave modes, whereas (1/2, 1)

continues to be a continuous, non-resonant mode. Under such numerical background
noise conditions, and in the absence of primary instability of the investigated 3-D modes,
the fundamental-resonance mechanism proves to be more robust than the subharmonic
one. Eventually, the steady mode (0, 1), which dominates the transitional stage in the
K-type breakdown (Boldini et al. 2024a), reaches the amplitude level of (1, 0). In the
final breakdown stage, (1, 1) and (1/2, 3) alternate as the dominant modes before Cf,max
is reached. Compared to Tw110-LA, the transition is more gradual, but follows a K-
type breakdown scenario. Notably, despite the infinitesimal 3-D forcing, breakdown to
turbulence is triggered solely by the 2-D fundamental wave and numerical background
noise – a behaviour not observed in case Tw095-IA under weakly non-ideal-gas conditions.

5.2. Flow structures
To investigate the mechanisms driving the breakdown in both thermodynamic regimes,
figure 12 displays the streamwise evolution of the relevant transitional flow structures using
isocontours of the Q-criterion.

The subcritical case Tw095-LA (figure 12a) exhibits the classical H-type breakdown,
similar to the ideal-gas case TadIG, with staggered Λ-vortices and high-shear layers
(Bake et al. 2002) above the vortices’ tips, characterised by peaks in ωz ∝ ∂u/∂y.
Conversely, no vortices are present at λz/2, i.e. half a spanwise wavelength apart. While
the early breakdown stage closely resembles that of the ideal-gas case TadIG, the Λ-
vortices become more elongated in the streamwise direction from Rex/105 ≈ 5.2 onwards,
coinciding with the large amplitude of 3-D modes (3/2, 1) and (0, 2) in figure 11(b).
This elongation of the Λ-vortices, along with longitudinal structures on their sides,
is particularly visible for 5.2 ≤ Rex/105 ≤ 6 in figure 13(a), which shows a horizontal
flow snapshot (x−z plane) of the streamwise velocity at y/δ99,0 = 0.49. In contrast, the
staggered Λ-vortex arrangement in case TadIG (figure 13b) breaks down more rapidly
during the transitional stage.

Compared to the subcritical regime, figure 12(b,c) reveal distinct vortical structures
in the transcritical heating regime. During the early stage of breakdown, dominated
by mode (1, 0), 2-D billow structures with near-wall separation zones (highlighted in
cyan) are convected downstream. At later stages, cases Tw110-LA and Tw110-IA exhibit
fundamentally different breakdown dynamics. In Tw110-LA, the forced 3-D mode (1/2, 1)

rapidly grows from 0.01 % to 13 % between Rex/105 ≈ 6 and 7.3, leading to the sudden
appearance of staggered Λ-vortices lifting off from the billow roll-ups. Unlike the
elongated staggered alignment observed in Tw095-LA, Λ-vortices here emerge more
abruptly and locally, with secondary structures forming at half a spanwise wavelength
apart (see § 5.2.1). By Rex/105 ≈ 7.5, where mode (0, 0) reaches approximately 30 %,
the first row of hairpin vortices becomes visible, with small-scale structures at their legs.
Farther downstream, the complete breakdown of the preceding 2-D billow roll-up becomes
evident, characterised by near-wall longitudinal structures between Rex/105 ≈ 7.5 and 7.7.

In contrast, case Tw110-IA exhibits a delayed breakdown of each 2-D billow, as
indicated by the extended near-wall separation zones. The onset of three-dimensionality
is significantly delayed, consistent with the more gradual growth of 3-D modes in
figure 11(d). The Λ-like vortices emerge within the 2-D billow roll-ups, initially
displaying an aligned peak–valley splitting, which is characteristic of the fundamental
K-type breakdown (see § 5.2.2). The Λ-vortices exhibit a shorter streamwise than
spanwise wavelength, consistent with the large amplitude of mode (2, 1) in the early
breakdown stage in figure 11(d). No strong lift-up of hairpin-like vortices is observed;
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Figure 12. Instantaneous isosurfaces of the Q-criterion, coloured by the streamwise velocity magnitude:
(a) case Tw095-LA (Q = 0.015) at t/T0 = 0, (b) case Tw110-LA (Q = 0.020) at t/T0 = 0.5, and (c) case
Tw110-IA (Q = 0.020) at t/T0 = 0.5. Here, T0 is the period of the fundamental wave. The side x−y plane
shows the instantaneous spanwise vorticity ωz . Isosurfaces of the separation zones, i.e. regions with u < 0, are
coloured in cyan. For better visualisation, the domain is copied twice in the spanwise direction. Supplementary
movies are available in the supplementary material is available at https://doi.org/10.1017/jfm.2025.10993.
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Figure 14. Case Tw110-LA. Instantaneous isosurfaces of (a) spanwise vorticity |ωz | = 0.45 and (b) streamwise
vorticity |ωx | = 0.45, coloured by the streamwise momentum ρu magnitude at t/T0 = 0.5. Here, T0 is the
period of the fundamental wave. For better visualisation, the domain is copied once in the spanwise direction.

however, near-wall longitudinal structures, resembling those in Tw110-LA, gradually
emerge. Ultimately, each billow independently breaks into small-scale turbulent structures,
eventually merging with the turbulent structures originating from the previous billow.
From Rex/105 ≈ 8.0 onwards, as mode (0, 0) reaches amplitude ∼30 %, the resulting
turbulent flow pattern resembles that of Tw110-LA between Rex/105 ≈ 7.5 and 7.7, as
shown in figure 12(b).

5.2.1. Case Tw110-LA: detailed breakdown analysis
Figure 14 shows close-up views of the initial breakdown region in case Tw110-LA
(6.90 ≤ Rex/105 ≤ 7.52), with isosurfaces of spanwise ωz and streamwise ωx vorticity
in figure 14(a,b), respectively, at the same time instant as in figure 12(b). The visualisation
spans two spanwise wavelengths to capture the full structure. The ωz distribution reveals
a delta-wing-like shear layer at z = 0.5λz, 1.5λz, . . . (dashed black lines), with peak
spanwise vorticity at its tip. These structures, featuring round, slightly inclined heads, are
aligned above the oppositely signed ωx legs of the Λ-shaped vortex (figure 14b). At these
locations, hereafter referred to as ‘peak’ locations, the strongest u′ and ρ′ perturbations
occur with u′

rms ≈ 0.2 and ρ′
rms ≈ 0.18. This layer is hereafter referred to as the ‘upper’

high-shear layer and is denoted as ‘UL’. Half a spanwise length apart, at z = 0, λz, . . .

