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Abstract

Low-thrust trajectories can benefit the search for propellant-optimal trajectories, but increases in modeling
complexity and computational load remain a challenge for efficient mission design and optimization. In this
work, a procedure for developing models utilizing Gaussian process regression (GPR) and classification (GPC)
is proposed to perform computationally efficient optimization while obtaining acceptable accuracies for tra-
jectories based on exponential sinusoid shaping. In the field of machine learning, Bayesian inference models
based on a Gaussian process (GP) are a flexible and computationally efficient tool to infer target values given
some observations. The goal of this work is to predict a combination of values of input variables (i.e. the
observations) which correspond to a shape-based trajectory with the smallest total velocity increment (∆V )
or smallest propellant mass fraction (Jm). In order to build the GP models, training samples are generated
using an exponential sinusoid shape to approximate low-thrust trajectories for the computation of direct in-
terplanetary transfers. A GPC model is constructed to assess whether a given combination of values for a
three-dimensional input vector corresponds to a feasible trajectory. A GPR model is then developed to predict
the total ∆V or Jm corresponding to the input vectors resulting in feasible trajectories, thereby replacing the
entire computation of the exposin shape and the integration along the shape. To investigate the applicability
of the GP based method, GPR models, which map a six-dimensional input vector containing shape informa-
tion to a ∆V or Jm value, are developed, thereby replacing only the integration along the shape.

In order to develop a GP model that fits the problem at hand, the underlying functions and parameters should
be selected rationally. In this work, a novel model development procedure is proposed to ensure that the mean
function, covariance function, likelihood function, inference method, and hyperparameters, which dominate
the performance of the models, are chosen rationally in terms of mean absolute percentage error (MAPE) and
prediction time. The development procedure consists of three parts. First, candidates which are promising
in terms of MAPE are separately sought for the mean function, covariance function, likelihood function, and
inference method. Next, these candidates are combined into several competing GP models, from which the
GP model resulting in the smallest MAPE is chosen. Finally, the hyperparameters are optimized using the
conjugent gradient method. In each part of the development procedure, k-fold cross validation is used to in-
crease the robustness of the model validation. To assess the validity of the choices made during the proposed
model development procedure, a robustness analysis is performed. Using the procedure outlined above, five
GP models are constructed and presented in this work. For each model, the number of training samples is
determined iteratively to strike a balance between accuracy and prediction time. The models are tested on
transfer trajectories from Earth to Mars and Ceres and from Mars to Earth, and their performance, in terms of
MAPE and processing time, is compared to that of more common optimization techniques such as differential
evolution in combination with the exponential sinusoid and other shape-based methods.

The results demonstrate that the computation time can significantly be reduced while achieving promising
MAPE’s, especially when the goal is to locate regions of feasible or near-optimal trajectories. When assessing
1,000,000 candidate input vectors, efficiency improvements of 150 times could be obtained using prediction
instead of trajectory computation. This speed advantage increases for an increasing number of candidates.
The robustness analysis performed here provides confidence in the choices made during the model develop-
ment procedure. Furthermore, it is found that the model which maps three variables directly to a ∆V or Jm

value performs better than the one trained with full shape information, which demonstrates the strength of
GP models as applied to low-thrust trajectory optimization. The developed GP models for the test case from
Earth to Mars are tested for their dependency on this mission scenario, and comparable results in terms of
MAPE and prediction time are achieved when the models are applied to a mission scenario with a different or
smaller range for departure date (t0) and/or time-of-flight (TOF) or a different target planet than defined for
the Earth-Mars mission scenario as presented in this work.

The work provided in this paper provides other researchers in the field of astrodynamics with a procedure
necessary to apply GP models on low-thrust trajectory design and a reference against which to validate their
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performance. In addition, given the promising performance as described in this work, researchers are encour-
aged to apply GP models to related applications in the field of astrodynamics, such as high-thrust trajectories
including gravity assists or the combinatorial problem in multiple gravity-assist mission planning. To the best
of the authors’ knowledge, the GP-based modeling procedure presented in this paper is the first to be applied
to low-thrust interplanetary trajectory design.
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Nomenclature

Note: this nomenclature applies to the appendices and is an addition to the nomenclature provided in the
conference paper in Chapter 2.

Abbreviations and acronyms
AGS = adaptive grid search
CPU = computation
DE = differential evolution
GP = Gaussian process
GPC = Gaussian process classification
GPR = Gaussian process regression
GS = grid search
NEP = nuclear electric propulsion
SEP = solar electric propulsion
TOF = time-of-flight

Symbols
θ = vector of hyperparameters
X = training input matrix
x = input vector
Y = training output vector
∆V = velocity increment [km/s]
µ(x) = mean function
θ = polar angle [rad]
ε = error measure
a = normalized thrust acceleration [-]
Cr = crossover probability
F = thrust acceleration [m/s2]
Fp = mutation probability
g0 = standard gravitational acceleration [m/s2]
Isp = specific impulse [s]
Jm = propellant mass fraction [-]
K (X , X ) = covariance matrix
k(x , x∗) = covariance function
k0 = scaling factor [km]
k1 = dynamic range parameter [-]
k2 = winding parameter [-]
N = number of revolutions
r = radial distance [km]
t = time [s]
V = velocity vector [km/s]

Subscripts
0 = initial value
f = final value
r = radial component
t = tangential component
ard = automatic relevance determination
iso = isotropic length-scale
LT = low-thrust
PP = piecewise polynomial
RQ = rational quadratic
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SE = squared exponential

Superscripts
ä̈ = second derivative with respect to time t
ä̇ = derivative with respect to time t
ä∗ = prediction data from Gaussian process
äT = transpose of a vector
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1
Introduction

In the design of space missions, it is a major challenge to bring significant amounts of payload mass to planets
in our Solar System. In the last decades, electric propulsion systems have proven to be successful during space
missions, which allow to increase the payload mass by reducing propellant mass [26] [27]. Electric propulsion
systems are characterized by their very low levels of thrust, which result in the necessity of long thrusting pe-
riods during interplanetary flight to achieve sufficient ∆V . As those propulsion systems are highly efficient,
these ∆V ’s could be obtained using limited propellant mass. The continuous-thrusting related to low-thrust
missions increases the complexity of the dynamics of the spacecraft. As a consequence, the optimization of
low-thrust trajectories becomes an actual challenge. To keep the time related to optimization of low-thrust tra-
jectories limited, preliminary optimization, where moderate accuracy is generally accepted in return for fast
computation, becomes important. The trajectories found during preliminary optimization could later on be
used as initial guess for more refined optimization of the trajectory. In the past years, several analytic shape-
based methods have been developed for the preliminary design of low-thrust trajectories [23] [5] [20] [8]. Using
a shape-based method, the trajectory is assumed to follow a specific shape.

All shape-based methods have in common that they contain free parameters, which should be optimized to
obtain optimal trajectories. Usually, trajectories are optimized for minimum ∆V , minimum propellant mass,
minimum TOF, or a combination of them. Finding the globally optimal trajectory, i.e. the overall best tra-
jectory, can be very challenging. Many optimization techniques have been developed to find global optima.
Several different ways to categorize them could be distinguished, e.g. deterministic versus heuristic [10]. Each
of these methods has its own characteristics regarding computation (CPU) speed and robustness (i.e. their
ability to converge to global optima). A similarity between these optimization techniques is the necessity of
trajectory propagation and integration. Starting from a set of initial conditions, first propagation is performed
to determine the state of the spacecraft at any instance of time (i.e the trajectory). Integration along the shape
is required to define the TOF and the efficiency (e.g. the required ∆V ). As opposed to these optimization
techniques, the entire trajectory computation could be replaced by prediction making use of machine learn-
ing algorithms. Using prediction, propagation and integration steps are no longer required, and the goal is to
predict trajectory efficiency from a set of initial conditions. The main advantage of prediction is the significant
efficiency improvements that could be obtained. Machine learning algorithms could be divided into several
types: supervised learning, unsupervised learning, reinforcement learning, feature learning, anomaly detec-
tion, sparse dictionary learning, and association rules [14]. GPR and GPC are types of supervised learning,
where a set of data contains both the desired inputs and outputs. A function able to predict the efficiency of
trajectories from initial conditions should be learned from example trajectories.

To address the applicability of GP models on low-thrust trajectory optimization, the main part of this thesis
report is written as a conference paper manuscript, which will be submitted to the Astrodynamics Specialist
Conference, hosted by the American Astronautical Society (AAS) and cohosted by the American Institute of
Aeronautics and Astronautics (AIAA). It is intended to be submitted to a journal afterwards. The conference
paper is named as follows:
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"Gaussian Process Models for Preliminary Low-Thrust Trajectory Optimization"

Chapter 2 covers the manuscript of the paper. This paper includes another abstract and introduction, after
which the modeling of low-thrust trajectories according to the exponential sinusoid is explained. Next, the
GP-based method, together with the proposed model development procedure, is presented. This is followed
by the test cases against which the method is tested, the selected GP models, and the results obtained. Finally,
the most important conclusions are discussed. Chapter 2 is followed by several appendices that support the
work that has been done, but will not be included in the conference paper itself.
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Conference paper
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1

Gaussian Process Models for Preliminary
Low-Thrust Trajectory Optimization

L. Bouwman∗, Y. Liu†, and K. J. Cowan‡

Delft University of Technology, 2629 HS Delft, The Netherlands

Abstract—Low-thrust trajectories can benefit the search for
propellant-optimal trajectories, but increases in modeling com-
plexity and computational load remain a challenge for efficient
mission design and optimization. In this paper, an approach
for developing models utilizing Gaussian Process (GP) regres-
sion and classification is proposed to perform computationally
efficient optimization while obtaining acceptable accuracies for
trajectories based on exponential sinusoid shaping. The goal of
this work is to predict a combination of values of input variables
which corresponds to a shape-based trajectory with the smallest
total velocity increment (∆V ) or propellant mass fraction (Jm ).
A GP classification model is constructed to assess whether a
given combination of values of input variables corresponds to
a feasible trajectory. GP regression models are developed to
predict the total ∆V and Jm corresponding to a combination of
shape parameters, which can replace the required integration
along the shape. In addition, advanced regression models are
developed to predict the target values while requiring only
three input parameters, thereby replacing the entire shape
computation. In order to develop a GP model that fits the
problem at hand, the underlying functions and parameters
should be selected rationally. In this work, a novel model
development approach is proposed to ensure that the mean
function, covariance function, likelihood function, inference
method, and hyperparameters, which dominate the perfor-
mance of the models, are chosen rationally in terms of mean
absolute percentage error (MAPE) and prediction time. Using
this approach, GP models are developed and tested on transfer
trajectories from Earth to Mars and Ceres, and from Mars to
Earth, and their performance, in terms of MAPE and prediction
time, is compared to that of more common optimization
techniques in combination with the exponential sinusoid and
other shape-based methods. The results demonstrate that the
computation time can significantly be reduced while achieving
promising MAPE’s, especially when the goal is to locate regions
of feasible or near-optimal trajectories. The proposed model
development procedure is tested for robustness, which provides
confidence in the proposed approach. Furthermore, it is found
that the models which map three input variables directly to a
∆V or Jm value perform better than the ones trained with shape
information, which demonstrates the strength of GP models as
applied to low-thrust trajectory optimization.

Nomenclature
Symbols
α = angle of attack [rad]
θ = vector of hyperparameters
X = training input matrix
x = input vector

∗Graduate Student, Faculty of Aerospace Engineering, Kluyverweg 1;
lievebouwman@gmail.com.

†Ph.D. Candidate, Faculty of Aerospace Engineering, Kluyverweg 1;
Yuxin.Liu@tudelft.nl.

‡Education Fellow and Lecturer, Faculty of Aerospace Engineering,
Kluyverweg 1; K.J.cowan@tudelft.nl.

Y = training output vector
∆V = velocity increment [km/s]
γ = flight-path angle [rad]
µ = gravitational parameter [m3/s2]
µ(x) = mean function
φ = phase angle [rad]
ψ = transfer angle [rad]
θ = polar angle [rad]
ε = error measure
a = normalized thrust acceleration [-]
Cr = crossover probability
F = thrust acceleration [m/s2]
Fp = mutation probability
g0 = standard gravitational acceleration [m/s2]
Isp = specific impulse [s]
Jm = propellant mass fraction [-]
K (X , X ) = covariance matrix
k(x , x∗) = covariance function
k0 = scaling factor [km]
k1 = dynamic range parameter [-]
k2 = winding parameter [-]
M = training set size
N = number of revolutions
r = radial distance [km]
t = time [s]
V = velocity vector [km/s]
Subscripts
0 = initial value
f = final value
r = radial component
t = tangential component
LT = low-thrust
MAE = mean absolute error
MAPE = mean absolute percentage error
RMSE = root mean square error
Superscripts
ä̈ = second derivative with respect to time t
ä̇ = derivative with respect to time t
ä∗ = prediction data from Gaussian Process
äT = transpose of a vector

I Introduction
Trajectories flown with low-thrust rocket engines, such
as ion propulsion systems, are attractive due to their
propellant efficiency and high reliability [1]. This becomes
especially important for interplanetary missions where
large velocity changes are generally required. To obtain
∆V values required for interplanetary flight, the engine
has to operate for thousands of hours, which complicates



the dynamics of the vehicle and results in challenging
trajectory design and optimization. Most of the methods
that are used to solve this optimization challenge for low-
thrust trajectories are based on a non-linear programming
problem. Although these methods are successful in the
detailed design of a trajectory, they fail to efficiently
explore a large number of candidate trajectories. For
the preliminary design of trajectories, analytical methods
have proven to be powerful tools. As first introduced by
Petropoulos [2], popular analytical methods make use
of shapes to approximate the spacecraft’s trajectory. The
shape-based method designed by Petropoulos makes
use of an exponential sinusoid and is, due to its wide
applicability, a well-known shape-based method. A method
to generalize the implementation of the exponential
sinusoid by using the multi-revolution Lambert’s problem
was proposed by Izzo [3]. The resulting algorithm is
able to efficiently locate near-optimal trajectories, but
a time-consuming search process is required to locate
these trajectories. Depending on the shape-based method
and the computer used, most shapes take about 0.3-2 s
computation (CPU) time per trajectory [1], which may
result in a rather slow process when a large search space
needs to be investigated. Therefore, with the increasing
interest for low-thrust trajectories, there is the necessity
of a fast calculation when exploring a search space for a
specific mission.

Gaussian Process regression (GPR) and classification (GPC)
are useful techniques to predict a large number of target
values within limited CPU time. D.G. Krige [4] was the
first to propose the GPR method with the goal to estimate
the distribution of gold. Since then, GPR has been applied
four times in the field of aerospace: 1) to evaluate the
aerodynamic coefficient of a spaceplane [5], 2) to assess
the accessibility of main-belt asteroids [6], 3) to model
the gravity field of small bodies [7] and 4) to evaluate
the Mars entry terminal state [8]. GPC has not been
used before to classify problems related to aerospace.
The main advantage of a method based on a GP is that
it is flexible and computationally efficient to handle the
relation between inputs and outputs in both regression
and classification problems [6]. As a GP model is built up
of functions, in theory an unlimited number of different
models could be developed. Generally, the GP model for
a specific problem is selected by trial and error [6] or
based on models used for comparable problems, leaving
the functionality of the model as a black box. In this
paper, a procedure for developing models using a GP is
proposed to further speed up the preliminary optimization
of low-thrust trajectories based on exponential sinusoid
shaping. The robustness of the choices made in this
development procedure is assessed.

This paper starts with discussing the implementation of
the exponential sinusoid according to the multi-revolution
Lambert’s problem, with the purpose to generate training
data for the GP models. Next, the basics of GPR and GPC

will be discussed, together with the proposed development
procedure for models based on a GP. It will be explained
how the performance of the models and the robustness of
the model development procedure will be assessed. Models
have been developed for three mission test cases. The ones
for the mission test case from Earth to Mars are presented
and their robustness is measured. The developed models
for the other two test cases are presented in the wppendix.
The performance reached for each of the test cases, in terms
of accuracy, CPU time, and the ability to locate regions
of near-optimal trajectories, is discussed, followed by the
conclusions.

II Modeling Low-Thrust Trajectories Using the
Exponential Sinusoid

A. Theory of the Exponential Sinusoid

We will start by looking at the equations of motion of a
point mass in a Newtonian gravity field when some thrust
is acting on the particle, given in polar coordinates [9]:{

r̈ − r θ̇2 +µ/r 2 = F sinα

θ̈r +2θ̇ṙ = F cosα
(1)

where µ is the gravitational parameter of the central body
spacecraft system, F is the magnitude of the thrust accel-
eration, and α is the angle of attack. F can be normalized
by the local gravitational acceleration using Equation 2.

a ≡ F /(µ/r 2) (2)

The general equation of a pure exponential sinusoid (ex-
posin) is defined by [2]:

r = k0 exp[k1 sin(k2θ+φ)] (3)

where k0, k1, k2 and φ are constants. k0 is a scaling
factor. k1 is the dynamic range parameter, which controls
the ratio of apoapsis distance to periapsis distance. k2

is called the winding parameter, since it determines the
number of revolutions until reaching apocenter. The phase
angle φ defines the orientation of the exposin in its plane.
The values of the parameters should be chosen such that
the resulting trajectory fulfills the boundary conditions
for the initial and final position and the time of flight (TOF).

