
 
 

Delft University of Technology

Experiment and theory of the complex refractive index of dense colloidal media

Speets, Peter N.A.; Kalkman, Jeroen

DOI
10.1364/JOSAA.510603
Publication date
2024
Document Version
Final published version
Published in
Journal of the Optical Society of America A: Optics and Image Science, and Vision

Citation (APA)
Speets, P. N. A., & Kalkman, J. (2024). Experiment and theory of the complex refractive index of dense
colloidal media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 41(2),
214-228. https://doi.org/10.1364/JOSAA.510603

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1364/JOSAA.510603
https://doi.org/10.1364/JOSAA.510603


214 Vol. 41, No. 2 / February 2024 / Journal of the Optical Society of America A Research Article
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The complex refractive index is analyzed by measuring its scattering attenuation µs , group index ng , and group
velocity dispersion (GVD) for 100 nm diameter silica nanoparticles dispersed in water. The experiments were
performed for wavelengths between 410 nm and 930 nm. The experimental results were compared with different
mixing models for the complex refractive index of colloidal suspensions. The group index linearly scaled with the
volume fraction both in experiment and for all tested models. It was found that the GVD has a nonlinear depend-
ence on volume fraction in agreement with the coupled dipole model of Parola et al. [J. Chem. Phys. 141, 124902
(2014)] The scattering attenuation is in good agreement with both the coupled dipole model and the low fre-
quency quasi-crystalline approximation [J. Electromagn. Waves Appl. 2, 757 (1988)] that take particle correlations
into account. With an iterative fitting procedure of all the data based on both the coupled dipole model and the
quasi-crystalline approximation, the refractive index, porosity, and size of the nanoparticles were determined. We
determined that the coupled dipole model is in best agreement with the data. © 2024 Optica Publishing Group under

the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/JOSAA.510603

1. INTRODUCTION

An important parameter describing electromagnetic wave
propagation in optical materials is the complex refractive index.
The real part of the refractive index is related to refraction, phase
delay, and phase velocity of the wave. The imaginary part of the
refractive index is related to the optical attenuation of the wave
caused by scattering and absorption.

For optical materials composed of atomic or molecular
mixtures the real part of the refractive index is well described
by the Lorentz-Lorenz equation [1,2], which is based on the
intrinsic polarizability of the atoms or molecules in the mixture.
Colloidal media are composed of liquid or solid particles with
a size range of 1–1000 nm in a molecular solvent. In a dilute
colloidal suspension the real part of the refractive index is well
approximated with the simple Arago-Biot mixing formula [3,4].
This describes the refractive index as the average refractive index
of the host medium and the suspended particles, weighted by
their volume fraction.

The first theoretical description of the effect of small particles
on the real part of the effective refractive index was given by
Garnett who used the Clausius-Mossotti relation to incorporate
the effect of embedded gold and silver particles to describe the
optical properties of colored glass [5]. Since then, various mix-
ing models [6–25] have been derived for the effective refractive
index of particulate media. With some exceptions [8,9,14],
these models predict both the real part and the imaginary part
of the effective refractive index. In many cases, the scattering

models were developed to describe the attenuation, caused
by absorption or scattering, but some obtained the refractive
properties from the electric permittivity [8,14,21].

The full complex refractive index of a dilute particle sus-
pension is well approximated with the simple and widely used
mixing formula given by van de Hulst [16]. This model predicts
both the real and imaginary parts of the effective refractive index
from a given complex scattering amplitude, for example, from
Mie theory. A disadvantage of the van de Hulst refractive index
model is that it does not incorporate volume fraction depen-
dent scattering. In other words, it does not take into account
the correlations between the particle positions and predicts a
linear relationship between the effective refractive index and
the volume fraction. The van de Hulst refractive index is appli-
cable for volume fractions lower than 1% [22], but for higher
volume fractions leads to erroneous results as the relationship
between the imaginary refractive index and the number of
particles becomes nonlinear [26–30]. For volume fractions up
to 5%, it is possible to derive a simple and nonlinear expression
[22,25,31] for the effective refractive index. For higher particle
volume fractions the effective complex refractive index can be
obtained by taking into account the positional correlations
between the scattering particles. In this way, the imaginary part
depends explicitly on the radial distribution function g (r ),
describing the distribution of the particles, and its spherical
Fourier transform, the structure factor S(q) describing the light
scattering of the particles. Here, r is the distance from the center
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of a particle and q the scattering wavenumber [27,29,32,33].
These correlations have a prominent effect at high volume
fractions [6,7,13,19]. However, it was observed that the volume
fraction dependence of the real part deviates only little from
linearity [22,31,34–39]. It is therefore difficult to compare dif-
ferent models of the real refractive index to experimental results.
Indeed, some authors noted the scarcity of experimental work
on the effective refractive index [6,22,25,40]. Experimental evi-
dence is particularly absent for high volume fractions of particles
where colloidal suspensions easily become unstable [22].

A second complication is that measuring the real part of the
refractive index of colloidal suspensions is challenging. For
example, when measuring a colloidal suspension with an Abbe
refractometer, the critical angle becomes ambiguous [36,41]. In
this case, the Fresnel equations need to be modified to take into
account the particulate nature of the medium [24,30,42,43].
When measured in transmission, for example, through strongly
forward scattering media such as tissue [44], the partially coher-
ent diffusive light makes a quantitative determination of the
real part of the refractive index ambiguous. In that case, coher-
ence gating may be applied to filter the diffusive light from the
ballistic light [27,44,45].

The work presented in this paper consists of experimen-
tal results and theoretical analysis of the complex refractive
index of dense suspensions of 100 nm silica particles in water.
Experimentally, we determine the group index, group velocity
dispersion (GVD), and scattering attenuation with a spectral
domain Mach-Zehnder interferometer over a broad wavelength
range.