(dashed red line), u′ and ρ′, unlike in case Tw095-LA, do not decay but exhibit the second-
largest r.m.s.amplitudes in the spanwise direction. This location is thus hereafter referred
to as the ‘co-peak’; cf. the ideal-gas APG case (Kloker 1993; Kosorygin 1994; Kloker &
Fasel 1995). Here, the adjacent Λ-vortices are more closely spaced than in cases TadIG
and Tw095-LA, consistent with a delta-wing-like topology (Kloker & Fasel 1995), and a
secondary streamwise vortical structure develops between them.

The origin and evolution of this secondary vortex system is illustrated in figure 15, which
shows instantaneous contours of ωz in longitudinal planes (between Rex/105 = 6.90 and
7.52) at five time steps (t/T0 = 0, 0.25, 0.5, 0.75, 1.0). At the ‘co-peak’ plane (z/λz = 0,
figure 15a,c,e,g,i), a local maximum of ωz forms near the wall, hereafter referred to as
the ‘inverted lower’ high-shear layer and labelled as ‘IL’, resembling that of the ideal-
gas APG case. Its origin is linked to the downstream-convected near-wall separation
zone (highlighted in cyan) below the 2-D billow trough, which induces a local high-
shear velocity profile (see figure 10a). This layer is unstable to 3-D perturbations (cf.
the stationary laminar separation bubble; Maucher et al. 2000) due to strong near-wall u′
disturbances (see inset in figure 15c), which are transported downstream with the shear
layer. Similar to the 2-D investigation (figure 10c), they correspond to a strong near-wall
amplitude of mode (1, 0) and its higher harmonics. Mode (1/2, 1), which was absent

1025 A59-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
99

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10993


Journal of Fluid Mechanics

Rex/105 Rex/105

0

1

2

3

IL

UL

0

1

2

3

IL

UL

0

1

2

3

IL –0.15

0

0.36
UL

–0.36

0
0.10

0

1

2

3

7.0 7.2 7.4
0

1

2

3

7.0 7.2 7.4

ωz

–2.00

–1.00

0.0

T
im

e:
 t/

T 0
Co-peak Peak

y/
δ 9

9
,0

y/
δ 9

9
,0

y/
δ 9

9
,0

y/
δ 9

9
,0

y/
δ 9

9
,0

u′u′

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

Figure 15. Case Tw110-LA. Instantaneous contours of spanwise vorticity ωz in the Rex –y/δ99,0 plane at
(a,b) t/T0 = 0, (c,d) t/T0 = 0.25, (e, f ) t/T0 = 0.5, (g,h) t/T0 = 0.75, and (i, j) t/T0 = 1.0. Here, T0 is the
period of the fundamental wave. The first column (a,c,e,g,i) corresponds to the spanwise ‘co-peak’ location at
z/λz = 0 (see figure 14), while the second column (b,d, f ,h, j) corresponds to the spanwise ‘peak’ location at
z/λz = 0.5 (see figure 14). The ‘upper’ and ‘inverted lower’ high-shear layers are labelled as ‘UL’ and ‘IL’,
respectively. The near-wall region for which u < 0 is coloured in cyan. The Widom line y = yWL lies within the
green region, i.e. between 95 % max{cp} and max{cp}.

in § 4.2, reaches its peak at y/δ99,0 ≈ 1 (not shown). Over time, the ‘inverted lower’ layer
evolves: its head is pushed towards the wall, while its leg is lifted upwards (figure 15e). The
secondary vortex system shown in figure 14(b) then develops above it, again reminiscent
of the ideal-gas APG case. The two oppositely signed vortical structures transport low-
velocity, low-density fluid upwards, as seen in the ρu contours in figure 14(b). At later
times (figure 15g,i), the ‘inverted lower’ layer merges with a second high-shear layer,
crossing the entire boundary layer.

At t/T0 = 1, the flow structures at the ‘co-peak’ location match those at the ‘peak’
location at t/T0 = 0 in figure 15(b), indicating the staggered, periodic breakdown pattern
of case Tw110-LA. The newly formed shear layer initially consists of two adjacent,
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Figure 16. Case Tw110-IA. Instantaneous isosurfaces of (a) spanwise vorticity |ωz | = 0.45 and (b) streamwise
vorticity |ωx | = 0.45, coloured by the streamwise momentum ρu magnitude at t/T0 = 0.5. Here, T0 is the
period of the fundamental wave. For better visualisation, the domain is copied once in the spanwise direction.

streamwise-aligned, counter-rotating vortex filaments. As it becomes increasingly unstable
in figure 15(b,d, f ), it rolls up and breaks into small-scale structures (see the secondary
vortex system at ‘peak’ locations near Rex/105 ≈ 7.35 in figure 14). Simultaneously,
the ‘upper’ high-shear layer (‘UL’ in figure 15b,d, f ) also destabilises and breaks up
into numerous small vortical structures (figure 15h, j), generating an isolated hairpin-
like vortex, captured by the ωz isocontours at Rex/105 ≈ 7.5 in figure 14(a). Note that
the breakdown to turbulence is initiated by the earlier break-up of the ‘inverted lower’
layer at the ‘co-peak’ positions, which precedes the break-up of the ‘upper’ layer at the
‘peak’ positions. This sequence is also evident in figure 12(b), where near-wall turbulence
triggered by the ‘inverted lower’ layer emerges significantly farther upstream than the
small-scale structures in the boundary-layer core, which are caused by the break-up of
the ‘upper’ layer.

5.2.2. Case Tw110-IA: detailed breakdown analysis
Figure 16(a,b) show isocontours of ωz and ωx for case Tw110-IA, respectively, at the same
time step as in figure 12(c). The visualisation spans two spanwise wavelengths to capture
the full structure. Unlike case Tw110-LA, mode (1, 0) retains a high amplitude over a
longer streamwise distance, allowing the 2-D billow roll-ups to grow farther downstream,
with intensified billow crests and larger near-wall separation zones.