The idea of Petropoulos’ work [2] is to find a solution for the
equations of motion using Equation 3. A tangential thrust
profile is assumed, such that α = γ. The flight-path angle
γ, which is equal to dr /dθ, can be written as follows:

tanγ= k1k2 cos(k2θ+φ) (4)

As thrust tangential to the velocity vector maximizes
the energy gain and thus the velocity change [9], this
assumption is deemed reasonable.
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Using Equations 1, 3, and 4, and the tangential thrust
assumption, the normalized thrust acceleration can, after
some derivations (refer to Section IX), be derived as:

a = (−1)n tanγ

2cosγ

[
1

tanγ2 +k1k2
2 s +1

− k2
2(1−2k1s)

(tanγ2 +k1k2
2 s +1)2

]
(5)

where
s ≡ sink2θ+φ (6)

when n = 0, the thrust is directed along the velocity vector
and when n = 1 against the velocity vector.

The TOF can be computed by integrating the inverse of the
angular velocity over the polar angle [3]:

TOF =
∫ t f

t0

d t =
∫ θ f

θ0

d t

dθ
dθ

=
∫ θ f

θ0

√
r 3(tanγ2 +k1k2

2 s +1)/µ dθ (7)

=
imax∑
i=1

√
r 3(tanγ2 +k1k2

2 s +1)/µ ∆θi

where imax is the specified number of intervals. Equation 7
can be solved using a numerical integration technique.

B. Implementation Using Lambert’s Approach

Although Petropoulos’ work [2] was quite successful from
a numerical point of view, it lacked a solution to go from
a generic point P1 to another point P2 in a given fixed
amount of time. In the case of ballistic arcs, this problem,
named “Lambert’s problem”, admits a number of solutions.
In line with this work, Izzo proposed the “multi-revolution
Lambert’s problem” for exponential sinusoids, which is
a convenient approach for the implementation of the
exposin [3]. It starts with assuming k2 fixed and known,
which reduces the problem to all exposins that are defined
by only three free parameters, namely k0, k1, and φ.
After simplifications of the equations, it can be derived
that with r0, r f , ψ, and the number of revolutions N
required, there exists for an assumed value of k2 a class
Sk2[r0,r f ,ψ, N ] of exposins passing through r0 and r f ,
with ψ the transfer angle. An exposin is classified as a
valid trajectory whenever the condition k1k2

2 < 1 is fulfilled.
Within a defined class, the only free parameter is γ0, which
determines the differences within the family of exposins,
namely the TOF. A numerical method can be used to find
the intersection between a given required TOF and the
TOF curve corresponding to a class of exposins. With the
value for γ0 defined, the geometric parameters (k0, k1, and
φ) can be obtained (refer to Section IX for the equations).

Using this generic approach, the problem is to choose the
shape parameter k2 for each exposin. A direct interplanetary
low-thrust transfer between two bodies will therefore have
a three dimensional input vector x = [t0,k2,TOF], where t0

is the departure date. When this input vector is known,
the ephemerides of the departure planet at departure of
the spacecraft and of the arrival planet at arrival should

be evaluated. Finally, the unique exposin matching the
requirement on TOF has to be found.

C. Total Velocity Increment Computation

The first method to measure the efficiency of trajectories
is by looking at the total velocity increment (∆V ) required
to fly a specific exposin. This value consists of a low-thrust
part along the arc (∆VLT) and two impulsive shots at
departure (∆V0) and arrival (∆V f ).

The ∆VLT can be determined by integration of the thrust
acceleration F over the flight time t , which in turn can be
obtained as a function of polar angle θ:

∆VLT =
∫ t f

0
F d t =

∫ θ f

0

F

dθ
dθ (8)

A numerical technique can be used to perform the
integration.

Impulsive shots at departure and arrival are necessary to
match the velocity vectors of the departure (Vdep) and
arrival (Varr) planets to the velocity vectors required at the
initial (V0,exp) and final (V f ,exp) position of the exposin,
illustrated by Equations 9 and 10, respectively .

∆V0 =V0,exp −Vdep (9)

∆V f =Varr −V f ,exp (10)

The velocity at any point along the exposin can be com-
puted using the radial and tangential components [?]:

Vr = r θ̇ tanγ (11)

Vt = r θ̇ (12)

where, after some derivations (refer to Section IX), the
derivative of the angular rate is found using Equation 13.

θ̇2 =
(
µ

r 3

)
1

tanγ2 +k1k2
2(sink2θ+φ)+1

(13)

The velocity vectors along the exposin should be converted
from polar coordinates to Cartesian coordinates to match
the velocities of the planets.

D. Propellant Mass Fraction Computation

A second method to specify the efficiency of trajectories is
by looking at the propellant mass fraction, using [10]:

Jm = 1−exp(− ∆V0 +∆V f

Isp,chem · g0
− ∆VLT

Isp,LT · g0
) (14)

where Isp,chem, Isp,LT, and g0 are the specific impulses for
the chemical engine, low-thrust engine, and the standard
gravitational acceleration, respectively. As payload mass
increases when propellant mass fraction decreases, the
most optimal trajectories are those with the lowest value
of Jm . Since the efficiency of the trajectories depend not
only on the total ∆V , but also on the relative magnitude
between ∆VLT and ∆V0 + ∆V f , it could be argued that Jm is
a better parameter to assess the optimality of trajectories.
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III Generation of Trajectories
In order to train any GP model, training data has to
be generated. In this work, the exposin is implemented
according to the multi-revolution Lambert’s problem to
model low-thrust trajectories. The problem is narrowed
down by assuming a transfer using an exposin with one
revolution (N = 1). The goal is to locate regions of near-
optimal trajectories within a defined three-dimensional
input space [t0,k2,TOF]. It is assumed that the spacecraft
has a mass of 1000 kg and is equipped with an ion
propulsion engine and a chemical rocket engine, with
specific impulses of 3000 s and 350 s, respectively. The
maximum achievable thrust acceleration (Fmax) of the ion
propulsion engine is taken as 3 ·10−4 km/s2 [1].

Input vectors with uniform randomly distributed values
for t0,k2, and TOF, within the defined bounds, are fed
into a program written by the authors, which computes
for each input vector the corresponding exposin, using
the approach as outlined in Section II. With the k2 and
t0 values defined by the input vector, a class of exposins,
if there exists any, can be computed (refer to Section IX
for all equations). The Regula Falsi method [11] is then
used to find within this class the unique exposins that
matches the required TOF, which is in turn evaluated
using the Midpoint method [12]. The data generation
program is implemented using the ECLIPJ2000 reference
frame with the Sun as center of the reference frame. The
JPL DE405 ephemerides [13] are used to evaluate the
ephemerides of the departure and arrival planets at times
t0 and t0+TOF, respectively. In accordance with the work
of Izzo [3], the centers of mass of the arrival and departure
planets are taken, respectively, as the r0 and r f positions.
One-way light time and stellar aberration corrections are
applied to the states of the planets. With the unique
exposin defined, it remains to compute the ∆V and Jm

values corresponding to this trajectory. Again the Midpoint
method [12] is used for the numerical integration of ∆VLT.
Using the criterium, as defined by Gondelach [1], of a 0.1%
accuracy in ∆V required to rank different trajectories well,
1000 integration steps have been selected. As the Midpoint
method is a one-step method, first the thrust acceleration
required along the low-thrust arc should be evaluated at
1000 points along the trajectory, using Equations 2 and
5. The impulsive velocities can be computed by matching
the velocities of the planets to those of the exposin (refer
to Section IX), after which Jm can be found. As the main
purpose of the exposin is to provide a good initial guess for
a detailed numerical optimization, only the gravitational
acceleration of the Sun is taken into account and all other
perturbations are ignored, which is in accordance with the
work of both Petropoulus [2] and Izzo [3].

Finally, three criteria have been specified to classify whether
there belongs a feasible exposin to a specific input vector:

1) the condition k1k2
2 < 1 should be fulfilled [2],

2) the difference between the required TOF and the
actual TOF of a trajectory has to be smaller than 1
second, and

3) the thrust profile required to follow the low-thrust arc
should not exceed the maximum available thrust.

The program described above, used to generate training
data, will be referred to as "the data generation program".

IV Gaussian Process Models for Prediction of
Optimal Trajectories

Due to the constraints on feasible trajectories as discussed
in the previous section, not all input vectors contain an
exposin that can actually be flown. Before predicting near-
optimal trajectories in terms of ∆V and Jm out of a set of
candidate input vectors, it should first be evaluated whether
there belongs a feasible exposin to each of these input
vectors. This is where classification using a GPC model
becomes useful. The mapping function, which associates
the "feasible" or "not feasible" output with the input vector,
is defined as the predicting target:

fGPC :R3 →R,

x 7→Q.
(15)

where x = [t0,k2,TOF] and Q = −1 (not feasible) or Q = 1
(feasible).

When each input vector is classified as feasible or not
feasible, a GPR model is used to predict the ∆V or Jm values
corresponding to the feasible trajectories:

fGPR,1 :R3 →R,

x 7→∆V or x 7→ Jm .
(16)

where x = [t0,k2,TOF]. This model will be referred to as
"GPR model 1". Because it directly maps the input vector
to a ∆V or Jm value, it is only trained with shape parameter
k2. To investigate the applicability of the GP based method,
a second GPR model has been developed ("GPR model 2")
that maps the entire shape information onto a ∆V or Jm

value, thereby replacing only the integration step:

fGPR,2 :R6 →R,

x 7→∆V or x 7→ Jm .
(17)

where x = [r0,ψ,k0,k1,k2,φ].

For a GP model, the prediction of an output value given an
input, can be achieved using a Bayesian inference operating
on a GP in function space. In a GP, every random collection
of variables has a multivariate normal distribution [14]. In
this work, the input vector x is considered as the random
variable following a Gaussian distribution. A GP over the
function f (x) is defined by [14]:

f (x) ∼GP (µ(x),k(x , x∗)) (18)

where µ(x) and k(x , x∗) are the mean function and co-
variance function, respectively. x∗ represents a point in
the input domain. The GP does not contain any prior
information until some data is observed. It is therefore
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necessary to train any GP model with information provided
by training samples. For M training samples, a training set
is constructed as:

D = {X = [x1, x2, ..., xM]T ,Y = [y1, y1, ..., yM]T } (19)

where X and Y are training input matrix and output
vector, respectively. The training inputs x i ,1 ≤ i ≤ M are
generated following a random uniform distribution in
the input domain and are all normalized between 0 and
1. Furthermore, Y is considered to be free of noise as
the training outputs are obtained by the data generation
program.

It is assumed that the ∆V and Jm values of M∗ input
vectors need to be assessed. We define the predicting
input and output vectors as X ∗ = [x∗

1 , x∗
2 , ..., x∗

M∗ ] and Y ∗ =
[∆V ∗

1 ,∆V ∗
2 , ...,∆V ∗

M∗ ] or Y ∗ = [J∗m1
, J∗m2

, ..., J∗mM∗ ], respectively.
This allows to define the joint distribution of the training
outputs Y and the predicting outputs Y ∗ as:

[
Y

Y ∗
]
∼N

([
µ(X )
µ(X ∗)

]
,

[
K (X , X ) K (X , X ∗)

K (X ∗, X ) K (X ∗, X ∗)

])
(20)

where the covariance matrix K (X , X ) is given by:

K (X , X ) =


k(x1, x1) k(x1, x2) ... k(x1, xM)
k(x2, x1) k(x2, x2) ... k(x2, xM)

... ... ... ...
k(xM, x1) k(xM, x2) ... k(xM, xM)

 (21)

The likelihood function defines the probability density of
the observations given the parameters and inference con-
cerns the prediction of new targets given a dataset and the
associated GP model [14].

A. Model Development Procedure

It is desired to develop a GP model where [6]

1) the probability of obtaining correct training outputs
given the model is maximal and

2) the errors on predicting outputs are limited to an
acceptable level.

As a GP is defined by its mean function, covariance func-
tion, likelihood function, and inference method, a combi-
nation of them where 1) and 2) are satisfied should be
found. The selected mean function, covariance function,
and likelihood function will contain parameters, called the
"hyperparameters", which have to be optimized in order to
improve the performance. Therefore, "model development"
in this paper refers to

a) the selection of the mean function, covariance func-
tion, likelihood function and inference method and

b) the optimization of the hyperparameters.

To measure the performance of the developed GPR models,
it is decided to use three error measures: the mean absolute
error (MAE), the mean absolute percentage error (MAPE),
and the root mean square error (RMSE), respectively given
by Equations 22, 23, and 24.

εMAE(M) = 1

MT

MT∑
i=1

|TDG,i −TGPR,i | (22)

εMAPE(M) = 100%

MT

MT∑
i=1

|TDG,i −TGPR,i

TDG,i
| (23)

εRMSE(M) =
√√√√ 1

MT

MT∑
i=1

(TDG,i −TGPR,i )2 (24)

In the above equations, M is the training set size, MT the
test set size, and TDG,i and TGPR,i the target values (∆V ,
or Jm) obtained from the data generation program and the
GPR model, respectively. For the GPC model only the MAPE
value is of interest, which is found using Equation 25.

εMAPE,GPC(M) = 100%

MT

MT∑
i=1

|QDG,i −QGPR,i |
2

(25)

In theory, one could define infinitely many mean functions
and covariance functions, and thus infinitely many GP
models. As we cannot theoretically define the optimal GP
model for a specific application and using a trial and error
procedure is generally highly time consuming, a model
development procedure is proposed, which consists of the
following three parts:

i) Preliminary model selection phase
ii) Combined model selection phase

iii) Hyperparameter optimization phase

During the first two parts, the same method is used, as
visualized in Figure 1. In the following subsections, the
details of each selection phase are discussed.

1. Preliminary Model Selection Phase
During the preliminary phase, candidates which are
promising in terms of MAPE are separately sought for the
mean function, the covariance function, the likelihood
function, and the inference method. Each of them is
defined as a "candidate to be selected", as referred to
in Figure 1. While this procedure is performed for one
candidate (e.g. the mean function), default settings are
used for the other candidates. The selected default settings
are no mean function, a squared exponential covariance
function with automatic relevance determination, a
Gaussian likelihood function, and Gaussian inference
for both training and prediction. The dataset contains
250 samples on which k-fold cross validation is applied
[14], such that k − 1 subsets are selected for training
and the remaining subset for validation, i.e. defining
the accuracy of the models. This process is repeated in
total k times. In this work, k is set to 5. For each of the
candidates separately, all possible functions that were
provided by the gpml toolbox in MATLAB [15], where for
the composite functions up to two base functions are
combined, are evaluated. The procedure is repeated four
times with different data sets to increase the robustness
of validation, after which the average MAPE for each
function is computed. For the mean function, covariance
function, and inference method, five functions resulting
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in the lowest MAPE values are selected. The single best
likelihood function is selected.

2. Combined Model Selection Phase
In the combined model selection phase, the top five
functions for the mean function, covariance function,
and inference method, and the top likelihood function,
as selected in the preliminary phase, are combined into
a GP model. In total, 45 different GP models have to be
evaluated according to the procedure as depicted in Figure
1, where the GP model is the "candidate to be selected". A
dataset containing 1250 samples is used and the procedure
is repeated once, after which the optimal GP model based
on MAPE value is selected. One could optionally take the
CPU time for prediction into account as a second selection
criterion.

3. Hyperparameter Optimization
During the third phase model training is performed, where
the values of the hyperparameters have to be selected.
The most common way to optimize the hyperparameters
(θ) is by using the maximum likelihood method, where
the optimal values of the hyperparameters are found by
minimizing the following objective function [14]:

J (θ) =−logp(Y |X ,θ)

= 1

2
Y T K −1(X , X )Y + 1

2
log|K (X , X )|+ M

2
log2π (26)

with p the likelihood function. To keep the procedure
consistent, all hyperparameters are initialized with zero’s,
after which the conjugent gradient method is used to find
optimal values [14]. 1000 training samples are used and
the validation is performed by 1000 test samples. It is
expected that multiple local optima exist for the values of
the hyperparemeters. Although a gradient-based marginal
likelihood optimization method might converge to a local
optimum instead of the global one, it is chosen due to
its extremely fast execution power. Furthermore, as the
optima found for the values of the hyperparameters result
in a satisfactory behavior, it is decided that using a more
powerful optimization technique is not highly required.
In other work [16], random searches have been advised
for the optimization of hyperparameters. However, due to
the large number of hyperparameters of the models under
consideration, this approach is undesirable for preliminary
optimization as it would require long CPU times to find
optimal combinations of hyperparameters.