The experimental data is compared to two volume fraction
dependent models for the complex effective refractive index
of dense colloidal suspensions. The first model is the quasi-
crystalline approximation (QCA) of the Foldy-Lax equations
in the low frequency limit described by Ding and Tsang [7].
The second is the coupled dipole model (CDM) by Parola et al.
[6]. CDM is conceptually similar to the coupled dipole method
to computationally obtain the scattering properties [46], or
thermal radiation [47,48] of an arbitrarily shaped particle.

We observe that the nonlinear response of the GVD to the
particle size and concentration is much larger than that of the
group index of the suspension. From a fit of the CDM model to
the full complex refractive index over a large size parameter and
concentration range we obtain the mean particle size, size poly-
dispersity, and refractive index. We show that the obtained size
distribution is in good agreement with a reference measurement.

2. THEORY

A. Refractive Index of Dilute Suspensions

The complex refractive index is defined as

ñ(k)= n(k)+ i
µ(k)
2k

, (1)

with the real part n(k) related to the phase velocity of a wave
propagating through a medium and the imaginary part related
to the attenuation of the wave in the medium. Here, k is the
wavenumber in vacuum, andµ the attenuation coefficient, both
due to absorption and scattering. In a non-absorbing medium

and with non-absorbing particles, the attenuation coefficient is
given only by the scattering attenuation coefficientµs .

In a dilute suspension of particles the effect of the spatial cor-
relations of particle positions can be neglected. In that case, the
real part of the refractive index of a mixture of two components
is, for many mixtures, well approximated with the Arago-Biot
mixing formula. This equation expresses the refractive index as
the average refractive index of both components weighted by
their volume fraction [3]:

Re {ñeff} = fvRe
{
ñ p
}
+ (1− fv)Re {ñm} . (2)

Here, fv is the volume fraction of suspended particles,
Re{ñeff} is the real part of the complex effective refractive index
of the suspension, and Re{ñm} and Re{ñ p} are the real refrac-
tive indices of the embedding medium and of the suspended
particles.

In dilute suspensions, µs is equal to the concentration times
the scattering cross section. Therefore, it scales linearly with
volume fraction. The full refractive index of a dilute suspension
of a mixture of particles with different sizes can be calculated
from the Mie scattering amplitude SMie through the van de
Hulst refractive index [15,16,49]:

ñeff(k)= nm(k)−
Ns∑
i

3in p(k) fv,i
2x 3

i

SMie,i (θ = 0). (3)

Here, the refractive index of the suspension ñeff(k) is given
by the refractive index of the embedding medium nm(k)minus
a sum over all particle size bins with volume fraction fv,i per
size bin. The sum consists of the refractive index of the particle
n p(k), the size parameter xi = kmai , km is the wavenumber
in the embedding medium nmk, ai is the particle radius, and
the complex Mie angular scattering amplitude in the forward
direction is SMie(θ = 0). For unpolarized light SMie(θ = 0)
is the average of both angular scattering amplitudes S1 and
S2. The angular scattering function is normalized such that

Re{S(θ = 0)} = k2σs
4πnm

, where the scattering cross section of
the particle σs is given according to Mie theory [50,51]. Both
the van de Hulst refractive index and the Arago-Biot mixing
formula scale linearly with the volume fraction of colloids.

B. Electric Field in Dense Suspensions

To describe the complex refractive index for dense media the
effect of the particle positions has to be taken into account in the
electromagnetic field E (r)propagation through the medium.

The starting point here is the Foldy-Lax equation [10,52,53]

E (r)= E inc(r)+
∑

i

∫
V

↔

Gm
(
r − r ′

)
Ui
(
r ′
)

E
(
r ′
)

dr ′,

(4)
with the field at every particle location r i given by

E (r i)= E inc(r i )+
∑
j 6=i

∫
V

↔

Gm
(
r i − r ′

)
U j
(
r ′
)

E
(
r ′
)

dr ′,

(5)
with E the total field, and E inc the external excitation field. The

Green’s dyadic operator of the embedding medium
↔

Gm is given
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Fig. 1. Sketch of the Foldy-Lax equations. (a) The field at position
r is the sum of the field radiated by all particles. (b) The field at the
particle at position r0 depends on the radiated field from surrounding
particles.

by [53]

↔

Gm(r)=
(
↔

I + 1
km

∇⊗∇

) e ikm |r|

4π |r|
. (6)

Here,
↔

I is the identity matrix and Ui (r) is the scattering
potential given by the refractive index contrast from the particle
at position r i and is given by Ui (r)= (m2

− 1)k2
m inside a

particle volume vi and is zero within the embedding medium,
and m is the refractive index contrast of the particle n p/nm . The
electromagnetic propagation is sketched in Fig. 1. Here, the
Foldy-Lax equations are sketched for three particles at positions
r0−2. In Fig. 1(a) the interactions as described in Eq. (4) are
shown. The electric field at position r is given by the scattered
field of all other particles and the external field E inc(r). For
this, the field of all particles must be known. The field for the
particle at position r0 is given by the external field E inc(r), and
the field scattered by all other particles is given by Eq. (5), which
is sketched in Fig. 1(b).

The total field E appears on both sides of Eq. (5). In the Born
approximation the electric field in the right hand side is set to
E (r)= E inc(r). The exact solution of the Foldy-Lax equations
can then be obtained by taking the Born approximation as a
first approximate for the electric field and iteratively solving for
the total field for a system with a known spatial refractive index
distribution U(r)=

∑
i Ui (r). For a correlated particulate

medium in Brownian motion solving the Foldy-Lax equations
would require averaging over all known particle positions. These
can be obtained from a Monte Carlo simulation.

C. Quasi-crystalline Approximation

The spatial correlations between scatterers can be taken into
account with the quasi-crystalline approximation (QCA). To
get the field at the particle E (r0), QCA replaces the contribu-
tion of all other particles r i 6=0 to the electric field at particle
position r i with the scattered field of an average particle
at position r j weighted by the radial distribution function
g (|r i − r j |). The Foldy-Lax equations under the QCA are

〈E (r)〉 = E inc(r)+ N
∫

V

↔

Gm
(
r − r ′

)
U0
(
r ′
) 〈

E 0
(
r ′
)〉

dr ′

(7)
and

〈E 0(r)〉 = E inc(r)+ (N − 1)

×

∫
V

↔

Gm

(
r − r ′

)
U0

(
r ′
)

g
(∣∣r − r ′

∣∣) 〈E 0

(
r ′
)〉

dr ′.