A key difference between Tw110-IA and Tw110-LA lies in the 3-D disturbance evolution
during the breakdown. In the former, following the nonlinear amplification of 3-D modes,
Λ-like vortices (see figure 16) form gradually inside each streamwise-convected 2-D
billow roll-up. Unlike the abrupt, staggered onset in case Tw110-LA, these vortices emerge
naturally in an aligned formation without the external forcing of modes (0, 1) or (1, ±1);
cf. Rist & Fasel (1995). This development inside the single billow roll-up is highlighted
in figure 17 between t/T0 = 0.5 and t/T0 = 1.0 (7.42 ≤ Rex/105 ≤ 7.79). As the billow
roll-up travels downstream, the separation zone at the spanwise ‘peak’ location weakens
(see inset of figure 17b) due to the recirculation of high-velocity fluid toward the wall by
the Λ-vortex legs. The rapid growth of the 3-D modes around Rex/105 ≈ 7.6 intensifies
the ‘upper’ layers at the ‘peak’ locations (z = 0.5λz, 1.5λz, . . .), which emerge from the
billow crest. Meanwhile, the near-wall separation zones generate small, oppositely signed
longitudinal vortices (inset of figure 17c). At t/T0 = 1, the spanwise ‘peak’ features
an ‘upper’ high-shear Λ-shaped layer (see |ωz| = const. contours in figure 17e), which
enhances the spanwise flow modulation, while its legs are pushed closer to the wall, giving
rise to regions of high ωz and additional secondary vortical structures; cf. Rist & Fasel
(1995). This ‘upper’ layer is analogous to that of case Tw110-LA in figure 15. Upstream,
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Figure 17. Case Tw110-IA. Instantaneous contours of streamwise vorticity ωx and velocity u∗/u∗∞ in the
z/δ99,0–y/δ99,0 plane at (a,b) t/T0 = 0.5 (Rex/105 = 7.62), (c,d) t/T0 = 0.75 (Rex/105 = 7.70), and (e–h)
t/T0 = 1.0. Here, T0 is the period of the fundamental wave. The dashed black lines in (a,c,e,g) indicate contours
of |ωz | = 0.45, while the black lines in (b,d, f ,h) correspond to δ99. The ‘upper’ and ‘inverted lower’ high-shear
layers are labelled as ‘UL’ and ‘IL’, respectively. The near-wall region for which u < 0 is coloured in cyan. The
Widom line y = yWL lies within the green region, i.e. between 95 % max{cp} and max{cp}.

the ‘inverted lower’ layer develops inside the boundary layer in a manner analogous to
that observed in case Tw110-LA, transforming the initial ‘peak’–‘valley’ splitting into a
‘peak’–‘co-peak’ breakdown scenario. This high-shear layer originates at the trough of
the billow roll-up and generates strong secondary low-density co-rotating vortices at the
intermediate spanwise ‘co-peak’ locations (figure 17g,h), which travel faster than the flow
in the near-wall region of the spanwise ‘peak’. These longitudinal structures, visible in
figure 16 around Rex/105 ≈ 7.8, break up earlier than the far-wall hairpin-like vortices, and
contribute to the formation of turbulent structures also at the spanwise ‘co-peak’ locations.

5.3. Integral quantities
To illustrate the transition process, figure 18 presents isocontours of time- and spanwise-
averaged streamwise velocity and density. The velocity profiles in figure 18(a,b) illustrate
the transition to turbulence for cases Tw095-LA and Tw110-LA, respectively. In the latter,
the near-wall separation zones are absent, as they are convected downstream and disappear
on average. In the turbulent regime, the velocity and density profiles of both cases become
qualitatively similar, regardless of whether the fluid is weakly or strongly non-ideal. In the
strongly non-ideal case Tw110-LA, after transition to turbulence, the Widom line (coloured
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in green in figure 18d) shifts significantly closer to the wall, considerably reducing the
height of the vapour-like region compared with the laminar regime. The implications of
this shift on the turbulent boundary layer are discussed in § 6.

To quantitatively characterise the transitional boundary layers following the qualitative
analysis in § 5.2, the streamwise evolution of the time- and spanwise-averaged skin-friction
coefficient Cf and the Stanton number St is examined. These quantities are defined in
dimensionless form as

Cf = τ ∗
w

0.5ρ∗∞u∗2∞
= 2τw

Re
, St = q∗

w

ρ∗∞u∗∞
(
h∗

aw − h∗
w

) = qw

Re Pr∞ Ec∞ (haw − hw)
,

(5.1a,b)
where the non-dimensional characteristic parameters are defined in (2.3a–c). The adiabatic
wall enthalpy h∗

aw = h∗∞ + ru∗2∞/2, where the recovery factor r = (haw − h∞)/(h0 − h∞)

(h0 is the total enthalpy) is given as Pr1/3∞ = 1 (White 2006), can be expressed in
reduced form as hr,aw = hr,∞ + r M2∞a2

r,∞/2, where the free-stream reduced enthalpy is
defined as hr,∞ = er,∞ + pr,∞/ρr,∞. It is important to note that the assumption r ≈ 1 has
been verified in the laminar boundary layer under transcritical conditions (not shown).
Figure 19(a,b) show the streamwise evolutions of Cf and St , respectively, for all cases in
table 2. The theoretical laminar curves Cf,lam. and Stlam. for a non-ideal fluid are derived
from (5.1a,b) using the self-similar Lees–Dorodnitsyn variables as

Cf,lam. =
√

2Cw

Re
∂u

∂η

∣∣∣∣
w

, Stlam. = 1√
2 Re Ec∞ (haw − hw)

Cw cp,r,w

Prw cp,r,∞
∂T

∂η

∣∣∣∣
w

, (5.2a,b)
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Figure 19. Time- and spanwise-averaged (a) skin-friction coefficient Cf , (b) Stanton number St , and (c) shape
factor H12, as functions of Rex . Solid lines denote DNS results, while circle symbols represent the self-similar
laminar correlations from (5.2a,b) with initial conditions as in § 3.1. In (a,b), the theoretical incompressible
skin-friction coefficient and the theoretical incompressible Stanton number using the Reynolds analogy
St = 0.5Cf Pr−2/3∞ are represented by square and diamond black symbols, respectively (White 2006). Note
that for TadIG, St = 0 due to adiabatic wall conditions. In (c), the theoretical incompressible shape factor is
indicated with triangle black symbols (White 2006).

where ∂u/∂η|w and ∂T/∂η|w are the wall-normal gradients of the laminar streamwise
velocity and temperature in figure 3, respectively, and Cw = ρwμw is the Chapman–
Rubesin parameter at the wall. In contrast, turbulent correlations for non-ideal wall-
bounded flows are not yet available. An estimation is presented in § 6, where we introduce
an accurate estimation solver.

The skin-friction and Stanton number curves initially follow the laminar trend in all
cases. In Tw095-LA, both ∂u/∂η|w and Cw in (5.2a,b) resemble the ideal-gas case,
resulting in a Cf,lam. distribution that closely matches the ideal-gas case. In contrast, for
both Tw110-LA and Tw110-IA, despite a fuller laminar velocity profile, Cw is significantly
below unity due to density and viscosity stratification. Thus CT w110

f,lam. < CT w095
f,lam. . A similar

trend holds for St in figure 19(b). In Tw095-LA, St closely matches the incompressible
limit, i.e. St = 0.332 Pr−2/3/Re. In Tw110-LA and Tw110-IA, the enthalpy difference
(haw − hw) is significantly larger, yielding StT w110

lam. < StT w095
lam. .