B. Training Set Size

With the GP models developed, it remains to determine
the number of training samples. Training any GP model
with a larger number of samples will generally improve the
performance. However, as a consequence, the CPU time
needed for prediction will also increase. There exists a
trade-off in the number of training samples. Although we
are unable to define the optimal training set size [17], it is
desired to take a training set size that strikes a balance
between accuracy and computational burden. Therefore,

the MAE is taken as the evaluation criterion for determining
the training set size of the regression models [6]. The
training set size is initialized to 50 samples, and is increased
until a balance between prediction time and accuracy is
reached, using the following increment update equation:

Ms+1 = Ms +m (27)

where m is the specified increment of training samples,
taken as 50. For every Ms training samples, n+1 MAE’s are
evaluated using:

E(Ms ,m,n) =[εMAE(Ms ),εMAE(Ms +m), ...,εMAE(Ms +nm)]T

where n is set to 10. Next, the difference between the
maximum and minimum values in vector E is computed:

∆εMAE = max(E(Ms ,m,n)−min(E(Ms ,m,n) (28)

For each update step, the procedure is repeated five times
with different training samples and the average values
are taken, with the purpose to increase the robustness of
validation. When ∆εMAE becomes smaller than a specified
threshold, the increment update process is stopped. For
both the regression models this threshold is defined as 0.01
km/s when predicting ∆V and 0.001 when predicting Jm .
For the classification model, the same approach is used, but
as only the MAPE is of interest, ∆εMAPE,GPC ≤ 0.1% is taken
as the threshold. Using this approach, it can be assured that
the GP models are stable and a balance between accuracy
and CPU time for prediction is obtained.

C. Robustness of Model Development Procedure

As in this work a novel model development procedure is
proposed, a robustness analysis with respect to the choices
made during this procedure (e.g. the size of the dataset) is
required. All choices are made with the goal to optimize
the trade-off between CPU time of the development
process and robustness of the validation. It should be
verified whether these choices are made rationally and
whether choosing a more elaborate model development
procedure would result in the development of models
performing better in terms of MAPE. The procedure as
previously proposed will be referred to as "the baseline
model development procedure" and the models developed
using this procedure as the "baseline models".

1. Preliminary Model Selection Phase
The size of the dataset used in the preliminary phase is set
to 250 samples. It is expected that the larger the dataset, the
more robust the validation of the models. To test whether
250 samples is enough during the preliminary phase, a
comparison with the performance of the final developed
models when using a five times larger dataset is performed.
The baseline model development procedure is used, but
with a dataset of 1250 samples during the preliminary
phase. The models resulting from this modified procedure
are compared to the baseline models in terms of MAPE.
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2. Combined Model Selection Phase
In the baseline model development procedure only
the top performing GP model is selected during the
combined phase. However, the best performing model
in the combined phase will not necessarily perform best
after hyperparameter optimization is applied. Therefore,
the development procedure is modified by selecting the
top three performing models during the combined phase
to apply the hyperparameter optimization on all three of
them. All other settings are kept the same as in the baseline
model development procedure. The MAPE of the models
resulting from this modified development procedure are
compared to that of the baseline models.

3. Hyperparameter Optimization
As it is likely that the conjugent gradient method converges
to a local optimum, it should be verified how much the
final performance deviates when the hyperparameters
belonging to another (local or global) optimum are
selected. Therefore, while keeping the preliminary and
combined stage unchanged, differential evolution is used
to initialize the values of the hyperparameters, after which
the conjugent gradient method is applied to determine
the actual values of the hyperparameters. Combining
these two methods, it is more likely to converge to the
global optimum instead of a local one. The settings
for the differential evolution are taken as Fp = 0.75,
Cr = 0.8, and I = 20D , with I the number of individuals
and D the dimension of the problem (i.e. the number
of hyperparameters to be optimized) [18]. Again, the
performance of the models resulting from this modified
procedure are compared to that of the baseline models.

To assess the robustness of the choices made in each phase
of the development procedure, Equation 29 is used:

%robustness = (1− MAPEmodel,x −MAPEmodel,0

MAPEmodel,0
) ·100% (29)

where x and 0 indicate the models resulting from the
deviated and baseline model development procedure, re-
spectively.

V Test Cases
To assess the performance of the GP-based method for
the preliminary optimization of low-thrust trajectories, in
terms of accuracy and CPU time, it has to be tested
against mission test cases. According to the proposed model
development procedure, GP models are developed for three
test cases: rendezvous missions from Earth to Mars, from
Mars to Earth and from Earth to Ceres. Characteristics of
each of these target planets are provided in Table I, and the
mission test cases are further detailed in this section.

A. Rendezvous Mission from Earth to Mars

Since the Earth-Mars transfer has been used before to test
the performance of other shape-based methods [1] [19]
[20], it is selected as a test case in this work, to compare
the results obtained with the developed GP models to

TABLE I: Characteristics of target candidates for test cases: semi-major
axis, eccentricity, and inclination (with respect to the mean ecliptic and
equinox of J2000), orbital period and synodic period (with respect to Earth)
[21]

a (AU) e (-) i (deg)
Orbital

period (days)
Synodic

period (days)

Mars 1.5237 0.0934 1.8506 687 780

Earth 1.0000 0.0167 0.0000 365 -

Ceres 2.7671 0.0758 10.593 1682 467

external results computed by others. Therefore, the results
reported in Table III are used, which cover the shaping
techniques and DITAN. DITAN is a trajectory optimization
tool and can be considered as state of the art for low-thrust
interplanetary trajectory design [20].

The bounds for the input space are selected in accordance
with the work of Novak and Vasile [19] as t0 :[58848, 61769]
MJD and TOF: [500, 2000] days. k2 is selected to lie within
the bounds [0.01, 1], allowing for up to 50 revolutions
around the Sun, a number unlikely to be exceeded in
practice. The launch window between Jan 1, 2020 and
December 31, 2027 is large enough to contain almost four
synodic periods of the Sun-Earth-Mars system, which is
equal to 780 days on average.

B. Rendezvous Mission from Mars to Earth

The developed GP models should ideally be tested against
as many test cases as possible. Therefore, it is chosen to test
the performance against a mission from an outbound to an
inbound target, namely a rendezvous mission from Mars to
Earth. No relevant results produced by other researchers
are available for this test case, but the performance should
be compared to that of the Earth-Mars test case, and to
be able to do a fair comparison, the same input space is
chosen.

C. Rendezvous Mission from Earth to Ceres

The third mission test case is selected as a rendezvous
mission from Earth to the asteroid Ceres. Due to its much
larger inclination than Mars, it is expected to be a chal-
lenging target in terms of predicting feasible and near-
optimal trajectories. As this test case has not been used
before in low-thrust trajectory optimization, the same input
space as for the Earth-Mars test case is chosen, to allow for
comparison between both test cases.

VI Selected GP Models
Using the baseline model development procedure as pro-
posed in Section IV, five GP models are selected for each
of the test cases: a GPC model, GPR model 1 with target
value ∆V , GPR model 1 with target value Jm , GPR model
2 with target value ∆V and GPR model 2 with target value
Jm . The developed models for the Earth-Mars test case,
the equations of the underlying functions [15], and the
values of the hyperparameters found, are presented in this
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Fig. 1: Model selection and training method

section. Furthermore, a method to assess the robustness of
the developed models is discussed. The developed models
for the Mars-Earth and Earth-Ceres test cases are provided
in Section X.

A. Selected Models for a Rendezvous Mission from Earth
to Mars

1. Classification Model
For the classification model, the mean function is selected
as the sum of a constant and a polynomial mean function,
with two polynomials:

µ(x) =µpolynomial(x)+µconstant(x) (30)

µpolynomial(x) =
D∑

i=1

d∑
j=1

ai j · x j
i (31)

µconstant(x) = c (32)

where D is the dimension of the input space, d the
number of polynomials and ai j and c hyperparameters to
be selected.

The covariance function is selected as the sum of a piece-
wise polynomial covariance function with automatic rele-
vance determination (PPard) and a squared exponential co-
variance function with automatic relevance determination
(SEard):

k(x , x∗) = k(x , x∗)PPard +k(x , x∗)SEard (33)

k(x , x∗)PPard = s2
f ,PPard ·max(1− r,0) j+d · f (r, j ) (34)

k(x , x∗)SEard = s2
f ,SEard ·e−(x−x∗)′·inv(P )· x−x∗

2 (35)

where the distance r is defined as:

r =
√

(x −x∗)′inv(P )(x −x∗) (36)

with the P matrix diagonal with automatic relevance
determination parameters `2

1, ...,`2
D . Furthermore, d is the

number of polynomials (in this case 1), j = floor(D/2)+d+1,
and s2

f is the signal variance. The function f (r, j ) is equal
to 1+ r ( j +1) for d = 1.

Finally, Gaussian likelihood is selected, given by Equation
37, using Leave-One-Out (LOO) inference for training and
Gaussian noise inference for prediction:

p(yi | fi ) = e
−(yi − fi )2

2s2
n√

2πs2
n

(37)

where f is a scalar latent function value and sn is the
standard deviation of the noise.

As the classification model has a three dimensional input
vector, the following hyperparameters have to be set:

θM
C = [a11, a12, a21, a22, a31, a32,c]T

θC
C = [`1,P ,`2,P ,`3,P , s f ,P ,`1,S ,`2,S ,`3,S , s f ,S ]T

θL
C = log(sn)

where M ,C , and L indicate the hyperparameters of the
mean, covariance, and likelihood function, respectively,
and subscripts P and S stand for "PPard" and "SEard",
respectively.

2. Regression Model 1 for Prediction of ∆V
The mean function is selected as the product of a polyno-
mial mean function (d = 3) and a constant mean function:

µ(x) =µpolynomial(x) ·µconstant(x) (38)

The covariance function is selected as the product of PPard
(d = 2) and a rational quadratic covariance function with
automatic relevance determination (RQard):

k(x , x∗) = k(x , x∗)PPard ·k(x , x∗)RQard (39)

k(x , x∗)RQard = s2
f ,RQard[1+ (x −x∗)′inv(P )(x −x∗)

2α
]−α (40)

with α a shape parameter and f (r, j ) in Equation 34 equal
to 1+ r ( j +2)+ ( j 2 +4 j +3)/3r 2 for d = 2.

The same likelihood function and inference method for
training and prediction are selected as for the GPC model.

The following hyperparameters need to be identified for
this GPR model with a three dimensional input vector:

θM
R1∆V

= [a11, a12, a13, a21, a22, a23, a31, a32, a33,c]T

θC
R1∆V

= [`1,P ,`2,P ,`3,P , s f ,P ,`1,R ,`2,R ,`3,R , s f ,R ,α]T

θL
R1∆V

= log(sn)

where subscript R indicates the "RQard" covariance
function.
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3. Regression Model 1 for Prediction of Jm

When the goal is to predict the propellant mass fraction
Jm instead of ∆V , the continuous target values for the
regression models differ significantly. Therefore, the model
development procedure is repeated.

The mean function is selected as the second power of a
constant mean function:

µ(x) =µconstant(x)P = cP (41)

with P the power, in this case 2.

The same covariance function is selected as for the
prediction of ∆V , but with d = 1 for PPard. Instead of
LOO inference for training, as selected for the model when
predicting ∆V , Laplace inference is selected.

The following hyperparameters have to be set:
θM

R1J m
= c

θC
R1J m

= [`1,P ,`2,P ,`3,P , s f ,P ,`1,R ,`2,R ,`3,R , s f ,R ,α]T

θL
R1J m

= log(sn)

4. Regression Model 2 for Prediction of ∆V
Selecting the mean function as the sum of a polynomial
mean function (d = 4) and a linear mean function results
in the smallest MAPE:

µ(x) =µpolynomial(x)+µlinear(x) (42)

µlinear(x) =
D∑

i=1
ci · x i (43)

with ci hyperparameters to be selected.

The covariance function is selected as the product of
the PPard covariance function (d = 1) and a squared
exponential covariance function with isotropic lengthscale
(SEiso):

k(x , x∗) = k(x , x∗)PPard ·k(x , x∗)SEiso (44)

k(x , x∗)SEiso = s2
f ,SEiso ·e−(x−x∗)′·inv(P )· x−x∗

2 (45)

For the SEiso covariance function, P is `2 times the unit
matrix, with ` an isotropic lengthscale.

In accordance with GPR model 1, Gaussian likelihood
and Gaussian inference for prediction are selected. LOO
likelihood is selected for training. As the input space is six-
dimensional, the following hyperparameters have to be set:

θM
R2∆V

= [a11, a12, a13, a14, a21, a22, a23, a24, a31, a32,

a33, a34, a41, a42, a43, a44, a51, a52, a53, a54,

a61, a62, a63, a64,c1,c2,c3,c4,c5,c6]T

θC
R2∆V

= [`1,P ,`2,P ,`3,P ,`4,P ,`5,P ,`6,P , s f ,P ,`S , s f ,S ]T

θL
R2∆V

= log(sn)

5. Regression Model 2 for Prediction of Jm

Only one difference exist for GPR model 2 when predicting
Jm instead of ∆V : in accordance with GPR model 1,
the mean function is selected as the second power of a
constant mean function.

The following hyperparameters have to be set:
θM

R2J m
= c

θC
R2J m

= [`1,P ,`2,P ,`3,P ,`4,P ,`5,P ,`6,P , s f ,P ,`S , s f ,S ]T

θL
R2J m

= log(sn)

Selected Values of the Hyperparameters
The optimal values that are selected for the hyperparame-
ters of each of the five models are given below.



θM
C = [−0.1813,−0.6354,0.3663,0.3637,−1.3475,

−2.0630,−1.9156]T

θC
C = [−1.6814,−0.9755,−1.0673,−0.1345,0.4923,

0.4958,1.7350,−1.7049]T

θL
C = −1.0167



θM
R1∆V

= [0.0213,0.0220,0.0150,0.0187,0.0229,

0.0097,0.0245,0.0250,0.0072,0.0384]T

θC
R1∆V

= [−2.1976,1.7751,−1.7550,1.9828,−1.3113,

3.0219,−0.4880,1.9828,−0.0960]T

θL
R1∆V

= 2.3302


θM

R1J m
= 0.0000

θC
R1J m

= [−2.2217,0.0925,−1.5596,−2.7126,2.7644,

−0.1544,1.5578,−0.5312,−0.6622]T

θL
R1J m

= −4.1403



θM
R2∆V

= [0.0169,0.0315,0.000,0.0314,0.0191,

0.0213,0.0206,0.0314,0.000,0.0206,

0.0137,0.0137,0.0228,0.0348,0.000,

0.0136,0.0110,0.0104,0.0244,0.0398,

0.000,0.0090,0.0091,0.0082,0.0169,

0.0315,0.000,0.0314,0.0191,0.0213]T

θC
R2∆V

= [2.3813,2.1613,0.000,−2.2179,0.6417,

1.3370,2.6585,−0.5689,2.6585]T

θL
R2∆V

= 3.5765


θM

R2J m
= 0.0000

θC
R2J m

= [6.3993,5.3731,0.0000,0.8819,4.6385,

4.7228,0.0119,−0.4210,0.0119]T

θL
R2J m

= −10.8042
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B. Assessing the Robustness of the Developed Models

When one wants to apply the provided GP models, referred
to as "the initial models", on a slightly different mission
scenario than the Earth-Mars test case as selected in this
work ("the initial mission scenario"), one could either use
the provided models or repeat the model development pro-
cedure. In this subsection, it is tried to assess the robustness
of the developed models (i.e. their dependency on the
specified mission scenario), by testing their performance
in terms of MAPE and prediction time when applied to
slightly different mission scenarios. The goal is to provide
some confidence for the application of these models on
mission scenarios with a variation from the one discussed
in this paper. To assess this robustness, the initial models
are tested on 15 different mission scenarios, by applying
three deviations along five mission design dimensions:

i) A different range for t0

a) Initial: t0 = Jan 1 2020 - Dec 31 2027
b) Deviation 1: t0 = Jan 1 2028 - Dec 31 2035
c) Deviation 2: t0 = Jan 1 2036 - Dec 31 2043
d) Deviation 3: t0 = Jan 1 2044 - Dec 31 2051

ii) A smaller range for t0 and/or TOF

a) Initial: t0 = Jan 1 2020 - Dec 31 2027, TOF = 500-
2000 days

b) Deviation 1: t0 = Jan 1 2020 - Dec 31 2023, TOF
= 500-1250

c) Deviation 2: t0 = Jan 1 2020 - Dec 31 2027, TOF=
500-875 days

d) Deviation 3: t0 = Jan 1 2020 - Dec 31 2021, TOF=
500-2000 days

iii) A larger range for t0 and/or TOF

a) Initial: t0 = Jan 1 2020 - Dec 31 2027, TOF= 500-
2000 days

b) Deviation 1: t0 = Jan 1 2020 - Dec 31 2035, TOF=
500-3500

c) Deviation 2: t0 = Jan 1 2020 - Dec 31 2027, TOF=
500-6500 days

d) Deviation 3: t0 = Jan 1 2020 - Dec 31 2051, TOF=
500-2000 days

iv) A different target planet

a) Initial: target = Mars
b) Deviation 1: target = Ceres
c) Deviation 2: target = Pallas
d) Deviation 3: target = Vesta

v) A different number of revolutions for the exposin

a) Initial: N = 1
b) Deviation 1: N = 2
c) Deviation 2: N = 3
d) Deviation 3: N = 4

While one of these mission design parameters is varied, all
other settings are kept equal to the initial mission scenario.
For each of the 15 new mission scenarios, training and
test samples are generated. The initial models are applied
on all 15 mission scenarios, with the number of training
samples equal to those presented in Table II. The difference
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Fig. 2: Relationship between MAPE of test samples and number of training
samples for GPC models for all three test cases

in performance with respect to the initial mission scenario
is computed as:

%difference =
MAPEscenario,x −MAPEscenario,0

MAPEscenario,0
·100% (46)

where x and 0 indicate the deviated and initial mission
scenarios, respectively.