(8)

Here, N is the number of particles, 〈E 0(r)〉 the average
field of a particle, and U0(r) the potential of a single particle at
position r.

When propagating waves are considered, it is useful to express
the radial distribution function g (r ) as its spherical Fourier
transform: the structure factor S(q). Here, q = 2km sin( 1

2θ)

is the scattering wavenumber and θ the scattering angle. The
spatial correlations between particles of different species or in
different size bins are encoded in the partial structure factor
Si, j (q). A general expression for the partial structure factor of
polydisperse hard sphere particles in the Percus-Yevick approxi-
mation [54] is given by Tsang et al. [55] [Eqs. (8.2.7)–(8.2.19)
p. 413].

D. QCA in the Small Scattering Angle Limit

Equations (7) and (8) can be solved for small size parameters in
the small scattering angle limit (θ→ 0), also called the low fre-
quency limit (q→ 0) [56]. For a polydisperse particle size distri-
bution, the solution for the complex refractive index ñeff is pre-
sented by Ding and Tsang [7] as

ñ2
eff = n2

m +
3nm

D

Ns∑
i

fv,i y i

{
1+

2in2
mk3

3D

×

a3
i y +

Ns∑
j

8π3a3
jρ j y

(
1− Si, j (q = 0)

). (9)

Here, Ns is the number of size bins and the indices i, j denote
the size bins. The concentration of particles of size bin j is ρ j ,
fv,i is the volume fraction of particles with radius ai , and the
parameters y and D are given by

y =
n2

p − n2
m

n2
p + 2n2

m
and D= 1−

N∑
i

fv,i y . (10)

The expression Eq. (9) is henceforth referred to as the low fre-
quency QCA (LF-QCA) model.

E. Coupled Dipole Model

A different approach to obtain the effective refractive index in a
scattering medium is to consider the individual molecules that
make up a particle as discrete dipole scatterers. The field at the
discrete dipole at position r i is given by

E i (r)= E (r)+ αd

∑
i 6= j

↔

Gd (r)E i (r j). (11)

Here,αd is the polarizability of a dipole and Gd is the Green’s
dyadic of a dipole given by
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Fig. 2. Sketch of the coupled dipoles, the scattering particles, and
the radial distribution function of the particles g p(r ) (blue) and the
discrete dipoles g d (r ) (red).

↔

Gd (r)=
[(

3r̂ ⊗ r̂ −
↔

I
) ( 1

k3
mr 3
−

i
k2

mr 3

)
×

1

kmr

(
r̂ ⊗ r̂ −

↔

I
)]

× exp(ikm |r|).
(12)

If the particles are considered to be a continuum of dipoles,
and the quasi-crystalline approximation is applied, the sum in
Eq. (11) is replaced with an integral similar to Eq. (8). This is
given by

E (r i )= E inc(r i )+ α

∫
V

g d

(∣∣r − r ′
∣∣) ↔Gd

(
r − r ′

)
E
(
r ′
)

dr ′.

(13)
Here, α is the polarizability per volume, and g d (r ) the dipole

radial distribution function.
A solution to Eq. (13) was obtained by Parola et al. [6]. The

field of two counterpropagating waves was chosen as ansatz
for the field E (r i ), and the external field E inc. The complex
refractive index was obtained from the consistency conditions
required to solve Eq. (13) for a correlated dipole fluid.

In this model, the dipoles are embedded in a particle, as
shown in Fig. 2. Therefore, the radial distribution function
of the dipoles g d (r ) depends on correlations within the same
particle, and correlations with dipoles in nearby particles. The
intra-particle correlation function g intra(r ) between two dipoles
within a particle is given by convolution of the particle shape by
itself, i.e.,

g intra(r )= s (r ) ∗ s (r ), (14)

with the particle shape function s (r ) for a spherical particle with
volume vp given by

s (r)=
1

vp
(1−2(|r − a |)) . (15)

The inter-particle contribution g inter(r ) is given by

g inter(r )= s (r ) ∗ s (r ) ∗ g p(r ). (16)

The dipole radial distribution function g p(r) is the sum of
both the inter-particle and the intra-particle contributions, i.e.,

g d (r )= g inter(r )+ g intra(r )= s (r ) ∗ s (r ) ∗ g p(r )+ s (r ) ∗ s (r ).
(17)

In the Fourier domain, this convolution can be written as
a multiplication of the particle structure factor S p(q) and the
spherical Fourier transform of the particle volume squared. The
dipole structure factor Sd (q) is then given by

Sd (q)= F 2(q)S p(q)+ 1. (18)

Here, F (q) is the form factor of the particle, which is a
Fourier transform of the particle shape. For a spherical particle
this is given by

F (q)=
4π

vp

∫
r sin(qr )

qr
(1−2(r − a))

dr = 3
sin(qa)− qa cos(qa)

(qa)3
. (19)

For a particle size distribution with size bins i with radius ai ,
the partial form factor Fi (q) and partial structure factor S(q)
can be geometrically averaged over the particle density per size
bin with number densityρi [33]:

〈
a 3 F 2(q)S p(q)

〉
PSD
=

∑
ij (a i a j )

3/2 Fi (q)F j (q)Si, j (q)
√
ρiρ j∑

i ρi
,

(20)
with Si, j (q) the structure factor of size bin i, j . The real part of
the effective refractive index neff of the suspension is then given
by [6]

Re{ñeff} = nm + fvnm
(
n p − nm

)
+

fvnm

2

(
fv − 1

3
+

Cr

π

)(
n p − nm

nm

)2

, (21)

with

Cr =
1

3k3
m

∫
∞

0

〈
a 3 F 2(q)S(q)

〉
PSD

×

[
8

3
k3

mq − kmq 3

(
2k4

m − k2
mq 2
+

q 4

4

)
ln

(
q + 2km

|q − 2km |

)]
qdq .