In Tw095-LA, transition begins as mode (1/2, 1) overtakes (1, 0) and its amplitude
exceeds 1 %. Between Rex/105 ≈ 5.3 and 6.0, coinciding with the saturation of (1/2, 1)

and other 3-D modes, both Cf and St level off as elongated Λ-vortices become the
predominant flow structures. At Rex/105 ≈ 6.0, a sharp rise in Cf and St is observed,
as the amplification of modes (1/2, 1), (0, 2) and higher 3-D modes leads to strong MFD
and the roll-up of the Λ-vortices into hairpin vortices that evolve into ring-like structures.
Consequently, both Cf and St overshoot, consistent with the ideal-gas case TadIG.

In Tw110-LA and Tw110-IA, transition is delayed. The Cf and St curves begin to deviate
from the laminar predictions around Rex/105 ≈ 5.7, following the subharmonic resonance
of modes (1, 0) and (2, 0), and the appearance of near-wall separation zones. However,
these separation zones are convected downstream such that the average Cf remains posi-
tive, unlike a classic laminar separation bubble, which exhibits negative Cf due to a larger,
quasi-steady separation region (Alam & Sandham 2000). The Cf and St curves for cases
Tw110-LA and Tw110-IA remain identical up to Rex/105 ≈ 6.9, beyond which Tw110-LA
exhibits a rapid rise in Cf due to the abrupt amplification of 3-D disturbances. In contrast,
Tw110-IA shows a sharp increase in both Cf and St only at Rex/105 ≈ 7.65, followed by a
kink in their evolutions around Rex/105 ≈ 8.2, associated with the strong saturation of the
steady modes (0, 1) and (0, 2). Qualitatively, the minor decrease in Cf and St corresponds
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to the region between the break-up of two spanwise rollers, where no prominent vortical
structures are observed (see figure 12(c) between Rex/105 ≈ 8.0 and 8.1). Further
downstream, the distributions of both transcritical cases gradually level off without a
pronounced overshoot. Although mode (0, 0), representing the wall-normal amplitude
maximum, is approximately as large as in the subcritical case, the longitudinal vortex mode
(0, 2) is significantly smaller, and no distinct overshoot appears. Accordingly, the reduc-
tion in Cf and St is more pronounced in the turbulent regime than in the laminar region,
when compared to the subcritical case. The contribution of μ′ ∂u′/∂y|w to the wall shear
stress τw is found to be negligible. Despite different initial forcings, the Cf and St curves
of Tw110-LA and Tw110-IA converge as expected towards the same turbulent values.

The streamwise development of the shape factor H12 = δ1/θ , where δ1 =∫∞
0 (1 − ρu) dy is the displacement thickness, and θ = ∫∞

0 (ρu)(1 − u) dy is the
momentum thickness, is shown in figure 19(c). In the transcritical cases, the increase of
H12 (H12 ≈ 3.76) in the laminar boundary layer is driven by a significant rise in δ1, caused
by the reduction in streamwise momentum ρu in the near-wall vapour-like regime, and
a decrease in θ resulting from the fuller velocity profile compared to the subcritical case.
Before H12 drops to approximately 2.0, primarily due to the sharp rise in the turbulent
θ value (see figure 18b), it exhibits minor oscillations between Rex/105 ≈ 5.0 and 6.0,
attributed to the localised increase and decrease in δ1 over the near-wall separation zones.

6. Turbulent boundary layer
After breakdown, we apply mean-flow scaling theories to the turbulent boundary layers
of the subcritical case Tw095-LA and the transcritical case Tw110-LA (see table 1).
Specifically, we examine whether the velocity profiles, after transformation, collapse onto
the velocity profile of a constant-property boundary layer. If such a collapse is observed,
then the transformed profiles will be used to estimate the turbulent skin-friction coefficient
Cf and Stanton number St , in order to assess whether these parameters can be predicted
for fluids at supercritical pressure.

6.1. Mean velocity and enthalpy–velocity transformations
We consider the transformation proposed by Patel et al. (2016) and Trettel & Larsson
(2016), which extends the van Driest (1951) velocity transformation (subscript vD) defined
as u+

vD = ∫ u+
0

√
ρ/ρw du+, by accounting for spatial variations in the viscous length scale

δ�
v in the near-wall region. It is formulated as

u � =
∫ u+

0

(
1 − y

δ�
v

dδ�
v

dy

)
uτ

u�
τ

du+︸ ︷︷ ︸
du+

vD

, (6.1)

where the superscripts + and � indicate non-dimensionalisation by the viscous length
scale δv and friction velocity uτ (as defined in Appendix A), and by the semi-local viscous
length scale δ�

v = μ/(ρu�
τ ) and semi-local friction velocity u�

τ = √
τw/ρ, respectively. The

Reynolds (time and spanwise) average of a given variable χ is expressed as χ = χ − χ ′,
with χ ′ denoting the corresponding fluctuation. It is worth noting that the semi-local Mach
number Mτ = uτ /aw remains much smaller than unity across the entire domain (with
maximum value 0.025). Therefore, the transformation recently proposed by Hasan et al.
(2023), which extends (6.1) to account for intrinsic compressibility effects, would yield
results equivalent to u �.
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Figure 20. Wall-normal profiles of the transformed streamwise velocity using (a) van Driest (1951)
and (b) Patel et al. (2016). Cases Tw095-LA and Tw110-LA are shown in orange at Reθ = 1387 (Rex =
1.0 × 106) and in red at Reθ = 881 (Rex = 1.06 × 106), respectively. Grey dash-dotted lines denote the linear
and logarithmic laws (a) (1/κ) log y+ + C , (b) (1/κ) log y� + C , with κ = 0.41 and C = 5.2. Blue shows the
ideal-gas case TadIG at Reθ = 1190 (Rex = 0.8 × 106).

Figure 20(a,b) show the transformed Reynolds-averaged mean velocity profiles for
u+

vD and u� on logarithmic scales of y+ and y�, respectively. The turbulent profiles are
extracted near the end of the computational domains to ensure well-developed turbulent
boundary layers: for Tw095-LA at Reθ = 1387 (Rex = 1.0 × 106), for Tw110-LA at Reθ =
881 (Rex = 1.06 × 106), and for TadIG at Reθ = 1190 (Rex = 0.8 × 106). As expected, both
velocity transformations of the subcritical case Tw095-LA show a good collapse with
the velocity of the constant-property turbulent boundary layer (case TadIG), due to the
low variation of thermophysical properties across the boundary layer. In contrast, the van
Driest (1951) scaling shows a large offset in the logarithmic region for the transcritical
case Tw110-LA. For this case, the large near-wall variation of the viscous length scale
must be taken into account. With this correction, (6.1) clearly improves the collapse with
the constant-property boundary layer (see figure 20b).