VII Numerical Results and Discussion
In the following, the performance of the developed GP
models is discussed in terms of accuracy, CPU time, and
their ability to locate regions of near-optimal trajectories,
for each of the three test cases as defined in Section V.
To evaluate this performance, test samples with a uniform
random distribution in the input space are used for all
GP models. Because in previous work [6] [7] the ratio
between training and test samples varied between 1:1 and
1:5, and it is expected that the number of training samples
required lies between 1000 and 5000, 1000 test samples
are selected. The number of training samples at which a
balance between accuracy and prediction time is obtained,
is determined using the outlined approach in Section IV.
This is demonstrated by Figure 2, which shows the resulting
number of training samples for the GPC models for all test
cases. It becomes clear that the performance of the GPC
models barely improves when more training samples than
the number selected by this iterative procedure are used.
The prediction time for each of the models is computed
as the CPU time for the prediction of 1000 samples and
is averaged over 1000 runs. Furthermore, the results are
discussed for the robustness analysis of the model devel-
opment procedure, as described in Section IV, and the
robustness of the developed models, as outlined in Section
VI. All algorithms are implemented in MATLAB 2017a and
are executed on a desktop computer with an Intel 2 GHz
processor and 8.0 GB memory operating on a 64-bit macOS
platform.
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A. Rendezvous Mission from Earth to Mars
1. Numerical Results of GP Models

The determined number of training samples, the
corresponding MAE, MAPE, and RMSE values, and the
prediction times are provided in Table II. The prediction
time is dependent on both the number of training samples
and the complexity of the model.

a) Classification Model
Out of the 1000 test samples that are predicted, on
average 948 are predicted correctly. Out of the 52 that
are predicted incorrectly, 29 unfeasible trajectories are
predicted as feasible and 23 feasible trajectories are
predicted unfeasible. GP models have not been applied
before to classification problems in the aerospace field.
In several other classification applications [22] [23] [24]
[25], unrelated to this work, accuracies between 1.5% and
33% have been found. Compared to these numbers, the
MAPE of 7.49% as reached in this work, is located near
the lower bound of this range. It should however be noted
that these MAPE values are not the best indicator for the
performance achieved in this work, but are provided here
to give the reader an idea which range of values could be
obtained for classification problems.

b) Regression Models
When evaluating the performance of each of the GPR
models, it becomes clear that 1) the performance is better
when predicting Jm instead of ∆V and 2) the performance
of GPR model 1 is better than that of GPR model 2.
It is expected that GPR models are, in general, better
in predicting targets with a smaller ratio between the
minimum and maximum target value. As the values for Jm

differ between 0.48 and 1.00, and for ∆V between 6.06 and
±130 km/s, this could explain the first observation, and
is referred to as "hypothesis 1". The second observation
could be explained by the fact that GPR model 2 is mainly
trained with shape information, while GPR model 1 is
trained with parameters containing information on the
input space. Therefore, GPR model 2 should be able
to accurately predict ∆VLT, but is expected to contain
less information on the impulsive velocities required at
departure and arrival. This hypothesis is referred to as
"hypothesis 2".

GPR has been applied once before for the prediction of
∆V values. In the work of Shang and Liu [6] it was used
to predict the ∆V values required to access main-belt
asteroids using (high-thrust) transfer trajectories, and
MAE’s of 0.06-0.12 km/s have been found. It should be
noted that the to be predicted values ranged within 6-12
km/s, which is a much smaller ratio between the minimum
and maximum value than the one used in this test case,
from which it is expected that high accuracies could be
obtained more easily. As a result, the MAE’s obtained for
the GPR models in this work when predicting ∆V are
worse, starting from 7.49 km/s for GPR model 1. The found
MAPE’s in the work of Shang and Liu range between 0.58%

TABLE II: Numerical results for a rendezvous mission from Earth to Mars

Model
#training
samples

MAE
(km/s)
or (-)

MAPE
(%)

RMSE
(km/s)
or (-)

CPU time
prediction

(s)

GPC 5150 - 5.16 - 9.63

GPR 1 - ∆V 4100 7.49 23.16 13.07 6.43

GPR 1 - Jm 2350 0.01 1.38 0.02 1.45

GPR 2 - ∆V 2700 33.26 119.08 40.01 2.16

GPR 2 - Jm 2350 0.03 3.74 0.06 1.60

and 1.33%, which comes close to the value obtained in
this work for GPR model 1 when predicting Jm . Another
way to assess the performance is in comparison with other
machine learning algorithms. In the work of Li [16], the
MAPE’s of several machine learning algorithms applied on
low-thrust fuel optimization problems have been listed.
For eight machine learning algorithms, the corresponding
MAPE’s varied between 0.33% and 3.66%. Similar MAPE’s
are found for both GPR models when predicting Jm .

2. Optimal Trajectories
The best trajectories found previously with other shape-
based methods ( [1] [19] [26]), together with the
optimization techniques used, are presented in Table
III. To find the overall best trajectory belonging to the
exposin shape, three optimization techniques are selected:
a differential evolution [27], a grid search and a grid
search with mesh refinements. The total ∆V values and
maximum accelerations corresponding to the optimal
trajectories in terms of ∆V modeled by the exposin shape
are shown in Table III. The optimal value for Jm is found
using the differential evolution and is given in Table VIII.
In this work, the globally optimal trajectory is defined as
the overall best trajectory found by either the differential
evolution, the grid search, or the adaptive grid search.

a) Differential Evolution
The classical version of the DE is chosen, as developed
by Storn and Price [27]. To determine the optimal values
for the mutation probability Fp and crossover probability
Cr used in the differential evolution (DE), Fp is varied
between 0.5 and 0.8, and Cr between 0.85 and 0.95, as
optimal values for comparable problems were found to
lie within these ranges [1] [28]. From trial and error the
number of individuals I turns out to be optimal between
50 and 100. Using a grid of 0.05 for Fp and Cr , and 10
for I , the optimal settings are found to be 0.5, 0.85 and
100 for Fp , Cr , and I , respectively. The input vectors
corresponding to the optimal trajectories found in terms
of ∆V and Jm are given by x =[ 61175.64, 0.4007, 618.04]
and x = [61358.04, 0.4359, 949.05], respectively.

b) Grid Search
A grid search (GS) is implemented, where the grid is
specified as: t0 = [58848 : 15 : 61769], k2 = [0.01 : 0.025 : 1],
and TOF = [500 : 20 : 2000], in line with the work of Novak
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and Vasile [19]. At each grid point, the ∆V and Jm values
corresponding to this input vector are computed, and the
optimal trajectory in terms of ∆V is found to belong to
input vector x = [61173.00, 0.3850, 620.00].

c) Adaptive Grid Search
An adaptive grid search (AGS) is implemented, where a
coarse grid is used that is refined around the obtained
interim solution. The initial grid (G0) contains 75 grid
points, where five points are spaced equally for all three
dimensions. After evaluation of all 75 grid points, the grid
is refined around the interim solution by halving the length
of the search interval (G1). This process of refining the grid
is repeated i times, until the solution at Gi is the same
as Gi−10 and therefore convergence is reached. The input
vector for the optimal trajectory obtained with the AGS in
terms of ∆V is given by x = [62701.02, 0.1970, 562.74].

From Table III, it can be observed that with all three
optimization techniques less optimal trajectories in terms
of total ∆V are found for the exposin shape than for the
other shape-based methods. As the GP models are trained
with transfer trajectories based on the exposin shape, they
will not be able to find trajectories with ∆V values smaller
than 6.06 km/s, which is therefore used as the global
optimum to compare the performance of the GP models
against. As given in Table VIII, Jm = 0.48 is used as the
global optimum for the propellant mass fraction.

When the GPC model and GPR model 1 are placed in
series, it is possible to predict ∆V and Jm belonging to
feasible trajectories given a set of input vectors, thereby
replacing the functionality of the data generation program.
The more samples that are fed to the GP models, the
higher the probability that trajectories with ∆V and Jm

values close to the global optima are found. On the other
hand, the corresponding prediction time also increases.
Figure 3 shows a trade-off between the optima found and
the corresponding prediction time, at different numbers
of samples to be predicted. These plots are produced as
follows. The specified number of samples (e.g. 10,000) is
fed to the GPC model. The GPC model is trained with the
number of training samples as provided in Table II. The
trajectories classified by the GPC model as feasible are fed
into GPR model 1. The predicted values for each of the
input vectors are ranked, and the top 50 input vectors
are selected. The actual target values are computed for
these 50 input vectors, making use of the data generation
program. Averaged over 50 runs, the target value of the best
trajectory is given as a dot in Figure 3. The error-bar shown
spans the range between the worst and best values found
for the best trajectory within these 50 runs. This procedure
is performed for both the prediction of ∆V and Jm . For
the prediction of Jm , a decreasing average target value
and increasing prediction time, at an increasing number
of prediction samples, is clearly visible. Furthermore, it
can be observed that the error bars get smaller for a larger
number of samples to be predicted, indicating that the

reliability of the average Jm value increases. Such a clear
trend is not observed for the prediction of ∆V , and the
target values barely get better with increasing samples to
be predicted, although the average prediction time does
increase. This observation could be explained by the fact
that the accuracies achieved for the prediction of Jm are
much better than those for the prediction of ∆V , and the
resulting optimal trajectories are therefore more reliable.
Additionally, it becomes clear from Figure 3a that the
optimal trajectories found deviate somewhat from the
global optima, which could be explained as follows. When
producing 100,000 randomly generated input vectors, the
smallest ∆V values found generally lie between 6.25 and
6.30 km/s and the smallest Jm values between 0.49 and
0.52. Furthermore, as the training set contains only 4100
or 2350 training samples for the prediction of ∆V and Jm

respectively, the models are likely not trained with (near-
)globally optimal trajectories. When the goal is to obtain
globally optimal trajectories, it should be investigated how
the performance of the GPR models could be improved by
adding the globally optimal trajectories to the training set.

Although the GP models are not most suitable for finding
globally optimal trajectories, they are a powerful tool for
the prediction of a large input space with the goal to
locate the regions of feasible or near-optimal trajectories.
Classifying the feasibility of 1,000,000 candidate input
vectors and predicting the ∆V or Jm values corresponding
to the feasible trajectories, is achieved within a total
computation time for prediction of less than 1400 seconds.
When assessing these values with the data generation
program, this will take more than one week. Training the
models takes about 30 s CPU time per model, but as the
hyperparameters are already provided in this work, training
the model is unnecessary and only prediction has to be
repeated. The CPU time required to generate the training
samples takes 0.7 s per trajectory times the amount of
training samples required, in this case 5150. For these
purposes, the CPU time can be reduced approximately 150
times. It should be noted that for an increasing number of
candidates to be assessed, the reduction in CPU time is
even larger as prediction time does not increase linearly
with prediction samples, which is observed in Figure 3a.

The distributions computed by the data generation
program, referred to as "the actual distributions", and the
ones predicted by the GP models are shown in Figure 4.
A repetitive pattern is observed for both the ∆V and Jm

values of feasible trajectories. This pattern is periodic with
the synodic period of the Sun-Earth-Mars system, which
is on average 780 days. Since the predicted distributions
closely resemble the actual distributions, it is concluded
that the GP models are indeed a powerful tool in locating
the regions of feasible and near-optimal trajectories.
Furthermore, trajectories that are located in near-optimal
regions could be fed as initial guess to more refined
optimization techniques, which are more likely able to find
globally optimal trajectories.
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TABLE III: Required ∆V and maximum thrust accelerations Fmax corre-
sponding to minimum-∆V trajectories found by different methods for a
rendezvous mission to Mars (*= [1],**= [19]***= [20])

Method Optimization
technique

∆V [km/s] Fmax [10−4 m/s2]

Hohmann*** - 5.50 -

Hodographic -
time*

Nelder-Mead 5.77 1.5

Hodographic -
polar angle*

Nelder-Mead 5.81 1.6

Spherical** Grid Search 5.74 2.2

Pseudo-
equinoctial***

Evolutionary
Branching

5.83 1.6

DITAN*** Direct Finite
Element
Transcription +
Sparse
optimizer

5.66 1.5

Exponential
sinusoid

Differential
Evolution

6.24 1.2

Exponential
sinusoid

Grid Search 6.25 1.2

Exponential
sinusoid

Adaptive Grid
Search

6.06 1.2

3. Predicting ∆V Along the Low-Thrust Arc
The total ∆V required for an interplanetary transfer is
built up of a part delivered by the chemical engine and
a part along the the low-thrust arc, delivered by the ion
propulsion engine. To proof hypothesis 2, used for the
explanation that GPR models 1 are performing better than
GPR models 2, the prediction of solely ∆VLT for the Earth-
Mars mission test case is discussed in this subsection. As
only ∆VLT has to be predicted, Jm is linearly related to
this value and therefore not of importance. The model
development procedure is repeated for GPR model 1 and
GPR model 2, with as target value ∆VLT. The same input
space as for the Earth-Mars mission test case is used.

The determined number of training samples and the nu-
merical results achieved for both models are presented in
Table IV. It can be observed that the performance of GPR
model 2 is significantly better than that of GPR model 1,
which is contrary to the performance of the GPR models
for target value ∆V . This observation could be explained
by the fact that GPR model 2 is trained with full shape
information (input vector defined as x = [r0,ψ,k0,k1,k2,φ]),
and is therefore able to accurately predict the value for
∆VLT. As for most transfer trajectories, the largest part of ∆V
is built up of the impulsive ∆V ’s, the performance of GPR
model 2 is much worse when predicting ∆V . The values
found for ∆VLT for the Earth-Mars mission test case range
within ±3.20 km/s and ±16.60 km/s. As the ratio between
minimum and maximum target values is much smaller than
for the target value ∆V , and better performance is reached
for both GPR models when predicting ∆VLT, the results
obtained for this test case support hypothesis 1 as well.

TABLE IV: Numerical results for the prediction of ∆VLT for a rendezvous
mission from Earth to Mars

Model
#training
samples

MAE
(km/s)
or (-)

MAPE
(%)

RMSE
(km/s)
or (-)

CPU time
prediction

(s)

GPR 1 - ∆V 5050 0.20 2.18 0.33 3.98

GPR 2 - ∆V 1100 0.04 0.54 0.12 0.15

TABLE V: Numerical results for a rendezvous mission from Mars to Earth

Model
#training
samples

MAE
(km/s)
or (-)

MAPE
(%)

RMSE
(km/s)
or (-)

CPU time
prediction

(s)

GPC 1100 - 13.55 - 0.31

GPR 1 - ∆V 5000 9.35 31.24 14.75 11.22

GPR 1 - Jm 2350 0.02 2.14 0.03 1.41

GPR 2 - ∆V 1100 47.82 187.06 49.10 0.28

GPR 2 - Jm 1000 0.06 7.12 0.09 0.17

B. Rendezvous Mission from Mars to Earth
1. Numerical Results of GP Models

The numerical results are given in Table V. It is observed
that for all models slightly worse performance is achieved
than for the Earth-Mars test case. Better performance
is obtained for GPR models 1 than GPR models 2, and
the models perform significantly better when predicting
Jm instead of ∆V , which is in line with the Earth-Mars
test case. Hypotheses 1 and 2 are supported by both
observations.