(22)

The correlation integral Cr encodes nonlinear scattering
effects on the real part of the refractive index. It is dependent on
the particle volume fraction through the structure factor S(q).

The imaginary part of the effective refractive index is an
integral over the product of the scattering amplitude f (q) and
the structure factor over all scattering angles (q ≤ 2km). For a
particle size distribution this is given by Vrij [29,33] as

µs = 2k Im{neff} = 2π
∫ π

0

N∑
i, j

√
ρiρ j fi (θ) f j (θ)Si, j (θ) sin(θ)dθ .

(23)
The scattering amplitude fi (q) for a particle in size bin i can

be calculated with the particle form factor Fi (q) through [6]

f 2(q)=
α2

pv
2
p F 2(q)

(
8k4

m − 4k2
mq 2
+ q 4

)
8n2

m
, (24)



218 Vol. 41, No. 2 / February 2024 / Journal of the Optical Society of America A Research Article

where vp is the particle volume and αp is the dimensionless par-
ticle polarizability relative to the embedding medium, which is
given by

αp =
3

4π

(
(n p − nm + 1)2 − 1

(n p − nm + 1)2 + 2

)
. (25)

The aim of this work is to experimentally test the predictions
given by Eqs. (3), (9), (21), and (23) for the concentration
dependence of both parts of the complex refractive index. Here,
the latter two Eqs. (21) and (23) are used together to provide the
real and imaginary parts of the CDM.

3. METHODS

A. Experimental Setup

Optical properties of colloidal suspensions were measured with
an optical setup based on a Mach-Zehnder interferometer. This
setup is described in detail in our previous work [57]. In sum-
mary, the visible part of the spectrum with wavelengths between
400 nm and 950 nm emitted by a supercontinuum laser (EVO
EUL-10, NKT) is split into the sample arm and the reference
arm of the interferometer by a 10-90 beamsplitter (BS025,
Thorlabs) and recombined with a 50-50 beamsplitter (BS013,
Thorlabs). The spectrum is measured with a spectrometer (FX
VIS-NIR, Ocean Optics). The intensity in each arm was mea-
sured separately indicated by Isam(k) and Iref(k) for the sample
arm and reference arm, respectively. The spectrum measured
with both the arms open is given by Itot(k).

The volume fractions of the prepared silica samples varied
from 0.05 to 0.36. The samples were prepared from a stock
sample of 0.5 volume fraction 100 nm silica particles (Levasil,
Nouryon). This was diluted with demineralized water (Milliq
15 M�cm) to eight samples with volume fractions ranging from
0.05 to 0.4. In order to make sure the particles behave as hard
spheres, 0.2 ml salt solution was added to each sample to lower
the zeta potential. The salt solution was prepared with 400 ml
demineralized water and 0.95 g NaCl.

The sample was measured in a 1000 µm flow cell (45/Q/1,
Starna). The mixture was introduced to the flow cell by a BD10
luer lock syringe. Before each measurement the previous sample
was flushed out by water and air. Between each two measure-
ments a calibration measurement with demineralized water
was performed. In addition to the interference spectrum, the
transmission spectra of the sample arm and the reference arm
were measured.

The spectra were obtained with an exposure time that was var-
ied between 200µs and 1000µs, depending on the transmission
of the sample. The number of spectra acquired was 1000, except
for the measurement at fv = 0.36 where it was set to 10,000.

The variance of the attenuation measurements was deter-
mined with Intralipid 20% dilutions with similar attenuation
coefficients as the samples of silica particles. These were 11
to 13 measurements of Intralipid for the volume fractions
of 0.5 vol. %, 1 vol. %, and 2 vol. % of Intralipid 20% in
water. The standard deviation was determined as a function of
wavenumber k and attenuationµ. The standard deviation for a
particular silica particle solution measurement was determined
with the weighted average of the nearest two measured Intralipid

attenuations. Since the transmission spectra of Intralipid dif-
fer from those for silica, this was done per wavenumber. The
combined results of the Intralipid measurement are the wave-
length and attenuation dependent standard deviation of the
attenuation of the silica samplesσµ(µs (k), k).

B. TEM Particle Analysis

The PSD of the particles that were used in this experiment was
determined with transmission electron microscopy (TEM)
analysis. The TEM images were imaged with a Talos L120C
microscope operated at 120 kV. The TEM samples were
prepared by drop-casting of the particle solution onto a carbon-
formvar coated Cu TEM grid. An example of an acquired TEM
image is shown in Fig. 3(a). First, the noise in the images was
reduced with a convolution with a small square kernel of 5
pixels. Second, local outlying intensity peaks were removed
by morphologically opening and subsequently closing the
negative image with the same kernel. Third, the particles were
selected from the image with a circular Hough transform from
the OpenCV package [58], as is shown in Fig. 3(b). In total
7730 particles were analyzed in four micrographs. The particle
diameter was determined from the area of the particles in pixels
on the micrograph. This area was determined from the binarized
TEM image, which is overlaid on top of the micrograph in
Fig. 3(c). The cutoff pixel value was determined using Otsu’s
method [59]. A pixel is counted towards the area of a particle if
it is within the Hough radius with a margin of 3 pixels and the
pixel is in the binarized image.

C. Phase and Amplitude Analysis

The analysis of a single measurement is summarized in the flow
chart shown in Fig. 4. The analysis is similar to our previous
work [57].

The spectra Itot, Isam, and Iref are obtained in the wavelength
domain. The wavelengths that are used in the analysis are
between 410 nm and 930 nm. The spectra were interpolated to
the wavenumber domain to an array size of 8192.