Contrary to the findings of Kawai (2019), this collapse is achieved for the following
reasons: in case Tw110-LA, the wall-normal velocity in the boundary layer remains
relatively small, with v/u∞ ≈ 0.2 %. Furthermore, the density and viscosity fluctuations,

which peak in the buffer layer, are moderate, of the order of
√

ρ′ρ′/ρ and
√

μ′μ′/μ ≈ 0.3,
respectively. By contrast, in the transcritical case investigated by Kawai (2019) at a higher
reduced pressure (pr ≈ 1.28) but significantly larger wall-to-free-stream temperature
ratios (T ∗

w/T ∗∞ ≈ 4–8), the wall-normal velocity reached approximately 1.5 %, while

the density and viscosity fluctuations reached
√

ρ′ρ′/ρ ≈ 1.0 and
√

μ′μ′/μ ≈ 0.4,
particularly in the logarithmic layer. These strong fluctuations led to large near-wall
convective flux and an overshoot of the Reynolds shear stress surpassing unity in the
logarithmic region, ultimately causing the failure of the velocity transformation. In our
case, however, the total stress balance, on which the Patel et al. (2016) transformation
relies, is still mainly governed by the viscous and turbulent stresses under transcritical
conditions. Overall, the transformed velocity profiles indicate that the flow has transitioned
into the fully turbulent regime by the end of the computational domain.

Next, we focus on estimating the mean thermodynamic properties to develop a
predictive model for Cf and St , which remains unknown for turbulent boundary layers
with highly non-ideal fluids. One possible approach is to directly integrate the total
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Figure 21. Case Tw095-LA (Reθ = 1387) in orange and Tw110-LA (Reθ = 881) in red: (a) mixed Prandtl
number Prm , (b) turbulent Prandtl number Prt , and (c) mean molecular Prandtl number Pr and cp/cp,∞ (red
dash-dotted line) for case Tw110-LA.

heat flux from the wall to the free stream to reconstruct the temperature field. However,
this method is cumbersome, as it requires an iterative procedure on the heat flux to
match the prescribed wall-to-free-stream temperature ratio, combined with a turbulence
model that itself depends on the velocity field as well as the density- and temperature-
dependent thermodynamic properties. As a more practical alternative, we examine the
mean temperature–velocity correlations, which offer a simpler route. When non-ideal-
gas effects become significant, enthalpy-based relations must be employed, as enthalpy
is no longer a linear function of T but instead depends on another thermodynamic
property. Furthermore, classical enthalpy-based relations such as Crocco–Busemann
(Smits & Dussauge 2006), or the relations of Walz (1969) and Duan & Martín
(2011), assume a constant mixed Prandtl number Prm (Prm = 1 in Crocco–Busemann),
defined as

Prm = (μ + μt )cp

κ + κt
, with μt = −ρ ũ′′v′′

∂ ũ/∂y
and κt = −cpρ ˜v′′T ′′

∂ T̃ /∂y
, (6.2)

where μt and κt are the eddy viscosity and eddy conductivity, respectively. Note that
χ̃ = ρχ/ρ denotes the Favre average, with χ ′′ as the Favre fluctuation.

The mixed Prandtl number Prm , turbulent Prandtl number Prt = μt c p/κt , and molecular
Prandtl number Pr are plotted in figure 21(a–c), respectively, for the subcritical and
transcritical cases. In case Tw095-LA, the mixed Prandtl number remains approximately
constant and close to unity across the boundary layer (Prm,w ≈ 1.06), despite the turbulent
Prandtl number decreasing to approximately 0.7 in the outer region (see figure 21b).
The evolution of Prm confirms the assumption underlying the aforementioned enthalpy-
based relations with a constant Prandtl number. Under transcritical conditions, however,
Prm deviates from unity in the logarithmic region, reaching 1.84 in the buffer layer
before dropping below unity in the viscous sub-layer (Prm,w ≈ 0.51). Observing the mean
molecular Prandtl number Pr in figure 21(c), its behaviour underlines that the evolution
of the Prm is dominated by molecular diffusion. The strong increase and subsequent
decrease of Prm towards the wall are proportional to the variation of cp, indicating that
the Widom line is predominantly located in the buffer layer in the turbulent regime. In
contrast, the turbulent Prandtl number moderately decreases from unity in the near-wall
region to approximately 0.6.

To address the variable Prm in the highly non-ideal case Tw110-LA, we consider the
variable-Prandtl theory of van Driest (1955). For a turbulent boundary layer in mean steady
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Figure 22. Reynolds-averaged mean enthalpy from the variable-Prandtl theory of van Driest (1955) in black
for (a) Tw095-LA at Reθ = 1387 (DNS profile in orange) and (b) Tw110-LA at Reθ = 881 (DNS profile
in red). In grey is shown the relation of Walz (1969) as h/h∞ = hw/h∞ + (haw − hw)(u/u∞)/h∞ −
ru2∞(u/u∞)2/(2h∞).

state over a ZPG flat plate, it holds that(
i
′

Prm

)′
+ (1 − Prm)

τ ′

τ

(
i
′

Prm

)
= −u2∞

h∞
, (6.3)

where i = h/h∞ is the mean enthalpy ratio, τ is the total shear stress, and (·)′ indicates
differentiation with respect to ur = u/u∞. Integrating (6.3) yields

i = hw

h∞
− S

S∞

(
hw

h∞
− 1

)
+ u2∞

h∞

[ S
S∞

R∞ −R
]
, (6.4)

where the functions S and R are defined as

S =
∫ ur

0
Prm exp

[
−
∫ τ

τw

1 − Prm

τ
dτ

]
dur , (6.5a)

R=
∫ ur

0
Prm exp

[
−
∫ τ

τw

1 − Prm

τ
dτ

] {∫ ur

0
exp

(∫ τ

τw

1 − Prm

τ
dτ

)
dur

}
dur .

(6.5b)

Note that for Prm = 1 and Prm = const., the classical relations of Crocco–Busemann
(Smits & Dussauge 2006) and Walz (1969) are recovered, respectively.

Figure 22(a,b) compare (6.4) against DNS data for the heated case Tw095-LA
(T ∗

w/T ∗∞ = 1.056) and Tw110-LA (T ∗
w/T ∗∞ = 1.222), respectively. For the subcritical case,

van Driest’s relation accurately predicts h/h∞ and aligns with Walz’s relation as Prm ≈
const. However, for the highly non-ideal fluid with strongly varying mixed Prandtl number,
as seen in figure 21(a), Walz’s relation becomes particularly inaccurate in the inner layer.
From u/u∞ ≈ 0.6, or y� ≈ 20, the enthalpy undergoes a significant increase, which only
van Driest’s relation is able to capture in good agreement with the DNS data.