2. Optimal Trajectories
The optimal trajectories in terms of ∆V and Jm are provided
in Tables VII and VIII, respectively, together with the corre-
sponding input vectors at which these value are achieved.
The DE, GS, and AGS are applied on this optimization
problem, and the optima are found using the DE. When
one would produce the trade-off and distribution plots for
the Mars-Earth test case, results comparable to those shown
in Figures 3 and 4 are observed. Refer to Section XI for
all results. In line with the Earth-Mars test case, it can be
concluded that the GP models are not perfectly suited for
the computation of globally optimal trajectories, but they
significantly outperform other optimization techniques in
efficient exploration of a large search space for feasible and
near-optimal trajectories.

C. Rendezvous Mission from Earth to Ceres
1. Numerical Results of GP models

The numerical results achieved for the Earth-Ceres
mission test case are presented in Table VI. The achieved
performance for the GPC model is slightly better than the
one reached for the Earth-Mars test case. The GPR models
show significantly better performance than for the other
two test cases. Using hypothesis 1, this could be explained
by the fact that for the Earth-Ceres test case the ratios
between minimum and maximum values of ∆V and Jm
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(a) Trade-off plots for Earth-Mars mission test case (b) Trade-off plots for Earth-Ceres mission test case

Fig. 3: Trade-off plots for the Earth-Mars test case (left) and the Earth-Ceres test case (right)

TABLE VI: Numerical results for a rendezvous mission from Earth to Ceres

Model
#training
samples

MAE
(km/s)
or (-)

MAPE
(%)

RMSE
(km/s)
or (-)

CPU time
prediction

(s)

GPC 6100 - 4.90 - 12.22

GPR 1 - ∆V 3900 3.96 9.03 7.36 4.02

GPR 1 - Jm 2100 0.01 0.55 0.01 0.57

GPR 2 - ∆V 2100 37.07 96.07 38.78 1.21

GPR 2 - Jm 2250 0.02 1.63 0.02 0.43

are smaller. Consistent with the other two test cases and in
accordance with hypothesis 2, GPR models 1 are showing
better performance than GPR models 2.

2. Optimal Trajectories
The optimal trajectories in terms of ∆V and Jm values are
provided in Tables VII and VIII, respectively. The DE, GS,
and AGS are applied on this optimization problem, and
the optima are found using the DE.

The trade-off between the number of prediction samples
and target values found is shown in Figure 3b. It is observed
that both the ∆V and Jm values steadily decrease at an
increasing number of samples to be predicted, and as the
error-bars are getting smaller, the reliability increases. The
difference between Figures 3a and 3b for target value ∆V
could be explained by the higher accuracies reached for the
Earth-Ceres than for the Earth-Mars test case. Although the
results for finding globally optimal trajectories are better for
the Earth-Ceres mission test case than for the other two, the
main strength of the GP models is still found in the efficient
evaluation of a large input space. The distribution plots for
the Earth-Ceres test case can be found in Section XI.

D. Robustness of the Model Development Procedure

The robustness analysis as detailed in Section IV is applied
on both the GPC model and GPR model 1 with target value
∆V , for the rendezvous mission from Earth to Mars. The
development procedure for the GPR model turned out to
be highly robust, especially in the preliminary and com-
bined phase, where (according to Equation 29) a robustness

TABLE VII: Globally optimal trajectories in terms of ∆V for all test-cases
using the traditional optimization techniques (DE, AGS, and GS)

Mission test-case ∆V (km/s) t0 (MJD) k2 (-) TOF (days)

Earth-Mars 6.06 62701.02 0.1970 562.74

Earth-Mars
low-thrust arc

3.15 61263.21 0.5837 507.33

Mars-Earth 6.34 61157.18 0.4341 580.45

Earth-Ceres 13.85 60290.56 0.5506 1007.22

TABLE VIII: Globally optimal trajectories in terms of Jm for all test-cases
using the traditional optimization techniques (DE, AGS, and GS)

Mission test-case Jm (-) t0 (MJD) k2 (-) TOF (days)

Earth-Mars 0.48 61358.04 0.4359 949.05

Mars-Earth 0.39 59599.01 0.3728 651.99

Earth-Ceres 0.76 59197.22 0.2639 1178.24

of more than 99% is reached. A robustness of 96.1% is
obtained for the hyperparameter optimization phase, after
performing 50 iterations, which takes more than 100 hours.
For the application of the proposed procedure on the devel-
opment of a GPC model, again a robustness of more than
99% is reached in the preliminary phase. The robustnesses
achieved in phases 2 and 3, of respectively 92% and 86%,
are lower than the ones achieved for the GPR model. It
should be taken into account that the deviated procedure
requires significantly more CPU time than the baseline
model development procedure.

E. Robustness of the Developed Models

The numerical results for all 15 different mission scenarios
of the Earth-Mars test case, achieved with the initial GP
models, is assessed. Along the five mission design dimen-
sions as specified in Section VI, the averaged results over
the three deviations is taken. The MAPE values obtained
for the averaged deviated mission scenarios, together with
those for the initial mission scenario, are provided for all GP
models in Figure 5 (left). The right plot in Figure 5 shows
the relative difference in MAPE with respect to the initial
mission scenario, which is computed using Equation 46.
Positive percentages indicate a larger MAPE, and therefore
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(a) Actual distribution of feasible trajectories

(b) Predicted distribution of feasible trajectories

(c) Actual ∆V distribution

(d) Predicted ∆V distribution

(e) Actual Jm distribution

(f) Predicted Jm distribution

Fig. 4: Plots of actual and predicted distributions for the Earth-Mars mission test case
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worse accuracies. It can be observed that for all models
better performance is reached when they are applied on a
mission scenario with a smaller range for t0 and/or TOF.
This result is expected, as generally less training samples
are required for a smaller range between the input bounds
[14]. As the same numbers of training samples as for the
initial mission scenario are used, higher accuracies could be
obtained. When the models are applied on a test case with a
different range for t0, but of the same size, the performance
is comparable to that of the initial mission scenario. Worse
performance is obtained when the models are applied on
mission scenarios with a larger range for t0 and/or TOF,
as generally more training samples are required. When the
models are applied on mission scenarios with a different
target planet, better performance is achieved for all regres-
sion models. As the ratio between minimum and maximum
∆V and Jm values for missions to Ceres, Pallas and Vesta
is smaller than for a mission to Mars, the higher accuracies
obtained for the GPR models support hypothesis 1. For
mission scenarios with a different number of revolutions,
significantly worse performance is observed.

VIII Conclusions
In this paper, a novel procedure is proposed for the
development of models utilizing GP regression and
classification, to perform computationally efficient,
preliminary optimization for direct, low-thrust trajectories.
The low-thrust trajectories are modeled using the
exponential sinusoid shape. The analysis performed in
this work demonstrates that the proposed procedure is
(highly) robust, especially where the development of GPR
models is concerned. GP models have been developed
for test cases from Earth to Mars and Ceres, and from
Mars to Earth. In all test cases, the main advantage of
the GP-based method is its efficiency in locating regions
of feasible and near-optimal trajectories, especially when
a large input space is explored. For the evaluation of
1,000,000 candidate trajectories, the GP-based prediction
method is approximately 150 times faster versus numerical
trajectory computation. This speed advantage increases for
an increasing number of candidates.

GPR models trained with only three input space parameters
showed higher accuracies than the ones trained with full
shape information. This observation is caused by the fact
that the shape-trained GPR models can accurately predict
∆VLT, but are not informative about the impulsive ∆V ’s. Ad-
ditionally, significant higher accuracies were achieved when
predicting propellant mass fraction values (Jm) instead of
∆V . As one of the main objectives of space missions is to
decrease Jm , models able to accurately predict Jm could be
of significant importance in the preliminary design of low-
thrust missions. From the results presented in this paper,
the hypothesis is developed which states that GPR models
can reach higher accuracies when the ratio between the
minimum and maximum target values gets smaller. This
hypothesis is supported by the results of all three test cases,
but further work is necessary to confirm this. MAPE values

obtained for the regression models with target value Jm

ranged between 0.55% and 2.14%, which is in line with
other work [6]. For the classification of feasible exposins,
MAPE values between 4.90% and 13.55% were achieved.
When the GPC and GPR models are placed in series, it is
possible to predict (regions of) near-optimal trajectories,
while requiring only three input parameters. Trajectories
located in these regions can be used as initial guesses
for more refined optimization techniques. The models pre-
sented have been tested for dependency on the Earth-Mars
test case as presented in this paper. Comparable results in
terms of MAPE and prediction time were achieved when the
models were applied on a mission scenario with a different
or smaller range for t0 and/or TOF or a different target
planet than the Earth-Mars mission scenario as specified
in this work.
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IX Appendix: Derivations
A. Derivations of Exponential Sinusoid Equations

Making use of a trajectory that is shaped like an exposin,
the dynamics must fit the kinematic equations (Equation
1). Given Equation 3, its first and second derivatives are
computed as:

ṙ = r θ̇k1k2c (A.1)

r̈ = r [θ̈k1k2c + (θ̇k1k2c)2 − θ̇2k1k2
2 s] (A.2)

where

c = cosk2θ+φ (A.3)

s = sink2θ+φ (A.4)

Then using Equations 1, 2 and A.2, Equation A.5 is derived.

θ̇2 =
(
µ

r 3

)
ak1k2c cosα−a sinα+1

(k1k2c)2 +k1k2
2 s +1

(A.5)

As the assumption of tangential thrusting is made, α = γ,
and making use of Equation 4, Equation A.5 can be simpli-

fied to:

θ̇2 =
(
µ

r 3

)
a tanγcosγ−a sinγ+1

tanγ2 +k1k2
2 s +1

=
(
µ

r 3

)
a sinγ−a sinγ+1

tanγ2 +k1k2
2 s +1

(A.6)

=
(
µ

r 3

)
1

tanγ2 +k1k2
2 s +1

Furthermore, using Equations 1 and 2, the normalized
thrust acceleration could be expressed as:

a =
(
µ

r 3

)
F

a =
(
µ

r 3

)
θ̈r +2θ̇ṙ

cosγ
(A.7)

Taking the derivative of both sides of Equation A.5 results
in:

2θ̇θ̈ =
(
µ

r 3

) −k1k3
2cθ̇

(tanγ2 +k1k2
2 s +1)2

θ̈ =
(
µ

r 3

) −k1k3
2c

2(tanγ2 +k1k2
2 s +1)2

(A.8)

Combining Equations A.1, A.6, A.7 and A.8 allows to express
the normalized thrust acceleration a as:

a =
(
µ

r 3

)−(
µ

r 2

)
k1k3

2 c

(tanγ2+k1k2
2 s+1)2 +2r θ̇2k1k2c

cosγ

=
(
µ

r 3

)−(
µ

r 2

)
k1k3

2 c

(tanγ2+k1k2
2 s+1)2 +2

( µ
r 2

) k1k2c
tanγ2+k1k2

2 s+1

cosγ
(A.9)

which can after simplification be written as:

a = −1

2cosγ

[
tanγ

tanγ2 +k1k2
2 s +1

− k1k3
2c −2k1k2

2 s tanγ

(tanγ2 +k1k2
2 s +1)2

]
(A.10)

To make sure that the normalized thrust acceleration is
always a positive value, independent of whether the thrust
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is directed along or against the velocity vector, the final
expression for a is given by Equation A.11.

a = (−1)n tanγ

2cosγ

[
1

tanγ2 +k1k2
2 s +1

− k2
2(1−2k1s)

(tanγ2 +k1k2
2 s +1)2

]
(A.11)

B. Derivations of Lambert’s Exposin Implementation

To compute a class of exposins belonging to a certain
value of k2, several derivations have been made in the
work of Izzo [3], which are repeated here for the sake of
completeness.

The sign of k1 is given by Equation A.12:

k1

|k1|

√√√√k2
1 −

tanγ2

k2
2

=
ln r0

r f
+ tanγ0

k2
sink2θ̄

1−cosk2θ̄
(A.12)

and the magnitude of k1 follows from Equation A.13:

k2
1 =

( log r0
r f

+ tanγ0
k2

sink2θ̄

1−cosk2θ̄

)2

+ tanγ0
2

k2
2

(A.13)

where θ̄ is given by:

θ̄ =ψ+2πN (A.14)

Next, φ and k0 can be computed using Equations A.15 and
A.16, respectively.

φ= arccos

(
tanγ0

k1k2

)
(A.15)

k0 = r0

expk1 sinφ
(A.16)

It is important to find out which of the exposins belonging
to a class Sk2[r0, r f , ψ, N] are actually feasible trajectories,
i.e. that it is possible to follow that trajectory by tangential
thrusting. Therefore, the condition k1k2

2 < 1 must hold.
Making use of Equation A.13 and rewriting it such that this
condition holds, Equation A.17 is found:(k2

2 log r0
r f

+k2
tanγ0

k2
sink2θ̄

1−cosk2θ̄

)2

+k2
2 tanγ1

2 < 1 (A.17)

which makes it possible to find analytically the interval for
γ0 for which feasible trajectories exist. In order to have a
feasible trajectory within the class Sk2[r0, r f , ψ, N], it must
hold for γ0 that:

tanγ0 = k2

2

[
− log

r0

r f
cot

k2θ̄

2
±
p
∆

]
(A.18)

in which:

∆= 2(1−cosk2θ̄)

k4
2

− log
r1

r2

2
(A.19)

It can easily be seen that if ∆< 0, no feasible exposins exist
for the class Sk2[r0, r f , ψ, N].

C. Derivations of Impulsive Thrust Computation

To compute the impulsive thrust required at departure and
arrival, the following equations are used:

∆V0 =
√

(V0,exp −Vdep)2
x + (V0,exp −Vdep)2

y + (V0,exp −Vdep)2
z

(A.20)

∆V f =
√

(V f ,exp −Varr)2
x + (V f ,exp −Varr)2

y + (V f ,exp −Varr)2
z

(A.21)

where Vdep and Varr are the velocity vectors of the departure
and arrival planet, respectively, and are retrieved from the
JPL ephemerides [13]. The velocity at any point along the
exposin can be expressed in polar coordinates using:

Vr =Vmag
tanγ√

1+ tanγ2
(A.22)

Vt =Vmag
1√

1+ tanγ2
(A.23)

where γ is the flight-path angle at a specific point along
the exposin and Vmag the magnitude of the velocity vector,
which is found using Equations A.24, A.25 and A.26.

t = θ̇r (A.24)

r = ṙ = r k1 cos(k2θ+φ)k2θ̇ (A.25)

Vmag =
√

t 2 + r 2 (A.26)

The next step is to transform the velocities along the
exposin from polar to Cartesian coordinates. Therefore,
Equation A.27 is used:

Vexp =
Vr ·ur,x

Vr ·ur,y

Vr ·ur,z

+
Vt ·ut ,x

Vt ·ut ,y

Vt ·ut ,z

 (A.27)

where

ur =
rx

ry

rz

 1√
r 2

x + r 2
y + r 2

z

(A.28)

ut =
cx

cy

cz

 1√
c2

x + c2
y + c2

z

(A.29)

in which vector c can be computed as:cx

cy

cz

=
rx

ry

rz

×
(r0,x

r0,y

r0,z

×
r f ,x

r f ,y

r f ,z

)
(A.30)

with × indicating the cross product. Position vectors r0 and
r f are retrieved from the JPL ephemerides [13].

X Appendix: Selected Models for Test Cases
The GP models that are selected for the Mars-Earth and
Earth-Ceres test cases are presented in this appendix. The
selected values of the hyperparameters are given below. The
selected mean functions, covariance functions, likelihood
functions, and inference methods, for each of the five
models for the Mars-Earth test case and Earth-Ceres test
case, are provided in Tables A.I and A.II, respectively. For a
more detailed explanation of the functions used, the reader
should refer to the book by Rasmussen [14].
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A. Hyperparameters for the Rendezvous Mission from
Mars to Earth

The following optimal values are selected for the hyperpa-
rameters of the five models for the Mars-Earth transfer:



θM
C = [−0.1097,0.2258,0.1179,−0.1207,−0.1235,

0.0513,0.2418,−0.2567,0.2698,−0.1874]T

θC
C = [3.7278,−0.8838,−0.0063,−0.5790,

1.3901,0.3949,0.4116,−1.3126]T

θL
C = −0.5100



θM
R1∆V

= [0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000]T

θC
R1∆V

= [−0.1751,8.0956,−0.2784,3.2476,1.0834,

6.5319,0.9135,3.2476,0.5967]T

θL
R1∆V

= 2.6782


θM

R1J m
= [0.0000,0.0000]T

θC
R1J m

= [−2.1440,−0.0417,−2.0412,−2.4980,

3.6555,0.0165,1.4693,−0.0371,−0.5043]T

θL
R1J m

= −3.5807



θM
R2∆V

= [0.0312,0.0340,0.0000,0.0324,0.0180,

0.0202,0.0278,0.0405,0.0000,0.0224,

0.0182,0.0472,0.0291,0.0773,0.0000,

0.0162,0.0207,0.0697,0.0305,0.1176,

0.0000,0.0124,0.0242,0.0712,0.0312,

0.0340,0.0000,0.0324,0.0180,0.0202]T

θC
R2∆V

= [0.3560,0.4305,−0.2984,0.2195,−0.0200,

0.0495,0.8205,−1.2693,0.9229,0.0000,

0.7113,−2.4052,−3.0558,3.3139,−1.3425]T

θL
R2∆V

= 3.8459


θM

R2J m
= [0.0000,0.0000]T

θC
R2J m

= [0.1475,−0.6733,0.0000,0.1402,−0.3092,

−0.7930,−2.1455,2.6543,0.2887]T

θL
R2J m

= −5.3471

B. Hyperparameters for the Rendezvous Mission from
Earth to Ceres

The hyperparameters that are selected for each of the five
GP models for the Earth-Ceres test case are presented
below. It can be observed that the values differ significantly
from those of the Mars-Earth test case, which illustrates
the importance of the hyperparameter optimization phase
in the model development procedure.