The scattering attenuation µs (k) is determined in steps 1
and 2 of the flow chart from the measured optical transmission
divided by the transmission spectrum with demineralized water.
The transmission spectrum of a sample with 5 vol. % particles
and its calibration with water are shown in Fig. 5(a). The source

Fig. 3. (a) TEM image of the silica particles. (b) The yellow circles
show the particle circumference obtained with a Hough transform.
(c) Segmented particles. Pixels with the same color are associated with
the same particle.
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Fig. 4. Flow chart of the analysis of a single interference spectrum
measurement. µs (k), ng (k), and GVD(k) (steps 2,7,8) are obtained
from Isam(k), Iref(k), and Itot(k) as indicated in the main text.

spectrum Isource(k), the splitting ratio, and the losses of the
setup itself are divided out with a calibration measurement of
the transmission spectrum of water, where µs (k)= 0. The
transmission, obtained from the ratio between the spectra in
Fig. 5(a), is shown in Fig. 5(c).

The interference spectrum Iint(k) is calculated from the total
spectrum Itot with Iint(k)= Itot(k)− (Isam(k)+ Iref(k)) (step
5). The measured spectrum of the same sample with a blocked
reference arm is shown in Fig. 5(b). The phase spectrum φ(k) is
obtained from the Hilbert transform of Iint(k) and fit to a third
order polynomial (step 6). In the last steps, the group index and
GVD are calculated from the fitted phaseφ(k)with

ng = n + k
dn
dk
=

1

L
dφ
dk

(26)

and

GVD=
2

c 2

dn(k)
dk
+

k
c 2

d2n(k)
dk2

=
1

Lc 2

d2φ(k)
dk2

, (27)

respectively. The group index ng (k) is related to the frequency of
the calibrated interference signal Iint(k). The GVD is related to
the chirp of the same signal Iint(k).

D. Model-Based Analysis

The model-based analysis is based on two independent fitting
routines: one for the refractive index and one for the attenua-
tion coefficient. A flowchart of the forward fitting algorithm is
shown in Fig. 6. The fitting routine is executed for every volume
fraction.

In the refractive index routine the effective group refractive
index as a function of wavenumber is calculated with either the
LF-QCA or CDM scattering model. This loop uses a mean
particle radius 〈a〉 and a phase index as initial input. The phase
index of the particle is described by a polynomial expansion as

n p(k)= n0 + n1k + n2k2
+ n3k3. (28)

The initial polynomial parameters n0−3 of the phase index
were chosen for silica particles with a porosity of 15% based on
Daimon and Masumura [60] and Malitson [61] for water and
silica, respectively.

The initial radius 〈a〉 was set to 50 nm. For particles that are
small compared to the wavelength, the polydispersity has a small
effect on the effective refractive index. Therefore, to speed up
the calculation, the effective refractive index is calculated for a
monodisperse suspension with radius 〈a〉.

For the LF-QCA model, the phase index of the suspension
Re{ñeff(k)}was calculated from Eq. (9). The phase index for the
CDM was calculated with Eq. (21). From the estimated phase
index, the effective group index of the suspension was calculated
from Eq. (26) and is compared to the measured group index.

An estimate of the phase index of the particles is obtained
by minimizing the sum of the square difference for all volume
fractions between the measured effective group index and the
effective group index, as predicted from the refractive index

Fig. 5. Analysis steps of a sample with 5 vol. % silica particles and its calibration measurement. The sample arm intensity Isam(k) is shown in (a).
The interference when both arms are open is shown in (b). (c) Transmission of the same sample and (d) spectral phase.
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Fig. 6. Flow chart of the fitting procedure with the forward model. The parallelograms indicate the input and output. The measured data are
shown in blue, initial values are shown in beige, and the fit parameters are shown in cyan.

model with volume fraction fv and radius 〈a〉 as input. In suc-
cessive iterations the square error was minimized with Scipy’s
[62] Nelder-Mead algorithm [63] using the default precision.

After obtaining sufficiently close agreement between the
modeled group index and the measured group index the algo-
rithm switches to estimate the attenuation coefficient, indicated
with the loop shown on the right in the flow chart. Here, the
particle size distribution is obtained from a fit of µs (k) from
the LF-QCA and CDM models to the attenuation with the
estimated fit of the phase index from the previous loop. The
particle size distribution was parameterized with a normal dis-
tribution with mean radius 〈a〉 and standard deviation σa . For
the LF-QCA model, µs (k) was calculated from Eq. (9). For
the CDM, µs (k) was calculated from Eq. (23). The error that
was minimized is the square difference between the measured
attenuation and the modeled attenuation with relative weights
W fv ,k = 1/σ 2

fv ,k , with σ 2
fv ,k the variance in µs obtained from

the Intralipid measurements. Similar to the case for the refrac-
tive index loop, the error was minimized with the Nelder-Mead
algorithm. The initial polydispersity was set at 5% of the mean
radius of 〈a〉init.

The forward models for both n(k) andµs (k)were computed
on the wavelength range of 410 nm to 930 nm for 256 wave-
lengths. To compare with the measured scattering attenuation
and group index, the measured data is interpolated to match
the wavelengths of the forward fit. The scattering attenuation
is calculated for 64 particle size bins within four standard devi-
ations from the mean. This was done to make the quality of the
sampling independent of the standard deviation of the particle
radiusσa .

The obtained mean particle radius 〈a〉 is transferred from
the attenuation loop to the refractive index loop to calculate the
polynomial parameters of the phase index n0−3 of the particles

with the refractive index models. This phase index is then used
to update the PSD in the attenuation loop. This procedure is
repeated until no further improvement in the estimated mean
diameter and polydispersity could be achieved. In practice, the
diameter and polydispersity often do not significantly change
after the first two iterations, and do not change within machine
precision after approximately the sixth iteration, depending on
the used model.

After completion of the full optimization routine, the poros-
ity fv,pores is calculated from the fitted phase index of the silica
particles with the assumption that the pores fully consist of
water. The porosity is then calculated with

fv,pores =

〈
nfit(k)− nbulk(k)

nwater(k)− nbulk(k)

〉
k
, (29)

where nbulk(k) is taken from Malitson [61] and nwater(k) is taken
from Daimon and Masumura [60].

E. Estimation of the Confidence Interval

The confidence interval of the mean diameter 〈a〉 and polydis-
persityσa is estimated from the weighted residue R :

R (〈a〉, σa )=
∑
fv ,k

W fv ,k
(
µs,exp,k, fv −µs,fit,k, fv (〈a〉, σa )

)2
.