6.2. Estimating mean profiles and fluxes
We now follow the approach of Hasan et al. (2024) to predict the drag and heat transfer,
and compare the results to the available DNS data (see figure 19). In this approach, the
mean shear is integrated from the wall to the free stream to obtain the streamwise velocity,
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using a combination of inner- and outer-layer modelling approximations. The inner-layer
eddy viscosity is modelled using the Johnson–King mixing-length formulation (Johnson &
King 1985), accounting for variations in viscous length and velocity scales, while the
outer layer is described by Coles’ law of the wake (Coles 1956), modified to include
mean density variations. The corresponding thermodynamic properties, e.g. ρ, T , μ, κ and
Pr, are computed using the VdW EoS, under the assumption of constant thermodynamic
pressure, and the JST model, with both expressed as functions of the enthalpy obtained via
van Driest’s variable-Prandtl theory. Note that two additional assumptions are made: (i)
Prm ≈ Pr (compare figure 21a,c), and (ii) the shear distribution follows van Driest (1955),
i.e. τ/τw ≈ 1 − exp[−κ/

√
Cf /2(1 − ur )], with κ = 0.41 as the von Kármán constant. For

further details on the analytical solver, refer to the source code available on GitHub
(https://github.com/pcboldini/DragAndHeatTransferEstimation_NonIdealFluids).

Figure 23 presents the predicted temperature, density, viscosity and velocity profiles
from the analytical solver (‘Estimation’) compared with the DNS profiles for cases
Tw095-LA and Tw110-LA. In the subcritical case, the estimated profiles are in very
good agreement with the DNS solution. In the transcritical case, the temperature
profile in figure 23(b) shows minimal deviations in the buffer layer but successfully
approximates the wall heat flux qw. The estimated profiles for density (figure 23d)
and viscosity (figure 23f ) differ significantly only in the buffer layer, where the largest
discrepancies in h are observed. Note that Jensen’s inequality, i.e. χ 
= χ(h, p), applies
to these thermophysical quantities (Nemati et al. 2015), due to their sharp curvature
around the pseudo-critical point, i.e. max{cp}, and their large fluctuations present
specifically in the buffer layer. Conversely, the estimated velocity profile agrees very
well with the DNS solution, as it results from integration across both inner and outer
layers.

Before addressing the prediction of the skin-friction coefficient and Stanton number, we
first examine the Reynolds analogy, which relates skin friction and heat transfer. Using
the Reynolds analogy factor s = 2St/Cf = q∗

wu∗∞/(τ ∗
w(h∗

aw − h∗
w)), we investigate how

non-ideal-gas effects may disrupt the classical coupling between momentum and thermal
transport. The impact of the Reynolds analogy is shown in figure 24. In the laminar
boundary layer, strong property variations in the transcritical regime reduce the Reynolds
analogy factor below unity (s ≈ 0.89). In the transitional region, the value of s rises
above unity in both thermodynamic regimes due to the gradual development of turbulent
structures. Interestingly, s appears largely insensitive to the degree of fluid non-ideality in
the turbulent boundary layer. Here, the Reynolds analogy holds in both thermodynamic
regimes, with s ≈ 1. The behaviour aligns with trends observed in ideal-gas turbulent
boundary layers, where s was found to be unaffected by variations in wall temperature
and Mach number (Wenzel et al. 2021). Nevertheless, a more comprehensive investigation
over a broader Reynolds number range would be needed to extend the applicability of these
results to other non-ideal fluid flows. Note that the turbulent Reynolds analogy factor,
calculated according to the variable-Prandtl theory of van Driest (1955) in (6.3), with
s = S∞, follows the DNS results only in the subcritical regime. In the transcritical regime,
larger deviations in the estimation of τ are observed.

In figure 25(a,b), the DNS and estimated values of the skin-friction coefficient Cf and
Stanton number St are plotted as functions of Reθ . The predictions of Cf show good
agreement with the DNS curves beyond the respective overshoots. Moreover, the less
pronounced overshoot in Cf for case Tw110-LA is confirmed. In contrast, the St prediction
reveals good accuracy only for the subcritical case Tw095-LA. For the highly non-ideal
case Tw110-LA, the St number is over-predicted by ∼30 % at Reθ = 881 due to a slightly
higher estimated wall heat flux in figure 23(b). Note that the error in the Stanton number
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Figure 23. Estimated mean (a,b) temperature T /T∞, (c,d) density ρ/ρ∞, (e, f ) viscosity μ/μ∞, and
(g,h) streamwise velocity u+ profiles (dashed grey lines) compared to DNS results (solid lines, case Tw095-LA
(Reθ = 1387) in orange, and case Tw110-LA (Reθ = 881) in red).
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Figure 25. Case Tw095-LA (orange) and Tw110-LA (red): (a) skin-friction coefficient Cf and (b) Stanton
number St as functions of the momentum-thickness Reynolds number Reθ . In (a,b), solid lines correspond to
the DNS results, while dashed lines denote the analytical estimations. In (b), dotted lines represent St = C ′

f /2
(Pr∞ = 1) according to the Reynolds analogy, where C ′

f is the analytical prediction from (a).

prediction using the relation of Walz (1969) reaches ∼200 % at Reθ = 881. Interestingly,
when applying the Reynolds analogy St = C ′

f /2 for Pr∞ = 1, verified in figure 24, and
using C ′

f from the analytical prediction in figure 25(a), the estimated St curve closely
agrees with the DNS results in the turbulent regime. In conclusion, this behaviour suggests
that even under the examined transcritical conditions with variable mixed Prandtl number,
the Reynolds analogy may remain a robust tool for predicting the turbulent heat transfer in
ZPG flat-plate boundary layers.

7. Conclusions
Direct numerical simulations (DNS) are performed to investigate the laminar-to-turbulent
transition of zero pressure gradient flat-plate boundary layers at supercritical pressure with
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wall heating to trigger Mode-II instability. Two flow cases are defined based on the pseudo-
critical temperature T ∗

pc, both featuring a liquid-like free stream (T ∗∞ < T ∗
pc): one in the

subcritical, liquid-like regime with T ∗
w < T ∗

pc, and one in the transcritical (pseudo-boiling)
regime with a vapour-like near-wall region (T ∗

w > T ∗
pc).

First, only a single fundamental two-dimensional (2-D) wave is excited. Under linear
forcing, the Mode-II instability in boundary layers is shown to result from the combination
of shear and baroclinic effects, producing two out-of-phase vorticity waves around the
critical layer. This confirms the model proposed by Bugeat et al. (2024) in plane Couette
flow. As the 2-D wave forcing is increased, nonlinearity saturates the unstable 2-D
wave in the subcritical regime, case Tw095. Conversely, in the transcritical heating
regime, case Tw110, nonlinear excitation of higher harmonics emerges in the vicinity
of the forcing strip. The first higher harmonic (2, 0) outgrows the primary mode (1, 0)

further downstream. A strong modal interaction follows, leading to the development
of subharmonic resonance of mode (1, 0) relative to the now dominant (2, 0) mode.
This resonant interaction, similar to the vortex pairing in mixing layers, accelerates the
nonlinear breakdown and induces the billowing motion of the Widom line within the
boundary layer. The resulting behaviour closely resembles the classical Kelvin–Helmholtz
instability in shear layers, generating a sequence of billow structures that grow within the
boundary layer in the streamwise direction. In addition, large velocity perturbations near
the wall cause periodic, localised flow reversal, with a generalised inflection point and a
density-weighted vorticity maximum, indicative of inviscid instability. The formation of
localised separation zones, absent under weakly non-ideal-gas conditions, is analogous to
that observed in the ideal-gas regime with a prescribed (strong) adverse pressure gradient
(APG).