θM
C = [−0.6501,0.0176,1.1996,−0.1683,−0.2297,

−1.3976]T

θC
C = [−0.8514,0.0292,0.5066,0.3878,1.6103,

−1.5113,−0.2563]T

θL
C = −5.5533



θM
R1∆V

= [0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000]T

θC
R1∆V

= [−2.8155,7.4397,−1.7395,−5.9042,

7.1267,−0.6571]T

θL
R1∆V

= −7.8084



θM
R1J m

= [0.0000,0.0000,0.0000,0.0000,0.4080,

0.0000,0.0000,0.0000,0.0000,0.4080,

0.0000,0.0000,0.0000,0.0000,0.4080]T

θC
R1J m

= [−2.7584,7.6780,−1.8951,−5.7783]T

θL
R1J m

= −26.9124



θM
R2∆V

= [0.0000,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.1067,0.0000,0.0000,

0.0000,0.0000,0.0000,0.0000,0.0000,

0.1067,0.0000,0.0000,0.0000,0.0000,

0.0000,0.0000,0.0000,0.1067]T

θC
R2∆V

= [−0.0756,−0.7563,0.0000,0.0126,−0.5231,

−0.4258,2.6386,2.7193,4.1212]T

θL
R2∆V

= 3.3537


θM

R2J m
= [0.0000,0.0000]T

θC
R2J m

= [−1.2500,−2.5265,0.0000,2.4133,−0.5175,

−0.3657,−5.8826,16.3252,0.0159]T

θL
R2J m

= −15.0936

XI Appendix: Results for Test Cases
A. Rendezvous Mission from Mars to Earth

The plots visualizing the trade-off between prediction time
and best trajectory found for the Mars-Earth test case are
provided in Figure A.1. The plots are comparable to those
for the Earth-Mars test case, shown in Figure 3a. As worse
accuracies are achieved for the prediction of ∆V than Jm ,
the GPR model when predicting ∆V is not capable of
finding trajectories approaching the global optimum at an
increasing number of prediction samples.

The distributions in the input space of feasible trajectories
and the corresponding ∆V and Jm values are shown in
Figure A.2. It can be observed that the distribution for the
Mars-Earth test case closely resembles that of the Earth-
Mars test case, as was shown in Figure 4. This result is in
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TABLE A.I: Selected GP models for the rendezvous mission from Mars to Earth

Model GPC model GPR model 1 - ∆V GPR model 1 - Jm GPR model 2 - ∆V GPR model 2 - Jm

Mean function Sum of polynomial
(d = 3) and constant
mean

Product of polyno-
mial (d = 4) and lin-
ear mean

Scaled version of a
constant mean

Sum of polynomial
(d = 4) and linear
mean

Scaled version of a
constant mean

Covariance function Sum of PPard (d = 1)
and SEard covariance

Product of PPard (d =
1) and RQard covari-
ance

Sum of PPard (d =
1) and RQard covari-
ance

Sum of RQard and
SEard covariance

Sum of PPard (d = 0)
and SEiso covariance

Likelihood function Gaussian likelihood Gaussian likelihood Gaussian likelihood Gaussian likelihood Gaussian likelihood

Inference method
Training: LOO infer-
ence

Training: LOO infer-
ence

Training: Laplace in-
ference

Training: LOO infer-
ence

Training: Laplace in-
ference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

TABLE A.II: Selected GP models for the rendezvous mission from Earth to Ceres

Model GPC model GPR model 1 - ∆V GPR model 1 - Jm GPR model 2 - ∆V GPR model 2 - Jm

Mean function Polynomial (d = 2)
mean

Product of polyno-
mial (d = 4) and con-
stant mean

Weighted sum of 3
projected cosines
mean (WSPC, p = 3)

Weighted sum of 3
projected cosines
mean (WSPC, p = 3)

Scaled version of a
constant mean

Covariance function Sum of PPard (d = 0)
and RQiso covariance

Sum of PPard (d = 1)
and SEiso covariance

Maternard (ν = 1/2)
covariance

Sum of PPard (d = 0)
and SEiso covariance

Sum of PPard (d = 0)
and SEiso covariance

Likelihood function Gaussian likelihood Gaussian likelihood Gaussian likelihood Gaussian likelihood Gaussian likelihood

Inference method
Training: Gaussian
noise inference

Training: Gaussian
noise inference

Training: Gaussian
noise inference

Training: Gaussian
noise inference

Training: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

Prediction: Gaussian
noise inference

line with expectation, as both mission test cases share the
same synodic period of 780 days on average. It can again
be concluded that, although the GP models fail in finding
globally optimal trajectories, they are capable of efficiently
predicting distributions that quite closely resemble the
actual distributions.

B. Rendezvous mission from Earth to Ceres

For the Earth-Ceres test case, the distribution plots are
provided in Figure A.3. A repetitive pattern for optimal
trajectories is visible, which corresponds to the average
synodic period of the Sun-Earth-Ceres system of 467 days
on average. As the predicted distributions strongly resemble
the actual distributions, it is again concluded that the GP
models are powerful tools for the prediction of regions of
feasible and near-optimal trajectories within limited CPU
time.

C. Robustness of the Developed Models for the Ren-
dezvous Mission from Earth to Mars

This subsection contains a more detailed discussion on the
robustness of the developed models, of which the procedure
was outlined in Section VI. Along five mission design
dimensions, three deviations are applied. The averaged
results along each of them were presented in Section VII. In
this section, the results along each of these dimensions is
examined separately. For the 15 different mission scenarios
with a deviated mission design parameter from the initial
mission scenario, the obtained accuracies, when using the

Fig. A.1: Trade-off plots for the Mars-Earth test case

initial models given in Section VI, are shown in Figure A.4.
From Figure A.4a it can be observed that, when applying
the models on a mission scenario with a different range
for t0, in general the performance resembles that of the
initial mission scenario. The largest differences are observed
for GPR model 1 when predicting ∆V . Using hypothesis 1,
this can be explained by the fact that the ratio between
the minimum and maximum ∆V values is slightly larger
for deviation 2 and 3 than for the initial mission scenario.
When the models are applied on a mission scenario with
a smaller range for t0 and/or TOF, the performance gets
better (refer to Figure A.4b). An exception is observed for
GPR models 2, where the performance gets slightly worse
for the second deviation. A possible explanation is found in
hypothesis 2, since the percentage of ∆V used for the low-
thrust acceleration (∆VLT) is smaller for deviation 2 than
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(a) Actual distribution of feasible trajectories

(b) Predicted distribution of feasible trajectories

(c) Actual ∆V distribution

(d) Predicted ∆V distribution

(e) Actual Jm distribution

(f) Predicted Jm distribution

Fig. A.2: Plots of actual and predicted distributions for the Mars-Earth mission test case
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(a) Actual distribution of feasible trajectories

(b) Predicted distribution of feasible trajectories

(c) Actual ∆V distribution

(d) Predicted ∆V distribution

(e) Actual Jm distribution

(f) Predicted Jm distribution

Fig. A.3: Plots of actual and predicted distributions for the Earth-Ceres mission test case
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(a) Spider plots for different range of t0

(b) Spider plots for smaller range of t0 and/or TOF

(c) Spider plots for larger range of t0 and/or TOF

(d) Spider plots for different target planet

(e) Spider plots for different number of revolutions

Fig. A.4: Spider plots indicating the robustness of the developed models for the Earth-Mars test case. Left: MAPE values, Right: relative difference in
MAPE with respect to initial mission scenario (taken as 0%)
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for the initial mission scenario. The better achieved results
are in line with expectation, as with a decreasing range
between input bounds, generally less training samples are
required [14]. The opposite is true for a larger range of
t0 and/or TOF, as is observed in Figure A.4c, where the
performance gets somewhat worse. For the performance of
the mission scenarios to different target planets, it becomes
clear from Figure A.4d that for the regression models the
obtained MAPE’s are, from high to low, ordered as: Pallas
- Ceres - Vesta - Mars, which is inversely related to the
order of the ratios of minimum to maximum target values.
This ratio is the smallest for Pallas and the largest for
Mars, which supports hypothesis 1. The performance for
the GPC models is for all target planets comparable, except
for Vesta, where worse performance is achieved. Finally, it
remains to discuss the results when the initial models are
applied on a mission scenario with a different number of
revolutions. From Figure A.4e, it can be observed that in
general the performance gets worse, especially for N = 2.
The performance for the GPC models forms an exception,
as higher accuracies are reached for N = 3 and N = 4. A
possible explanation for these observations is the percent-
age of feasible trajectories. For N = 2, the percentage of
feasible trajectories is larger than for N = 1. For N = 3, this
percentage is lower than for N = 1, and for N = 4 even
less feasible trajectories exist. This same rationale could be
used to explain the worse performance of the GPC model
for target planet Vesta. However, more work is required to
confirm this rationale.
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A
Orbital Mechanics

The work presented in Chapter 2 focuses on the preliminary optimization of low-thrust trajectories, which are
modeled according to the exposin shape with the addition of impulsive∆V ’s to approximate three-dimensional
mission design. This section discusses the reference frame and coordinate systems used to implement the tra-
jectory computation in the data generation program.

A.1. ECLIPJ2000 Reference Frame
The reference frame used in this work is the ECLIPJ2000, where the fundamental plane is the ecliptic plane.
Most planetary orbits in the Solar System have relatively small inclinations to the ecliptic plane [31], which
makes it convenient as a reference frame. The X-axis lies in the ecliptic plane with its direction towards the
mean equinox at J2000. The Z-axis is orthogonal to the ecliptic plane and the Y-axis completes the right-
handed system. The origin of the reference frame is taken as the center of the Sun.

A.2. Coordinate Systems
Two types of coordinate systems are used in this work: the Cartesian and polar coordinate systems, which are
shown in Figures A.1 and A.2, respectively, and will be discussed here [7].

Figure A.1: Cartesian coordinate system Figure A.2: Polar coordinate system

A.2.1. Cartesian Coordinate System
In the Cartesian coordinate system, the position and velocity of the point mass are specified by the linear dis-
tances (x, y, z) and their rate of change (ẋ, ẏ , ż) along three fixed orthogonal directions, which are, respectively,
the X-,Y- and Z-axes. The coordinates of a point-mass in the Cartesian coordinate system can lie anywhere in
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the interval (−∞,∞). The position and velocity vectors of the planets are in this work expressed in Cartesian
coordinates.

A.2.2. Polar Coordinate System
The polar coordinate system is a two-dimensional coordinate system, which is used to express the position
along the exposin. This coordinate system is specified by the radial distance from the origin r and the polar
angle θ, which indicates the positive rotation from the x-axis. Although the exposin is expressed in a two-
dimensional coordinate system, three-dimensional mission design is approximated by the addition of impul-
sive ∆V ’s at both the departure and arrival positions.
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B
Appendix: Low-Thrust Propulsion

Since this study focuses on the design of low-thrust trajectories, it is important that assumptions could be
made on the low-thrust propulsion system, for example on the values of Isp and Fmax. Therefore, some basic
knowledge about low-thrust propulsion techniques and understanding of the dynamics of low-thrusting is
required. Contrary to high-thrust, thrust levels achieved with low-thrust propulsion systems are commonly in
the order of about 0.1 N [33].

B.1. Fundamental Equations
The thrust of a rocket engine is given by [31]:

T = ṁVe (B.1)

where ṁ is the mass flow leaving the rocket engine nozzle per unit of time, and Ve is the exhaust velocity. The
thrust can also be expressed as a function of available power W :

T =
p

2ṁW = 2W

Ve
(B.2)

From Equation B.2, it follows that for a fixed value of available power, the available thrust decreases with in-
creasing exhaust velocity. Therefore, to achieve high thrust levels with limited propellant consumption, high
exhaust velocities and high power levels are required. It also becomes clear from Equation B.2 that the thrust
depends linearly on the input power. One of the key parameters of a rocket engine is the value of Isp, which is
expressed as the ratio of the thrust to the propellant mass flow in units of weight [30]:

Isp = T

ṁg0
= Ve

g0
(B.3)

with g0 = 9.81 m/s2. The Isp value gives an indication of the efficiency of a rocket engine. Generally, exhaust
velocities of electric propulsion systems are high. Therefore, the Isp values are high as well, which indicates
that the electric propulsion system is highly efficient.

B.2. Characteristics of Electric Propulsion Missions
Several electric propulsion systems and their main characteristics are provided in Table B.1. It becomes clear
that the thrust levels that can be achieved with current electric propulsion technology are very low and the val-
ues for specific impulse are very high. Especially for an ion engine, an Isp of up to 6000 s can be obtained. As
in this work an ion electric propulsion system is considered, the Isp value is taken as 3500 s, which lies within
the 2000-6000 s range.
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Table B.1: Characteristics of various electric propulsion systems [33]

Propulsion system Isp [s] Electric power/thrust [kW/N] Efficiency [%] Thrust range [N]

Resistojet 150-700 1.3-2 60 0.005-0.5

Arcjet 450-1500 6-15 91-95 0.05-5

Ion 2000-6000 22-36 87-91 5×10−6 - 0.5

Hall effect thruster 1500-2500 16-19 91-93 5·10−6 - 0.1

Magnetoplasmadynamic 2000 10-19 25-200

Pulsed plasma 1500 83-100 80 5·10−6 - 0.005

Pulsed inductive 2500-4000 40 70 2-200

Furthermore, the main characteristics of four low-thrust missions are shown in Table B.2. It can be seen that
for BepiColombo a maximum thrust of 290 mN is feasible, which corresponds for a spacecraft of 1000 kg to
a thrust acceleration of 2.9 · 10−4 m/s2. This compares to the thrust acceleration of Smart I of 2 · 10−4 m/s2

with a weight of 367 kg [7]. It is therefore assumed that for the preliminary design of low-thrust trajectories,
thrust accelerations of up to 3.0 ·10−4 m/s2 are feasible with current technology. The weight of the spacecraft
considered in this work is taken as 1000 kg.

B.3. Power Source
Mainly two types of power sources exist for electric propulsion systems: solar electric propulsion (SEP) and
nuclear electric propulsion (NEP) [22]. In this work, only NEP is considered, as it is not dependent on the he-
liocentric radius distance, and the available power is therefore constant throughout the mission. The available
power for NEP ranges between 5-300 kW [33].

Table B.2: Characteristics of electric propulsion systems used in past space missions [27][15][26][3]

Mission Isp [s] Input power [kW] Thrust range [mN] ∆V [km/s]

Deep Space 1 1900 - 3200 0.5 - 2.3 19 - 92 4.5

Hayabusa 2900 0.3 - 11 5 - 25 22

Dawn 1900 - 3200 0.5 - 2.6 19 - 92 10.7

BepiColombo 4300 7 - 14 100 - 290 5.8
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C
Appendix: Numerical Integration

In this work, the Midpoint method is used for numerical integration, which is a one step method that solves
differential equations numerically. The integral is approximated by interpolating f in the midpoint x̄k =
(xk−1 +xk )/2 of m intervals Ik . The approximation of the integral is given by Equation C.1 [9]:

Imp ( f ) = h
m∑

k=1
f (x̄k ) (C.1)

The error ε between the approximation and the exact value of the integral decreases, according to Equation
C.2, with the second power of the spacing h:

εmp = I ( f )− Imp ( f ) = b −a

24
h2 f̈ (x) with x ∈ [a,b] (C.2)

with I ( f ) the exact value of the integral and Imp ( f ) the value of the integral approximated by the Midpoint
method. The Midpoint method has been chosen due to the combination of small relative error and fast ex-
ecution time, as will be explained here. From the equations for the computation of the normalized thrust
acceleration a and the velocity change ∆VLT (refer to Equations 5 and 8 in conference paper), it becomes clear
that∆VLT along the low-thrust arc is computed by integration of the thrust acceleration F , which is in turn ob-
tained by the computation of a (refer to Equation 2 in conference paper). When a one-step method is used, a
has to be computed at the same number of steps as∆VLT. If a multi-step integration method (e.g. Runge-Kutta)
would be implemented, a should be computed for a larger number of steps, thereby significantly increasing
the CPU time and complexity of the program. To reduce CPU time and avoid this complexity in the data gen-
eration program, a one-step integration method is preferred over a multi-step method. Out of the possible
one-step methods, four methods have been investigated: the Euler method, the Midpoint method, the Trape-
zoidal method, and Simpson’s method [4], which have been tested for accuracy and computational speed. The
latter three methods showed equal performance in terms of accuracy and CPU time. Worse accuracies were
achieved for the Euler method at comparable CPU time. As the Midpoint, Trapezoidal, and Simpson’s method
resulted in the same performance, the Midpoint method is chosen due to its straightforward implementation.
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D
Appendix: Optimization

The optimization techniques used in this work to find optimal trajectories are the differential evolution, the
grid search, and the adaptive grid search. The conjugate gradient method is used for the optimization of the
hyperparameter values. Each of them will be discussed here.