(30)
Here, µexp is the measured attenuation, µfit the fit, and W

the weights given by the Intralipid measurements. The region
of confidence can be estimated as the region R(〈a〉, σa ) that lies
below a threshold Rcutoff [64,65]:

R (〈a〉, σa )≤ Rcutoff. (31)
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To heuristically find a reasonable Rcutoff, we fit 〈a〉 and σa

to an attenuation spectrum with one standard deviation offset
given by

µvar ( fv, k)=µexp ( fv, k)+ σµ ( fv, k) /
√

N. (32)

Here,µvar is the attenuation spectrum perturbed with the mea-
sured standard deviation, N is the number of different measured
volume fractions, which is eight, and σµ( fv, k) is the standard
deviation as determined from the Intralipid measurements. The
〈a〉var and σa ,var are the mean radius and polydispersity fitted to
µvar. The cutoff residue Rcutoff is then given by

Rcutoff = R
(
〈a〉var, σa ,var

)
. (33)

The region of confidence for 〈a〉 and σa is then given by
Eq. (31).

4. RESULTS

A. Real Part of the Effective Refractive Index

The measured group index and GVD for a volume fraction of
fv = 0.36 colloidal silica particles are shown in blue in Fig. 7.
The result of the model-based analysis with the CDM model
that best matches the data is shown in red. Because this is a result
of a fit to all wavelength and volume fraction data, not just to the

measurement at fv = 0.36, a small offset from the group index
data is present.

The volume fraction dependence of the model-based analysis
of the group index is shown in Fig. 8 for the wavelengths 450 nm
and 800 nm. Both ng and GVD are linearly dependent on vol-
ume fraction with no discernible nonlinearity in the group index
data. The prediction from the CDM model is shown in red. The
group index obtained with LF-QCA is not appreciatively differ-
ent from CDM and is not plotted in Figs. 7 and 8. The measure-
ment uncertainty is of similar size as the plot markers.

For the real part of the effective refractive index, the most
significant discriminator between the CDM and LF-QCA effec-
tive refractive index models is the volume fraction dependence
of the GVD. In Fig. 9 the measured GVD and the fitted GVD
are shown for various wavelengths. For all wavelengths, with
the exception of the GVD measured at wavelengths longer than
700 nm, the GVD is nonlinear with increasing particle volume
fraction, particularly for lower wavelengths. It is remarkable that
all models quantitatively match the data so well, despite the fact
that the group index shown in Fig. 8 shows an almost perfect
linear behavior. The volume fraction dependence of the GVD at
a single wavelength is small compared to the difference in GVD
between the lowest and highest measured wavelengths.

The CDM describes the measured GVD reasonably well
for all wavelengths. It does have a constant offset at some wave-
lengths, but CDM clearly predicts a nonlinear behavior of the
GVD with volume fraction. The GVD, as calculated with the

Fig. 7. Measured (a) group index and (b) GVD at different wavelengths compared to the Parola model for a volume fraction fv of silica
particles in water.

Fig. 8. Measured and modeled group index at (a) λ= 450 nm and (b) λ= 800 nm for different volume fractions of silica particles in water.
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Fig. 9. GVD for various wavelengths and models. The CDM model describes the shape of the volume fraction dependence reasonably well. For
low volume fractions the van de Hulst formula gives adequate results. At high wavelengths the size of the particle becomes small compared to the
wavelengths, thus leading to a more linear increase of GVD with volume fraction.

LF-QCA and van de Hulst model, is indicated with the dot-
ted lines in green and purple. The LF-QCA and van de Hulst
models always predict a linear increase of the GVD with volume
fraction, which is clearly not in good agreement with the data.
Note that the phase index used for the van de Hulst model was
taken to be the same as for the CDM. The uncertainty in the
measurements is smaller than the plot markers.

The phase indices of the silica particles that are obtained
with the CDM and LF-QCA models are shown in Fig. 10. Both
models lead to a similar phase index. For comparison, the phase
index of pure, nonporous silica is shown in black. The porosity,
as obtained from the phase index of the particle obtained with
the CDM, is 12.5%.

B. Imaginary Part of the Effective Refractive Index

The measured scattering attenuation µs (k) for the volume
fractions of 0.05 and 0.36 as a function of wavelength is shown
in Fig. 11, together with the CDM and LF-QCA model pre-
dictions. For comparison, the CDM prediction with the PSD
obtained from the TEM analysis is also shown in Figs. 11 and
12. For the volume fraction of 0.05, CDM closely matches
the measured attenuation, whereas the LF-QCA model
overestimates the attenuation coefficient for shorter wave-
lengths. For higher volume fractions, it is the CDM that has an
overestimation at lower wavelengths.

The differences for the various scattering models are more
clearly visible when the scattering attenuation is visualized as

Fig. 10. Phase index of silica particles as determined with the vari-
ous models from the model-based analysis compared to the phase index
of nonporous silica (black).

a function of volume fraction, as shown in Fig. 12. For short
wavelengths the higher attenuation results in more precise atten-
uation measurement (smaller error bars). For the wavelengths
450 nm and 500 nm the CDM model is very close to the mea-
sured attenuation. However, for longer wavelengths both the
LF-QCA and the CDM underestimate the measured attenua-
tion at high volume fractions. The volume fraction of maximum
attenuation for the CDM is 17.0% atλ= 450 nm and 14.5% at
λ= 700 nm. For the LF-QCA model this is 13.2%. The peak of
the CDM is closer to the measured maximum.

The particle size distribution as obtained from the TEM
analysis and the model-based analysis for 〈a〉 and σa is shown
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Fig. 11. Measured scattering attenuation µs (λ) compared with the fits with the various models. The CDM prediction of µs (λ) for the PSD
obtained with TEM is shown in purple.