Subsequently, the three-dimensional (3-D) breakdown to turbulence is investigated by
building upon the 2-D nonlinear analyses of both subcritical and transcritical cases. In
addition to the large-amplitude 2-D wave, a pair of subharmonic oblique waves at half the
frequency of the primary wave is introduced. The amplitude of the oblique waves is either
infinitesimally small (‘IA’) or finitely large (‘LA’).

In the subcritical regime, case Tw095-IA reveals that infinitesimal 3-D perturbations fail
to trigger transition within the considered Reynolds number range. Conversely, in Tw095-
LA, the classical H-type breakdown is triggered with a sharp skin-friction overshoot,
resembling the ideal-gas reference case of Sayadi et al. (2013). However, the onset of
the staggered, streamwise-elongated Λ-vortices is delayed compared to the ideal-gas case.

In the transcritical heating regime, despite stronger primary wave growth, transition
to turbulence is delayed compared to the subcritical regime, given the same forcing
parameters. In analogy with the 2-D nonlinear analysis, spanwise-oriented billows initially
dominate the early transitional stage, with downstream-convected near-wall separation
zones causing a moderate rise in Cf and St , neither of which becomes negative. In Tw110-
LA, subharmonic resonance emerges only after vortex pairing between mode (1, 0) and its
first higher harmonic (2, 0). Once the 3-D subharmonic reaches finite amplitude, all 3-D
modes undergo abrupt nonlinear amplification. This leads to the formation of alternating
high-shear layers at spanwise ‘peak’ and ‘co-peak’ (half a spanwise wavelength apart)
positions, similar to the K-type breakdown with APG (Kloker 1993; Kloker & Fasel 1995).
The ‘co-peak’ high-shear layer, induced by near-wall separation, breaks up first, triggering
near-wall longitudinal structures ahead of the outer-region hairpin-like vortices.

In contrast, case Tw110-IA, with infinitesimally low subharmonic 3-D forcing, reveals
that no oblique-wave forcing is needed to trigger transition, despite its onset shifting
slightly downstream compared to Tw110-LA. As a result, the primary 2-D wave
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is amplified to higher amplitude levels, initiating a rapid fill-up of the spectrum
of all 3-D modes from the low numerical background noise, with a fundamental-
resonance/breakdown mechanism emerging. In other words, subharmonic resonance is no
longer the dominant secondary-instability mechanism under low-noise conditions. Three-
dimensionality within each spanwise-oriented billow develops gradually, with aligned
Λ-vortices progressively forming and breaking up similar to case Tw110-LA.

The Cf and St curves of both transcritical cases are characterised by: (i) the absence of
a sharp skin-friction overshoot, due to the lack of strong hairpin-like structures; (ii) lower
transitional momentum-thickness Reynolds numbers; and (iii) significantly higher shape
factors H12 compared to the subcritical case.

In the turbulent regime under transcritical conditions, the Patel et al. (2016) scaling
collapses well the velocity profiles. For predicting the mean enthalpy profile under
transcritical conditions, the classical enthalpy–velocity relations fail to reproduce the rapid
inner-layer enthalpy rise due to strong variations of the molecular Prandtl number. Instead,
the theory of van Driest (1955) for variable Prandtl number agrees well with the DNS data.
Based on these results, a predictive model for the turbulent skin-friction coefficient and
Stanton number of non-ideal fluid flows is developed, demonstrating good agreement with
the DNS results.

The findings in this work highlight the sensitivity of the laminar-to-turbulent transition
to both the amplitude of the 3-D perturbations and the thermodynamic state. Due to the
presence of the Widom line (pseudo-boiling effect), 2-D waves can be strongly amplified,
similar to an ideal-gas mixing layer, and may trigger transition to turbulence only from
3-D numerical background noise alone. The resulting K-type breakdown features resemble
those observed in the ideal-gas APG case – a scenario absent under ideal-gas and weakly
non-ideal-gas conditions without a streamwise pressure gradient.

Finally, these DNS investigations of controlled laminar-to-turbulent transition pave
the way for future studies of free-stream-turbulence-induced transition that may be
encountered in experimental facilities or industrial applications under pseudo-boiling
conditions.

Supplementary material and movies. Supplementary material and movies are available at http-
s://doi.org/10.1017/jfm.2025.10993.
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Appendix A. DNS set-up and grid-resolution analysis
The grid resolution, with Nx × Ny × Nz grid points, varies for each case. The grid is
uniform in the streamwise (x) and spanwise (z) directions, and stretched in the wall-normal
(y) direction according to y = ye[K1η + (1 − K1)(1 + tanh(0.5σ(η − 1)/ tanh(0.5σ))],
where η = 0, . . . , 1 and K1 = 0.6(Ny − 1)/(Reτ,0 ye). The stretching factor σ and
the inlet friction Reynolds number Reτ,0 = δ99,0/δv , with δv = μw/(ρwuτ ), and uτ =
1025 A59-38
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Case Lx L y Lz Nx × Ny × Nz Rex,0/105 �x+
max �y+

w,max �z+
max Reθ,max

Tw095 724.3 40.0 9.63 13 550 × 600 × 180 1.0 4.48 0.63 4.48 1509
Tw110 1078.0 40.0 9.63 20 150 × 900 × 180 0.58 3.49 0.49 3.49 885
TadIG 515.0 20.0 9.63 4000 × 600 × 150 1.0 10.0 0.59 4.9 1229

Table 3. Numerical parameters for the 3-D simulations (§ 5) of the flow cases listed in table 1: Lx , L y and Lz
are the sizes of the computational domain in the streamwise, wall-normal, and spanwise directions, respectively;
Nx , Ny and Nz denote the numbers of grid points in the corresponding directions; Rex,0 is the inlet Reynolds
number; �x+

max, �y+
w,max and �z+

max are the maximum grid sizes in the x-, y- and z-directions relative to the
maximum viscous length scale in the domain, μw/(ρwuτ ). In addition, the momentum Reynolds number is
defined as Reθ = ρ∗∞u∗∞θ∗/μ∗∞, based on the local momentum thickness θ∗ and free-stream properties. Note
that case Tw110 here corresponds to case Tw110-LA in table 2, whereas case Tw110-IA differs in �y+

w,max ≈
0.48, �x+ ≈ �z+ ≈ 3.39 and Reθ,max = 837.