D.1. Differential Evolution (DE)
Storn and Price developed the method of DE [29], which is both efficient and able to find the overall best tra-
jectory, i.e. the global optimum. In the DE a population of N solution candidates (x1, x2, ..., x N ) is used, where
each of the candidates is a vector containing the n optimization parameters. Firstly, an initial population is
generated, which consists of candidates that could be located in the entire solution space. Next, for each can-
didate vector x i a trial vector z i is created. The candidate vector x i is replaced by the trial vector z i if the
objective function value of vector z i is lower than that of vector x i . This process is repeated until the global
minimum or a specified number of iterations is obtained.

In the classical version of the DE, as developed by Storn and Price, three intermediate solution vectors (x p(1), x p(2)

and x p(3)) are randomly generated for each solution vector x i . These are then, together with the mutation
probability Fp , used to compute a new vector x̂ i according to Equation D.1:

x̂ i = x p(1) +Fp · (x p(2) −x p(3)) (D.1)

The trial vector is found by applying crossover to x i and x̂ i in the following way:

z j
i =

{
x̂ j

i if R j ≤CR or j =Wi

x j
i if R j >CR and j =Wi

(D.2)

with j indicating the j th component of the corresponding vector and R j ∈ (0,1) randomly determined for each
j . CR is the crossover probability, which is usually a value between 0.5 and 1.0, and Wi is a integer, which is
randomly chosen between 1,2,..,n. This procedure ensures that z i gets at least one parameter from x̂ i .

As the DE algorithm is both simple and straightforward and has demonstrated to be highly robust and efficient
for complex optimization problems [1] [13], it is chosen in this work. Furthermore, it has also been used for
the optimization of the decision vector in the multi-revolution Lambert problem for exposins proposed by Izzo
[12].

D.2. Grid Search (GS)
In a GS, the input space is discretized using an enumerative search, i.e. a grid, after which the objective func-
tion is evaluated at each grid point. The grid point where the best value for the objective function is found, is
assumed to be the global minimum. The GS method is disadvantageous for large search spaces, because ei-
ther the computational burden becomes extensive or the grid spacing becomes very large, resulting in limited
accuracy. Grid searches might be useful for optimization of the launch date t0 and TOF by stepping through
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the possible launch dates and transfer times in discrete steps, which was done in the work by Novak and Vasile
[20].

D.3. Adaptive Grid Search (AGS)
The AGS provides a solution to overcome the disadvantage in CPU time of the GS technique [19], and has
therefore been used as the third optimization technique. In the AGS, first a coarse grid (G0) is used. After the
evaluation of all grid points in the course grid, the grid is refined around the interim optimum by halving the
length of the search interval (G1). This procedure is repeated a specified number of times or until a specified
optimal value is reached. In this work, it is repeated until the optimum at Gi is equal to that at Gi−10 and it
is therefore assumed that convergence is reached. Although it is advantageous with respect to CPU time, this
technique is prone to converging to local optima.

D.4. Conjugent Gradient Method
The optimization of the marginal likelihood to find the hyperparameters, as discussed in Section IV in the
conference paper, is performed using the conjugent gradient method, which is built-in in the gpml toolbox
[24]. The one that is implemented is an algorithm for the numerical solution of linear equations, whose matrix
is symmetric and positive-definite. A detailed description is provided in the book by Hestenes and Stiefel [11].
To find the hyperparameter values by maximizing the marginal likelihood, we look for the partial derivatives
of the marginal likelihood w.r.t. the hyperparameters [25]:

∂

∂θ j
log p(Y |X ,θ) = 1

2
Y T K −1 ∂K

∂θ j
K −1Y − 1

2
tr

(
K −1 ∂K

∂θ j

)
(D.3)

with tr the trace of a matrix. The complexity lies in inverting the covariance matrix K . Standard methods for
the inversion of positive definite symmetric matrices require time O(n3) for inversion of an n ×n matrix. After
the determination of K −1, the derivatives in Equation D.3 need to be computed, which requires only O(n2)
per hyperparameter. As the computational overhead of computing derivatives is small, using a gradient-based
optimizer is advantageous [25]. It should be noted that there is no guarantee that the gradient-based method
does not converge to one of the local optima of the marginal likelihood. Empirical evidence indicates that,
although local optima exist, it is not a devastating problem in terms of final performance to converge to one of
the local optima instead of the global one [25].
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E
Appendix: Gaussian Process Regression and

Classification

GPR and GPC are both forms of supervised learning, which is the machine learning task of learning a function
that maps an input to an output based on empirical data (i.e. the training dataset). It is therefore concerned
with predicting the output at new inputs, when some observations of dependent output are known at cer-
tain independent inputs. Regression means that it is concerned with a continuous output. In classification
problems, the output is a discrete value [25].

E.1. The Advantages of Using Gaussian Process Models
The advantage of a GP is its ability to provide a conscientious, practical, and probabilistic approach to learning
in kernel machines. This is beneficial with respect to the interpretation of model predictions and provides a
well-founded framework for learning and model selection. When considering processes which are Gaussian,
the computations that are required for inference and learning become relatively easy. As a result, supervised
learning problems in machine learning, which can be considered as learning a function from examples (i.e.
training data), can be cast straight into the GP framework [25].

Neural networks became popular mainly because they allowed the use of adaptive basis functions, as opposed
to linear models. The adaptive basis functions in a neural network could "learn" hidden features useful for
the problem at hand. However, this adaptivity came at the cost of other problems, e.g. the lack of a principled
framework. When using a GP, one is able to add prior knowledge and specifications about the shape of the
model by selecting different kernel functions. In case this prior knowledge is not available, the model devel-
opment procedure as proposed in this paper might offer a solution. GP’s are mathematically equivalent to
many models, including Bayesian linear models, spline models, large neural networks, and are closely related
to e.g. support vector machines. However, under the GP viewpoint the models may be easier to handle and
interpret. An example is that a GP directly captures the model uncertainty. GP models provide a distribution
for the prediction value, rather than just one value as the prediction. For neural networks this is not the case.
One of the main advantages of the GP framework is that it combines a sophisticated and consistent view with
computational tractability [25].

E.2. The Basics of Gaussian Process Models
As discussed in Section IV of the conference paper, a GP over the function f (x) is defined by [25]:

f (x) ∼GP (µ(x),k(x , x∗)) (E.1)

where µ(x) and k(x , x∗) are the mean function and covariance function, respectively. Both functions are dis-
cussed in more detail hereafter, followed by the likelihood function and the inference method.
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E.2.1. Mean Function
The mean function, specified asµ(x), dominates the forecast in regions far from the data. Therefore, the choice
of the prior mean function can have a large impact on the data. In most cases, one is unsure about whether
a trend is up or down, i.e. prior knowledge is not available. In that case, either a flat, often zero-offset, mean
function could be selected, as is done in most papers [28] [6], or several different mean functions could be
tried to select the best performing one. The latter is incorporated in the model development procedure as
proposed in this work. When e.g. the function has a linear drift term, much better performance could be
achieved by choosing a mean function that fits this trend. The model development procedure as proposed in
this work tries to find a mean function that can fit the problem at hand. It should be noted that, when the in-
put space becomes multi-dimensional, it is hard to visualize the distribution and it is therefore less likely that
prior knowledge is available. When a mean function other than zero is selected, the mean function contains
hyperparameters, which conceal domain knowledge regarding the deterministic component.

From the model development procedure, the following five mean functions turned out to be of importance for
the problems considered in this work (refer to Section X in the conference paper):

µpolynomial(x) =
D∑

i=1

d∑
j=1

ai j · x j
i (E.2)

µlinear(x) =
D∑

i=1
ci · x i (E.3)

µconstant(x) = c (E.4)

µWSPC(x) =
√

2

p

p∑
j=1

a j ·cos(inv(w j ) · x +b j ) (E.5)

µscaled(x) = a ·µ0(x) (E.6)

with D the dimension of the input space, d the number of polynomials, p the number of projected cosines,
and a , b, c, and w hyperparameters to be selected. Furthermore, µ0(x) is the mean function to be scaled. It
should be noted that significantly better performance is obtained for all models than what could be achieved
with a zero mean function.

E.2.2. Covariance Function
The covariance function, specified as k(x , x∗), represents some form of distance or similarity between input
points. It is likely to assume that points with inputs x , which are close together, are likely to have similar target
values y , and therefore training points close to a test point should be informative about the prediction at that
test point. It is the covariance function that defines this measure of nearness or similarity. The most important
properties of covariance functions could be distinguished as [25]:

• Stationary: when a covariance function is a function of x −x∗ and is thus invariant to translations in the
input space.

• Isotropic (iso): when a covariance function is a function only of |x − x∗| and is therefore invariant to all
rigid motions.

• Characteristic length-scale `: describes how smooth a function is. When the length-scale is small, it
means that function values can change quickly. For large values of `, functions can only change slowly.
Furthermore, length-scales determine how far we can reliably extrapolate from the training data (i.e.
how far do you need to move (along a particular axis) in the input space for the function values to become
uncorrelated).

• Signal variance σ2: is a scaling factor that determines the variation of function values from their mean.
Whenσ2 is small, this indicates that a function stays close to its mean value, while larger values allow for
more variation. In case the signal variance is too large, the modeled function will start to chase outliers.

• Automatic relevance determination: when a covariance function implements automatic relevance deter-
mination (ard) [18], the inverse of the length-scale determines how relevant an input is. The covariance
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will become almost independent of the input if it has a very large length-scale, and it will therefore effec-
tively be removed from the inference. For the removal of irrelevant input, ard has been used successfully
by several researchers [34].

The covariance functions that were selected for the models in this work, determined using the model devel-
opment procedure, turned out to be all stationary, and are therefore only a function of Euclidean distance.
Stationary covariance functions decay monotonically with |x − x∗| and are always positive [25]. A downside
of stationary GPs is that they fail to adapt to changeable smoothness in the function of interest, which is of
particular importance when the function varies more quickly in certain parts of the input space than in others
[25]. Using a non-stationary covariance function, the model is allowed to adapt to functions whose smooth-
ness changes with the inputs and is thus able to fit properly a variable smoothness prior. A downside is that a
non-stationary GP model requires significantly more parameters than a stationary GP model, especially for a
growing dimension, losing the attractive simplicity of the stationary GP model. The result might be slow com-
putation, which limits the feasibility of the model to approximately M < 1000 [21]. The families of covariance
functions that are of importance in this work are discussed hereafter.

Squared Exponential Covariance Function
The standard form of the squared exponential (SE) covariance function is given by [25]:

k(x , x∗)SE = exp(− (x −x∗)2

2`2 ) (E.7)

where ` is the characteristic length-scale. When the characteristic length-scale is short, the function would
vary rapidly, and vice-versa for a long characteristic length-scale. The SE covariance function is infinitely dif-
ferentiable (i.e. the GP with this covariance function has mean square derivatives of all orders) and is thus very
smooth [25]. The SE is probably the most widely-used covariance function in the field of machine learning.
In this work two variants of the SE covariance functions are used: one with isotropic distance measure (SEiso)
and one with automatic relevance determination distance measure (SEard), respectively given by Equations
E.9 and E.8:

k(x , x∗)SEard = s2
f ,SEard ·e−(x−x∗)′·inv(P )· x−x∗

2 (E.8)

k(x , x∗)SEiso = s2
f ,SEiso ·e−(x−x∗)′·inv(P )· x−x∗

2 (E.9)

with s2
f the signal variance. For the covariance functions with SEard, the P matrix is diagonal with automatic

relevance determination parameters `2
1, ...,`2

D . For SEiso, the P matrix is `2 times the unit matrix.

Rational Quadratic Covariance Function
The rational quadratic (RQ) covariance function is of the form:

k(x , x∗)RQ =
(
1+ (x −x∗)2

2α`2

)−α
(E.10)

with α > 0 and ` > 0 [25].

In this work, the RQard and RQiso covariance functions are used, given by Equations E.11 and E.12, respec-
tively:

k(x , x∗)RQard = s2
f ,RQard[1+ (x −x∗)′inv(P )(x −x∗)

2α
]−α (E.11)

k(x , x∗)RQiso = s2
f ,RQiso[1+ (x −x∗)′inv(P )(x −x∗)

2α
]−α (E.12)

with the P matrices equal to those for the SE covariance functions.
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Piecewise Polynomial Covariance Function
The piecewise polynomial (PP) covariance function is specified by the number of polynomials d (equal to
0,1,2, or 3). These covariance functions are 2d-times continuously differentiable, and thus the corresponding
processes are d-times mean-square differentiable. The standard form of the covariance function is given by
[25]:

k(x , x∗)PP = max

(
1−

√
|x −x∗|
`2 ,0

) j+d

· f

(√ |x −x∗|
`2 , j

)
(E.13)

with j the signal variance, given by j = floor(D/2)+d +1.

Again, an ard and iso variant are used in this work:

k(x , x∗)PPard = s2
f ,PPard ·max(1− r,0) j+d · f (r, j ) (E.14)

k(x , x∗)PPiso = s2
f ,PPiso ·max(1− r,0) j+d · f (r, j ) (E.15)

where the distance r is defined as:
r =

√
(x −x∗)′inv(P )(x −x∗) (E.16)

with the P matrices equal to those for the SE and RQ covariance functions. The function f (r, j ) is dependent
on the number of polynomials d , which is given in Equation E.17 for the values of d used in this work.

d = 0 : f (r, j ) = 1

d = 1 : f (r, j ) = 1+ r ( j +1)

d = 2 : f (r, j ) = 1+ r ( j +2)+ ( j 2 +4 j +3)/3r 2

(E.17)

Matérn Covariance Function
The Matérn class of covariance functions is given by [25]:

k(x , x∗)MATÉRN = 21−ν

Γν

(p
2ν|x −x∗|

`

)ν
Kν

(p
2ν|x −x∗|

`

)
(E.18)

where Γ is the standard Gamma function, ν and ` are positive parameters of the covariance function, and Kν is
the modified Bessel function of second order. The values for ν considered in this work are ν= 1/2, ν= 1/3 and
ν= 1/5. The Matérn covariance function can be seen as a generalization of the SE covariance function. Due to
its finite differentiability (for finite ν), it is generally better able to capture physical processes [25].

The ard version of the Matérn covariance function is used in this work and is given by:

k(x , x∗)MATÉRNard = f (
√

(ν) · r ) ·e−
p

()·r (E.19)

where f (t ) = 1 for ν= 1/2, f (t ) = 1+ t for ν= 1/3, and f (t ) = 1+ t + t 2/3 for ν= 1/5.

E.2.3. Likelihood Functions
A likelihood function p(Y | f ) is a conditional density defined for scalar latent function values f and output
vector Y . Likelihood functionality is of importance both during training and prediction. During training, the
values of the hyperparameters are determined, which will be discussed in the following subection. How the
likelihood becomes useful during prediction will be discussed here.

A prediction at input x∗ using the dataset D = (X ,Y ) consists of the predictive mean µy∗ and variance σ2
y∗ ,

which are computed from the latent marginal moments µ f ∗ and σ2
f ∗ (i.e. the Gaussian marginal approxima-

tion N ( f ∗|µ f ∗ ,σ2
f ∗ )), using [24]:

p(y∗|D, x∗) =
∫

p(y∗| f ∗)p( f ∗|D, x∗)d f ∗ (E.20)

=
∫

p(y∗| f ∗)N ( f ∗|µ f ∗ ,σ2
f ∗ )d f ∗ (E.21)
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Using the moments of the likelihood µ f ∗ = ∫
y∗p(y∗| f ∗)d y∗ andσ2

f ∗ =
∫

(y∗−µ f ∗ )p(y∗| f ∗)d y∗, the following

(exact) expressions could be obtained for the predictive moments [24]:

µy∗ =
∫
µ f ∗p( f ∗|D, x∗)d f ∗ (E.22)

σ2
y∗ =

∫
[σ∗

f
2 + (µ f ∗ −µy∗ )2]( f ∗|D, x∗)d f ∗ (E.23)

Although several likelihood functions exist, only Gaussian likelihood is used in this work and is therefore the
only one discussed here. As the posterior distribution is Gaussian, the computation can be performed analyt-
ically, which makes it the simplest likelihood function. Due to this simplicity, both training and prediction are
executed faster than for other likelihood functions. Together with the fact that the achieved MAPE values are
equal to or better than those obtained with other likelihood functions, it is selected for the GP models used in
this work.