Fig. 12. Scattering attenuation as function of the volume fraction for four wavelengths.

in Fig. 13. The mean particle diameter as obtained with the
CDM is 102.2 nm with confidence interval of (97.5 nm,
105.5 nm) with a polydispersity of 6.6% (1.7%, 13.4%). For
the LF-QCA model this is 89.7 nm (79.7 nm, 96.9 nm). The
polydispersity obtained with the LF-QCA model is 19.6%
(15.4%, 25.4%). The mean size and polydispersity obtained
from the TEM images are 99.7 nm and 9.4%.

5. DISCUSSION

A. Comparison of Complex Refractive Index Models

To the best of our knowledge we are the first to compare exper-
imental results with the CDM model. This is in contrast to the
LF-QCA in the small scattering angle limit that is widely used
to model the dependent scattering effect on both the imaginary
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Fig. 13. Particle size distribution as determined with the model-
based analysis compared with the distribution as obtained from
TEM.

part [66,67] and the real part of the effective refractive index
[22,38]. The CDM and LF-QCA have in common that for both
models the effective complex refractive index scales nonlinearly
with the volume fraction of the suspended particles.

The CDM accurately describes both the imaginary and real
parts of the effective refractive index. It is particularly note-
worthy that this model is able to predict reasonably well the
nonlinear shape of the measured GVD curves. The LF-QCA
model describes the real refractive index reasonably well, but
does not predict a nonlinear volume fraction dependence of the
GVD. Instead, it predicts a linear behavior, which is clearly not
in agreement with the measurements.

The LF-QCA model performs poorly on inverting the mea-
sured attenuation spectra to a PSD, since for the LF-QCA
model an increase of polydispersity and an increase of mean
particle radius have a similar effect on the attenuation spectrum.
For longer wavelengths, the LF-QCA model and the CDM
provide similar results for the imaginary part of the refractive
index. However, for shorter wavelengths, the prediction for the
attenuation coefficient of the LF-QCA model is shifted upwards
compared to the low volume fraction experimental data and the
CDM. For high volume fractions and at low wavelengths, the
LF-QCA model deviates less from the measured attenuation
than the CDM.

The shape of the volume fraction dependence of the scat-
tering attenuation as calculated with the LF-QCA model does
not change with the size parameter. For example, the maximum
attenuation is at fv = 0.13 for all wavelengths. However, the
experimental data shows that the volume fraction of maximum
attenuation does depend on wavelength. This is visible in the
CDM fit, where the peak of maximum attenuation varies with
wavelength. The difference between the model predictions
is due to the low frequency solution of the LF-QCA, which
assumes a small particle size parameter x , which at λ= 450 nm
with x = 0.94 is clearly violated.

The small particle assumption of the LF-QCA also compli-
cates the retrieval of the PSD through the iterative model-based
fit. Moreover, the mean diameter and the polydispersity are
strongly correlated. Increasing the mean particle size or increas-
ing the polydispersity has similar effects on the scattering
attenuation and therefore cannot independently be determined.
This effect is visible in the obtained PSD parameters where
both the mean particle radius 〈a〉 and polydispersity σa do not
resemble well the ground truth obtained with TEM. The CDM
model yields reasonable estimates for both the mean particle size
and the polydispersity, as it encodes the effect of polydispersity
on the attenuation better.

In addition to the low frequency LF-QCA and CDM models,
we have tested the low frequency QCA with coherent potential
(QCA-CP) [7] and Keller [13] models for the complex refrac-
tive index. The refractive index and attenuation predicted by
QCA-CP is very similar to that as predicted by LF-QCA. The
Keller model did not perform well for the attenuation, since the
particles used in this work have a too low size parameter. Better
results with the Keller model can be obtained with larger parti-
cles [68]. Interestingly, the Keller model predicts a quite strong
volume fraction dependence on the GVD, which, however, does
not match well to the data. The comparison with these models
can be found in Supplement 1.

B. Structural Correlation Effects on the
Refractive Index

We have shown how dependent scattering encoded in the partial
structure factor Si, j (q) affects the refractive properties of a col-
loidal medium. Both the real and imaginary parts of the effective
refractive index are dependent on concentration through the
structure factor. We believe we are the first to measure a nonlin-
ear dependence of the real part of the effective refractive index
on the particle volume fraction. Previous work was limited to the
liquid-crystal phase transition of a colloidal crystal. For example,
Okubo [40] measured an increase in the refractive index due
to a phase transition in a dense colloidal medium. However, no
comparison with a refractive index model was made, and no
nonlinear concentration dependence in the liquid phase, other
than the phase transition, was observed.

The experiments presented in this work were performed to a
high degree with hard sphere particles. This has the advantage
that a clear comparison with the theory can be made through
the Percus-Yevick approximation of the structure factor. Hence,
other structures, such as non-spherical particles, may give rise to
different optical properties [69,70], but can be described using
the same formalism as long as the structure factor is known.
Furthermore, the ionicity of the fluid strongly influences the
interactions. For example, a lower salt concentration can give
rise to an artificially high volume fraction [40,71], since the
particles occupy a higher effective volume due to the repellent
inter-particle force. At a given particle volume fraction, this
would lead to a stronger effective nonlinear effect on the GVD.
In this case, the hard sphere potential would need to be replaced
by a potential based on the zeta potential of the particle for
obtaining an accurate structure factor.

C. Scattering Form Factor

Parola et al. provided a concentration dependent scattering
amplitude fCDM(q) given by Eq. (24) that is approximately
equal to the Mie scattering amplitude fMie(q), shown in
Fig. 14(a). In the Rayleigh regime, the differences between
these scattering amplitudes are negligible. However, for larger
particles, evaluation of Eq. (23) with the approximate fCDM(q)
gives a slightly lower attenuation than expected from the Mie
solution, as can be seen in Fig. 14(b). When the Mie scattering
amplitude is used, the estimated PSD is only slightly closer to
the PSD as obtained with TEM: the Mie-based PSD has a mean
diameter of 100.7 nm and a polydispersity of 6.4%. However,

https://doi.org/10.6084/m9.figshare.24843486
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Fig. 14. (a) CDM scattering amplitude fCDM(θ) compared with
the Mie form factor fMie(θ) for monodisperse 100 nm particles at
λ= 500 nm with a refractive index as measured in this work. In (b) the
corresponding attenuation is shown.

this result does not significantly differ from the PSD as obtained
with the scattering amplitude of Eq. (24). Therefore, the par-
ticles used in this work were small enough to be well described
with the CDM scattering amplitude.