Case Lx L y Nx × Ny Rex,0/105

Tw095 378.3 20.0 2000 × 400 0.9
Tw110 703.8 40.0 4000 × 800 0.58

Table 4. Numerical parameters for the 2-D simulations (§ 4) of the flow cases listed in table 1: Lx and L y are
the sizes of the computational domain in the streamwise and wall-normal directions, respectively; Nx and Ny
denote the numbers of grid points in the corresponding directions; Rex,0 is the inlet Reynolds number.

√
τw/ρw and τw being the friction velocity and the wall shear stress, respectively, are

chosen such that the first grid cell in the wall-normal direction, �y+
w (superscript +

denotes viscous units), remains below unity throughout the domain. At the inlet x0,
the laminar boundary layer is resolved with approximately 140 grid points in the wall-
normal direction for both supercritical cases. Tables 3 and 4 summarise the relevant grid
parameters for the 3-D (§ 5) and 2-D (§ 4) simulations, respectively.

One-dimensional non-reflecting boundary conditions for non-ideal flows (Okong’o &
Bellan 2002) are applied at: (i) the subsonic inlet (x = x0); (ii) the outlet (x = xe), with
the incoming wave amplitude set to zero; (iii) the top boundary (y = ye), with constant
pressure pr,∞; and (iv) the wall (y = 0), where no-slip and no-penetration conditions are
imposed, except in the disturbance-strip region (see § 3.2). In addition, sponge zones are
applied at the inlet, outlet and top boundaries to minimise spurious acoustic reflections
(Mani 2012), with the local solution gradually dampened towards the laminar boundary-
layer profile. The inflow sponge length (x0 < x < x0 + 20.0) and damping strength
(σp = 0.5) are the same for all simulations. For case Tw110, both the outlet (xe − 50.0 <

x < xe, σp = 0.5) and top sponge zones (ye − 13.3 < y < ye, σp = 1.0) are extended to
account for the strong fluctuations intensity, e.g. ρ′/ρ ≈ O(1) (Kawai 2019). For cases
Tw095 and TadIG, sponge zones are active in the regions xe − 20.0 < x < xe (σp =
0.5) and ye − 1.0 < y < ye (σp = 0.5). A sensitivity analysis of the grid resolution for
transcritical case Tw110 (the most computationally expensive case) is performed in the
following.

The baseline computational grid of case Tw110 (hereafter referred to as the ‘fine grid’),
reported in table 3, is coarsened by factors of approximately 1.44, 1.2 and 1.2 in the
streamwise, wall-normal and spanwise directions, respectively, resulting in a grid of
14 000 × 750 × 150 points, hereafter referred to as the ‘coarser mesh’. Uniform spacing
is applied in the streamwise and spanwise directions, while the same wall-normal grid
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Figure 26. Case Tw110-LA: streamwise development of the y-maximum (ρu)′ disturbance amplitudes of the
most relevant modes (ω/ω2-D, β/β0). Coarser-mesh results are marked with diamonds.
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Figure 27. Case Tw110-LA: time- and spanwise-averaged (a) skin-friction coefficient and (b) Stanton
number. Coarser mesh results are marked with diamonds.

clustering and �y+
w,max as the fine grid are retained. Figures 26 and 27 show that the

modal evolution, skin-friction coefficient and Stanton number remain largely insensitive
to changes in grid resolution, confirming the robustness of the 3-D simulations.

Appendix B. Laminar boundary layer
For supercritical cases Tw095 and Tw110 in table 1, a comparison is made between the
initial solution described in § 3.1 and the steady, fully developed 2-D DNS. Note that
the disturbance strip is not active in these simulations. The DNS boundary-layer profiles
in figure 28 are in strong agreement with the self-similar profiles for streamwise velocity,
temperature and density in both regimes. Minor deviations in wall-normal velocity emerge
upon crossing the Widom line (Boldini et al. 2025), caused by the non-zero DNS wall-
normal pressure gradient retained in the numerical integration of (2.1). In fact, the pressure
boundary-layer profile shown in the inset of figure 28 reveals a bump at the height of
the pseudo-critical point. This phenomenon arises due to the dependence of p on both ρ

and T . Thus the resulting pressure gradient is expressed as ∂p/∂y ∝ (∂p/∂ρ)(∂ρ/∂y) +
(∂p/∂T )(∂T/∂y). Both terms reach their maximum at the pseudo-critical point and nearly
cancel each other out. As a result, the deviation from the conventional boundary-layer
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Figure 28. The 2-D DNS laminar profiles for cases Tw095 and Tw110: (a) streamwise velocity, (b) wall-
normal velocity, (c) reduced temperature, and (d) reduced density, plotted against the self-similar wall-normal
coordinate η. The laminar self-similar solutions are indicated by circles. The DNS reduced pressure p∗/p∗

c is
plotted in the inset. The dashed green line indicates the pseudo-critical point, i.e. where T ∗ = T ∗

pc.

(a)

750650550

Re
450350 750650550

Re

cr–
α

i

450350

Tw095
Tw110

Tw095
Tw110

0.6

0.5

0.4

0.3

0.2–0.02

0.02

0.01

0

–0.01

(b)

Figure 29. Comparison between low-amplitude DNS (lines) and LST (symbols) for a 2-D wave at F2-D =
124 × 10−6: (a) growth rate −αi and (b) phase speed cr . Cases Tw095 and Tw110 (Mode II) are in orange and
red, respectively.

assumption ∂p/∂y = 0 remains minimal, thereby justifying the validity of the self-similar
boundary-layer solution used in § 3.1.

Appendix C. Linear disturbance evolution: LST versus DNS
To compare DNS with LST results in § 4.1, the disturbances are Fourier transformed in
time. The normalised disturbance growth rate and phase speed of the fundamental wave
are calculated as

αi (x) = − Re

Re0

1
ûmax

∂ ûmax

∂x
, cr (x) = ω2-D Re0

Re

(
∂φ̂

∂x

)−1

, (C1a,b)

where ûmax(x) = max {|û(x = const., y)|} and φ̂ is the phase angle arg( p̂1,w), with p̂w

being the wall pressure. Figure 29 compares the spatial amplification rate −αi and phase
speed cr for cases Tw095 and Tw110. The results reveal very good agreement between
DNS and LST, with the phase speed being less sensitive to the criterion used in (C1a,b).
However, for αi in figure 29(a), a moderate modulation near the disturbance strip is
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observed, caused by the excitation of damped waves before the most unstable mode
dominates. This behaviour is more pronounced for case Tw110. A smaller disturbance
strip and a further upstream disturbance-strip location reduce the modulation (not shown).
Thus for case Tw110, Rex,mid is shifted upstream relative to Rex,mid in case Tw095 in both
2-D and 3-D simulations (see table 2).
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