The Gaussian likelihood is given by [24]:

p(yi | fi ) = e
−(yi − fi )2

2s2
n√

2πs2
n

(E.24)

where sn is the standard deviation of the noise, which is the only hyperparameter.

E.2.4. Inference Methods
Inference methods are used to compute the parameterization of the posterior, the (approximate) negative log
marginal likelihood and its partial derivatives with respect to the hyperparameters [25]. Inference is therefore
of importance during the training part, to compute the values of the hyperparameters, and during the pre-
diction part, to compute an approximation to the posterior distribution of the latent variables fi related to
training cases i = 1, ...,n. This approximate posterior is assumed to be Gaussian. The three inference methods
that are used in this work are discussed here.

Gaussian Noise Inference
When Gaussian noise inference is used in combination with Gaussian likelihood, as done in this work, com-
puting the posterior reduces to computing the mean and covariance of a multivariate Gaussian, which can be
done in an exact way by using matrix algebra. The Gaussian posterior resulting from this computation is exact.

Laplace Inference
For likelihoods which are differentiable, Laplace inference approximates the posterior by a Gaussian centered
at its mean and matching its curvature. This inference method needs derivatives up to the third order for the
fitting procedure. For more information, the reader is referred to the manual of the gpml toolbox [24].

LOO Inference
Using LOO inference, the posterior is approximated using a least-squares probabilistic method. A detailed
explanation is provided in the book by Rasmussen [25].

E.3. Selection of the Hyperparameters
The mean, covariance, and likelihood functions previously discussed contain several hyperparameters, of
which the optimal values have to be determined during the third phase of the model development procedure.
The marginal likelihood is used to optimize the hyperparameter values, which is the integral of the likelihood
times the prior:

p(Y |X ) =
∫

p(Y | f , X )p( f , X )d f (E.25)

The term "marginal" indicates that a marginalization is performed over the function values f . In general, using
Bayesian inference, the posterior is computed as:

posterior = likelihood×prior

marginal likelihood
(E.26)
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which results for the computation of the hyperparameters in:

p(θ|Y , X ) = p(Y |X ,θ)p(θ)

p(Y |X )
(E.27)

where the denominator, or the marginal likelihood, is given by Equation E.25.

The hyperparameters should be set such that the marginal likelihood is maximized. Therefore, the partial
derivatives of the marginal likelihood w.r.t. the hyperparameters are sought. The optimal hyperparameters
can be found by minimizing the objective function given in Equation 26 in the conference paper, making use
of the conjugent gradient method, as was discussed in Section D.

E.4. Cross Validation for Model Selection
This subsection addresses how cross validation can be used for model selection. In cross validation the training
set is split into two sets, of which one is actually used as training data and the other is used as validation set
to monitor the performance [25]. A drawback of this might be that only part of the data set could be used for
training. Furthermore, if the remaining validation set is small, the estimate of the performance might have
a large variance. k-fold cross-validation could help resolve these problems. The data set is then split into k
subsets of equal size. k −1 sets are used for training and a single subset is used for validation. This process is
then repeated in total k times, such that each subset is selected once for validation. The benefit is that a large
part of the data can be used as training data and the model is validated against all data. A slight drawback is
that multiple models have to be trained. Values for k typically range between 3 to 10 [25], and is in this work
set to 5.
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F
Appendix: Verfication and Validation

To assure that the results presented in this work are correct, verification is applied on several aspects of the
work: the implementation of the exposin shape, the integration along the shape, and the optimization tech-
niques used. For each of these aspects, both the method of verification and the results are provided.

F.1. Implementation of Exposin
F.1.1. Method
In order to ensure that the exposin shape is implemented correctly and the TOF and thrust acceleration along
the arc are computed in the right way, two sources of verification have been used: the lecture notes proved by
R. Noomen on exposins [19] and the paper written by Izzo [12].

The verification of the implementation of a class of exposins is done by reproducing the plots as provided
in the work by Izzo. These plots, given in Figure F.1a, contain, for two different classes of exposins, all feasible
exposins within these classes. The same classes of exposins are implemented in the algorithm used in this work
(i.e. the data generation program), to find all feasible exposins belonging to these classes. The computation of
the TOF is verified by another plot provided in Izzo’s paper, which can be found in Figure F.2a. In this plot, the
TOF versus the flight-path angle is given for the class S1/12[1,1.5,π/2, N ]. This same class is implemented in
the data generation program and the TOF at different flight-path angles is computed for N = 0,1, ..,5. Finally,
the computation of the thrust acceleration along the exposin should be verified. For this purpose, the plot
provided in the lecture notes by R. Noomen [19] is used, which can be found in Figure F.3a. In this figure,
the thrust acceleration versus the transfer angle is provided for an exposin defined by the parameters {k0 =
1 AU,k1 = 0.5,k2 = 2/9,φ = −π/2 rad}. In the data generation program the acceleration along the low-thrust
arc is computed for an exposin with the same parameters.

(a) Plots used for verification [12] (b) Plots produced with data generation program

Figure F.1: Verification of exposin implementation: Feasible exposins in the classes S1/2[1,5,π/2,0] (left) and S1/4[1,5,π/2,1] (right)

F.1.2. Results
It can be observed that the produced plots for the class of exposins, the TOF curves, and the thrust acceleration,
respectively given in Figures F.1b, F.2b, and F.3b, very closely resemble the plots used for verification. Although
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(a) Plot used for verification [12] (b) Plot produced with data generation program

Figure F.2: Verification of TOF computation: Time-of-flight versus the flight-path angle for the class S1/12[1,1.5,π/2, N ]

(a) Plot used for verification [12] (b) Plot produced with data generation program

Figure F.3: Verification of thrust acceleration computation: Acceleration required for an exposin defined by parameters
{k0 = 1AU,k1 = 0.5,k2 = 2/9,φ=−π/2rad}

no numerical data is available for quantitative comparison, from this qualitative verification it is concluded
that the exposin shape is implemented in the right way and the corresponding TOF and thrust acceleration are
computed correctly.

F.2.∆V Computation
F.2.1. Method
With respect to the computation of ∆V , it is important to 1) verify the correct computation of the values for
the impulsive shots (∆V0 and ∆V f ) and ∆VLT along the low-thrust arc, and 2) validate the number of steps that
is used in the Midpoint method for numerical integration of ∆VLT. Additionally, it should be validated if this
number of steps provides sufficient accuracy for the computation of the TOF.

The computation of the ∆V values is verified by the code provided by Chris Andre [2] in Python, which in turn
used a paper of ESA for validation [32]. The reason for not directly verifying against this paper, is the fact that
the necessary ephemeris data was not available in MATLAB. Five different input vectors have been chosen,
which are provided in Table F.1. The verification data is generated by feeding these input vectors to the Python
code. The same input vectors are fed into the data generation program written in MATLAB, and the absolute
and relative differences of the ∆V values are compared.
For the numerical integration, it is important to determine the minimum number of steps required. In the
work by Gondelach [7], it was assumed that ∆V needs to be known with an accuracy of 0.1% to be able to
compare the ∆V ’s of different trajectories well. Therefore, an internal validation is performed to determine
the number of steps at which this accuracy is achieved. Here a large number of steps, in this case 100,000,000,
is assumed to lead to the exact value of ∆V and TOF. The input vector used corresponds to the best trajectory
found using the exposin shape for the Earth-Mars mission test case, given by x = [62701.02, 0.1970, 562.74].
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F.2.2. Results
The computed ∆V values for the five input vectors using the data generation program in MATLAB are given
in Table F.1. The absolute and relative differences between the validation data and the computed values are
presented in Table F.2. It can be observed that all absolute differences are smaller than 3 · 10−6 m/s and all
relative differences are smaller than 3 ·10−8 %. As these values are negligible during preliminary optimization,
it is concluded that the ∆V computation is done correctly.

The computed values for ∆V at different number of steps are given in Table F.3. As the value belonging to
100,000,000 is taken as the reference value, the absolute differences and relative differences are computed
compared to ∆V achieved at 100,000,000 steps. Taking the criterium as defined by Gondelach into account
[7], 400 steps would be sufficient. To ensure some margin of correct computation, the number of steps used in
this work is set to 1000. When considering the TOF computation, it becomes clear from Figure F.4 that using
1000 steps results in a relative error smaller than 5 ·10−6 %. As this error is significantly smaller than the one
reached for the ∆V computation, 1000 steps is deemed sufficient for the TOF computation.

Table F.1: Verification of ∆V computation

Input vector Verification data Results

t0
(MJD)

k2
(-)

T OF
(days)

N
(-)

∆V0
(m/s)

∆V f
(m/s)

∆VLT
(m/s)

∆V
(m/s)

∆V0
(m/s)

∆V f
(m/s)

∆VLT
(m/s)

∆V
(m/s)

55000 0.15 550 1 3256.5631 2624.0152 4591.3846 10471.9629 3256.5631 2624.0152 4591.3846 10471.9629

56000 0.25 600 1 60053.9099 45197.7661 6228.0339 111479.710 60053.9099 45197.7661 6228.0339 111479.710

59092 0.14 760 2 9803.2212 9183.0716 11123.3732 30109.6659 9803.2212 9183.0716 11123.3731 30109.6659

59990 0.83 1705 3 6491.9569 2950.8949 15044.7286 24487.5804 6491.9569 2950.8949 15044.7286 24487.5804

51020 0.11 1522 4 60276.1285 51440.7887 9498.2026 121215.120 60276.1285 51440.7887 9498.2026 121215.120

Table F.2: Differences between verification data and results

Input vector Absolute difference Relative difference

t0
(MJD)

k2
(-)

T OF
(days)

N
(-)

∆V0
(m/s)

∆V f
(m/s)

∆VLT
(m/s)

∆V
(m/s)

∆V0
(%)

∆V f
(%)

∆VLT
(%)

∆V
(%)

55000 0.15 550 1 7.2897E-07 6.5298E-07 4.3319E-08 1.1931E-07 2.2385E-08 2.4885E-08 9.4349E-10 1.1393E-09

56000 0.25 600 1 2.4804E-08 6.8976E-09 2.1991E-08 5.3697E-08 4.1303E-11 1.5261E-11 3.5309E-10 4.8167E-11

59092 0.14 760 2 1.2481E-07 1.4728E-07 2.4665E-06 2.7386E-06 1.2732E-09 1.6038E-09 2.2174E-08 9.0954E-09

59990 0.83 1705 3 1.0004E-11 1.0004E-11 1.0004E-10 9.8225E-11 1.5411E-13 3.3903E-13 6.6498E-13 4.0112E-13

51020 0.11 1522 4 3.0996E-09 6.1991E-09 2.1149E-06 2.1056E-06 5.1423E-12 1.2051E-11 2.2267E-08 1.7371E-09

Table F.3: Validation of minimum number of steps required for ∆V computation using the Midpoint method
(for x = [62701.02, 0.1970, 562.74])

# steps Computed∆V Absolute difference Relative difference (%)

100 6.038231276 0.023095754 0.381034618

200 6.049774442 0.011552588 0.190595029

300 6.053605264 0.007721767 0.127393993

400 6.055517506 0.005809524 0.095845747

500 6.05667934 0.004647691 0.076677777

1000 6.059004283 0.002322747 0.038320769

10,000 6.061094645 0.000232386 0.00383391

100,000 6.061303811 2.3219E-05 0.000383069

1,000,000 6.061324729 2.30101E-06 3.79622E-05

10,000,000 6.061326821 2.09182E-07 3.45109E-06

100,000,000 6.06132703 0 0
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Table F.4: Validation of minimum number of steps required for TOF computation using the Midpoint method
(for x = [62701.02, 0.1970, 562.74])

# steps Computed TOF Absolute difference Relative difference (%)

100 562.7399885 0.002707824 0.000481183

200 562.7420193 0.000676954 0.000120295

300 562.7423954 0.000300868 5.34646E-05

400 562.7425271 0.000169238 3.00738E-05

500 562.7425880 0.000108313 1.92473E-05

1000 562.7426692 2.70782E-05 4.81182E-06

10,000 562.7426960 2.70846E-07 4.81296E-08

100,000 562.7426963 2.77703E-09 4.93481E-10

1,000,000 562.7426963 8.60609E-11 1.52931E-11

10,000,000 562.7426963 2.20552E-11 3.91924E-12

100,000,000 562.7426963 0 0

F.3. Optimization
F.3.1. Method
In this work, three different methods are used for the optimization of trajectories: the DE, the GS, and the
AGS. It has to be verified that each of them is implemented correctly and converges to the global optimum.
Therefore, two functions of which the global optimum is known are used as test cases [17]. The DE is verified
by optimization of the Rastrigin function. The GS and the AGS are verified by optimization of the HimmelBlau
function. The global minima of both functions are presented in Table F.5, together with the ones found using
the optimization algorithms as implemented in this work. It should be noted that no verification is necessary
for the conjugent gradient method as this optimization technique is built-in in the gpml toolbox [24].

F.3.2. Results
The optima found for the Rastrigin function and Himmelblau function, using respectively the DE, the GS, and
AGS, are given in Table F.5. It can be observed that the optima found using the algorithms are exactly equal to
the global optima [17], from which it is concluded that the optimization techniques are implemented correctly.

Table F.5: Verification of optimization techniques

Function to be optimized Method
Global optima Optima found with algorithm

x y f (x, y) x y f (x, y)

Rastrigin DE 0.00 0.00 0.00 0.00 0.00 0.00

Himmelblau GS 3.00 2.00 0.00 3.00 2.00 0.00

Himmelblau AGS 3.00 2.00 0.00 3.00 2.00 0.00
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G
Appendix: Recommendations

Due to the promising results that can be achieved with GP models, some recommendations for further re-
search into the application of GP models on low-thrust trajectories are discussed.

• In this work, the GP models are applied on direct low-thrust transfers that are approximated by the ex-
posin shape. It could be investigated whether it is possible to obtain comparable or better results, in
terms of accuracy and prediction time, when the GP models are applied on low-thrust transfer trajecto-
ries modeled or shaped in a different way. The following three deviations are recommended:

1. Shaping the low-thrust trajectory with a different shape than the exposin, for example using hodo-
graphic shaping [8], pseudo-equinoctial shaping [20], or spherical shaping [5]. From Table III in
Section VII in the conference paper, it becomes clear that these shape-based methods are able to
find more optimal trajectories in terms of ∆V than the exposin, and might therefore be even more
useful in the preliminary design of low-thrust trajectories.

2. Considering low-thrust trajectories that include flyby’s along planets or asteroids. In the work of
Petropoulos [23], low-thrust trajectories containing flyby’s were modeled making use of the exposin
shape. Because trajectories that include flyby’s are of significant importance in trajectory design, it
will be highly valuable when GP models are developed for this application.

3. Using detailed numerical computation instead of an analytic approach to generate low-thrust tra-
jectories. It will take significantly more CPU time to generate training data, but if it is possible to
achieve high accuracies for these models, the optimal trajectories will more closely resemble the
actual optimal trajectories as less or no simplifications are made.

• Currently, the GP models are trained with data that is uniform randomly distributed within the input
space. Since significantly the largest part of all feasible trajectories are non-optimal in terms of ∆V and
Jm , a random uniform distribution will lead to a set of training data that contains very few trajectories
with small ∆V and Jm values, and most likely not the global optimum. It is expected that potentially
higher accuracies could be obtained and trajectories closer to the global optimum could be found when
a larger percentage of the training data contains trajectories with small ∆V and Jm values. McKay et al.
[16] has recommended two other methods for the sampling of training data: Stratified Sampling and
Latin Hypercube Sampling, which are both further detailed in the literature study [4].

• Three different transfer trajectories with different target planets have been chosen as mission test cases
in this work. Not enough time was available to try several other target planets within the Solar System. It
is therefore recommended to develop GP models for transfers to planets closer to the Sun (e.g. Mercury
or Venus), or planets further away (e.g. Saturn) than the targets currently investigated.

• Finally, no relevant papers have been published yet that define some logic in choosing a GP model for
a specific application, when prior knowledge is not available. In this work, a method is developed that
tries to provide some direction in choosing a GP model. However, it remains unanswered why specific GP
models and functions within these models are performing better than others. A study could be directed
towards this end, trying to find out whether some logic could be defined in the relationship between a
specific application and the performance of a specific GP model.
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