To use the CDM for larger particles, the Mie scattering ampli-
tude is more accurate. However, incorporation of the Mie phase
function in CDM as used in Eq. (22) is not possible due to the
integration boundaries spanning an infinite q range. An ad hoc
solution would be to split the form factor such that for q < 2km

the Mie scattering amplitude fMie is used and for q ≥ 2km the
CDM scattering amplitude fCDM. However, in contrast to the
calculation of the scattering attenuation, this would make not a
measurable difference to the real part of the refractive index.

D. Effects of Polydispersity

The group index calculations were performed for a monodis-
perse particle size distribution and not by the polydisperse PSD
used in the attenuation loop. This choice is substantiated by the
fact that calculations showed that any realistic polydispersity of
the particle suspension has only a limited effect on the group
index and the GVD, as can be seen in Fig. 15. Figure 15 shows
that the GVD at the wavelengths of 500 nm and 600 nm is plot-
ted for a monodisperse particle size distribution and a normal
particle size distribution with a strong polydispersity of 20%
for particles with an average diameter of 50 nm, 100 nm, and
200 nm and the same refractive index as measured for the silica
particles as used in this work. Even for a polydispersity of 20%,
the effect of the size distribution on the GVD is very low for
diameters smaller than 100 nm. It also shows that for smaller
particles the particle correlations encoded in g (r ) have a negli-
gible effect on the GVD, as would be expected for a molecular
mixture [57].

Although the concentration effect on the group index and
GVD was rather small for 100 nm particles, it was large enough
to fit the phase index and distinguish the behavior of the dif-
ferent models. For larger particles Parola et al. predicted a more
prominent concentration dependence of the refractive index for
size parameters x between 1.5 and 2.0, particularly for a volume
fraction higher than 0.3. This would correspond to particles
with a diameter of 200 nm in Fig. 15. Therefore, it would be of

Fig. 15. CDM calculations of the concentration dependence of the (a,c) attenuation and (b,d) GVD for particles with a diameter of 50 nm,
100 nm, and 200 nm at the wavelengths of (a,b) 500 nm and (c,d) 600 nm.
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interest to investigate the concentration dependence of larger
particles.

E. Measurement of Particle Properties

The refractive index, PSD, and porosity of a sample of silica
nanoparticles were determined through a fit of the refrac-
tive index and particle properties. The mean particle size and
polydispersity obtained with the LF-QCA model deviate sig-
nificantly from those obtained with TEM. Better results are
obtained with the CDM, where the PSD has a mean radius
very close to that obtained with TEM. However, the estimated
polydispersity is lower compared to the TEM images, albeit
comparable. A main contributor to the size of the confidence
intervals of the diameter and polydispersity is the strong correla-
tion between them. Therefore, the confidence interval would be
smaller for larger sized parameters where the effects of the mean
size and polydispersity on the scattering attenuation spectrum
µs (k) can be better separated. The porosity obtained from the
CDM is 12.5%, which is similar to reported in literature for
silica particles grown with the Stöber method, where this varied
between 9% and 13% [72–74].

The phase index of the suspended particles themselves is
determined by means of comparing forward modeling with
measurements. Therefore, we present here an unintrusive
method to determine the refractive index of the colloidal par-
ticles within a suspension. This can be beneficial in the case of
porous particles, where the phase index of the particles cannot
be retrieved with an index matching experiment. Moreover, this
provides an opportunity for particle sizing methods based on
light scattering, since the CDM for the scattering attenuation is
dependent on knowledge of the refractive index of the particles.
In fact, uncertainty of the refractive index of the particle can
be a limiting factor in the accuracy of particle sizing with Mie
inversion [27,75]. Furthermore, the effective refractive index
itself has been used for particle sizing for a few decades [35].
Therefore, understanding of the concentration dependence
of the effective refractive index is important, at least to give an
upper bound for the volume fraction under which the regularly
used van de Hulst or Arago-Biot equations are valid.

In this work, the inversion required measurements at dif-
ferent a priori known volume fractions. Obviously, this is not
possible when measuring at a single volume fraction. However,
when the refractive index of the particle is known a priori,
measurement of the group index could be used for direct mea-
surement of the volume fraction [57]. This could eliminate
the need for measurements at different volume fractions for
determining the particle size.

Although, the wavelength range of 410 nm to 930 nm is
broad, for distinguishing the effect of the mean diameter from
the polydispersity, it is best to use a wavelength such that x > 1,
i.e., using smaller wavelengths than used here for 100 nm parti-
cles. This will allow for a better PSD reconstruction due to the
Mie resonances, even without parametrization of the PSD [76].
For the particles used in this work, this would mean measure-
ments of fewer volume fractions would be required when the
transmission would be measured at lower wavelengths.

6. CONCLUSION

In this work the concentration dependence of the effective com-
plex refractive index of a colloidal suspension of 100 nm silica
nanoparticles was investigated with spectral interferometry. For
the real part of the effective refractive index, it was found that the
group index scaled linearly with the volume fraction but that the
concentration dependence of the GVD was nonlinear.

The data was compared to two models: the coupled dipole
model proposed by Parola et al. provided both quantita-
tively and qualitatively a good description for both the group
index and the GVD. The LF-QCA model did not predict the
nonlinear behavior of the GVD.

The models were used in an iterative loop to estimate the
mean particle radius, polydispersity, and porosity. For the
CDM, the porosity of the particles was 12.5%. The particle size
was found to be 102.2 nm with a polydispersity of 6.6%. The
size distribution obtained with the small angle LF-QCA model
had a mean diameter of 89.7 nm and a polydispersity of 19.8%.
The results obtained with the CDM were in good agreement
with electron microscopy measurements.
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